
1

Managing software project with

GitLab
How it is done at Sparta Consulting Oy

Niko Mikael Lehtovirta

Bachelor’s thesis
November 2017
Technology, communication and transport

 Degree Programme in Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Theseus

https://core.ac.uk/display/161419883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Description

Author(s)

Lehtovirta, Niko

Type of publication

Bachelor’s thesis
Date

15.11.2017

Language of publication:
English

Number of pages

29
Permission for web publi-

cation: x

Title of publication

Managing software project with GitLab

How is it done at Sparta Consulting Oy

Degree programme

Software Engineering

Supervisor(s)

Rantala, Ari

Assigned by

Sparta Consulting Oy

Abstract

The objective of this thesis was to create initial base of GitLab process documentation for
the Sparta Consulting Oy and to give suggestion to improve current process. Initial base
means short introduction of different parts of GitLab.

Sparta Consulting Oy has been using GitLab as version control system for the whole prod-
uct development time and 1-and-half year as tool for project management. In this
timespan process has been changed many times to find correct one for Sparta Consulting
Oy development team. Due to these multiple changes documentation on the processes
was never done. This situation wanted to be changed and that is why initial documentation
on the GitLab usage was asked.

Another wanted thing was suggestions for improvements. Current process has parts that
challenging for product development and suggestion to improve these was requested.
Ideas proposed in this thesis are mostly in use already, like template for merge requests.
Larger changes like continuous integration are currently being implemented.

Keywords/tags (subjects)

Project, Management, Development, Git, Kanban, GitLab

Miscellaneous

https://janet.finna.fi/Search/Results?lookfor=asiasanastot&prefiltered=format_Database&SearchForm_submit=Find&retainFilters=0&filter%5B%5D=format%3A%220%2FDatabase%2F%22&lng=en-gb
http://vesa.lib.helsinki.fi/

Kuvailulehti

Tekijä(t)

Lehtovirta, Niko
Julkaisun laji

Opinnäytetyö, AMK
Päivämäärä

15.11.2017

Sivumäärä

29
Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Managing software project with GitLab

How is it done on Sparta Consulting Oy

Tutkinto-ohjelma

Ohjelmistotekniikan tutkinto-ohjelma

Työn ohjaaja(t)

Ari Rantala

Toimeksiantaja(t)

Sparta Consulting Oy

Tiivistelmä

Opinnäytetyön tarkoituksena oli toteuttaa Sparta Consulting Oy:lle alustavaa pohjaa GitLab
prosessidokumentaatiolle, sekä antaa kehitysehdotuksia nykyisiin prosesseihin. Alustavalla
pohjalla tarkoitetaan lyhyttä esittelyä eri GitLabin osa-alueista.

Sparta Consulting Oy:n tuotekehitys on käyttänyt koko tuotekehityksen ajan GitLabia versi-
onhallintaan ja puolitoista vuotta projektinhallintaan. Tänä aikana prosesseja on useaan
kertaan muutettu yritettäessä löytää sopivaa toimintamallia Sparta Consulting Oy kehitys-
tiimille. Näiden muutoksien vuoksi dokumentaatiota prosesseista ja käytöstä ei koskaan
saatu aikaiseksi. Tähän asiaan haluttiin muutosta ja siksi alustavaa dokumentaatiota GitLa-
bin käytöstä toivottiin.

Toinen haluttu asia olivat kehitysehdotukset. Nykyisessä prosessissa on kohtia, jotka hidas-
tavat tai haittaavat tuotekehitystä ja näihin toivottiin ideoita. Näistä kehitysehdotuksista
suurin osa on jo käytössä tuotekehitystiimillä, kuten pohjat merge requesteille. Isommat
muutokset ovat vielä työn alla, kuten jatkuvan integraation muutokset.

Avainsanat (asiasanat)

Project, Management, Development, Git, Kanban, GitLab

http://www.finto.fi/

1

Table of Contents

Table of Contents ... 1

Glossary ... 3

1 Introduction .. 5

1.1 Sparta Consulting Oy ... 5

1.2 Thesis objective ... 5

1.3 Version control .. 6

1.4 Scrum .. 6

1.5 Kanban .. 7

1.6 PlantUML .. 10

2 Objective ... 10

3 GitLab ... 10

3.1 Introduction .. 10

3.2 GitLab groups .. 11

3.3 Project .. 12

3.4 Milestones .. 13

3.5 Labels .. 14

3.6 Issue tickets .. 15

3.7 Issue board ... 17

3.8 Merge request ... 18

3.9 Pipeline ... 22

2

4 Proposed improvements ... 23

4.1 Milestones .. 23

4.2 Issue tickets .. 24

4.3 Issue board ... 26

4.4 Merge request ... 27

4.5 Pipeline ... 29

5 Results .. 30

References ... 30

3

Glossary

Branch

Git repository can contain many simultaneous changes by using separated branches.

Every code is always part of some branch in Git, and development team can decide

which branch is the main branch to work on.

CI

Continuous integration allows running specified tests on Git repositories every time

files are changed on server repository.

CD

Continuous deployment allows deploying project to a specified server or creating re-

lease build.

Docker

Tool used to build and run small virtual images where applications can be tested or

run separately from the system that runs those virtual images.

Git

Distributed version control system used to store source code

GitLab CI

Continuous integration tool built to be used with GitLab. Allows running tests at any

server with network connection to GitLab.

GitLab CD

Continuous deployment tools included in GitLab CI and GitLab, allow building a re-

lease file and accessing it from GitLab or deploying it to server.

Integration testing

Contains testing of user interface and whole features of program.

4

Merging

Changes from two branches are merged together to contain changes from both

branches.

Project manager

Person who manages development team and tells them where to focus on given

timeframe.

Product owner

Person whose job is to collect information on what customers want from a product

and decide what features are wanted to be implemented and informs those to pro-

ject manager.

Repository

Git repository contains all files that are version controlled by Git.

Unit testing

Tests that are meant for testing a single functionality in program.

5

1 Introduction

1.1 Sparta Consulting Oy

“Sparta was founded because we wanted to create for ourselves the kind of a com-

pany we always wanted to work for. We also wanted to do consulting in an ethical

way, always delivering value to our customers. Sparta offers information manage-

ment solutions that are different from the mainstream. We are proud of the way we

work and operate. Sparta combines business understanding, information manage-

ment and cyber security services in a unique way. We believe that business and in-

formation architecture should be a single entity, not forgetting security architecture

and risk management.” (In light of better information, 2017).

Sparta was founded in 2012 and the first office was founded in Jyväskylä. The second

office in Helsinki was founded in 2013. In 2015 Sparta Consulting Oy decided to in-

vest in product development, and a product development team was founded in

Jyväskylä in the same year. Currently, the office in Jyväskylä is marked as head office

for Sparta Consulting Oy (Sparta Consulting Oy, 2017).

From this on point Sparta Consulting Oy is referred to as Sparta, which makes the

writing and reading this thesis easier, since the full name of the company does not

constantly have to be given.

1.2 Thesis objective

The objective for this thesis is to demonstrate how Sparta manages software project

with GitLab and propose changes to things that are currently challenging. Back-

ground on why and how this thesis came to be is from two years back on 2015 when

the author was hired to Sparta as trainee. There was limited information on how a

software project should be managed at Sparta, and with the knowledge gotten from

school, the author was assigned to create plan on how it would be done. This task

has continued to this day.

There have been many large changes in the tools that were used; workflows have

changed many times and even changes to methods were changed. For a year, Sparta

6

has stuck with GitLab as it has allowed to manage project without having multiple

different tools. Using only GitLab has made the lives of developers and management

easier as there is only one place everything can be found on.

1.3 Version control

Sparta uses Git in its version control for code. Git is a fast-distributed version control

system that allows working without having a constant connection to the main server;

which is important to allow developers working remotely. Another main reason for

Git usage is its popularity. Almost all open source code in use uses Git for version

control so it allows contributing changes back to open source.

For Git popularity, it is hard to give concrete numbers on how many projects are us-

ing Git and how many projects use something else. The only number that could be

found is the number of projects hosted on GitHub. Currently there are over 71 mil-

lion projects (About GitHub, 2017) hosted in GitHub. GitHub only support Git, so all

those 71 million projects are Git projects.

1.4 Scrum

“Scrum’s early advocates were inspired by empirical inspect and adapt feedback

loops to cope with complexity and risk. Scrum emphasizes decision making from real-

world results rather than speculation. Time is divided into short work cadences,

known as sprints, typically one week or two weeks long. The product is kept in a po-

tentially shippable (properly integrated and tested) state at all times. At the end of

each sprint, stakeholders and team members meet to see a demonstrated potentially

shippable product increment and plan its next steps.

Scrum is a simple set of roles, responsibilities, and meetings that never change. By

removing unnecessary unpredictability, we’re better able to cope with the necessary

unpredictability of continuous discovery and learning.” (Scrum methodology)

Scrum is meant to add rules on how development should be handled in short two-

week cycles so team; Scrum master and product owner can discuss how a project is

going after every cycle. These cycles in Scrum are called sprints. Another idea in

7

Scrum is to have a short meeting every morning to with team so the Scrum master

can gain information about developers situation in order to maybe assign some help

for a developer that might be struggling with task.

This thesis only scrapes how Scrum works as Sparta did already use Scrum in the

past. The basic understanding on how Scrum works will help when discussing history,

and how and why some things were done with GitLab in the past.

1.5 Kanban

 “Every business hopes to be efficient and cost-effective and to waste as few re-

sources as possible: the essence of “lean manufacturing” That is why one finds that

every lean manufacturing software solution (from multi-million-dollar, complex, inte-

grated ERP systems to very simple and pragmatic, replenishment-based, supply-chain

“kanban” setups) contends that it will eliminate waste, increase efficiency, and be

easily cost-justified. In fact, without exception, there is an assertion that the ROI (re-

turn on investment) on all lean software systems is axiomatic and rapid.” (Examining

Lean Manufacturing Promise)

In the late 1940s, Toyota started to study supermarkets trying to get an idea for how

to apply shelf-stocking techniques to their factory floor. Customers generally get

what they need from supermarket at the required time without any hassle. Super-

markets stock only what is expected to sell, and customers take what they need be-

cause the supply is assured. This led Toyota to view the customer as a port preceding

the process and this preceding process as a kind of store.

Kanban aligns inventory levels with actual consumption. A signal informs suppliers to

produce and deliver new material when it is being consumed. In software develop-

ment, the customer tells the product owner what it wants, and those requirements

are added to a board. These signals are tracked through the replenishment cycle, giv-

ing visibility to supplier, consumer and buyer. In software development, visibility is

given to the development team and management so that they can report to custom-

ers what the status of their request is. (Kanban origins, 2017)

8

The rate of demand is used in Kanban to control the rate of production, so demand is

being passed from the customer up through to customer-store processes. In 1953,

Toyota applied this logic in their main plant machine shop. Kanban was originally in-

vented by a Toyota engineer Taiichi Ohno (Taichi Ohno, 2017), who wanted to

achieve at Toyota Just-in-time (JIT) manufacturing process to reduce the time from

customer demand to production.

GitLab has so called issue boards that can be used to follow Kanban model. These

boards are used with labels to split which column each issue ticket belongs to. Figure

1 illustrates how this looks like on GitLab. Figure 1 is also used to demonstrate how

Kanban works if used in GitLab.

Figure 1. Simple GitLab Kanban board with four example tickets.

In Figure 1 board, there are three columns with a backlog, doing and closed and four

tickets with two bugs and two feature tickets. The idea of Kanban is to simply move

those tickets on the board from left to right with the designated person assigned to

it. This allows seeing who is working currently on which task, and for history pur-

poses, who worked on the ticket that is now closed.

To reduce time from demand to production, GitLab offers burndown charts for see-

ing how fast issue tickets are being closed as seen in Figure 2. The idea of a burn-

down chart is to look at the speed that tickets are being marked as closed within

milestone start and end time. The dotted guideline shows how fast tickets should be

9

closed, and the progress line shows how well progress is really going. A wanted situa-

tion is that all tickets are closed before end time. Figure 2 already shows that devel-

opers are behind schedule and for some reason the progress has stopped on the

middle.

Figure 2. Burndown chart on Kanban board.

Another matter to note with issue tickets is that they can also have different weights

assigned to them from zero to nine. The weight indicates how important that ticket

is; if ticket has no weight there is no rush to implement it; however, if it has the maxi-

mum weight of nine, it needs immediate action from the team. GitLab offers burn-

down charts with weight calculated in them, which can be seen in Figure 3.

Figure 3. Burndown chart example on Kanban board with calculated weight

In Figure 2 was seen that the project was behind schedule; however, when adding

the weight calculation shown in Figure 3, the project is ahead of the schedule as tick-

ets with more weight were implemented or fixed first.

10

1.6 PlantUML

PlantUML is an application that allows creating UML diagrams from a text file using a

simple and human readable syntax. All diagrams used in this thesis are generated

with PlantUML Web Server provided by PlantUML project (PlantUML 2017). The links

for the generated diagrams can be found in the References.

2 Objective

The objective of this thesis is to work as a base of documentation of the current

GitLab usage in Sparta development and to propose changes that would improve it.

The reason for using this as a base documentation is mainly due to using the thesis

format which is quite different from a usage document. Proper usage documentation

would also include a more in-depth view on Git usage, which is not included here.

This thesis also introduces the history of how Sparta development team got to its

current GitLab usage.

This thesis limits itself to only GitLab and does not include other tools, which was re-

quested by Sparta as for them proposing other tools would be way further in the fu-

ture. Looking at this much into the future is speculation as it would require speculat-

ing how the requirements of the development team and management change.

3 GitLab

3.1 Introduction

GitLab is an open source software offering an easy Git repository management from

a web UI. GitLab also features project access management, a wiki for documentation,

issues for task management, and milestones to set. GitLab comes with three editions.

The first is free community edition (CE) with all basic features required for project

management, including repository hosting, issue tickets, merge request, issue board.

Next, there is Enterprise edition starter (EES), the version containing features re-

quired for a larger project such as issue boards limited to milestones, multiple issue

boards, related issues, multiple reviews for merge request issue weights, burndown

11

charts and many more feature for managing GitLab instance. Lastly, there is Enter-

prise edition premium (EEP) which is meant for very large development teams giving

feature like group board to add multiple project on same board and other features

required for managing GitLab with hundreds of users. (GitLab products 2017)

There is also a public GitLab EEP instance hosted by GitLab, which is also used as

their development platform. For this thesis, all images from GitLab are from that

publicly hosted instance using the writer’s personal profile. For demoing issues,

merge request and other project related views have been created in the thesis pro-

ject for the writer’s personal user. Below, in Figure 4 is an image from the author’s

personal dashboard on a publicly hosted GitLab instance (Public GitLab instance).

Note that even though this thesis is about GitLab usage at Sparta, there are no im-

ages from their GitLab instance. This is for privacy reasons to make sure that no pri-

vate information is accidentally released on these images.

3.2 GitLab groups

Group allows multiple project under the same namespace. Large products usually

have multiple related projects, for example, there is code for a website and a sepa-

rate server project which would handle requests from that website. Both projects

would be added to the same group. Figure 5 illustrates what having multiple projects

in one group would look like. A group can also be used to manage which users can

see that group and all projects under that group.

12

Figure 4. GitLab organization group page (GitLab, 2017)

Sparta uses one group per product where there are couple of projects related to that

product. In that group, there is a project for the product itself, request for comment

(RFC) and one project per customer deployment. These customer projects contain

files and documentation related to that deployment.

3.3 Project

Project in GitLab is where all the files, documentation, issue tickets and other project

related information are contained. For Git usage, every project is a repository where

developers commit and send their code. Figure 6 illustrates how a project page looks

for this thesis.

13

Figure 5. Thesis project page for example.

3.4 Milestones

Milestones contain only three fields: description, start date and due date and multi-

ple issues assigned to milestone itself. Milestones can be used to separate issues to

their own projects and track how certain milestone is progressing. For example,

burndown charts shown in Figures 2 and 3 are visible only in the milestone view. Fig-

ure 7 shows how milestone editor looks like on GitLab.

14

Figure 6. Empty milestone editor example on GitLab.

Milestones for Sparta have seen many changes in these two years. First, Sparta did

not use them at all as developers, included the writer, since they did not see any rea-

son for them. Later when issue ticket amount started to climb, and Sparta started to

move towards Scrum development model, they first used them for sprints. For every

sprint, there would be a milestone with end date as title. Later, there was the change

on sprint length: it was to be longer with the release after every sprint. This is when

milestones with version number started to appear and old sprint milestones with

date were closed. The next big change for milestones took place with the change to

Kanban model, which was done to better allow the product to be worked for the cus-

tomer so there was no limit to how long something would take like in Scrum with

sprints. This is when customer milestones appeared.

3.5 Labels

Labels are used for marking what kind of issue ticket or merge request it is or to

show the status of the issue or merge requests. GitLab also uses these labels on an

issue board as seen in Figure 1 where doing was just a simple label. The label itself

does not contain other than three fields, name, description and background color.

The example in Figure 8 describes what the label editor looks like on GitLab.

15

Figure 7. Label editor on GitLab.

For Sparta, there have been multiple different ways of using labels. First, there was

minimal usage with simple bug and feature. With more issue tickets and moving to

Scrum and issue board usage, the status label started to appear. Later, there was a

cleanup for label naming so every label with a status would be prefixed with a status,

e.g. “Doing” would become “Status: Doing” and “Bug” would become “Kind: Bug” to

separate what is status and what kind of issue it concerns. These status and kind la-

bels are still in use and there is no reason for changing them. Some new labels are re-

quired for the changes proposed in issues. There should be kind labels for feature

and task so those can be also filtered in issues list and board.

3.6 Issue tickets

Kanban tickets in GitLab are issue tickets. Issue ticket contain plenty of small extra in-

formation that can be used to manage them. The issues can come with time tracking

on how long it took to implement, due date for when issue is needed to be imple-

mented. The important part for this thesis is the possibility to assign issue ticket to

milestone and adding weight to it. The issue can also contain labels. Figure 7 shows

what the issue editor looks like on GitLab.

16

Figure 8. Empty issue example on GitLab.

Issues are the main part of project management and the hardest part to do correctly.

At Sparta, these issues were always written without any template, so everybody

could write anything from a nicely formatted issue with multiple subtitles and images

to a one-line reminder to do something. What has changed in these two years is eve-

rything else related to these issues. First labels started to appear to these issue tick-

ets. Then milestones were added to new tickets. Lately there has been activity to

start adding milestones for older tickets that did not yet have them. When going

through these old issues there was a new label added for issues that did not have

enough information in them for the developer to understand what it requested.

17

3.7 Issue board

For information on how issue boards look and work the reader is advised to see Kan-

ban Chapter and Figure 1. This chapter introduced how issue boards are used at

Sparta and how their usage could be improved. From the beginning, Sparta has

mainly used only one issue board with status labels as columns. The order of the first

status labels in use was: “to do”, “doing”, “blocked”, “ready for test”, “testing & QA”,

and a closed column was automatically added at the end. To do status would mean

that the issue ticket is marked for this sprint. Doing meant that the developer was

working on it. Blocked meant that the issues ticket cannot be worked on before

something else was done. Ready for test meant that a merge request was made and

is ready for testing. Testing and QA meant that a merge request has been merged,

and it requires testing again after merging. An issue ticket could be closed after the

developer has tested merge request changes after merging. Figure 13 shows how

this looked: the colored columns are meant to show which columns do not use labels

but use GitLab functionality.

Figure 9. First version of issue boards (Niko Lehtovirta, 2017)

Later, when changing to use milestones filtering by milestone was added to the issue

board, it only shows issue tickets marked to the current milestone. This is when “to

do” label was removed and replaced with a backlog where issue tickets without sta-

tus label are found. This was simpler as issue tickets that should be done in sprint did

not require separate label but were automatically added to the backlog. Figure 11

demonstrates how this changed the board.

Figure 10. Issue board after replacing “to do”. (Niko Lehtovirta, 2017)

18

The next change to status labels were new RFC labels being added to before doing

the marking that there is an RFC ready for approval. This RFC would need to be ap-

proved before the developer can start implementing the proposed solution in it,

which brings the current situation with issue boards demonstrated in Figure 12.

Figure 11. Issue board after adding RFC. (Niko Lehtovirta, 2017)

3.8 Merge request

Merge request is a request containing changes made to the existing code base for re-

view, testing and inclusion to an existing code base. The original way of sending code

changes with Git was designed to be sent with an email as patches that contain

changes made to be merged to main repository. This is a good solution for Linux ker-

nel developers where there are thousands of them, however, for smaller projects

and teams it is too complicated. For every change made after sending the patch one

needs to send another email with an updated patch. For this reason, GitLab has

merge request to make sending changes easier. Merge request can be created after

pushing changes to branch and then creating a merge request from that branch. Up-

dating merge request is easy, just pushing more changes to the branch where merge

request originates from. Figure 13 shows how this works.

19

Figure 12. Merge request process (Niko Lehtovirta, 2017)

Merge request also contains other good functionality than just showing changes. It

has commenting so developers can discuss the implementation, review functionality

where the developer can add a comment to change and discuss the exact point in

many changes. The latest GitLab 10.1 update has added the functionality to add re-

view comments to images so this will most likely be used more often in the future.

Figure 7 illustrates an example on what an empty merge request looks like on GitLab.

20

Figure 13. Empty merge request editor example on GitLab.

On project settings it is possible to set that every merge request requires that CI tests

are passed, and that the one other developer has accepted the changes before it

could be merged. These options are currently enabled in the product project.

Merge request also allows linking to an issue ticket by just adding a link or an issue

ticket id to the merge request description. There are two options how this can be

used. The first is that there is just an issue ticket id without any specific text before

that as in Figure 15 which GitLab calls as mentioning. This adds the merge request

status to a linked issue ticket as shown in Figure 16. Another option is to add fixes or

closes to the text before the issue ticket link as shown in Figure 17. When closes or

fixes is used, the issue ticket is automatically closed when the merge request is

merged, and this is shown also in issue ticket in Figure 18.

21

Figure 14. Merge request issue ticket mentioning

Figure 15. Related merge request on issue ticket

Figure 16. Merge request when it closes issue

22

Figure 17. Issue when related merge request closes it

3.9 Pipeline

“Investing in CI results in fast feedback on code changes. Fast as in "within minutes"

fast. A team that relies primarily on manual testing may get feedback in a couple

hours, but in reality, comprehensive test feedback comes a day–or several days–after

the code gets changed. And by that time more changes have occurred, making bug-

fixing an archeological expedition with developers digging through several layers of

code to get at the root of the problem.

That is decidedly not fast.” (Dan Radigan, Continuous Integration)

Pipelines in GitLab mean a collection of CI tests that can be run in a determined order

or simultaneously. From the start of the work on Sparta the writer has been manag-

ing the CI testing and studying new solutions to allow for even more automation us-

ing GitLab CI. This has meant learning to use Docker for virtualization to run tests

separate from the server and ways how to secure things that need to be run on the

server itself. This thesis will not go in detail about those but will go through their us-

age and how they could be improved.

The first versions of CI usage in Sparta were running unit tests. Unit tests mean test-

ing a single functionality of an application which developers use to validate that their

implementation works as expected. The next code linter test was added; which

means the code was required to be of certain style, for example, a line should not ex-

ceed 80 characters. After this came the release package built tests, which means that

every pushed commit creates a release build to see that it properly builds. This also

23

took place when release packages were introduced to be built as artifacts for down-

load. Then came the first deployment from the release package. Every new commit

on the master branch would be deployed to the local server and be available for de-

velopers and testers for testing. The next was the deployment for documentation

and code coverage. Every commit to master would now also deploy automatically

generated documentation and a coverage report to local server for developers to

read. This is also when a test for the documentation generated was added to every

merge request. Then came the support for integration testing on every new commit

to the master branch. Integration testing means that tests are not run for single func-

tionality as with unit tests but for a single feature. The single feature usually contains

many functionalities that work together to make it work, e.g. creating a new user to

a website. A unit test would test that the user creation works to database, but not if

that information comes correctly from user browser to server and then to database.

Lastly, the deployment got another update when support for GitLab environment de-

ployment was added. GitLab has an integrated support for different types of deploy-

ment where one can give an environment name for deployment and follow which

commit was used and when for that deployment. Later, GitLab versions added sup-

port for monitoring these environment deployments, however, that feature is cur-

rently not being used.

4 Proposed improvements

4.1 Milestones

The current situation is that there are milestones for release and customer. Having

only these has created some challenges. First, having a larger change would need to

be assigned to some of these milestones so they could be tracked, which might not

really be a part of any release or be customer specific, e.g. code quality. There are is-

sue tickets which improve code quality by adding more tests for a certain functional-

ity. These issue tickets are not for any release or customer specific.

Milestones usage can be improved by creating more milestones for separate larger

parts. The previous example could be added to a separate milestone called code

24

quality that can contain all code improvement issue tickets. Now they will not show

on any release or customer milestone and can be worked on behind the scenes on a

separate milestone. Simply put, more large background changes should always come

with a separate milestone, so every issue ticket can have some milestone it belongs

to, thus making it easier for developers.

4.2 Issue tickets

Issue tickets without templates are easy to write, however, without any formal tem-

plate not all issue tickets might have enough information included in them. To be

correct, having templates will not fix having enough information included in issue

tickets; however, it would help.

What this thesis proposes is to have a default template that does not require too

many different things but just enough to start a discussion where the rest of the in-

formation can then be added.

GitLab allows a project to have a default template for every issue ticket and this is

not currently being used at Sparta. This default template should be designed to have

only a few fields. The first field is description where information is given on what this

issue ticket wants. The next field is for use cases which should contain information on

for who this issue ticket is and why it is required. Figure 19 shows what this default

template would look like.

Figure 18. Default template for issue ticket.

25

Another change for issue tickets are not related to templates but linking issues with

each other. GitLab 9.5 added the related issues feature, which allows having links to

other issue tickets included in the issue ticket. Currently, only some of issues tickets

have these links, which should be used more actively to follow which issue tickets are

related to each other as they work both ways when added. For example, in Figure 20

and 21 the related issues were only added on the task issue ticket in Figure 21. As

seen in Figure 20, it is also now visible there; so adding these does not require adding

them to both issue tickets.

Figure 19. Example feature issue ticket

Figure 20. Example task issue ticket for feature

The last and biggest change for issues is to move all discussion to them. Currently

there is another project called RFC (Request for comment) where large architecture

26

changes are documented. There is no rule currently on what is large enough a

change to require an RFC so only some changes have RFC documentation written.

Another challenge with the RFC is that it requires developers to create a merge re-

quest to separate a project, which takes time that could be better spent discussing

ideas on how the feature could be implemented. Therefore, this thesis proposes re-

moving the RFC and including documentation in issue comments where the whole

discussion for code changes can be found in a single place. This change also makes it

easier for developers to propose solutions as they can do it instantly and not assign

themselves to creating merge request to an RFC project where the discussion is held.

4.3 Issue board

The current challenges with issue boards are that there are not enough of them.

There is only one board which by default is filtered to a milestone. In addition, there

are not enough other types of boards that could be useful in some situation, e.g. hav-

ing a board with all different “kind” labels as columns, which would allow seeing how

many issue tickets are marked as bug, for example.

What this thesis proposes is simply to have more boards; a default board that opens

when viewing issue boards should be named as “all” with status labels such as the

currently used board. This issue board would not be filtered to any milestone by de-

fault. Second board is so called “kind” board with all columns having different “kind”

labels in them. This would allow easily seeing how many issue tickets are marked

with a bug or cleanup, for example. The rest of the boards should be for milestones

so that every milestone has a board attached to them. This can be done by filtering,

however, by having a readymade board for milestone makes it easier for developers

to add a link to it if required as seen in Figure 22 how this would look like.

Figure 21. Issue board with kind labels. (Niko Lehtovirta, 2017)

27

The next proposed change is to rename the RFC label to design. This is due to the

proposal on the issue ticket chapter earlier to remove the RFC project and move dis-

cussion to the issue. This design status would mean developers are currently discuss-

ing and designing a solution on how issue ticket could be implemented. No other sta-

tus label changes are proposed. Figure 23 illustrates how this would change the sta-

tus issue board.

Figure 22. Issue board after changing RFC to design. (Niko Lehtovirta, 2017)

4.4 Merge request

Currently the merge request does not use any indication where it belongs to, which

means, to see where a merge request belongs to, a developer must open the merge

request and look for that information from related issues. This thesis proposes that

all merge requests should start to include milestones. This allows with a quick look at

the merge request list to tell where the merge request belongs to. The milestone for

merge should be the same as the issue ticket it is related to.

Currently, the merge request also has the same kind of challenge that there is with

the issue tickets with freely types description field without any templates. The chal-

lenge comes with how every merge request looks different so finding related issue

tickets might be hard. Another proposal for the merge request is to add a default

template to them. GitLab has allowed this from the version 6.9, however, it has not

been used in Sparta projects yet. The default template should have only three fields

to make it small as issue tickets are the main place. The first is the description where

a developer writes a short summary of what this merge does. Next come the related

issues where a developer adds a link to all issue tickets this merge request is related

to. Lastly, there are tasks for work in progress merge requests, Figure 24 shows the

image of this template. There is also Figure 25 which shows how the template would

look, for example, for a merge request.

28

Figure 23. Merge request template

Figure 24. Example merge request with template.

29

4.5 Pipeline

For every merge request there is unit, documentation, release and linter tests run.

After merge, the same tests are run again to make sure that merging worked

properly. Then a new version is deployed to the master environment and integration

tests are run for that last deployment. Next, new documentation and code coverage

are generated and deployed to the server. Lastly, there is release building where the

release can be built manually by pressing the button on GitLab. Release build is not

done on every commit as those are only sometimes needed, and this will save space

on the server so there are not hundreds of release builds kept on server for down-

load.

The current challenge with this setup is that integration tests are not being run on

merge request, so some approved merge requests might include a bug that was not

found on manual testing but is found with automated testing. This means the devel-

opers need to fix it in another merge request when it could have been easily found

on the first merge request if integration testing would have run on merge request.

So, the first proposal is to fix that issue and set up integration tests to run on every

merge request.

Next, there is a feature in GitLab that is not used currently in any way. GitLab Pages

allow hosting static websites with GitLab CI just by adding pages job and creating ar-

tifacts from those HTML files. This feature would be just right for documentation and

code coverage as they are simply static HTML files. This would also make their man-

agement easier by removing manual management on the server.

The last and biggest change for CI is the deployment. Deployments are currently us-

ing environments properly, however, how deployments are made does not allow

better integration to GitLab. Currently the deployment is done manually by running

release scripts on a shell in the server. GitLab recommends using Kubernetes for de-

ployment as its usage is integrated in GitLab. This would allow monitoring deploy-

ments and creating dynamic deployments. GitLab calls these dynamic deployments

Review Apps. This means every merge request can be deployed and tests could be

run there so a tester or developer would not have to run the product locally to test

the changes in merge request work as intended. This has been marked as a large

30

change due to a major change to how the product is currently being deployed, and

this is the change that would take many weeks to get properly working at even a

level that the product is currently being deployed.

5 Results

After introduction of these changes, smaller ones have already been implemented.

These include changes to board, milestone and template usage. Changes to mile-

stones have already made it easier for issue tickets that did not belong to any cur-

rently used milestones to have one. New milestones have also helped with issue

boards. Every milestone now has its own board with all status columns, so the devel-

opers and project manager can now easily see what the status of any milestone is.

Custom boards are also implemented which are not meant for Kanban usage as

those do not have status columns. There is a board for feature tickets where the pro-

ject manager can easily see how many open feature requests there are with option-

ally limiting board to a certain milestone. Another custom board is customer board.

This contains a column for each customer request, so the project manager and prod-

uct owner can see the situation for how many requested features are still being

worked on for every customer. Adding templates has also made minor improvement

on standardizing how issue ticket and merge request should look like. There is not

yet enough usage to tell if it will help with challenges regarding issue tickets without

enough information of what is wanted. The proposed changes to CI have been ac-

cepted and are being implemented. These are larger changes which require much

more time to be implemented properly, which means there is no information yet on

how their implementation will change the usage of GitLab in the Sparta development

team

References

About Github. 2017. Website. Accessed on 14.11.2017. Retrieved from
https://github.com/about

Dan Radigan, Continuous integration. Accessed on 17.11.2017. Retrieved from
https://www.atlassian.com/agile/continuous-integration

https://github.com/about
https://www.atlassian.com/agile/continuous-integration

31

GitLab. 2017. Website. Accessed on 14.11.2017. Retrieved from https://gitlab.com

GitLab products. 2017. Website. Accessed on 16.11.2017. Retrieved from
https://about.gitlab.com/products/

In the light of better information. 2017. Website. Accessed on 04.11.2017. Retrieved
from https://spartaconsulting.fi/en/company/

Kanban origins. 2017. Website. Accessed on 27.11.2017. Retrieved from
https://en.wikipedia.org/wiki/Kanban

The Internet Engineering Task Force. 2017. Request for Comments (RFC). Accessed
on 14.11.2017. Retrieved from http://www.ietf.org/rfc.html

Michael James. 2015. An empirical framework for learning (not a methodology).
Website. Accessed on 16.11.2017 http://scrummethodology.com/

Niko Lehtovirta. 2017. PlantUML design issue board. Website. Accessed on
17.11.2017. Retrieved from http://www.plantuml.com/plantuml/uml/SoWkIIm-
gAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQf-
nIItEJCy3CV8pyq02JZdvoTcfAK1MK6fYIgL2MdwHGabgSGbG80H80HKfg2a4EjQW6-
cSaryCqkQGcfS2j140

Niko Lehtovirta. 2017. PlantUML first issue board. Website. Accessed on 17.11.2017.
Retrieved from http://www.plantuml.com/plantuml/uml/SoWkIIm-
gAStDuQe9oLT8oQ_Xgd79pynB1z9EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15I
ceAGGw0hdAZdabcOMbgU4PcIMfDSuv-SKWRGwfUIb0Wm40

Niko Lehtovirta. 2017. PlantUML homepage. Website. Accessed on 14.11.2017. Re-
trieved from http://plantuml.com/

Niko Lehtovirta. 2017. PlantUML merge request process. Website. Accessed on
16.11.2017. Retrieved from http://www.plantuml.com/plan-
tuml/uml/FOun2iCm40JxUyMLrXUa8eRKWNn1iHVBO4dEtId6luy8mUqo-
Eyoe5iLQtiZV1T701GU_99OfXMlBa0KiU3Ue1Q8ZhHjuYFikzOFvvdXL7afrnEoVJHD-
FAPO5obOl6Shy_vrGH-GVFsidSbI311exqbE-

Niko Lehtovirta. 2017. PlantUML second issue board. Website. Accessed on
17.11.2017. Retrieved from http://www.plantuml.com/plantuml/uml/SoWkIIm-
gAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-
luQfnoS_C0z5EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGwrg2Rv9oJNm
pIvf2QbmAq2000

Niko Lehtovirta. 2017. PlantUML third issue board. Website. Accessed on 17.11.2017.
Retrieved from http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTim-
hoImiJGtFo2n9hN5AJCxEoK-luQe9SdC6aYxvc-
NaWdbDEVd9sQWf8F3KnfL8XBRz8eIIrk0Ge40AaW8eKr1G27MlGpNFEoIy6QND8pKi1
MWS0

Niko Lehtovirta. 2017. PlantUML “kind” issue board. Website. Accessed on
17.11.2017. Retrieved from http://www.plantuml.com/plantuml/uml/SoWkIIm-
gAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnAWM-
HePv0mZadDJ6ljA06NR5pJdvnQaeDbqDgNWhGB000

https://gitlab.com/
https://about.gitlab.com/products/
https://spartaconsulting.fi/en/company/
http://www.ietf.org/rfc.html
http://scrummethodology.com/
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnIItEJCy3CV8pyq02JZdvoTcfAK1MK6fYIgL2MdwHGabgSGbG80H80HKfg2a4EjQW6-cSaryCqkQGcfS2j140
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnIItEJCy3CV8pyq02JZdvoTcfAK1MK6fYIgL2MdwHGabgSGbG80H80HKfg2a4EjQW6-cSaryCqkQGcfS2j140
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnIItEJCy3CV8pyq02JZdvoTcfAK1MK6fYIgL2MdwHGabgSGbG80H80HKfg2a4EjQW6-cSaryCqkQGcfS2j140
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnIItEJCy3CV8pyq02JZdvoTcfAK1MK6fYIgL2MdwHGabgSGbG80H80HKfg2a4EjQW6-cSaryCqkQGcfS2j140
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQe9oLT8oQ_Xgd79pynB1z9EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGw0hdAZdabcOMbgU4PcIMfDSuv-SKWRGwfUIb0Wm40
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQe9oLT8oQ_Xgd79pynB1z9EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGw0hdAZdabcOMbgU4PcIMfDSuv-SKWRGwfUIb0Wm40
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQe9oLT8oQ_Xgd79pynB1z9EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGw0hdAZdabcOMbgU4PcIMfDSuv-SKWRGwfUIb0Wm40
http://plantuml.com/
http://www.plantuml.com/plantuml/uml/FOun2iCm40JxUyMLrXUa8eRKWNn1iHVBO4dEtId6luy8mUqoEyoe5iLQtiZV1T701GU_99OfXMlBa0KiU3Ue1Q8ZhHjuYFikzOFvvdXL7afrnEoVJHDFAPO5obOl6Shy_vrGH-GVFsidSbI311exqbE-
http://www.plantuml.com/plantuml/uml/FOun2iCm40JxUyMLrXUa8eRKWNn1iHVBO4dEtId6luy8mUqoEyoe5iLQtiZV1T701GU_99OfXMlBa0KiU3Ue1Q8ZhHjuYFikzOFvvdXL7afrnEoVJHDFAPO5obOl6Shy_vrGH-GVFsidSbI311exqbE-
http://www.plantuml.com/plantuml/uml/FOun2iCm40JxUyMLrXUa8eRKWNn1iHVBO4dEtId6luy8mUqoEyoe5iLQtiZV1T701GU_99OfXMlBa0KiU3Ue1Q8ZhHjuYFikzOFvvdXL7afrnEoVJHDFAPO5obOl6Shy_vrGH-GVFsidSbI311exqbE-
http://www.plantuml.com/plantuml/uml/FOun2iCm40JxUyMLrXUa8eRKWNn1iHVBO4dEtId6luy8mUqoEyoe5iLQtiZV1T701GU_99OfXMlBa0KiU3Ue1Q8ZhHjuYFikzOFvvdXL7afrnEoVJHDFAPO5obOl6Shy_vrGH-GVFsidSbI311exqbE-
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnoS_C0z5EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGwrg2Rv9oJNmpIvf2QbmAq2000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnoS_C0z5EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGwrg2Rv9oJNmpIvf2QbmAq2000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnoS_C0z5EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGwrg2Rv9oJNmpIvf2QbmAq2000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnoS_C0z5EEVd9sQafG5PGQc9AfK9QVf52IMfn2L0W14W15IceAGGwrg2Rv9oJNmpIvf2QbmAq2000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQe9SdC6aYxvcNaWdbDEVd9sQWf8F3KnfL8XBRz8eIIrk0Ge40AaW8eKr1G27MlGpNFEoIy6QND8pKi1MWS0
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQe9SdC6aYxvcNaWdbDEVd9sQWf8F3KnfL8XBRz8eIIrk0Ge40AaW8eKr1G27MlGpNFEoIy6QND8pKi1MWS0
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQe9SdC6aYxvcNaWdbDEVd9sQWf8F3KnfL8XBRz8eIIrk0Ge40AaW8eKr1G27MlGpNFEoIy6QND8pKi1MWS0
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQe9SdC6aYxvcNaWdbDEVd9sQWf8F3KnfL8XBRz8eIIrk0Ge40AaW8eKr1G27MlGpNFEoIy6QND8pKi1MWS0
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnAWMHePv0mZadDJ6ljA06NR5pJdvnQaeDbqDgNWhGB000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnAWMHePv0mZadDJ6ljA06NR5pJdvnQaeDbqDgNWhGB000
http://www.plantuml.com/plantuml/uml/SoWkIImgAStDuQfHTimhoImiJGtFo2n9hN5AJCxEoK-luQfnAWMHePv0mZadDJ6ljA06NR5pJdvnQaeDbqDgNWhGB000

32

Rust RFCs. 2017. Website. Accessed on 14.11.2017. Retrieved from http://rust-
lang.github.io/rfcs/

Sparta Consulting Oy. 2017. Website. Accessed on 11.11.2017. Retrieved from
https://tietopalvelu.ytj.fi/yritystiedot.aspx?yavain=2416943&tar-
kiste=48EBEB20D93CE66B297B3BFB7ADAF4B202B625FE

Taiichi Ohno. 2017. Website. Accessed on 16.11.2017. Retrieved from https://en.wik-
ipedia.org/wiki/Taiichi_Ohno

Thomas R. Cutler. 2006. Examining Lean Manufacturing Promise. Accessed on
16.11.2017. Retrieved from https://web.ar-
chive.org/web/20130526100928/http://www.softwaremag.com/content/Con-
tentCT.asp?P=3193

http://rust-lang.github.io/rfcs/
http://rust-lang.github.io/rfcs/
https://tietopalvelu.ytj.fi/yritystiedot.aspx?yavain=2416943&tarkiste=48EBEB20D93CE66B297B3BFB7ADAF4B202B625FE
https://tietopalvelu.ytj.fi/yritystiedot.aspx?yavain=2416943&tarkiste=48EBEB20D93CE66B297B3BFB7ADAF4B202B625FE
https://en.wikipedia.org/wiki/Taiichi_Ohno
https://en.wikipedia.org/wiki/Taiichi_Ohno
https://web.archive.org/web/20130526100928/http:/www.softwaremag.com/content/ContentCT.asp?P=3193
https://web.archive.org/web/20130526100928/http:/www.softwaremag.com/content/ContentCT.asp?P=3193
https://web.archive.org/web/20130526100928/http:/www.softwaremag.com/content/ContentCT.asp?P=3193

