
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/56522

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/16142585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/56522


Robust and Scalable Coordination of Potential-Field Driven Agents

Steven de Jong, Karl Tuyls and Ida Sprinkhuizen-Kuyper
Institute of Knowledge and Agent Technology

Maastricht University, The Netherlands
{steven.dejong, k.tuyls, kuyper}@micc.unimaas.nl

Abstract

In this paper, we introduce a nature-inspired multi-
agent system for the task domain of resource distribution
in large storage facilities. The system is based on poten-
tial fields and swarm intelligence, in which straightforward
path planning is integrated. We show both experimentally
and theoretically that the system is adaptive, robust and
scalable. Moreover, we show that the planning component
helps to overcome common pitfalls for nature-inspired sys-
tems in the task assignment domain.

We end this paper with a discussion of an additional re-
quirement for multi-agent systems interacting with humans:
functionality. More precisely, we argue that such systems
must behave in a fair way to be functional. We illustrate
how fairness can be measured and illustrate that our sys-
tem behaves in a moderately fair manner.

1 Introduction
Resource distribution is a task assignment problem in

which multiple agents need to collect and deliver resources
at pre-defined locations while minimizing average waiting
and delivery times for resources and clients. Research in
this domain has shown to have a high industrial value; real-
world examples include furniture warehouses and luggage
coordination in airports. Agents situated in a resource dis-
tribution system have to (i) cooperate in an environment that
is complex and highly dynamic, (ii) process unexpected re-
quests, and (iii) maintain efficient performance while tak-
ing into account possible failures of individual agents. As a
consequence, any multi-agent system (MAS) designed for
resource distribution tasks should be scalable with respect
to the number of resources and collaborating robots, adap-
tive in order to handle unexpected requests and events, and
robust to be able to deal with any kind of failure.

We introduce a resource distribution system containing a
group of simple agents that respond only to local informa-
tion provided by a simulated potential field. In this system,
in contrast to other work (e.g., [1, 2, 3, 4]), only idle agents
position themselves using this potential field, whereas busy

agents are guided to pick-up and drop-off locations using
straightforward path planning. Usually, potential fields are
used especially for path planning and guidance.

As a second contribution, we show how one can theo-
retically analyse a resource distribution system in terms of
scalability, adaptivity and robustness and demonstrate that
our system achieves good performance, avoiding the com-
mon pitfalls often identified in nature-inspired systems. Ex-
amples include long delivery waiting times for remote re-
sources and agents getting stuck in local optima. Third and
last, we discuss the functionality needed for multi-agent
systems interacting with humans, i.e., fairness. We argue
that the functionality of such a system is typically addressed
based on (hyper-)rationality [5], showing optimality crite-
ria that do not match with human expectations and decision
making. We illustrate by a simple example that human ac-
tors expect artificial agents (in storage facilities) to not only
care about their own utility but also about how this utility
compares to that of other agents.

The remainder of this paper is outlined as follows. Sec-
tion 2 discusses related work. Section 3 gives an overview
of our proposed system. Section 4 explains our mathemat-
ical analysis methods and clarifies experiments performed
on our system. In Section 5, we discuss our motivation for
studying fairness and some initial ideas in this area. In Sec-
tion 6, we conclude and look at future work.

2 Related Work
Within the field of multi-agent coordination (which in-

cludes resource distribution problems), two approaches are
most commonly used, i.e., multi-agent planning and nature-
inspired approaches. A comprehensive overview of multi-
agent planning is provided in [6]. The disadvantage of
planning-based systems is that either global information is
needed or agents must communicate extensively.

This paper addresses the question whether agents can
coordinate their activity using only communication within
their local environment. In pursuit of this question, many
researchers looked at nature for inspiration and proposed
learning-based approaches (e.g., [7]) and, more generally



speaking, nature-inspired systems (e.g., [1, 2, 3, 4, 8, 9]).
However, these systems often lack a certain degree of prag-
matism required for real-world applications. Many re-
searchers therefore argue that one should not exclude the
possibility to introduce more traditional concepts into such
systems. In recent literature, researchers introduce various
concepts such as planning [7], ghost agents [10], memory
buffers [2] or state machines [3]. Closely related to our
research, in [2], Weyns et al. present a distributed agent
system for storage facilities in which agents navigate us-
ing gradients. It is shown that the proposed system outper-
forms the reference system (Contract Net) on average, but
leads to long waiting times for remote areas in the envi-
ronment. In [7], Strens and Windelincx show that a hybrid
planning/learning system can allocate robots to tasks effi-
ciently and position robots appropriately in readiness for
new tasks. However, the method needs to learn different
value functions for different classes of problem instances
and is based on a centralised approach that assumes ade-
quate communication between robots.

3 Problem description and solution method
In this section, we explain our solution method for solv-

ing resource distribution problems, integrated in our simu-
lation environment. First, we will examine which require-
ments need to be met, and second, we will discuss the actual
solution method in detail, discussing the two main compo-
nents, viz. (i) potential-field-based local behavior and (ii)
path planning and task assignment.

Requirements. As has been explained earlier, resource dis-
tribution problems are task assignment problems in which
multiple agents need to collect and deliver resources at pre-
defined locations (for example within a storage facility),
while minimizing average waiting and delivery times for
clients and resources.

Three requirements need to be met in any good solution
method for resource distribution. First, the method needs
to be scalable: the environments in which they operate are
large, and we need to assign many robots to many resources.
We want our solution method to be able to respond suffi-
ciently fast in environments of realistic sizes. Second, the
method needs to be adaptive: it must be able to change its
behavior appropriately when environmental circumstances
change. For instance, it is unknown where exactly resources
will be offered and where they will have to be delivered, or
a big resource may block access to a certain passageway.
Third, we need to ensure robustness: a certain number of
agents must lead to a certain guaranteed performance even
when things go wrong. In robotic systems, the probability
that something actually goes wrong is known to be rather
high.

Our aim is to keep the research challenging, but focussed
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Figure 1. A grid environment with various walls. Poten-
tials are visualized by color and denoted in each cell, below
the cell’s coordinate. Gray cells lie outside the environment.
Robots are visualized using circles (outlined for idle robots,
filled for robots that are going to a resource). Resources are
visualized using small black boxes. It can be seen that some
resources are currently held by a robot (e.g., at (4,4)).

on our topic(s) of interest – i.e., developing a solution
method that is able to adhere to all requirements presented
above. In order to facilitate this, we use discretized time
and discretized space (grid cells), as will be explained be-
low. This abstraction is done in good agreement with other
work. Moreover, we consider robots to have autonomous
capacity to perform three elementary actions, viz. (i) move
to an indicated neighboring grid cell, (ii) pick up a resource
in the current cell, and (iii) drop a resource in the current
cell. We assume that each of these actions can be completed
in exactly one time step.

Environment and idle robots. Here, we show how ideas
from physics are used in our proposed solution method.
First, we discuss how the environment is represented. Sec-
ond, we look at how potential fields are used for the place-
ment of idle robots. Third, we discuss how to determine the
magnitude of potential caused by robots.

In order to facilitate the scalability of the environment,
we impose a coarse square grid structure on it. Due to walls,
adjacent grid cells are not always neighboring. An exam-
ple is illustrated in Figure 1. Calculations such as potential
propagation and path planning are less complex in a dis-
crete (grid) environment than in a continuous environment.
In our current system, we use Dijkstra’s algorithm [11] to
calculate all distances before the simulation starts.

Every resource that appears in our simulated system, will
emit a certain negative potential (proportional to its prior-
ity). Once a resource is picked up by a robot, it immediately
stops emitting potential. However, in the cell where the re-
source has been picked up, the potential decays very slowly,
which is comparable to the evaporation of pheromones in
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ant-based systems [3]. This leads to a memory effect which
enables us to predict future resource appearances, taking
into account the history of resource appearances in every
cell, with a discount factor for appearances that occurred
long ago. Other approaches (e.g., [1, 2]) do not use such a
memory effect.

Idle robots emit positive potentials. These are identi-
cal for each idle robot, since each robot is also function-
ally identical. Using potential propagation, all potentials
spread over the environment and cause a force that attracts
idle robots to cells where resources are currently present
or have been present. The same force repels the robots
from each other. Thus, if idle robots position themselves
at (local) minima in the potential field, they will be located
in (or close to) cells where resources are either currently
present or expected to appear, assuming that future appear-
ances conform (loosely) to what happened in the past.

The total potential for robots is chosen so that it is equal
(but opposite) to the total potential caused by resources in-
cluding the memory effect. This enables us to achieve, in an
ideal situation, a completely flat potential field (i.e., no netto
potential) where no forces work on the robots. In practise,
this is usually impossible, but the magnitude of potentials
will indicate the quality of robot placement (the flatter, the
better).

Busy robots. Busy robots, i.e., robots that are heading to-
wards a resource or a target location (in the current sys-
tem, these robots are selected greedily), are guided by path
planning. Using a planner offers three important advantages
over potential fields. First, in purely field-based approaches,
remote areas often experience unfairly long waiting times
[2]. This is caused by the inherent greed of ‘ant-like’ ro-
bots; a remote resource will be ignored by these robots if
another resource is offered at a closer location. With plan-
ning, we can make sure that the first resource to appear is
also the first served.

Second, purely field-based approaches suffer from local
optima; for instance, if multiple robots go after the same re-
source, none of them may be able to reach it because they
are all trying to avoid one another and thus get stuck in local
minima. Planning removes such effects; whenever a robot
is assigned to a resource, it immediately stops emitting po-
tential and is guided by planning. It will therefore not be
repelled by other robots, nor disturb the potential field in
areas it crosses while moving toward the resource.

Third, planning can increase robustness and adaptivity:
(i) whenever a robot gets off-track, a new plan can be gen-
erated and (ii) a robot only commits to a plan when it is
certain that this plan is optimal. As an example of the latter,
in the environment illustrated in Figure 1, it might happen
that the robot at (8,4) is assigned to the resource at (11,5),
but in the next time step, the robot at (12,3) might become
available and is then obviously a better candidate.

4 Results and mathematical analysis
In this section we will examine the requirements for re-

source distribution systems. We show how these require-
ments can be analysed theoretically. Moreover, we discuss
the theoretical behavior and the practical performance of
our proposed solution method with respect to adaptivity, ro-
bustness and scalability.

4.1 Scalability
When we say that a certain problem solver is scalable,

we typically imply that it maintains acceptable performance
while the size of the problem increases. In our case, ac-
ceptable performance entails that agents should not have to
wait for new commands and/or new information. There-
fore, we must ensure that new commands and new informa-
tion are developed before the agents finish processing their
current command, even in large environments with many
agents and many resources. In other words, the update fre-
quency of the system must exceed a certain value. Since
our system uses discretized time, we can measure the up-
date frequency (in Hz) by dividing the number of time steps
that the system has performed during a specific simulation
by the number of seconds that this simulation lasted.

In our case, three distinct entities are responsible for
the size of the problem, viz. environment (size), resources
(number) and robots (number). When we look at the com-
plexity of the problem in relation to the size of the environ-
ment, we can observe that due to the potential fields used,
we need to update at most all n cells of the environment in
every time step, which is a process with quadratic time com-
plexity, i.e., O(n2) (at least in our implementation; other
implementations might use distributed update methods with
a lower time complexity). The number of resources and the
number of robots play a role in the complexity of the plan-
ning problem that needs to be solved; every resource that
appears, requires path planning. After initial calculations
(Dijkstra’s algorithm), path planning can happen in linear
time (related to the length of the path), where the longest
possible path would have a length of n; thus, path planning
has a time complexity of O(n), and might be necessary r
times per time step, where r is the number of resources that
can appear simultaneously. In combination, this leads to an
overall time complexity of O(n2 + nr) per time step. As-
suming that r ≤ n, this can be simplified to O(n2).

Even though many traditional MAS approaches possess
a higher-order polynomial or even exponential time com-
plexity [12], this quadratic time complexity may not seem
very satisfying either, at least in theory. However, in prac-
tice, we may still state that the system is sufficiently scalable
if it manages to obtain an sufficient update frequency, even
for complex problems. Note that the system is designed to
make high-level decisions on actions to be taken by agents;
i.e., move to a neighboring cell, pick up a resource, drop a
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resource. Thus, even an update frequency of only 1 Hz will
be (more than) sufficient. Therefore, we will state that our
system is sufficiently scalable if it manages to achieve an
update frequency of 1 Hz, even for complex problems.

To determine whether our system is sufficiently scalable,
we examine its update frequency with an experiment. Here,
we use a parameter h ∈ {1, . . . , 50} to denote problem
complexity with; a problem with complexity h corresponds
to an environment with h × h cells without any walls, in
which we randomly place 5h robots. Then, we offer 5h
resources at the coordinate (0, 0), one resource in every
time step. These resources have to be carried to the co-
ordinate (h − 1, h − 1). We run each simulation for 500
time steps. The update frequency can then be calculated
as 500/t, where t is the running time of the simulation in
seconds. Each simulation is run 10 times and the resulting
update frequency is averaged. In Figure 2, we illustrate the
results of this experiment for h = 2 to h = 35; for each h,
we show the average update frequency our system is able to
achieve on a standard office computer (an Intel Pentium 4D
at 3GHz with 1GB of memory, running Java on Microsoft
Windows XP). In the detail ranging from h = 25 to 35,
we show the line corresponding to an update frequency of
1 Hz. Observe that the system is able to achieve an update
frequency of 1 Hz or more for values of h ≤ 31 and that the
problem which corresponds to h = 31 is indeed a complex
problem. Thus, the experiment illustrates that the system is
able to achieve an update frequency of 1 Hz, even for com-
plex problems and even on a rather “simple” computer, and
by our definition presented above, this implies that it is suf-
ficiently scalable. Using a dedicated computer and a faster
implementation, the value of h that can be addressed can
be expected to increase drastically. We can further improve
the performance of the system by limiting the number of
cells that need to be updated whenever the potential field
changes, in two ways: (i) potential propagation can stop at
a certain horizon [2] and (ii) a large environment can be di-
vided in regions [13], where each region possesses its own
potential field and its own agents (robots).

4.2 Adaptivity and robustness
In this section, we will look at the requirements of adap-

tivity and robustness and the performance of our system.
With adaptivity, we imply that the system must be able to
change its behavior appropriately when environmental cir-
cumstances change. As has been remarked earlier, potential
fields are used by many authors especially because of their
adaptive properties. In our system, agents are committed
to a plan only when we are sure the plan is optimal. In
this way, we ensure that any current plans can be adapted to
changing circumstances and thus, we facilitate adaptivity.

Robustness implies that a certain number of agents must
lead to a certain guaranteed performance even when things
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Figure 2. Average update frequencies with a problem
complexity ranging from h = 2 to h = 35 (see text). A
detailed chart shows frequencies for h = 25 to h = 35.

go wrong. Once again, potential fields are used by many
authors because of their robust properties. However, we
will show that it is important and interesting to assess what
the effect of adding planning components is. First, we will
introduce the notion of critical thresholds. Then, we will
analyse the effects of two possible errors on these critical
thresholds, viz. robots moving to the wrong neighboring
cell (erroneous moves) and robots that are seriously mal-
functioning. Finally, we show that our system conforms to
the behavior expected from our analysis.

Critical thresholds. In multi-agent systems, it can be ex-
pected that a critical number of agents exists, i.e., there is
a certain number of agents that is needed for the system
to work well. In an experiment, we investigate the perfor-
mance of our system as a function of both (1) the number
of agents available and (2) the average interval between re-
source offerings. The rest of the variables is kept constant,
i.e., we use a constant environment of 10 × 15 cells with-
out any walls, and both the initial locations of resources and
their goal locations remain the same. Figure 3 illustrates the
average delivery time as a function of the number of agents
and the time steps between offerings. From this figure we
may draw two (obvious) conclusions: (1) the more agents,
the lower the delivery time and (2) for each offering inter-
val, there is indeed a critical number of agents needed for
acceptable performance.

In general, the minimal number of agents needed de-
pends heavily on the environment at hand and the tasks that
need to be performed in it. Using a combination of ex-
periments and analysis, it is possible to estimate this min-
imal number rather precisely, assuming that nothing goes
wrong with the agents; i.e., they always move to the correct
cell when asked, and they never break down. Obviously,
if agents make erroneous moves, they will be busy for a
longer period of time, and if they break down, there will be
less agents available. Our system deals with these possible
errors by replanning in both cases. We will now examine
the effects of these errors on the performance of the system.

Erroneous moves. In an experiment, we determine what
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Figure 3. Relation between number of robots, time steps
between offerings, and delivery time per offering. Every
experiment was executed 10 times and the performance was
then averaged.

happens to the performance of the entire system when ro-
bots that move do not go to the required cell, but to a random
neighboring cell (including the current one) with a probabil-
ity 0 < ε < 1. We define an environment of 10 × 15 cells
without any walls and use 12 robots to perform a fixed, ran-
dom resource distribution scenario. A simulation is run for
values of ε between 0 and 0.5 (100 times per value). Re-
sults are shown in Figure 4 (top). It is clearly visible that the
median delivery time increases only slightly even for quite
large values of ε. Thus, the system is robust with respect to
robots that perform erroneous moves. As can be expected,
the maximum delivery time becomes less predictable, due
to the introduced randomness.

We make a worst case analysis of the situation that a ro-
bot moves to the wrong cell (including its current cell). As
illustrated in the two situations in Figure 5, erroneous moves
lead to various worst case delays, denoted by d. As a mea-
sure for d, we just use the length of the path between the cell
the robot should have moved to (indicated with an arrow)
and the actual cell it did move to, in two situations. The
second one causes a higher average delay and is therefore
the situation we base further analysis on. Assuming that
every erroneous move occurs with equal probability, 3/9×ε
times the actual path length can be expected to increase with
at most 1, and 5/9 × ε times with at most 2 cells per move.
In the remaining 1/9× ε times, the robot accidently went to
the correct cell. If we introduce yε[n] for the worst case for
the expected number of steps needed to deliver a resource
over a real distance of n, when the error probability equals
ε, then we obtain the following recurrence relation, based
on the situation sketched above:
yε[n+1] = (1−ε)yε[n]+ε(

1

9
yε[n]+

3

9
yε[n+1]+

5

9
yε[n+2])+1

This equation can be solved with two boundary condi-
tions: (i) yε[0] = 0, saying that when the goal position is
reached, the robot will not perform any (erroneous) moves,
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Figure 4. Results for robustness visualized in a box-plot.
The probability that a robot makes an erroneous move is in-
creased in small steps, using a constant environment and re-
source appearance scenario (top). Expected values for wait-
ing times given the analysis in the text (bottom).
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d=2 d=2 d=2 d=2 d=2 d=2

(i) (ii)

Figure 5. Expected increase in path length when robots
make erroneous moves, in two situations.

and (ii) yε[N ] = yε[N + 1], where N is the maximal ac-
tual distance possible in the specific environment used (15
in the environment we used for our experiments). Note that
this second boundary condition also overestimates the ex-
pected path length, since usually the real path lengths will
be smaller than N . The solution of this equation with the
given boundary conditions is given by:

yε[n] =
1

(1 − 13
9

ε)
n − 1

(1 − 13
9

ε)

(rn − 1)

(r − 1)rN

with r = 9
5ε(1 − 8

9ε), and r > 1 if 0 < ε < 9
13 .

In Figure 4 (bottom), we show yε[n] for n = 5, which is
the experimental median distance we found for ε = 0, as il-
lustrated in Figure 4 (top). When we compare these theoret-
ical results with the experimental median distance for vari-
ous values of ε, we see that the former are a good prediction
and overestimate the latter. We conclude that this mathe-
matical analysis confirms our empirical result and supports
the good robustness of our system.

Malfunctioning robots. Here, we look at the problem of
robots breaking down completely while carrying a resource.
If such a breakdown occurs, the resource held by the broken
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robot must be processed by another robot. While the bro-
ken robot is being fixed, the entire system must be able to
function more or less normally.

If (i) the probability that a robot breaks down equals δ
per time step, (ii) the average time to repair a robot equals
t0 time steps, and (iii) the total number of robots equals n,
we can estimate the number of robots truly available in each
time step using the following equation:

k(i + 1) = k(i)(1 − δ) + (n − k(i))/t0

In a stable situation, we will have that k(i+1) = k(i) =
k′ is the effective number of available robots. From the
equation we obtain that k′ = 1

1+δt0
n. Thus, as long as

k′ is large enough for the task at hand, we will have a
well-functioning system. We conclude that the probability
of a robot to break down and the average time for repair-
ing a broken robot determines the “overcapacity” of robots
needed, compared to the minimal number of robots neces-
sary for a well-functioning system.

5 Discussion: Functionality and fairness
In this section, we discuss a requirement for multi-agent

systems that is often overlooked in our opinion: if an agent
system is used by humans, the functionality of the system
and the way various human clients are treated, must match
the expectations of these human clients. We show in this
section how our ideas relate to the field of evolutionary
game theory and provide a small example in which human
clients indicate that they prefer a system that operates fairly
over a system that operates optimally.

5.1 Motivations for fairness
In their work, Shoham et al. identified as one of the main

research agendas in adaptive agents research, to empirically
show that a formal model of adaptive behavior for agents
complies with people’s behavior in the real world [14]. This
agenda is called descriptive. Until recently, classical game
theory (GT) [15] has often been used to model interactions
between rational agents. These interactions are modelled as
games of two or more players that can choose from a set
of strategies and their corresponding preferences. The most
essential property of the traditional GT approach is to as-
sume hyper-rationality: perfectly logic players who try to
find the most rational strategy to play. However, as Her-
bert Gintis states in [5]: “Far from being the norm, people
who are self-interested are in common parlance called so-
ciopaths.” In other words, purely self-interested individuals
are the exception rather than the norm. Therefore, evolu-
tionary game theory (EGT) is more and more used to model
agents behaviour and interactions. In contrast to GT, EGT
is indeed descriptive and starts from more realistic views of
the game and its players; for instance, players are no longer
purely self-interested, but are willing to reduce their own

Grapes
(A)

Robot 

1. Customers place order 
2. Order given to robot 
3. Robots fetches fruit 
4. Robot brings fruit to customer 

5 meters 5 meters 

Lychees  
(B)

Figure 6. Visualization of the shop used in our test of
human fairness.

payoff to increase the degree of equality in the group. As a
result, we believe that it is an important foundation for the
descriptive agenda and our research in particular.

5.2 Functionality and fairness
When performing analysis on the functionality of a par-

ticular system, we must first ask ourselves exactly what we
want this system to do. In the domain of resource distribu-
tion, informally speaking, we want all resources to be deliv-
ered as quickly as possible. However, we will need a more
operational definition.

In our opinion, the measure that should be optimized
should be a fair measure. For example, in a large and fa-
mous Swedish furniture shop, customers wait at a service
desk while employees fetch the items these customers or-
dered. Obviously, a customer will not be happy if he ob-
serves that five other customers are helped while he is still
waiting, and neither will customers requesting the most
popular item be pleased when they discover that they all
have to wait for five minutes because another customer has
ordered an extremely rare item.

A small experiment. As a first small indication of what
people consider fair in resource distribution, we have de-
veloped a test. In this test, people are presented with a shop
that sells two types of fruit (see Figure 6). Every customer
that orders a type of fruit (at the service desk in the middle)
will immediately be serviced by a robot. This robot starts
at a fixed position (between A and B in the figure), drives
to the requested type of fruit (with a constant speed – i.e.,
waiting time is equivalent to distance), picks up the fruit,
drives to the service desk and finally delivers the fruit to the
customer.

We asked our test audience to indicate in Figure 6 where
they would intuitively place the robot, such that the wait-
ing times would be fair for all customers, given that 60%
of the customers order the fruit located at A, and 40% or-
der the other fruit. Of the 25 respondents, 22 chose for a
position between A and the middle. We then changed the
probabilities from 60% and 40% to 99% and 1% respec-
tively. Now 21 respondents placed the arrow closer to A
(but not at A). Finally, we inquired whether (and why or
why not) it could be considered fair to place the robot at A
or exactly in the middle. Note that placing the robot at A
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Figure 7. (a) Distance of resources to the most popular
cell, related to the waiting time these resources experience.
Each point corresponds to one or more resources. (b) His-
togram of waiting times for the entire simulation.

corresponds to minimizing the expected waiting time, and
the middle corresponds to minimizing the maximum wait-
ing time. Most (20) of the respondents did not consider this
fair, even after we told them that rationally, they are in fact
optimal. In Table 1, we present the results of our experiment
in a schematic way.

Our simple test indicates that the human fairness mea-
sure may be different from analytical, rational measures
such as a minimized average. Even though this is the case,
many papers in our field use such analytical measures (e.g.,
[2]). In recent EGT literature, this phenomenon is also ac-
knowledged and dealt with [5], for example, by introducing
more altruistic utility functions for game participants. Ob-
viously, even though this small experiment already shows
some interesting phenomena, more extensive experiments
and a more thorough analysis are needed to arrive at a clear
idea of what humans would actually consider fair in a re-
source distribution setting. The concepts obtained from
such an analysis may then be used to equip our agents with
an explicitly fair utility function. We are currently investi-
gating this interesting line of research.

Measuring fairness. It is possible to determine how fair
our system operates, i.e., the integration of potential fields
and classical planning, by looking at various requirements:
(i) both the average waiting time and the variance in waiting
time should be small and (ii) remote resources should be al-
lowed to wait a little longer, at most proportional to their
remoteness. Both requirements follow from the human be-
havior we observed in our experiments and the principles of
Evolutionary Game Theory. For instance, Herbert Gintis [5]
introduces a utility function he calls homo egualis. Agents
using the homo egualis utility display a weak urge to re-
duce inequality when doing better than others, and a strong
urge when doing worse. This quite naturally ties in with
the concept of fairness (while keeping behavior sensible).
If we look at human behavior in the examples presented
above, we see that humans indeed tend to reduce inequal-
ity (by placing the robot between A and the middle instead
of at A), yet not up to a level where there is no inequality
anymore (i.e., they do not place the robot exactly in the mid-

dle). Thus, they intuitively create a situation where nobody
has to wait very long (low average waiting time) and nobody
has to wait much longer than others (low variance), yet it is
allowed that some customers wait a bit longer than others
(i.e., remote or less frequent requests are given a slightly
higher waiting time).

In order to assess how fair our current system – which
does not explicitly deal with fairness – performs, we can
therefore examine average waiting time, variance in waiting
time, and the relation between the remoteness/frequency of
resource offering and the waiting time. We use an environ-
ment of 10 × 15 cells without any walls, 12 robots and a
random resource distribution scenario. We first offer 1,000
resources only in the center of the environment, and then
offer 100 resources on random locations of the map (only
the waiting times for these resources are measured). Obvi-
ously, the further away from the ‘popular’ center a resource
is offered, the more it can be considered to be remote. We
measure the waiting time for each resource. Analysis shows
a weak correlation between waiting time and the remote-
ness of a resource, as illustrated in Figure 7(a). In Figure
7(b), we depict a histogram of waiting times occurred dur-
ing the simulation. Translating this histogram to average
and variance values, we see an average of 5.87 time steps
and a variance of 2.35. In conclusion, the system in general
indeed displays a reasonable average waiting time and vari-
ance, but also is able to favor more regular resource requests
over more remote requests. This indicates that the system
operates moderately fairly without explicitly containing this
criterium.

6 Conclusion
In this paper, we discuss our contribution to nature-

inspired multi-agent systems. In agreement with other
work, we observe that purely nature-inspired techniques of-
ten lack the pragmatism required for real-world applica-
tions, due to their inherently greedy nature.

Our research aims at the development of an adaptive,
robust and scalable nature-inspired multi-agent system that
can perform resource distribution tasks in large storage fa-
cilities. We discuss how these requirements can be theoret-
ically analysed and experimentally assessed and show that
our proposed system, integrating straightforward path plan-
ning into potential fields, is indeed adaptive and robust, both
with respect to robots making erroneous moves and with re-
spect to robots breaking down completely. Furthermore, the
system is scalable, managing a sufficiently short time be-
tween decisions even for complex problems and on a rather
simple computer.

Concerning the functionality of this system and multi-
agent systems interacting with humans in general, we dis-
cuss a possible new optimality measure, i.e. fairness. This
measure is motivated by (i) the field of evolutionary game
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Criterium Implication Human response 
Minimize the 
expected distance Ed 42.0

)10(4.06.0

x
xxEd

min @ x = 0, d = 4, d = 4.92

1.098.0

)10(01.099.0

x
xxEd

min @ x = 0, d = 0.1, d = 1 

- Mean distance 
minimized 

- Variance  
not minimized 

Unfair to let 40% of the 
resources wait very long and 
60% not at all. 

Minimize the 
maximum distance Md

)10,(min xxM xd

min @ x = 5, d = 5, d = 0 

)10,(min xxM xd

min @ x = 5, d = 5, d = 0 

- Mean distance 
not minimized 

- Variance 
minimized 

Not sensible to let 99% wait 
quite long because you want to 
make sure 1% does not have to 
wait a bit longer. 

Fair position according to 
human intuition 

approx. x = 4, d = 4.8, d = 0.98 approx. x = 0.1, d = 0.198, d = 0.98 

When differences between probabilities are: 
- low: focus on variance minimization 
- high: focus on mean distance minimization 

100

P=0.01 

P=0.99

x

100

P=0.4

P=0.6 

x

Table 1. Various results for two simple resource distribution problems, in the setting of Figure 6. Rational solutions were judged
by a test panel and then compared with the typical human solution.

theory and (ii) our initial, small experiments performed with
a test audience; both show that humans typically are avert to
inequality. Thus, if a multi-agent system is designed to in-
teract with people, it should take this fact into account. Ob-
viously, while reducing inequality, the system should still
perform sensibly – for instance, it should be cost-efficient.
We identify that we can measure whether a system is both
fair and sensible by examining the average delivery time of
resources, the variance in this delivery time, and the cor-
relation between remoteness (or frequency) of requests and
their average delivery time. We observe that our system op-
erates in a moderately fair way.

In future work, we will spend more attention on the par-
allellization or distributed updating of our simulated poten-
tial fields and aim at an explicit implementation and com-
parison of different utility functions striving for fairness.
Furthermore, we will try to increase adaptivity, robustness
and scalability even further, for instance by introducing
more optimal task-assignment techniques.
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