Radboud Repository

Radboud University Nijmegen {§

1
g

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/56163

Please be advised that this information was generated on 2017-12-06 and may be subject to
change.

http://hdl.handle.net/2066/56163

Dynamic Time War ping Applied to Tamil Character Recognition

Ralph Nielsand Louis Vuurpijl
Nijmegen Institute for Cognition and Information
{r.niels,vuurpijl } @nici.ru.nl

Abstract

This paper describes the use of Dynamic Time Warping
(DTW) for classifying handwritten Tamil characters. Since
DTW can match characters of arbitrary length, it is par-
ticularly suited for this domain. We built a prototype based
classifier that uses DTW both for generating prototypes and
for calculating a list of nearest prototypes. Prototypes were
automatically generated and selected. Two tests were per-
formed to measure the performance of our classifier in a
writer dependent, and in a writer independent setting. Fur-
thermore, several strategies were developed for rejecting
uncertain cases. Two different rejection variables were im-
plemented and using a Monte Carlo simulation, the perfor-
mance of the system was tested in various configurations.
The results are promising and show that the classifier can
be of use in both writer dependent and writer independent
automatic recognition of handwritten Tamil characters.

1. Introduction

As in many Asian alphabets, the Tamil alphabet contains
S0 many characters that easy to use keyboard mapping sys-
tems do not exist. An accurate automatic handwriting recog-
nition system could be a solution to this problem: when us-
ing it with a pen and writing tablet, an alternative input de-
vice could be created.

For the automatic recognition of online characters, a
matching technique like Dynamic Time Warping (DTW) [4]
can be used. One of the advantages of DTW is that it is able
to match two curves of unequal length. This means that no
resampling is needed for the technique to match them.

Resampling can be a problem in the case of matching
characters of different length. It is known that in the Latin
alphabet, a resampling to 30 points can do justice to short
characters, like the ’c’, as well as long characters, like the
'm’ [7]. In the Tamil alphabet, which is a syllabic language,
there is a large difference between the length of short char-
acters, like the *L_" and long characters, like the *gon’ (see
Table 1). When these characters are resampled, undersam-

pling can cause loss of vital information, whereas oversam-
pling increases the computational complexity.

Our DTW-classifier has already proved to be useful for
classifying Latin characters [5, 6, 9], but recent research [3]
has raised the interest of using our DTW-classifier for the
Tamil alphabet.

To test the performance of the classifier on unseen data,
we have conducted three experiments: (i) a writer depen-
dent test, to test the performance of the system on data that
was produced by writers that also produced the train data,
(ii) a writer independent test, to test the performance of the
system on data that was produced by writers other than the
writers that produced the train data; and (iii) a rejection test,
to test the behavior of the system in a writer independent
setting, where it only accepts classifications that pass a par-
ticular confidence threshold.

The rest of this paper is organized as follows. Section 2
describes the dataset that was used for creating and testing
the classifier. Section 3 describes our Dynamic Time Warp-
ing implementation and how DTW can be equipped with
rejection capabilities. Sections 4 and 5 describe the three
tests that were conducted. Finally, in Section 6, our conclu-
sions are described.

2. Dataset

The data [3] was recorded using two different devices.
15 writers wrote on an iPAQ pocket PC with a sampling
rate of 90 points per second, and 25 writers wrote on a
HP TabletPC with a sampling rate of 120 points per sec-
ond (please note that recording devices with different tem-
poral resolutions will yield characters with different num-
bers of points). Each of the 40 writers wrote 10 instances
of 156 different Tamil characters. The characters were writ-
ten in separate boxes, so that no segmentation was needed.

All data was recorded and stored online, which means
that not only the x and y coordinates of the points were
stored, but also the order in which the points were produced.
Additionally, the = coordinate, which indicates whether
the pen was on (pen-down) or off (pen-up) the tablet was
recorded. Each sample character was labeled, to indicate the

| Character ||

Device | Lowest | Highest | Average |

C iPAQ 11 54 184
HP Tablet | 21 9 448

U iPAQ 13 80 22.9
HP Tablet | 30 98 4138

g iPAQ 50 192 89.1
HP Tablet | 125 470 | 2203

P iPAQ 49 166 79.9
HP Tablet | 117 318 | 180.6

Table 1. Short versus long characters. Character
length in number of points of the data recorded
with iPAQ pocket PC and HP TabletPC. The low-
est and highest occurrence, as well as the average
number of points in one sample are mentioned.

Tamil character it was representing. All characters were nor-
malized by equally translating their center to (0,0) and scal-
ing their RMS radius to one. Table 1 shows the variation of
the number of points of different Tamil characters.

3. Dynamic Time Warping classifier

The classifier we built is prototype based, which means
that an unknown sample is compared to a set of labeled pro-
totypes, and is classified using the label of the nearest pro-
totype. In our classifier, DTW is used to calculate the dis-
tance between the sample and a prototype. This section de-
scribes our DTW-implementation and a feature, called re-
jection, that was added to the system to give it the possibil-
ity to either accept or reject a classification, based on a cer-
tainty value.

3.1. Dynamic Time Warping

DTW is a technique that matches two trajectories (hand-
written characters) and calculates a distance from this
matching. In our DTW-implementation (that is based on
the one described by Vuori [8]), given two trajectories
P = (p1,p2,...,pn) and Q = (q1, ¢z, .-, qm), tWO points
pi and g; match if the following three conditions (with de-
creasing priority) are satisfied: (i) Boundary condition: p;
and g; are both the first, or both the last points of the corre-
sponding trajectories P and @Q; (ii) Penup/Pendown condi-
tion: p; and g; can only match if either both are pen-down,
or if both are pen-up (this condition is an addition to the im-
plementation described by Vuori); and (iii) Continuity con-
dition: p; and ¢; can only match if Equation 1 (where
c is a constant between 0 and 1, indicating the strict-
ness of the condition) is satisfied.

M M

(a) Sample 1 (b) Sample 2

(c) DTW-match
Figure 1. Example of a DTW-match of character g.

The algorithm computes the distance between P and @
by finding a path that minimizes the average cumulative
cost. In our implementation, the cost 6(P, @) is defined by
the average Euclidean distance between all matches (p;, ;).
An illustration of a DTW-match between two Tamil charac-
ters can be seen in Figure 1.

Given an unknown sample, DTW calculates the dis-
tances to all prototypes, sorts them by distance, and returns
the nearest prototype.

On a system with a Pentium 4 processor (3.60 GHz) and
1 GB RAM, the classification of an average sample, using a
prototype set containing 1846 samples, takes about 1.9 sec-
onds. This involves that for the envisaged interactive appli-
cations, DTW is a relatively time-consuming technique. In
particular for samples with a large number of points, and
in particular for word recognition. However, for 60% of the
samples (with less than 50 coordinates), recognition is per-
formed in less than a second.

3.2. Regection

In addition to the DTW-algorithm, we provided our clas-
sifier with the possibility to reject a classification. We im-
plemented two variables that were used by the system to
judge the certainty of a classification. If this certainty is be-
low the set threshold, the classification is rejected.

The two variables that were implemented are:

(i) Agreement: This certainty value is calculated using
a list of the five prototypes that are nearest to the sample.

Fe jection threshold

|—0—0—o¢ %

I} distance to sample —j

.= cortectly classified
><= incorrectly clazsified

Figure 2. Rejection distance. The distance be-
tween a prototype and the nearest sample for
which it caused an incorrect classification is used
as rejection threshold.

First, the label of the nearest prototype is decided. The cer-
tainty value is the amount of the other four prototypes that
agree with this label. If this certainty is high, it means that
the chance that the label of the nearest prototype is correct
is high, and that the chance that an incorrect prototype has
ended up as being the nearest prototype is small. This cer-
tainty value always is an integer between 0 and 4 (inclu-
sive), where a value of 0 represents the lowest certainty, and
the value of 4 represents the highest certainty.

(ii) Rejection distance: For each prototype, a rejection
distance is calculated. If the distance between the unknown
sample and the nearest prototype is higher than this distance
(or a multiplication of the distance), the classification is re-
jected. The rejection distances for the prototypes are calcu-
lated by classifying a set of unseen samples, and recording
the distances for incorrect classifications. The rejection dis-
tance for each prototype is set to the distance between the
prototype and the nearest sample for which it caused an in-
correct classification (see Figure 2).

When using rejection, the recognition performance of
the classifier is not the only measure to judge its quality.
We used three other performance measures: (i) % accepted
(proportion of the samples of which the classification was
below the rejection threshold); (ii) % false accepts (propor-
tion of the samples that was accepted by the system, while
the classification was incorrect); and (iii) % false rejects
(proportion of the samples that was rejected by the system,
while the classification was correct).

Note that the two variables that were implemented can
be used together: a classification is only accepted when both
thresholds are reached.

4. Writer dependent test

The writer dependent test was conducted to find out how
well the system performs when the prototypes and the clas-
sifier options are based only on data that was produced by a
writer that also produced the train data.

The following procedure was repeated for a random se-
lection of 10 different writers. For each writer, the recogni-
tion performance was recorded. The ten numbers were then

| Writer nr. [Recogn. perf. (%) |

07 90.384615
09 95.192308
12 93.910256
15 92.307692
16 79.166667
21 89.102564
30 88.782051
34 76.923077
38 81.410256
40 90.384615
| Average | 87.756410 |

Table 2. Recognition performance of the system in
the writer dependent test.

averaged, resulting in a general recognition performance of
the system in a writer dependent setting.

The data produced by the writer was divided into three
sets: (i) Trainsetl, containing 5 of the 10 instances of each
character; (ii) Trainset2, containing 2 of the remaining in-
stances; and (iii) Testset, containing the 3 remaining in-
stances.

All samples in Trainsetl were used as prototypes (no
editing or averaging was performed). Trainset2 was offered
a number of times to the system using that prototype set,
each time with a different c-value (see Equationl) to find
the c-value that produces the best recognition performance.

Finally, Testset was offered to the classifier using the pro-
totype set and the c-value found in the previous step to find
the recognition performance of the system on unseen data.

The recognition performances of the system for each of
the 10 tested writers can be found in Table 2. The average
performance of the system on these 10 writers was 87.76%.

5. Writer independent tests

The writer independent tests were conducted to test how
well the system performs when the prototypes and the clas-
sifier options are based on data that was produced by writers
other than the ones that produced the train data. Also, the ef-
fects and performance of the rejection option in a writer in-
dependent setting were examined.

The two tests were preceded by the automatic creation
of prototypes and optimization of the classifier settings. The
same prototypes and settings were used for both tests.

The complete data set was divided into four sets:
(i) Trainsetl, containing all instances of all characters writ-
ten by a random selection of 20 writers; (ii) Trainset2,
containing 2 of the 10 instances of all characters writ-
ten by a random selection of 10 of the remaining writers;
(iii) Testset,containing all instances of all characters writ-

ten by the 10 remaining writers; and (iv) Rejectionset,
containing 5 of the remaining instances of all charac-
ters written by the writers from Trainset2.

5.1. Automatic prototype creation

Trainsetl was used for the creation of the prototypes.
First, the set was divided into 156 subsets (one for each
character) that were processed one by one. For each of the
subsets, a Monte Carlo (MC) simulation was used to cre-
ate 72 different prototype sets, by varying options of the al-
gorithms that were used in the steps that were taken.

For each of the 156 subsets of Trainsetl, the next steps
were taken:

(i) Distance calculation: A matrix of the DTW-distances
between all samples in the subset was calculated. We used
the DTW-distance in the training process because the same
metric would be used in the testing process. This made sure
that the positioning of the prototypes in the feature space
would be optimal for the testing. In the MC simulation, two
different c-values (see Equation 1) were used;

(ii) Clustering: Using the distance matrix produced in
the previous step, all samples from Trainset1 were clustered
through agglomerative hierarchical clustering [10]. As de-
scribed in [10], various parameters rule the clustering pro-
cess (and resulting clusters). In the MC simulation, these
parameters were varied;

(iii) Cluster selection: In this step, a number of clusters
from the complete cluster structure created in the previous
step, was selected. This was done by deciding for each clus-
ter whether it passed a number of thresholds. In the MC sim-
ulation, the thresholds for the number of members in one
cluster, and the maximum average distance between mem-
bers and centroid were used;

(iv) Merging: The members of each cluster that was se-
lected in the previous step were merged into one prototype.
An algorithm based on Learning Vector Quantization [8]
and DTW [5] was used for this. One sample was selected
from the cluster, and another sample was merged with it.
The resulting trajectory was merged with the next sample,
and this continued until all samples from the cluster were
processed. In the MC simulation, two different c-values (see
Equation 1) were used.

Using the Monte Carlo simulation, 72 different prototype
sets (containing between 179 and 1911 prototypes) were
created. Every prototype set was processed by our classi-
fier, using two different c-values. This resulted in 128 differ-
ent recognition performance percentages, of which 79.03%
was the highest. The combination of the prototype set and
the c-value that generated this performance was indicated as
optimal. This set (containing 1846 prototypes) and c-value
were used for the tests.

100 .

90 - g O B

80 |- Wﬁ_

- me\mm—*
\FRR

60 A

N M -

20 -

%

FAR m—
—— L L L L L L L
0 10 20 30

40 50 60
% accepted

Figure 3. Rejection behavior. Visualization of the
proportion of samples that are both accepted and
classified correctly (recognition performance on
accepted samples, RP), the false acceptance rate
(FAR), and the false rejection rate (FRR) for each
acceptance percentage.

5.2. Writer independent test

To test the performance of the system using the opti-
mal prototype set and c-value, as determined in the previ-
ous steps, we offered Testset, containing 15600 allographs,
to the system. The system correctly classified 72.11% of the
samples.

5.3. Regjection test

To test the behavior of the system using the optimal pro-
totype set and c-value, as determined in the previous step,
a rejection list was created, and different rejection thresh-
olds were tried to classify Testset. Because the train data
was produced by other writers than the ones that created the
test data, the results found in this test are writer indepen-
dent.

A list of rejection distances was created using the method
described in Section 3.2. The samples in Rejectionset were
offered to the classifier using the optimal prototype set
and optimal c-value. For each prototype that was at least
once responsible for an incorrect classification, a rejection
threshold was set. The created list was used in the next step.

We varied the strictness of the rejection by changing the
Agreement threshold and the multiplication factor of the re-
jection distance (see Section 3.2). In a Monte Carlo simula-
tion, 50000 different combinations of thresholds were tried
(of which 1494 combinations actually generated different
results), and Figure 3 shows the results.

On the horizontal axis, the proportion of samples that
are accepted by the system is represented. This proportion
is inversely correlated to the strictness of the rejection set-

tings. The vertical axis shows (i) the proportion of samples
that are both classified correctly and accepted by the sys-
tem (the recognition performance on the accepted samples);
(iii) the false acceptance rate: the proportion of samples that
are classified incorrectly but were accepted by the system,
as a percentage of the total amount of samples; and (iii) the
false rejection rate: the proportion of samples that are clas-
sified correctly, but rejected by the system, as a percentage
of the total amount of samples.

In the ideal situation, the number of false accepts and
false rejects is minimized, while the amount of accepts is
maximized. As can be seen in Figure 3, it is not possible
to satisfy these constraints. Some settlement, depending on
the application of the system, is needed.

6. Conclusion

DTW is able to compare trajectories of arbitrary length,
which makes it suitable for comparison of Tamil charac-
ters. Also, as shown in previous research [6], it produces
matches that are more visually perceptive and intuitive than
that of other systems, which makes DTW a suitable tech-
nique for improving the user acceptance of a handwriting
recognition system.

Two recognition performance studies and one assess-
ment of different rejection strategies have been performed
to determine the suitability of our DTW-classifier on hand-
written Tamil characters. A performance of 87.76% in a
writer dependent setting, and a performance of 72.11% in
a writer independent setting were achieved.

These results cannot easily be compared to other stud-
ies, because of differences in the employed data and since
the number of used Tamil characters differs among studies.
In literature, performances of 88.22 to 96.30% were yielded
with 156 characters, in a writer dependent setting [3]. Fur-
thermore, results between 71.32 and 91.5% in a writer in-
dependent setting can be found when classifying 96 char-
acters [1] and 79.9% when classifying 26 characters [2].
In this perspective, our results of more than 72% for 156
classes seem relatively good.

The outcomes from the experiments described here show
that our DTW-implementation is suitable for the automatic
recognition of Tamil handwriting and that, when using the
rejection strategies, the reliability of the classifier can be im-
proved. Although the recognition time using DTW is rela-
tively high, for 60% of the characters, response times of less
than a second are achieved.

As discussed in [9], the DTW-classifier is somewhat or-
thogonal to other classifiers, which makes it a proper can-
didate for multiple classifier systems (MCS). Our research
has shown that the usage of DTW in an MCS improves the
recognition performance.

Our current efforts are targeted on gaining more insight
in the strong and weak points of our classifier. A detailed

analysis of the performance of the system per character,
and the confusion between characters, could show which
characters are the problem cases, and what the properties of
these characters are (e.g. are long characters better classified
than short characters, are curly characters easier mixed up
than non-curly characters?). This information can be used
to further improve the performance of the system, not only
for the recognition of Tamil, but also of Latin characters.

7. Acknowledgments

HP Labs, Bangalore, India are acknowledged for making
their data available to us.

This research is sponsored by the Dutch NWO TRI-
GRAPH project.

References

[1] H. Aparna, V. Subramanian, M. Kasirajan, V. Prakash,
V. Chakravarthy, and S. Madhvanath. Online handwriting
recognition for Tamil. In F. Kimura and H. Fujisawa, edi-
tors, Proc. IWFHRO, pages 438-442, Tokyo, October 2004.

[2] S. Hewavitharana and H. Fernando. A two stage classifi-
cation approach to Tamil handwriting recognition. In Proc.
TI2002, Foster City, California, USA, September 2002.

[3] N. Joshi, G. Sita, A. G. Ramakrishnan, and S. Madhvanath.
Comparison of elastic matching algorithms for online Tamil
handwritten character recognition. In F. Kimura and H. Fu-
jisawa, editors, Proc. IWFHR9, pages 444-449, Tokyo, Oc-
tober 2004.

[4] J. Kruskal and M. Liberman. The symmetric time-warping
problem: from continuous to discrete. In D. Sankoff and
J. Kruskal, editors, Time Warps, Sring Edits, and Macro-
molecules. The Theory and Practice of Sequence Compar-
isons. Addison-Wesley, Reading, Massachusetts, 1983.

[5] R. Niels. Dynamic Time Warping: An intuitive way
of handwriting recognition? Master’s thesis, Rad-
boud University Nijmegen, November-December 2004.
dt w. novi omagum com

[6] R. Niels and L. Vuurpijl. Using Dynamic Time Warping for
intuitive handwriting recognition. In Proc. IGS2005, 2005.
In press.

[7] L. Schomaker. Using stroke- or character-based self-
organizing maps in the recognition of on-line, connected cur-
sive script. Pattern Recognition, 26(3):443-450, 1993.

[8] V. Vuori. Adaptive Methods for On-Line Recognition of
Isolated Handwritten Characters. PhD thesis, Finnish
Academies of Technology, 2002.

[9] L. Vuurpijl, R. Niels, M. van Erp, L. Schomaker, and E. Rat-
zlaff. \erifying the UNIPEN devset. In F. Kimura and
H. Fujisawa, editors, Proc. IWFHR9, pages 586-591, Tokyo,
Japan, October 2004.

[10] L. Vuurpijl and L. Schomaker. Finding structure in diver-
sity: A hierarchical clustering method for the categorization
of allographs in handwriting. In Proc. ICDAR '97, pages
387-393, Piscataway, NJ, USA, August 1997. IEEE Com-
puter Society.

