

DEVELOPMENT OF REVISION APPLICATION FOR ANDROID

DEVICES

Bachelor’s thesis

Visamäki
Degree Programme in Business Information Technology

Spring 2018

Juho Jauhiainen

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Theseus

https://core.ac.uk/display/161426148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIIVISTELMÄ

Tietojenkäsittely
Visamäki

Tekijä Juho Jauhiainen Vuosi 2018

Työn nimi Development of Revision Application for Android Devices

Työn ohjaaja /t Lasse Seppänen

TIIVISTELMÄ

Tämän opinnäytetyön tavoite oli tutkia ja esittää kuinka voitaisiin lähestyä
kertausapplikaation kehittämistä Android-laitteille. Työtä on rajoitettu si-
ten että applikaation koodauskieleksi on määritetty C#-koodikieli ja ker-
tausmateriaali on rajattu vain loogiseen ongelmanratkaisuun. Opinnäyte-
työllä ei ole toimeksiantajaa ja aihe onkin opiskelijan itsensä valitsema.

Työn teoreettinen osuus käsittelee ja tutkii nykyaikaisen ohjelmistokehi-
tyksen vaatimuksia ja käytänteitä ja esittelee kehittämistyökaluja. Tutki-
musmateriaalina on käytetty kirjoittajan omia käyttökokemuksia sekä va-
likoituja kirjallisia ja internetlähteitä.

Opinnäytetyön käytännön osuudessa laadittiin selkeä sovellussuunni-
telma, joka pohjautui teoreettisen osuuden havaintoihin ja valintoihin ja
noudatti työlle säädettyjä rajoituksia. Käytännöllistä sovellusdemoa ei ke-
hitetty tiukan opinnäytetyön kirjoitusaikataulun vuoksi.

Opinnäytetyön tuloksena syntyi toimiva ja hyödynnettävissä oleva sovel-
lussuunnitelma joka pysyy rajoitusten puitteissa. Tulosta voidaan hyödyn-
tää tulevaisuudessa pohjana opiskelijoiden ICT-projektille tai esimerkkinä
yrityksille, jotka olisivat kiinnostuneita kehittämään työssä kuvailtua sovel-
lusta.

Avainsanat Ohjelmistosuunnittelu, mobiilisovellukset, C#, Android, ongelmanratkaisu.

Sivut 22 sivua, joista liitteitä 8 sivua

ABSTRACT

Business & Information Technology
Visamäki

Author Juho Jauhiainen Year 2018

Subject Development of Revision Application for Android Devices

Supervisor Lasse Seppänen

ABSTRACT

The goal of this thesis was to investigate and display how to develop a re-
vision application for Android devices. Work has been restricted so that
application must be developed using C#-code language and revision mate-
rial is limited to logical problem-solving. The thesis has no commissioner
and the subject has been chosen by the author.

The theoretical portion deals with and investigates the demands and prac-
tices of modern software development and introduces development tools.
Background information was collected from writer’s own personal experi-
ences as well as from selected literature and internet sources.

The practical portion consists writing an application plan that is based on
the discoveries and selections in the theoretical portion and follows the
restrictions set within the thesis. The practical application demo was ex-
cluded due to strict thesis writing schedule.

The result was successful creation of the application plan that is functional
and stays within the limitations. Result can be used as a base for future
student ICT-projects or as an example for companies who would be inter-
ested in developing described application.

Keywords Software development, mobile application, C#, Android, problem-solving.

Pages 22 pages including appendices 8 pages

CONTENTS

1 INTRODUCTION ... 1

2 MODERN SOFTWARE DEVELOPMENT ... 2

2.1 Adaptability to changes ... 2

2.1.1 SCRUM ... 3

2.1.2 Lean ... 3

2.1.3 Kanban ... 4

2.1.4 Crystal .. 4

2.2 Mobile application development .. 4

2.2.1 Mobile platforms ... 5

2.2.2 Criteria of mobile application development ... 5

2.3 Cross-platform development .. 6

3 APPROACH TO LOGICAL PROBLEM SOLVING .. 8

3.1 Approach with databases .. 9

3.2 Approach with embedded resources .. 10

4 APPROACH TO TESTING ... 11

4.1 The three levels of software testing ... 11

4.2 Static and dynamic testing .. 12

4.2.1 Black-box testing ... 12

4.2.2 Glass-box testing ... 12

4.2.3 Grey-box testing .. 13

4.3 Regression testing ... 13

4.4 Test Driven Development.. 14

4.5 Usability testing ... 15

5 TOOLS, PROGRAMS & METHODS .. 16

5.1 Visual Studio IDE.. 16

5.2 Xamarin ... 16

5.3 Android Studio IDE .. 17

5.4 Development methods.. 17

5.5 Testing methods .. 17

6 EXPANDABILITY OF THE APPLICATION .. 18

7 RESULTS ... 19

8 CONCLUSIONS ... 21

REFERENCES .. 22

Appendixes
Appendix 1 Structured Interview in Finnish
Appendix 2 RALP-Project Application Plan

1

1 INTRODUCTION

When facing an entrance exam situation, just before the doors open to the
exam room, many may have experienced the sudden panic and wish to do
some quick rehearsal on subjects they have studied, no matter how big or
small the subject matter is. Unfortunately, there is currently no tool to help
with this stressful situation. And thus, due to interest sparked by own ex-
perience and for the sake of versing the writer further into proper software
design and development, the goal of the thesis is to explore a potential
way for creating a mobile rehearsal application in the form of clearly writ-
ten and clearly documented application development plan.

Another reason for choosing the thesis subject was its adjustable nature
and transformability. If there should ever come a time when entrance ex-
ams are abolished, it could be possible for example to then transform the
idea into an educational game to use it as a teaching tool.

This thesis is aimed at readers who have previous experience and
knowledge on both coding and software development as some of the used
terminology may be somewhat alienating to readers who are not familiar
with the subject of software development. Due to time restrains, this ap-
plication is designed with certain limitations these namely being that ap-
plication must be aimed for Android platforms, contains only logical prob-
lem-solving as revision material, must be written with C#-coding language
and must support expandability.

As such, the crucial research questions for this thesis are as follows:

− What tools will be used for development?

− How expandable is the application?

− What development methods shall be used?

− How will logical problem solving be approached?

− How would the user testing and effectiveness measure work?

Towards the latter half of the thesis, it was possible to have an interview
with a junior software developer from Ambientia who offered valuable,
experienced information for the thesis. As it is according to standard pro-
cedures and as the interviewed did not request it otherwise, the interview
is referred and listed as anonymous.

2

2 MODERN SOFTWARE DEVELOPMENT

Software development hails its roots to the 60s and 70s era when auto-
mated information technology became a crucial, integral part of the eve-
ryday bureaucracy and ever since then, software is an essential part of
most devices used today. As time has passed, however, the modern daily
work environment has changed from what it previously had been and as
such, modern software development must be prepared for situations and
elements that were not present in the past.

2.1 Adaptability to changes

In the past, software development processes were very linear and often
relied on software specifications being set in stone through the entire pro-
ject. This lead in to the utilization of waterfall work models where software
specifications were determined and set at the start of the project from
which the development would move forward phase by phase often leaving
practical testing until the very end of the development process just before
deployment. While functional in some cases, waterfall models greatest
flaw is that any sudden change in specification, be it either due to a client
or unforeseen circumstances, could potentially lead into a complete redo
of the project and thus can be too risky and costly development method
for a modern development project.

Modern software development utilizes new working methods that allow
for better adaptability during development known as agile methods. Agile
methods emphasize the importance of constant feedback, iteration and
collaboration between developers and business personnel which allows
developed software to adapt to changes even late in the development pro-
cess and supports the continuous evolution of the project. Picture 1 visu-
alizes the differences between waterfall model and agile methods.

Picture 1. Waterfall and Agile model comparison (Lotz 2013).

3

There is a multitude of agile methods to choose from each with their own
unique approach to delivering best results. For the creation of revision ap-
plication, few selected agile development methods are explored.

2.1.1 SCRUM

SCRUM method embraces close interaction between the developers and
the client as with this method, the project starts with defining product
backlog into which developers alongside the client discuss and decide what
functionalities and features are included and how they are prioritized. Af-
ter initial product backlog is formed, sprint planning begins where the
sprint is a timeframe, usually a month, in which project team agrees what
features are to be included into the sprint and what should be completed
by the end of it.

After each sprint, the developers and the client or client representative
redefine the backlog from which new set of features and functionalities
are selected for the next sprint. Most development projects aim to have
three to four sprints, but this is adaptable based on the situation. There
are also certain team roles that are utilized in SCRUM methodology, these
being Scrum Master whose responsibility is the overall project and team
management and to arrange interaction with the customer, Scrum Team
that handles the execution and development and lastly the client who
holds the title and role of Product Owner.

As SCRUM focuses on the close relation of the developers and clients, it
has proven to be a very successful and functional way for companies to
develop modern software. Because SCRUM methodology is in popular use,
many other agile development methods have adapted or otherwise share
some similar features and principals with it.

2.1.2 Lean

Like SCRUM, Lean methodology focuses on utilizing the product backlog
for its project goal. However, the product backlogs are defined much more
compact in Lean as listed features are only limited to the most critical items
that the client desires and are then prioritized accordingly in agreement
with the client.

Lean differentiates from SCRUM in that it does not utilize or use specific
team roles and instead favors offering everyone on the team the authority
to make decisions. Lean abolishes team roles as it has deemed based on
the use cases of the past that a non-hierarchy-based control is more effi-
cient and quicker for developers. The effective use of team resources and

4

utilization of automated tests are other focus points in Lean methodology.
(VersionOne n.d.)

2.1.3 Kanban

Efficiency without overburdening the developer team is the main goal of
Kanban methodology and as such, its practices focus on enhancing the
workflow. Kanban encourages to use visual presentation of the workflow,
limiting the amount of WIP tasks and enhancing the flow by pulling in the
next highest item from the backlog after finishing the previous task.

Kanban does not utilize any form of roles and instead of delivering results
in a bundle like SCRUM methodology does with its sprints, Kanban focuses
on delivering results one item and task at a time. Kanban also encourages
to focus on features that hold most value for the product and the client bit
similarly to Lean methodology. The benefits of Kanban methodology as
such are more rapid delivery rates with software features and the reduc-
tion of unnecessary activities in development which saves development
time.
(VersionOne n.d.)

2.1.4 Crystal

Crystal methodology may be one of the most adaptive of the agile meth-
ods as it considers people as the most important element and regards pro-
cess as a secondary objective. Because of this, Crystal method advises that
a process should be modeled based on the team requirements without us-
ing prescribed tools or techniques.

Frequent delivery, discussions and reflections about methodology im-
provements, close and all-inclusive communication and active feedback
are the most important principals in Crystal method and with these princi-
pals Crystal avoids rigid processes. The amount and need of management,
documentation and reporting are based on the team size and project en-
vironment making this method one of the lightest of agile development
methods. (Santos 2017.)

2.2 Mobile application development

As mobile devices from smartphones to tablets have become more and
more of an everyday item for consumers, the modern software develop-
ment has naturally hopped on the growing market. However, designing
software or applications specifically for mobile devices has its own chal-
lenges.

5

2.2.1 Mobile platforms

Mobile application development has been largely aimed towards the big-
gest names in mobile device markets, which currently are Apple’s iOS reli-
ant platforms such as iPhones and other similarly branded devices, An-
droid which runs on multitude of mobile devices available today and Win-
dows with their own smartphone and tablet models. Each of these plat-
forms run on their own designated code-language.

Apple’s iPhones and the other devices of the brand utilize Objective-C code
language. Objective-C language is derived from C programming language
and as such offers elements used in C language, but it also adds its own
syntax which is heavily based on object-oriented and dynamic runtime pro-
gramming.

Android OS that many mobile devices have installed is developed by
Google from base in Linux-kernel. The utilized coding language on Android
systems is Java language which is also commonly used in Web-develop-
ment which is why many mobile applications developed in Java share com-
mon extensions and add-ons with their browser counterparts.

Windows has been kind of a late-comer to the mobile device market, but
their Windows mobile devices have gained some popularity among mobile
developers in recent years. The rise in popularity occurred after Windows
merged the Application Programming Interface used in their mobile, tablet
and desktop into one making design of software and application that can
run on multiple Windows platforms much easier.

Mobile Windows devices run on C#-language which has all the features of
its predecessor C languages but includes extended functionalities for using
Representational State Transfer API and other such services. Despite their
increase in popularity among developers, Windows mobile devices have
begun to fade away from consumer use and are thus some often-ignored
platform devices.

2.2.2 Criteria of mobile application development

Mobile device hardware is often designed to be cost efficient due to the
large production amounts, which means the processor, graphic drivers and
memory they use are largely inferior when compared to standard PC. Com-
monly mobile devices for example utilize processors that can reach over
100 MHz at their best whereas the most laptops and desktop PCs have
processor reaching two to four GHz depending on the quality of the PC.
These hardware limitations present developers some criteria to consider
when designing applications for mobile devices.

6

Because much of the hardware on mobile devices is weaker when com-
pared to PC, the criteria which developer must focus on are light memory
usage, low processing power requirement and as a new restriction that is
not commonly considered in PC software development, low battery con-
sumption. Similarly, mobile developers must keep in mind the varying
screen sizes and screen resolutions between the mobile devices as they
are quite different from standard PC and laptop screens and cannot per-
form heavy visual tasks as easily as traditional computers.

Another criterion for a mobile developer to remember is the higher expec-
tation and critical review rate on mobile applications than they usually are
for PC software. On PC software some number of glitches and dysfunction-
ality is expected but official, chargeable mobile applications are expected
to be far more polished. As such, the quality of the application is a high
priority in mobile application development. (Mikkonen 2004, 5.)

2.3 Cross-platform development

Often in the modern software development, it is necessary to transfer soft-
ware from one platform to another, which can be rather difficult due to
each platform utilizing its own type of coding language, and sometimes
these transfer attempts can lead to software being re-written from scratch
to another platform environment or cause the software either partially or
completely break down.

To counter the problems of cross-platform development, tools specializing
in cross-platform design have emerged in recent decade as either modules
to existing Integrated Development Environments or as their own separate
IDEs. These tools allow developers to design and code their software on
multiple platforms simultaneously while utilizing just one coding language
specified by the tool and simplifying some of the framework and feature
differences between the platforms. Picture 2 displays the selection of
cross-platform tools available.

Picture 2. Variety of cross-platform tools (Nylund 2017).

7

Despite the existence of cross-platform development enabling tools, the
large number of mobile platforms still presents problems for mobile devel-
opers. While cross-platform development allows for answering the possi-
ble client desire to reach a wide audience, there just are some functional-
ities and features that cannot be performed on all platforms thus forcing
the developers to at times make harsh restrictions. (Anonymous 2018.)

8

3 APPROACH TO LOGICAL PROBLEM SOLVING

In a multitude of professions today, employees from the top to bottom are
often expected and required to have some degree of skills in logical prob-
lem-solving (McKay 2017). This holds true for software developers as well
as they are expected to be able to use logical problem solving when facing
down difficulties, be they either something within the software code or
something in the project management.

The most usual way to often determine problem solving skills of a candi-
date during recruit process or of an entrance exam participant is to present
them a logical reasoning test which at their simplest are series of images
from which last one is to be deduced based on the other ones. Other form
of these kinds of test is a truth-or-lie type of puzzle where there are three
claims and the last one must be either false or true based on how it com-
pares and contradicts with the previous two. Picture 3 displays one type of
logical reasoning puzzle.

Picture 3. Example of an image-based logical reasoning puzzle (IndiaBin
n.d.).

When selecting which types of logical problem-solving puzzles should be
used in the software, the greatest criteria is to consider the platform the
software is developed on. If the software is to be created for PC and tablet
devices, the utilization of both text and image-based puzzles is viable as
screen resolution and the size of the devices allow for easier image and
text viewing. If the software is to be created for smart phones, however,
the developer must consider the smaller screen resolution and size which
can make reading text quite a chore.

As the revision application focuses on Android devices, the choice between
the two implementable puzzle types favors more image based logical rea-
soning puzzle. Because the smaller screen size and resolution of Android
devices, displaying heaps of text would be straining for the eyes and as
such image reliant approach is preferable for the sake of a friendlier user
experience.

9

3.1 Approach with databases

One possible implementation of logical puzzles is to hard-code them as a
part of the view or page which however is only recommendable if there
are no plans for increasing variety of puzzles and only one type of puzzle is
planned to be displayed always. If there are plans for increasing the variety
and the amount of reasoning or deduction puzzles, utilizing databases is
one recommended approach. For database utilization there are options to
either implement an internal database or then use an external database
both options having their own strengths and weaknesses.

The internal database is coded into the application itself making the stored
data easy to access at any part of the application without the need for
online connection but can only store small amounts of data before affect-
ing the application runtime as vast internal database increases application
byte size and memory usage. External database allows more data storage
and an option to add and update the data but requires online connectivity
during application runtime and the database connection must be called for
each unit that requires it.

A hybrid solution exists where data is first called from external database
and then stored into internal database for application to use but this re-
quires that both internal and external databases have similar structure and
that the data stored in internal database is small scale in order not to slow
down application runtime. Picture 4 offers a crude example of how hybrid
solution functions.

Picture 4. Simplified presentation for hybrid database solution.

The choice between database types and implementation ultimately boils
down to the amount of data and whether there are plans to add, expand
and update the data that application uses from database. At the start of
development, the implementation of internal database is recommended
for the sake of easy testing and as development advances, database type
should be switched to external for easier data management.

10

Another criterion to consider in terms of database related solutions is how
dependent the software is on the network connectivity. Should the soft-
ware be designed so that its major functionalities or the software in its
entirety requires network connection, implementing an external database
is a reasonable option. However, if the software is designed to be inde-
pendent of the network connection or it does not require it to work, a hy-
brid database solution is recommendable.

3.2 Approach with embedded resources

An alternative way of implementing logical problem-solving into applica-
tion without the utilization of databases is possible trough embedded re-
sources in some C#-code-based cross-platform development tools. Em-
bedded resources are files that upon creation and addition are inserted
into application assembly and as such are accessible to all platform ver-
sions of the application.

As embedded resources are one part of the code, they are relatively easy
to use in and tie to different types of events like button presses and screen
tap related functions. However, as they are one part of the code and the
application assembly, having a vast amount of embedded resources could
potentially lead to similar problems in runtime like overcharged internal
databases. Therefore, the embedded resources should be used in cases
where the amount of the resource material is known and set before hand
or then it should be used as an initial solution for early builds.

11

4 APPROACH TO TESTING

Testing developed software and ensuring the proper functionality of fea-
tures is a crucial part of modern software development and has led to in
most cases increased quality of delivered results. Testing was not always
kept in such high regard however.

In the past, when software development followed the waterfall style of
development work, testing was considered as a phase that was usually per-
formed late in the project process. This, however, could sometimes lead to
redoing some of the earlier phases in the project if some major bugs or
dysfunctionality were found and as such, testing was often considered to
be very time consuming and a costly part of the development process. As
a cause for the time and resource consuming nature of testing, many com-
panies and developer teams would sometimes either completely ignore
proper testing phase or then keep the tests at the most simple and minimal
levels which in return leads to unpolished, glitchy and in worst case broken
software on release.

As agile development methods have become more and more common in
software development, testing has become an integral part of every stage
of the development process and as such the risk of releasing broken and
unpolished software has declined excluding the cases of pre-alpha
and -beta stage user tests that some software utilize before releasing the
final marketable version. Along with the evolution of development meth-
ods, the nature of test methods themselves have changed.

4.1 The three levels of software testing

Software testing is divided into three levels – unit, integration and system
testing. Methods and ways to perform tests in these categories vary from
case to case but the general idea for each category remains the same. Unit
testing consists of test cases for individual modules or classes of the soft-
ware to ensure their functionality. Integration testing sees how the cre-
ated modules and classes work with each other when combined and lastly
system testing checks the overall functionality of the software.

In unit testing a singular unit of code, which can be a function, module or
object, is tested immediately after its creation. Unit testing is meant to
confirm that the created unit performs its intended tasks correctly. One of
the problems of unit testing however is that often some singular units re-
quire other parts of the software for its functionality which is why it is often
necessary to create accompanying dummy units for testing purposes.

12

4.2 Static and dynamic testing

In software testing it is important to remember the divination of static and
dynamic testing methods. Static testing methods can be performed as
early as the beginning of the development as it focuses on performing base
level testing, often with the help of analytic tools, to remove most glaring
problems before more accurate testing is performed. Dynamic testing
methods are performed when software has developed into such form that
it can go through prototype or partial functionality testing. (Kasurinen
2013, 65.)

4.2.1 Black-box testing

Black-box testing is among the oldest used standard testing methods and
it has become somewhat of a synonym for software testing as it is the test-
ing type most people think of when testing is mentioned. In black-box test-
ing software unit is tested by giving it input and seeing if the unit is pro-
ducing expected output.

Due to the simplicity of the method, black-box testing can be used at any
point of the development where there are functionalities involving input
and output such as button press events and filling out forms to offer a cou-
ple of examples. The same simplicity makes black-box tests structurally
ideal for automated tests that must repeat the same check on multiple oc-
casions. As black-box testing does require some level of functionality be-
hind it, it is counted as a dynamic method.

The downside of black-box testing however is that because it focuses only
on input and output, it disregards inspecting what happens in the software
when it is running and thus the tester often does not have knowledge on
the inner workings of the software. Because black-box testing does not in-
spect in detail what happens during software runtime, testers using this
method must produce much documentation on what input was put trough
and how it came out and what errors the software notified.

4.2.2 Glass-box testing

Glass-box testing is a much more comprehensive version of black-box test-
ing as it focuses not only on input and output relations but also on how the
software forms its result on runtime, something black-box tests ignore.
The advantage of this testing method is that in case of errors, the tester
can track the problem all the way to the base-code level and will in doing
so learn about the software and its functions.

13

Glass-box testing however, due to its more detailed inspection, requires
that the tester already has enough knowledge on the software and practi-
cal programming skills and as such it is often too difficult of a test method
for beginners. As glass-box testing requires more knowledge and time than
black-box testing, it is often performed at the start of the project to ensure
that the initial inner logic of the software is correct before adding to it thus
classifying it as static test method.

4.2.3 Grey-box testing

Grey-box testing is the hybrid form of black- and glass-box testing as it
combines the best of both worlds by focusing on both the inner function-
ality of the software as well as to input and output relations. This allows
for inspecting the software while also offering the option to inspect and
test its individual units.

Grey-box testing is commonly seen in web-stores and similar services
where developers and testers are aware of the nature of their service and
can inspect it in glass-box level but also can inspect the database and other
elements under their service via black-box tests. As this is a hybrid method,
it cannot be classified as a static or dynamic test method.

4.3 Regression testing

Regression testing is a crucial part of software development that ensures
the overall functionality of the software. The term however does not refer
to a separate form of testing but is more of a broader term for tests that
are performed to ensure that the developed version of the software is
functional.

The idea and the need for regression testing lies behind the fact that often
most software issues and bugs are related to newly created components
or to functions utilizing said components. Thus, the purpose of regression
testing is to see that after something new is added or something existing
has been changed, it will not create errors that have been already fixed in
previous development versions and that the software performs correctly
even after the changes. Picture 5 offers a visual explanation on how re-
gression testing is run after each build or version of the software.

14

Picture 5. Visual presentation of regression testing cycle. (DotterWeich
2016).

As regression tests are performed multiple times during the development
for the most likely use cases whenever a new software version is created,
they can be and, in some cases, should be performed as automated tests.
Automating regression tests however can be infamous double-edged
sword as this can cause the developers as well as testers to miss and ignore
bugs and issues that may happen outside of written automated test con-
ditions. Because of this, automated tests should have some accompanying
manual tests for cases the automated ones could miss.

For the sake of easier test management and reducing rewriting test cases,
it is advisable to collect tests that are run every time when a new build or
update is completed and inspect the correctness of core functionalities
into a regression pack. Utilizing regression packs requires that they are up-
dated on frequent intervals during development so that the pack tests will
include cases that consider any new added components.

4.4 Test Driven Development

When it comes to testing during software development, one considerable
option that has submerged in recent decades is the Test Driven Develop-
ment model. TDD is a testing specific development methodology and pat-
tern where developer write a small-scale test, confirm that the error check
works, write small bit of a code that passes the test, refactor the code and
then repeat the steps throughout the project.

At first glance TDD can seem like a sluggish way to develop software as it
gives an image of developers being able to code a miniscule portion of the
software in a timeframe. However, TDD has become a viable development
method as currently there are many outside tools for every code language

15

that offer automated test solutions thus cutting down time and need to
write repeatable test cases repeatedly.

The notable advantages of TDD are the reduced need for debugging as
every part of the code is driven through tests before implementation, in-
creased quality of the software due to the constantly active testing and
finally TDD can decrease the overall development time. Despite the ad-
vantages TDD presents, there are still some problems with the develop-
ment method as well which include the difficulty in applying it to some
development projects and how it can cause the developers and testers to
miss the big picture leading to classic missing the forest for the trees type
of situation.

4.5 Usability testing

When developing software, it is important to evaluate the user friendliness
and appeal of the product during the development process. Usability test-
ing is the way to perform valuation on how well the software might appeal
to users.

Usability testing is effective for collecting data that can be utilized for re-
pairing or for software improvement. Allowing users to experience the
software and offer feedback in notes grants the development team quali-
fying and quantifying data about the software.

In the past during the era of waterfall method, the deployment and utili-
zation of usability tests were difficult as they were a resource heavy to per-
form and were often executed late in the development cycle. Usability
testing required space to perform the test, equipment for the testers and
major investment from development time for setting up, executing and
analyzing the results.

As the modern software development now utilizes agile working methods,
most of which require active interaction with customer, implementation
of usability testing is much easier than before and no longer as heavy in-
vestment in resources. Customer is pulled into the development right from
the start and can access and try out the software at different points of de-
velopment thus offering valuable user experience information at multiple
points of development process.

16

5 TOOLS, PROGRAMS & METHODS

The selection of tools for the creation of revision application has been in-
fluenced not only by the restrictions set for the application but also based
on the past user and development experience. Following set limits, the se-
lected tools allow for development onto Android platforms utilizing
C#-coding language.

5.1 Visual Studio IDE

The most standard and widely used IDE for designing C#-code and Win-
dows based software is Microsoft Visual Studio which makes development
easy with its clean interface and with the possibility to utilize different
kinds of modules and libraries for desired functionalities. Visual Studio has
been selected as the main coding and development tool for the application
project based on past user experience and because of its good customer
support and expandability options with downloadable modules and librar-
ies.

Another reason for choosing Visual Studio and by that extension C#-code
as main coding tools is because C#-language offers great functionality for
utilizing REST services. The capability to utilize REST API and other similar
services are often necessary for functionalities that require retrieving data
from online databases which are widely used in modern software instead
of internal ones.

5.2 Xamarin

Xamarin is an expansion module that can be installed with Visual Studio
during initial installation or afterwards which grants the possibility for
multi-platform development. Currently Xamarin supports simultaneous
development for Android, iOS and Windows platforms but also provides a
way to code for each platform separately with C# language. Visual Studio
Xamarin has proven to be an effective tool for cross-platform designing
and development via experience and has thus been chosen as the go-to
tool.

It is important to note however that there are some differences with cod-
ing some functionalities between developing the application to multiple
platforms at once and developing the application for one specific platform
using Xamarin. Because of this, it is recommended to check related official
online documentation about the matter to avoid inconsistences within the
code.

17

5.3 Android Studio IDE

While the application itself is written in C#-code, Java based IDE for An-
droid applications known as Android Studio is among the selected tools for
its compatibility with Visual Studio which allows the utilization of proper
Android simulators for testing the application. Android emulators however
are not able to imitate every function available on physical devices and as
such the tools provided by Android Studio into Visual Studio are to be used
for initial testing, but more accurate, conclusive testing will be done on
actual Android mobile device.

5.4 Development methods

SCRUM was chosen as the preferred development method based on pre-
vious user experience and because of its proven effectiveness. By following
SCRUM methodology development team can respond to specification
changes more effectively and the weight on collaboration ensures the
team is constantly keeping itself up to date on the progress of the devel-
opment.

Other considerable option for development method is Kanban methodol-
ogy due to its swift delivery rate. Utilizing Kanban also ensures that devel-
opers in the team do not end up taking more than they can chew in terms
of workload. With Kanban method delivering results one item at a time it
will also be easier to keep tabs on what has been completed and what has
not.

5.5 Testing methods

Testing methods for the application during its development were chosen
based on how time and resource efficient they are to execute alongside
coding for limiting the risk of extended development time caused by sepa-
rate extensive testing. Because of this, the chosen test method type for the
application project will be dynamic black-box testing.

TDD has been excluded as an option as the small scale of the project with
its restrictions could prove too difficult to implement TDD effectively. TDD
is to be considered for implementation later in the development process
when application is going to be expanded with more content and possible
features.

To test the effectiveness of the application and thus its practical value, us-
ability testing is to be utilized during development phases by collecting
user feedback from the team and potential client during team and client
meetings. The final usability test should be performed outside of the de-
velopment team during an actual entrance exam situation with students
or then by replicating circumstances trough a dummy entrance exam.

18

6 EXPANDABILITY OF THE APPLICATION

One part of modern development process outside of embracing the ideals
of adaptability is also to support expandability and the further develop-
ment of software. In the past, software was designed based on specifica-
tions set right at the start showing no reason for further development,
which often led the software of the time to be non-expandable when
shifted or given to another developer.

In modern software development, software expandability is encouraged
through commenting the created code simply and cleanly so that any later
developer can get an idea what certain parts of the code are meant to do
but also by advising on using MVC design model (Model-View-Controller).
In MVC model, the code is divided so that the functionalities that handle
data and other background operations are under Model, parts that handle
the visual elements under View and the parts of the software that include
processing user inputs and other similar data are under Controller. By di-
viding the parts of the code accordingly to MVC model, software function-
alities become much easier to inspect and MVC model allows other devel-
opers to pick up on what’s been made.

Expandability is also achievable by designing software to be either mostly
or entirely modular. Modular design focuses on creating each functionality
of the software to be as independent as possible so that functions can be
potentially reused at different parts of the code. Designing functionalities
to be modular also increases functionalities reusability value, makes them
easier to repair and upgrade and allows for better customization.

While modular functions may be independent from each other, it is re-
quired that all these modules use shared interface to ensure modules over-
all functionality in cases some functions end up overlapping each other. In
the past, modular design was not a favored approach to improve software
expandability as interfaces were often difficult to use and wrap head
around and required higher than average programming skills.

19

7 RESULTS

By following and utilizing the tools and methods introduced within the the-
sis, it was possible to create a documentation according to the set specifi-
cations; clearly written application plan on how to develop a logical prob-
lem-solving application for Android devices using C#-coding tools. While
the application plan certainly presents a clear, potential way for creating a
practical execution, developing said practical execution was deemed too
challenging within the restricted time limit there was for working with the
thesis.

Writing the application plan proved to be relatively easy since many of the
elements required in such plans were inspected within the thesis but at
the same time, finding a proper template for such document was a bit dif-
ficult and as such it was opted to create one by myself. Despite the tem-
plate being hand made for the most part, its structure came out profes-
sional enough to be warranted as an official application plan document.

Even though no demo application was created during this thesis due to
time restrictions, it was still possible to set up a project template based on
the application plan. Images trough 5 to 8 offer visual examples how the
structure of the project could look like when following the plan.

Picture 5. Example structure for the project.

20

Picture 6. Explanation on Controller folder and for classes under it.

Picture 7. Model folder and its classes explained.

Picture 8. What View folder is for in the project.

The demonstrated structure is only one of many ways to create and main-
tain cross-platform application project while still sticking true for the writ-
ten plan. UWP is left out from demonstration structure as UWP requires
that the PC used for development must have Windows 10 Operating Sys-
tem installed which is the same OS that Windows mobile devices have in-
stalled on default.

21

8 CONCLUSIONS

The focus of this thesis was to investigate and as a result present a poten-
tial way to develop a revision application focusing on logical problem solv-
ing for Android devices in the form of application plan and the overall re-
sult is satisfactory. The methods, tools and concepts introduced within the
thesis were heavily based on the past positive use experience and own in-
trigued research.

The theoretical portion of the thesis focused on investigating and present-
ing the principals and restrictions that modern software developers must
face and respond but it also introduced some of the tools and options de-
velopers have available for their projects. The practical portion of the the-
sis was the creation of an application plan based on the topics discussed
and explored in the theory portion.

While it could have been possible to perhaps create a practical demonstra-
tion based on the application plan, due to time constrains the focus was
kept on writing the plan. Based on the plan it was, however, possible to set
up and demonstrate an example project template from which this kind of
project could be built from.

While writing the thesis and the application plan, it became very clear that
there are many elements and requirements to keep in mind while devel-
oping applications and software with modern software development
methods. Particularly researching and writing down differences in design
mentality in traditional and mobile development was very enlightening.
Overall, working with the thesis has cleared and helped to understand
modern software development in more detail than before and it shall no
doubt prove to be invaluable for future career paths.

22

REFERENCES

Anonymous. (2018). Interview with Junior Software Developer 20.2.2018.
Ambientia Oy.

Dotterweich, A. (2016). What is Regression Testing? Blog publication on
05.07.2016. Retrieved on 26.2.2018 from https://rain-
forestqa.com/blog/2016-07-05-what-is-regression-testing/

IndiaBix. (n.d.). Logical puzzles. Retrieved on 02.19.2018 from
https://www.indiabix.com/puzzles/logical-puzzles/

Kasurinen, J. P. (2013). Ohjelmistotestauksen käsikirja. 1st print. Jyväskylä:
Docendo Oy.

Lotz, M. (2013). Waterfall vs. Agile: Which Methodology is Right for Your
Project? Retrieved on 02.15.2018 from https://www.seguetech.com/wa-
terfall-vs-agile-methodology/

McKay, D. R. (2017). Are You a Problem Solver – See Why You Need This
Essential Skill. Retrieved on 01.18.2018 from https://www.the-
balance.com/problem-solving-525749

Mikkonen, T. (2004). Mobiili-ohjelmointi. Helsinki: Talentum.

Nylund, T. (2017). Mobile Programing Modules Cross-Platform Develop-
ment materials, Moodle. Häme University of Applied Sciences. Retrieved
on 01.13.2018 from https://moodle.hamk.fi

Santos, J. M. D. (2017). XP, FFD, DSDM, and Crystal Methods of Agile De-
velopment. Retrieved on 01.19.2018 from https://project-manage-
ment.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/

VersionOne. (n.d.). Agile 101 General Learnings. Retrieved on 01.19.2018
from https://www.versionone.com/agile-101/

https://rainforestqa.com/blog/2016-07-05-what-is-regression-testing/
https://rainforestqa.com/blog/2016-07-05-what-is-regression-testing/
https://www.indiabix.com/puzzles/logical-puzzles/
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://www.seguetech.com/waterfall-vs-agile-methodology/
https://www.thebalance.com/problem-solving-525749
https://www.thebalance.com/problem-solving-525749
https://moodle.hamk.fi/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://project-management.com/xp-fdd-dsdm-and-crystal-methods-of-agile-development/
https://www.versionone.com/agile-101/

23

Appendix 1

Structured Interview in Finnish

KYSELY

Tämä kysely on osa opiskelija Juho Jauhiaisen opinnäytetyötä. Vastatkaa kysymyksiin totuuden

mukaisesti ja mahdollisimman kattavasti. Nimet ja vastaukset käsitellään anonyymisti, ellei toi-

sin toivota. Aikaanne ja vastaamistanne arvostetaan suuresti.

1. Nimenne

2. Yrityksenne & työtehtävänne

3. Mitä pidätte nykyaikaisen mobiilikehityksen haasteina? Mitä mobiilikehittäjän pitää

ottaa huomioon?

4. Mitä ketteriä tai muita työmenetelmiä olette käyttäneet/suosineet projekteissanne?

5. Sovellusten kyky laajentua on usein mainittu tärkeäksi elementiksi nykyaikaisessa so-

velluskehityksessä. Miten tämä on kokemuksestanne nähtävissä ja toteutettavissa mo-

biilisovelluksissa?

6. Mikä on ollut lähestymistapanne testausmenetelmiin kehityksen aikana? Oletteko hyö-

dyntäneet Test Driven Development kehitystä?

7. Kuinka usein ja miten olette hyödyntäneet käyttäjä pohjaista testausta (Usability tes-

ting) projekteissanne?

24

Appendix 2
RALP-Project Application Plan

HAMK Häme University of Applied Sciences

Revision Applica-
tion for Logical
Problem-Solving

RALPS-Project Application Plan

[Team Member Name]

[Team Member Name]

[Team Member Name]

[Team Member Name]

Juho Jauhiainen

21.2.2018

25

VERSION CONTROL

Version Date Changes Done By

26

Contents

1. INTRODUCTION .. 27

2. TERMS .. 27

3. APPLICATION GOALS & FUNCTIONS .. 27

3.1. Description of the Application ... 27
3.2. Background .. 28
3.3. Functions.. 28

4. TOOLS ... 29

5. DEVELOPMENT METHODS ... 29

6. TESTING METHODS .. 29

7. RESULTS ... 30

8. RISKS .. 30

9. CONCLUSIONS .. 30

27

1. Introduction

RALPS-Project and the application associated with it are result of a thesis work
in Business Information Technology. The resulting application that this project
and application plan produces can be used for educational purposes, both for
the limited subjects introduced in this plan and potentially even to other areas
of study.
For the highest efficiency in resource and project management, this project is to
be done with maximum of four-man team as any higher team member count
could lead to problems in assigning tasks and managing materials everyone pro-
duces.
This application plan shall demonstrate and determine the functions and limita-
tions of the applications as well as introduce the development and testing meth-
ods that are used for the project.

2. Terms

Some of the more important terms used in this application plan:

IDE Integrated Development Environment, tool used for coding software.

C# Windows based coding language.

MVP Minimum Viable Product, the most primitive demo version of the prod-

uct.

TDD Test Driven Development, development model that heavily utilizes

testing.

API Application Programming Interface, collection of methods that can be

used between software components.

REST Representational State Transfer, architectural style used to develop

Web services in software.

3. Application Goals & Functions

This chapter introduces and explains the overall purpose, background and func-
tionalities of the application.

3.1. Description of the Application

The RALPS-projects application goal is to offer an efficient and quick way to
perform last minute revision on any subject matter with smartphone and
other mobile devices. However, some limitations and requirements have
been set to keep the development as organized and manageable as possible.

28

These restrictions are as follows:

- The application is made for Android platform

- Application is to be coded with C# language

- Application must allow for expandability

- Revision material will be limited to logical problem solving

3.2. Background

The application plan is the result of a thesis work that focuses on exploring
potential way to develop this kind of application. The thesis subject matter
and by that extension this project was born from own personal experiences
in entrance exams. The limitations and restrictions of the application also
stem from the thesis.

3.3. Functions

At launch window, user will be given a change to choose a subject which they
can then revision although for this plan only default option will be logical
problem-solving. Idea is to have the application be expandable so that future
developers can addition more subjects into the application if they follow es-
tablished design and structure.
Initial approach and structure to revision subject is to present the user with
series of questions which have multiple choice answer option and at the end
user can compare their answers for the right ones. With some questions it
could be considered possible for user to write their own free-word answer.
User can also save the questionnaire results into a separate list or memo in
the application from which it’s easier to review the answers and results for
quick revision. This option initially could be a button in the launch view but
would only be visible after something has been saved to the memo or list.
The application approaches the rehearsal of logical problems via logical rea-
soning pattern puzzles which are often seen in exams and interviews because
of their simple nature and easy implementation to the application. Logical
reasoning puzzles are to be initially utilized as embedded resources in the
application assembly but later in the development for the sake of supporting
expansion this can be changed to utilizing external database.
Logical reasoning puzzles are to be displayed so that user is presented a col-
lection of patterns and the user must then select from three choice options
the one they think should go to the end of pattern series.

29

4. Tools

The chosen development environment for this project is Visual Studio which is
the most commonly used C#-based development IDE which also has options to
develop to Android and even Apple/iOS platforms besides the default Windows
platforms with Xamarin add-on that allows for cross-platform development. Vis-
ual Studio has also been chosen as development tool based on C#-code lan-
guages capability to utilize REST API services.
Android Studio which is the Android and Java focused counterpart of Visual Stu-
dio is also going to be utilized but mainly for it’s good quality device emulator
functionalities that will be useful during testing. However, as Android simulators
are still incapable of displaying or emulating certain physical device functionali-
ties such as GPS functionalities, an actual Android device will be used for testing
the application.

5. Development Methods

For the development during this project, chosen agile development method will
be SCRUM which enables the developers to be in a constant and active feed-back
loop with the rest of the team and other sectors. As such, the team will be ex-
pected to have daily meetings and backlog refinements with the customer during
the project so that throughout the development every person has knowledge on
the application itself and its development progress.
Another option as a development method is Kanban in which results are deliv-
ered one at a time per feature instead of a bundle like in SCRUM methodology.
Another reason for considering Kanban as secondary development option is
based on its encouragement to focus on features that hold most value for both
the product and the client and as such it allows faster delivery on core features.
This focus on singular tasks one at a time also makes keeping track of the devel-
opment rather easy.

6. Testing Methods

Black-box testing is selected as primary testing type for the development due to
the applications scale. Glass-box testing is advised to be used alongside black-
box testing when application is going to be expanded outside of the restrictions
described in this plan.
TDD is excluded as development and testing method as it has been deemed too
difficult to implement into a project of this small scale.
Usability testing is performed during development via team and client meetings.
Final usability testing is best to be performed with students in an actual entrance
exam situation or then imitate the circumstances via dummy exam scenario.

30

7. Results

The expected result for this project is at the very least a MVP of the application
that can demonstrate the core functionalities, but it would be preferable to
achieve a proper demo version of the application that could also demonstrate
some signs of expandability.

8. Risks

Risk Consequen-

ces

Remedy Likelihood (P)

Scale 1 to 5

Effect (I)

Scale 1 to

5

Risk value

(P*I)

MAX = 25

9. Conclusions

This document has presented the limitations and requirements of the project
and the functionalities of the application as they have been inspected and re-
searched in the associated thesis work. It introduces one potential way of devel-
oping desired revision application based around the set restrictions for its devel-
opment. This application plan is aimed for future Business Information Technol-
ogy students to use as base for ICT or other similar programming project but also
for those developing educational software.

