Antti Alamaki

Implementation of OpenCV in a Machine Vision
System

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree programme in Electrical and Automation Engineering
Bachelors thesis

11.11.2017

Metropolia

University of Applied Sciences

Tiivistelma

Tekija(t) Antti Alamaki

Otsikko OpenCV:n kayttéonotto osana konenakojarjestelmaa
Sivumaara 45 sivua + 9 liitetta

Aika 20.11.2017

Tutkinto Insindori (AMK)

Koulutusohjelma Sahko- ja automaatiotekniikan tutkinto-ohjelma

Suuntautumisvaihtoehto | Automaatiotekniikka

Ohjaaja(t) Lehtori Jari Savolainen

Tassa insin00ritydssa perehdytadan OpenCV:n kayttddon osana konenakojarjestelmaa ja
pilottihanketta. TyOsséa selvitettiin tosielaman kayttétapausten ja ongelmatilanteiden kautta
OpenCV:n suorituskykya seka muuntautumiskykya Python- ja C++ toteutuksien avulla

erilaisissa ymparistdissa osana konenakojarjestelmaa.

Tybssa toteutettin teknologiavertailu ja valinta eri kayttdbymparistdjen seka
ohjelmistoversioiden valilla asiakkaiden vaatimukset ja tarpeet huomioiden. Nama valinnat
kyettin perustelemaan toteuttamalla osana ty6td toteuttamalla kolmeen eri
kayttdtapaukseen perustuvat ohjelmistoversiot kummallakin valituista kielista. Ohjelmoinnin
tarkoituksena oli myéskin pullokaulojen ja ongelmakohtien jaljittdminen seka C++:n Python-
laajennuksen testaus, naissd tehtdvissd onnistuttiin Kkiitettavasti. Osana teknisia
valintaperusteita ja pullonkaulojen kartoitusta myods suoritettiin suorituskykyanalyysi eri
ohjelmointikielilla tehtyjen toteutusten valilld joiden perusteella voitiin tehda alustavia
johtopaatoksia suorituskyvyn suhteen. Testien ja ohjelmoinnin tulosten perusteella tehtyja
valintoja seka suorituskykyanalyysin tuloksia esitellddn tdssa insin6oritydssa

salassapitosopimuksen sallimissa rajoissa.

Tyon viimeisena osana toteutettin sensorijarjestelman kalibrointiin - kaytettava
pienimuotoinen ohjelmakoodi Pythonilla jonka toimivuutta testattiin tehdasymparistossa.
Testien avulla kyettiin varmistamaan kalibrointikoodin ongelmaton toiminta seka

soveltuvuus valittuun kayttétarkoitukseen ja ymparistoihin.

Avainsanat OpenCV, konenako, Python, C++, suorituskykyanalyysi

y
e —

(G
Metropolia

University of Applied Sciences

Abstract

Author(s) Antti Alamaki
Title Implementation of OpenCV in a Machine Vision System
Number of Pages 45 pages + 9 appendices
Date 20 November 2017
Degree Bachelor of Engineering
Degree Programme Degree programme in Electrical and Automation Engineering
Specialisation option Automation Technology
Instructor(s) . . .
Jari Savolainen, Senior Lecturer

In this thesis work, the general goal was to research and implement OpenCV into a machine
vision as a part of a pilot study. The work was carried out by programming solutions for pre-
selected real-world use-cases and problems using Python and C++ programming languages

in different environments and setups as a part of a machine vision system.

A central part of this thesis work was a technology review and selection between different
versions of software while taking into account client needs and requirements. These
selections were further proven by programming three use-cases in both of the pre-selected
programming languages. The second goal of the programming was to detect any
complications or bottlenecks in the implementations, these tests were all successfuly
executed and proven. As a part of the detection for bottlenecks and performance issues, all
the three use-cases were benchmarked, on basis of these benchmarks it was possible to
make some preliminary assumptions on the performance of the scripts. The principles of the
technology selection and programming along with the benchmarking results are presented

as a part of this thesis within permitations of the NDA.

As the last part of the work, a small calibration script was created in Python for calibrating
the sensor system. The functionality of this script was tested in a real factory environment.
With these tests, it was possible to verify the flawless functioning and suitability of the script

in the selected usage and environments.

Keywords OpenCV, machine vision, Python, C++, benchmarking

y
e —

(G
Metropolia

University of Applied Sciences

Contents

Abbreviations
1 Introduction
2 About the Company and the Project

2.1 Technology Provided by FocalSpec

3 Review of Available Technologies and Tools

3.1 Introduction to OpenCV
3.2 Differences Between Latest and Previous OpenCV and Python
3.3 Windows Platform and Tools

4 Setup of Tools and Environments

4.1 Setup of Python and Extensions
4.2 Configuration of Visual Studio 2017
4.2.1 Python Support
4.2.2 OpenCV
4.2.3 Other Tools
4.3 Initial Tests with Python, OpenCV and Visual Studio
4.3.1 Python and Visual Studio
4.3.2 Visual Studio and OpenCV

5 Principles and Theory of Image Handling

5.1 Loading the Image — Region of Interest (ROI)
5.2 Image Pre-processing
5.2.1 Smoothing Images and Noise Removal
5.2.2 Thresholding
5.2.3 Edge Detection Methods
5.3 Data Extraction
5.4 Ellipse Fitting and Detecting Contour Middle Points
5.5 Methods for Extending C++ with Python

6 Use-cases Using Python and C++

6.1 The First Use-case
6.1.1 Python: Detecting a Black Area Inside an Image

A bW

(&)

© © © © N O O O,

N
o

10
10
11
12
14
14
15
16

17

17
17

y_

(G
Metropolia

University of Applied Sciences

6.1.2 C++: Testing the Python API 21

6.1.3 Conclusions on the first use-case 23

6.2 The Second use-case 24
6.2.1 Preparations 25

6.2.2 Contours 25

6.2.3 Calculating the Distances 27

6.2.4 Conclusions 28

6.3 The Third use-case 29
6.3.1 Preparations 30

6.3.2 Feature Detection 30

6.3.3 Conclusions 34

6.4 Fourth Use-case: Calibrator Using Python 34
6.4.1 Feature search on the image 34

6.4.2 Preparations 35

6.4.3 Feature Detection 36

7 Benchmarking the Scripts 39
7.1 Executing the Benchmarks 39
7.2 Benchmark Results and Analysis 40
7.2.1 The Second Use-case 40

7.2.2 The Third Use-case 41

7.3 Overall Conclusions on the Benchmarks 43
8 References Error! Bookmark not defined.

Appendices

Appendix 1. C++ source for use-case 1

Appendix 2. Python source for use-case 1

Appendix 3. C++ source for use-case 2

Appendix 4. Python source for use-case 2

Appendix 5. C++ source for use-case 3

Appendix 6. Python source for use-case 3

Appendix 7. Python source for the Calibrator

Appendix 8. Graphs on the benchmark results for the second use-case
Appendix 9. Graphs on the benchmark results for the third use-case

A

(G
Metropolia

University of Applied Sciences

Abbreviations

CMOS

Windows CE

WHL

PIP

ROI

API

JSON

Complementary Metal Oxide Semiconductor. Technology commonly
used in microprocessors. In machine vision systems used in form of a
CMOS sensor.

Windows Community Edition. Edition of Microsoft Windows commonly

used in industrial applications.

Python Wheel. File format commonly used for Python extensions.

Python Installation Package. Installation and packaging appliance for

Python extensions.

Region of Interest. An area inside an image, used for inspection of a

specific feature or set of features in machine vision appliances.

Application Programming Interface. Programming interface which ena-
bles communication and calls between different software applications.
JavaScript Object Notation. Data transfer format which is used for seri-

alization of data, resembles the structure of a JavaScript object.

1 Introduction

In this thesis work, the general goal was to research and implement OpenCV into a ma-
chine vision system using Python and C++. The work was done as a part of a pilot study
for capabilities of OpenCV under different environments and setups. The demand for a

feasible solution is high on both client and developer / supplier side.

The work consisted of four adjacent parts. The first part was technology research, selec-
tion and setup of development and release environments while considering the client
requirements within the limits of available technologies. Second part was arbitrary re-
search and programming with different technologies and methods of implementation.
The motive for the second phase was to give proof to clients about the capabilities of the
new upcoming technology and to detect and tackle any obstacles on the way of adapting
such technology. The tests were partially based of real-life use-cases, presentation of
which is restricted with NDA. Therefore, these use-cases will be handled verbally with
compensatory pictures that resemble the real use-case within limitations of the NDA

agreement.

Third part of the thesis work was benchmarking the different technologies to detect
frauds in performance between OpenCV implementation using Python and OpenCV us-
ing C++. One of the initial objectives was to test extending C++ with Python so that the
OpenCV image processing implementation would be done using combination of
OpenCV and Python and the Python script would be called from within C++. This ap-
proach, if successful and feasible performance-wise, would minimize integrators’ need
to touch the C++ source which in turn greatly reduces development, integration and

maintenance costs.

The last part of the thesis work was integrating the developed scripts and algorithms into
the actual machine vision system. No actual integration was performed, instead a cali-
brator script was written for calibrating the system. In this thesis work, it is handled as
one use-case but is technically distinct from the others as this script was not bench-
marked and was written only in Python.

2 About the Company and the Project

This thesis work was done for FocalSpec, a company specialized in machine vision
systems and sensors for quality control in industrial environments. The company was
founded in 2009 under VTT for research and development of line confocal sensors and
scanners. Usually in the world of machine vision, lasers are used for measuring 3D
dimensions, usually the Z-resolution of lasers is not enough for measuring for example
surface roughness. The disadvantage of a laser technology in general is that multiple
lasers are required for the purpose which complicates the setup and configuration and
increases the expenses. Another main obstacle with lasers is limitation with materials;

they are not suitable for example for transparent materials.

2.1 Technology Provided by FocalSpec

According to the company website [1.], the technology provided by FocalSpec is Line
Confocal Imaging which provides an approach to the previously mentioned main
shortfalls of existing technologies. Instead of using lasers, the system is based on an
indirect light source (transmitter) and a receiver. In the system, white light emitting from
a light source on the sensors’ transmitter side is split into a continuous spectrum with
thousands of wavelengths. Each wavelength is focused on a plane with certain distance
from the sensor, the dominating wavelength is then reflected back to the sensors’
receiver. On basis of this, CMOS array is formed, from which by means of software a 2D
and 3D grayscale image is created. The basic idea of the system is displayed in figure
1.

h >

Light source CMOS array

Moving target

Figure 1. lllustration of the technology by FocalSpec from the FocalSpec website

Advantages of this sort of technology is that the system is much simpler in means of
configuration than existing laser-based systems. Also, due to the nature of this
technology, the system is capable of handling virtually any material and transparency or

reflectance are not an issue.

3 Review of Available Technologies and Tools

In this project, the platform being used was Windows 10 Enterprise. Most of the client
hardware is Windows-based with Windows 10 having a major share. Some of the clients
may also run embedded Windows CE systems but these are not a major part and were
not included in this thesis work.

Guidelines for the development were to adapt the latest possible software and technol-
ogies. With this, some precautions had to be taken as not all clients may be able to run
for example the latest OpenCV distribution due to system limitations, this issue was tack-
led within the thesis work. At the time of this thesis work, the latest version of Python was
3.6.x and latest version of OpenCV was 3.x. It must be noted that to run the latest
OpenCV with Python, the Python had to also be the latest 3.6.x series; older versions

are not supported.

Other option for usage was to use older 2.4.x series version of OpenCV along with older
Python.

3.1 Introduction to OpenCV

According Wikipedia [2.] and the OpenCV website [3.], OpenCV is an open source (BSD
licence) library of functions, primarily focused on real time computer vision systems. The
project was initially launched by Intel in 1999 with the first version out in 2000. The project
was later supported by Willow Garage and is currently maintained by Itseez with the

latest version being OpenCV 3 at the time of this thesis work.

The platform was originally written platform-independent using C++. The primary inter-
face is still C++ though it maintains also an older, les comprehensive C interface as well.

OpenCV has bindings (wrappers) available for MATLAB, Java and Python but also

unofficial PHP wrappers are available. The bindings work in a way that the OpenCV is
initiated and called within another language using wrapper functions that map to the
functions in OpenCV core [4.]. Advantages of this approach is that the same core func-
tionality is available for all supported languages without the need to rewrite the core for

each language separately.

This provides a robust interface with the benefits of optimized performance from C++
and thus reduces delays caused by the actual language from which the OpenCV func-
tions are called. This performance and the benchmarking results with conclusions will be

described in the chapter 7 of this thesis about benchmarking the use-cases.

3.2 Differences Between Latest and Previous OpenCV and Python

During research, some major differences were detected in the approach of implementa-
tion of OpenCV between the latest and the previous version series. Also, Python syntax
has seen some major changes in the latest version. These details were matters that had
to be considered from client point of view as updating existing scripts written for older
Python and OpenCV versions must be updated to the latest syntax which might be an

obstacle for some clients.

Good example of a syntax change is for example the regular print statement in Python;

M

in older versions, the print statement was written in format “print ‘test’, the latest version
requires parenthesis in the form “print(‘test’)”. Unfortunately changes on this level re-
quire a lot of manual work and testing to ensure full compatibility, this should be noted in

implementation costs.

3.3 Windows Platform and Tools

As mentioned in the beginning of this chapter, the platform was Windows 10. For this
platform, the best selection for C++ development is the Microsoft Visual Studio. As the
platform was 64bit, also Visual Studio was selected the 64bit version. Selection of the
platform and tools on this part was straight forward as the differences between 2015 and
2017 versions of Visual Studio are rather minimal from developer point of view so it was
decided to go with the 2017 version.

4 Setup of Tools and Environments

This chapter consists of explanation of setting up the development, test and release en-
vironments. The chapter will also cover any issues and obstacles that were identified
during the installation process along with analysis on possible impact on client.

4.1 Setup of Python and Extensions

The version of Python used in this work was Python 3.6 with the currently latest 3.3
version of OpenCV. During the research phase, different versions of OpenCV and
Python were investigated but due to practical reasons it was decided to go with Python
3.6. Primary issue with Python 3.6 is that there is no official OpenCV support for any
Python 3.x version [5.]. This makes the installation slightly tricky even though unofficial

WHL files are available for the purpose.

Beside the Python 3.6, also Matplotlib and numpy (Numerical Python) were installed as
the latest version of OpenCV heavily resides on numpy and a lot of the OpenCV functions

using Python expect a numpy array as an input.

Table 1. Installed software for Python and OpenCV

Software Version Source

Python 3.6 https://www.python.org/downloads/release/python-360
OpenCV 3.3.0 http://www.Ifd.uci.edu/~gohlke/pythonlibs/#opencv
Matplotlib 2.0.2 http://www.Ifd.uci.edu/~gohlke/pythonlibs/#matplotlib
Numpy 1.13.1 http://www .Ifd.uci.edu/~gohlke/pythonlibs/#numpy

The installation of OpenCV, Matplotlib and Numpy was done via Pythons’ package
manager “pip”. In the installation, the specific whl files were picked to ensure that the
correct version of the applications got installed. By default, the Matplotlib that would have
been installed was 2.1.1 but for compatibility reasons, older 2.0.2 was chosen. The
installation commands are presented in the figure 2, the list of installed extensions is

shown in the table 1.

pip install opencv_python-3.3.0+contrib-cp36-cp36m-win_amdbo4.whl
pip install numpy-1.13.1+mkl-cp36-cp36m-win_amdo4.whl

pip install matplotlib-2.0.2-cp36-cp36m-win_amd&4.whl

Figure 2. Installation commands for Python extensions

To test that that the setup was working as expected, Python provides a way to show the
version of extensions. The extensions can be displayed in the manner presented in

figure 3 by entering the commands in the Python shell.

3 Python 3.6.2 Shell - O ®
& Pyt

File Edit Shell Debug Options Window Help
Python 3.6.2 (v3.6.2:5fd33b5, Jul & 2017, 04:57:36) [M5C v.1900 64 bit (AMDE4))
on wind2

Type "copyright™, "credits"™ or "license ()" for more information.
¥»» Import cwv2

>>» IMpOXT DUMpY

¥»» iImport matplotlib

>>»> cv2. version

L e T

>>> numpy. version

L L O

>>»>> matplotlib. version
Lo

33> |

Lm:12 Cok4

Figure 3. Testing that the Python extensions are correctly initiated

4.2 Configuration of Visual Studio 2017

As one of the goals in this thesis work was to test extending Python and how the script
would operate, the C++ compiler (Visual Studio 2017) was setup to run Python scripts.
To start a project, a new project was setup in Visual Studio 2017 (File — New Project —

Visual C++ — General — Empty Project).

4.2.1 Python Support

After setting up the project, the python extensions and libraries (located under the Python
installation folder) had to be added to the project as Visual Studio 2017 would not include
these in the project by default. This was done by opening the Property pages for the

project and updating the settings in the way demonstrated at Figure 4.

Project? Property Pages 4 bs
| Configuration: | Active(Release) ~ | Platform: | Active(x64) ~ Canfiguration Manager...
4 Configuration Properties v General . - . .

General §(VC_ExecutablePath_x64);5(WindowsSDK_ExecutablePath);S (VS_ExecutablePath];S(MSE v
Debugging Include Directories C:\Users\aalam\AppData\Local\Programs\Python\Python3 6\include;${IncludePath)
WC++ Directories Reference Directories S{VC_ReferencesPath_x64);

b G Library Directaries CAUsers\aalam\AppData\Local\Programs\Python\Python3 6\libs;$ (LibraryPath}

b Linker Library WinRT Directories ${WindowsSDK_MetadataPath);

b Manifsst Foal Source Directories $(VC_SourcePath);

b XMLDocument Generator) WIE. i de Directories [S(VC_IncludePath);S(WindowsSDK_IncludePath);S(MSBuild_ExecutablePathS(VC_LibraryP

I Browse Information - - -

P Build Events.

b Custorn Build Step

b Code Analysis

Executable Directories
Path to use when searching for executable files while building a VC++ project. Corresponds to environment variable PATH.

it

Figure 4. Configuration of Python on Visual Studio

There were some complications in the installation; when running a test code to ensure
that the Python support was working the way expected, the system gave an error about
the python.h not being loaded. After some research, this proved to be a result of
mismatch in the 32bit vs. 64bit environments; the Visual Studio was 32bit whereas
Python was 64bit, therefore the libraries were not able to load correctly. This was
corrected by adding a 64bit version of the header file after which the test code executed

successfully.

4.2.2 OpenCV

As one of the initiatives of the work was to test the capabilities of C++ and OpenCV
combo, OpenCV support had to be added. The 3.1 version of OpenCV on Visual Studio
was installed using the NuGet package manager. While this approach has some
disadvantages and obstacles, it is the simplest way of installation and ensures the best
compliance with the projects. The main disadvantage is that the setup of OpenCV using
NuGet requires some manual settings and OpenCV must be installed for each project
separately. On the other hand, this resolution allows running different versions of
OpenCV and other tools in different projects. In a client project, in real test and production
environment, this might prove crucial even though the aim is to support primarily the

latest versions of Python and OpenCV.

The settings that had to be done manually involve adding the Python libraries to the
VC++ directories under Property Pages for each of projects. The path to modify was the
same Library path as presented in the above illustration for setting up Python.
Additionally, after some experimenting, it was found out that setting up also OpenCV was
necessary to modify the linker paths; for some reason, NuGet package manager doesn’t
execute these changes automatically. Possibly because due to a NuGet bug, the Python
libraries were still missing after the NuGet Installation of OpenCV. For this reason, the
libraries had to be manually copied from the OpenCYV installation that had been done for
the standalone Python implementation. The linker paths are available thru the Property

pages for the project under the Linker — Inputs tab, the setup is shown in figure 5.

It is important to note that the libraries for development and release compilations are
different; the development libraries are marked for example opencv_core310d.dll
whereas release version is opencv_core310.dll. They must be setup separately for
product and development compilation as the development libraries contain some
arbitrary code for debugging and they will not work properly seaminglessly for the release

compilation. This arbitrary code also unnecessarily increases size of the built executable.

Praject Property Pages ? X
Configuration: | Debug ~ | Platform: | x64 ~ Configuration Manager...
4 Configuration Properties A Additienal Dependencies opencv_core310d.libopencv_imgproc3 10d.lib;opency_highgui310d.lib;opencv_mi31¢
General Ignore All Default Libraries
b Project Master Settings Ignore Specific Default Libraries
Debugging Module Definition File
VC++ Directories Add Module to Assembly

b C/Cee
4 Linker
General

Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

- A‘ss‘ambly Link Resource
Manifest File

Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line

b Manifest Tool

I XML Document Genera

I» Browse Information

b Build Events Additional Dependencies

b Custom Build Step | | Specifies additional items to add to the link command line. [i.e. kernel32.lib]

< >

G R

Figure 5. Setup of OpenCYV libraries in linker

4.2.3 Other Tools

The last tool that was setup at the initial stage was setting up a JSSON writer/parser for
serializing the result data from the script. For test purposes and ease of use, RapidJSON
was chosen even though the company in principle uses another library. Also, due to the
type of project that was being used in the setup, there were some issues while installing
the parser via NuGet. The primary issue was that the packages had not been compiled
to support an empty C++ project, instead they were meant for a Windows Desktop
project. After some google search, a suitable version for the parser was found and

installed.

4.3 Initial Tests with Python, OpenCV and Visual Studio

4.3.1 Python and Visual Studio

A tiny snippet of code was written with C++ and Python to test the functionality of the
Python and Visual studio combo. The test initiated a couple of errors, the first of which
was a missing python36.dll error. This was due to a bug in the Python installation and
was fixed by copying the appropriate dll (dynamic link library) to C:/Windows/System32

folder.

Another issue that was identified at this stage was a bug in the way the OpenCYV library
was loaded thru the import statement in Python. The bug was due to a change that was
implemented in the OpenCV 3.x, for a reason or other the import statement for OpenCV
library failed. This was fixed by editing the cv.py file that comes with the whl
(pythonwheel) file. This file defines the library and how it will be loaded.

4.3.2 Visual Studio and OpenCV

The testing of OpenCV and Visual Studio combo was conducted by a minimal test script,
the code compiled without errors. However, when running the program file for the project,
it failed with an issue that the system could not find the OpenCV dll files. While the solu-
tion of the issue might not be feasible in a client environment, the issue was solved by
copying the di's to the Windows system32 folder; a more correct way would have to add

their location to the Windows path.

10

5 Principles and Theory of Image Handling

OpenCV provides with a large variety of functions for image handling and processing.
While same goals can be achieved in number of ways, there are differences in perfor-
mance and memory usage between the functions. In this project, the raw images pro-
duced by the sensor system can be up to gigabytes in size which sets a challenge for

example for image loading times.

5.1 Loading the Image — Region of Interest (ROI)

One of the first things to do is to define, which part of the image is of interest. In OpenCV,
this can be done by extracting a part of the master image using coordinate points, this
method is called region of interest (ROI). Beside saving machine resources, this way
also simplifies the code in a lot of cases as focus can be put on only a certain part of the

image thus not having to deal with other areas of the bitmap.

Another thing with loading the images is that OpenCV provides several parameters to
use when loading the images. In the FocalSpec sensor system, the produced 2D images
are all 8bit grayscale images. Therefore, when loading the image, it makes no sense to
load it as a colour image; instead, it will be loaded using a OpenCV parameter IM-
READ_GRAYSCALE to load the image directly as a grayscale image. Listing 1 is an
example of using the parameter in Python.

1. image = cv2.imread(image, cv2.IMREAD GRAYSCALE)

Listing 1. Example of image loading in OpenCV

5.2 Image Pre-processing

Pre-processing the images prior to feature detection has some impact on the perfor-
mance and in some cases, impacts the feature detection. Among these methods are
thresholding the image, applying filtering on the image to remove noise and as the last,
methods of edge detection and image transformation. The guiding target in image pre-

processing is to reduce the amount of results produced by the actual feature detection.

11

Image pre-processing is a slightly delicate subject and should be handled with thought
because the worst-case scenario is a performance hit instead of performance gain. Ap-
plications and needs for image pre-processing vary greatly case by case and experience
has proven that in many cases, the best results are achieved not by a single method of

pre-processing but instead by a combination of different techniques.

While OpenCV provides a vast amount of different image processing tools, this chapter

presents in theory the ones that were tested and used during this thesis.

5.2.1 Smoothing Images and Noise Removal

One of the first ways to reduce the amount of results during feature detection is to apply
some filtering. According to the OpenCV website [6.] among the available filters, are the

following:

e Gaussian Blur which uses the Gaussian Kernel for blurring operations

e Bilateral filtering is good for removing noise in the images while retaining the
sharpness of edges, but disadvantage is that it is relatively slow compared to
other filters

¢ Median Blur takes median of all the pixels under kernel area and central element
is replaced with this median value; highly effective against salt-and-pepper noise
in the images

e Averaging takes the average of all the pixels under kernel area and replaces the

central element with its value; this is done by either the OpenCV function blur()

or boxFilter() depending on the use-case

The upside of filtering is that it will reduce results from the feature detection. Downside
on the other hand is that filtering will always impact the sharpness of the image and
specially with Gaussian Blur this might become an issue. Filtering was tested in all the
use-cases but eventually it was used only in the calibration application together with
Canny edge detection, this application is further described in the chapter 6.4 of this the-

sis.

The primary reason for this resolution was that accuracy plays a critical role in this appli-

cation and any filtering will impact sharpness of the image. It is possible to deal with

12

excess feature detection results in other ways, for example filtering by size was used in
all the cases that were handled during this thesis work. Instead of blurring the image,
features were mostly detected from the raw image and other techniques like ellipse fitting
and image moments were used for finding the centre of mass, angle of distortion and

other things whenever required.

5.2.2 Thresholding

Thresholding is a method for altering the colours in an image. According to OpenCV
tutorials [7.], typically, in computer vision the rule that applies is that if image is altered

easier to be read by human, it will be easier to handle also by the algorithm.

The OpenCV threshold() function takes as input the image source/bitstream, threshold
minimum value, maximum value and threshold style. On basis of these values, the
function loops thru the image pixel by pixel and if the color in a pixel is larger than the
thtreshold minimum value, the function will change the color of the pixel into that. If it is

something else, color will be changed to something different.

Figure 6. Thresholding an image — part 1

The illustration in figure 6 demonstrates what would happen if threshold was set to 0 with
maximum value of 255. Value 255 stands for white color and as a result, the color of all

the texts would be converted to white color.

13

Figure 7. Thresholding an image - part 2

The first part of the illustration in figure 7 shows what would happen if threshold was set
to 185 with maximum value 255; this would result that some of the text would disappear
because their color is less than 185 and the rest would be replaced by 255 aka the white
color. The second part of the figure 7 illustrates what would happen if threshold was set
to 0 and maximum value to 185; the colour of all the texts in the image would be replaced
by the colour 185.

OpenCV supports a number of methods for thresholding and the correct one should be
selected on a case basis. The most commonly used method is binary thresholding and
its inverse function. Other styles are threshold to zero along with its inverse function and

threshold to trunc.

In all cases, providing a static threshold value might not be feasible. For example in a
case where the lighting conditions change, a static threshold will result in alterations of
the colour scheme, this will apply to both RGB and grayscale images. For this purpose,
OpenCV provides a function called apativeThreshold() in which the user defines, by

which means the threshold value is calculated. The available values are:

e ADAPTIVE_THRESH_MEAN_C threshold value is the mean of neighborhood area
e ADAPTIVE_THRESH_GAUSSIAN_C threshold value is the weighted sum of
neighborhood values where weights are a gaussian window
Besides the above, apativeThreshold() also takes a second optional parameter which

is the neighboring block size.

After extensive testing in each of the use-cases, it was decided that traditional

thresholding was needed in only in the second use-case described in the paragraph 6.2

14

of this thesis. Some tests were made also with adaptiveThreshold() but it was decided

that this was not eventually not required.

5.2.3 Edge Detection Methods

During this thesis work, also edge detection was tested to find edges around and within
regions of interest. In OpenCV, a popular method for detecting edges is Canny edge
detection, function canny [8.] which takes as parameters the threshold minimum and
maximum values and kernel size. Canny should always be applied with threshold and
filtering (blurring) of image as edge detection is sensitive to noise in the picture; good

way for blurring is the blur() function described in chapter 5.2.2 of this thesis.

Canny edge detection proved a good solution in detection of single edges and was
applied in the detection of edges for calibration, as described in the chapter 6.4 of this

thesis about calibration of measurement applications.

5.3 Data Extraction

Beside image pre-processing, also the way the data is extracted from the image has
impact on the memory usage. OpenCV provides multiple ways for data extraction, the
most important of which are findContours and Hough Line Transform [9.]. Hough Line
Transform is applicable for example when extracting continuous edges detected by
Canny. On the other hand, if Canny detected only line fragments, the way for combining
them together is thru findContours function. Both methods were tested and eventually

findContours was used in all the use-cases.

Technically speaking, contours are boundaries of shapes with the same pixel intensity.
The findContours() function takes several parameters which are defined on a case basis.
The result output of findContours() is a vector of coordinate points for the edges of each
contour feature. If wrongly set, this array can be much larger than necessary which in
turn will impact performance. This matter received special attention along with other per-

formance-related issues in this thesis work.

15

5.4 Ellipse Fitting and Detecting Contour Middle Points

One way to detect the centre of mass inside contours found from the images is ellipse
fitting [10.]. This method calculates the ellipse that fits (in a least-squares sense) a set of
2D points best of all. To detect the set of 2D points inside which the ellipse is fitted, the
typical way is to first draw a minimum area rectangle around the contour. Inside this
minimum area rectangle, the ellipse is then fitted to get for example the centre point of
the contour. The rectangle used for fitting can be either a direct rectangle using the
OpenCV boundingRectangle() function or rotated rectangle using the OpenCV minA-

reaRect(), which one is used is dependent on the use case.

The following illustration in figure 8, taken from OpenCV documentation [11.], demon-
strates the usage of rotated rectangle and the fitEllipse() function. The first part of the
image shows the outer boundaries of the contour in green and the rotated rectangle in
red. The second part of the illustration demonstrates fitting the ellipse inside the rotated

rectangle.

b\

Figure 8. Rotated rectangle and fitEllipse

Another method for detecting the contour middle point is using the OpenCV moments()
function; this was tested in one of the use cases. The function computes moments, up
to the third order, of a vector shape or a rasterized shape and returns spatial moments,
central moments and normalized central moments. The centre of mass can thus be cal-

culated on their basis.

16

5.5 Methods for Extending C++ with Python

One of the key objectives in this thesis work was testing the extending of Python with
C++. The de facto method for this is to use the Python API which is incorporated in the
C++ application by including the Python.h file. The Python C++ extension provides with
access to most aspects of the Python run-time system. Advantages of directly extending
Python from within C++ are that by this way, the built-in object types and C++ library
functions and system calls are accessible from within Python.

17

6 Use-cases Using Python and C++

As one of the primary initiatives of this thesis work was to detect obstacles and compare
the performance of OpenCV with Python and C++, some use-cases were tested with.
These use-cases totalled in three cases for the current use. This chapter will introduce
the use cases in practise. All the use cases were implemented in both C++ and Python
but as the methods are identical for both, this chapter will primarily focus on the Python
versions. The complete codes with comments are available in the appendixes 1-9 of this

thesis.

6.1 The First Use-case

The initiative in this first use case had three initiatives. The first was to introduce our-
selves to the use of regions of interest, second was to find a coloured (black) area within
an image using the fitEllipse function. The third part of this use-case was testing how the
Python API for C++ works.

In this use-case, a dummy image was used instead of something from the camera and
sensor system as the initiative was more focused on the embedding rather than real life

feature detection.

6.1.1 Python: Detecting a Black Area Inside an Image

The first task, as in any of the use-cases, was to define the region of interest; the script
both in C++ and Python was designed in a manner that the ROI can be input as param-
eter to the script; this method applied to all the use-cases handled during this thesis work.
In the test case, the ROI should roughly outline the black area in the image. The ROI
was extracted in 8bit grayscale to save memory. The original image and the extracted
region of interest are presented in the following figure 9.

18

Extracted ROI

Original image

Figure 9. Test image in 1st use case

The first thing in all the use-cases is loading the image and defining the region of interest,
an example of this is shown in the listing 2. The images are always loaded in 8bit gray-
scale mode to save memory. After this, the arguments are split into a tuple and finally
the ROl is extracted from the image on their basis.

Load the image in grayscale
image = cv2.imread(image, cv2.IMREAD GRAYSCALE)

roi = roi.strip('\'")
create ROI from arguments and crop image

a, b, ¢, d = (int(x) for x in roi.split(',"'))
image = imagela: b, c: d]

O J o U WN

Listing 2. Image load and extracting the ROI

The same operation in C++ is shown in the listing 3. The code loads the image in
grayscale, splits the parameter by commas into an array and defines a Rect object with

the values. Finally it uses the the Rect object to extract the ROI.

19

1. Mat image;

2.

3. image = imread(argv[1l], IMREAD GRAYSCALE); // Read the file
4.

5. (!'image.data) {

6. cout << ”Could not open or find the image” << std::endl;
7.

8. }

9.

10. // Split the roi argument into an array

1. arg2 = argv([2];

12. std::stringstream iss(arg2);

13.

14. // Rol 1s a string separated by commas so add dummy char for ,
15. @g

16. al4l;

17. iss >> a[0];

18.

19, (i=1; i < 8; i++) {

20. iss >> ¢ >> ali]l;

21. }

22.

23. // Define the rectangle and crop the image

24. Rect rec(al0], alll, al2], al3]):

25.

26. Mat roi = image(rec);

Listing 3. Loading image in C++ and OpenCV

The next thing is finding the contour. In this case, thresholding was not needed as the
aim was to search for a pure black area on an 8bit grayscale image, therefore findCon-
tours() can be applied directly. In the findContours(), parameters RETR_LIST and
CHAIN_APPROX_SIMPLE were used. The first parameter defines how the contours are
fetched, RETR_LIST means that they are fetched as a list with no parent-child relation-
ships [12.].

The second parameter defines which points are fetched. In this case, all the points
around the contour are not needed so therefore to save memory, the code uses
CHAIN_APPROX_SIMPLE which removes all the redundant points and compresses the
contour. The result consists only of the corner points of the contour, this is demonstrated
at the following listing 4.

1 # find contours in the image without tresholds
2. cnts = cv2.findContours (image, cv2.RETR LIST,

3 cv2. CHAIN APPROX SIMPLE)
4 cnts = cnts[0]

Listing 4. Example of findContours()

20

After this, as shown in listing 5, the code loops thru the contours. In the code, len(c) is
needed to make sure that the contour is a continuous line and not a line fragment. While
looping thru the contours and find the bounding rectangle around the contour. The
dimensions of the bounding rectangle are used to filter the contours as there are only

certain ones that are of interest.

loop thru the contours
for c in cnts:
if len(c) > 8:

X, y, w, h = cv2.boundingRect (c)

~ oUW N

if w < 220:

Listing 5. Usage of boundingRect()

If the contour width fits the requirements, after the filtering the centre of the contour is
calculated using moments as shown in listing 6. In reality this was not needed for

anything in this case and was only done for test purposes.

compute the centre of the contour
M = cv2.moments (c)

cX = float (M["ml0"] / M["mO0"])

cY = float (M["mO1"] / M["mOO"])

Sw N

Listing 6. Using moments to calculate centre of mass

Finally, as shown in listing 7, minAreaRect() is used to find the minimum area rectangle
around the contour, the function returns a rotated rectangle which are converted to points
in a numpy array and further used for the OpenCYV fitEllipse() function. Finally the results
are printed to the image using drawContours() and ellipse() functions. In the

drawContours(), the (255,0,0) stands for a white color and the last parameter is the width

use minAreaRect to find the minimum rotated rectangle and
convert the result to points

box = cv2.minAreaRect (c)

box = cv2.boxPoints (box)

box = np.array(box, dtype = "float")

box = perspective.order points (box)

ellipse = cv2.fitEllipse(c)
cv2.drawContours (image, [box.astype ("int")1,-1, (255, 0, 0), 1)

O o Jo Ul W

Listing 7. Drawing the contour and ellipse

21

of the plot. To distinguish the drawings, the ellipse is printed in black (0, 255, 0) with 2px
wide print. The final plot results are shown in the next figure 10.

Figure 10 Output of the detected regions

6.1.2 C++: Testing the Python API

The second part of the first use-case was testing the extending of Python on C++. The
actual methods for extending the Python in C++ are explained in the technical overview
in the chapter 5.5 of this thesis work, this chapter will focus on the actual experiments
and . As a general comment for the code, this was a test only to see if this works and did
not put much effort on splitting and beautifying the code so the whole set of code is

written under the main().

As seen in the code in the listing 8, the first thing on the list of tasks is to initiate the
Python objects and check that all the necessary arguments for the C++ code are present
(if not, exit the code). If successful, decode the parameters so they can be passed to the
Python script.

o J o Ul W

O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

22

int main(int argc, char * argvl[]) {

PyObject * pName, * pModule, * pDict, * pFunc;
PyObject * pArgs, * pValue, * t;

int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile functionname
[args]\n") ;
return 1;

}
Py Initialize();

// Decode the parameter and import

pName = PyUnicode DecodeFSDefault ("detect shapes");
pModule = PyImport Import (pName);

Py DECREF (pName) ;

Listing 8. Python initialization

If the paramenters are present, they are added to a string and some error checking is

performed to verify that the parameters actually exist. This part worked fine all the way,

also no issues with adding the parameters to the tuple. When this is done, the Python

script will run and eventually the results are fetched from Python. This is demonstrated

the following listing 9.

0 Joy U W DN

O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

// Push the two arguments (image name and roi) into a string
pFunc = PyObject GetAttrString(pModule, argv([2]);

// Check that the function exists and if not, catch the error
if (pFunc && PyCallable Check (pFunc)) {
pArgs = PyTuple New(argc - 3);
for (i = 0; i < argc - 3; ++i) {
pValue = PyBytes FromString(argv[i + 31);
if (!pvalue) {
Py DECREF (pArgs) ;
Py DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;

}

// Add the arguments to tuple to be passed into Python
PyTuple SetlItem(pArgs, i, pValue);
}

// Fetch the return value
pValue = PyObject CallObject (pFunc, pArgs);

Listing 9. Sample of returning arguments from Python

23

The result handling from Python is done in the way displayed at listing 10. The code just
checks the value of pValue and if not null, stores the results from Python into a wharc_t
from which it can be further parsed using the JSON parser of choice. In theory this is

very simple, but practise proved unfortunately otherwise.

// If call successfull print results else fail
if (pvalue != NULL) {
const wchar t * json = PyBytes AsString(pValue);
}
else {
Py DECREF (pFunc) ;
Py DECREF (pModule) ;
PyErr Print();
. fprintf (stderr, "Call failed\n");
0. return 1;
1.

}

P BPE OO Jo U WN -

Listing 10. Reading arguments from Python

Returning the values from Python proved tricky with issues due to the data type of the
return value. According to the Python APl documentation, it should be possible to fetch
any type of data from the Python script. After extensive tests, this proved not to be the
case, the code compiled without errors but the code crashed with TypeError, meaning

that the data type was incompatible.

This issue got solved but for some reason, if the return value from Python to C++ was
tuple data, trying to parse the result with PyArg_ParseTuple() returns only data pointers
but not the actual data. The type error continued with all datatypes except strings so it
was decided to serialize the data in Python using JSON and pass the JSON string to
C++. Despite extensive research, still more research is required to confirm whether these
issues were due to the specific Python version in use or due to the Windows 10.
Eventually in the course of this thesis work, the only way to safely return data was by
serializing it into a string in the format of JSON in Python and then returning and
deserializing the data in C++. This proved to be a feasible solution also for client setups
and does not compromise the performance of the application.

6.1.3 Conclusions on the first use-case

The Python part worked perfectly as expected. However, when deciding the further
course of action with this kind of extending, also concerns about integration costs and
stability of the resolution in a client environment play a decisive role. Due to these factors,

24

it was decided that despite the advantages of directly extending Python in C++, it is for
the moment too unstable for production use. Upon this resolution, research on this part
was stalled at the current state of the project.

Due to these issues, it was decided to change the approach so that the Python script
writes results into a text file in JSON format. The Python script would then be launched
with an execute call from within C++ and eventually the results in C++ would be read
from the Python script’s output file. This file must be either a physical file or database
entry because reading from memory will not work due to the nature of Python; when the

Python script exits, any memory allocations will be wiped at the instant.

6.2 The Second use-case

In the second use-case, the initiative was to detect the position of certain objects in a
picture recorded by the sensor system. This included detection of the distance between
two pins and detection of distance from the end of a pin to its base. The work was done
in both C++ and Python for benchmarking purposes, the benchmarking process along

with results and analysis will be covered in the chapter 7 of this thesis work.

Due to limitations by NDA, the original images from the sensor system will not be pre-

sented in this thesis work.

Figure 11. Points of measure in second use case

To illustrate what was measured, the points of measurement are presented in green in
the above figure 11. The purpose was to measure the distance between the external
edges of the pins and distance from the centre point of the hole in the pins to their

25

baseline. One requirement for the measure is that the algorithm must work even if the

position and angle of the measured artefact changes.

6.2.1 Preparations

After analysing the picture, first the region of interest is defined from within which all the
measurements are done. The parameters for the script are the image source and the
region of interest in coordinate points, extracting the region of interest is done identically
to the way described in the beginning of previous chapter 6.1.1.

6.2.2 Contours

In this picture inside the region of interest, there are two different primary colours. The
pins in the original image are shown as pure white whereas the hole in the middle of the
pins is showing as black. In the solution for this problem, it is needed to find to find the
xy-position of each of the holes in the image and the position of the white pin itself.
Therefore, two distinct feature detections with findContours() function required for the

task, one with threshold and one without.

The following code sample in listing 11 checks for the black holes in the pins, as a result
the centre points for the holes in both pins are stored in a numpy (numerical python)
array. Before storing the centre points, some filtering by size is required to define which
contours are of interest, the len() at line 7 and the w > 100 at line 11 are for this purpose.

If the filter criteria are met, the code first calculates the minimum area rectangle for the
contour, stores the values in a numpy array and uses the fitEllipse function to detect the

centre of mass which will be the xy-coordinates for the centre of the hole in each pin.

26

1. cnts2 = cv2.findContours(image, cv2.RETR LIST,

2. cv2.CHAIN APPROX NONE)
3o

4. cnts2 = cnts2[0]

5¢

6. for i in cnts2:

7.

8. if len(i) > 8:

9. %X, y, w, h = cv2.boundingRect (i)

10.

i1 # Filter contours by size

12. if w > 100:

13.

14. # Fetch minimum area rectangle around
15. # the contours and dump the results
16. # into a numpy array

17. box = cv2.minAreaRect (i)

18. box = cv2.boxPoints (box)

19. box = np.array(box, dtype = "float")
20. cv2.drawContours (image, [box.astype
21. ("int")], - 1, (255,
22. 0, 0), 1)

23.

24. # Use fitEllipse to fit an ellipse
25. # inside the contour, dump the result
26. # into a numpy array and fetch the
27 o # center point into a tuple

28. ellipse = cv2.fitEllipse (i)

29. (center, r, t) = ellipse

30.

31. if centerl ==

32. (centerl, center2) = center, 0
33. else :

34. (centerl, center2) = centerl,
35. Center

Listing 11. Checking the size of contour, detecting the dimensions and ellipse fitting

To detect the white pins themselves, a second round of findContours() is implemented
with a thresholded image as the source. The threshold statement used in this case was
the following, it will change all colours above 127 (greyish colour) into 255 (pure white).

A sample of the thresholding used in this use-case is presented in listing 12.

1. ret, tresh = cv2.threshold(image, 127, 255, 9)

Listing 12. Sample of thresholding in OpenCV

After applying a similar filtering as in the first findContours() round, the code uses a
standard Python function for detecting the extreme points of the contour from a tuple of
points. This method was selected because it is by far the easiest and least memory-

consuming way for achieving the result.

27

1. # Get the extreme points of the contours and add them to a
2. # tuple
3. if isinstance(resl, int):
4. (resl, res2, extTopl, extBot2) = getPoints(c), O,
5.
tuple(c[c[: , ¢ , 1l].argmax()]1[0]), O
6.
7. centl = np.array([float(centerl[0]), float(centerl[1l])])
8. else :
9. (resl, res2, extTopl, extBot2) = resl, getPoints(c),
10.
extTopl, tuple(clcl[: , : , 1l]l.argmin()]I[0])
11. cent2 = np.array([float(center2[0]), float(center2[1l])])

Listing 13. Calculating the top left and top right points of the bounding rectangle

6.2.3 Calculating the Distances

In the snippet of code in listing 13, a custom function getPoints() is called. The function,

demonstrated in listing 14, will return the Euclidean distance between the top right and

the top left extreme points of the contour. The function first uses minAreaRect() function

to fetch the minimum rectangle around the contour after which the system detects the

corner points and sorts them. Finally, the function calculates the midpoint between the

top left and top right points and returns the coordinates.

1. box = cv2.minAreaRect (c) box = cv2.boxPoints (box)

2. box = np.array(box, dtype = "float")

3. xSorted = box[np.argsort (box[: , 0]), :]

4. leftMost = xSorted[: 2, :]

5. rightMost = xSorted[2: , :]

6. leftMost = leftMost[np.argsort (leftMost]|: 11), : 1
7.

8. (tl, bl) = leftMost D = dist.cdist(tl[np.newaxis], rightMost,
9. "euclidean™") [0]
10. (br, tr) = rightMost[np.argsort(D)[::-1],]

11.

12. x = float((br[0] + tr[0])

/
13. y = float((br[l] + tr[l]) /
14.
15. return np.array([x, yl)

Listing 14. Calculating the Euclidean distance

28

This calculation is required to detect the midpoint of the edges of the pin at the position
where the pin meets its base, due to the form of the pins this will be the shortest distance
from the centre of the hole in the pin to its base. The following figure 12 describes what

the function is trying to achieve.

<= ROI

»,
iy

U minfAreaRect

Figure 12 Output of getDistance

Finally, as displayed in the listing 15, the data is stored in a numpy array and the OpenCV
norm() function was used to compute the required measures between the coordinate

points.

points3 = np.array([extTopl[0], extTopl[1l]])
points4 = np.array([extBot2[0], extBot2[1]])

data["distance 1"] cv2.norm(resl, centl)
data["distance 2"] cv2.norm(res2, cent2)
data["distance between objects"] = cv2.norm(points3, points4

U WN

Listing 15. Using OpenCV norm() function

6.2.4 Conclusions

The use-case required a lot of testing and attempts because one of the requirements
was to get the distances with subpixel accuracy. This was slightly tricky because not all
the OpenCV functions accept a floating point number as the entry. If floating point
numbers are not used, some rounding will appear in between the values. The issue was
much bigger in the C++ implementation than in the Python due to the nature of C++ as
a heavily typified programming language.

Another challenge was to actually define the point against which the distance from the

centre of the hole to the base of the pin is measured but this was sorted with some logic.

29

6.3 The Third use-case

In the third use-case, the objective was to detect the position of certain features and their
distance from one other. The image that was used is presented in the following figure,
the image itself is slightly manipulated due to issues in displaying it with the correct as-
pect ratio. It appears that even though the OpenCV namedWindow() function has a pa-
rameter WINDOW_KEEPRATIO to maintain aspect ratio, this function does not work
correctly under windows environment and therefore the image appeared twisted on the

screen when displayed using OpenCV.

Figure 13. Image for the third use-case

From the image, the goal was to detect the distance between the holes marked with
crosshair and their distance to the base of each of the features. The hole centres are
presented in figure 13 along with the baseline which is presented by the short green line
on either side of the hole. The developed algorithm should be such that it would take into
account possible skewing of the artifact when it is recorded by the camera system, aka

the object will not always be in the same position when measured.

30

6.3.1 Preparations

First task was to define the region of interest, there were two options with this. First option
was to find three distinct regions of interest, one for each of the features. The second

option would be to go with a single region of interest that contains all the three features.

The image was very large in size with width of roughly 14000px and height of around
1500px so memory consumption-wise it would have made sence to use three regions of
interest. However, the main colour inside the single region of interest is black and the
image is a 8bit grayscale image so a single larger region of interest will not have a huge
performance impact. Therefore, to simplify the algorithm, decision was made to use a
single region of interest. The region of interest is displayed as the large green rectangle
in the image in figure 13.

6.3.2 Feature Detection

In this picture, there are total four contours that were of interest. Three of the contours
are one for each of the holes and one large one is the solid black area inside the region
of interest. The large contour is used to define the baseline from each of the hole centres
to the base.

After extracting the region of interest, the features are fetched using the OpenCV
findContours() function. In this case, thresholding is not required as the color marking
the holes in the three features is completely black, same with the main color in the large
contour. As a parameter, CHAIN_APPROX_NONE is needed, this is slightly memory
consuming but this was done because all the points in the contour are required for future

actions.

for x in roi.split(',"'))
image = imagel[a: b, c: d]

Get centers for contours; this will fetch the centres
for the black circles inside the ROI, no tresholding
needed as the color is pure black
cnts2 = cv2.findContours (image, cv2.RETR LIST,
cv2.CHAIN APPROX NONE)

O 00 J o Ul W

cnts2 = cnts2[0]

Listing 16. Finding the contours

31

After applying findContours(), the system loops thru the identified contour features. Some
filtering is applied by the size of the contour to filter out the ones that are of no interest.
The width of the contour is fetched using the OpenCV minAreaRect function, after which
the code stores the centres of the contours into a pre-defined tuple. The centres equal
to the centres of the holes and this can be done without ellipse fitting because the holes
are an even shape (pure circle). Ellipse fitting would be used to detect the centre of mass
of the contour but as the contours in this case are circle, the centre of mass is equal to
the centre of the mininum area rectangle. At this point, the code also stores the possible
skew angle of the contour, the angle is found from the output of the minAreaRect

function.

After this operation, the code as shown in listing 17, calculates a point which is 500
coordinate points from the centre of contour in the direction provided by the angle from
the minimum area rectangle. 500 pixels was selected to make sure that an intersection

occurs. This value is then stored in a pre-defined tuple.

1. box = cv2.minAreaRect (i)

2.

3. if box[1][0] > 100:

4.

5. if box[1][0] < 500:

6.

7. centers.insert(z, box[0])

8. angle = box[2]

9.

10. # Calculate coordinates for the endpoint of the line
11. # from centre of the hole

12. line x = box[0] [0] + length * math.cos(angle *
13. math.pi / 180.0)

14. line y = box[0][1] + length * math.sin(angle *
15. math.pi / 180.0)

16

17. points.insert(z, (line x, line y)) z =z + 1

Listing 17. Getting the other end point for vector

Eventually, the code detects also the large black area visible in figure 13 inside the region
of interest. The corners of this black area are stored in a tuple using the OpenCV

boxPoints function like shown in the sample of listing 18.

32

1. # Check for the large black area inside the roi
2. if box[1][0] > 2000:

3 box2 = cv2.boxPoints (box)

4 angle = box[2]

Listing 18. Bounding rectangle by the boxPoints() function

Once this operation is complete and the necessary values for the rest of the calculations
are done, the code defines vectors from the centre of each of the holes to the previously
calculated coordinate points from the centre point. For this purpose, the code introduces
a function line() where the vector definition is computed, a sample of this method is
shown in the listing 19. The code also computes a vector across the left and right edge
of the large contour separately according to the ways shown in the following figure 14.

Figure 14 outline of the vectors in the image

33

Define the equation for a line between points

def line(pointl, point2):
a = (pointl[1l] - point2[1])
b = (point2[0] - pointl[0])
c = (pointl[0] * point2[l] - point2[0] * pointl[1l])

~N oUW

return a, b, -c # return the coefs of line equation

Listing 19. Getting the line equations

After the line equation, the system makes a call to a function that computes the
intersection point between the left/right edge and the vector from centre point of each of
the holes. For this, there is a custom function intersect() which is shown in the next listing
20.

1. # Define the function for intersection

2. def intersect(linel, 1line2):

3.

4. # Get the main determinant from matrix[Al Bl, A2 B2]
5. D = 1inel[0] * 1line2[1l] - linel[1l] * 1ine2[0]
6.

7. # Dx from matrix[Cl B1l, C2 B2]

8. Dx = linel[2] * 1line2[1l] - linel[l] * line2[2]
9.

10. # Dy from matrix[Al Cl, A2 C2]

11. Dy = 1linel[0] * 1line2[2] - 1linel[2] * 1line2[0]
12.

13. if D = 0:

14.

15. # Calculate x and y

16 x =Dx / D

17 y =Dy / D

18 return x, y

19

20 else :

21 return False

Listing 20. Function for calculating the intersection of two vectors

The results are then stored in a tuple which is written to JSON and stored in a file for
future use. The complete Python and C++ source codes with comments are available in
the appendix 5 and 6 of this thesis.

34

6.3.3 Conclusions

The case in this one involved a lot of thinking because of the requirements (skewing of
the picture etc). The code was made as dynamic as possible and will take basically any
amount of holes. Even more customization could have been made to increase the
performance. Also the code still has small flaws, for example if the artifact is more than
90 degrees skewed, the program will fail. This was not taken into account in this case
because in general it is correct to assume that if a artifact arrives so much skewed, the
error is most likely elsewhere in the system.

Another point for customization could have been to make the code so dynamic that all
the skew angles and intersection points would be passed dynamic to the appropriate line
and intersection functions. However this was not within the scope of this use-case.

6.4 Fourth Use-case: Calibrator Using Python

The fourth and last use-case approaches a common issue in any sensor and machine
vision system, the issue is called calibration. Calibration in this case means setting the
lenses and other equipment in an aligned order so that they will give correct results. For
ease of use and for consistency of results, it is good to have an automated system to
handle the task.

The initiative in this use-case was to find the skew angle and distance in coordinate
points for calibration error within the y-axis. To make the calibration as accurate as
possible, the system returns the distance and angle with subpixel accuracy.

The code for the calibrator application was made only in Python as there was no need

for benchmarking between the two approaches.

6.4.1 Feature search on the image

In this use-case, the images used for the tasks feature a standard. As seen in the
example image in the figure 16, the black lines do not continue aligned. This means a
calibration error which should be detected.

35

Figure 15. Sample image for calibration

6.4.2 Preparations

In this case, a couple of alternate approaches were considered to get the calibration
error. Two of the approaches involved using two distinct regions of interest in different
sections of the bottom horizontal black line shown in the image. From these two different
regions of interest, it was possible to get either the extreme points of the contour or
alternatively use Canny edge detection to find the top position of the black line in each
of the regions of interest. The third option would have been to use a single region of
interest along with Harris Corner Detection to detect the point where the alignment of the
shape fails.

Figure 16. Approach with one or two ROI

In this case, the approach with two regions of interest was taken along with Canny edge
detection and ellipse fitting.

36

Lo # Create two ROIs and crop image

2. a, b, ¢, d =550, 50, 2200, 600

3. e, £, g, h = 550, 50, 700, 600

4.

5. roil = imagel[a: a + b, c: c + d]

6. roi2 = imagel[e: e + £, g: g + h]

7.

8. # Function calls

9. distlellipse, distlangle = calcDistance (roil)
10. dist2ellipse, dist2angle = calcDistance (roi2)

Listing 21. Defining the ROI's and function calls

After the regions of interest are defined in the fashion shown in the above listing 21, the
code calls for a custom function calcDistance() which returns the position of the edge of

the black area in pixels.

6.4.3 Feature Detection

Canny as a function uses convolution to detect the edges and thus works the best after
some noise reduction from the image. After some testing, the correct function for blurring
seemed to be the OpenCV blur() function. This function and Gaussian Blur were tested
with different kernel sizes 1x1, 3x3, 5x5 and 7x7.The first three produced the same out-
come whereas the 7x7 blurred the image too much. Some thresholding was also tested
with different kernel sizes in the blurring with no impact in the outcome. In OpenCV,

Canny is implemented in the fashion demonstrated at the following listing 22.

Blur some of the noise out of the image, kernel 3x3
blur = cv2.blur(roi, (3, 3), 0)

Use Canny to detect the edges
edges = cv2.Canny(blur, 50, 200, 1)

g w N

Listing 22. Example of Canny usage

37

Black line inside cne of the ROl's

edee detected by Canny

Figure 17. Edge detection results by Canny

As seen in the above illustration in figure 17 of the original region of interest and the
Canny output, the edge detected is not a continuous line. Therefore, the appropriate
method to extract the edges is by findContours(). Another way would have been via

Hough Line Transform, but that works only for solid lines.

Results of the findContours are filtered by size and position so that further operations are
applied only to the contours that fit the criteria. For the filtering, a minimum area rectangle
is fitted around the contour after which the system uses fitEllipse() function to fit an ellipse
inside the rectangle. From the output of fitEllipse(), the system returns the centre of mass
for the contour along with the angle of the fitted ellipse. The following figure 18 is a

screenshot of the output of ellipse fitting function.

output of minAresRect in the contour

Figure 18. Output of minAreaRect and fitEllipse functions

38

Eventually, the computed results are returned and displayed on-screen. The output in
the figure 19 is the outcome of calculations on the sample image presented in figure 15.

1o # Function calls

2. distlellipse, distlangle = calcDistance(roil)

3. dist2ellipse, dist2angle = calcDistance (roi2)

4.

So # Print the calibration error on y - axis

6. print ("Calibration error y:", dist2ellipse[0][1] -
7. distlellipse[0][1])

8o

9. # Print the average angle of distortion

10 print ("Angle of distortion:", ((distlangle - 90) +
11. (dist2angle - 90)) / 2)

Listing 23. Calculations and output of the calibrator

on\Python librator.py --ima

Figure 19. Detected calibration error and angle of distortion

39

7 Benchmarking the Scripts

The initiative in benchmarking was to find differences in performance between OpenCV
using Python and similar application using C++. The benchmarks were performed for the
second and third use-cases presented in the chapters 5 and 6 of this thesis.

The benchmark results are available in graphical form in the appendixes 8 and 9.

7.1 Executing the Benchmarks

In a windows environment, there are multiple ways for continuously running an executa-
ble or a script file, one way is the windows tasks and the other a batch script. In this case,
the latter method was chosen for platform-independency reasons, also the batch script

is relatively simple to maintain.

The benchmark was executed for both warm and cold cache in both Python and C++.
The batch script for Python and C++ are identical with the only difference being the script
call and the file output name. In both cases, the script will first loop ten times and run the
executable or script with five second intervals to simulate a cold cache and then ten times
with one second interval to simulate a warm cache, this is demonstrated at the following

sample of the script in the listing 24.

1. @

2. echo off set loop = 0: loop

3. if "%loops" == "1"@

4. echo Running batch benchmark at 1 second interval (cold cache)
5. >> benchmark results c Project4 d: /roi.bmp

6. 500,350,1000,500

7. Timeout / t 5 set / a loop = % loop % +1

8. if "%$loop%" == "10"

9. set loop2 = 0

10. if "%loop%" == "10"

11. goto loop2 goto loop: loop2

12. if "%loop2%" == "1"@

13. echo Running batch benchmark at 5 second interval (warm cache)
14. >> benchmark results c Project4 d: /roi.bmp

15. 500,350,1000,500

16. timeout / t 1 set / a loop2 = % loop2 % +1

17. if "%loop2%" == "10"

18. goto next goto loop2: next echo Benchmark finished

Listing 24. Sample of the benchmark script

7.2 Benchmark Results and Analysis

40

In the following, there is some analysis on the performance of the different scripts. As a

note, all the benchmarks were executed multiple times at different hours to get a realistic

impression on the performance. Despite this, the variations in the benchmark results at

different times were very slight and they should be treated with some caution because

also any background processes running on the system have an impact on performance,

especially considering that the tests were made on a Windows platform.

7.2.1 The Second Use-case

In the second use case, not a great deal of effort was put in optimization of the code.

The benchmark results for the Python script looked like what is shown in the figure 20.

The first column is taken with the image load and the second one with it included.

Running batch benchmark at 1 second interval [cold cache)
time:0.51425310480453268
time: 0.5113437243652344
time: 0.5024313926696777
time: 0.5069866180419822
time: 0.5098216533660828
time: 0.5075249671836035
time:0.5191810131072%38
time: 0.5457503795623779
time: 0.5485575199127197
time: 0.5098569353157958
Running batch benchmark at 5 second interval (warm cache)
time: 0.105485214462 28027
time:0.10130739212036133
time: 0.10347223281860352
time: 0.1031649112701416
time: 0.09581804275512695
time: 0.09758543968200684
time: 0.097233259544067383
time:0.11073112487792363
time: 0.09443355285644531

Figure 20. Benchmark results with Python

Running batch benchmark at 1 second interval (cold cache)
time: 0.49374703788757324
time: 0.5045777030%44824
time: 0.5045643516540527
time: 0.5022704601287842
time: 0.5100381374359131
time: 0.5080296993255615
time: 0.5028576850851113
time: 0.49350289726257324
time: 0.5063178538276123
time: 0.5029571056365967
Running batch benchmark at 5 second interval (warm cache)
time: 0.0993195348448707
time: 0.09595680236816406
time: 0.09240293502807617
time: 0.097770690917936875
time: 0.09258675575256348
time: 0.09656810760428047
time: 0.09420371055603027
time: 0.09415626525878306
time: 0.09300355333060293

The C++ benchmarks were executed with the release version of the use case because
in the debug version, there is some extra code which the complier adds to the executa-
ble.

41

Running batch benchmark at 1 second interval (cold cache) Running batch benchmark at 1 second interval (cold cache)
time: @.547 time: ©.497
time: 0.5 time: ©.498
time: ©.5@5 time: ©.496
time: ©.585 time: ©.501
time: 0.517 time: ©.496
time: ©.5 time: ©.499
time: 0.506 time: ©.485
time: ©0.531 time: ©.485
time: ©.51 time: ©.494
time: ©.532 time: @.5
Running batch benchmark at 5 second interval (warm cache) Running batch benchmark at 5 second interval (warm cache)
time: ©.102 time: ©.893
time: ©.102 time: ©0.093
time: ©.105 time: ©.898
time: ©.13 time: ©.895
time: ©.163 time: ©0.091
time: ©.136 time: ©.899
time: ©.13 time: ©.09
time: ©.103 time: ©.093
time: ©.896 time: ©.09

Figure 21. Benchmark results with C++

The benchmark results shown in figure 21 follow quite much the expected pattern. Due
to the relatively small size of the image (around 2000x1000px), not even the image load
had much impact on the performance. Considering that OpenCV is written in C++ and
Python provides only a wrapper for the functions, there should not be much difference in
performance. In this use-case, very little calculation takes place in Python itself, so the

main overhead should come from the image load time.

Looking at the results between the warm versus cold cache, both Python and C++ seem
to react to them with similar pattern. With warm cache, the execution time is much faster
which supports the theory about the image load increasing the execution time signifi-
cantly. With warm cache, the image is preloaded into memory which is clearly visible in

the results on both implementations.

7.2.2 The Third Use-case

In the third use-case, much more effort was put on the performance than in the second
use-case and this is clearly visible in the benchmark results. In this case, while the res-
olution of the image remained the same as in the second use-case, the picture that was
used was much larger in size (around 14000x1500px). The following illustration demon-

strates the performance on Python with both image load included and disincluded.

42

Running batch benchmark at 1 second interval {cold cache) Running batch benchmark at 1 second interwval (cu‘ld cache) .
time: ©.18981242179870685 time: @.1554858684539795
time: @.20417078388793945 time: ©0.14436268808645752
time: 8.19912266731262287 time: @.17918968200683594
time: @.20881247520446777 time: @.158911705@1708384
time: 8.19533252716064453 time: @.15934419631953808
time: @.2028045654296875 time: ©.15396428188215332
time: ©.19621825218200634 time: @.14445281028747559
time: @.2002251148223877 time: @.17995619773864746
time: 8.17635178565979084 time: ©8.1668781171875
time: @.20383143424987793 time: @.15793943485151367
Running batch benchmark at 5 second interval (warm cache) Running batch benchmark at 5 second interval (warm cache)
time: @.17380762100219727 time: @.14386653900146484
time: 8.17726516723632812 time: ©8.1384384599761963
time: @.1629343832836914 time: @.1433715820@3125
time: @.14089459114074707 time: ©.130338049514778@5
time: @.1651628817425537 time: @.1725821495@561523
time: @.17391395568847656 time: @.16590642929077148
time: @.16956639289855957 time: @.13597893714904785
time: @.16358789335327148 time: @.13418889045715332
time: @.1797943115234375 time: @.13752879010009766

Figure 22. Benchmark results using Python

Looking at the results displayed in figure 22, the performance of the script is on a very
high level, this can be judged by a much faster execution time as compared to the second
use-case where not nearly as much computing was performed in Python. Surprisingly,
the difference between warm and cold cache with and without the image load is very

slight.

For a comparison, the next figure 23 demonstrates the performance on C++. As can be

seen, the C++ implementation has a slight advantage in performance over the version in

Python.

Running batch benchmark at 1 second interval (cold cache) Running batch benchmark at 1 second interval (cold cache)
time: ©8.145 time: 8.12
time: ©.148 time: ©.119
time: ©.142 time: @.122
time: ©.162 time: ©.124
time: ©.145 time: @.12
time: 9.141 time: 8.115
time: ©.145 time: @.12
time: ©.141 time: ©.123
time: ©.146 time: @.117
time: 9.142 time: @.12
Running batch benchmark at 5 second interval (warm cache) Running batch benchmark at 5 second interval (warm cache)
time: 9.119 time: 8.101
time: ©.124 time: @.102
time: 9.124 time: 8.098
time: ©.128 time: @.102
time: ©8.127 time: 8.098
time: ©.121 time: ©.899
time: 0.141 time: 8.1
time: ©.121 time: 8.1
time: ©.123 time: @.899

Figure 23 Benchmark results using C++

Surprisingly, in C++ warming the cache seems to have slightly more impact on the per-
formance with both image load and without included. In theory, considering the nature of
C++, the assumption would have been that C++ is faster which in this use-case doesn’t

43

seem to be the case. The conclusion was confirmed by multiple test runs in different

environments.

7.3 Overall Conclusions on the Benchmarks

The performance of C++ and Python seem to have very slight differences as proven by
both use-cases. While this is a smallish sample of all tests and does not in any way
resemble a real-life production environment, the results do give some insight on what
can be expected in a real-life case. On the other hand, looking at the performance, even
though the differences are very slight between the programming languages and some
consideration must be given over the results, even the small differences might in some

real-life cases prove to be a bottleneck for production.

Time will tell whether the performance is good enough or not but looking at the prereg-
uisites between the second and the third use-case, the meaning of optimization is clearly
proven. Even the image size does not have relatively as much importance as optimiza-
tion — in the third use-case, the image was many times larger than in the send one and

yet despite the heavier calculations the third one was multiple times faster.

44

8 References

1. FocalSpec. Technology [online]. FocalSpec Oy. 2017.
URL: https://www.focalspec.com/tehcnology. Accessed 21 September 2017.

2. Wikipedia.org. OpenCV [online]. Wikipedia. October 2017.
URL: https://en.wikipedia.org/wiki/OpenCV. Accessed 22 October 2017.

3. OpenCV.org. About [online]. OpenCV community. 2017.

URL: http://www.opencv.org/about.html. Accessed 27 September 2017.

4. OpenCV.org. How OpenCV-Python Bindings Works [online]. OpenCV
community. September 2017.
URL: http://docs.opencv.org/3.2.0/da/d49/tutorial py bindings basics.html.
Accessed 30 September 2017.

5. Opencv.org. Package list. [online]. OpenCV Python community. September
2017.
URL: https://pypi.python.org/pypi/opencv-python/3.3.0.10. Accessed 30
September 2017.

6. OpenCV.org. Smoothing images [online]. OpenCV development team.
November 2014.
URL: https://docs.opencv.org/3.0-beta/doc/py tutorials/py imgproc/py filtering/

py filtering.html#filtering. Accessed 5 October 2017.

7. Mallick S. OpenCV Threshold (Python , C++) [online]. Big Vision LLC.
November 2015.
URL: https://www.learnopencv.com/opencv-threshold-python-cpp. Accessed 5
October 2017.

8. OpenCV.org. Canny Edge Detection [online]. OpenCV development team.
2017.
URL: https://docs.opencv.org/3.1.0/da/d22/tutorial py canny.html. Accessed 6
October 2017.

9.

10.

11.

12.

13.

45

OpenCV.org. Hough Line Transform [online]. OpenCV development team.
November 2014.
URL: https://docs.opencv.org/3.0/beta/doc/py tutorials/py imgproc/

py houghlines/py houghlines.html. Accessed 20 October 2017.

OpenCV.org. Structural analysis and shape descriptors [online]. OpenCV
development team. November 2014.

URL: https://docs.opencv.org/3.0-beta/modules/imgproc/doc/

structural analysis and shape descriptors.html#fitellipse. Accessed 10
October 2017.

OpenCV.org. Contour Features [online]. OpenCV development team. 2017.
URL: https://docs.opencv.org/3.1.0/dd/d49/tutorial py contour features.html.
Accessed 11 October 2017.

OpenCV documentation. Contours: Getting Started [online]. OpenCV
development team. 2017.

URL: https://docs.opencv.org/3.1.0/d4/d73/tutorial py contours begin.html.
Accessed 11 October 2017.

Appendix 1

1(2)
C++ source for the first use-case
1. # include < Python.h >
2o
3. int main(int argc, char * argv[]) {
4.
B¢ PyObject * pName, * pModule, * pDict, * pFunc;
6. PyObject * pArgs, * pValue, * t;
7. int i;
8. if (argc < 3) {
9 fprintf(stderr, "Usage: call pythonfile funcname [args]\n");
10. return 1;
11. }
12.
13. Py Initialize(); // Decode the parameter and import
14. pName = PyUnicode_DecodeFSDefault("detect_shapes");
15. pModule = PyImport_Import(pName);
16. Py_DECREF (pName);
17.
18. if (pModule != NULL) { // Push the arguments (image name and roi) into a string
19.
20. // Check that the function exists and if not, catch the error
21. pFunc = PyObject_GetAttrString(pModule, argv[2]);
22.
23. if (pFunc && PyCallable_Check(pFunc)) {
24.
25 pArgs = PyTuple_New(argc - 3);
26.
27. for (i = 0; i < argc - 3; ++i) {
28. pValue = PyBytes_FromString(argv[i + 3]);
29.
30. if (!pvalue) {
31. Py_DECREF (pArgs);
32. Py DECREF(pModule);
5. fprintf(stderr, "Cannot convert argument\n");
34. return 1;
35, }
36.
37 // Add the arguments to tuple to be passed into Python
38. PyTuple_SetItem(pArgs, i, pValue);
39. }
40.
41. pValue = PyObject_CallObject(pFunc, pArgs); // Fetch the return value
42. Py_DECREF(pArgs); // If call successfull print results else fail
43,
44, if (pvValue != NULL) {
45, const wchar_t * json = PyBytes_AsString(pValue);
46. } else {
a7. Py_DECREF(pFunc);
48. Py_DECREF(pModule);
49. PyErr_Print();
50. fprintf(stderr, "Call failed\n");
51. return 1;
52. }
53. }
54. else {
55. if (PyErr_Occurred()) PyErr_Print();
56. fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
57. }
58. Py_XDECREF (pFunc);

59. Py_DECREF(pModule);

60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

} else {
PyErr_Print();
fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
}
if (Py_FinalizeEx() < 0) {
return 120;
}

return 0;

Appendix 1
2(2)

P OoONOOUTDA WN R

Appendix 2
(1)

Python source for the first use-case

import
import
import
import
import
import
import
import

the necessary packages# from pyimagesearch.shapedetector
ShapeDetector

argparse

imutils

cv2

cv

numpy as np

json

. def shapedetector(image, roi):

load the image and resize it to a smaller factor so that
the shapes can be approximated better

image = image.decode("utf-8")

image = image.strip('\'")

image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

roi
roi

= roi.decode("utf-8")
= roi.strip('\"'")

create ROI from arguments and crop image

a,

b, ¢, d = (int(x) for x in roi.split(',"))

image = image[a: b, c: d]

find contours in the image without tresholds
cnts = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cnts = cnts[0]

if

imutils.is_cv2()

else cnts[1]

loop over the contours
for c in cnts:

if len(c) > 5:
X, Y, W, h = cv2.boundingRect(c)

if w < 220:
if w > 10:

compute the center of the contour
M = cv2.moments(c)

cX = int(M["m1e"] / M["m@e"])
cY = int(M["me1"] / M["mee"])
. data = {}
. data['x"'] = x
.data['y'] =y
. data['cX'] =

. cX data['cY'] = cY

. json_data = json.dumps(data) return bytes(str(json_data), 'utf-8")

AUV h WNR

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

Appendix 3
1(4)

C++ source for the second use-case

#tinclude
#tinclude
#include
#include
#include
#tinclude
ment.h"
#tinclude
tywriter.
#tinclude

er.h"

#include
ngbuffer.

< opencv2 / opencv.hpp >
< iostream >

< string >

< ctime >

< fstream >
"packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/docu
"packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/pret
h
"packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/writ

"packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/stri
h

using namespace cv;
using namespace rapidjson;
using namespace std;

vector < vector < Point > > contours; // RNG rng(12345);
vector < Vec4i > hierarchy;

Mat roi;

vector
vector
vector
vector

<
<
<
<

Point2f > distance;

float > calculateDistances(vector < Point2f > , vector < Point2f >);
Point2f > get_contoursl(Mat);

Point2f > get_contours2(Mat);

int main(int argc, char * * argv) {

std::clock_t start;
double duration;

// Check amount of parameters, return error if wrong
if (argc != 3) {

height,y-start,y-height)

cout << " Usage: ImageToLoadAndDisplay roi (roi in the format x-start,x-

" << endl;

return -1;

}

// Establish the Mat object and load the image in grayscale
Mat image;

image = imread(argv[1], IMREAD_GRAYSCALE); // Read the file

if (!image.data) {
cout << "Could not open or find the image" << std::endl;
return -1;
}
start = std::clock(); // Split the roi argument into an array
string arg2 = argv[2];
std::istringstream iss(arg2);

char c; // dummy character for the colon
int a[4];

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.

99.

100.
le1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.

Appendix 3
2(4)

iss >> a[@];

for (int i = 1; i < 8; i++) iss >> c >> a[i];
Rect rec(a[@], a[1l], a[2], a[3]);
Mat roi = image(rec);
vector < Point2f > distancel = get_contoursi(roi);
vector < Point2f > distance2 = get_contours2(roi);
vector < float > result = calculateDistances(distancel, distance2);

Document d; // Null

d.SetObject();

Document: :AllocatorType & allocator = d.GetAllocator();

d.AddMember ("Distance between the pins", result[@], allocator);
d.AddMember ("Distance between 1st pin and base", result[1], allocator);
d.AddMember("Distance between 2nd pin and base", result[2], allocator);

StringBuffer strbuf;
PrettyWriter < StringBuffer > writer(strbuf);

d.Accept(writer);
ofstream file;

file.open("script_output");

file << strbuf.GetString();

file.close();

duration = (std::clock() - start) / (double) CLOCKS_PER_SEC;
file.open("benchmark_results_c", ios_base::app);

file << "time: " << duration << '\n';

file.close();

return 0;

}

// Get the contours with white area; this is done with
// threshold, could have perhaps been done with inverse function as well
vector < Point2f > get_contoursl(Mat roi) {

vector < Point2f > distance;
Mat img_bw;

threshold(roi, // source image
img_bw, // destination image
127, // threhold val.
255, // max. val
0); // binary

findContours(img_bw, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)
vector < vector < Point > > contours_poly(contours.size());
vector < float > radius(contours.size());

vector < Rect > boundRect(contours.size());

// Format the Mat object "drawing" by creating an empty array
Mat drawing = Mat::zeros(img_bw.size(), img_bw.type());

float resl = 0;
float res2 = 9;

vector < float > v; // Loop thru contours
for (size_t i = @; i < contours.size(); i++) {

// Approximate the polygonal curve, 3 was enough as a

114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.

Appendix 3

// precision but can be adjusted
approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);

// Calculate the bounding rectangle
boundRect[i] = boundingRect(Mat(contours_poly[i]));

size_t count = contours[i].size();
if (count < 5) continue;

// Declare a new mat object and convert the contour to poin
Mat points;
Mat(contours[i]).convertTo(points, CV_32F);

// Use fitEllipse to get the xy position and size of the co
RotatedRect box = fitEllipse(points);

// Check that the size of the bounding rectangle meets the
// minimum requirements, we don't want to find everything
if (box.size.height > 100 && box.size.width < 700) {

// Get the extreme points for each of the contours; not
// doing the storing in the most elegant way, this code
// is pretty static because we have only two contours o
// interest in this case
if (distance.size() == 0) {
Point extBot = * max_element(contours[i].begin(), c
[i].end(), [](const Point & lhs,
const Point & rhs) {
return lhs.y < rhs.y;
s
Point extRightl = * max_element(contours[i].begin()
Contours[i].end(), [](const Point
& lhs,
const Point & rhs) {
return lhs.x < rhs.x;
1)
distance.push_back(extBot);
distance.push_back(extRightl);
}
else {
Point extTop = * min_element(contours[i].begin(), c
[i].end(), [](const Point & lhs,
const Point & rhs) {
return lhs.y < rhs.y;

b

Point extRight2 = * max_element(contours[i].begin()
contours[i].end(), [](const Point
& lhs,
const Point & rhs) {
return lhs.x < rhs.x;

b

distance.push_back(extTop);
distance.push_back(extRight2);

}
¥

return distance;

}

// Get the center point of the black ellipses in the picture, this

3(4)

ts

ntour

.F

ontours

B

ontours

E)

is

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.

Appendix 3
4 (4)

// done without thresholds

vector < Point2f > get_contours2(Mat roi) {

vector < vector < Point > > contours_poly(contours.size());
vector < Rect > boundRect(contours.size());

findContours(roi, contours, hierarchy, RETR_LIST, CHAIN_APPROX_NONE);
vector < Point2f > centerl; // Loop thru contours
for (size_t i = @; i < contours.size(); i++) {

// Approximate the polygonal curve, 3 was enough as a

// precision but can be adjusted

approxPolyDP(Mat (contours[i]), contours_poly[i], 3, true);
boundRect[i] = boundingRect(Mat(contours_poly[i]));

size_t count = contours[i].size();

if (count < 5) {
continue;

}

// Check the size of the bounding rectangle, there are other
// black areas as well which we are not interested in
if ((boundRect[i].width < 200) && (boundRect[i].width > 100)) {

// Declare a new mat object and convert the contour to points
Mat points;
Mat(contours[i]).convertTo(points, CV_32F);

RotatedRect box = fitEllipse(points);

// Use fitEllipse to get the xy position and size of the contour
centerl.push_back(box.center);

}

return centerl;

}

// Calculate the distance between countour points of interest,

// return a vector with results

vector < float > calculateDistances(vector < Point2f > distance, vector <
Point2f > centerl) {

vector < float > result;

result.push_back(sqrt(pow((distance[@].x - distance[2].x), 2) +
pow((distance[@].y - distance[2].y), 2)));
result.push_back(sqrt(pow((distance[1].x - centerl[@].x), 2) +
pow((distance[1].y - centerl[0@].y), 2)));
result.push_back(sqrt(pow((distance[3].x - centerl[1].x), 2) +
pow((distance[3].y - centerl[1].y), 2)));
return result;

POVoKONOOUTEA WN R

Appendix 4
1(3)

Python source for the second use-case

import
import
import
import
import
import
import
import
import

. import
. import
. import
. import
. import

the necessary packages# from pyimagesearch.shapedetector
ShapeDetector

argparse

imutils from imutils
perspective from imutils
contours

cv2

cv

numpy as np

json from decimal

*

math

time from scipy.spatial
distance as dist

. def shapedetector(image, roi):

load the image and resize it to a smaller factor so that
the shapes can be approximated better

image = image.strip('\'")

image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

to

roi

= time.time()# roi = roi.decode("utf-8")
= roi.strip('\'")

create ROI from arguments and crop image

a,

b, ¢, d = (int(x)

for x in roi.split(','))

image = image[a: b, c: d]

Get centers for contours; this will fetch the centers for the black circles
inside the ROI, no tresholding needed as looking for black color only
cnts2 = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

cnts2 = cnts2[0]

if

imutils.is_cv2()

else cnts2[1]

(centerl, center2) =0, ©

for i in cnts2:

if len(i) > 8:
X, Y, W, h = cv2.boundingRect(i)

Filter contours by size
if w < 400:

if w > 100:

Fetch minimum area rectangle around the contours and dump results
to a numpy array

box = cv2.minAreaRect(i)
box = cv2.boxPoints(box)
box = np.array(box, dtype = "float")

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
lo1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

data =

points3
points4

Appendix 4
2(3)

Use fitEllipse to fit an ellipse inside the contour,
dump the result to numpy array and fetch the center
point into A tuple

ellipse = cv2.fitEllipse(i)

(center, r, t) = ellipse

if centerl == 0:
(centerl, center2) = center, ©
else :
(centerl, center2) = centerl, center

Apply some tresholds to fetch the white areas inside the ROI

ret, tresh = cv2.threshold(image, 127, 255, 0)

cnts = cv2.findContours(tresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

cnts = cnts[0]

if imutils.is_cv2()
else cnts[1]

Establish a new blank tuple to store the extreme points of the
contour
(resl, res2, extTopl, extBot2) = 0, 0, 0, ©

loop over the contours
for c in cnts:
if len(c) > 8:

X, Y, W, h = cv2.boundingRect(c)
if w > 400:

Get the extreme points of the contours and add them to
a tuple
if isinstance(resi, int):

(resl, res2, extTopl, extBot2) = getPoints(c), O,
tuple(c[c[: , : , 1]
.argmax()][@]), @
centl = np.array([float(centeri[0]),
float(centeri[1])])
else :
(resl, res2, extTopl, extBot2) = resl, getPoints(c),
extTopl, tuple(c[c
18 g , 1].argmin()
10e])
cent2 = np.array([float(center2[0]),
float(center2[1])])

{}

np.array([extTopl[@], extTopl[1l]])
= np.array([extBot2[0], extBot2[1]])

data["distance_1"] = cv2.norm(resl, centl)
data["distance_2"] = cv2.norm(res2, cent2)
data["distance_between_objects"] = cv2.norm(points3, points4)

t1 = time.time() total = t1 - te

filewrite('time: {}\n'.format(total), 'benchmark_results_python', 'a")

return json.dumps(str(data))

121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.

Appendix 4
3(3)

Calculate mininum rotated rectangle around the contour, order the points
and get the midpoint between the top right and bottom right points
def getPoints(c):

box = cv2.minAreaRect(c)

box = cv2.boxPoints(box)

box = np.array(box, dtype = "float")

xSorted = box[np.argsort(box[: , 0]), :]

leftMost = xSorted[: 2, :]

rightMost = xSorted[2: , :]

leftMost = leftMost[np.argsort(leftMost[: , 1]1), :]

(t1, bl)
(br, tr)

leftMost D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[@]
rightMost[np.argsort(D)[::-1], :]

x = float((br[0] + tr[0]) / 2)
y = float((br[1] + tr[1]) / 2)

return np.array([x, y])

Write the results to file
def filewrite(json, filename, writemode):

f = open(filename, writemode)
Fl.write(json) f.close()

return 0
ap = argparse.ArgumentParser() ap.add_argument("-i", " --image",
help = "path to the image file")
ap.add_argument("-r", "--roi", help = "region of interest,

format 'x,y,width,height'")
args = vars(ap.parse_args())

json = shapedetector(args["image"], args["roi"]);
filewrite(json, 'script_output', 'w')

VoONOOTUVTEA WNER

[
WNR®-

VU VU U DDADDADODDADDWWWWWWWWWWNNNNNNNNNRNRRRRR R
NOUDNWNROOLONNONUVUDNWNROOVLONGOAUBRNWNROOONAOAUSWNRO®WOOWONOU N

. vector
. vector
. vector
. vector

Appendix 5
1(3)

C++ source for the third use-case

#include
#include
#include
#tinclude
#include
#tinclude
#include
#tinclude
#include

. #include

. using na
. using na

. vector <
. vector <

. Mat roi;

<
<
<
<

. int main

std:
doub

if (

}

// E
Mat
imag

if (

}

star
stri
std:
char
int
iss

for

< opencv2 / opencv.hpp >

< iostream >

< string >

< ctime >

< fstream >
'rapidjson/document.h"
"rapidjson/prettywriter.h"
"rapidjson/writer.h"
"rapidjson/stringbuffer.h"

< cmath > using namespace cv;

mespace rapidjson;
mespace std;

vector < Point > > contours; // RNG rng(12345);
Vec4i > hierarchy;

float > calculateDistances(vector < Point2f >);

Point2f > get_contours(Mat);

float > lineDraw(float, float, float, float);

float > intersect(vector < float > , vector < float >);

(int argc, char * * argv) { // Initialize the timer

:clock_t start;

le duration; // Check amount of parameters, return error if wrong
argc != 3) {
cout << " Usage: ImageToLoadAndDisplay roi (roi in the format x-start,x-

height,y-start,y-height) " << endl;
return -1;

stablish the Mat object and load the image in grayscale
image;
e = imread(argv[1], IMREAD_GRAYSCALE); // Read the file

limage.data) {
cout << "Could not open or find the image" << std::endl;
return -1;

t = std::clock(); // Split the roi argument into an array
ng arg2 = argv[2];
:istringstream iss(arg2);
c; // dummy character for the colon
a[4];
>> a[e];

(int 1 = 1; i < 8; i++) iss >> ¢ >> a[i];

Rect rec(a[@], a[1], a[2], a[3]);

Mat roi = image(rec);

vector < float > distances = calculateDistances(get_contours(roi));
Document d; // Null

d.SetObject();

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.

Appendix 5
2 (3)

Document::AllocatorType & allocator = d.GetAllocator();

d.AddMember("Distance between the pins", result[@], allocator);
d.AddMember("Distance between 1st pin and base", result[1], allocator);
d.AddMember("Distance between 2nd pin and base", result[2], allocator);

StringBuffer strbuf;

PrettyWriter < StringBuffer > writer(strbuf);
d.Accept(writer);

ofstream file;

file.open("script_output");

file << strbuf.GetString();

file.close();

duration = (std::clock() - start) / (double) CLOCKS_PER_SEC;

// Benchmark results to a file
file.open("benchmark_results_c", ios_base::app);
file << "time: " << duration << '\n';
file.close();

return 0;

}

// Get the center point of the black ellipses in the picture, this is done
// without thresholds

vector < Point2f > get_contours(Mat roi) {

findContours(roi, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);

// Bunch of variable definitions
vector < RotatedRect > minRect(contours.size());

RNG rng(12345);
Mat drawing;

vector < Point2f > centers;

vector < Point2f > intersects;

vector < float > angles;

vector < float > distsl, origl;

vector < float > dists2, orig2;

vector < float > isect_point, isect_point_orig;
CvPoint2D32f points[4];

int length = 500;

float line_endpoint_x;

float line_endpoint_y;

double pi = atan(1) * 4;

int x = 9;

vector < Point2f > distances; // Loop thru contours

for (size_t i = @; i < contours.size(); i++) {

// Use minAreaRect to fetch the minimum enclosing rectangle around
// the contour

minRect[i] = minAreaRect(Mat(contours[i]));

size t count = contours[i].size();

// Make sure that we are actually inspecting a closed contour and not
// a line
if (count < 5) {
continue;
}

121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.

}

Appendix 5
3(5)

// Get the large black area inside the ROI, map corners to a vector
// with cvBoxPoints
if (minRect[i].size.width > 2000) {
Scalar color = Scalar(rng.uniform(@, 255), rng.uniform(@, 255),
rng.uniform(0@, 255));

cvBoxPoints(minRect[i], points);

}

// Some magic to filter out unwanted contours

if ((minRect[i].size.width > 100) && (minRect[i].size.width < 500)) {
centers.push_back(minRect[i].center);
angles.push_back(minRect[i].angle);

// Loop thru the hole centers and calculate endpoint of a line from that spot
// to 500px away

// Max value of m is dynamic so it will take any amount of hole centers
for (int m = @; m < centers.size(); m++) {

}

// Calculate the line endpoints; take into account the angle (possible
// skewing of the object)

line_endpoint_x = centers[m].x + length * cos(angles[m] * pi / 180.0);
line_endpoint_y = centers[m].y + length * sin(angles[m] * pi / 180.0);

origl = lineDraw(centers[m].x, centers[m].y, line_endpoint_x,
line_endpoint_y);

if (x ==0 || x ==1) {
// Two first holes are on the right edge so intersection occurs on

// the right side baseline
Orig = lineDraw(points[3].x, points[3].y, points[2].x, points[2].y);

}
else {
// Third hole is on the left edge so intersection occurs on the left
// side baseline
orig = lineDraw(points[@].x, points[@].y, points[1].x, points[1].y);
}
X++;

// Stuff results to a vector

distsl = origl;

distsl.insert(distsl.end(), origl.begin(), origl.end());

dists2 = orig;

dists2.insert(dists2.end(), orig.begin(), orig.end());

isect_point_orig = intersect(distsl, dists2);

isect_point = isect_point_orig;

isect_point.insert(isect_point.end(), isect_point_orig.begin(),
isect_point_orig.end());

isect_point[1] *= -1;

isect_point[@] *= -1;

intersects.push_back(Point2f(isect_point[@], isect_point[1]));

// Combine results to a single vector
distances.insert(distances.end(), centers.begin(), centers.end());
distances.insert(distances.end(), intersects.begin(), intersects.end());

184.

185.

}

186.
. // Calculate intersection between base and line from the hole centerpoints

187

188.

189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.

210.

}

211.
. // Construct functions for the lines to feed them for the intersect function

212

213.

214.
215.
216.
217.
218.
219.
220.
221.
222.
223.

224.

}

225.
. // Calculate the distance between holes and distances from holes to the base
. // This is constructed dynamic so will work for any size of a vector of points

226
227

228.

229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244,
245.
246.

Appendix 5
4 (3)

return distances;

vector < float > intersect(vector < float > linel, vector < float > line2) {

vector < float > points;

float x;

float y;

float D = (linel[@] * line2[1]) - (linel[1]) * (line2[@]); // Main determinant
float Dx = (linel[2] * line2[1]) - (linel[1] * 1line2[2]); // Get the Dx

float Dy = (linel[@] * line2[2]) - (linel[2] * 1line2[@]); // Get the Dy

// Check if the lines are ever intersecting; if they are, calculate x and
// y positions

if (D !'=0) {
X = Dx / D;
y =Dy / D;
b

// TODO: Could apply a little bit of error handling with try-catch if the
// intersection fails, left it out because in real life the error means a
// problem elsewhere (issue with ROI etc)

points.push_back(x);

points.push_back(y);

return points;

vector < float > lineDraw(float pointl_x, float pointl_y, float point2_x,

float point2_y) {
vector < float > points;
float a = pointl_y - point2_y;
float b = point2_x - pointl_x;
float ¢ = ((pointl_x * point2_y) - (point2_x * pointl_y));
points.push_back(a);
points.push_back(b);
points.push_back(c);

return points;

vector < float > calculateDistances(vector < Point2f > points) {

vector < float > result;
for (int i = @; i < points.size(); i++) { // Loop thru indices
if (i < points.size() / 2) {

// Calculate distance from center points to the base
result.push_back(sqrt(pow((points[i].x - points[i + 3].x), 2)
+ pow((points[i].y - points[i + 3].y), 2)));
}

else {

// Calculate distances between the hole center points
if (i < points.size() - 1) {
result.push_back(sqrt(pow((points[i].x - points[i + 1].x), 2) +
pow((points[i].y - points[i + 1].y), 2)));
}

else {

247.
248.
249.
250.
251.
252.
253.
254.
255.

Appendix 5

5 (5)

result.push_back(sqrt(pow((points[i].x - points[(points.size() / 2)]

}

return result;

.X),2) + pow((points[i].y - points[i -
(points.size() / 2) + 1]1.y), 2)));

VWoONOOUVEA WNRRE

Appendix 6
1(3)

Python source for the third use-case

Import the necessary packages

import
import
import
import
import
import
import
import
import

argparse
imutils from imutils
contours

cv2

cv

numpy as np

json

math

time

. def shapedetector(image, roi):

Load the image and resize it to a smaller factor so that the shapes can be

#

approximated better

image = image.strip('\'")
image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

to

roi

= time.time()

= roi.strip('\'")

Create ROI from arguments and crop image

a,

b, ¢, d = (int(x)

for x in roi.split(','))

image = image[a: b, c: d]

Apply the masks and treshold the image
mask = np.zeros(image.shape, np.uint8)

Get centers for contours; this will fetch the centers for the black circles
inside the ROI, no tresholding needed as the color is pure black

cnts2 = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)

cnts2 = cnts2[0]

if imutils.is_cv2()

else cnts2[1]

Define some numpy arrays for storage
centers = []

points = []

dist2edge = []

dist2point = []

z

%]

angle = 0
length = 500

Assume a line length 500 px to make sure that intersection occurs
for i in cnts2:

if len(i) > 8:

Fetch minimum area rectangle around the contours
and dump results to a numpy array, the array needed

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99

100.
1o1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

Appendix 6
2(3)

is needed for printing only
box = cv2.minAreaRect(i)

if box[1][@] > 100:
if box[1][0@] < 500:

centers.insert(z, box[@0])
angle = box[2]

Calculate coordinates for the endpoint of the line

from center of the hole

line_x = box[@][@] + length * math.cos(angle * math.pi / 180.9)
line_y = box[@][1] + length * math.sin(angle * math.pi / 180.0)

points.insert(z, (line_x, line_y)) z =z + 1

Check for the large black area inside the roi
if box[1][0] > 2000:

box2 = cv2.boxPoints(box)

angle = box[2]

While taking the angle of the minimum bounding rectangle, of the large

contour(position of the object under the camera might change) define a line
from the center of the holes to the appropriate edge of the large contour
for j in range(@, 3):

Inspecting 3 holes so draw 3 lines
11 = line([centers[j][@], centers[j][1]], [points[j][@], points[j][1]])

Line from the hole center
if j ==

At the same time calculate distances between holes

dist2point = np.append(dist2point, math.sqrt((centers[j][@] - centers
[j + 1][0]) * * 2 + (centers[j][1] - centers
[3 + 1][1]) * * 2))

dist2point = np.append(dist2point, math.sqrt((centers[j][@] - centers
[j + 2][@]) * * 2 + (centers[j][1] - centers

[3 + 21[1]) * * 2))

Line from the right edge of the main contour
12 = line([box2[2][@], box2[2][1]], [box2[3][@], box2[3][1]])

if § ==

dist2point = np.append(dist2point, math.sqrt((centers[j][@] - centers
[j + 1][@]) * * 2 + (centers[j][1] - centers
[3 + 1][1]) * * 2))

Line from the right edge of the main contour
12 = line([box2[2][@], box2[2][1]], [box2[3][@], box2[3][1]])
if j ==

Line from the left edge of the main contour
12 = line([box2[@][0@], box2[@][1]], [box2[1][@], box2[1][1]])

r = intersect(l1l, 12) # get the intersection point

calculate distance to edge and append to tuple for storage
dist2edge = np.append(dist2edge, math.sqrt((r[@] - centers[j][0]) * * 2 +

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

139

140.

. # De
def

141.
142.
143.
144.
145.
146.

147.
148.

De
def

149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.

165.
166.

Wr
def

167.
168.
169.
170.
171.

172.
173.
174.

ap =
ap.a
ap.a

175.

176.
177.

args
json

178.

Appendix 6
3(3)

(r[1] - centers[j][1]) * * 2))
data = {}
data["distance_to_edges"] = {}
data["distance_between_holes"] = {}
for q in range(@, dist2edge.size):

data["distance_to_edges"][q] = dist2edge[q]

for g in range(@, dist2edge.size):
data["distance_between_holes"][q] = dist2point[q]

t1 = time.time()
total = t1 - to

filewrite('time: {}\n'.format(total), 'benchmark_results_python', 'a")
return json.dumps(str(data))

fine the equation for a line between points
line(pointl, point2):

a = (pointl[1] - point2[1])

b = (point2[@] - pointl[@])

c (pointl[@] * point2[1] - point2[@] * pointl[1])

return a, b, -c # return the coefs of line equation

fine the function for intersection
intersect(linel, line2):
D = linel[@] * 1line2[1] - 1linel[1] * line2[@]

Get the main determinant from matrix[Al Bl, A2 B2]
Dx = linel[2] * 1line2[1] - 1linel[1] * 1line2[2] # Dx from matrix[C1l B1l, C2 B2]
Dy = 1linel[@] * 1line2[2] - 1linel[2] * 1line2[@] # Dy from matrix[Al C1l, A2 C2]

if D = 0:

Calculate x and y
Xx=Dx /D

y =Dy /D

return x, y

else :
return False

ite the results to file
filewrite(json, filename, writemode):
f = open(filename, writemode)
f.write(json)

f.close()

return 0

argparse.ArgumentParser()
dd_argument("-i", "--image", help = "path to the image file")
dd_argument("-r", "-roi", help = "region of interest, format 'x,y,width,height'")

vars(ap.parse_args())
shapedetector(args["image"], args["roi"]);

POVoKONOOUTEA WN R

Appendix 7
1(2)

Python source for the Calibrator

Import the necessary packages
import argparse

import imutils from imutils
import contours

import cv2

import cv

import numpy as np

import math

. def

. def

calibrator(image):

Load the image and resize it to a smaller factor so that
the shapes can be approximated better

image = image.strip('\'")

image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

Create two ROIs and crop image
a, b, ¢, d = 550, 50, 2200, 600
e, f, g, h = 550, 50, 700, 600

roil
roi2

image[a: a + b, c: c + d]
image[e: e + f, g: g + h]

Function calls
distlellipse, distlangle = calcDistance(roil)
dist2ellipse, dist2angle = calcDistance(roi2)

Print the calibration error on y - axis
print("Calibration error y:", dist2ellipse[@][1] - distlellipse[0][1])

Print the average angle of distortion
print("Angle of distortion:", ((distlangle - 90) + (dist2angle - 90)) / 2)

calcDistance(roi):

Blur some of the noise out of the image, kernel 3x3
blur = cv2.blur(roi, (3, 3), 0)

Use Canny to detect the edges
edges = cv2.Canny(blur, 50, 200, 1)

Find the contours from the canny output, chain_approx_simple to save memory
cnts = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]

if imutils.is_cv2()
else cnts[1]
for i in cnts:
if len(i) > 8:
box = cv2.minAreaRect(i)

if box[@][1] > 30:

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

Appendix 7
2(2)

Use fitEllipse to find the center of mass
ellipse = cv2.fitEllipse(i)
p = ellipse[2]

Return the center point and angle of distortion
return ellipse, p

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", help = "path to the image file")
args = vars(ap.parse_args())

calibrator(args["image"]);

Appendix 8

1(2)

Graphs on the benchmark results for the second use-case

90

(spuodas) awiL
€0

-
-
-
—
o

€STS0 T96%0 600

(peoj 282wWi NOYIM 3YeD WieM) 3R ISAY == = (PRO] 332WI INOYUMIYIRD PI0I) IR IDAY == ==
(PO 232WI YIM YLD WIRM) 2R IDAY == == (peoj 282w YUMIYIRD P0d) IR IDAY == ==
(peoj 282w y3m)3ayed pio) (peoj 28ew! Yyu M) 3yded we)\ e

(peoj 282w NOYIM)3yed pro) (peoj 82w Inoyu M) ayded w.e) I

++) Ul S)|nsal yJewyduag

1t

#uny

Appendix 8

2(2)

90

(spuodas) awiy

S0 0 €0 4y 10

8150 9e10 " foro

(peoj 28ew! INOYIM 34D WieM) 23R DAY == = (PRO] 232WI INOYUMIYIRD PIOI) TRIDAY == ==
(pROr 282WI YIM 32D WIRM) 2R IDAY == == (peo] 282w YUM3YIeD PIOd) 2R ISAY == ==
(peoj 33RwWI y3M)3yed Po) — (peoj a8ewi yum) aysed wem m—

(peoj 282wi NOYIM) 3yRd po) (peoj a8ewi 1noyu M) ayded we) I

UOYlAg Ul synsal ylewyduag

111

#uny

Appendix 9

1(2)

Graphs on the benchmark results for the third use-case

L1o

(spuodas) awiL

910 #T0 €10 TTO0 110 10 600 800 00 900 SO0

)
-
o
3
o

€00 200

-t
e
o
o

‘0 | 6vTT0 fzro 66600

e

LSY

(peoj 28ewWi INOYIM 3R WieM) 23RISAY == == (PRO] 32WI INOYUMIYIRD PIOI) DR IDAY == ==
(peOr 232WI YIM 34D WIRM) R IDAY == == (peo] 252w UMD P0D) 2R ISAY == ==
(peoj 23RwWI y3M)3y3®d Po) m—— (peoj aSew! yum) aysed w e/

(peo) 28ewi oY M) 3yRd po) . (peoj a8ewi 1noyu M) ayded w e\ I

++) U1 S)nsal yJewyouag

0

ot

119

#uny

Appendix 9

2(2)

(spuodas) awiy
20 TO0 610 8T0 LT0 9T0 STO #I0 €10 <TI0 TT0 TO 600 800 400 90 SO0 +00 €00 200 7100
I

o

g6t o 8910 910 &0

(peo] 25 Wi NOYIM 3YD WIRM) 3R IBAY == = (PRO] 3FWIINOYUMIYIRD P0I) SR ISAY == ==

(PROr 282WI YIM 3YIRD WIRM) 2R IDAY == == (peoj 252w YUMIYIRD POd) 2R IBAY == ==
(peoj 282wWw! y3M)ayxed po) (peoj 282w yuMm) 3yded we))
(peoj 282w OYIM)3YRd po) N (peoj adew! InoyuMm) ayred w e\ I

UOY1A4 Ul S)nsal yJewyouag

ot

111

#uny

