

Damien Lappa

Photorealistic Texturing for Modern
Video Games

Bachelor’s thesis

Game Design

2017

Author (authors) Degree

Time

Damien Lappa Bachelor of Culture
and Arts

November 2017

Thesis title
Photorealistic Texturing for Modern Video Games

45 pages

Commissioned by

Ringtail Studios OÜ, Xamk South-Eastern Finland University of Applied Sciences
Supervisor

Marko Siitonen, Lecturer
Abstract

Simulating realism has become a standard for many games in the industry. While real-time
rendering requires considerable rendering resources, texturing defines the physical
parameters of the surfaces with a lower computer power.

The objective of this thesis was to study the evolution of Texture Mapping and define a
workflow for approaching a photorealism with modern instruments for video game
production. All the textures were created with the usage of Agisoft Photoscan, Substance
Designer & Paintrer, Abode Photoshop and Pixologic Zbrush.

With the aid of both the theory and practical approaches, this thesis explores the questions
of how the textures are used and which applications can help to build them for a better
result. Each workflow is introduced with the main points of their purposes as the author’s
suggestion, which can be used as a guideline for many companies, including Ringtail
Studios OÜ.

In conclusion, the thesis summarizes the outcome of the textures and their workflow. The
results are successfully established by the author with attendance to introduce methods for
the material production.

Keywords

real-time rendering, 3D texturing, computer graphics, physically-based shading

CONTENTS

LIST OF CONCEPTS .. 5

1 INTRODUCTION .. 6

2 EVOLUTION OF TEXTURE MAPPING IN 3D GAMES .. 7

2.1 Foundation of Computer Graphics .. 7

2.2 Defining Texture Mapping ... 9

2.3 3D Game Texture Mapping Evolution ... 11

2.4 Advancing Realism in 3D Games ... 13

3 PHYSICALLY BASED TEXTURE TYPES .. 15

3.1 Base Color Map .. 15

3.2 Reflection Maps .. 17

 Specular & Glossiness Workflow .. 19

 Metalness & Roughness Workflow ... 20

 Capturing Reflection ... 21

3.3 Normal & Displacement Maps .. 23

3.4 Light Maps .. 25

 Ambient Occlusion .. 25

 Emissive ... 26

3.5 Transparency Map .. 27

3.6 Detail Map .. 28

4 APPROACHING PHOTOREALISTIC MATERIALS .. 29

4.1 Sculpting ... 30

4.2 Image-based Texturing ... 33

4.3 Procedural Texturing .. 34

 Substance Designer Workflow .. 34

 Substance Painter Workflow ... 36

4.4 Photogrammetry ... 38

5 CONCLUSION .. 40

REFERENCES .. 41

LIST OF FIGURES .. 44

LIST OF CONCEPTS

2D 2-Dimensional.

3D 3-Dimensional.

3D Asset an object (also called model or mesh) that is meant to appear in a

video game.

Bitmap an image in digital form, where for each pixel element is assigned

one bit of information. Also can be referred as Map.

Game Engine a software framework designed for the creation and development of

video games.

Materials are definitions of how a surface should be rendered, including

references to textures used, tiling information, color tints and more.

Polygon a surface with 3 or more side, defined by vertices, for visualization in

a three-dimensional graph.

Procedural Texture a computer-generated image created using an algorithm intended to

create a realistic surface or volumetric representation of natural
elements in Texture Mapping.

Real-time rendering production of visualization in real-time.

Shader small scripts that contain the mathematical calculations and

algorithms for calculating the material.

Texture an image for defining the surfaces' color, reflection or relief

information.

Vertex a single point whose sole property is its position in 3D space.

6

1 INTRODUCTION

Video games have existed for a long time enough to become a part of popular

culture of the modern age. Nobody could have predicted that in less than five

decades the games would grow from a pure form of shapes of the pixels to the

global industry with the expected of $108.9 billion in revenues in 2017 (McDonald

2017).

Since the first 3D video games were introduced, the real-time rendering has

stepped closer to the realism more than ever before. Despite the fact that the

purpose of the games is to bring a simulation of the experience to its player, the

environmental aesthetics have become a massive part in a game production, and

with its visuals, it has become a part of that experience that makes a modern

game even more memorable.

The primary focus of this thesis is to achieve to produce the believable game

textures and to present the workflows used by the author. The thesis covers the

basis of the evolution of Texture Mapping in video games and concentrates on

the aspects of the 2D imagery usage in a three-dimensional space. The contents

are intended for the artists who already know the basics of 3D modeling and UV

Mapping and does not present any mathematics or code.

For demonstration purposes, all the textures were produced from scratch by the

author and were rendered for the final presentation in real-time using both

Toolbag 3, developed by Marmoset, and a built-in renderer in Substance

Designer, developed by Allegorithmic.

All methods were based on the authors’ own experience combined with research

of creating modern environment material workflow using the latest updates of the

various software and mixing them for the faster approach including the renders to

apply the theory in practice.

7

2 EVOLUTION OF TEXTURE MAPPING IN 3D GAMES

Visual graphics are an essential part of video games nowadays. Designed to set

the illusion of reality to the human eye of the virtual world, the prime indicator of

the technology that powers it is on the computer itself.

Computer graphic is a discipline of producing an image with computer

calculations. The process includes the manipulation of visual and geometric

information and though it has a short existence it has made a dramatic advance

in different mediums, leaning towards more and more realism.

The technology provided the possibility to create an artificial simulation, but due

to the intensive use of computer resources for the real-time rendering, it took time

for the gaming industry to find a way to represent a reality on the screen via

Texture Maps.

2.1 Foundation of Computer Graphics

Since the electricity became an unpreventable part of the human’s life, it was a

matter of time when the technology would make its way to become an object of

many experiments leading to visualization graphics in video games.

Based on the article (Jones 2017), in the middle of 19th century the cathode rays,

or electric beams, were a subject of research by many physicists and found its

usage in television and computer screen to produce both vector and raster

graphics. The technology was based on the flow of electrons in a vacuum tube

moving from a negatively charged electrode at one end to a positively charged

electrode in another transverse voltage. The differences between the electrodes

cause the material to glow, bringing the pixels of the image to the screens and

were called cathode ray tubes (CRT). Invented in 1897, Oscillates were the first

to use cathode ray tubes as the two-dimensional displays. (Wolf 2008, 9-12.)

Shortly after the World War II, in 1949, the Whirlwind, the very first mainframe

computer to use a CRT as a graphic display, was developed at the

8

Massachusetts Institute of Technology. In 1951, the system was demonstrated to

the publicity with its capabilities to display real-time video, text, and graphics on a

big oscilloscope screen, which has brought a high value for military purposes.

(Wolf 2008, 17.)

Early Computer Graphics and systems continued to distribute a high interest for

different experimentations for the following decade. Together with CRT

technologies, they have found its predecessors not only in scientific studies, but

also in artforms. In 1960, William Fetter was first to introduce the term Computer

Graphics while attempting to shape an efficient process of a layout inside

Boeing's airplane cockpits (Shklyar 2004). As can be seen in Figure 1, his result

was a computer generated orthographic view of the human form which founded a

revolutionary step forward in design methods of that period.

Figure 1. Computer Graphics in the 1960's (Fetter, n.d.)

At the University of Utah, one of Fetter's contemporaries, Ivan Sutherland made a

revolution in the CG industry, bringing an interactive communicative machine

system, called Sketchpad. It featured a constraint-based drawing and hierarchical

modelling utilized with lightpen for interaction on top of oscilloscope screen (Wolf

9

2008, 17-18). With his success, Sutherland formulated the ideas of using

primitives (such as lines, arcs, vectors) and their manipulations inside of the

computer system making him be considered as the founder of the computer

graphics (Shklyar 2004).

According to the article (Chapman 2015), Ivan Sutherland, together with his

partner Dave Evans, later, in 1968, formed the very first computer graphic related

company, called Evans & Sutherland. The researchers of the group made a

considerable contribution to 3D graphics industry with developing the

hidden-surface algorithm for rendering and display technology which is

fundamental for the modern real-time 3D rendering in video games even

nowadays.

2.2 Defining Texture Mapping

During the early 1970s computers became more capable of producing 3D

geometry with much more shaped polygons. During the research, developers

faced an issue of computer memory performance, where, since the first renderers

were able to present only the flat shading model, the only way to increase the

smoothness of geometry with more details was to add more polygons. (Wolf

2008, 48.)

A French computer scientist, Henri Gouraud, found a solution to one of the

issues. He utilized a unique shading by interpolating the normal of the vertexes.

Gouraud Shading resulted in a smooth surface that takes only a small amount of

the system’s power without increasing the number of the polygons. Later, the

shading model technique was expanded by Phong Bui-Tuong. He introduced a

calculation of the normal vectors for each pixel. Phong resulted in an incredibly

smooth surface with definite highlights, but it used much longer time to render

compared to the previous shading model. Both shading techniques can be seen

in Figure 2 in comparison to the flat geometry. (Shklyar 2004.)

10

Figure 2. Types of Shading (PCMAG, n.d.)

According to the article (Blinn & Newell 1976), the fundamental work in Texture

Mapping is attributed to Edwin Catmull. In 1974 Catmull recognized an easy way

to achieve realism in 3D geometry by producing a picture on surface polygons

with a minimal effort of the computer systems. He developed an algorithm for

rendering images and was the first to demonstrate the Mapping of a texture

pattern onto arbitrary planar and cylindrical surfaces. The algorithms apply

two-dimensional pictures like a skin to the UV grid of projected polygon surfaces,

adding the rasterized details to a computer-generated scene.

James Blinn and Martin Newell (1976) later refined the Texture Mapping even

further. By combining Catmull’s Texture Mapping technique with 2D picture

elements and Phong’s reflection shading to the teapot mesh, they resulted in an

image of a highly glazed by that time with a fully textured 3D geometry object,

which can be seen in Figure 3.

Figure 3. Texture and Reflection (Blinn & Newell 1976)

11

During 1978, James Blinn also achieved in building an illusion of some very

sophisticated geometry without the increased number of polygons - Bump

Mapping. With the usage of black and white colors, the texture defines the

information of which pixel will have a relief on arbitrary polygonal models in real

time. Bump Displacement function later extended the Mapping even further. This

technique is based on similar Bump Mapping function, except the actual vertexes

are transformed with an exact position. The process helped to build the silhouette

of geometry for extra details but led to a severe load of processor power and an

additional memory usage. (Policarpo et al. 2005.)

2.3 3D Game Texture Mapping Evolution

Physically based approaches to rendering started to be seriously considered by

graphics researchers in the 1980s. One of the techniques of such production is

called ray-tracing (Whitted, n.d.). The algorithm takes inspiration from the reality,

which simulates the light bouncing in the scene, producing the reflection based

on the Texture Mapping parameters. Ray-tracing delivered realistic graphics and

was actively used in movie productions, but at a higher cost for the calculations

even nowadays.

Real-time 3D graphics in the late 1980s and early 1990s were extremely

computationally intensive. The first implementation of 3D with a full surface

texture rendering was introduced in Ultima Underworld. The game had an

environment that could be viewed from arbitrary oblique angles and was

revolutionary during that period, but required a significant amount of power to

build a scene in real-time. (Williams 2017.)

Influenced by the development of Ultima Underworld, a small by that time game

company named id Software released Catacombs-3D in 1991 with the 3D

approach of Texture Mapping and later expanded it in Wolfenstein 3D, in 1992.

The games resulted in a significant reliance on 2D imagery to supplement the

illusion of 3D forms called ray-casting. (Kusher 2003, 91-92, 97-98.)

12

Ray-casting involved the projection of a cone of rays from the player’s position

on a 2D Map. The levels were built on a simple square grid with the walls being

entirely Texture Mapped, as can be seen in Figure 4. Combined with simple level

geometry game were performant for the machines that time. (Pernady 1996.)

Figure 4. Ray Casting Example (Permady 1996)

Later, id Software has increased the capability of Texture Mapping by

implementing Binary Space Partitioning (BSP) algorithm with the ray-casting to

their new game - DOOM. Limited to a vertical axis of rotation in a 2D space, the

engine of the game allowed to divide the sectors of a level Map to simulate in

real-time the variety of room heights with a full texturing of floors, ceilings, and

walls. (Kusher 2003, 142-143.)

The rapid evolution of game technologies in the mid to late 1990s significantly

improved the range of application and opened the doors for the higher level of

detail. Real-time 3D rendering has established the definition of a Texture

Mapping of the surfaces, which contained the essential color information with

Gouraud’s shading, but without any other physical approaches yet.

In 1996, the Texture Mapping saw a breakthrough with the release of Quake.

Developed by id Software, the game was not only the first to introduce complex

3D scenes with characters and environments but also introduced illumination

Maps or Light Maps to capture lighting effects in video games. (Williams 2017.)

13

Static lighting information started to be captured and stored in a Texture Map

covering all polygons of the level, at a much lower resolution than the Texture

Maps themselves. With the release of graphics amplifier chipsets, id Software

distributed an updated version of Quake that could render the Light Maps directly

on the textures, using the multi-texturing method with alpha-blending, which

would see similar reuse power in many other games (Shahrani 2006).

By 1998, the rise of 3D acceleration allowed the game developers to take

advantage of the power to construct smooth and detailed worlds without the

significant compromise. 3D Accelerator cards permitted to unlock the real-time

rendering limits of 3D gaming with both better performance and quality, and it

was a matter of time when games would become entirely dependent on them.

Developed by Epic MegaGames, Digital Extremes, and Legend Entertainment,

Unreal was the game that took full advantage of the hardware and quickly

became associated with cutting-edge graphics. With diffuse and lighting textures,

Unreal is one of the first games to utilize the Detail Texture Mapping technique

(see Figure 16, 29). It allows enhancing the surfaces of objects with a second

texture that shows material detail to build a believability of the high-resolution of

the Maps (Shahrani 2006).

By the early 2000s, the Texture Mapping has evolved from simple 2D sprites to a

real polygonal surface with the multiple textures applied on top of it. The games

pushed realism to the new heights and attracted the new generation of gamers to

become a part of that experience.

2.4 Advancing Realism in 3D Games

3D game visuals before the early 2000s relied heavily on Color Maps and the

baked lights alone. Between the 2000s and 2010s, the evolution in game

graphics continued to proceed as each new generation of hardware allowed

developers to provide more resources for building more realistic visuals.

14

With the release of Quake 3 Arena, id software refined the usage of Shader

scripts, which significantly increased the capabilities of Texture Mapping in

games (Jaquays & Hook 1999). With the ability of Shaders, artists and

programmers now could adjust the properties of a surface with multiple Texture

Maps to add a physical appearance in real-time rendering, which had already

been used in 3D movie production by that time. With the opened horizons, new

graphics standards required to implement new plans for developing the games.

Now that it was plausible to transfer the materials attributes, the Color Map was

apparently not enough.

With advances in hardware, developers found an opportunity to produce multiple

textures for simulating ray-tracing rendering effect in real-time rendering. Bump

Maps were ones of the earliest additions that significantly refined game visuals

as they imitated subtle surface irregularities and gave the illusion of height and

depth on a flat surface. Bump Mapping found its early usage in Jurassic Park:

Trespasser. Later, from a simple grayscale image, Bump Mapping was replaced

by Normal Maps (Figure 11, 23), which provided sharper detail by converting the

surface of a high polygon 3D model to a 2D Map and overlaying it on a low

polygon model. This technique added a more visual feature without adding more

computation intensive polygons and resulted in higher performance. (Williams

2017, 228.)

Shaders are also used to simulate the effects of light on models and the game

environment through Specular Maps, which controlled the reflective properties

of a surface, allowing highlights that automatically reacted to different light

intensities. (Williams 2017, 229.)

By the end of the 2000s, the game industry had refined the principles of

physically based shading. Choosing the right building materials had become

essential for the believability of games around the playable characters. Texture

Maps are there to define the strength of objects and structures, and the gaming

industry is still perusing the abilities to produce the realism in real-time rendering.

15

3 PHYSICALLY BASED TEXTURE TYPES

Physically-based shading is a technique that, if thoroughly defined, is the closest

approach of the reality in real-time rendering nowadays. The term is bandied

around the primary fundamentals of the behavior of light and matters and can be

referred to as Physically Based Rendering (PBR) or Physically Based Shading

(PBS) (McDermott, n.d. b). According to McDermott (n.d. a), the ultimate goal of

the textures is to describe the individual parameters of how the surface of a 3D

object is reacted with the connection of the light within the environments.

Since shading capabilities have advanced enough, some of the old

approximations are evaluated to the new means of producing a textured art for

photorealistic looks. Though the Shaders are written by programmers, artists are

there to achieve the best results with the creation of inputs & outputs for the

further material manipulations. (Ahearn 2008, 95.)

It is essential to understand the fundamentals of light and shadow to build a

physically correct texture property. Nowadays, reflections are based on the

combination of the imagery, where every parameter of the Map relies on the

basics of light and its perception of the human eye. In this chapter, the author

describes the most common types of textures.

3.1 Base Color Map

Light is a produced transverse electromagnetic wave that consists of fluctuations

of electric and magnetic fields in nature. The retina of the human eye is sensitive

only to a limited radiation at wavelengths that range between 380 nanometers

and 740 nanometers, which are visible in the RGB spectrum of colors. (Adobe,

n.d.)

The surface of an object reflects some the mixture of wavelengths and absorbs

all the others. Human’s brain perceives only the mirrored shade via the

electrochemical signal in red, green and blue hue range (Pantone, n.d.). As

shown in Figure 5, the surface reflects the specific wavelengths and absorbing all

16

the rest, and it appears as a value that is revealed. If the object appears white, it

indicates all wavelength, while black consumes them all.

Figure 5. Color perception (Lappa 2017)

The very first of Texture Maps to describe this effect in video games was a

Diffuse texture, also called Color and Albedo Map. According to Ahearn (2008,

101), the initial part of this Map was to tell a player what material appears before

him by a single image on top of the surface.

With the introduction of the physical properties of the Maps, the process of this

texture became much more straightforward. Base Color Map became an initial

part of describing an appearance in PBR, playing a critical role in the way how

the lighting is diffused. The texture defines the tint of a material without any

lighting information because those effects come from the contribution of other

Map types, such as Specular Maps. (McDermott, n.d. b.)

Figure 6 illustrates the difference, where Color Map conveys the subtle details

and leans toward the flat image of the surface, where it excludes the directional

lights and ambient occlusion. If the additional lighting information is baked into

the texture, the appearance will become incorrect in certain different lighting

conditions.

17

Figure 6. Base Color example (Lappa 2017)

Base Color defines merely the overall tint of the material, and its value is varied

between 0, which equals to black in hue, saturation & lightness (HSL) and 1,

which has a value of 255 of every color in sRGB space and equals to white.

Though some colors in real life are preserved in our brain as a constant value,

nothing in real life is entirely black or white (Pettit 2015). Such appearance is

achieved because of the lighting conditions under which they are viewed, and

according to the table, the black charcoal equals to 0.2 value and white snow is

measured as 0.81 in a total intensity. (Epic Games, n.d. c.)

3.2 Reflection Maps

In real-time rendering, all the objects are evident because of the reflected light

from different illuminates. When light hits the surface, two things happen -

diffusion and specular reflection.

While the diffusion scatters light in many directions and leans some back towards

the viewer (Figure 5), it must first penetrate the surface. Energy Conservation

plays a vital role in delivering that function in physically-based rendering. With the

higher level the intensity of the reflection, the Shader keeps the strength of the

18

diffuse scattering lower, leaving the surface with the same brightness value. From

the perspective of an artist, this aspect allows focussing only on one amount of

the roughness of the material, rather than always adjusting the brightness of the

diffusion as well. (McDermott, n.d. a.)

The word specular, translated from Latin “mirror,” is used to describe a ray of a

radiant from the surface that is headed in a constant direction on the opposing

side of the surface, as it can be seen in Figure 7. However, most objects do not

have such high smoothness, and therefore the direction of reflection will vary

depending on how much the surface is incoherent at different angles. (Russel

2015.)

Figure 7. Light reflection (Lappa 2017)

As stated by McDermott (n.d. a) and can be seen in both Figure 8 and Figure 9,

with the same light conditions the surfaces might appeal differently. While the

smoothness of the surface is expressed in a more intense mirror image, thus

causing a sense of saturation and brightness of the illumination, the coarser

surface has a much dimmer flare. The measure of smoothness is often referred

as Gloss or Roughness Maps in Physically-Based Shading.

Following the reality, it is also important to consider the Fresnel Effect. According

to Unity User Manual (2017c), the effect itself manifests the material at high

19

viewing angles, which is expressed in a high ability to reflect light. This

impression can be noticed in Figure 8 and Figure 9 as well.

When creating materials for PBR, it is also essential to consider the structure of

the surface. There are two types of the properties how the light reflects from an

element: insulators or dielectrics and electrical conductors, which are also known

as metals. According to Russel (2015), metallic materials usually have a

reflectivity of up to 60-90%, while non-metals have a much lower range, about 0-

20%. Figure 8 and Figure 9 also illustrates the comparison to insulators, where

electrical conductors absorb rather than scatter lighting rays that penetrate the

surface, without any diffuse light. The measure of smoothness is often referred as

Specular or Metalness Maps in Physically-Based Shading.

 Specular & Glossiness Workflow

Specular & Glossiness workflow is defined through a set of Maps, which are

combined as a set of textures in Physically Based Shading. As it can be seen in

Figure 8, the data of the values of each surface have different results.

Gloss textures define the blurriness or sharpness of the reflections across a

texture's surface with the microscopic roughness of a material’s surface. The

brighter the gloss texture, the more apparent it will appear, where the darker

value represents, the rougher surface reflection. (Wilson 2015.)

Specular Textures are used to define metal and non-metal areas on a surface.

They offer more control over the specular intensity and allow greater flexibility

when trying to reproduce specific complex materials, but require an intense

understanding of physical material properties to get the right values. (Wilson

2015.)

20

Figure 8. Glossiness (up) and Specularity (down) difference in values (Lappa 2017)

Pristine bare metallic surfaces need to have a pure black Color Texture, where its

color is placed in Specular Map. It is also important to consider, that metal that is

weathered, oxidized or painted needs to be treated as a dielectric, and if the rule

is not followed, the reflection of the material will be miscalculated. (McDermott,

n.d. b.)

Overall, Specular/Glossiness can provide excellent control over the dielectric

surfaces if handled correctly, but it utilizes a bit more of the texture memory with

extra RGB channels in Specular Map.

 Metalness & Roughness Workflow

An alternative way to produce a reflectivity in PBR is Metalness & Roughness

pipeline. The difference between Specular & Glossiness is in marking materials

as metallic or non-metallic, and definition of the surface smoothness. However,

as can be seen in Figure 9, the overall result of the reflection remains the same.

When using a Metalness Map, insulative surface’s values are set as a constant to

0, which equals black, while metals are marked in 1.0 in a greyscale color space

which equals white. With this workflow, artists have a more accessible approach

21

to the surface reflection, where the whole control is set to the Roughness Map.

(McDermott, n.d. b.)

According to McDermott (n.d. b), this method allows the Albedo Map to work with

metals regularly like with dielectrics in Specular & Glossiness pipeline. Though

the roughness is also set to the black & whites, the reflection is controlled by

different values. The full result of the difference rendered by the Author can be

seen in Figure 9.

Figure 9. Roughness (up) and Metalness (down) difference in values (Lappa 2017)

In comparison to Specular & Glossiness workflow, Metalness & Roughness has

lesser control over the reflectivity of the conductors, but it makes more accessible

for the artists to simulate the smoothness. As both Maps are in grayscale, they

use less texture memory, making it better for the optimization.

 Capturing Reflection

There are a number of ways of projecting the reflection of the scene in video

games. The most common methods are based on real-time and static capturing,

where the results have their advantages and disadvantages.

22

One of the methods is called Cube Mapping. Based on 3D Game Textures

(Ahearn 2008, 115), Cube Maps are based on 6 six seamless images arranged

into a cube geometry, covering all axis of the reflection, which result is

demonstrated by Epic Games in Figure 10. The texture is always static and gives

approximate parallax for the observation, but does not reflect any dynamics of the

scene, and thus should ever be placed correctly.

With the increased capabilities of the physical rendering, modern game engines,

like Unreal Engine 4 (Epic Games, n.d. d) provide a real-time reflection capturing

via Reflection Capture Actors which can be seen in Figure 10. The position of the

actors redraws the images of the Cube Map every frame dynamically. With this

method, players can see the movable object being reflected.

Figure 10. Reflection Capture scheme (left) and scene (right) (Epic Games, n.d.)

With the constant recording of the environment, the real-time capturing process

requires a tremendous amount of the computer resources and should always be

placed on the scene cleverly. As Figure 10 illustrates, the actors are put in

different ways. Some of them capture the whole environment, while only a few

are placed to achieve the mirroring with more density. Combined with the static

reflection via the Cube Maps, both processes can project the whole scene

accordingly to the player position, where the prime spots are reflective,

23

leaving the rest for the pre-baked information and better optimization (Ahearn

2008, 115).

3.3 Normal & Displacement Maps

Normal Mapping in 3D is a technique that is used to fake the lighting of bumps

and dents instead of adding more polygons to an object. According to Ahearn

(2008, 117), the texture is used to make a model appear like high polygon model

with various details with smoothed edges to define a relief of the simple mesh for

the lighting and look more realistic and appealing.

In real-time rendering, the relief of the surface that is stored in the Normal Map is

in tangent space. At that point, according to Polycount (2017), the light that

comes in contact with the surface of the texture image is analyzed from its

position and, due to this action, Shader decides which color pixel and with what

intensity will be displayed.

Figure 11. Normal Map example with Red, Green and Blue channels exposed (Lappa 2017)

As Figure 11 demonstrates, Normal Maps are constructed from 3 channels: Red,

Green, and Blue, where each color corresponds to the three-dimensional

coordinates. The red channel in the image indicates the direction of light along

24

the X axis (right and left), while the green channel is responsible for the Y axis

(up and down) and the blue channel keeps the Z axis which directs the position of

normals outwards and inwards of the surface in Normal Map.

Height Map, also called Displacement Map, has a similar idea of normal

Mapping. However, it is more complicated and can be very slow to render and

should be used within reason.

With the introduction of a tessellation method, Displacement Map became a

subject of the interest among many artists. According to Nvidia (n.d.), the process

uses a Height Map to define the displacement of the vertices by dividing polygons

into many pieces as can be seen in Figure 12.

Figure 12. Height Map vertex displacement with tesselation applied (Lappa 2017)

Figure 12 also shows that the texture is in greyscale and is used in combination

with Normal Maps to give an extra definition to surfaces where the surfaces are

responsible for rendering large bumps and displacements. The brighter pixels of

the image make higher elevations while, the darker pixels do the opposite, where

middle grey pixels make no change.

25

3.4 Light Maps

With the ability to produce light in real-time rendering, game engines provide a

variety of options how the shadows of environments are stored in a scene.

While Diffuse or Base Color Maps are mostly for the color information only, Light

Maps are there to support the missing data in the packed textures. The textures

are based on the similar workflow like the environment Map, where it contains

non-updatable information of the light values and is multiplied with the base

textures for static conditions. (Polycount 2015b.)

The baked lighting information provides a variety of the possibilities to keep the

shadows and light bounce information with a low amount GPU resources, but

since static lights only use Light Maps, they use an increased amount of texture

memory. Their shadows should be re-rendered before any changes are made

inside the scene, which means that they cannot record moving objects in real-

time. (Unreal Engine 2017.)

The second method that is available in modern game engines is a possibility of

dynamic lighting rendering, where the shadows and lights are changed upon the

movement and kept inside of the environment without any light textures recorded.

With the update of every frame, this method requires more significant GPU

performance for the satisfactory results. (Unreal Engine 2017.)

 Ambient Occlusion

An Ambient Occlusion Map (AO) is used to create exposed soft shadows. It is a

grayscale texture that keeps the shadowing information of finely accessible

places such as slits, corners, and cracks. (Epic Games, n.d. a.)

The process of making an Ambient Occlusion Map is tied to storing the

information from an individual geometry in a static condition. According to Epic

Games (n.d. a), it can either be stored in a greyscale image, or it can be rendered

inside of the game engine in real-time. Based on Polycount (2015a), this method

26

of an in-game shadowing is called Screen Space Ambient Occlusion. The

process dynamically captures the required details, but it requires a more decent

graphics card to proceed flawlessly and can involve some issues like shading

errors.

Figure 13 illustrates more information of how Ambient Occlusion texture is stored.

The base color on the left represents the color information, while all small

shadows are separated on a different surface with white value covering most of

the space.

Figure 13. Base Color Map (left) with Ambient Occlusion Map (right) extracted (Lappa 2017)

 Emissive

Another texture to cover is called Emissive Map. It is used to simulate a

self-illumination of the surface by increasing the intensity of the specific pixels.

The Map builds the appearance of being lit up which is frequently used as

screens, light bulbs, and more. (Unity 2017b.)

Emissive Map receives areas, where black cover most of the space except the

parts that need to glow with an intensity of the values and colors in RGB color

space. The example of this method can be seen in Figure 14, where XAMK logo

27

was chosen by the author to build it as a mask with color transitioning to black on

the edges. As a result, the area of a color in texture is glowing but does not

illuminate the light even at the higher intensity.

Figure 14. Example of Emissive Map applied (Lappa 2017)

3.5 Transparency Map

In game engines, when creating a material with an ability to see through it, a

transparency Map is there to control the rendering of a passage of light. It is also

referred to Opacity Map or Alpha Map and is usually set in an extra alpha

channel of Base Color in RGB format. (Unity 2017a.)

For the demonstration purpose, Figure 15 demonstrates a render of a box with a

gradient Map applied to show the parameters of the transparency control. Black

(0) is responsible for the full Transparency, while white (1.0) considers the fully-

visible area. The transitions of the values in the middle of the gradient show the

varying opacity in between two constant values, done in greyscale mode.

28

Figure 15. Example of the usage of an 8bit linear gradient as Opacity Map (Lappa 2017)

When talking about the convention of the values between whites and black, it is

necessary to take into a consideration of bit depth of the images. According to

Wallstrom (2015), bit depth is the number of value data storage used to represent

in color channels.

The value data delivers the difference in the smoothness of the opacity

transitions. A 1-bit texture is only black and white. It has its use for the lowest

memory usage but comes with a significant loss of the quality. A 4-bit image in

comparison has a slighter better variety of the transition, which allows blending in

16 colors. The gradation between the values, as seen in Figure 15, allows to

break the edginess and uses 8-bit transpose. Combined with the texture filtering,

it provides to get a full range of greys with 256 colors, which makes it useless for

building the Maps with higher color values for even more smoothness of the

edges. (Polycount 2015d.)

3.6 Detail Map

When texturing an object, some details at the closer look may become broken

and pixelated, resulting in a low quality of the textures. Detail Map was introduced

to hide the squarish visuals and add more quality to the surface. It builds an

29

illusion of the higher resolution of the image and can be seen in Figure 16 in

comparison to a stated issue.

Figure 16. Difference between simple texture (left) and Detail Map applied (right) (Lappa 2017)

Made by the author, Figure 16 also demonstrates the way how the textures are

used. By adding a tileable noise across the surface, Detail Map builds a visually

higher resolution. The effect is achieved by overlaying the detail texture on top of

the base material with an extended UV channel.

Based on Polycount (2015c), a Detail Map is a method that is used to define

details in close view. The technique is built in the Shader uses a higher amount of

UV tiling, which makes smaller pixels to appeal to the viewer. Adjusted, real-time

rendering allows the texture to fade out at a medium distance to hide tiling

artefacts which can significantly save a texture memory in keeping the primary

materials in lower resolution.

4 APPROACHING PHOTOREALISTIC MATERIALS

A Material is an asset in a game engine that can be used to define the visual look

of a mesh in the scene by an artist (Epic Games, n.d. b). Knowing how to make

the right parameters, it defines the type of surface from which the object appears

30

to be made of to the eyes of the players by the help of physically-based

rendering.

The process of building an appealing texture for its further realization across the

whole game environments relies on a variety of applications. While it is essential

to follow the high standards of the industry, artists must be able to apply the

production of the textures for the needs of the development.

This chapter is divided into several sub-sections that focus on texture building

methods with multiple software combinations. The overall goal was to bring

game-ready materials, which were created by the author to demonstrate the

workflows.

4.1 Sculpting

Sculpting in both game and movie productions became important over many

years. The method is used to produce a high poly model that is difficult to provide

via traditional 3D modelling and is used by the professionals to achieve both

realistic and organic results.

There are many applications available for the industry which allow achieving

digital sculpts including 3D coat, Autodesk Mudbox, and Pixologic Zbrush, which

is the 3D industry’s standard nowadays and grants the possibility to build the

object organically. For the demonstration purpose, the author sculpted a rock

material, that has much complexity in the natural forms that can easily appeal to

the viewer.

Pixologic Zbrush is a software that allows using customizable brushes to shape a

virtual clay in a modern way. For the textures, it comes very handy to sculpt high

polygonal meshes and then translate the information into a two-dimensional

image for a further production.

Before the start, it is essential to consider the size of an object. Since Zbrush is

an application that is used to reproduce an object in 3D space, the process

31

should always rely on a scale reference to keep the proper resolution of the

required result. For this reason, a simple plane has been created in Autodesk

Maya to fulfil that purpose. The object serves merely to guide an artist for both

size and tile of the sculpt, that can remarkably simplify the post-production after

the capturing the details.

Figure 17. Reference Plane (left) with a tiled sculpt (right) (Lappa 2017)

The organic workflow is a relatively simple and a straightforward process. Mostly

it is based on building the low polygonal objects and then further reinforcing it and

tweaking them inside ZBrush with a large sub-division level for a high detailing.

Following these steps, the mesh can be created in a short time with the result as

it seen in Figure 17, where a logo of XAMK was used as a demonstration of a

custom-made brush.

The rock base (Figure 18) was created by the combination of simple cubes and

duplicating them in the space of a plane. With the satisfied position, to make it tile

it requires filling the sides, which can be achieved by using deformation – offset

tool. With a positive or negative value of 100 in a required axis of the offset,

adding tileable details inside of the border can be quickly set up by increasing the

number of warp mode by 2 (Figure 17).

32

The detailing process heavily relies on the mixture of the brushes and sub-

division within Zbrush, which is more creative, rather than technical. Since the

final resolution of the texture will be 2048x2048, there is no reason to achieve the

hyper-realism of the shapes, where the smallest dents will become pixelated.

Figure 18. A final tiled rock sculpt with a scale reference (Lappa 2017)

When the work is finalized (Figure 18), the information of the surfaces can be

captured in many ways. The simplest and the fastest one is to render the image

straight from the canvas with a Normal material applied. The render must be set-

up with the highest quality of the distributed mesh with the shadows turned off.

When the calculation is over, the image can be easily saved from documents and

export window.

The overall process is simple but requires more post-production of the images,

including correction of Normal Map and fixing tiling issues if they are. The organic

shapes can be created extremely fast, but for a better result, the pipeline can

demand much more computer power.

33

4.2 Image-based Texturing

Approaching photorealism requires an enormous effort in producing the right

appealing details. One of the ways of creating it is straight from a photo image

and fit it for the correct usage in Physically-based Rendering.

Since Physically-Based Textures are bitmaps, they can be easily created by any

programme that allows editing images. One of the world’s best software that is

used among the many artists – Photoshop, developed by Adobe. It supports to

adjust and create the photographs, graphic designs, artwork, and with the

extended plugins like Quixel Tools can become a full application with a wide

variety of 3D texture editing. While knowing the parameters of each Texture Map,

Photoshop is a perfect option for tweaking them by hand.

When creating a texture, it is essential to start with gathering references. There

are plenty resources of the images available for artists on the internet including

google.com or textures.com. The most prominent con of making a texture via

Photoshop is that artist can reproduce a material straight from the source. Figure

19 illustrates how the reference can be manipulated for building a unique look

with the shadows being extracted.

Figure 19. Reference images built into a Base Color Map in Adobe Photoshop (Lappa 2017)

34

As a result, Figure 20 illustrates the combination of the results of 3D sculpting

and Photoshop texturing applied on top with all the physical parameters.

Notwithstanding, the pipeline allows to build the materials in no time, but due to

the rasterization of the images, the process is limited to its size resolution.

Figure 20. Textures done in Adobe Photoshop applied to a mesh (Lappa 2017)

4.3 Procedural Texturing

Procedural texturing is another way to approach the building of a texture. While

raster graphics are fixed at a resolution limit, the bitmaps created procedurally

have no restrictions.

Substance Tools is a set of application consisting of Substance Designer and

Substance Painter. Developed by Allegorithmic, the technology allows building

procedurally generated textures with the required set of defined bitmaps.

 Substance Designer Workflow

Substance Designer is a node based tool with a procedural approach to

materials. With this workflow, artists have many possibilities of texture production

without the loss of data, where the changes, applied to any of nodes, will

35

automatically be applied to an end-result. It allows using mathematical functions

to build dynamic texture that has no limitation in size resolution with being tiled.

Substance Designer pipeline consists of a primary setup with blocking out the

basic shapes, with further incorporation of the details. As the process is finalized,

the visualization can be distributed as the physically-based textures in the nodes

called outputs.

As can be seen in Figure 21, the workflow requires much more effort and further

node optimization. Creating a realistic material can be time-consuming, and the

process can become complicated to achieve a proper result from the reference.

Figure 21. References (left) and Substance Designer graph (right) of the material (Lappa 2017)

On the other hand, since the process is entirely procedural, the variety of the

visual properties can be adjusted in many ways. Many impressive visual effects

are possible which is only limited by the artist's imagination. These features can

be anything from simple patterns to fully textured surfaces.

As an example, Figure 22 demonstrates the possibilities of how flexible material

adjustment can be. With the extended node functions, Substance Designer can

36

allow an artist to tweak the parameters, including attaching a bitmap as a mask,

which dynamically can fit into a material.

Figure 22. Substance Designer material exposed parameters (Lappa 2017)

 Substance Painter Workflow

Sometimes it can take a considerable effort to create certain types of assets with

specific features in a procedural workflow. Substance Painter is a handy software

that allows to place, paint or generate details in certain places with multiple

options, where artists can arrange on their own in any creative way.

The application is like Photoshop when it comes to organization. Taking the

material from substance designer allows adjusting the workflow dynamically and

in a short time. Based on the author's texture production (Figure 23), the process

can be divided into three steps – baking, masking, and tweaking.

The baking process allows creating a position coordinates of the mesh with

several Maps, such as Normal, Ambient Occlusion, and more. Based on these

textures, Substance Painter allows building adjustable masks to create dust in

small dents, rust of top or peels on the edges. For the unique information, the

software also provides painting on top of the mesh with different parameters, not

37

depending on any data of the baked textures. A demonstration of the whole

process can be seen in Figure 23.

Figure 23. Texturing in Substance Painter (Lappa 2017)

With the functions developed in Substance Designer, a base material creation

brings a comprehensive variety to Substance Painter. Figure 24 demonstrates

both results, where the process was done in Substance Applications by the

author, where the pipeline used the same material with the different parameters

of the exposed functions.

Figure 24. Substance Designer material (left) and textured material in Substance Painter (right)
(Lappa 2017)

38

4.4 Photogrammetry

Photogrammetry is a method of capturing multiple overlapping photographs and

taking measurements from them to create 3D models of objects or scenes. The

technique brings a possibility to build a highly accurate and realistically photo-

textured models of structures, landscapes, and objects.

Photogrammetry is gaining in popularity and usage since it produces impressive

results comparable to laser 3D scanning technologies at much lower costs. A few

resources were picked to achieve the required results, including a full-frame

photo camera Canon EOS 6D to take images, a Canon 50mm f/1.8 prime lens

that can produce the pictures with the lowest distortion and a software called

Agisoft Photoscan for building a 3D mesh.

As it can be viewed in Figure 25, the process is considered in picturing multiple

photographs like a panorama and combining them in a three-dimensional space.

The software estimates the position of a camera to build a high poly mesh in X,

Y, and Z coordinates.

Figure 25. Photo scanning (left) and a high-poly result (right) (Lappa 2017)

39

Though Photogrammetry allows building a mesh with a texture information, the

process alone is not enough for the further realization in real-time rendering. The

next stages are required to transfer the detail to the textures, which could be

realized in multiple ways, including sculpting for the topology corrections, baking

the Color and Normal Maps and fixing the results either in Photoshop or

Substance Tools. With all the fixes applied, the results can be seen in Figure 26.

Figure 26. Finalized photogrammetry tree barks (Lappa 2017)

With the possibility of scanning the objects, the production of the unique and

realistic textures becomes more available than ever. Though the process requires

the knowledge of the mixed usage of various software, taking the images straight

from life can drastically decrease the time of building the appealing material.

40

5 CONCLUSION

The development of textures dates back to the last century. For decades, 3D has

evolved, until it became a standard for the gaming industry. The construction

required many optimizations, in which the texturing succeeded and grew to the

stunning results in the simulation of realism in real-time rendering.

Based on the sources and personal experience, the author was able to

demonstrate some frequently used textures in various examples that were

created specifically for this thesis. Also, the author showed not only how each

property of surfaces carries a role, but despite the appearance of varieties in the

parameters, the process does not require in-depth knowledge of mathematics to

achieve the desired outcome.

Further, after the study, the author was able to demonstrate various ways of

creating realistic textures. All renderers were successfully done in the shortest

time and were presented in the thesis as examples of using not only individual

programs but also their combinations.

In conclusion, despite the fact that the textures and programs have reached the

necessary level to transform realism in real-time, most of the work depends on

the artist himself. Every year the number of tools is growing, but only a creative

approach can create an unprecedented level of work in the shortest possible

time.

41

REFERENCES

Adobe. No Date. Color Theory for the Desktop. The Nature of Light and Color.
[online] Available at: http://dba.med.sc.edu/price/irf/Adobe_tg/color/light.html
[Accessed: 10 October 2017].

Ahearn, L. 2008. 3D Game Textures: create professional game art using
Photoshop. 2nd edition. Burlington: Elsevier, Inc.

Blinn, F. J. & Newell, E. M. 1976. Texture and Reflection in Computer Generated
Images, Graphics and Image Processing, Vol.19, No.10, October 1976. Available
at:
https://pdfs.semanticscholar.org/0196/090590638e3063410563386a917c27dae9
75.pdf [Accessed: 8 September 2017].

Chapman, G. 2015. Utah Inventions: The birth of computer graphics, August 19,
2015. Available at: https://www.ksl.com/?nid=1012&sid=36039333 [Accessed: 8
September 2017].

Epic Games. No Date a. Ambient Occlusion. [online] Available at:
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows
/AmbientOcclusion/ [Accessed 25 October 2017].

Epic Games. No Date b. Materials. [online] Available at:
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/index.html
[Accessed 25 October 2017].

Epic Games. No Date c. Physically Based Materials. [online]
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyB
ased/ [Accessed 25 October 2017].

Epic Games. No Date d. Reflection Environment. [online] Available at:
https://docs.unrealengine.com/latest/INT/Resources/Showcases/Reflections/
[Accessed 25 October 2017].

Jaquays, P. & Hook, B. 1999. Quake III Arena Shader Manual Revision #12.
[online] Available at: http://toolz.nexuizninjaz.com/Shader/ [Accessed: 8
September 2017].

Jones, A. Z. 2017. Cathode Ray History, August 10, 2017. Available at:
https://www.thoughtco.com/cathode-ray-2698965 [Accessed: 8 September 2017].

Kusher, D. 2003. Masters of Doom: How Two Guys Created an Empire and
Transformed Pop Culture. 1st edition. New York: Random House, Inc.

McDermott, W. No Date a. The Comprehensive PBR Guide by Allegorithmic - vol.
1. Light and Matter : The theory of Physically-Based Rendering and Shading.
Available at:

http://dba.med.sc.edu/price/irf/Adobe_tg/color/light.html
https://pdfs.semanticscholar.org/0196/090590638e3063410563386a917c27dae975.pdf
https://pdfs.semanticscholar.org/0196/090590638e3063410563386a917c27dae975.pdf
https://www.ksl.com/?nid=1012&sid=36039333
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/AmbientOcclusion/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/LightingAndShadows/AmbientOcclusion/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/index.html
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/
https://docs.unrealengine.com/latest/INT/Engine/Rendering/Materials/PhysicallyBased/
https://docs.unrealengine.com/latest/INT/Resources/Showcases/Reflections/
http://toolz.nexuizninjaz.com/shader/
https://www.thoughtco.com/cathode-ray-2698965

42

https://www.allegorithmic.com/system/files/software/download/build/PBR_Guide_
Vol.1.pdf [Accessed: 8 September 2017].

McDermott, W. No Date b. The Comprehensive PBR Guide by Allegorithmic - vol.
2. Light and Matter: Practical guidelines for creating PBR textures. Available at:
https://www.allegorithmic.com/system/files/software/download/build/PBR_volume
_02_rev05.pdf [Accessed: 8 September 2017].

McDonald, E. 2017. The global games market will reach $108.9 billion in 2017
with mobile taking 42%, April 20, 2017. Available at:
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-
billion-in-2017-with-mobile-taking-42/ [Accessed: 8 September 2017].

Nvidia. No Date. DirectX 11 Tessellation. [online] Available at:
http://www.nvidia.com/object/tessellation.html. [Accessed: 9 October 2017].

Pantone. No Date. How Do We See Color?An introduction to color and the
human eye. Available at: https://www.pantone.com/how-do-we-see-color
[Accessed: 9 October 2017].

Pernady, F. 1996. Ray-Casting Tutorial For Game Development And Other
Purposes. [online] Available at: http://permadi.com/1996/05/ray-casting-tutorial-
table-of-contents/ [Accessed: 8 September 2017].

Pettit, N. 2015. The Beginner’s Guide to Physically Based Rendering in Unity. 17
November 2015. Available at: http://blog.teamtreehouse.com/beginners-guide-
physically-based-rendering-unity [Accessed: 25 October 2017].

Policarpo, F. & Oliveira, M. M. & Comba, J. 2005. Real-Time Relief Mapping on
Arbitrary Polygonal Surfaces. ACM SIGGRAPH 2005 Symposium on Interactive
3D Graphics and Games, Washington, DC, April 3-6, 2005, pp. 155-162.
Available at:
http://www.inf.ufrgs.br/~oliveira/pubs_files/Policarpo_Oliveira_Comba_RTRM_I3
D_2005.pdf [Accessed: 8 September 2017].

Polycount. 2017. Normal Map Technical Details. [online] Available at:
http://wiki.polycount.com/wiki/Normal_Map_Technical_Details#Tangent-
Space_vs._Object-Space [Accessed: 9 October 2017].

Polycount. 2015a. Ambient occlusion map. [online] Available at:
http://wiki.polycount.com/wiki/Ambient_occlusion_map [Accessed: 9 October
2017].

Polycount. 2015b. Light map. [online] Available at:
http://wiki.polycount.com/wiki/Light_map [Accessed: 9 October 2017].

Polycount. 2015c. Texture types. [online] Available at:
http://wiki.polycount.com/wiki/Texture_types [Accessed: 9 October 2017].

https://www.allegorithmic.com/system/files/software/download/build/PBR_Guide_Vol.1.pdf
https://www.allegorithmic.com/system/files/software/download/build/PBR_Guide_Vol.1.pdf
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://newzoo.com/insights/articles/the-global-games-market-will-reach-108-9-billion-in-2017-with-mobile-taking-42/
https://www.pantone.com/how-do-we-see-color
http://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/
http://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/
http://blog.teamtreehouse.com/beginners-guide-physically-based-rendering-unity
http://blog.teamtreehouse.com/beginners-guide-physically-based-rendering-unity
http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/Policarpo_Oliveira_Comba_RTRM_I3D_2005.pdf
http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/Policarpo_Oliveira_Comba_RTRM_I3D_2005.pdf
http://wiki.polycount.com/wiki/Normal_Map_Technical_Details#Tangent-Space_vs._Object-Space
http://wiki.polycount.com/wiki/Normal_Map_Technical_Details#Tangent-Space_vs._Object-Space
http://wiki.polycount.com/wiki/Ambient_occlusion_map
http://wiki.polycount.com/wiki/Light_map
http://wiki.polycount.com/wiki/Texture_types

43

Polycount. 2015d. Transparency map. [online] Available at:
http://wiki.polycount.com/wiki/Transparency_map [Accessed: 9 October 2017].

Russel, J. 2015. Basic Theory of Physically-Based Rendering. [online] Available
at: https://www.marmoset.co/posts/basic-theory-of-physically-based-rendering/
[Accessed: 8 September 2017].

Shahrani, S. 2006. Educational Feature: A History and Analysis of Level Design
in 3D Computer Games, April 25, 2006. Available at:
https://www.gamasutra.com/view/feature/131083/educational_feature_a_history_
and_.php [Accessed: 8 September 2017].

Shklyar, D. 2004. 3D Rendering History. [online] Available at:
http://www.cgsociety.org/CGSFeatures/CGSFeatureSpecial/custom_story/1647&
page= [Accessed: 24 September 2017].

Unity. 2017a. Albedo Color and Transparency. [online] Available at:
https://docs.unity3D.com/Manual/StandardShaderMaterialParameterAlbedoColor.
html [Accessed: 10 October 2017].

Unity. 2017b. Emission. [online] Available at:
https://docs.unity3D.com/Manual/StandardShaderMaterialParameterEmission.ht
ml [Accessed: 10 October 2017].

Unity. 2017c. The Fresnel Effect [online] Available at:
https://docs.unity3D.com/Manual/StandardShaderFresnel.html [Accessed: 10
October 2017].

Unreal Engine. 2017. Lighting with Unreal Engine Masterclass | Unreal Dev Day
Montreal 2017 | Unreal Engine. [video online]. 9 October 2017. Available from:
https://www.youtube.com/watch?v=ihg4uirMcec [Accessed: 10 October 2017].

Wallstrom, C. 2015. 8-bit vs 16-bit – What Color Depth You Should Use And Why
It Matters. [online] Available at: https://www.diyphotography.net/8-bit-vs-16-bit-
color-depth-use-matters/ [Accessed: 9 October 2017].

Whitted, T. No Date. An Improved Illumintaion Model for Shaded Display.
Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.3997&rep=rep1&ty
pe=pdf [Accessed: 8 September 2017].

Williams, A. 2017. History of Digital Games. 1st edition. Boca Raton, FL: Taylor &
Francis.

Wolf, J. P. M. 2008. The Video Game Explosion: A History from PONG to
PlayStation and Beyond. 1st edition. London: Greenwood Press, Inc.

Wilson, J. 2015. PBR Texture Conversion Referenced. [online] Available at:
http://www.marmoset.co/toolbag/learn/pbr-conversion [Accessed: 8 September
2017].

http://wiki.polycount.com/wiki/Transparency_map
https://www.marmoset.co/posts/basic-theory-of-physically-based-rendering/
https://www.gamasutra.com/view/feature/131083/educational_feature_a_history_and_.php
https://www.gamasutra.com/view/feature/131083/educational_feature_a_history_and_.php
http://www.cgsociety.org/CGSFeatures/CGSFeatureSpecial/custom_story/1647&page
http://www.cgsociety.org/CGSFeatures/CGSFeatureSpecial/custom_story/1647&page
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterEmission.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterEmission.html
https://docs.unity3d.com/Manual/StandardShaderFresnel.html
https://www.youtube.com/watch?v=ihg4uirMcec
https://www.diyphotography.net/8-bit-vs-16-bit-color-depth-use-matters/
https://www.diyphotography.net/8-bit-vs-16-bit-color-depth-use-matters/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.3997&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.3997&rep=rep1&type=pdf
http://www.marmoset.co/toolbag/learn/pbr-conversion

44

LIST OF FIGURES

Figure 1. Computer Graphics in the 1960's. Fetter, W. No Date. Available at:
http://www.cgsociety.org/CGSFeatures/CGSFeatureSpecial/custom_story/1647&
page=.

Figure 2. Types of Shading. PCMAG. No Date. Available at:
https://www.pcmag.com/encyclopedia/term/43294/flat-shading.

Figure 3. Texture and Reflection. Blinn, J. & Newell, M. 1976. Available at:
https://pdfs.semanticscholar.org/0196/090590638e3063410563386a917c27dae9
75.pdf.

Figure 4. Ray Casting Example. Permady, F. 1996. Available at:
http://permadi.com/1996/05/ray-casting-tutorial-3/.

Figure 5. Color perception. Lappa, D. 2017.

Figure 6. Base Color example. Lappa, D. 2017.

Figure 7. Light reflection. Lappa, D. 2017.

Figure 8. Glossiness (up) and Specularity (down) difference in values. Lappa, D.
2017.

Figure 9. Roughness (up) and Metalness (down) difference in values. Lappa, D.
2017.

Figure 10. Reflection Capture scheme (left) and scene (right). Epic Games. No
Date. Available at:
https://docs.unrealengine.com/latest/INT/Resources/Showcases/Reflections/.

Figure 11. Normal Map example with Red, Green and Blue channels exposed.
Lappa, D. 2017.

Figure 12. Height Map vertex displacement with tesselation applied. Lappa, D.
2017.

Figure 13. Base Color Map (left) with Ambient Occlusion Map (right) extracted.
Lappa, D. 2017.

Figure 14. Example of Emissive Map applied. Lappa, D. 2017.

Figure 15. Example of the usage of an 8bit linear gradient as Opacity Map.
Lappa, D. 2017.

Figure 16. Difference between simple texture (left) and Detail Map applied (right).
Lappa, D. 2017.

Figure 17. Reference Plane (left) with a tiled sculpt (right). Lappa, D. 2017.

45

Figure 18. A final tiled rock sculpt with a scale reference. Lappa, D. 2017.

Figure 19. Reference images built into a Base Color Map in Adobe Photoshop.
Lappa, D. 2017.

Figure 20. Textures done in Adobe Photoshop applied to a mesh. Lappa, D.
2017.

Figure 21. References (left) and Substance Designer graph (right) of the material.
Lappa, D. 2017.

Figure 22. Substance Designer material exposed parameters. Lappa, D. 2017.

Figure 23. Texturing in Substance Painter. Lappa, D. 2017.

Figure 24. Substance Desiginer material (left) and textured material in Substance
Painter (right). Lappa, D. 2017.

Figure 25. Photo scanning (left) and a high-poly result (right). Lappa, D. 2017.

Figure 26. Finalized photogrammetry tree barks. Lappa, D. 2017.

	LIST OF CONCEPTS
	1 INTRODUCTION
	2 Evolution of Texture Mapping in 3D games
	2.1 Foundation of Computer Graphics
	2.2 Defining Texture Mapping
	2.3 3D Game Texture Mapping Evolution
	2.4 Advancing Realism in 3D Games

	3 Physically Based Texture Types
	3.1 Base Color Map
	3.2 Reflection Maps
	3.2.1 Specular & Glossiness Workflow
	3.2.2 Metalness & Roughness Workflow
	3.2.3 Capturing Reflection

	3.3 Normal & Displacement Maps
	3.4 Light Maps
	3.4.1 Ambient Occlusion
	3.4.2 Emissive

	3.5 Transparency Map
	3.6 Detail Map

	4 Approaching Photorealistic Materials
	4.1 Sculpting
	4.2 Image-based Texturing
	4.3 Procedural Texturing
	4.3.1 Substance Designer Workflow
	4.3.2 Substance Painter Workflow

	4.4 Photogrammetry

	5 CONCLUSION
	REFERENCES
	LIST OF FIGURES

