

Antti Alamäki

Implementation of OpenCV in a Machine Vision
System

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree programme in Electrical and Automation Engineering

Bachelors thesis

11.11.2017

Tiivistelmä

Tekijä(t)
Otsikko

Sivumäärä
Aika

Antti Alamäki
OpenCV:n käyttöönotto osana konenäköjärjestelmää

45 sivua + 9 liitettä
20.11.2017

Tutkinto Insinööri (AMK)

Koulutusohjelma Sähkö- ja automaatiotekniikan tutkinto-ohjelma

Suuntautumisvaihtoehto Automaatiotekniikka

Ohjaaja(t) Lehtori Jari Savolainen

Tässä insinöörityössä perehdytään OpenCV:n käyttöön osana konenäköjärjestelmää ja

pilottihanketta. Työssä selvitettiin tosielämän käyttötapausten ja ongelmatilanteiden kautta

OpenCV:n suorituskykyä sekä muuntautumiskykyä Python- ja C++ toteutuksien avulla

erilaisissa ympäristöissä osana konenäköjärjestelmää.

Työssä toteutettiin teknologiavertailu ja valinta eri käyttöympäristöjen sekä

ohjelmistoversioiden välillä asiakkaiden vaatimukset ja tarpeet huomioiden. Nämä valinnat

kyettiin perustelemaan toteuttamalla osana työtä toteuttamalla kolmeen eri

käyttötapaukseen perustuvat ohjelmistoversiot kummallakin valituista kielistä. Ohjelmoinnin

tarkoituksena oli myöskin pullokaulojen ja ongelmakohtien jäljittäminen sekä C++:n Python-

laajennuksen testaus, näissä tehtävissä onnistuttiin kiitettävästi. Osana teknisiä

valintaperusteita ja pullonkaulojen kartoitusta myös suoritettiin suorituskykyanalyysi eri

ohjelmointikielillä tehtyjen toteutusten välillä joiden perusteella voitiin tehdä alustavia

johtopäätöksiä suorituskyvyn suhteen. Testien ja ohjelmoinnin tulosten perusteella tehtyjä

valintoja sekä suorituskykyanalyysin tuloksia esitellään tässä insinöörityössä

salassapitosopimuksen sallimissa rajoissa.

Työn viimeisenä osana toteutettiin sensorijärjestelmän kalibrointiin käytettävä

pienimuotoinen ohjelmakoodi Pythonilla jonka toimivuutta testattiin tehdasympäristössä.

Testien avulla kyettiin varmistamaan kalibrointikoodin ongelmaton toiminta sekä

soveltuvuus valittuun käyttötarkoitukseen ja ympäristöihin.

Avainsanat OpenCV, konenäkö, Python, C++, suorituskykyanalyysi

 Abstract

Author(s)
Title

Number of Pages
Date

Antti Alamäki
Implementation of OpenCV in a Machine Vision System

45 pages + 9 appendices
20 November 2017

Degree Bachelor of Engineering

Degree Programme Degree programme in Electrical and Automation Engineering

Specialisation option Automation Technology

Instructor(s)

Jari Savolainen, Senior Lecturer

In this thesis work, the general goal was to research and implement OpenCV into a machine

vision as a part of a pilot study. The work was carried out by programming solutions for pre-

selected real-world use-cases and problems using Python and C++ programming languages

in different environments and setups as a part of a machine vision system.

A central part of this thesis work was a technology review and selection between different

versions of software while taking into account client needs and requirements. These

selections were further proven by programming three use-cases in both of the pre-selected

programming languages. The second goal of the programming was to detect any

complications or bottlenecks in the implementations, these tests were all successfuly

executed and proven. As a part of the detection for bottlenecks and performance issues, all

the three use-cases were benchmarked, on basis of these benchmarks it was possible to

make some preliminary assumptions on the performance of the scripts. The principles of the

technology selection and programming along with the benchmarking results are presented

as a part of this thesis within permitations of the NDA.

As the last part of the work, a small calibration script was created in Python for calibrating

the sensor system. The functionality of this script was tested in a real factory environment.

With these tests, it was possible to verify the flawless functioning and suitability of the script

in the selected usage and environments.

Keywords OpenCV, machine vision, Python, C++, benchmarking

Contents

Abbreviations 1

1 Introduction 1

2 About the Company and the Project 2

2.1 Technology Provided by FocalSpec 2

3 Review of Available Technologies and Tools 3

3.1 Introduction to OpenCV 3

3.2 Differences Between Latest and Previous OpenCV and Python 4

3.3 Windows Platform and Tools 4

4 Setup of Tools and Environments 5

4.1 Setup of Python and Extensions 5

4.2 Configuration of Visual Studio 2017 6

4.2.1 Python Support 6

4.2.2 OpenCV 7

4.2.3 Other Tools 9

4.3 Initial Tests with Python, OpenCV and Visual Studio 9

4.3.1 Python and Visual Studio 9

4.3.2 Visual Studio and OpenCV 9

5 Principles and Theory of Image Handling 10

5.1 Loading the Image – Region of Interest (ROI) 10

5.2 Image Pre-processing 10

5.2.1 Smoothing Images and Noise Removal 11

5.2.2 Thresholding 12

5.2.3 Edge Detection Methods 14

5.3 Data Extraction 14

5.4 Ellipse Fitting and Detecting Contour Middle Points 15

5.5 Methods for Extending C++ with Python 16

6 Use-cases Using Python and C++ 17

6.1 The First Use-case 17

6.1.1 Python: Detecting a Black Area Inside an Image 17

6.1.2 C++: Testing the Python API 21

6.1.3 Conclusions on the first use-case 23

6.2 The Second use-case 24

6.2.1 Preparations 25

6.2.2 Contours 25

6.2.3 Calculating the Distances 27

6.2.4 Conclusions 28

6.3 The Third use-case 29

6.3.1 Preparations 30

6.3.2 Feature Detection 30

6.3.3 Conclusions 34

6.4 Fourth Use-case: Calibrator Using Python 34

6.4.1 Feature search on the image 34

6.4.2 Preparations 35

6.4.3 Feature Detection 36

7 Benchmarking the Scripts 39

7.1 Executing the Benchmarks 39

7.2 Benchmark Results and Analysis 40

7.2.1 The Second Use-case 40

7.2.2 The Third Use-case 41

7.3 Overall Conclusions on the Benchmarks 43

8 References Error! Bookmark not defined.

 1

Appendices

Appendix 1. C++ source for use-case 1

Appendix 2. Python source for use-case 1

Appendix 3. C++ source for use-case 2

Appendix 4. Python source for use-case 2

Appendix 5. C++ source for use-case 3

Appendix 6. Python source for use-case 3

Appendix 7. Python source for the Calibrator

Appendix 8. Graphs on the benchmark results for the second use-case

Appendix 9. Graphs on the benchmark results for the third use-case

Abbreviations

CMOS Complementary Metal Oxide Semiconductor. Technology commonly

used in microprocessors. In machine vision systems used in form of a

CMOS sensor.

Windows CE Windows Community Edition. Edition of Microsoft Windows commonly

used in industrial applications.

WHL Python Wheel. File format commonly used for Python extensions.

PIP Python Installation Package. Installation and packaging appliance for

Python extensions.

ROI Region of Interest. An area inside an image, used for inspection of a

specific feature or set of features in machine vision appliances.

API Application Programming Interface. Programming interface which ena-

bles communication and calls between different software applications.

JSON JavaScript Object Notation. Data transfer format which is used for seri-

alization of data, resembles the structure of a JavaScript object.

1

1 Introduction

In this thesis work, the general goal was to research and implement OpenCV into a ma-

chine vision system using Python and C++. The work was done as a part of a pilot study

for capabilities of OpenCV under different environments and setups. The demand for a

feasible solution is high on both client and developer / supplier side.

The work consisted of four adjacent parts. The first part was technology research, selec-

tion and setup of development and release environments while considering the client

requirements within the limits of available technologies. Second part was arbitrary re-

search and programming with different technologies and methods of implementation.

The motive for the second phase was to give proof to clients about the capabilities of the

new upcoming technology and to detect and tackle any obstacles on the way of adapting

such technology. The tests were partially based of real-life use-cases, presentation of

which is restricted with NDA. Therefore, these use-cases will be handled verbally with

compensatory pictures that resemble the real use-case within limitations of the NDA

agreement.

Third part of the thesis work was benchmarking the different technologies to detect

frauds in performance between OpenCV implementation using Python and OpenCV us-

ing C++. One of the initial objectives was to test extending C++ with Python so that the

OpenCV image processing implementation would be done using combination of

OpenCV and Python and the Python script would be called from within C++. This ap-

proach, if successful and feasible performance-wise, would minimize integrators’ need

to touch the C++ source which in turn greatly reduces development, integration and

maintenance costs.

The last part of the thesis work was integrating the developed scripts and algorithms into

the actual machine vision system. No actual integration was performed, instead a cali-

brator script was written for calibrating the system. In this thesis work, it is handled as

one use-case but is technically distinct from the others as this script was not bench-

marked and was written only in Python.

2

2 About the Company and the Project

This thesis work was done for FocalSpec, a company specialized in machine vision

systems and sensors for quality control in industrial environments. The company was

founded in 2009 under VTT for research and development of line confocal sensors and

scanners. Usually in the world of machine vision, lasers are used for measuring 3D

dimensions, usually the Z-resolution of lasers is not enough for measuring for example

surface roughness. The disadvantage of a laser technology in general is that multiple

lasers are required for the purpose which complicates the setup and configuration and

increases the expenses. Another main obstacle with lasers is limitation with materials;

they are not suitable for example for transparent materials.

2.1 Technology Provided by FocalSpec

According to the company website [1.], the technology provided by FocalSpec is Line

Confocal Imaging which provides an approach to the previously mentioned main

shortfalls of existing technologies. Instead of using lasers, the system is based on an

indirect light source (transmitter) and a receiver. In the system, white light emitting from

a light source on the sensors’ transmitter side is split into a continuous spectrum with

thousands of wavelengths. Each wavelength is focused on a plane with certain distance

from the sensor, the dominating wavelength is then reflected back to the sensors’

receiver. On basis of this, CMOS array is formed, from which by means of software a 2D

and 3D grayscale image is created. The basic idea of the system is displayed in figure

1.

Figure 1. Illustration of the technology by FocalSpec from the FocalSpec website

3

Advantages of this sort of technology is that the system is much simpler in means of

configuration than existing laser-based systems. Also, due to the nature of this

technology, the system is capable of handling virtually any material and transparency or

reflectance are not an issue.

3 Review of Available Technologies and Tools

In this project, the platform being used was Windows 10 Enterprise. Most of the client

hardware is Windows-based with Windows 10 having a major share. Some of the clients

may also run embedded Windows CE systems but these are not a major part and were

not included in this thesis work.

Guidelines for the development were to adapt the latest possible software and technol-

ogies. With this, some precautions had to be taken as not all clients may be able to run

for example the latest OpenCV distribution due to system limitations, this issue was tack-

led within the thesis work. At the time of this thesis work, the latest version of Python was

3.6.x and latest version of OpenCV was 3.x. It must be noted that to run the latest

OpenCV with Python, the Python had to also be the latest 3.6.x series; older versions

are not supported.

Other option for usage was to use older 2.4.x series version of OpenCV along with older

Python.

3.1 Introduction to OpenCV

According Wikipedia [2.] and the OpenCV website [3.], OpenCV is an open source (BSD

licence) library of functions, primarily focused on real time computer vision systems. The

project was initially launched by Intel in 1999 with the first version out in 2000. The project

was later supported by Willow Garage and is currently maintained by Itseez with the

latest version being OpenCV 3 at the time of this thesis work.

The platform was originally written platform-independent using C++. The primary inter-

face is still C++ though it maintains also an older, les comprehensive C interface as well.

OpenCV has bindings (wrappers) available for MATLAB, Java and Python but also

4

unofficial PHP wrappers are available. The bindings work in a way that the OpenCV is

initiated and called within another language using wrapper functions that map to the

functions in OpenCV core [4.]. Advantages of this approach is that the same core func-

tionality is available for all supported languages without the need to rewrite the core for

each language separately.

This provides a robust interface with the benefits of optimized performance from C++

and thus reduces delays caused by the actual language from which the OpenCV func-

tions are called. This performance and the benchmarking results with conclusions will be

described in the chapter 7 of this thesis about benchmarking the use-cases.

3.2 Differences Between Latest and Previous OpenCV and Python

During research, some major differences were detected in the approach of implementa-

tion of OpenCV between the latest and the previous version series. Also, Python syntax

has seen some major changes in the latest version. These details were matters that had

to be considered from client point of view as updating existing scripts written for older

Python and OpenCV versions must be updated to the latest syntax which might be an

obstacle for some clients.

Good example of a syntax change is for example the regular print statement in Python;

in older versions, the print statement was written in format “print ‘test’”, the latest version

requires parenthesis in the form “print(‘test’)”. Unfortunately changes on this level re-

quire a lot of manual work and testing to ensure full compatibility, this should be noted in

implementation costs.

3.3 Windows Platform and Tools

As mentioned in the beginning of this chapter, the platform was Windows 10. For this

platform, the best selection for C++ development is the Microsoft Visual Studio. As the

platform was 64bit, also Visual Studio was selected the 64bit version. Selection of the

platform and tools on this part was straight forward as the differences between 2015 and

2017 versions of Visual Studio are rather minimal from developer point of view so it was

decided to go with the 2017 version.

5

4 Setup of Tools and Environments

This chapter consists of explanation of setting up the development, test and release en-

vironments. The chapter will also cover any issues and obstacles that were identified

during the installation process along with analysis on possible impact on client.

4.1 Setup of Python and Extensions

The version of Python used in this work was Python 3.6 with the currently latest 3.3

version of OpenCV. During the research phase, different versions of OpenCV and

Python were investigated but due to practical reasons it was decided to go with Python

3.6. Primary issue with Python 3.6 is that there is no official OpenCV support for any

Python 3.x version [5.]. This makes the installation slightly tricky even though unofficial

WHL files are available for the purpose.

Beside the Python 3.6, also Matplotlib and numpy (Numerical Python) were installed as

the latest version of OpenCV heavily resides on numpy and a lot of the OpenCV functions

using Python expect a numpy array as an input.

Table 1. Installed software for Python and OpenCV

Software Version Source

Python 3.6 https://www.python.org/downloads/release/python-360

OpenCV 3.3.0 http://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv

Matplotlib 2.0.2 http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib

Numpy 1.13.1 http://www .lfd.uci.edu/~gohlke/pythonlibs/#numpy

The installation of OpenCV, Matplotlib and Numpy was done via Pythons’ package

manager “pip”. In the installation, the specific whl files were picked to ensure that the

correct version of the applications got installed. By default, the Matplotlib that would have

been installed was 2.1.1 but for compatibility reasons, older 2.0.2 was chosen. The

installation commands are presented in the figure 2, the list of installed extensions is

shown in the table 1.

6

Figure 2. Installation commands for Python extensions

To test that that the setup was working as expected, Python provides a way to show the

version of extensions. The extensions can be displayed in the manner presented in

figure 3 by entering the commands in the Python shell.

Figure 3. Testing that the Python extensions are correctly initiated

4.2 Configuration of Visual Studio 2017

As one of the goals in this thesis work was to test extending Python and how the script

would operate, the C++ compiler (Visual Studio 2017) was setup to run Python scripts.

To start a project, a new project was setup in Visual Studio 2017 (File → New Project →

Visual C++ → General → Empty Project).

4.2.1 Python Support

After setting up the project, the python extensions and libraries (located under the Python

installation folder) had to be added to the project as Visual Studio 2017 would not include

these in the project by default. This was done by opening the Property pages for the

project and updating the settings in the way demonstrated at Figure 4.

7

Figure 4. Configuration of Python on Visual Studio

There were some complications in the installation; when running a test code to ensure

that the Python support was working the way expected, the system gave an error about

the python.h not being loaded. After some research, this proved to be a result of

mismatch in the 32bit vs. 64bit environments; the Visual Studio was 32bit whereas

Python was 64bit, therefore the libraries were not able to load correctly. This was

corrected by adding a 64bit version of the header file after which the test code executed

successfully.

4.2.2 OpenCV

As one of the initiatives of the work was to test the capabilities of C++ and OpenCV

combo, OpenCV support had to be added. The 3.1 version of OpenCV on Visual Studio

was installed using the NuGet package manager. While this approach has some

disadvantages and obstacles, it is the simplest way of installation and ensures the best

compliance with the projects. The main disadvantage is that the setup of OpenCV using

NuGet requires some manual settings and OpenCV must be installed for each project

separately. On the other hand, this resolution allows running different versions of

OpenCV and other tools in different projects. In a client project, in real test and production

environment, this might prove crucial even though the aim is to support primarily the

latest versions of Python and OpenCV.

8

The settings that had to be done manually involve adding the Python libraries to the

VC++ directories under Property Pages for each of projects. The path to modify was the

same Library path as presented in the above illustration for setting up Python.

Additionally, after some experimenting, it was found out that setting up also OpenCV was

necessary to modify the linker paths; for some reason, NuGet package manager doesn’t

execute these changes automatically. Possibly because due to a NuGet bug, the Python

libraries were still missing after the NuGet Installation of OpenCV. For this reason, the

libraries had to be manually copied from the OpenCV installation that had been done for

the standalone Python implementation. The linker paths are available thru the Property

pages for the project under the Linker → Inputs tab, the setup is shown in figure 5.

It is important to note that the libraries for development and release compilations are

different; the development libraries are marked for example opencv_core310d.dll

whereas release version is opencv_core310.dll. They must be setup separately for

product and development compilation as the development libraries contain some

arbitrary code for debugging and they will not work properly seaminglessly for the release

compilation. This arbitrary code also unnecessarily increases size of the built executable.

Figure 5. Setup of OpenCV libraries in linker

9

4.2.3 Other Tools

The last tool that was setup at the initial stage was setting up a JSON writer/parser for

serializing the result data from the script. For test purposes and ease of use, RapidJSON

was chosen even though the company in principle uses another library. Also, due to the

type of project that was being used in the setup, there were some issues while installing

the parser via NuGet. The primary issue was that the packages had not been compiled

to support an empty C++ project, instead they were meant for a Windows Desktop

project. After some google search, a suitable version for the parser was found and

installed.

4.3 Initial Tests with Python, OpenCV and Visual Studio

4.3.1 Python and Visual Studio

A tiny snippet of code was written with C++ and Python to test the functionality of the

Python and Visual studio combo. The test initiated a couple of errors, the first of which

was a missing python36.dll error. This was due to a bug in the Python installation and

was fixed by copying the appropriate dll (dynamic link library) to C:/Windows/System32

folder.

Another issue that was identified at this stage was a bug in the way the OpenCV library

was loaded thru the import statement in Python. The bug was due to a change that was

implemented in the OpenCV 3.x, for a reason or other the import statement for OpenCV

library failed. This was fixed by editing the cv.py file that comes with the whl

(pythonwheel) file. This file defines the library and how it will be loaded.

4.3.2 Visual Studio and OpenCV

The testing of OpenCV and Visual Studio combo was conducted by a minimal test script,

the code compiled without errors. However, when running the program file for the project,

it failed with an issue that the system could not find the OpenCV dll files. While the solu-

tion of the issue might not be feasible in a client environment, the issue was solved by

copying the dll’s to the Windows system32 folder; a more correct way would have to add

their location to the Windows path.

10

5 Principles and Theory of Image Handling

OpenCV provides with a large variety of functions for image handling and processing.

While same goals can be achieved in number of ways, there are differences in perfor-

mance and memory usage between the functions. In this project, the raw images pro-

duced by the sensor system can be up to gigabytes in size which sets a challenge for

example for image loading times.

5.1 Loading the Image – Region of Interest (ROI)

One of the first things to do is to define, which part of the image is of interest. In OpenCV,

this can be done by extracting a part of the master image using coordinate points, this

method is called region of interest (ROI). Beside saving machine resources, this way

also simplifies the code in a lot of cases as focus can be put on only a certain part of the

image thus not having to deal with other areas of the bitmap.

Another thing with loading the images is that OpenCV provides several parameters to

use when loading the images. In the FocalSpec sensor system, the produced 2D images

are all 8bit grayscale images. Therefore, when loading the image, it makes no sense to

load it as a colour image; instead, it will be loaded using a OpenCV parameter IM-

READ_GRAYSCALE to load the image directly as a grayscale image. Listing 1 is an

example of using the parameter in Python.

5.2 Image Pre-processing

Pre-processing the images prior to feature detection has some impact on the perfor-

mance and in some cases, impacts the feature detection. Among these methods are

thresholding the image, applying filtering on the image to remove noise and as the last,

methods of edge detection and image transformation. The guiding target in image pre-

processing is to reduce the amount of results produced by the actual feature detection.

1. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)

 Listing 1. Example of image loading in OpenCV

11

Image pre-processing is a slightly delicate subject and should be handled with thought

because the worst-case scenario is a performance hit instead of performance gain. Ap-

plications and needs for image pre-processing vary greatly case by case and experience

has proven that in many cases, the best results are achieved not by a single method of

pre-processing but instead by a combination of different techniques.

While OpenCV provides a vast amount of different image processing tools, this chapter

presents in theory the ones that were tested and used during this thesis.

5.2.1 Smoothing Images and Noise Removal

One of the first ways to reduce the amount of results during feature detection is to apply

some filtering. According to the OpenCV website [6.] among the available filters, are the

following:

 Gaussian Blur which uses the Gaussian Kernel for blurring operations

 Bilateral filtering is good for removing noise in the images while retaining the

sharpness of edges, but disadvantage is that it is relatively slow compared to

other filters

 Median Blur takes median of all the pixels under kernel area and central element

is replaced with this median value; highly effective against salt-and-pepper noise

in the images

 Averaging takes the average of all the pixels under kernel area and replaces the

central element with its value; this is done by either the OpenCV function blur()

or boxFilter() depending on the use-case

The upside of filtering is that it will reduce results from the feature detection. Downside

on the other hand is that filtering will always impact the sharpness of the image and

specially with Gaussian Blur this might become an issue. Filtering was tested in all the

use-cases but eventually it was used only in the calibration application together with

Canny edge detection, this application is further described in the chapter 6.4 of this the-

sis.

The primary reason for this resolution was that accuracy plays a critical role in this appli-

cation and any filtering will impact sharpness of the image. It is possible to deal with

12

excess feature detection results in other ways, for example filtering by size was used in

all the cases that were handled during this thesis work. Instead of blurring the image,

features were mostly detected from the raw image and other techniques like ellipse fitting

and image moments were used for finding the centre of mass, angle of distortion and

other things whenever required.

5.2.2 Thresholding

Thresholding is a method for altering the colours in an image. According to OpenCV

tutorials [7.], typically, in computer vision the rule that applies is that if image is altered

easier to be read by human, it will be easier to handle also by the algorithm.

The OpenCV threshold() function takes as input the image source/bitstream, threshold

minimum value, maximum value and threshold style. On basis of these values, the

function loops thru the image pixel by pixel and if the color in a pixel is larger than the

thtreshold minimum value, the function will change the color of the pixel into that. If it is

something else, color will be changed to something different.

Figure 6. Thresholding an image – part 1

The illustration in figure 6 demonstrates what would happen if threshold was set to 0 with

maximum value of 255. Value 255 stands for white color and as a result, the color of all

the texts would be converted to white color.

13

Figure 7. Thresholding an image - part 2

The first part of the illustration in figure 7 shows what would happen if threshold was set

to 185 with maximum value 255; this would result that some of the text would disappear

because their color is less than 185 and the rest would be replaced by 255 aka the white

color. The second part of the figure 7 illustrates what would happen if threshold was set

to 0 and maximum value to 185; the colour of all the texts in the image would be replaced

by the colour 185.

OpenCV supports a number of methods for thresholding and the correct one should be

selected on a case basis. The most commonly used method is binary thresholding and

its inverse function. Other styles are threshold to zero along with its inverse function and

threshold to trunc.

In all cases, providing a static threshold value might not be feasible. For example in a

case where the lighting conditions change, a static threshold will result in alterations of

the colour scheme, this will apply to both RGB and grayscale images. For this purpose,

OpenCV provides a function called apativeThreshold() in which the user defines, by

which means the threshold value is calculated. The available values are:

 ADAPTIVE_THRESH_MEAN_C threshold value is the mean of neighborhood area
 ADAPTIVE_THRESH_GAUSSIAN_C threshold value is the weighted sum of

neighborhood values where weights are a gaussian window

Besides the above, apativeThreshold() also takes a second optional parameter which

is the neighboring block size.

After extensive testing in each of the use-cases, it was decided that traditional

thresholding was needed in only in the second use-case described in the paragraph 6.2

14

of this thesis. Some tests were made also with adaptiveThreshold() but it was decided

that this was not eventually not required.

5.2.3 Edge Detection Methods

During this thesis work, also edge detection was tested to find edges around and within

regions of interest. In OpenCV, a popular method for detecting edges is Canny edge

detection, function canny [8.] which takes as parameters the threshold minimum and

maximum values and kernel size. Canny should always be applied with threshold and

filtering (blurring) of image as edge detection is sensitive to noise in the picture; good

way for blurring is the blur() function described in chapter 5.2.2 of this thesis.

Canny edge detection proved a good solution in detection of single edges and was

applied in the detection of edges for calibration, as described in the chapter 6.4 of this

thesis about calibration of measurement applications.

5.3 Data Extraction

Beside image pre-processing, also the way the data is extracted from the image has

impact on the memory usage. OpenCV provides multiple ways for data extraction, the

most important of which are findContours and Hough Line Transform [9.]. Hough Line

Transform is applicable for example when extracting continuous edges detected by

Canny. On the other hand, if Canny detected only line fragments, the way for combining

them together is thru findContours function. Both methods were tested and eventually

findContours was used in all the use-cases.

Technically speaking, contours are boundaries of shapes with the same pixel intensity.

The findContours() function takes several parameters which are defined on a case basis.

The result output of findContours() is a vector of coordinate points for the edges of each

contour feature. If wrongly set, this array can be much larger than necessary which in

turn will impact performance. This matter received special attention along with other per-

formance-related issues in this thesis work.

15

5.4 Ellipse Fitting and Detecting Contour Middle Points

One way to detect the centre of mass inside contours found from the images is ellipse

fitting [10.]. This method calculates the ellipse that fits (in a least-squares sense) a set of

2D points best of all. To detect the set of 2D points inside which the ellipse is fitted, the

typical way is to first draw a minimum area rectangle around the contour. Inside this

minimum area rectangle, the ellipse is then fitted to get for example the centre point of

the contour. The rectangle used for fitting can be either a direct rectangle using the

OpenCV boundingRectangle() function or rotated rectangle using the OpenCV minA-

reaRect(), which one is used is dependent on the use case.

The following illustration in figure 8, taken from OpenCV documentation [11.], demon-

strates the usage of rotated rectangle and the fitEllipse() function. The first part of the

image shows the outer boundaries of the contour in green and the rotated rectangle in

red. The second part of the illustration demonstrates fitting the ellipse inside the rotated

rectangle.

Figure 8. Rotated rectangle and fitEllipse

Another method for detecting the contour middle point is using the OpenCV moments()

function; this was tested in one of the use cases. The function computes moments, up

to the third order, of a vector shape or a rasterized shape and returns spatial moments,

central moments and normalized central moments. The centre of mass can thus be cal-

culated on their basis.

16

5.5 Methods for Extending C++ with Python

One of the key objectives in this thesis work was testing the extending of Python with

C++. The de facto method for this is to use the Python API which is incorporated in the

C++ application by including the Python.h file. The Python C++ extension provides with

access to most aspects of the Python run-time system. Advantages of directly extending

Python from within C++ are that by this way, the built-in object types and C++ library

functions and system calls are accessible from within Python.

17

6 Use-cases Using Python and C++

As one of the primary initiatives of this thesis work was to detect obstacles and compare

the performance of OpenCV with Python and C++, some use-cases were tested with.

These use-cases totalled in three cases for the current use. This chapter will introduce

the use cases in practise. All the use cases were implemented in both C++ and Python

but as the methods are identical for both, this chapter will primarily focus on the Python

versions. The complete codes with comments are available in the appendixes 1-9 of this

thesis.

6.1 The First Use-case

The initiative in this first use case had three initiatives. The first was to introduce our-

selves to the use of regions of interest, second was to find a coloured (black) area within

an image using the fitEllipse function. The third part of this use-case was testing how the

Python API for C++ works.

In this use-case, a dummy image was used instead of something from the camera and

sensor system as the initiative was more focused on the embedding rather than real life

feature detection.

6.1.1 Python: Detecting a Black Area Inside an Image

The first task, as in any of the use-cases, was to define the region of interest; the script

both in C++ and Python was designed in a manner that the ROI can be input as param-

eter to the script; this method applied to all the use-cases handled during this thesis work.

In the test case, the ROI should roughly outline the black area in the image. The ROI

was extracted in 8bit grayscale to save memory. The original image and the extracted

region of interest are presented in the following figure 9.

18

Figure 9. Test image in 1st use case

The first thing in all the use-cases is loading the image and defining the region of interest,

an example of this is shown in the listing 2. The images are always loaded in 8bit gray-

scale mode to save memory. After this, the arguments are split into a tuple and finally

the ROI is extracted from the image on their basis.

The same operation in C++ is shown in the listing 3. The code loads the image in

grayscale, splits the parameter by commas into an array and defines a Rect object with

the values. Finally it uses the the Rect object to extract the ROI.

1. # Load the image in grayscale
2. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
3.
4. roi = roi.strip('\'')
5.
6. # create ROI from arguments and crop image
7. a, b, c, d = (int(x) for x in roi.split(','))
8. image = image[a: b, c: d]

Listing 2. Image load and extracting the ROI

19

The next thing is finding the contour. In this case, thresholding was not needed as the

aim was to search for a pure black area on an 8bit grayscale image, therefore findCon-

tours() can be applied directly. In the findContours(), parameters RETR_LIST and

CHAIN_APPROX_SIMPLE were used. The first parameter defines how the contours are

fetched, RETR_LIST means that they are fetched as a list with no parent-child relation-

ships [12.].

The second parameter defines which points are fetched. In this case, all the points

around the contour are not needed so therefore to save memory, the code uses

CHAIN_APPROX_SIMPLE which removes all the redundant points and compresses the

contour. The result consists only of the corner points of the contour, this is demonstrated

at the following listing 4.

1. Mat image;
2.
3. image = imread(argv[1], IMREAD_GRAYSCALE); // Read the file
4.
5. if (!image.data) {
6. cout << ”Could not open or find the image” << std::endl;
7. return -1;
8. }
9.
10. // Split the roi argument into an array
11. string arg2 = argv[2];
12. std::stringstream iss(arg2);
13.
14. // Roi is a string separated by commas so add dummy char for ,
15. char c;
16. int a[4];
17. iss >> a[0];
18.
19. for (int i=1; i < 8; i++) {
20. iss >> c >> a[i];
21. }
22.
23. // Define the rectangle and crop the image
24. Rect rec(a[0], a[1], a[2], a[3]);
25.
26. Mat roi = image(rec);

Listing 3. Loading image in C++ and OpenCV

1. # find contours in the image without tresholds
2. cnts = cv2.findContours(image, cv2.RETR_LIST,
3. cv2.CHAIN_APPROX_SIMPLE)
4. cnts = cnts[0]

Listing 4. Example of findContours()

20

After this, as shown in listing 5, the code loops thru the contours. In the code, len(c) is

needed to make sure that the contour is a continuous line and not a line fragment. While

looping thru the contours and find the bounding rectangle around the contour. The

dimensions of the bounding rectangle are used to filter the contours as there are only

certain ones that are of interest.

If the contour width fits the requirements, after the filtering the centre of the contour is

calculated using moments as shown in listing 6. In reality this was not needed for

anything in this case and was only done for test purposes.

Finally, as shown in listing 7, minAreaRect() is used to find the minimum area rectangle

around the contour, the function returns a rotated rectangle which are converted to points

in a numpy array and further used for the OpenCV fitEllipse() function. Finally the results

are printed to the image using drawContours() and ellipse() functions. In the

drawContours(), the (255,0,0) stands for a white color and the last parameter is the width

1. # loop thru the contours
2. for c in cnts:
3. if len(c) > 8:
4.
5. x, y, w, h = cv2.boundingRect(c)
6.
7. if w < 220:

Listing 5. Usage of boundingRect()

1. # compute the centre of the contour
2. M = cv2.moments(c)
3. cX = float(M["m10"] / M["m00"])
4. cY = float(M["m01"] / M["m00"])

Listing 6. Using moments to calculate centre of mass

1. # use minAreaRect to find the minimum rotated rectangle and
2. # convert the result to points
3. box = cv2.minAreaRect(c)
4. box = cv2.boxPoints(box)
5. box = np.array(box, dtype = "float")
6. box = perspective.order_points(box)
7.
8. ellipse = cv2.fitEllipse(c)
9. cv2.drawContours(image,[box.astype("int")],-1, (255, 0, 0), 1)

Listing 7. Drawing the contour and ellipse

21

of the plot. To distinguish the drawings, the ellipse is printed in black (0, 255, 0) with 2px

wide print. The final plot results are shown in the next figure 10.

Figure 10 Output of the detected regions

6.1.2 C++: Testing the Python API

The second part of the first use-case was testing the extending of Python on C++. The

actual methods for extending the Python in C++ are explained in the technical overview

in the chapter 5.5 of this thesis work, this chapter will focus on the actual experiments

and . As a general comment for the code, this was a test only to see if this works and did

not put much effort on splitting and beautifying the code so the whole set of code is

written under the main().

As seen in the code in the listing 8, the first thing on the list of tasks is to initiate the

Python objects and check that all the necessary arguments for the C++ code are present

(if not, exit the code). If successful, decode the parameters so they can be passed to the

Python script.

22

If the paramenters are present, they are added to a string and some error checking is

performed to verify that the parameters actually exist. This part worked fine all the way,

also no issues with adding the parameters to the tuple. When this is done, the Python

script will run and eventually the results are fetched from Python. This is demonstrated

the following listing 9.

1. int main(int argc, char * argv[]) {
2.
3. PyObject * pName, * pModule, * pDict, * pFunc;
4. PyObject * pArgs, * pValue, * t;
5.
6. int i;
7.
8. if (argc < 3) {
9. fprintf(stderr, "Usage: call pythonfile functionname
10. [args]\n");
11. return 1;
12. }
13.
14. Py_Initialize();
15.
16. // Decode the parameter and import
17. pName = PyUnicode_DecodeFSDefault("detect_shapes");
18. pModule = PyImport_Import(pName);
19. Py_DECREF(pName);

Listing 8. Python initialization

1. // Push the two arguments (image name and roi) into a string
2. pFunc = PyObject_GetAttrString(pModule, argv[2]);
3.
4. // Check that the function exists and if not, catch the error
5. if (pFunc && PyCallable_Check(pFunc)) {
6. pArgs = PyTuple_New(argc - 3);
7. for (i = 0; i < argc - 3; ++i) {
8. pValue = PyBytes_FromString(argv[i + 3]);
9. if (!pValue) {
10. Py_DECREF(pArgs);
11. Py_DECREF(pModule);
12. fprintf(stderr, "Cannot convert argument\n");
13. return 1;
14. }
15.
16. // Add the arguments to tuple to be passed into Python
17. PyTuple_SetItem(pArgs, i, pValue);
18. }
19.
20. // Fetch the return value
21. pValue = PyObject_CallObject(pFunc, pArgs);

Listing 9. Sample of returning arguments from Python

23

The result handling from Python is done in the way displayed at listing 10. The code just

checks the value of pValue and if not null, stores the results from Python into a wharc_t

from which it can be further parsed using the JSON parser of choice. In theory this is

very simple, but practise proved unfortunately otherwise.

Returning the values from Python proved tricky with issues due to the data type of the

return value. According to the Python API documentation, it should be possible to fetch

any type of data from the Python script. After extensive tests, this proved not to be the

case, the code compiled without errors but the code crashed with TypeError, meaning

that the data type was incompatible.

This issue got solved but for some reason, if the return value from Python to C++ was

tuple data, trying to parse the result with PyArg_ParseTuple() returns only data pointers

but not the actual data. The type error continued with all datatypes except strings so it

was decided to serialize the data in Python using JSON and pass the JSON string to

C++. Despite extensive research, still more research is required to confirm whether these

issues were due to the specific Python version in use or due to the Windows 10.

Eventually in the course of this thesis work, the only way to safely return data was by

serializing it into a string in the format of JSON in Python and then returning and

deserializing the data in C++. This proved to be a feasible solution also for client setups

and does not compromise the performance of the application.

6.1.3 Conclusions on the first use-case

The Python part worked perfectly as expected. However, when deciding the further

course of action with this kind of extending, also concerns about integration costs and

stability of the resolution in a client environment play a decisive role. Due to these factors,

1. // If call successfull print results else fail
2. if (pValue != NULL) {
3. const wchar_t * json = PyBytes_AsString(pValue);
4. }
5. else {
6. Py_DECREF(pFunc);
7. Py_DECREF(pModule);
8. PyErr_Print();
9. fprintf(stderr, "Call failed\n");
10. return 1;
11. }

Listing 10. Reading arguments from Python

24

it was decided that despite the advantages of directly extending Python in C++, it is for

the moment too unstable for production use. Upon this resolution, research on this part

was stalled at the current state of the project.

Due to these issues, it was decided to change the approach so that the Python script

writes results into a text file in JSON format. The Python script would then be launched

with an execute call from within C++ and eventually the results in C++ would be read

from the Python script’s output file. This file must be either a physical file or database

entry because reading from memory will not work due to the nature of Python; when the

Python script exits, any memory allocations will be wiped at the instant.

6.2 The Second use-case

In the second use-case, the initiative was to detect the position of certain objects in a

picture recorded by the sensor system. This included detection of the distance between

two pins and detection of distance from the end of a pin to its base. The work was done

in both C++ and Python for benchmarking purposes, the benchmarking process along

with results and analysis will be covered in the chapter 7 of this thesis work.

Due to limitations by NDA, the original images from the sensor system will not be pre-

sented in this thesis work.

Figure 11. Points of measure in second use case

To illustrate what was measured, the points of measurement are presented in green in

the above figure 11. The purpose was to measure the distance between the external

edges of the pins and distance from the centre point of the hole in the pins to their

25

baseline. One requirement for the measure is that the algorithm must work even if the

position and angle of the measured artefact changes.

6.2.1 Preparations

After analysing the picture, first the region of interest is defined from within which all the

measurements are done. The parameters for the script are the image source and the

region of interest in coordinate points, extracting the region of interest is done identically

to the way described in the beginning of previous chapter 6.1.1.

6.2.2 Contours

In this picture inside the region of interest, there are two different primary colours. The

pins in the original image are shown as pure white whereas the hole in the middle of the

pins is showing as black. In the solution for this problem, it is needed to find to find the

xy-position of each of the holes in the image and the position of the white pin itself.

Therefore, two distinct feature detections with findContours() function required for the

task, one with threshold and one without.

The following code sample in listing 11 checks for the black holes in the pins, as a result

the centre points for the holes in both pins are stored in a numpy (numerical python)

array. Before storing the centre points, some filtering by size is required to define which

contours are of interest, the len() at line 7 and the w > 100 at line 11 are for this purpose.

If the filter criteria are met, the code first calculates the minimum area rectangle for the

contour, stores the values in a numpy array and uses the fitEllipse function to detect the

centre of mass which will be the xy-coordinates for the centre of the hole in each pin.

26

To detect the white pins themselves, a second round of findContours() is implemented

with a thresholded image as the source. The threshold statement used in this case was

the following, it will change all colours above 127 (greyish colour) into 255 (pure white).

A sample of the thresholding used in this use-case is presented in listing 12.

After applying a similar filtering as in the first findContours() round, the code uses a

standard Python function for detecting the extreme points of the contour from a tuple of

points. This method was selected because it is by far the easiest and least memory-

consuming way for achieving the result.

1. cnts2 = cv2.findContours(image, cv2.RETR_LIST,
2. cv2.CHAIN_APPROX_NONE)
3.
4. cnts2 = cnts2[0]
5.
6. for i in cnts2:
7.
8. if len(i) > 8:
9. x, y, w, h = cv2.boundingRect(i)
10.
11. # Filter contours by size
12. if w > 100:
13.
14. # Fetch minimum area rectangle around
15. # the contours and dump the results
16. # into a numpy array
17. box = cv2.minAreaRect(i)
18. box = cv2.boxPoints(box)
19. box = np.array(box, dtype = "float")
20. cv2.drawContours(image, [box.astype
21. ("int")], - 1, (255,
22. 0, 0), 1)
23.
24. # Use fitEllipse to fit an ellipse
25. # inside the contour, dump the result
26. # into a numpy array and fetch the
27. # center point into a tuple
28. ellipse = cv2.fitEllipse(i)
29. (center, r, t) = ellipse
30.
31. if center1 == 0:
32. (center1, center2) = center, 0
33. else :
34. (center1, center2) = center1,
35. Center

Listing 11. Checking the size of contour, detecting the dimensions and ellipse fitting

1. ret, tresh = cv2.threshold(image, 127, 255, 0)

Listing 12. Sample of thresholding in OpenCV

27

6.2.3 Calculating the Distances

In the snippet of code in listing 13, a custom function getPoints() is called. The function,

demonstrated in listing 14, will return the Euclidean distance between the top right and

the top left extreme points of the contour. The function first uses minAreaRect() function

to fetch the minimum rectangle around the contour after which the system detects the

corner points and sorts them. Finally, the function calculates the midpoint between the

top left and top right points and returns the coordinates.

1. # Get the extreme points of the contours and add them to a
2. # tuple
3. if isinstance(res1, int):
4. (res1, res2, extTop1, extBot2) = getPoints(c), 0,
5.

tuple(c[c[: , : , 1].argmax()][0]), 0
6.
7. cent1 = np.array([float(center1[0]), float(center1[1])])
8. else :
9. (res1, res2, extTop1, extBot2) = res1, getPoints(c),
10.

extTop1, tuple(c[c[: , : , 1].argmin()][0])
11. cent2 = np.array([float(center2[0]), float(center2[1])])

Listing 13. Calculating the top left and top right points of the bounding rectangle

1. box = cv2.minAreaRect(c) box = cv2.boxPoints(box)
2. box = np.array(box, dtype = "float")
3. xSorted = box[np.argsort(box[: , 0]), :]
4. leftMost = xSorted[: 2, :]
5. rightMost = xSorted[2: , :]
6. leftMost = leftMost[np.argsort(leftMost[: , 1]), :]
7.
8. (tl, bl) = leftMost D = dist.cdist(tl[np.newaxis], rightMost,
9. "euclidean")[0]
10. (br, tr) = rightMost[np.argsort(D)[::-1], :]
11.
12. x = float((br[0] + tr[0]) / 2)
13. y = float((br[1] + tr[1]) / 2)
14.
15. return np.array([x, y])

Listing 14. Calculating the Euclidean distance

28

This calculation is required to detect the midpoint of the edges of the pin at the position

where the pin meets its base, due to the form of the pins this will be the shortest distance

from the centre of the hole in the pin to its base. The following figure 12 describes what

the function is trying to achieve.

Figure 12 Output of getDistance

Finally, as displayed in the listing 15, the data is stored in a numpy array and the OpenCV

norm() function was used to compute the required measures between the coordinate

points.

6.2.4 Conclusions

The use-case required a lot of testing and attempts because one of the requirements

was to get the distances with subpixel accuracy. This was slightly tricky because not all

the OpenCV functions accept a floating point number as the entry. If floating point

numbers are not used, some rounding will appear in between the values. The issue was

much bigger in the C++ implementation than in the Python due to the nature of C++ as

a heavily typified programming language.

Another challenge was to actually define the point against which the distance from the

centre of the hole to the base of the pin is measured but this was sorted with some logic.

1. points3 = np.array([extTop1[0], extTop1[1]])
2. points4 = np.array([extBot2[0], extBot2[1]])
3.
4. data["distance_1"] = cv2.norm(res1, cent1)
5. data["distance_2"] = cv2.norm(res2, cent2)
6. data["distance_between_objects"] = cv2.norm(points3, points4

Listing 15. Using OpenCV norm() function

29

6.3 The Third use-case

In the third use-case, the objective was to detect the position of certain features and their

distance from one other. The image that was used is presented in the following figure,

the image itself is slightly manipulated due to issues in displaying it with the correct as-

pect ratio. It appears that even though the OpenCV namedWindow() function has a pa-

rameter WINDOW_KEEPRATIO to maintain aspect ratio, this function does not work

correctly under windows environment and therefore the image appeared twisted on the

screen when displayed using OpenCV.

Figure 13. Image for the third use-case

From the image, the goal was to detect the distance between the holes marked with

crosshair and their distance to the base of each of the features. The hole centres are

presented in figure 13 along with the baseline which is presented by the short green line

on either side of the hole. The developed algorithm should be such that it would take into

account possible skewing of the artifact when it is recorded by the camera system, aka

the object will not always be in the same position when measured.

30

6.3.1 Preparations

First task was to define the region of interest, there were two options with this. First option

was to find three distinct regions of interest, one for each of the features. The second

option would be to go with a single region of interest that contains all the three features.

The image was very large in size with width of roughly 14000px and height of around

1500px so memory consumption-wise it would have made sence to use three regions of

interest. However, the main colour inside the single region of interest is black and the

image is a 8bit grayscale image so a single larger region of interest will not have a huge

performance impact. Therefore, to simplify the algorithm, decision was made to use a

single region of interest. The region of interest is displayed as the large green rectangle

in the image in figure 13.

6.3.2 Feature Detection

In this picture, there are total four contours that were of interest. Three of the contours

are one for each of the holes and one large one is the solid black area inside the region

of interest. The large contour is used to define the baseline from each of the hole centres

to the base.

After extracting the region of interest, the features are fetched using the OpenCV

findContours() function. In this case, thresholding is not required as the color marking

the holes in the three features is completely black, same with the main color in the large

contour. As a parameter, CHAIN_APPROX_NONE is needed, this is slightly memory

consuming but this was done because all the points in the contour are required for future

actions.

1. for x in roi.split(','))
2. image = image[a: b, c: d]
3.
4. # Get centers for contours; this will fetch the centres
5. # for the black circles inside the ROI, no tresholding
6. # needed as the color is pure black
7. cnts2 = cv2.findContours(image, cv2.RETR_LIST,
8. cv2.CHAIN_APPROX_NONE)
9. cnts2 = cnts2[0]

Listing 16. Finding the contours

31

After applying findContours(), the system loops thru the identified contour features. Some

filtering is applied by the size of the contour to filter out the ones that are of no interest.

The width of the contour is fetched using the OpenCV minAreaRect function, after which

the code stores the centres of the contours into a pre-defined tuple. The centres equal

to the centres of the holes and this can be done without ellipse fitting because the holes

are an even shape (pure circle). Ellipse fitting would be used to detect the centre of mass

of the contour but as the contours in this case are circle, the centre of mass is equal to

the centre of the mininum area rectangle. At this point, the code also stores the possible

skew angle of the contour, the angle is found from the output of the minAreaRect

function.

After this operation, the code as shown in listing 17, calculates a point which is 500

coordinate points from the centre of contour in the direction provided by the angle from

the minimum area rectangle. 500 pixels was selected to make sure that an intersection

occurs. This value is then stored in a pre-defined tuple.

Eventually, the code detects also the large black area visible in figure 13 inside the region

of interest. The corners of this black area are stored in a tuple using the OpenCV

boxPoints function like shown in the sample of listing 18.

1. box = cv2.minAreaRect(i)
2.
3. if box[1][0] > 100:
4.
5. if box[1][0] < 500:
6.
7. centers.insert(z, box[0])
8. angle = box[2]
9.
10. # Calculate coordinates for the endpoint of the line
11. # from centre of the hole
12. line_x = box[0][0] + length * math.cos(angle *
13. math.pi / 180.0)
14. line_y = box[0][1] + length * math.sin(angle *
15. math.pi / 180.0)
16.
17. points.insert(z, (line_x, line_y)) z = z + 1

Listing 17. Getting the other end point for vector

32

Once this operation is complete and the necessary values for the rest of the calculations

are done, the code defines vectors from the centre of each of the holes to the previously

calculated coordinate points from the centre point. For this purpose, the code introduces

a function line() where the vector definition is computed, a sample of this method is

shown in the listing 19. The code also computes a vector across the left and right edge

of the large contour separately according to the ways shown in the following figure 14.

Figure 14 outline of the vectors in the image

1. # Check for the large black area inside the roi
2. if box[1][0] > 2000:
3. box2 = cv2.boxPoints(box)
4. angle = box[2]

Listing 18. Bounding rectangle by the boxPoints() function

33

After the line equation, the system makes a call to a function that computes the

intersection point between the left/right edge and the vector from centre point of each of

the holes. For this, there is a custom function intersect() which is shown in the next listing

20.

The results are then stored in a tuple which is written to JSON and stored in a file for

future use. The complete Python and C++ source codes with comments are available in

the appendix 5 and 6 of this thesis.

1. # Define the equation for a line between points
2. def line(point1, point2):
3. a = (point1[1] - point2[1])
4. b = (point2[0] - point1[0])
5. c = (point1[0] * point2[1] - point2[0] * point1[1])
6.
7. return a, b, -c # return the coefs of line equation

Listing 19. Getting the line equations

1. # Define the function for intersection
2. def intersect(line1, line2):
3.
4. # Get the main determinant from matrix[A1 B1, A2 B2]
5. D = line1[0] * line2[1] - line1[1] * line2[0]
6.
7. # Dx from matrix[C1 B1, C2 B2]
8. Dx = line1[2] * line2[1] - line1[1] * line2[2]
9.
10. # Dy from matrix[A1 C1, A2 C2]
11. Dy = line1[0] * line2[2] - line1[2] * line2[0]
12.
13. if D != 0:
14.
15. # Calculate x and y
16. x = Dx / D
17. y = Dy / D
18. return x, y
19.
20. else :
21. return False

Listing 20. Function for calculating the intersection of two vectors

34

6.3.3 Conclusions

The case in this one involved a lot of thinking because of the requirements (skewing of

the picture etc). The code was made as dynamic as possible and will take basically any

amount of holes. Even more customization could have been made to increase the

performance. Also the code still has small flaws, for example if the artifact is more than

90 degrees skewed, the program will fail. This was not taken into account in this case

because in general it is correct to assume that if a artifact arrives so much skewed, the

error is most likely elsewhere in the system.

Another point for customization could have been to make the code so dynamic that all

the skew angles and intersection points would be passed dynamic to the appropriate line

and intersection functions. However this was not within the scope of this use-case.

6.4 Fourth Use-case: Calibrator Using Python

The fourth and last use-case approaches a common issue in any sensor and machine

vision system, the issue is called calibration. Calibration in this case means setting the

lenses and other equipment in an aligned order so that they will give correct results. For

ease of use and for consistency of results, it is good to have an automated system to

handle the task.

The initiative in this use-case was to find the skew angle and distance in coordinate

points for calibration error within the y-axis. To make the calibration as accurate as

possible, the system returns the distance and angle with subpixel accuracy.

The code for the calibrator application was made only in Python as there was no need

for benchmarking between the two approaches.

6.4.1 Feature search on the image

In this use-case, the images used for the tasks feature a standard. As seen in the

example image in the figure 16, the black lines do not continue aligned. This means a

calibration error which should be detected.

35

Figure 15. Sample image for calibration

6.4.2 Preparations

In this case, a couple of alternate approaches were considered to get the calibration

error. Two of the approaches involved using two distinct regions of interest in different

sections of the bottom horizontal black line shown in the image. From these two different

regions of interest, it was possible to get either the extreme points of the contour or

alternatively use Canny edge detection to find the top position of the black line in each

of the regions of interest. The third option would have been to use a single region of

interest along with Harris Corner Detection to detect the point where the alignment of the

shape fails.

Figure 16. Approach with one or two ROI

In this case, the approach with two regions of interest was taken along with Canny edge

detection and ellipse fitting.

36

After the regions of interest are defined in the fashion shown in the above listing 21, the

code calls for a custom function calcDistance() which returns the position of the edge of

the black area in pixels.

6.4.3 Feature Detection

Canny as a function uses convolution to detect the edges and thus works the best after

some noise reduction from the image. After some testing, the correct function for blurring

seemed to be the OpenCV blur() function. This function and Gaussian Blur were tested

with different kernel sizes 1x1, 3x3, 5x5 and 7x7.The first three produced the same out-

come whereas the 7x7 blurred the image too much. Some thresholding was also tested

with different kernel sizes in the blurring with no impact in the outcome. In OpenCV,

Canny is implemented in the fashion demonstrated at the following listing 22.

1. # Create two ROIs and crop image
2. a, b, c, d = 550, 50, 2200, 600
3. e, f, g, h = 550, 50, 700, 600
4.
5. roi1 = image[a: a + b, c: c + d]
6. roi2 = image[e: e + f, g: g + h]
7.
8. # Function calls
9. dist1ellipse, dist1angle = calcDistance(roi1)
10. dist2ellipse, dist2angle = calcDistance(roi2)

Listing 21. Defining the ROI's and function calls

1. # Blur some of the noise out of the image, kernel 3x3
2. blur = cv2.blur(roi, (3, 3), 0)
3.
4. # Use Canny to detect the edges
5. edges = cv2.Canny(blur, 50, 200, 1)

Listing 22. Example of Canny usage

37

Figure 17. Edge detection results by Canny

As seen in the above illustration in figure 17 of the original region of interest and the

Canny output, the edge detected is not a continuous line. Therefore, the appropriate

method to extract the edges is by findContours(). Another way would have been via

Hough Line Transform, but that works only for solid lines.

Results of the findContours are filtered by size and position so that further operations are

applied only to the contours that fit the criteria. For the filtering, a minimum area rectangle

is fitted around the contour after which the system uses fitEllipse() function to fit an ellipse

inside the rectangle. From the output of fitEllipse(), the system returns the centre of mass

for the contour along with the angle of the fitted ellipse. The following figure 18 is a

screenshot of the output of ellipse fitting function.

Figure 18. Output of minAreaRect and fitEllipse functions

38

Eventually, the computed results are returned and displayed on-screen. The output in

the figure 19 is the outcome of calculations on the sample image presented in figure 15.

Figure 19. Detected calibration error and angle of distortion

1. # Function calls
2. dist1ellipse, dist1angle = calcDistance(roi1)
3. dist2ellipse, dist2angle = calcDistance(roi2)
4.
5. # Print the calibration error on y - axis
6. print("Calibration error y:", dist2ellipse[0][1] –
7. dist1ellipse[0][1])
8.
9. # Print the average angle of distortion
10. print("Angle of distortion:", ((dist1angle - 90) +
11. (dist2angle - 90)) / 2)

Listing 23. Calculations and output of the calibrator

39

7 Benchmarking the Scripts

The initiative in benchmarking was to find differences in performance between OpenCV

using Python and similar application using C++. The benchmarks were performed for the

second and third use-cases presented in the chapters 5 and 6 of this thesis.

The benchmark results are available in graphical form in the appendixes 8 and 9.

7.1 Executing the Benchmarks

In a windows environment, there are multiple ways for continuously running an executa-

ble or a script file, one way is the windows tasks and the other a batch script. In this case,

the latter method was chosen for platform-independency reasons, also the batch script

is relatively simple to maintain.

The benchmark was executed for both warm and cold cache in both Python and C++.

The batch script for Python and C++ are identical with the only difference being the script

call and the file output name. In both cases, the script will first loop ten times and run the

executable or script with five second intervals to simulate a cold cache and then ten times

with one second interval to simulate a warm cache, this is demonstrated at the following

sample of the script in the listing 24.

1. @
2. echo off set loop = 0: loop
3. if "%loop%" == "1"@
4. echo Running batch benchmark at 1 second interval(cold cache)
5. >> benchmark_results_c Project4 d: /roi.bmp
6. 500,350,1000,500
7. Timeout / t 5 set / a loop = % loop % +1
8. if "%loop%" == "10"
9. set loop2 = 0
10. if "%loop%" == "10"
11. goto loop2 goto loop: loop2
12. if "%loop2%" == "1"@
13. echo Running batch benchmark at 5 second interval(warm cache)
14. >> benchmark_results_c Project4 d: /roi.bmp
15. 500,350,1000,500
16. timeout / t 1 set / a loop2 = % loop2 % +1
17. if "%loop2%" == "10"
18. goto next goto loop2: next echo Benchmark finished

Listing 24. Sample of the benchmark script

40

7.2 Benchmark Results and Analysis

In the following, there is some analysis on the performance of the different scripts. As a

note, all the benchmarks were executed multiple times at different hours to get a realistic

impression on the performance. Despite this, the variations in the benchmark results at

different times were very slight and they should be treated with some caution because

also any background processes running on the system have an impact on performance,

especially considering that the tests were made on a Windows platform.

7.2.1 The Second Use-case

In the second use case, not a great deal of effort was put in optimization of the code.

The benchmark results for the Python script looked like what is shown in the figure 20.

The first column is taken with the image load and the second one with it included.

Figure 20. Benchmark results with Python

The C++ benchmarks were executed with the release version of the use case because

in the debug version, there is some extra code which the complier adds to the executa-

ble.

41

Figure 21. Benchmark results with C++

The benchmark results shown in figure 21 follow quite much the expected pattern. Due

to the relatively small size of the image (around 2000x1000px), not even the image load

had much impact on the performance. Considering that OpenCV is written in C++ and

Python provides only a wrapper for the functions, there should not be much difference in

performance. In this use-case, very little calculation takes place in Python itself, so the

main overhead should come from the image load time.

Looking at the results between the warm versus cold cache, both Python and C++ seem

to react to them with similar pattern. With warm cache, the execution time is much faster

which supports the theory about the image load increasing the execution time signifi-

cantly. With warm cache, the image is preloaded into memory which is clearly visible in

the results on both implementations.

7.2.2 The Third Use-case

In the third use-case, much more effort was put on the performance than in the second

use-case and this is clearly visible in the benchmark results. In this case, while the res-

olution of the image remained the same as in the second use-case, the picture that was

used was much larger in size (around 14000x1500px). The following illustration demon-

strates the performance on Python with both image load included and disincluded.

42

Figure 22. Benchmark results using Python

Looking at the results displayed in figure 22, the performance of the script is on a very

high level, this can be judged by a much faster execution time as compared to the second

use-case where not nearly as much computing was performed in Python. Surprisingly,

the difference between warm and cold cache with and without the image load is very

slight.

For a comparison, the next figure 23 demonstrates the performance on C++. As can be

seen, the C++ implementation has a slight advantage in performance over the version in

Python.

Figure 23 Benchmark results using C++

Surprisingly, in C++ warming the cache seems to have slightly more impact on the per-

formance with both image load and without included. In theory, considering the nature of

C++, the assumption would have been that C++ is faster which in this use-case doesn’t

43

seem to be the case. The conclusion was confirmed by multiple test runs in different

environments.

7.3 Overall Conclusions on the Benchmarks

The performance of C++ and Python seem to have very slight differences as proven by

both use-cases. While this is a smallish sample of all tests and does not in any way

resemble a real-life production environment, the results do give some insight on what

can be expected in a real-life case. On the other hand, looking at the performance, even

though the differences are very slight between the programming languages and some

consideration must be given over the results, even the small differences might in some

real-life cases prove to be a bottleneck for production.

Time will tell whether the performance is good enough or not but looking at the prereq-

uisites between the second and the third use-case, the meaning of optimization is clearly

proven. Even the image size does not have relatively as much importance as optimiza-

tion – in the third use-case, the image was many times larger than in the send one and

yet despite the heavier calculations the third one was multiple times faster.

44

8 References

1. FocalSpec. Technology [online]. FocalSpec Oy. 2017.

URL: https://www.focalspec.com/tehcnology. Accessed 21 September 2017.

2. Wikipedia.org. OpenCV [online]. Wikipedia. October 2017.

URL: https://en.wikipedia.org/wiki/OpenCV. Accessed 22 October 2017.

3. OpenCV.org. About [online]. OpenCV community. 2017.

URL: http://www.opencv.org/about.html. Accessed 27 September 2017.

4. OpenCV.org. How OpenCV-Python Bindings Works [online]. OpenCV

community. September 2017.

URL: http://docs.opencv.org/3.2.0/da/d49/tutorial_py_bindings_basics.html.

Accessed 30 September 2017.

5. Opencv.org. Package list. [online]. OpenCV Python community. September

2017.

URL: https://pypi.python.org/pypi/opencv-python/3.3.0.10. Accessed 30

September 2017.

6. OpenCV.org. Smoothing images [online]. OpenCV development team.

November 2014.

URL: https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_filtering/

py_filtering.html#filtering. Accessed 5 October 2017.

7. Mallick S. OpenCV Threshold (Python , C++) [online]. Big Vision LLC.

November 2015.

URL: https://www.learnopencv.com/opencv-threshold-python-cpp. Accessed 5

October 2017.

8. OpenCV.org. Canny Edge Detection [online]. OpenCV development team.

2017.

URL: https://docs.opencv.org/3.1.0/da/d22/tutorial_py_canny.html. Accessed 6

October 2017.

45

9. OpenCV.org. Hough Line Transform [online]. OpenCV development team.

November 2014.

URL: https://docs.opencv.org/3.0/beta/doc/py_tutorials/py_imgproc/

py_houghlines/py_houghlines.html. Accessed 20 October 2017.

10. OpenCV.org. Structural analysis and shape descriptors [online]. OpenCV

development team. November 2014.

11. URL: https://docs.opencv.org/3.0-beta/modules/imgproc/doc/

structural_analysis_and_shape_descriptors.html#fitellipse. Accessed 10

October 2017.

12. OpenCV.org. Contour Features [online]. OpenCV development team. 2017.

URL: https://docs.opencv.org/3.1.0/dd/d49/tutorial_py_contour_features.html.

Accessed 11 October 2017.

13. OpenCV documentation. Contours: Getting Started [online]. OpenCV

development team. 2017.

URL: https://docs.opencv.org/3.1.0/d4/d73/tutorial_py_contours_begin.html.

Accessed 11 October 2017.

Appendix 1

1 (2)

C++ source for the first use-case

1. # include < Python.h >
2.
3. int main(int argc, char * argv[]) {
4.
5. PyObject * pName, * pModule, * pDict, * pFunc;
6. PyObject * pArgs, * pValue, * t;
7. int i;
8. if (argc < 3) {
9. fprintf(stderr, "Usage: call pythonfile funcname [args]\n");
10. return 1;
11. }
12.
13. Py_Initialize(); // Decode the parameter and import
14. pName = PyUnicode_DecodeFSDefault("detect_shapes");
15. pModule = PyImport_Import(pName);
16. Py_DECREF(pName);
17.
18. if (pModule != NULL) { // Push the arguments (image name and roi) into a string
19.
20. // Check that the function exists and if not, catch the error
21. pFunc = PyObject_GetAttrString(pModule, argv[2]);
22.
23. if (pFunc && PyCallable_Check(pFunc)) {
24.
25. pArgs = PyTuple_New(argc - 3);
26.
27. for (i = 0; i < argc - 3; ++i) {
28. pValue = PyBytes_FromString(argv[i + 3]);
29.
30. if (!pValue) {
31. Py_DECREF(pArgs);
32. Py_DECREF(pModule);
33. fprintf(stderr, "Cannot convert argument\n");
34. return 1;
35. }
36.
37. // Add the arguments to tuple to be passed into Python
38. PyTuple_SetItem(pArgs, i, pValue);
39. }
40.
41. pValue = PyObject_CallObject(pFunc, pArgs); // Fetch the return value
42. Py_DECREF(pArgs); // If call successfull print results else fail
43.
44. if (pValue != NULL) {
45. const wchar_t * json = PyBytes_AsString(pValue);
46. } else {
47. Py_DECREF(pFunc);
48. Py_DECREF(pModule);
49. PyErr_Print();
50. fprintf(stderr, "Call failed\n");
51. return 1;
52. }
53. }
54. else {
55. if (PyErr_Occurred()) PyErr_Print();
56. fprintf(stderr, "Cannot find function \"%s\"\n", argv[2]);
57. }
58. Py_XDECREF(pFunc);
59. Py_DECREF(pModule);

Appendix 1

2 (2)

60. } else {
61. PyErr_Print();
62. fprintf(stderr, "Failed to load \"%s\"\n", argv[1]);
63. return 1;
64. }
65. if (Py_FinalizeEx() < 0) {
66. return 120;
67. }
68. return 0;
69. }
70.

Appendix 2

1 (1)

Python source for the first use-case

1. import the necessary packages# from pyimagesearch.shapedetector
2. import ShapeDetector
3. import argparse
4. import imutils
5. import cv2
6. import cv
7. import numpy as np
8. import json
9.
10. def shapedetector(image, roi):
11.
12. # load the image and resize it to a smaller factor so that
13. # the shapes can be approximated better
14. image = image.decode("utf-8")
15. image = image.strip('\'')
16. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
17.
18. roi = roi.decode("utf-8")
19. roi = roi.strip('\'')
20.
21. # create ROI from arguments and crop image
22. a, b, c, d = (int(x) for x in roi.split(','))
23.
24. image = image[a: b, c: d]
25.
26. # find contours in the image without tresholds
27. cnts = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
28. cnts = cnts[0]
29.
30. if imutils.is_cv2()
31.
32. else cnts[1]
33.
34. # loop over the contours
35. for c in cnts:
36.
37. if len(c) > 5:
38.
39. x, y, w, h = cv2.boundingRect(c)
40.
41. if w < 220:
42. if w > 10:
43.
44. # compute the center of the contour
45. M = cv2.moments(c)
46. cX = int(M["m10"] / M["m00"])
47. cY = int(M["m01"] / M["m00"])
48.
49. data = {}
50. data['x'] = x
51. data['y'] = y
52. data['cX'] =
53. cX data['cY'] = cY
54.
55. json_data = json.dumps(data) return bytes(str(json_data), 'utf-8')
56.

Appendix 3

1 (4)

C++ source for the second use-case

1. #include < opencv2 / opencv.hpp >
2. #include < iostream >
3. #include < string >
4. #include < ctime >
5. #include < fstream >
6. #include "packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/docu

ment.h"
7. #include "packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/pret

tywriter.h"
8. #include "packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/writ

er.h"
9. #include "packages/rapidjson.beta.1.0.1/build/native/rapidjson/include/rapidjson/stri

ngbuffer.h"
10.
11. using namespace cv;
12. using namespace rapidjson;
13. using namespace std;
14.
15. vector < vector < Point > > contours; // RNG rng(12345);
16. vector < Vec4i > hierarchy;
17.
18. Mat roi;
19.
20. vector < Point2f > distance;
21. vector < float > calculateDistances(vector < Point2f > , vector < Point2f >);
22. vector < Point2f > get_contours1(Mat);
23. vector < Point2f > get_contours2(Mat);
24.
25. int main(int argc, char * * argv) {
26.
27. std::clock_t start;
28. double duration;
29.
30. // Check amount of parameters, return error if wrong
31. if (argc != 3) {
32. cout << " Usage: ImageToLoadAndDisplay roi (roi in the format x-start,x-

height,y-start,y-height) " << endl;
33.
34. return -1;
35. }
36.
37. // Establish the Mat object and load the image in grayscale
38. Mat image;
39.
40. image = imread(argv[1], IMREAD_GRAYSCALE); // Read the file
41.
42. if (!image.data) {
43. cout << "Could not open or find the image" << std::endl;
44. return -1;
45. }
46. start = std::clock(); // Split the roi argument into an array
47. string arg2 = argv[2];
48. std::istringstream iss(arg2);
49.
50. char c; // dummy character for the colon
51. int a[4];

Appendix 3

2 (4)

52. iss >> a[0];
53.
54. for (int i = 1; i < 8; i++) iss >> c >> a[i];
55. Rect rec(a[0], a[1], a[2], a[3]);
56. Mat roi = image(rec);
57. vector < Point2f > distance1 = get_contours1(roi);
58. vector < Point2f > distance2 = get_contours2(roi);
59. vector < float > result = calculateDistances(distance1, distance2);
60.
61. Document d; // Null
62.
63. d.SetObject();
64. Document::AllocatorType & allocator = d.GetAllocator();
65. d.AddMember("Distance between the pins", result[0], allocator);
66. d.AddMember("Distance between 1st pin and base", result[1], allocator);
67. d.AddMember("Distance between 2nd pin and base", result[2], allocator);
68.
69. StringBuffer strbuf;
70. PrettyWriter < StringBuffer > writer(strbuf);
71.
72. d.Accept(writer);
73. ofstream file;
74.
75. file.open("script_output");
76. file << strbuf.GetString();
77. file.close();
78. duration = (std::clock() - start) / (double) CLOCKS_PER_SEC;
79. file.open("benchmark_results_c", ios_base::app);
80. file << "time: " << duration << '\n';
81. file.close();
82. return 0;
83. }
84.
85. // Get the contours with white area; this is done with
86. // threshold, could have perhaps been done with inverse function as well
87. vector < Point2f > get_contours1(Mat roi) {
88.
89. vector < Point2f > distance;
90. Mat img_bw;
91.
92. threshold(roi, // source image
93. img_bw, // destination image
94. 127, // threhold val.
95. 255, // max. val
96. 0); // binary
97.
98. findContours(img_bw, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)

;
99. vector < vector < Point > > contours_poly(contours.size());
100. vector < float > radius(contours.size());
101. vector < Rect > boundRect(contours.size());
102.
103. // Format the Mat object "drawing" by creating an empty array
104. Mat drawing = Mat::zeros(img_bw.size(), img_bw.type());
105.
106. float res1 = 0;
107. float res2 = 0;
108.
109. vector < float > v; // Loop thru contours
110.
111. for (size_t i = 0; i < contours.size(); i++) {
112.
113. // Approximate the polygonal curve, 3 was enough as a

Appendix 3

3 (4)

114. // precision but can be adjusted
115. approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
116.
117. // Calculate the bounding rectangle
118. boundRect[i] = boundingRect(Mat(contours_poly[i]));
119.
120. size_t count = contours[i].size();
121.
122. if (count < 5) continue;
123.
124. // Declare a new mat object and convert the contour to points
125. Mat points;
126. Mat(contours[i]).convertTo(points, CV_32F);
127.
128. // Use fitEllipse to get the xy position and size of the contour
129. RotatedRect box = fitEllipse(points);
130.
131. // Check that the size of the bounding rectangle meets the
132. // minimum requirements, we don't want to find everything
133. if (box.size.height > 100 && box.size.width < 700) {
134.
135. // Get the extreme points for each of the contours; not
136. // doing the storing in the most elegant way, this code
137. // is pretty static because we have only two contours of
138. // interest in this case
139. if (distance.size() == 0) {
140. Point extBot = * max_element(contours[i].begin(), contours
141. [i].end(), [](const Point & lhs,
142. const Point & rhs) {
143. return lhs.y < rhs.y;
144. });
145. Point extRight1 = * max_element(contours[i].begin(),
146. Contours[i].end(), [](const Point
147. & lhs,
148. const Point & rhs) {
149. return lhs.x < rhs.x;
150. });
151. distance.push_back(extBot);
152. distance.push_back(extRight1);
153. }
154. else {
155. Point extTop = * min_element(contours[i].begin(), contours
156. [i].end(), [](const Point & lhs,
157. const Point & rhs) {
158. return lhs.y < rhs.y;
159. });
160.
161. Point extRight2 = * max_element(contours[i].begin(),
162. contours[i].end(), [](const Point
163. & lhs,
164. const Point & rhs) {
165. return lhs.x < rhs.x;
166. });
167.
168. distance.push_back(extTop);
169. distance.push_back(extRight2);
170. }
171. }
172. }
173. return distance;
174. }
175.
176. // Get the center point of the black ellipses in the picture, this is

Appendix 3

4 (4)

177. // done without thresholds
178. vector < Point2f > get_contours2(Mat roi) {
179. vector < vector < Point > > contours_poly(contours.size());
180. vector < Rect > boundRect(contours.size());
181.
182. findContours(roi, contours, hierarchy, RETR_LIST, CHAIN_APPROX_NONE);
183.
184. vector < Point2f > center1; // Loop thru contours
185.
186. for (size_t i = 0; i < contours.size(); i++) {
187.
188. // Approximate the polygonal curve, 3 was enough as a
189. // precision but can be adjusted
190. approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
191. boundRect[i] = boundingRect(Mat(contours_poly[i]));
192.
193. size_t count = contours[i].size();
194.
195. if (count < 5) {
196. continue;
197. }
198.
199. // Check the size of the bounding rectangle, there are other
200. // black areas as well which we are not interested in
201. if ((boundRect[i].width < 200) && (boundRect[i].width > 100)) {
202.
203. // Declare a new mat object and convert the contour to points
204. Mat points;
205. Mat(contours[i]).convertTo(points, CV_32F);
206.
207. RotatedRect box = fitEllipse(points);
208.
209. // Use fitEllipse to get the xy position and size of the contour
210. center1.push_back(box.center);
211. }
212. }
213.
214. return center1;
215. }
216.
217. // Calculate the distance between countour points of interest,
218. // return a vector with results
219. vector < float > calculateDistances(vector < Point2f > distance, vector <
220. Point2f > center1) {
221. vector < float > result;
222.
223. result.push_back(sqrt(pow((distance[0].x - distance[2].x), 2) +
224. pow((distance[0].y - distance[2].y), 2)));
225. result.push_back(sqrt(pow((distance[1].x - center1[0].x), 2) +
226. pow((distance[1].y - center1[0].y), 2)));
227. result.push_back(sqrt(pow((distance[3].x - center1[1].x), 2) +
228. pow((distance[3].y - center1[1].y), 2)));
229. return result;
230. }
231.

Appendix 4

1 (3)

Python source for the second use-case

1. import the necessary packages# from pyimagesearch.shapedetector
2. import ShapeDetector
3. import argparse
4. import imutils from imutils
5. import perspective from imutils
6. import contours
7. import cv2
8. import cv
9. import numpy as np
10. import json from decimal
11. import *
12. import math
13. import time from scipy.spatial
14. import distance as dist
15.
16. def shapedetector(image, roi):
17.
18. # load the image and resize it to a smaller factor so that
19. # the shapes can be approximated better
20. image = image.strip('\'')
21. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
22. t0 = time.time()# roi = roi.decode("utf-8")
23. roi = roi.strip('\'')
24.
25. # create ROI from arguments and crop image
26. a, b, c, d = (int(x)
27.
28. for x in roi.split(','))
29. image = image[a: b, c: d]
30.
31. # Get centers for contours; this will fetch the centers for the black circles
32. # inside the ROI, no tresholding needed as looking for black color only
33. cnts2 = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
34.
35. cnts2 = cnts2[0]
36.
37. if imutils.is_cv2()
38. else cnts2[1]
39.
40. (center1, center2) = 0, 0
41.
42. for i in cnts2:
43. if len(i) > 8:
44.
45. x, y, w, h = cv2.boundingRect(i)
46.
47. # Filter contours by size
48. if w < 400:
49.
50. if w > 100:
51.
52. # Fetch minimum area rectangle around the contours and dump results
53. # to a numpy array
54. box = cv2.minAreaRect(i)
55. box = cv2.boxPoints(box)
56. box = np.array(box, dtype = "float")
57.

Appendix 4

2 (3)

58. # Use fitEllipse to fit an ellipse inside the contour,
59. # dump the result to numpy array and fetch the center
60. # point into A tuple
61. ellipse = cv2.fitEllipse(i)
62. (center, r, t) = ellipse
63.
64. if center1 == 0:
65. (center1, center2) = center, 0
66. else :
67. (center1, center2) = center1, center
68.
69. # Apply some tresholds to fetch the white areas inside the ROI
70. ret, tresh = cv2.threshold(image, 127, 255, 0)
71. cnts = cv2.findContours(tresh, cv2.RETR_EXTERNAL,
72. cv2.CHAIN_APPROX_SIMPLE)
73. cnts = cnts[0]
74.
75. if imutils.is_cv2()
76. else cnts[1]
77.
78. # Establish a new blank tuple to store the extreme points of the
79. # contour
80. (res1, res2, extTop1, extBot2) = 0, 0, 0, 0
81.
82. # loop over the contours
83. for c in cnts:
84. if len(c) > 8:
85.
86. x, y, w, h = cv2.boundingRect(c)
87.
88. if w > 400:
89.
90. # Get the extreme points of the contours and add them to
91. # a tuple
92. if isinstance(res1, int):
93.
94. (res1, res2, extTop1, extBot2) = getPoints(c), 0,
95. tuple(c[c[: , : , 1]
96. .argmax()][0]), 0
97. cent1 = np.array([float(center1[0]),
98. float(center1[1])])
99. else :
100. (res1, res2, extTop1, extBot2) = res1, getPoints(c),
101. extTop1, tuple(c[c
102. [: , : , 1].argmin()
103.][0])
104. cent2 = np.array([float(center2[0]),
105. float(center2[1])])
106.
107. data = {}
108.
109. points3 = np.array([extTop1[0], extTop1[1]])
110. points4 = np.array([extBot2[0], extBot2[1]])
111. data["distance_1"] = cv2.norm(res1, cent1)
112. data["distance_2"] = cv2.norm(res2, cent2)
113. data["distance_between_objects"] = cv2.norm(points3, points4)
114.
115. t1 = time.time() total = t1 - t0
116.
117. filewrite('time: {}\n'.format(total), 'benchmark_results_python', 'a')
118.
119. return json.dumps(str(data))
120.

Appendix 4

3 (3)

121. # Calculate mininum rotated rectangle around the contour, order the points
122. # and get the midpoint between the top right and bottom right points
123. def getPoints(c):
124.
125. box = cv2.minAreaRect(c)
126. box = cv2.boxPoints(box)
127. box = np.array(box, dtype = "float")
128. xSorted = box[np.argsort(box[: , 0]), :]
129. leftMost = xSorted[: 2, :]
130. rightMost = xSorted[2: , :]
131. leftMost = leftMost[np.argsort(leftMost[: , 1]), :]
132.
133. (tl, bl) = leftMost D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
134. (br, tr) = rightMost[np.argsort(D)[::-1], :]
135.
136. x = float((br[0] + tr[0]) / 2)
137. y = float((br[1] + tr[1]) / 2)
138.
139. return np.array([x, y])
140.
141. # Write the results to file
142. def filewrite(json, filename, writemode):
143.
144. f = open(filename, writemode)
145. F1.write(json) f.close()
146. return 0
147.
148. ap = argparse.ArgumentParser() ap.add_argument("-i", " --image",
149. help = "path to the image file")
150. ap.add_argument("-r", "--roi", help = "region of interest,
151. format 'x,y,width,height'")
152. args = vars(ap.parse_args())
153.
154. json = shapedetector(args["image"], args["roi"]);
155. filewrite(json, 'script_output', 'w')
156.

Appendix 5

1 (5)

C++ source for the third use-case

1. #include < opencv2 / opencv.hpp >
2. #include < iostream >
3. #include < string >
4. #include < ctime >
5. #include < fstream >
6. #include "rapidjson/document.h"
7. #include "rapidjson/prettywriter.h"
8. #include "rapidjson/writer.h"
9. #include "rapidjson/stringbuffer.h"
10. #include < cmath > using namespace cv;
11.
12. using namespace rapidjson;
13. using namespace std;
14.
15. vector < vector < Point > > contours; // RNG rng(12345);
16. vector < Vec4i > hierarchy;
17.
18. Mat roi;
19.
20. vector < float > calculateDistances(vector < Point2f >);
21. vector < Point2f > get_contours(Mat);
22. vector < float > lineDraw(float, float, float, float);
23. vector < float > intersect(vector < float > , vector < float >);
24.
25. int main(int argc, char * * argv) { // Initialize the timer
26.
27. std::clock_t start;
28. double duration; // Check amount of parameters, return error if wrong
29.
30. if (argc != 3) {
31. cout << " Usage: ImageToLoadAndDisplay roi (roi in the format x-start,x-
32. height,y-start,y-height) " << endl;
33. return -1;
34. }
35.
36. // Establish the Mat object and load the image in grayscale
37. Mat image;
38. image = imread(argv[1], IMREAD_GRAYSCALE); // Read the file
39.
40. if (!image.data) {
41. cout << "Could not open or find the image" << std::endl;
42. return -1;
43. }
44.
45. start = std::clock(); // Split the roi argument into an array
46. string arg2 = argv[2];
47. std::istringstream iss(arg2);
48. char c; // dummy character for the colon
49. int a[4];
50. iss >> a[0];
51.
52. for (int i = 1; i < 8; i++) iss >> c >> a[i];
53. Rect rec(a[0], a[1], a[2], a[3]);
54. Mat roi = image(rec);
55. vector < float > distances = calculateDistances(get_contours(roi));
56. Document d; // Null
57. d.SetObject();

Appendix 5

2 (5)

58. Document::AllocatorType & allocator = d.GetAllocator();
59.
60. d.AddMember("Distance between the pins", result[0], allocator);
61. d.AddMember("Distance between 1st pin and base", result[1], allocator);
62. d.AddMember("Distance between 2nd pin and base", result[2], allocator);
63.
64. StringBuffer strbuf;
65. PrettyWriter < StringBuffer > writer(strbuf);
66. d.Accept(writer);
67. ofstream file;
68. file.open("script_output");
69. file << strbuf.GetString();
70. file.close();
71. duration = (std::clock() - start) / (double) CLOCKS_PER_SEC;
72.
73. // Benchmark results to a file
74. file.open("benchmark_results_c", ios_base::app);
75. file << "time: " << duration << '\n';
76. file.close();
77.
78. return 0;
79. }
80.
81. // Get the center point of the black ellipses in the picture, this is done
82. // without thresholds
83. vector < Point2f > get_contours(Mat roi) {
84. findContours(roi, contours, RETR_LIST, CHAIN_APPROX_SIMPLE);
85.
86. // Bunch of variable definitions
87. vector < RotatedRect > minRect(contours.size());
88.
89. RNG rng(12345);
90. Mat drawing;
91.
92. vector < Point2f > centers;
93. vector < Point2f > intersects;
94. vector < float > angles;
95. vector < float > dists1, orig1;
96. vector < float > dists2, orig2;
97. vector < float > isect_point, isect_point_orig;
98.
99. CvPoint2D32f points[4];
100.
101. int length = 500;
102. float line_endpoint_x;
103. float line_endpoint_y;
104. double pi = atan(1) * 4;
105. int x = 0;
106. vector < Point2f > distances; // Loop thru contours
107.
108. for (size_t i = 0; i < contours.size(); i++) {
109.
110. // Use minAreaRect to fetch the minimum enclosing rectangle around
111. // the contour
112. minRect[i] = minAreaRect(Mat(contours[i]));
113. size_t count = contours[i].size();
114.
115. // Make sure that we are actually inspecting a closed contour and not
116. // a line
117. if (count < 5) {
118. continue;
119. }
120.

Appendix 5

3 (5)

121. // Get the large black area inside the ROI, map corners to a vector
122. // with cvBoxPoints
123. if (minRect[i].size.width > 2000) {
124. Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255),
125. rng.uniform(0, 255));
126.
127. cvBoxPoints(minRect[i], points);
128. }
129.
130. // Some magic to filter out unwanted contours
131. if ((minRect[i].size.width > 100) && (minRect[i].size.width < 500)) {
132. centers.push_back(minRect[i].center);
133. angles.push_back(minRect[i].angle);
134. }
135. }
136.
137. // Loop thru the hole centers and calculate endpoint of a line from that spot
138. // to 500px away
139.
140. // Max value of m is dynamic so it will take any amount of hole centers
141. for (int m = 0; m < centers.size(); m++) {
142.
143. // Calculate the line endpoints; take into account the angle (possible
144. // skewing of the object)
145. line_endpoint_x = centers[m].x + length * cos(angles[m] * pi / 180.0);
146. line_endpoint_y = centers[m].y + length * sin(angles[m] * pi / 180.0);
147.
148. orig1 = lineDraw(centers[m].x, centers[m].y, line_endpoint_x,
149. line_endpoint_y);
150.
151. if (x == 0 || x == 1) {
152.
153. // Two first holes are on the right edge so intersection occurs on
154. // the right side baseline
155. Orig = lineDraw(points[3].x, points[3].y, points[2].x, points[2].y);
156. }
157. else {
158.
159. // Third hole is on the left edge so intersection occurs on the left
160. // side baseline
161. orig = lineDraw(points[0].x, points[0].y, points[1].x, points[1].y);
162. }
163.
164. x++;
165.
166. // Stuff results to a vector
167. dists1 = orig1;
168. dists1.insert(dists1.end(), orig1.begin(), orig1.end());
169. dists2 = orig;
170. dists2.insert(dists2.end(), orig.begin(), orig.end());
171. isect_point_orig = intersect(dists1, dists2);
172. isect_point = isect_point_orig;
173. isect_point.insert(isect_point.end(), isect_point_orig.begin(),
174. isect_point_orig.end());
175. isect_point[1] *= -1;
176. isect_point[0] *= -1;
177. intersects.push_back(Point2f(isect_point[0], isect_point[1]));
178. }
179.
180. // Combine results to a single vector
181. distances.insert(distances.end(), centers.begin(), centers.end());
182. distances.insert(distances.end(), intersects.begin(), intersects.end());
183.

Appendix 5

4 (5)

184. return distances;
185. }
186.
187. // Calculate intersection between base and line from the hole centerpoints
188. vector < float > intersect(vector < float > line1, vector < float > line2) {
189. vector < float > points;
190. float x;
191. float y;
192. float D = (line1[0] * line2[1]) - (line1[1]) * (line2[0]); // Main determinant
193. float Dx = (line1[2] * line2[1]) - (line1[1] * line2[2]); // Get the Dx
194. float Dy = (line1[0] * line2[2]) - (line1[2] * line2[0]); // Get the Dy
195.
196. // Check if the lines are ever intersecting; if they are, calculate x and
197. // y positions
198. if (D != 0) {
199. x = Dx / D;
200. y = Dy / D;
201. }
202.
203. // TODO: Could apply a little bit of error handling with try-catch if the
204. // intersection fails, left it out because in real life the error means a
205. // problem elsewhere (issue with ROI etc)
206. points.push_back(x);
207. points.push_back(y);
208.
209. return points;
210. }
211.
212. // Construct functions for the lines to feed them for the intersect function
213. vector < float > lineDraw(float point1_x, float point1_y, float point2_x,
214. float point2_y) {
215. vector < float > points;
216. float a = point1_y - point2_y;
217. float b = point2_x - point1_x;
218. float c = ((point1_x * point2_y) - (point2_x * point1_y));
219. points.push_back(a);
220. points.push_back(b);
221. points.push_back(c);
222.
223. return points;
224. }
225.
226. // Calculate the distance between holes and distances from holes to the base
227. // This is constructed dynamic so will work for any size of a vector of points
228. vector < float > calculateDistances(vector < Point2f > points) {
229. vector < float > result;
230.
231. for (int i = 0; i < points.size(); i++) { // Loop thru indices
232.
233. if (i < points.size() / 2) {
234.
235. // Calculate distance from center points to the base
236. result.push_back(sqrt(pow((points[i].x - points[i + 3].x), 2)
237. + pow((points[i].y - points[i + 3].y), 2)));
238. }
239. else {
240.
241. // Calculate distances between the hole center points
242. if (i < points.size() - 1) {
243. result.push_back(sqrt(pow((points[i].x - points[i + 1].x), 2) +
244. pow((points[i].y - points[i + 1].y), 2)));
245. }
246. else {

Appendix 5

5 (5)

247. result.push_back(sqrt(pow((points[i].x - points[(points.size() / 2)]
248. .x),2) + pow((points[i].y - points[i –
249. (points.size() / 2) + 1].y), 2)));
250. }
251. }
252. }
253.
254. return result;
255. }

Appendix 6

1 (3)

Python source for the third use-case

1. # Import the necessary packages
1. import argparse
2. import imutils from imutils
3. import contours
4. import cv2
5. import cv
6. import numpy as np
7. import json
8. import math
9. import time
10.
11. def shapedetector(image, roi):
12.
13. # Load the image and resize it to a smaller factor so that the shapes can be
14. # approximated better
15. image = image.strip('\'')
16. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
17. t0 = time.time()
18.
19. roi = roi.strip('\'')
20.
21. # Create ROI from arguments and crop image
22. a, b, c, d = (int(x)
23.
24. for x in roi.split(','))
25. image = image[a: b, c: d]
26.
27. # Apply the masks and treshold the image
28. mask = np.zeros(image.shape, np.uint8)
29.
30. # Get centers for contours; this will fetch the centers for the black circles
31. # inside the ROI, no tresholding needed as the color is pure black
32. cnts2 = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
33. cnts2 = cnts2[0]
34.
35. if imutils.is_cv2()
36.
37. else cnts2[1]
38.
39. # Define some numpy arrays for storage
40. centers = []
41. points = []
42. dist2edge = []
43. dist2point = []
44.
45. z = 0
46. angle = 0
47. length = 500
48.
49. # Assume a line length 500 px to make sure that intersection occurs
50. for i in cnts2:
51.
52. if len(i) > 8:
53.
54. # Fetch minimum area rectangle around the contours
55. # and dump results to a numpy array, the array needed

Appendix 6

2 (3)

56. # is needed for printing only
57. box = cv2.minAreaRect(i)
58.
59. if box[1][0] > 100:
60.
61. if box[1][0] < 500:
62.
63. centers.insert(z, box[0])
64. angle = box[2]
65.
66. # Calculate coordinates for the endpoint of the line
67. # from center of the hole
68. line_x = box[0][0] + length * math.cos(angle * math.pi / 180.0)
69. line_y = box[0][1] + length * math.sin(angle * math.pi / 180.0)
70.
71. points.insert(z, (line_x, line_y)) z = z + 1
72.
73. # Check for the large black area inside the roi
74. if box[1][0] > 2000:
75. box2 = cv2.boxPoints(box)
76. angle = box[2]
77.
78. # While taking the angle of the minimum bounding rectangle, of the large
79. # contour(position of the object under the camera might change) define a line
80. # from the center of the holes to the appropriate edge of the large contour
81. for j in range(0, 3):
82.
83. # Inspecting 3 holes so draw 3 lines
84. l1 = line([centers[j][0], centers[j][1]], [points[j][0], points[j][1]])
85.
86. # Line from the hole center
87. if j == 0:
88.
89. # At the same time calculate distances between holes
90. dist2point = np.append(dist2point, math.sqrt((centers[j][0] – centers
91. [j + 1][0]) * * 2 + (centers[j][1] – centers
92. [j + 1][1]) * * 2))
93. dist2point = np.append(dist2point, math.sqrt((centers[j][0] – centers
94. [j + 2][0]) * * 2 + (centers[j][1] – centers
95. [j + 2][1]) * * 2))
96.
97. # Line from the right edge of the main contour
98. l2 = line([box2[2][0], box2[2][1]], [box2[3][0], box2[3][1]])
99.
100. if j == 1:
101.
102. dist2point = np.append(dist2point, math.sqrt((centers[j][0] - centers
103. [j + 1][0]) * * 2 + (centers[j][1] – centers
104. [j + 1][1]) * * 2))
105.
106.
107. # Line from the right edge of the main contour
108. l2 = line([box2[2][0], box2[2][1]], [box2[3][0], box2[3][1]])
109.
110. if j == 2:
111.
112. # Line from the left edge of the main contour
113. l2 = line([box2[0][0], box2[0][1]], [box2[1][0], box2[1][1]])
114.
115. r = intersect(l1, l2) # get the intersection point
116.
117. # calculate distance to edge and append to tuple for storage
118. dist2edge = np.append(dist2edge, math.sqrt((r[0] - centers[j][0]) * * 2 +

Appendix 6

3 (3)

119. (r[1] – centers[j][1]) * * 2))
120.
121. data = {}
122. data["distance_to_edges"] = {}
123. data["distance_between_holes"] = {}
124.
125. for q in range(0, dist2edge.size):
126.
127. data["distance_to_edges"][q] = dist2edge[q]
128.
129. for q in range(0, dist2edge.size):
130. data["distance_between_holes"][q] = dist2point[q]
131.
132. t1 = time.time()
133. total = t1 - t0
134.
135. filewrite('time: {}\n'.format(total), 'benchmark_results_python', 'a')
136.
137. return json.dumps(str(data))
138.
139. # Define the equation for a line between points
140. def line(point1, point2):
141. a = (point1[1] - point2[1])
142. b = (point2[0] - point1[0])
143. c = (point1[0] * point2[1] - point2[0] * point1[1])
144.
145. return a, b, -c # return the coefs of line equation
146.
147. # Define the function for intersection
148. def intersect(line1, line2):
149. D = line1[0] * line2[1] - line1[1] * line2[0]
150.
151. # Get the main determinant from matrix[A1 B1, A2 B2]
152. Dx = line1[2] * line2[1] - line1[1] * line2[2] # Dx from matrix[C1 B1, C2 B2]
153. Dy = line1[0] * line2[2] - line1[2] * line2[0] # Dy from matrix[A1 C1, A2 C2]
154.
155. if D != 0:
156.
157. # Calculate x and y
158. x = Dx / D
159. y = Dy / D
160. return x, y
161.
162. else :
163. return False
164.
165. # Write the results to file
166. def filewrite(json, filename, writemode):
167. f = open(filename, writemode)
168. f.write(json)
169. f.close()
170. return 0
171.
172. ap = argparse.ArgumentParser()
173. ap.add_argument("-i", "--image", help = "path to the image file")
174. ap.add_argument("-r", "-roi", help = "region of interest, format 'x,y,width,height'")
175.
176. args = vars(ap.parse_args())
177. json = shapedetector(args["image"], args["roi"]);
178.

Appendix 7

1 (2)

Python source for the Calibrator

1. # Import the necessary packages
2. import argparse
3. import imutils from imutils
4. import contours
5. import cv2
6. import cv
7. import numpy as np
8. import math
9.
10. def calibrator(image):
11.
12. # Load the image and resize it to a smaller factor so that
13. # the shapes can be approximated better
14. image = image.strip('\'')
15. image = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
16.
17. # Create two ROIs and crop image
18. a, b, c, d = 550, 50, 2200, 600
19. e, f, g, h = 550, 50, 700, 600
20.
21. roi1 = image[a: a + b, c: c + d]
22. roi2 = image[e: e + f, g: g + h]
23.
24. # Function calls
25. dist1ellipse, dist1angle = calcDistance(roi1)
26. dist2ellipse, dist2angle = calcDistance(roi2)
27.
28. # Print the calibration error on y - axis
29. print("Calibration error y:", dist2ellipse[0][1] - dist1ellipse[0][1])
30.
31. # Print the average angle of distortion
32. print("Angle of distortion:", ((dist1angle - 90) + (dist2angle - 90)) / 2)
33.
34. def calcDistance(roi):
35.
36. # Blur some of the noise out of the image, kernel 3x3
37. blur = cv2.blur(roi, (3, 3), 0)
38.
39. # Use Canny to detect the edges
40. edges = cv2.Canny(blur, 50, 200, 1)
41.
42. # Find the contours from the canny output, chain_approx_simple to save memory
43. cnts = cv2.findContours(edges, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
44. cnts = cnts[0]
45.
46. if imutils.is_cv2()
47.
48. else cnts[1]
49.
50. for i in cnts:
51.
52. if len(i) > 8:
53.
54. box = cv2.minAreaRect(i)
55.
56. if box[0][1] > 30:
57.

Appendix 7

2 (2)

58. # Use fitEllipse to find the center of mass
59. ellipse = cv2.fitEllipse(i)
60. p = ellipse[2]
61.
62. # Return the center point and angle of distortion
63. return ellipse, p
64.
65. ap = argparse.ArgumentParser()
66. ap.add_argument("-i", "--image", help = "path to the image file")
67. args = vars(ap.parse_args())
68.
69. calibrator(args["image"]);
70.

Appendix 8

1 (2)

Graphs on the benchmark results for the second use-case

Appendix 8

2 (2)

Appendix 9

1 (2)

Graphs on the benchmark results for the third use-case

Appendix 9

2 (2)

