
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Damien Lappa 

 

Photorealistic Texturing for Modern 
Video Games 

 
Bachelor’s thesis 

Game Design 
 
 

2017 
 



 
 
Author (authors) Degree 

 
Time 
 

Damien Lappa Bachelor of Culture 
and Arts 

November 2017 
 

Thesis title 
Photorealistic Texturing for Modern Video Games 
 

45 pages 

Commissioned by 
 
Ringtail Studios OÜ, Xamk South-Eastern Finland University of Applied Sciences 
Supervisor  
 
Marko Siitonen, Lecturer 
Abstract 
 
Simulating realism has become a standard for many games in the industry. While real-time 
rendering requires considerable rendering resources, texturing defines the physical 
parameters of the surfaces with a lower computer power. 
 
The objective of this thesis was to study the evolution of Texture Mapping and define a 
workflow for approaching a photorealism with modern instruments for video game 
production. All the textures were created with the usage of Agisoft Photoscan, Substance 
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With the aid of both the theory and practical approaches, this thesis explores the questions 
of how the textures are used and which applications can help to build them for a better 
result. Each workflow is introduced with the main points of their purposes as the author’s 
suggestion, which can be used as a guideline for many companies, including Ringtail 
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LIST OF CONCEPTS 

2D   2-Dimensional. 
 
3D   3-Dimensional. 
 
3D Asset  an object (also called model or mesh) that is meant to appear in a 

video game. 
 
Bitmap  an image in digital form, where for each pixel element is assigned 

one bit of information. Also can be referred as Map. 
 
Game Engine a software framework designed for the creation and development of 

video games. 
 
Materials  are definitions of how a surface should be rendered, including 

references to textures used, tiling information, color tints and more. 
 
Polygon a surface with 3 or more side, defined by vertices, for visualization in 

a three-dimensional graph. 
 
Procedural Texture  a computer-generated image created using an algorithm intended to 

create a realistic surface or volumetric representation of natural 
elements in Texture Mapping. 

 
Real-time rendering production of visualization in real-time. 
 
Shader small scripts that contain the mathematical calculations and 

algorithms for calculating the material. 
 
Texture an image for defining the surfaces' color, reflection or relief 

information. 
 
Vertex  a single point whose sole property is its position in 3D space.
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1 INTRODUCTION 

Video games have existed for a long time enough to become a part of popular 

culture of the modern age. Nobody could have predicted that in less than five 

decades the games would grow from a pure form of shapes of the pixels to the 

global industry with the expected of $108.9 billion in revenues in 2017 (McDonald 

2017). 

 

Since the first 3D video games were introduced, the real-time rendering has 

stepped closer to the realism more than ever before. Despite the fact that the 

purpose of the games is to bring a simulation of the experience to its player, the 

environmental aesthetics have become a massive part in a game production, and 

with its visuals, it has become a part of that experience that makes a modern 

game even more memorable. 

 

The primary focus of this thesis is to achieve to produce the believable game 

textures and to present the workflows used by the author. The thesis covers the 

basis of the evolution of Texture Mapping in video games and concentrates on 

the aspects of the 2D imagery usage in a three-dimensional space. The contents 

are intended for the artists who already know the basics of 3D modeling and UV 

Mapping and does not present any mathematics or code. 

 

For demonstration purposes, all the textures were produced from scratch by the 

author and were rendered for the final presentation in real-time using both 

Toolbag 3, developed by Marmoset, and a built-in renderer in Substance 

Designer, developed by Allegorithmic.  

 

All methods were based on the authors’ own experience combined with research 

of creating modern environment material workflow using the latest updates of the 

various software and mixing them for the faster approach including the renders to 

apply the theory in practice. 
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2 EVOLUTION OF TEXTURE MAPPING IN 3D GAMES 

Visual graphics are an essential part of video games nowadays. Designed to set 

the illusion of reality to the human eye of the virtual world, the prime indicator of 

the technology that powers it is on the computer itself. 

 

Computer graphic is a discipline of producing an image with computer 

calculations. The process includes the manipulation of visual and geometric 

information and though it has a short existence it has made a dramatic advance 

in different mediums, leaning towards more and more realism.  

 

The technology provided the possibility to create an artificial simulation, but due 

to the intensive use of computer resources for the real-time rendering, it took time 

for the gaming industry to find a way to represent a reality on the screen via 

Texture Maps. 

 

2.1 Foundation of Computer Graphics 

Since the electricity became an unpreventable part of the human’s life, it was a 

matter of time when the technology would make its way to become an object of 

many experiments leading to visualization graphics in video games. 

 

Based on the article (Jones 2017), in the middle of 19th century the cathode rays, 

or electric beams, were a subject of research by many physicists and found its 

usage in television and computer screen to produce both vector and raster 

graphics. The technology was based on the flow of electrons in a vacuum tube 

moving from a negatively charged electrode at one end to a positively charged 

electrode in another transverse voltage. The differences between the electrodes 

cause the material to glow, bringing the pixels of the image to the screens and 

were called cathode ray tubes (CRT). Invented in 1897, Oscillates were the first 

to use cathode ray tubes as the two-dimensional displays. (Wolf 2008, 9-12.) 

 

Shortly after the World War II, in 1949, the Whirlwind, the very first mainframe 

computer to use a CRT as a graphic display, was developed at the 
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Massachusetts Institute of Technology. In 1951, the system was demonstrated to 

the publicity with its capabilities to display real-time video, text, and graphics on a 

big oscilloscope screen, which has brought a high value for military purposes. 

(Wolf 2008, 17.) 

 

Early Computer Graphics and systems continued to distribute a high interest for 

different experimentations for the following decade. Together with CRT 

technologies, they have found its predecessors not only in scientific studies, but 

also in artforms. In 1960, William Fetter was first to introduce the term Computer 

Graphics while attempting to shape an efficient process of a layout inside 

Boeing's airplane cockpits (Shklyar 2004). As can be seen in Figure 1, his result 

was a computer generated orthographic view of the human form which founded a 

revolutionary step forward in design methods of that period. 

 

 
Figure 1. Computer Graphics in the 1960's (Fetter, n.d.) 
 

At the University of Utah, one of Fetter's contemporaries, Ivan Sutherland made a 

revolution in the CG industry, bringing an interactive communicative machine 

system, called Sketchpad. It featured a constraint-based drawing and hierarchical 

modelling utilized with lightpen for interaction on top of oscilloscope screen (Wolf 
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2008, 17-18). With his success, Sutherland formulated the ideas of using 

primitives (such as lines, arcs, vectors) and their manipulations inside of the 

computer system making him be considered as the founder of the computer 

graphics (Shklyar 2004). 

 

According to the article (Chapman 2015), Ivan Sutherland, together with his 

partner Dave Evans, later, in 1968, formed the very first computer graphic related 

company, called Evans & Sutherland. The researchers of the group made a 

considerable contribution to 3D graphics industry with developing the  

hidden-surface algorithm for rendering and display technology which is 

fundamental for the modern real-time 3D rendering in video games even 

nowadays. 

  

2.2 Defining Texture Mapping 

During the early 1970s computers became more capable of producing 3D 

geometry with much more shaped polygons. During the research, developers 

faced an issue of computer memory performance, where, since the first renderers 

were able to present only the flat shading model, the only way to increase the 

smoothness of geometry with more details was to add more polygons. (Wolf 

2008, 48.) 

 

A French computer scientist, Henri Gouraud, found a solution to one of the 

issues. He utilized a unique shading by interpolating the normal of the vertexes. 

Gouraud Shading resulted in a smooth surface that takes only a small amount of 

the system’s power without increasing the number of the polygons. Later, the 

shading model technique was expanded by Phong Bui-Tuong. He introduced a 

calculation of the normal vectors for each pixel. Phong resulted in an incredibly 

smooth surface with definite highlights, but it used much longer time to render 

compared to the previous shading model. Both shading techniques can be seen 

in Figure 2 in comparison to the flat geometry. (Shklyar 2004.) 
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Figure 2. Types of Shading (PCMAG, n.d.) 
 

According to the article (Blinn & Newell 1976), the fundamental work in Texture 

Mapping is attributed to Edwin Catmull. In 1974 Catmull recognized an easy way 

to achieve realism in 3D geometry by producing a picture on surface polygons 

with a minimal effort of the computer systems. He developed an algorithm for 

rendering images and was the first to demonstrate the Mapping of a texture 

pattern onto arbitrary planar and cylindrical surfaces. The algorithms apply  

two-dimensional pictures like a skin to the UV grid of projected polygon surfaces, 

adding the rasterized details to a computer-generated scene. 

 

James Blinn and Martin Newell (1976) later refined the Texture Mapping even 

further. By combining Catmull’s Texture Mapping technique with 2D picture 

elements and Phong’s reflection shading to the teapot mesh, they resulted in an 

image of a highly glazed by that time with a fully textured 3D geometry object, 

which can be seen in Figure 3. 

 

 
Figure 3. Texture and Reflection (Blinn & Newell 1976) 
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During 1978, James Blinn also achieved in building an illusion of some very 

sophisticated geometry without the increased number of polygons - Bump 

Mapping. With the usage of black and white colors, the texture defines the 

information of which pixel will have a relief on arbitrary polygonal models in real 

time. Bump Displacement function later extended the Mapping even further. This 

technique is based on similar Bump Mapping function, except the actual vertexes 

are transformed with an exact position. The process helped to build the silhouette 

of geometry for extra details but led to a severe load of processor power and an 

additional memory usage. (Policarpo et al. 2005.) 

 

2.3 3D Game Texture Mapping Evolution 

Physically based approaches to rendering started to be seriously considered by 

graphics researchers in the 1980s. One of the techniques of such production is 

called ray-tracing (Whitted, n.d.). The algorithm takes inspiration from the reality, 

which simulates the light bouncing in the scene, producing the reflection based 

on the Texture Mapping parameters. Ray-tracing delivered realistic graphics and 

was actively used in movie productions, but at a higher cost for the calculations 

even nowadays. 

 

Real-time 3D graphics in the late 1980s and early 1990s were extremely 

computationally intensive. The first implementation of 3D with a full surface 

texture rendering was introduced in Ultima Underworld. The game had an 

environment that could be viewed from arbitrary oblique angles and was 

revolutionary during that period, but required a significant amount of power to 

build a scene in real-time. (Williams 2017.) 

 

Influenced by the development of Ultima Underworld, a small by that time game 

company named id Software released Catacombs-3D in 1991 with the 3D 

approach of Texture Mapping and later expanded it in Wolfenstein 3D, in 1992. 

The games resulted in a significant reliance on 2D imagery to supplement the 

illusion of 3D forms called ray-casting. (Kusher 2003, 91-92, 97-98.) 
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Ray-casting involved the projection of a cone of rays from the player’s position  

on a 2D Map. The levels were built on a simple square grid with the walls being 

entirely Texture Mapped, as can be seen in Figure 4. Combined with simple level 

geometry game were performant for the machines that time. (Pernady 1996.) 

 

 
Figure 4. Ray Casting Example (Permady 1996) 
 

Later, id Software has increased the capability of Texture Mapping by 

implementing Binary Space Partitioning (BSP) algorithm with the ray-casting to 

their new game - DOOM. Limited to a vertical axis of rotation in a 2D space, the 

engine of the game allowed to divide the sectors of a level Map to simulate in 

real-time the variety of room heights with a full texturing of floors, ceilings, and 

walls. (Kusher 2003, 142-143.) 

 

The rapid evolution of game technologies in the mid to late 1990s significantly 

improved the range of application and opened the doors for the higher level of 

detail. Real-time 3D rendering has established the definition of a Texture 

Mapping of the surfaces, which contained the essential color information with 

Gouraud’s shading, but without any other physical approaches yet. 

 

In 1996, the Texture Mapping saw a breakthrough with the release of Quake. 

Developed by id Software, the game was not only the first to introduce complex 

3D scenes with characters and environments but also introduced illumination 

Maps or Light Maps to capture lighting effects in video games. (Williams 2017.) 
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Static lighting information started to be captured and stored in a Texture Map 

covering all polygons of the level, at a much lower resolution than the Texture 

Maps themselves. With the release of graphics amplifier chipsets, id Software 

distributed an updated version of Quake that could render the Light Maps directly 

on the textures, using the multi-texturing method with alpha-blending, which 

would see similar reuse power in many other games (Shahrani 2006). 

 

By 1998, the rise of 3D acceleration allowed the game developers to take 

advantage of the power to construct smooth and detailed worlds without the 

significant compromise. 3D Accelerator cards permitted to unlock the real-time 

rendering limits of 3D gaming with both better performance and quality, and it 

was a matter of time when games would become entirely dependent on them. 

 

Developed by Epic MegaGames, Digital Extremes, and Legend Entertainment, 

Unreal was the game that took full advantage of the hardware and quickly 

became associated with cutting-edge graphics. With diffuse and lighting textures, 

Unreal is one of the first games to utilize the Detail Texture Mapping technique 

(see Figure 16, 29). It allows enhancing the surfaces of objects with a second 

texture that shows material detail to build a believability of the high-resolution of 

the Maps (Shahrani 2006). 

 

By the early 2000s, the Texture Mapping has evolved from simple 2D sprites to a 

real polygonal surface with the multiple textures applied on top of it. The games 

pushed realism to the new heights and attracted the new generation of gamers to 

become a part of that experience. 

 

2.4 Advancing Realism in 3D Games 

3D game visuals before the early 2000s relied heavily on Color Maps and the 

baked lights alone. Between the 2000s and 2010s, the evolution in game 

graphics continued to proceed as each new generation of hardware allowed 

developers to provide more resources for building more realistic visuals. 
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With the release of Quake 3 Arena, id software refined the usage of Shader 

scripts, which significantly increased the capabilities of Texture Mapping in 

games (Jaquays & Hook 1999). With the ability of Shaders, artists and 

programmers now could adjust the properties of a surface with multiple Texture 

Maps to add a physical appearance in real-time rendering, which had already 

been used in 3D movie production by that time. With the opened horizons, new 

graphics standards required to implement new plans for developing the games. 

Now that it was plausible to transfer the materials attributes, the Color Map was 

apparently not enough. 

 

With advances in hardware, developers found an opportunity to produce multiple 

textures for simulating ray-tracing rendering effect in real-time rendering. Bump 

Maps were ones of the earliest additions that significantly refined game visuals  

as they imitated subtle surface irregularities and gave the illusion of height and 

depth on a flat surface. Bump Mapping found its early usage in Jurassic Park: 

Trespasser. Later, from a simple grayscale image, Bump Mapping was replaced 

by Normal Maps (Figure 11, 23), which provided sharper detail by converting the 

surface of a high polygon 3D model to a 2D Map and overlaying it on a low 

polygon model. This technique added a more visual feature without adding more 

computation intensive polygons and resulted in higher performance. (Williams 

2017, 228.) 

 

Shaders are also used to simulate the effects of light on models and the game 

environment through Specular Maps, which controlled the reflective properties  

of a surface, allowing highlights that automatically reacted to different light 

intensities. (Williams 2017, 229.) 

 

By the end of the 2000s, the game industry had refined the principles of 

physically based shading. Choosing the right building materials had become 

essential for the believability of games around the playable characters. Texture 

Maps are there to define the strength of objects and structures, and the gaming 

industry is still perusing the abilities to produce the realism in real-time rendering. 
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3 PHYSICALLY BASED TEXTURE TYPES 

Physically-based shading is a technique that, if thoroughly defined, is the closest 

approach of the reality in real-time rendering nowadays. The term is bandied 

around the primary fundamentals of the behavior of light and matters and can be 

referred to as Physically Based Rendering (PBR) or Physically Based Shading 

(PBS) (McDermott, n.d. b). According to McDermott (n.d. a), the ultimate goal of 

the textures is to describe the individual parameters of how the surface of a 3D 

object is reacted with the connection of the light within the environments. 

 

Since shading capabilities have advanced enough, some of the old 

approximations are evaluated to the new means of producing a textured art for 

photorealistic looks. Though the Shaders are written by programmers, artists are 

there to achieve the best results with the creation of inputs & outputs for the 

further material manipulations. (Ahearn 2008, 95.) 

 

It is essential to understand the fundamentals of light and shadow to build a 

physically correct texture property. Nowadays, reflections are based on the 

combination of the imagery, where every parameter of the Map relies on the 

basics of light and its perception of the human eye. In this chapter, the author 

describes the most common types of textures. 

 

3.1 Base Color Map 

Light is a produced transverse electromagnetic wave that consists of fluctuations 

of electric and magnetic fields in nature. The retina of the human eye is sensitive 

only to a limited radiation at wavelengths that range between 380 nanometers 

and 740 nanometers, which are visible in the RGB spectrum of colors. (Adobe, 

n.d.) 

 

The surface of an object reflects some the mixture of wavelengths and absorbs 

all the others. Human’s brain perceives only the mirrored shade via the 

electrochemical signal in red, green and blue hue range (Pantone, n.d.). As 

shown in Figure 5, the surface reflects the specific wavelengths and absorbing all 
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the rest, and it appears as a value that is revealed. If the object appears white, it 

indicates all wavelength, while black consumes them all. 

 

 
Figure 5. Color perception (Lappa 2017) 
 

The very first of Texture Maps to describe this effect in video games was a 

Diffuse texture, also called Color and Albedo Map. According to Ahearn (2008, 

101), the initial part of this Map was to tell a player what material appears before 

him by a single image on top of the surface.  

 

With the introduction of the physical properties of the Maps, the process of this 

texture became much more straightforward. Base Color Map became an initial 

part of describing an appearance in PBR, playing a critical role in the way how 

the lighting is diffused. The texture defines the tint of a material without any 

lighting information because those effects come from the contribution of other 

Map types, such as Specular Maps. (McDermott, n.d. b.) 

 

Figure 6 illustrates the difference, where Color Map conveys the subtle details 

and leans toward the flat image of the surface, where it excludes the directional 

lights and ambient occlusion. If the additional lighting information is baked into 

the texture, the appearance will become incorrect in certain different lighting 

conditions. 
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Figure 6. Base Color example (Lappa 2017) 
 

Base Color defines merely the overall tint of the material, and its value is varied 

between 0, which equals to black in hue, saturation & lightness (HSL) and 1, 

which has a value of 255 of every color in sRGB space and equals to white. 

Though some colors in real life are preserved in our brain as a constant value, 

nothing in real life is entirely black or white (Pettit 2015). Such appearance is 

achieved because of the lighting conditions under which they are viewed, and 

according to the table, the black charcoal equals to 0.2 value and white snow is 

measured as 0.81 in a total intensity. (Epic Games, n.d. c.) 

  

3.2 Reflection Maps 

In real-time rendering, all the objects are evident because of the reflected light 

from different illuminates. When light hits the surface, two things happen - 

diffusion and specular reflection. 

 

While the diffusion scatters light in many directions and leans some back towards 

the viewer (Figure 5), it must first penetrate the surface. Energy Conservation 

plays a vital role in delivering that function in physically-based rendering. With the 

higher level the intensity of the reflection, the Shader keeps the strength of the 
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diffuse scattering lower, leaving the surface with the same brightness value. From 

the perspective of an artist, this aspect allows focussing only on one amount of 

the roughness of the material, rather than always adjusting the brightness of the 

diffusion as well. (McDermott, n.d. a.) 

 

The word specular, translated from Latin “mirror,” is used to describe a ray of a 

radiant from the surface that is headed in a constant direction on the opposing 

side of the surface, as it can be seen in Figure 7. However, most objects do not 

have such high smoothness, and therefore the direction of reflection will vary 

depending on how much the surface is incoherent at different angles. (Russel 

2015.) 

  

 
Figure 7. Light reflection (Lappa 2017) 
 

As stated by McDermott (n.d. a) and can be seen in both Figure 8 and Figure 9, 

with the same light conditions the surfaces might appeal differently. While the 

smoothness of the surface is expressed in a more intense mirror image, thus 

causing a sense of saturation and brightness of the illumination, the coarser 

surface has a much dimmer flare. The measure of smoothness is often referred 

as Gloss or Roughness Maps in Physically-Based Shading. 

 

Following the reality, it is also important to consider the Fresnel Effect. According 

to Unity User Manual (2017c), the effect itself manifests the material at high 
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viewing angles, which is expressed in a high ability to reflect light. This 

impression can be noticed in Figure 8 and Figure 9 as well. 

 

When creating materials for PBR, it is also essential to consider the structure of 

the surface. There are two types of the properties how the light reflects from an 

element: insulators or dielectrics and electrical conductors, which are also known 

as metals. According to Russel (2015), metallic materials usually have a 

reflectivity of up to 60-90%, while non-metals have a much lower range, about 0-

20%. Figure 8 and Figure 9 also illustrates the comparison to insulators, where 

electrical conductors absorb rather than scatter lighting rays that penetrate the 

surface, without any diffuse light. The measure of smoothness is often referred as 

Specular or Metalness Maps in Physically-Based Shading. 

 

 Specular & Glossiness Workflow 

Specular & Glossiness workflow is defined through a set of Maps, which are 

combined as a set of textures in Physically Based Shading. As it can be seen in 

Figure 8, the data of the values of each surface have different results. 

 

Gloss textures define the blurriness or sharpness of the reflections across a 

texture's surface with the microscopic roughness of a material’s surface. The 

brighter the gloss texture, the more apparent it will appear, where the darker 

value represents, the rougher surface reflection. (Wilson 2015.) 

 

Specular Textures are used to define metal and non-metal areas on a surface. 

They offer more control over the specular intensity and allow greater flexibility 

when trying to reproduce specific complex materials, but require an intense 

understanding of physical material properties to get the right values. (Wilson 

2015.) 
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Figure 8. Glossiness (up) and Specularity (down) difference in values (Lappa 2017) 
 

Pristine bare metallic surfaces need to have a pure black Color Texture, where its 

color is placed in Specular Map. It is also important to consider, that metal that is 

weathered, oxidized or painted needs to be treated as a dielectric, and if the rule 

is not followed, the reflection of the material will be miscalculated. (McDermott, 

n.d. b.) 

 

Overall, Specular/Glossiness can provide excellent control over the dielectric 

surfaces if handled correctly, but it utilizes a bit more of the texture memory with 

extra RGB channels in Specular Map. 

 

 Metalness & Roughness Workflow 

An alternative way to produce a reflectivity in PBR is Metalness & Roughness 

pipeline. The difference between Specular & Glossiness is in marking materials 

as metallic or non-metallic, and definition of the surface smoothness. However, 

as can be seen in Figure 9, the overall result of the reflection remains the same. 

 

When using a Metalness Map, insulative surface’s values are set as a constant to 

0, which equals black, while metals are marked in 1.0 in a greyscale color space 

which equals white. With this workflow, artists have a more accessible approach 
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to the surface reflection, where the whole control is set to the Roughness Map. 

(McDermott, n.d. b.) 

 

According to McDermott (n.d. b), this method allows the Albedo Map to work with 

metals regularly like with dielectrics in Specular & Glossiness pipeline. Though 

the roughness is also set to the black & whites, the reflection is controlled by 

different values. The full result of the difference rendered by the Author can be 

seen in Figure 9. 

 

 
Figure 9. Roughness (up) and Metalness (down) difference in values (Lappa 2017) 
 

In comparison to Specular & Glossiness workflow, Metalness & Roughness has 

lesser control over the reflectivity of the conductors, but it makes more accessible 

for the artists to simulate the smoothness. As both Maps are in grayscale, they 

use less texture memory, making it better for the optimization. 

 

 Capturing Reflection 

There are a number of ways of projecting the reflection of the scene in video 

games. The most common methods are based on real-time and static capturing, 

where the results have their advantages and disadvantages. 
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One of the methods is called Cube Mapping. Based on 3D Game Textures 

(Ahearn 2008, 115), Cube Maps are based on 6 six seamless images arranged 

into a cube geometry, covering all axis of the reflection, which result is 

demonstrated by Epic Games in Figure 10. The texture is always static and gives 

approximate parallax for the observation, but does not reflect any dynamics of the 

scene, and thus should ever be placed correctly. 

 

With the increased capabilities of the physical rendering, modern game engines, 

like Unreal Engine 4 (Epic Games, n.d. d) provide a real-time reflection capturing 

via Reflection Capture Actors which can be seen in Figure 10. The position of the 

actors redraws the images of the Cube Map every frame dynamically. With this 

method, players can see the movable object being reflected. 

 

 
Figure 10. Reflection Capture scheme (left) and scene (right) (Epic Games, n.d.) 
 

With the constant recording of the environment, the real-time capturing process 

requires a tremendous amount of the computer resources and should always be 

placed on the scene cleverly. As Figure 10 illustrates, the actors are put in 

different ways. Some of them capture the whole environment, while only a few 

are placed to achieve the mirroring with more density. Combined with the static 

reflection via the Cube Maps, both processes can project the whole scene 

accordingly to the player position, where the prime spots are reflective,  
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leaving the rest for the pre-baked information and better optimization (Ahearn 

2008, 115). 

 

3.3 Normal & Displacement Maps 

Normal Mapping in 3D is a technique that is used to fake the lighting of bumps 

and dents instead of adding more polygons to an object. According to Ahearn 

(2008, 117), the texture is used to make a model appear like high polygon model 

with various details with smoothed edges to define a relief of the simple mesh for 

the lighting and look more realistic and appealing. 

 

In real-time rendering, the relief of the surface that is stored in the Normal Map is 

in tangent space. At that point, according to Polycount (2017), the light that 

comes in contact with the surface of the texture image is analyzed from its 

position and, due to this action, Shader decides which color pixel and with what 

intensity will be displayed. 

 

 
Figure 11. Normal Map example with Red, Green and Blue channels exposed (Lappa 2017) 
 

As Figure 11 demonstrates, Normal Maps are constructed from 3 channels: Red, 

Green, and Blue, where each color corresponds to the three-dimensional 

coordinates. The red channel in the image indicates the direction of light along 
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the X axis (right and left), while the green channel is responsible for the Y axis 

(up and down) and the blue channel keeps the Z axis which directs the position of 

normals outwards and inwards of the surface in Normal Map. 

 

Height Map, also called Displacement Map, has a similar idea of normal 

Mapping. However, it is more complicated and can be very slow to render and 

should be used within reason. 

 

With the introduction of a tessellation method, Displacement Map became a 

subject of the interest among many artists. According to Nvidia (n.d.), the process 

uses a Height Map to define the displacement of the vertices by dividing polygons 

into many pieces as can be seen in Figure 12. 

  

 
Figure 12. Height Map vertex displacement with tesselation applied (Lappa 2017) 
 

Figure 12 also shows that the texture is in greyscale and is used in combination 

with Normal Maps to give an extra definition to surfaces where the surfaces are 

responsible for rendering large bumps and displacements. The brighter pixels of 

the image make higher elevations while, the darker pixels do the opposite, where 

middle grey pixels make no change. 
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3.4 Light Maps 

With the ability to produce light in real-time rendering, game engines provide a 

variety of options how the shadows of environments are stored in a scene. 

 

While Diffuse or Base Color Maps are mostly for the color information only, Light 

Maps are there to support the missing data in the packed textures. The textures 

are based on the similar workflow like the environment Map, where it contains 

non-updatable information of the light values and is multiplied with the base 

textures for static conditions. (Polycount 2015b.) 

 

The baked lighting information provides a variety of the possibilities to keep the 

shadows and light bounce information with a low amount GPU resources, but 

since static lights only use Light Maps, they use an increased amount of texture 

memory. Their shadows should be re-rendered before any changes are made 

inside the scene, which means that they cannot record moving objects in real-

time. (Unreal Engine 2017.) 

 

The second method that is available in modern game engines is a possibility of 

dynamic lighting rendering, where the shadows and lights are changed upon the 

movement and kept inside of the environment without any light textures recorded. 

With the update of every frame, this method requires more significant GPU 

performance for the satisfactory results. (Unreal Engine 2017.) 

 

 Ambient Occlusion 

An Ambient Occlusion Map (AO) is used to create exposed soft shadows. It is a 

grayscale texture that keeps the shadowing information of finely accessible 

places such as slits, corners, and cracks. (Epic Games, n.d. a.) 

 

The process of making an Ambient Occlusion Map is tied to storing the 

information from an individual geometry in a static condition. According to Epic 

Games (n.d. a), it can either be stored in a greyscale image, or it can be rendered 

inside of the game engine in real-time. Based on Polycount (2015a), this method 
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of an in-game shadowing is called Screen Space Ambient Occlusion. The 

process dynamically captures the required details, but it requires a more decent 

graphics card to proceed flawlessly and can involve some issues like shading 

errors. 

 

Figure 13 illustrates more information of how Ambient Occlusion texture is stored. 

The base color on the left represents the color information, while all small 

shadows are separated on a different surface with white value covering most of 

the space. 

 

 
Figure 13. Base Color Map (left) with Ambient Occlusion Map (right) extracted (Lappa 2017) 
 

 Emissive 

Another texture to cover is called Emissive Map. It is used to simulate a  

self-illumination of the surface by increasing the intensity of the specific pixels. 

The Map builds the appearance of being lit up which is frequently used as 

screens, light bulbs, and more. (Unity 2017b.) 

 

Emissive Map receives areas, where black cover most of the space except the 

parts that need to glow with an intensity of the values and colors in RGB color 

space. The example of this method can be seen in Figure 14, where XAMK logo 
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was chosen by the author to build it as a mask with color transitioning to black on 

the edges. As a result, the area of a color in texture is glowing but does not 

illuminate the light even at the higher intensity. 

 

 
Figure 14. Example of Emissive Map applied (Lappa 2017) 
 

3.5 Transparency Map 

In game engines, when creating a material with an ability to see through it, a 

transparency Map is there to control the rendering of a passage of light. It is also 

referred to Opacity Map or Alpha Map and is usually set in an extra alpha 

channel of Base Color in RGB format. (Unity 2017a.) 

 

For the demonstration purpose, Figure 15 demonstrates a render of a box with a 

gradient Map applied to show the parameters of the transparency control. Black 

(0) is responsible for the full Transparency, while white (1.0) considers the fully-

visible area. The transitions of the values in the middle of the gradient show the 

varying opacity in between two constant values, done in greyscale mode. 
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Figure 15. Example of the usage of an 8bit linear gradient as Opacity Map (Lappa 2017) 
 

When talking about the convention of the values between whites and black, it is 

necessary to take into a consideration of bit depth of the images. According to 

Wallstrom (2015), bit depth is the number of value data storage used to represent 

in color channels. 

 

The value data delivers the difference in the smoothness of the opacity 

transitions. A 1-bit texture is only black and white. It has its use for the lowest 

memory usage but comes with a significant loss of the quality. A 4-bit image in 

comparison has a slighter better variety of the transition, which allows blending in 

16 colors. The gradation between the values, as seen in Figure 15, allows to 

break the edginess and uses 8-bit transpose. Combined with the texture filtering, 

it provides to get a full range of greys with 256 colors, which makes it useless for 

building the Maps with higher color values for even more smoothness of the 

edges. (Polycount 2015d.) 

 

3.6 Detail Map 

When texturing an object, some details at the closer look may become broken 

and pixelated, resulting in a low quality of the textures. Detail Map was introduced 

to hide the squarish visuals and add more quality to the surface. It builds an 
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illusion of the higher resolution of the image and can be seen in Figure 16 in 

comparison to a stated issue. 

 

 
Figure 16. Difference between simple texture (left) and Detail Map applied (right) (Lappa 2017) 
 

Made by the author, Figure 16 also demonstrates the way how the textures are 

used. By adding a tileable noise across the surface, Detail Map builds a visually 

higher resolution. The effect is achieved by overlaying the detail texture on top of 

the base material with an extended UV channel. 

 

Based on Polycount (2015c), a Detail Map is a method that is used to define 

details in close view. The technique is built in the Shader uses a higher amount of 

UV tiling, which makes smaller pixels to appeal to the viewer. Adjusted, real-time 

rendering allows the texture to fade out at a medium distance to hide tiling 

artefacts which can significantly save a texture memory in keeping the primary 

materials in lower resolution. 

 

4 APPROACHING PHOTOREALISTIC MATERIALS 

A Material is an asset in a game engine that can be used to define the visual look 

of a mesh in the scene by an artist (Epic Games, n.d. b). Knowing how to make 

the right parameters, it defines the type of surface from which the object appears 
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to be made of to the eyes of the players by the help of physically-based 

rendering. 

 

The process of building an appealing texture for its further realization across the 

whole game environments relies on a variety of applications. While it is essential 

to follow the high standards of the industry, artists must be able to apply the 

production of the textures for the needs of the development. 

 

This chapter is divided into several sub-sections that focus on texture building 

methods with multiple software combinations. The overall goal was to bring 

game-ready materials, which were created by the author to demonstrate the 

workflows. 

  

4.1 Sculpting 

Sculpting in both game and movie productions became important over many 

years. The method is used to produce a high poly model that is difficult to provide 

via traditional 3D modelling and is used by the professionals to achieve both 

realistic and organic results. 

 

There are many applications available for the industry which allow achieving 

digital sculpts including 3D coat, Autodesk Mudbox, and Pixologic Zbrush, which 

is the 3D industry’s standard nowadays and grants the possibility to build the 

object organically. For the demonstration purpose, the author sculpted a rock 

material, that has much complexity in the natural forms that can easily appeal to 

the viewer. 

 

Pixologic Zbrush is a software that allows using customizable brushes to shape a 

virtual clay in a modern way. For the textures, it comes very handy to sculpt high 

polygonal meshes and then translate the information into a two-dimensional 

image for a further production. 

 

Before the start, it is essential to consider the size of an object. Since Zbrush is 

an application that is used to reproduce an object in 3D space, the process 
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should always rely on a scale reference to keep the proper resolution of the 

required result. For this reason, a simple plane has been created in Autodesk 

Maya to fulfil that purpose. The object serves merely to guide an artist for both 

size and tile of the sculpt, that can remarkably simplify the post-production after 

the capturing the details. 

 

 
Figure 17. Reference Plane (left) with a tiled sculpt (right) (Lappa 2017) 
 

The organic workflow is a relatively simple and a straightforward process. Mostly 

it is based on building the low polygonal objects and then further reinforcing it and 

tweaking them inside ZBrush with a large sub-division level for a high detailing. 

Following these steps, the mesh can be created in a short time with the result as 

it seen in Figure 17, where a logo of XAMK was used as a demonstration of a 

custom-made brush. 

 

The rock base (Figure 18) was created by the combination of simple cubes and 

duplicating them in the space of a plane. With the satisfied position, to make it tile 

it requires filling the sides, which can be achieved by using deformation – offset 

tool. With a positive or negative value of 100 in a required axis of the offset, 

adding tileable details inside of the border can be quickly set up by increasing the 

number of warp mode by 2 (Figure 17). 
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The detailing process heavily relies on the mixture of the brushes and sub-

division within Zbrush, which is more creative, rather than technical. Since the 

final resolution of the texture will be 2048x2048, there is no reason to achieve the 

hyper-realism of the shapes, where the smallest dents will become pixelated. 

 

 
Figure 18. A final tiled rock sculpt with a scale reference (Lappa 2017) 
 

When the work is finalized (Figure 18), the information of the surfaces can be 

captured in many ways. The simplest and the fastest one is to render the image 

straight from the canvas with a Normal material applied. The render must be set-

up with the highest quality of the distributed mesh with the shadows turned off. 

When the calculation is over, the image can be easily saved from documents and 

export window. 

 

The overall process is simple but requires more post-production of the images, 

including correction of Normal Map and fixing tiling issues if they are. The organic 

shapes can be created extremely fast, but for a better result, the pipeline can 

demand much more computer power. 
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4.2 Image-based Texturing 

Approaching photorealism requires an enormous effort in producing the right 

appealing details. One of the ways of creating it is straight from a photo image 

and fit it for the correct usage in Physically-based Rendering. 

 

Since Physically-Based Textures are bitmaps, they can be easily created by any 

programme that allows editing images. One of the world’s best software that is 

used among the many artists – Photoshop, developed by Adobe. It supports to 

adjust and create the photographs, graphic designs, artwork, and with the 

extended plugins like Quixel Tools can become a full application with a wide 

variety of 3D texture editing. While knowing the parameters of each Texture Map, 

Photoshop is a perfect option for tweaking them by hand. 

 

When creating a texture, it is essential to start with gathering references. There 

are plenty resources of the images available for artists on the internet including 

google.com or textures.com. The most prominent con of making a texture via 

Photoshop is that artist can reproduce a material straight from the source. Figure 

19 illustrates how the reference can be manipulated for building a unique look 

with the shadows being extracted. 

  

 
Figure 19. Reference images built into a Base Color Map in Adobe Photoshop (Lappa 2017) 
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As a result, Figure 20 illustrates the combination of the results of 3D sculpting 

and Photoshop texturing applied on top with all the physical parameters. 

Notwithstanding, the pipeline allows to build the materials in no time, but due to 

the rasterization of the images, the process is limited to its size resolution. 

 

 
Figure 20. Textures done in Adobe Photoshop applied to a mesh (Lappa 2017) 
 

4.3 Procedural Texturing 

Procedural texturing is another way to approach the building of a texture. While 

raster graphics are fixed at a resolution limit, the bitmaps created procedurally 

have no restrictions. 

 

Substance Tools is a set of application consisting of Substance Designer and 

Substance Painter. Developed by Allegorithmic, the technology allows building 

procedurally generated textures with the required set of defined bitmaps. 

 

 Substance Designer Workflow 

Substance Designer is a node based tool with a procedural approach to 

materials. With this workflow, artists have many possibilities of texture production 

without the loss of data, where the changes, applied to any of nodes, will 
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automatically be applied to an end-result. It allows using mathematical functions 

to build dynamic texture that has no limitation in size resolution with being tiled. 

 

Substance Designer pipeline consists of a primary setup with blocking out the 

basic shapes, with further incorporation of the details. As the process is finalized, 

the visualization can be distributed as the physically-based textures in the nodes 

called outputs. 

 

As can be seen in Figure 21, the workflow requires much more effort and further 

node optimization. Creating a realistic material can be time-consuming, and the 

process can become complicated to achieve a proper result from the reference. 

 

 
Figure 21. References (left) and Substance Designer graph (right) of the material (Lappa 2017) 
 

On the other hand, since the process is entirely procedural, the variety of the 

visual properties can be adjusted in many ways. Many impressive visual effects 

are possible which is only limited by the artist's imagination. These features can 

be anything from simple patterns to fully textured surfaces. 

 

As an example, Figure 22 demonstrates the possibilities of how flexible material 

adjustment can be. With the extended node functions, Substance Designer can 
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allow an artist to tweak the parameters, including attaching a bitmap as a mask, 

which dynamically can fit into a material. 

 

 
Figure 22. Substance Designer material exposed parameters (Lappa 2017) 
 

 Substance Painter Workflow 

Sometimes it can take a considerable effort to create certain types of assets with 

specific features in a procedural workflow. Substance Painter is a handy software 

that allows to place, paint or generate details in certain places with multiple 

options, where artists can arrange on their own in any creative way. 

 

The application is like Photoshop when it comes to organization. Taking the 

material from substance designer allows adjusting the workflow dynamically and 

in a short time. Based on the author's texture production (Figure 23), the process 

can be divided into three steps – baking, masking, and tweaking. 

 

The baking process allows creating a position coordinates of the mesh with 

several Maps, such as Normal, Ambient Occlusion, and more. Based on these 

textures, Substance Painter allows building adjustable masks to create dust in 

small dents, rust of top or peels on the edges. For the unique information, the 

software also provides painting on top of the mesh with different parameters, not 
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depending on any data of the baked textures. A demonstration of the whole 

process can be seen in Figure 23. 

  

 
Figure 23. Texturing in Substance Painter (Lappa 2017) 
 

With the functions developed in Substance Designer, a base material creation 

brings a comprehensive variety to Substance Painter. Figure 24 demonstrates 

both results, where the process was done in Substance Applications by the 

author, where the pipeline used the same material with the different parameters 

of the exposed functions. 

 
Figure 24. Substance Designer material (left) and textured material in Substance Painter (right) 
(Lappa 2017) 



38 

4.4 Photogrammetry 

Photogrammetry is a method of capturing multiple overlapping photographs and 

taking measurements from them to create 3D models of objects or scenes. The 

technique brings a possibility to build a highly accurate and realistically photo-

textured models of structures, landscapes, and objects. 

 

Photogrammetry is gaining in popularity and usage since it produces impressive 

results comparable to laser 3D scanning technologies at much lower costs. A few 

resources were picked to achieve the required results, including a full-frame 

photo camera Canon EOS 6D to take images, a Canon 50mm f/1.8 prime lens 

that can produce the pictures with the lowest distortion and a software called 

Agisoft Photoscan for building a 3D mesh. 

 

As it can be viewed in Figure 25, the process is considered in picturing multiple 

photographs like a panorama and combining them in a three-dimensional space. 

The software estimates the position of a camera to build a high poly mesh in X, 

Y, and Z coordinates. 

 

 
Figure 25. Photo scanning (left) and a high-poly result (right) (Lappa 2017) 
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Though Photogrammetry allows building a mesh with a texture information, the 

process alone is not enough for the further realization in real-time rendering. The 

next stages are required to transfer the detail to the textures, which could be 

realized in multiple ways, including sculpting for the topology corrections, baking 

the Color and Normal Maps and fixing the results either in Photoshop or 

Substance Tools. With all the fixes applied, the results can be seen in Figure 26. 

 

 
Figure 26. Finalized photogrammetry tree barks (Lappa 2017) 
 

With the possibility of scanning the objects, the production of the unique and 

realistic textures becomes more available than ever. Though the process requires 

the knowledge of the mixed usage of various software, taking the images straight 

from life can drastically decrease the time of building the appealing material. 
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5 CONCLUSION 

The development of textures dates back to the last century. For decades, 3D has 

evolved, until it became a standard for the gaming industry. The construction 

required many optimizations, in which the texturing succeeded and grew to the 

stunning results in the simulation of realism in real-time rendering. 

 

Based on the sources and personal experience, the author was able to 

demonstrate some frequently used textures in various examples that were 

created specifically for this thesis. Also, the author showed not only how each 

property of surfaces carries a role, but despite the appearance of varieties in the 

parameters, the process does not require in-depth knowledge of mathematics to 

achieve the desired outcome. 

 

Further, after the study, the author was able to demonstrate various ways of 

creating realistic textures. All renderers were successfully done in the shortest 

time and were presented in the thesis as examples of using not only individual 

programs but also their combinations. 

 

In conclusion, despite the fact that the textures and programs have reached the 

necessary level to transform realism in real-time, most of the work depends on 

the artist himself. Every year the number of tools is growing, but only a creative 

approach can create an unprecedented level of work in the shortest possible 

time. 
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