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The cosmological constant problem arises because the magnitude of vacuum energy density predicted by
quantum mechanics is about 120 orders of magnitude larger than the value implied by cosmological
observations of accelerating cosmic expansion. Recently, some of the current authors proposed that the
stochastic nature of the quantum vacuum can resolve this tension [Q. Wang, Z. Zhu, and W. G. Unruh,
Phys. Rev. D 95, 103504 (2017)]. By treating the fluctuations in the vacuum seriously and allowing
fluctuations up to some high-energy cutoff at which Quantum Field Theory is believed to break down, a
parametric resonance effect arises that leads to a slow expansion and acceleration. In this work, we
thoroughly examine the implications of this proposal by investigating the resulting dynamics. First, we
improve upon numerical calculations in the original work and show that convergence issues had
overshadowed some important effects. Correct calculations reverse some of the conclusions in [Q. Wang,
Z. Zhu, andW. G. Unruh, Phys. Rev. D 95, 103504 (2017)], however the premise that parametric resonance
can explain a very slowly accelerating expansion appears to remain sound. After improving the resolution
and efficiency of the numerical tests, we explore a wider range of cutoff energies, and examine the effects of
multiple particle fields. We introduce a simple model using the Mathieu equation (a prototypical example
of parametric resonance), and find that it closely matches numerical results in regimes where its
assumptions are valid. Using this model, we extrapolate to find that in a universe with 28 bosonic fields and
a high-energy cutoff 40 times higher than the Planck energy, the acceleration would be comparable to what
is observed.
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I. INTRODUCTION

One of the greatest challenges in modern physics is to
reconcile general relativity and quantum physics into a
unified theory. Perhaps the most dramatic clash between
the two theories lies in the cosmological constant problem
[1–6]. Naive predictions of vacuum energy from quantum
physics predict a magnitude so high that the expansion of
the Universe should have accelerated so quickly that no
structure could have formed. The predicted rate of accel-
eration resulting from vacuum energy is famously 120
orders of magnitude larger than what is observed.
In a 2017 paper [7], some of the current authors proposed

a solution to the cosmological constant problem. They
proposed that rather than use the expectation value of the
quantum energy density in the Einstein equations, which
would lead to the overwhelmingly large prediction for
cosmic acceleration, one should instead treat the vacuum as
an inhomogeneous stochastic field. Accounting for the
fluctuations in the density of the vacuum energy—which

are on the order of the magnitude of the vacuum energy
itself—can potentially explain a slow expansion.
Here we investigate that proposal with improved com-

putational methods. Our faster computational methods
allow us to make a more thorough investigation of the
behavior of the expansion of the Universe in the presence
of a stochastic vacuum field by extending the model to a
greater number of particle fields. We find that the original
calculations had not sufficiently converged, and a more
thorough calculation reverses some of the trends seen in the
original paper. When these are remedied, the original
proposal no longer explains the results when there are just
two massless scalar particle fields in the Universe.
However, given that the standard model has dozens of
particles, and 28 bosonic field components, a realistic
model should contain many fields. Our faster computa-
tional methods allow us to extend the model to a greater
number of particle fields. With at least three fields, the
exponentially small acceleration predicted by the original
proposal is observed, and the magnitude of the acceleration
gets smaller as more fields are added and the cutoff
increased—meaning that with a sufficient number of fields
at a sufficiently high cutoff, the predicted acceleration
would match observation.*samuel.cree@uq.net.au
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The paper is structured as follows. In Sec. II, we
summarize the aspects of the cosmological constant prob-
lem that are relevant to this work. In Sec. III, we summarize
the model of cosmological dynamics in the presence of a
stochastic inhomogeneous vacuum that was introduced in
[7], and how it attempts to resolve the problem. We also
mention a caveat to the application of the adiabatic theorem
in [7], which implies that the resultant analytical descrip-
tion is only valid with three or more scalar fields present. In
Sec. IV, we describe our numerical methods, which are
similar to those used in [7], before testing the convergence
of our new results across all relevant parameters to
demonstrate that they are robust to all limits. In Sec. V,
we provide corrections to numerical findings of the original
paper, before using our improved methods to test greater
numbers of particle fields, and a larger range of choices of
cutoff frequency for vacuum oscillations. Finally, we
conclude with the physical significance of the new results
in Sec. VI. Throughout, we use ℏ ¼ G ¼ c ¼ 1, and a
metric signature of ð−;þ;þ;þÞ.

II. THE COSMOLOGICAL CONSTANT
PROBLEM

In the Einstein equations of general relativity, a term
representing the curvature of spacetime (Rμν) is related to a
term describing the energy-momentum of matter (Tμν), as
well as the cosmological constant (λ) and metric tensor
ðgμνÞ as follows:

Rμν −
1

2
Rσ
σgμν þ λgμν ¼ 8πTμν: ð1Þ

Each element of the curvature tensor and metric tensor are
just classical fields, but the elements of the energy-
momentum tensor must be quantum operators in order
to account for known quantum effects of matter. A
currently undiscovered theory of quantum gravity would
presumably elevate the left-hand side to become quantum
operators. In the meantime, it is common to treat both sides
as classical (known as “semiclassical” gravity). The most
common way of doing this is to replace Tμν with hT̂μνi (the
Moller-Rosenfeld approach) [8–10]. But this approach fails
in a number of ways: it allows faster-than-light commu-
nication [11], it leads to a nonlinear Hamiltonian which
contradicts the Born rule [12], and most infamously, it
predicts an overwhelming large accelerating expansion of
the Universe.
Here we outline the traditional approach to the cosmo-

logical constant problem, see [1–3,13–15]. The usual argu-
ment states that the vacuum state j0i should be locally
Lorentz invariant so that observers agree on the vacuum state.
This means that the expectation value of the energy-
momentum tensor on the vacuum, h0jT̂μνj0i, must be a
scalar multiple of the metric tensor gμν (which is the only

Lorentz invariant rank (0,2) tensor). Because the T̂00

component is an energy density, we label h0jT̂00j0i ¼
ρvac, so that the vacuum contribution to the right-hand side
of Eq. (1) can be written

h0jT̂μνj0i ¼ −ρvacgμν: ð2Þ

Subtracting this from the right-hand side of Eq. (1) and
grouping it with the cosmological constant term replaces λ
with an “effective” cosmological constant:

λeff ¼ λþ 8πρvac: ð3Þ

The meaning of Eq. (2) is revealed by noticing that in flat
spacetime (where gμν ¼ diagð−1; 1; 1; 1Þ), it implies ρvac ¼
−Pvac, where Pvac ¼ h0jT̂iij0i (for any i ∈ f1; 2; 3g) is the
pressure. Importantly, this implies that if the energydensity is
positive (as is usually assumed) then the pressure must be
negative, a conclusionwhich extends to anymetric gμν with a
(1,3) signature. Whereas gravity is attractive1 for positive
energy and pressure, in conditions with strong negative
pressure it becomes repulsive, which leads to accelerating
expansion.
The usual method of quantifying the accelerating expan-

sion comes from describing the Universe with the
Friedmann-Robertson-Walker metric:

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð4Þ

in which the scale factor a represents the overall scale of the
Universe. This is the standard metric used in cosmology,
and is known to accurately represent the Universe on large
scales. Then the relative acceleration of the expansion of
the Universe (äa, where a dot denotes a time derivative), is
found to be directly proportional to the effective cosmo-
logical constant, and is measured to be about 10−122 in
Planck units.
Now, we determine ρvac in the simplified case of a single

massless spin-0 particle field. For each 4-momentum
k ¼ ðωk;kÞ, the field acts like a simple harmonic oscillator.
The nth state, with energy ðnþ 1

2
Þωk (recalling ℏ ¼ 1),

containsn particleswithmomentumk and energyωk, and the
ground state (with no particles) has energy 1

2
ωk. Combining

the ground state energy of each mode (i.e., the harmonic
oscillator that corresponds to each 4-momentum) yields an
infinite value for the vacuum energy density. By restricting
to modes with particle energy below a certain cutoff energy

1By “attractive,” we mean that the strong energy condition is
satisfied [i.e., Ω2 > 0, where Ω2 is defined by Eq. (8)], and that
gravity has a tendency to pull things closer together. A more
specific example is this: given a small ball of freely falling test
particles initially at rest with respect to each other, gravity is
attractive if the second derivative of the volume of the ball is
negative; i.e., the ball tends to shrink (more details about this
picture are described in [16]).
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ωk ≤ Λ (not to be confused with λ, the cosmological
constant), a finite, regularized result for the energy density
can be obtained. The result is proportional toΛ4, because the
number of allowed modes scales with Λ3, and the average
energyof the allowedmodes scales linearlywithΛ. Anyother
fields will contribute similarly, so that if there are nf scalar
fields, the density scales with nfΛ4. Typically, the cutoff is
taken to be near Λ ¼ 1 in Planck units (i.e., the Planck
energy), so the vacuum energy gives a contribution to the
cosmological constant on the order of at least unity according
to Eq. (3). Thus we see the extreme fine-tuning problem:
the original cosmological constant λ must cancel this
large vacuum energy density ρvac ∼ 1 to a precision of 1 in
10120—but not completely—to result in the observed
value λeff ∼ 10−120.

III. COSMOLOGICAL DYNAMICS UNDER
SEMICLASSICAL STOCHASTIC

GRAVITY

The energy density of the vacuum state fluctuates wildly,
with variations comparable to its magnitude. Thus, rather
than ignoring these fluctuations by treating the vacuum
energy density as constant, some of the current authors [7]
proposed treating it as an inhomogeneous stochastic field to
better approximate a full quantum description.
Three key changes are made to the traditional approach

outlined above. First, in order to allow spatial variations
and inhomogeneity, Eq. (4) is replaced with the following
metric:

ds2 ¼ −dt2 þ aðt;xÞ2ðdx2 þ dy2 þ dz2Þ; ð5Þ

i.e., the scale factor aðt;xÞ is now inhomogeneous,
representing the relative “size” of spacetime at each point.
It was noted in [7] that solving one of the Einstein equations
for aðt;xÞ in this metric does not necessarily mean you can
solve the rest of them simultaneously. One degree of
freedom (d.o.f.) on the left-hand side of Eq. (1) will not
capture the complexities on the right-hand side. One could
use a more general inhomogeneous metric but the equations
become far more difficult to solve.
Secondly, the right-hand side of Eq. (1) is treated not as

an expectation value but as a stochastic inhomogeneous
field that acts as a source for these inhomogeneities, in a
manner that will be clarified shortly. Other semiclassical
stochastic gravity approaches have been considered
before [17,18], but quite differently to what is presented
here. The main difference between our work and theirs is
that we couple both the huge expectation value and the
fluctuations of the zero point energy to gravity without
trying regularization methods to make them small; they
consider the fluctuations in quantum fields but they
disregard the huge expectation value and try regularization
to make the fluctuations small.

Finally, we do not assume Lorentz invariance, so that
Eq. (2) no longer holds. Instead, we assume an explicit
cutoff in frequency and, as above, we assume an explicitly
non-Lorentz invariant form of the metric. Both the energy
density and the pressure are large and positive, and
the matter gravitates attractively (as defined above).
The physical justification of this last assumption will
be discussed further in Sec. VI, but we will summarize this
discussion here:

(i) The high-energy cutoff Λ used to determine ρvac in
Sec. II inherently violates local Lorentz invariance
already, so using this in combination with Eq. (2) is
inconsistent [3,19–21].

(ii) Many proposals for quantum gravity suppose some
discrete spacetime structure arises at a small invari-
ant length scale. Such a length scale must violate
Lorentz invariance [22–25].

Because we do not require Eq. (2) to hold, our model of
the vacuum no longer has negative pressure when energy
density is positive, so gravity can be attractive everywhere.
It has been shown in [7] that even with gravity being purely
attractive, our model still predicts apparent “repulsive”
effects (a slow exponential expansion) on large scales.
This arises from attractive gravity due to the parametric
resonance effect—a harmonic oscillator is always
“attracted” towards its equilibrium point but its swing
amplitude (which represents the size of space) grows
exponentially. However on intermediate scales (much
larger than the cutoff scale but smaller than the cosmo-
logical scale) fields act as though they are on a Lorentz
invariant spacetime, as shown in [7].
Now, by applying these assumptions we can use the

Einstein equations (which we assume still hold) to deter-
mine the dynamics of the evolution of the Universe.
An alternative but equivalent expression to Eq. (1) is the
following:

Rμν − λgμν ¼ 8π

�
Tμν −

1

2
Tσ
σgμν

�
: ð6Þ

The key dynamical equation that we use in this work arises
from the μ ¼ 0, ν ¼ 0 equation (the “temporal” equation,
because it contains only time derivatives of aðt;xÞ), with
λ ¼ 0. It takes the following form:

äðt;xÞ þΩ2ðt;xÞaðt;xÞ ¼ 0: ð7Þ

We can recognize Eq. (7) as a harmonic oscillator equation
for each x, withΩ playing the role of a frequency (not to be
confused with the usual use of Ω in cosmology to mean
energy density). The square of the frequency of those
oscillations is proportional to a linear combination of
components of the energy-momentum tensor, which we
treat as time and position dependent stochastic fields:
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Ω2ðt;xÞ ¼ 4π

3

�
ρðt;xÞ þ

X3
i¼1

Piðt;xÞ
�
; ð8Þ

where ρðt;xÞ ¼ T00ðt;xÞ and Piðt;xÞ ¼ aðt;xÞ−2Tiiðt;xÞ
are both stochastic fields.
These stochastic fields are chosen according to the

operators T̂μν and the vacuum state j0i. The simple model
that we will use arises from choosing to use a number nf of
massless scalar fields (which was just one for most of [7],
but here we will extend this to a greater number of fields).
For a massless scalar field ϕ, it happens that Ω2 ¼ 8π

3
_ϕ2 is

independent of a and strictly positive. This need not always
be true for massive, or fermionic fields, because they add
negative terms to the expression for Ω2. Ω2 being strictly
positive means that Ω≡ ffiffiffiffiffiffi

Ω2
p

is well defined, and that
Eq. (7) will always act like a harmonic oscillator, rather
than yield an explicitly exponential solution (like, for
example, ä ¼ a).
As in [7], we continue to use the high-energy cutoff

regularization approach that was introduced in Sec. II.
Although this method violates local Lorentz invariance,
there are other regularization methods that do not, and their
effects on this new proposal have been discussed in [26–28]
(namely that they do not always lead to a positive definite
expression for Ω2). We continue to use the high-energy
cutoff method here because we do not believe that the
Lorentz-invariant methods are physical representations of
the huge vacuum energy implied by zero-point fluctuations,
and because the high-energy cutoff has physical meaning
as per the effective field theory interpretation discussed in
Sec. VI.
Once Tμν is defined according to the choice of fields

and regularization method, we determine the stochastic
properties of Ω (expecation value, variance, power spec-
trum, etc.) by considering the Tμν components in Eq. (8)
as classical stochastic fields, whose statistical properties
are described by vacuum expectations (e.g., variance
h0jΩ4j0i − h0jΩ2j0i2). Because we are only considering
the vacuum, and no excitations, the cosmological scenario
being described is a simplified model consisting only of
vacuum energy. If Tμν contained contributions from all the
fields in our Universe, this would be approximately
equivalent to studying our own Universe in the current,
dark-energy-dominated epoch.
The vacuum state is not an eigenstate of the local energy

density and pressure operators in Eq. (8), so measurements
of these variables will fluctuate with a predictable spec-
trum. By modeling these fluctuations stochastically, Ω
becomes a quasiperiodic function in space and time—
meaning that its statistical properties are constant, but there
is no fixed period T for which Ωðt;xÞ ¼ Ωðtþ T;xÞ or X
for which Ωðt;xÞ ¼ Ωðt;xþXÞ, as would be the case for
a strictly periodic function.

Solutions to harmonic oscillator equations with time-
dependent frequency, like this one, can exhibit long-term
growth or decay, a phenomenon known as parametric
resonance [29,30]. A common example of parametric
resonance occurs on a swing, when one straightens and
bends one’s legs to increase the amplitude. Because of the
linearity and symmetry of Eq. (7), it turns out that decaying
solutions will be suppressed unless the initial conditions are
fine-tuned, so that the long-term solution will either grow
exponentially or remain steady. This means that the general
solution can be written as

aðt;xÞ ≈ eHtPðt;xÞ; ð9Þ

where H ≥ 0 is a constant and P is a quasiperiodic
function, by which we mean that all its statistical properites
are time-independent, and it has time average P̄ ¼ 0. Note
that we use, for example, P̄ to denote the time average of a
variable, reserving hPi to denote the expectation of P as a
quantum operator. Note that _P

P ¼ d log jPj
dt , so since

log jPj ¼ const, ð _PPÞ ¼ 0. This means that taking a time

average of _a
a ¼ H þ _P

P gives us H ¼ ð _aaÞ. This leads to a
natural interpretation of H as the Hubble parameter, which
is defined in cosmology as _a

a. If H is zero, then there is no
parametric resonance, because a ¼ P and P has no long-
term growth or decay. Otherwise, it will result in an
exponentially increasing scale factor, resulting in observed
distances scaling with LðtÞ ¼ Lð0ÞeHt, and macroscopic

acceleration obeying L̈ðtÞ
LðtÞ ¼ H2.

Thus, the key goal is to determine H2; if H2 ∼ 1, the
model has done nothing to remedy the problem of the
traditional approach, as it still predicts an acceleration 120
orders of magnitude too large. If H2 ∼ 10−120, then this
would indicate that the model predicts an appropriate order
of magnitude for the acceleration, and has potential to
resolve the cosmological constant problem.

A. Timescales of oscillation

Parametric resonance is usually strongest (i.e., growth or
decay is most rapid) when the timescale of frequency
oscillation and amplitude oscillation are similar—e.g.,
when one bends one’s legs with a frequency close to the
frequency of the swing itself. It is, therefore, important to
assess the conditions under which the variations in Ω are
of a similar frequency to those of a, since that is when
accelerating expansion will be strongest. This will also
provide us with expectations of the limiting behavior when
the oscillations in Ω are much slower or faster than those of
a. Because Eq. (7) contains no spatial derivatives, we will
omit the label x and just consider a fixed point in space
from now on.
Although neither ΩðtÞ nor aðtÞ are strictly periodic, their

variations still occur on somewhat consistent timescales,
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which we can use to test the strength of parametric
resonance. aðtÞ will typically vary with a frequency
comparable to Ωrms ¼

ffiffiffiffiffiffiffiffiffiffi
hΩ2i

p
, and as shown in [7],

hΩ2i ¼ nfΛ4

6π . This dependence agrees with Sec. II, which
gave justification that T00 ¼ ρvac (and thusΩ2) should scale
with nfΛ4. Thus a typically varies with frequency ∼ ffiffiffiffiffi

nf
p Λ2,

i.e., on a timescale of about 1=ð ffiffiffiffiffi
nf

p Λ2Þ.
Analysis from [7] shows that the power spectrum of Ω2,

on the other hand, is given by Fig. 1 (independently of
the number of fields). The field amplitude oscillates at all
frequencies up to the cutoff, and Ω2 is proportional to the
energy of the vacuum, which scales with the square of
the field, so it will oscillate at up to twice the cutoff. With
the average energy of each mode scaling with frequency
as 1

2
ω, we expect that the modes with larger frequencies

will dominate as they fluctuate the most violently with
lower frequencies being less significant, as Fig. 1 con-
firms. It follows that the typical timescale for oscillations
of Ω2 (or Ω) will be on the order of 1=Λ.
As mentioned, parametric resonance is strongest when

these timescales are similar. For the sake of discussing
the parametric resonance strength, suppose that Ω2 only
oscillated at a single frequency γ. In that case, parametric
resonance would be strongest when r≡ 2Ω

γ ≈ 1, with
smaller peaks occurring near higher integers r ∈ N [31].
Using the results of the previous discussions, r is approx-

imately 2

ffiffiffiffiffiffiffi
nfΛ4

6π

q
=2Λ ¼

ffiffiffi
nf

p Λffiffiffiffi
6π

p , so we expect a peak nearffiffiffiffiffi
nf

p Λ ≈
ffiffiffiffiffiffi
6π

p
≈ 4 (and weaker peaks at other integer multi-

ples of
ffiffiffiffiffiffi
6π

p
).

Away from this “sweet spot,” the oscillations in a are
typically much faster or slower than the oscillations in Ω in
the limits

ffiffiffiffiffi
nf

p Λ → ∞ and
ffiffiffiffiffi
nf

p Λ → 0, respectively.
For

ffiffiffiffiffi
nf

p Λ → 0 (i.e., Λ → 0, because nf must be at least
one),Ω oscillates much faster than a.Ω does not change for
long enough to make any one cycle of aðtÞ significantly
different to any other, so aðtÞ should approach a strictly
periodic function, and H → 0 [from Eq. (9)].

In the case of
ffiffiffiffiffi
nf

p Λ → ∞,Ω generally varies much more
slowly than a. If the oscillations are consistently slower
(known as the adiabatic limit), then a well-known theorem
[32] implies the conservation of the adiabatic invariant
(defined as IðtÞ ¼ EðtÞ=ΩðtÞ). However, although aðtÞ
typically varies on a timescale 1=Ωrms ∼ 1=

ffiffiffiffiffi
nf

p Λ2, it can
still vary much more slowly if Ω fluctuates to a very small
value. It becomes important to consider the probability
distribution of Ω2ðtÞ values, which turns out to follow a χ2nf
distribution (a χ2 distribution with nf d.o.f.) as shown in
Appendix A. As shown in Fig. 2, Ω2 will frequently
fluctuate to arbitrarily low values with one or two fields.
However, with three or more fields, the chance of Ω2

fluctuating to a very low value decreases rapidly (exponen-
tially with enough fields), and the timescale of fluctuations
in aðtÞ is more consistently on the order of 1=

ffiffiffiffiffi
nf

p Λ2.
It was shown in [7] that in the adiabatic limit, the

asymptotic dependence of H on Λ is:

0 0.5 1 1.5 2
0

0.5

1

1.5

2

FIG. 1. Normalized power spectrum of Ω2, showing that small
frequencies contribute negligibly, and only those on the order of
Λ are significant. Source: [7].
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FIG. 2. The probability distribution for Ω2 at any given time,
dependent on the number of particle fields nf . With one or two
fields, Ω2 is often arbitrarily small relative to its expectation, but
with more fields the fit approaches a Gaussian and the adiabatic
limit is more accurate, giving Eq. (10).
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H
/

FIG. 3. The form of HðΛÞ predicted by [7], in the limit of
Λ ≫ 1 and shown in normalized units. H, the expansion rate of
the Universe, increases with respect to the high-frequency cutoff
Λ before reaching a turning point at Λ ¼ 1

β, at which it begins to
decrease exponentially.
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H ¼ αΛe−βΛ; ð10Þ

where α and β are constants. This relationship is depicted in
Fig. 3. Although it was stated in [7] that this equation is
always valid at sufficiently large Λ, we have seen here that
this does not guarantee the adiabatic limit in the cases of
nf ¼ 1 to 3. Nonetheless, with more fields, we still expect
an exponential decrease ofH with respect to Λ, providing a
mechanism for H2 ∼ 10−120 as desired.

IV. NUMERICAL METHODS

In [7], numerical methods were employed to test
Eq. (10), which are also used here. We will outline the
approach used, emphasizing the role of resolution param-
eters with respect to which our results must converge,
before showing detailed convergence tests.
We follow the Wigner-Weyl description of quantum

mechanics as used in [7] to describe the vacuum energy-
momentum tensor, and by extension Ω2. Using this
method, we define a pair of coordinates xk and pk for
each mode of the field, indexed by momentum k. These
do not represent actual position and momentum coordi-
nates (each mode has well-defined momentum and is
completely unlocalized), but instead represent the phase
information of the simple harmonic oscillator that
describes the mode. A particular state is represented by
a distribution over these variables, Wðfxkg; fpkg; tÞ,
where fxkg denotes the set fxk1

; xk2
;…g with all possible

momenta k. Any quantum operator Â can be represented
by a function over these variables, Aðfxkg; fpkg; tÞ, and
its expectation for a state is given by integrating over the
state’s corresponding distribution:

hÂi ¼
Z Y

k

ðdxkdpkÞAðfxkg; fpkg; tÞWðfxkg; fpkg; tÞ:

ð11Þ

In the case of the vacuum state, and using the normalized
units from [7], the state distribution is a product of
Gaussians:

Wðfxkg; fpkg; tÞ ¼
1

π

Y
k

e−p
2
k−x

2
k : ð12Þ

It is quite difficult to numerically perform the integral in
Eq. (11), because there can be a very large number of
modes (i.e., many values of k), meaning that this is an
integral over many dimensions. Fortunately, there is an
alternative method. If we randomly sample fxkg and fpkg
from the distribution given by Eq. (12), and then perform
an average over the resultant solutions of Aðfxkg; fpkg; tÞ,
the different regions of phase space will be appropriately
weighted by their likelihood of being chosen. As the number

of randomly sampled points N increases, the resultant value
will converge to the true result from Eq. (11).
Now, we can choose an operator A to evaluate. We wish

to examine what happens on average to aðt;xÞ in Eq. (7) at
a single point in space over time. This means we must
describe Ω2 as a function Ω2ðfxkg; fpkg; tÞ using the
above formulation, evaluate it for N different choices for
the sets of random numbers fxkg and fpkg, solve for
aðfxkg; fpkg; tÞ, and then average the results to determine
haðtÞi. Alternatively, one could apply Eq. (11) to H instead
of aðtÞ, to compute the expectation value hHi ¼ h _aai. We
will discuss this further shortly.
The expression for Ω2 in terms of quantum operators

contains contributions from the infinite continuum of
allowed momenta values k. Even if a cutoff energy (or,
equivalently, cutoff frequency) Λ is applied, there will still
be continuously infinitely many modes to consider. To
make it suitable for numerical calculation then, we need to
discretize it, which can be done by considering a cube of
width L in physical space, and restricting the allowed
modes of our field to be only harmonic modes of the box.
L is another parameter with respect to which our results
should converge to a consistent, physical solution, specifi-
cally in the limit L → ∞. Harmonic modes in this box are

proportional to sinðnx2πxL Þ sinðny2πyL Þ sinðnz2πzL Þ, for some set
of integers ðnx; ny; nzÞ (each of which can be positive or
negative) that we call n. The corresponding frequency is

ω ¼ 2πjnj
L , so we can translate the cutoff ω ≤ Λ to a cutoff

on n by nmax ¼ LΛ
2π. In [7], this cutoff was applied to each

component, i.e., nx;y;z ≤ nmax. Whereas this would signify a
cube of allowed modes in momentum space, with side
length 2Λ and maximum frequency

ffiffiffi
3

p
Λ, we instead apply

the cutoff as a sphere in momentum space of radius Λ by
choosing modes with jnj < nmax. Now, our sets fxkg and
fpkg are labeled as fxng and fpng, and they each contain
one random number for every value of n ¼ ðnx; ny; nzÞ
such that jnj < nmax.
For a particular cutoff method, [7] shows that we can

write Ω2 for a single massless scalar field as

Ω2ðfxng;fpng; tÞ¼
�X

n

ffiffiffi
n

p ðxn sinðntÞ−pn cosðntÞÞ
�
2

:

ð13Þ

The above just describes the process for a single massless
scalar field. To incorporate more, it is repeated for each
individual Ω2

j and then the total is computed as Ω2 ¼Pnf
j¼1Ω2

j .
After randomly sampling fxng and fpng values for each

field and computing Ω2 at a number of points in time (with
spacing tres up to a maximum tf, two more parameters to
test for convergence), the differential equation in Eq. (7) is
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solved for aðtÞ by interpolating Ω2. Doing this N times,

either h _aðtÞi
haðtÞi or h _aðtÞaðtÞi can be determined from Eq. (11), and

then a time average taken to find H.

A. Correction to previous results

When implementing these methods, we found substan-
tially different results to those of [7], as shown in Fig. 4.
Investigation showed that, due to a combination of factors,
the original calculations did not properly capture the
dynamics of Ω at fine enough timescales. When computing
Ω2 from Eq. (13), the spacing tres must be at least as small
as the timescale on which we expect oscillations in Ω to
occur; otherwise, the numeric description of Ω will not
display the high-frequency behavior of the actual function
(which is particularly significant for parametric resonance,
as discussed in the previous section). This was the key
problem with the original calculations: tres was too large to
have sufficiently converged. Furthermore, it was not made
finer for higher Λ, so more and more of the significant
short-timescale behavior was lost for higher Λ. Finally, a
simple linear interpolation method was used rather than a
smooth method when determining Ω, which exacerbated
the resolution problem (see Fig. 10). The impact of these
differences on the resultant scale factor is shown in Fig. 4,
which shows that the relationship between H and Λ is

drastically affected. We discuss the implications of these
changed results in Sec. V.

B. Convergence tests

Having found that the discrepancy between our results
and those of [7] was due to different time resolution
parameter values, we sought to validate that no other
resolution parameters were being overlooked. Let us recap
the roles of the relevant parameters: we generate N
instances of the random sets fxng and fpng, which each
contain a random number for every integer vector n with
magnitude jnj < LΛ

2π , where L is the size of the box and Λ is
the maximum frequency permitted. These produce a
frequency function ΩðtÞ using Eq. (13), which we evaluate
at evenly spaced points between t ¼ 0 and t ¼ tf, with
spacing tres. Then, we interpolate between those points to
solve the differential equation äðtÞ ¼ −Ω2ðtÞaðtÞ with
initial conditions ðað0Þ; _að0ÞÞ ¼ ð1; 0Þ. Averaging over
the N different samples, we then determine our average
expansion rate H.
There are five variables here with respect to which our

results should converge: the box width L, the final time tf,
the time resolution tres, the number of samples being
averaged N, and the relative tolerance of the ODE solver,
which we will denote ε. There are also several qualitative
choices which may affect the results: whether the cutoff
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FIG. 4. The top two plots display the evolution of the scale factor at the cutoff values Λ used in [7]. The left uses time resolution
tres ¼ 0.15 (i.e., the spacing between evaluations of Ω), which erroneously indicates that H decreases with Λ (as shown in the bottom
left). This is very similar to Fig. 5 of [7]. On the right, a finer time resolution tres ¼ 0.01 is used, showing the correct relationship
betweenH andΛ (which persists if time resolution is increased even further). This corrected relationship does not exponentially decay to
zero as originally claimed, meaning that the cosmological constant problem cannot be resolved by simply taking the cutoff to be
Λ ∼ 1000EP.
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should be implemented as a cube or sphere in momentum
space, how to interpolate Ω when solving the differential
equation (7), and how to determine H given the solution
aðtÞ. We present discussions for each of these in
Appendix B, except for that of H which we present now.

C. New method of determining H

In our new tests, we made a number of changes to the
implementation to improve the efficiency. Most of these did
not represent physical differences in what was being
computed, but one exception is the method of determining
H. Physically, the Hubble Constant H is defined as H ¼ v

d,
in which v is the radial outwards velocity of a remote
astronomical object and d is its distance to the earth. To
determine v and d one needs to measure at least two
properties, the redshift of a galaxy as well as an indepen-
dent measure of its distance, such as the luminosity of a
type Ia supernova, or the length of a standard ruler. So in
principle, we need to study the behavior of a long wave
photon field propagating on our wildly fluctuating metric to
determine H. Technically, we need to solve the wave
equation in our inhomogeneous “FLRW”metric (23) in [7]:

∇μ∇μϕ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼ 0: ð14Þ

Unfortunately, this is a nontrivial calculation which is
beyond the scope of this article. The usual definition of
H in cosmology, i.e., H ¼ _a=a depends on the validity of
the homogenous FLRW metric. For the generalized inho-
moegenous FLRWmetric (23) in [7], we can have a similar
definition as

HðtÞ ¼
_L
L
¼

R
x2
x1

_a
a ðt;xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt;xÞ

p
dlR

x2
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðt;xÞ

p
dl

: ð15Þ

The macroscopic Hubble constant is acquired by taking
both the spatial and temporal average on both sides of (15),
as well as the average in the phase space using the Wigner-
Weyl representation to get its quantum expectation value.
In [7], the expectation value of the scale factor haðtÞi is

determined first by Wigner-Weyl formulation, and then H

is calculated as the time average of HðtÞ ¼ _haðtÞi
haðtÞi. However,

we can also change the sequence of averaging and directly
compute the expectation value of H, by using Eq. (11) to

calculateHðtÞ ¼ h _aðtÞ
aðtÞi. In this way, we actually defineH as

the time average

H ¼
�
_aðtÞ
aðtÞ

�
: ð16Þ

It is more physical compared to the original case in [7]
since the scale factor aðtÞ (being an arbitrary distance scale)

is less fundamental than the actual distance between
objects. Given that _a=a is also equivalent to d log jaj

dt , this
choice means that an average is computed in logarithmic
space with respect to a, rather than linear space. Not only
does this method lead to a different value for H which is
physically better justified, but computation of this value is
also much easier and more stable, as shown in Fig. 5. This
is because the linear method is heavily biased towards the
samples with the largest H, resulting in high sensitivity to
the occasional outlier, so it has much slower convergence.
Instead, the logarithmic method (averaging H) quickly
converges to a consistent result about which the distribution
of individual samples appears to be roughly symmetric.
As we mentioned before, our new definition ofH, which

is based on the distance definition (15), is not necessarily
equivalent to the observed Hubble constant in astronomy.
The observed Hubble constant should be acquired by
solving Eq. (14) for the actual redshift and intensity
damping of a macroscopic light signal. However, we
believe that the calculation of H based on Eq. (16) can
still provide useful insight about how the actual Hubble
constant behaves in this metric.

V. NEW RESULTS

In Fig. 6, we see that the relationship betweenΛ andH is
quite complex, with the behavior of the curve depending
significantly on the number of fields. Figure 7 then shows
the relationship between H and nf for several choices of
fixed Λ, to examine what happens to H if we enforce an
approximate Planck cutoff (Λ ∼ 1) and then vary the
number of fields. We will first compare the findings of
Fig. 6 to the proposed relationship Eq. (10), and check that
the limiting behaviors predicted in Sec. III are satisfied.
After this, we will introduce a model which captures
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FIG. 5. Here (with Λ ¼ 5 and L ¼ 10), we compare methods of
determining H: that of averaging haðtÞi first, as done in [7], and

our approach which was to average H directly as H ¼ h _aðtÞaðtÞi.
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important features of the behavior of H vs nf , shown in
Figs. 7 and 8, and use it to estimate the number of scalar
fields required to achieveH ∼ 10−60, such that λeff ∼ 10−120.
As explained in Sec. III, we expect that limΛ→0H ¼ 0,

which seems to hold in all cases. Equation (10) also
predicts that, for a given number of fields and at large-
enough Λ, there will be an exponentially decreasing
relationship H ∼ e−βΛ. On the left, in log-log space, such
a relationship appears as logðHÞ ∼ −βelogðΛÞ, which upon
inspection, seems to match the large-Λ behavior for nf ≥ 4.
As discussed in Sec. III, this relied upon the adiabatic
theorem which is only valid when nf ≳ 3. Indeed, this trend
does not seem to hold for nf < 4, (the behavior for nf ¼ 1

at large Λ appears to be linear, and for nf ¼ 2 and 3 it
appears to be logarithmic). While there may be some
turnaround at higher Λ (and the linear behavior of nf ¼ 1

may become logarithmic at some higher Λ), this does not
occur in the regime checked, which is up to Λ ≈ 1500.
Note that there are peaks corresponding to those pre-

dicted in Sec. III, near
ffiffiffiffiffi
nf

p Λ ≈ 4, and a weaker one near 8.
These resonances draw a direct parallel with the behavior of
the Mathieu equation, a simple prototypical example of
parametric resonance [29,33]. The Mathieu equation takes
the following simplified form, in which the fluctuations to
Ω2 are strictly periodic with constant amplitude:

äðtÞ ¼ −Ω2
0ð1þ ϵ cosðγtÞÞaðtÞ: ð17Þ

Solutions of the Mathieu equation take the following
form, similar to the right-hand side of Eq. (9):

aðtÞ ¼ eHtPðtÞ; where PðtÞ ¼ P

�
tþ 2π

γ

�
: ð18Þ

H can either be real (an unstable solution with exponen-
tially growing solutions) or imaginary (representing
stable quasiperiodic solutions with no long-term growth
or decay). The stable and unstable regions depend on ϵ

and r ¼ 2Ω0

γ , as shown in Fig. 9. Although no closed-form
expressions exist, there are efficient methods of comput-
ing both the region boundaries and the magnitude of the
exponents [33].
A novel idea of the current work is to approximate

Eq. (7) using the above form, to obtain an approximate
model in terms of the simpler, better-understood Mathieu
equation. In Appendix C, we find that a sensible set of

choices for this approximation is to use Ω2
0 ¼ hΩ2i ¼ nfΛ4

6π ,

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðΩ2Þ

p
=hΩ2i ¼ ffiffiffiffiffiffiffiffiffi

2=nf
p

, and γ taking on a range
from 0 to 2Λ according to Fig. 1. With fixed ε and r varying
as r ¼ 2Ω0

γ ¼ 2Λ2

γ

ffiffiffiffinf
6π

p
, each choice of nf and Λ excites a
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FIG. 6. Here we see the relationship betweenH and Λwith nf fields. On the left it is shown as a log-log plot, so that all the regimes can
be seen at once. On the right, the top shows more clearly the linear increase for one field and the logarithmic increase for two (in linear
space). The bottom right shows the beginning of the turning point for three fields, and exponential decay for several higher nf cases
(which Eq. (10) predicted for all numbers of fields). Note that we have used

ffiffiffiffiffi
nf

p Λ on the x-axis for each of these rather than just Λ,
because this is the term on which the adiabatic limit depends, as well as the resonances described in Sec. III.
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FIG. 7. Here we see H against nf for fixed cutoff, which exhibits a decreasing step-like relationship. The dotted lines represent the
results of an approximation described in the text which allows an analytical prediction of the behavior ofH. We see that although they do
not precisely match the results, these approximations do predict the existence and approximate size of the periodic steps downward, and
the relationship between the two curves. For low numbers of fields, the error is dramatic, but the fit improves as nf increases, because the
approximation that Ω2 is roughly constant vastly improves.
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lines. Again, the results are not matched precisely, but the fit is quite good as nf increases, because the approximation that only one
resonance contributes significantly becomes vastly more accurate. At low Λ, resonances no longer occur near the mean of Ω2, and the
approximation also worsens.
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range of resonances from γ ¼ 0 to γ ¼ 2Λ as indicated by
the dashed line in Fig. 9. Our approximation is to select out
the γ with the most significant parametric resonance effect,
weighted by the strength it oscillates at according to Fig. 1.
Using these methods, we obtain the dotted lines shown in

Fig. 7, which capture many of the key properties (e.g.,
existence and size of the “steps” that arise as a result of
resonance). This method explains the steplike behavior of
Fig. 7, because these “steps” occur when a resonance band
leaves the region of allowed γ (e.g., when the dashed black
line in Fig. 9 moves high up enough that it does not cover
the second band). These methods can also explain why
we see divergence as Λ increases for nf ¼ 1 through 3.
Looking at the top of Fig. 9, one and two fields correspond
to ε > 1, and in this region the higher-order bands (further
from the origin) have a larger amplitude. In these cases, as
Λ increases and the ratio between frequencies of oscillation
for a and Ω increases, the parametric resonance effect gets

stronger and H diverges. At lower numbers of fields, ε
decreases and the trend reverses: on the left of Fig. 9,
increasing r leads to exponentially weaker resonance, and
H → 0. At high Λ, the model predicts logarithmic diver-
gence for 1 ≤ nf ≤ 3, and an asymptotically uniform H
for nf ¼ 4.
In some regions, this model clearly does not fit as

well as others. It approximates Ω2 as only oscillating at
one frequency, and simplifies a by ignoring any squared
frequencies outside of the range Ω2 � ε. The latter
approximation explains why the model fails at low Λ
and nf in Fig. 8, and for low nf when Λ ¼ 0.1 in Fig. 7:
in these regimes, none of the frequencies that a oscillates
at excite resonances, and it is in fact oscillations outside
this range which drive the dominant resonances. On the
other hand, when the number of fields increases, the
power spectrum for a (see Fig. 2) becomes much nar-
rower, and the Mathieu model is a better description.
This explains the very tight fit for nf ¼ 100 in Fig. 8.
The approximation that Ω2 oscillates only at one fre-
quency fails at low fields for the same reason that the
adiabatic limit does: in these cases, the distribution of
Ω2 values is too broad (see Fig. 2). This is why the
model does not fit as well for 1 and 4 fields in Fig. 8 at
high Λ.
The advantage of this model is that compared to the full

simulations, it is much easier to calculate for small H.
Even though these methods are still restricted by machine
precision toH ∼ 10−16, the trends are consistent and can be
extended all the way down toH ¼ 10−60 so that we can test
what cutoff and number of fields would be required to
match observation. If the trend for Λ ¼ 1 continues as
shown, then H ¼ 10−60 will be achieved with nf ≈ 6000.
Similarly, extending the nf ¼ 28 line (because 28 is the
number of bosonic field components in the standard
model), we get H ¼ 10−60 (i.e., we match observation)
when Λ ≈ 40 (i.e., cutoff at 40 times the Planck energy).

VI. DISCUSSION AND CONCLUSION

We will now review the typical assumptions that are
made in the usual formulation of the cosmological
constant problem (which we refer to as the “traditional
approach”), in order to provide a framework with which
we can discuss the significance of our new findings.
In Sec. II, we described the problem using a simple case
with a single scalar field, but its conclusions hold in a
much broader range of contexts. We summarize the key
assumptions (as relating to calculations of vacuum energy)
before discussing them in further detail:
Traditional assumptions
(1) The total effective cosmological constant λeff is on

at least the order of magnitude of the vacuum
energy density generated by zero-point fluctuations
of particle fields.

FIG. 9. The stability regimes of the Mathieu equation, a
prototypical example of parametric resonance. Colored regions
indicate instability, in whichH > 0, with largerH represented by
redder colors. For a given nf and Λ, the highest frequencies at
which the vacuum oscillates correspond to a resonance point
given by the lower graph. It also oscillates at all frequencies
below that value, which here means all points directly to the right
of that point. Even if the highest frequency does not lie in any of
the resonance bands and excite resonance directly, as is the case
for ðΛ; nfÞ ¼ ð5; 3Þ, the fluctuations at lower frequencies can
excite resonances directly to the right of the point, as indicated by
the dashed black line. In this example, the second band dominates
the growth, because no vacuum oscillations occur in the stronger
first band.
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(2) QFT is an effective field theory description of a more
fundamental, discrete theory, which becomes sig-
nificant at some high-energy scale Λ.

(3) The vacuum energy-momentum tensor is Lorentz
invariant.

(4) The Moller-Rosenfeld approach to semiclassical
gravity (using an expectation value for the energy-
momentum tensor) is sound.

(5) The Einstein equations for the homogeneous Fried-
mann-Robertson-Walker metric accurately describe
the large-scale evolution of the Universe.

With these assumptions, one arrives at the usual value of
λeff ∼ 1 ∼ 10120λobs. However, it has been noted [3,19–21]
that there is an inconsistency between assumptions 2 and 3:
the vacuum state cannot be Lorentz invariant if modes are
ignored above some high-energy cutoff Λ, because a mode
that is high energy in one reference frame will be low
energy in another appropriately boosted frame.
In the new approach proposed by [7], assumption 3 is not

used and this contradiction is avoided. Also, assumptions 4
and 5 are modified, which we denote as assumptions 40 and
50, respectively, and the simple toy model also introduces
assumption 6.
Modified assumptions

(4′) The semiclassical stochastic approach to gravity
(using a stochastic field for the energy-momentum
tensor) is sound.

(5′) The temporal Einstein equation for the simple inho-
mogeneous metric Eq. (5) is a reasonable approxima-
tion to the dynamics of the Universe.

(6) The Universe can be effectively modeled by a single
massless scalar field.

A. Different contributions to λeff
Assumption 1 is well justified in the case of the tradi-

tional problem, because the contribution from zero-point
fluctuations is on the order of 1 in Planck units and no other
known contributions are as large [3]—thus, assuming no
significant cancellation of terms (e.g., fine tuning of the
bare cosmological constant λ), the total λeff should be at
least on the order of the largest contribution. In the case of
the new approach introduced in [7] and used here, this
assumption is also reasonable: any other contributions
would also presumably fluctuate and result in similar
effects to what we have found here.

B. Effective field theory and Lorentz invariance

To prevent the vacuum energy density from diverging,
the traditional approach also assumes that performing a
high-energy cutoff is acceptable. This type of regularization
is a common step in renormalization procedures, which aim
to eventually arrive at a physical, cutoff-independent result.
However, in the case of the vacuum energy density, the
result is inherently cutoff dependent, scaling quartically
with the cutoff.

This is acceptable under the philosophy of assumption
2, which treats QFT as a low-energy effective field theory
and not a fundamental theory. This approach draws
parallels with the case of the ultraviolet catastrophe: the
equipartition theorem (a key feature of classical physics)
made a rapidly divergent prediction when high-energy
modes were considered, but a new high-energy theory
(quantum mechanics) resolved this problem, and showed
classical mechanics to be only an effective low-energy
theory. Similarly, it is presumed here that a high-energy
discrete theory would not display the zero-point fluctua-
tions that are characteristic of QFT, and hence that the
divergence caused by oscillations above the correspond-
ing cutoff frequency is unphysical. In this case, the cutoff
is no longer an intermediate mathematical construct, but
instead a physical scale at which the smooth, continuous
behavior of QFT breaks down.
Although it is naturally difficult to speculate about a

nonexistent theory, it is generally believed that such a
theory would emerge at a scale comparable to that of the
Planck energy [22]. Several theories describe a spacetime
made of “quantum foam” which violates Lorentz invari-
ance at very high-energy scales [23–25], which would
imply that the vacuum (which is dominated by these high-
energy modes) need not be Lorentz invariant, justifying the
abandonment of assumption 3.
This abandonment of Lorentz invariance is crucial to the

new approach: as discussed in Sec. II, Lorentz-invariance
would require T00 ¼ −Tii for i ¼ 1, 2, 3 (i.e., if energy
density is positive, pressure is negative) which, from
Eq. (8), would prevent Ω2 from being positive definite
and exhibiting the harmonic oscillator behavior that we
describe.

C. Semiclassical gravity

Assumption 4 means that it is valid to replace the right-
hand side of the Einstein equation Tμν with its expectation
hTμνi. It requires that either gravity is not in fact quantum,
and the Moller-Rosenfeld approach is a complete descrip-
tion of reality (which is an unfavored view, see [11,12]), or
a valid approximation in the weak-field limit (which is also
not favored [12]).
The key development of [7] is to replace assumption 4

with assumption 40, i.e., replace the expectation value
hTμνi with a stochastic field Tμνðt;xÞ. We consider this an
improved approximation to a full theory of quantum
gravity, as it incorporates some description of the fluctu-
ations that we know to exist in local measurements of
energy density. If such a theory does exist, and variables
like scale factor a can be treated as operators, then the
methods used in [7] show that the Wigner formulation
yields the approximate stochastic description used here.
Nonetheless, further work testing the rigor and applicabil-
ity of these methods is required.
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D. Choice of metric and the Einstein equations

As mentioned in Sec. III, we use the simplified inho-
mogeneous metric [Eq. (5)] with just one d.o.f., aðt;xÞ.
This is a simplification of a more complete description,
which would require a metric with ten d.o.f. Our hope is
that the findings presented here may extend to these more
general cases, an assumption that we intend to test further
in future investigations.
We also note that by using the Einstein equations at all,

we continue to use unmodified general relativity. Thus we
are also assuming that general relativity holds at all distance
scales down to our cutoff scale (in fact, we assume it holds
on the timescale of oscillations to a, i.e., timescales on the
order of Λ2), and that unlike some descriptions, there is no
modification to Newton’s constant G as one “zooms in”.
We expect that varying G would result in quantitative
changes to our predicted value for H, but the qualitative
features of the model described here would persist.

E. Number and type of fields

The traditional approach, as presented in Sec. II, used
only a single scalar field with no interactions. Adding more
fields does not change its conclusions significantly, because
an increase in the number of fields (and thus uniform
energy density) leads to a linear increase in cosmic
acceleration, so the cosmic acceleration remains on a
similar order of magnitude. However, for this new model,
the energy density and acceleration rate are no longer
linearly related. An important goal of the current work has
been to begin to relax assumption 6 by testing the effects of
a greater number of fields.
A single field predicts a similar outcome in the new

approach as it did in the traditional approach: H ∼ 1 with a
Planck scale cutoff, and it diverges as the cutoff is increased
(see Fig. 6). However, with the new approach, adding more
fields no longer worsens the problem, but instead dramati-
cally ameliorates it! As the number of fields increases, the
magnitude of the fluctuations to the energy density tends to
increase more slowly than the mean increases, so that the
relative magnitude of the fluctuations decreases as the
inverse root of the number of fields (as per the central limit
theorem). This causes parametric resonance to weaken, and
the resultant acceleration to become smaller and smaller.
In our tests, numerical instability became more signifi-

cant than the growth from H below about H ≈ 10−6,
i.e., when the acceleration H2 is about 12 orders of
magnitude smaller than the traditional approach. Because
of the exponential relationship between H and Λ (which
only begins past about

ffiffiffiffiffi
nf

p Λ ≈ 6), increasing the cutoff
or number of fields marginally beyond this point would
result in dramatically smaller acceleration, approaching the
observed value H2 ¼ L̈

L ∼ 10−120.
A key contribution from this work was to introduce

a simple model based on the Mathieu equation, which

captures many of the key features of the simulation
results. We also found that if these trends continue then
we can expect H to match observation when (for
example) nf ¼ 28 and Λ ¼ 40, or when nf ¼ 6000 and
Λ ¼ 1.
Of course, our description has still been restricted to

massless scalar fields, and is not a complete description of
the real Universe. Our description is actually sufficient for
bosonic fields, even if they are not scalar and massless.
Introducing a mass adds a term of the form −mϕ2 to
Eq. (8) (where ϕ is the field operator), which can result
in Ω2 becoming negative. But the masses of all observed
particles are vastly smaller than the Planck scale, meaning
this correction will have an insignicant effect on the
dynamics. Furthermore, even if a boson is not a scalar,
but rather, has polarization modes like the photon, then
each component still contributes to the vacuum in a
manner like that of an individual scalar field. Given the
large number of bosonic field components in the standard
model,2 this amounts to a significant number of fields that
our model is able to describe.
Nonetheless, this description is not sufficient for describ-

ing fermionic fields, or interactions between fields.
Fermionic fields contribute to the vacuum energy nega-
tively, with the same magnitude (but opposite sign) as
bosonic fields. With a number of fermionic fields nF and

bosonic fields nB, the mean hΩ2
0i would become ðnB−nFÞΛ4

6π ,
while the variance remains related to the total number of
fields (as adding more fields cannot reduce variance):
VarðΩ2Þ ¼ ðnB þ nFÞ Λ8

18π2
. Thus the effect of adding fer-

mionic fields is to decrease the mean and to increase the
magnitude of fluctuations, increasing the strength of
parametric resonance and making it harder to reach the
observed H. However, so long as there is only a small
probability of Ω2 fluctuating below Λ and violating the
adiabatic condition, we can still ensure weak parametric
resonance rather than rapid exponential growth. Given
large enough numbers of fields and assuming nB > nF,
the chance of Ω2 fluctuating below Λ decreases as

expð−k1 ðnB−nF−k2ΛÞ2
nBþnF

Þ for some constants k1 and k2.
With developments to our analytical description of

parametric resonance, one could relate nF and nB to
corresponding values ofH, allowing a relationship between
the observed H and the number of fields. Because these
numbers must obviously be integers, there would be a kind
of “quantization” of allowedH values, providing both a test
for this theory and a method of relating H to the number
of particle fields in the Universe—potentially probing dark
matter fields, supersymmetric fields, etc.

21 from the Higgs, 2 from the photon, 9 from W and Z and 16
from gluons, for 28 total; see [3] Eq. 401.
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APPENDIX A: PROBABILITY
DISTRIBUTION OF Ω2

As explained in Sec. III, the probability distribution of Ω2

is very important in determining the validity of the adiabatic
limit. To evaluate the probability distribution, we appeal to
theWigner formulation as described in Sec. IV. To start with,
we will follow [7], for which the calculations are just for one
field. The Weyl transform of the nondimensionalized Ω̃2 ¼
3L4

8π2
Ω2 operator is given by Eq. (B31) of [7]. In the chosen

nondimensionalized units used there, x̃ and p̃ are standard-
ized normal random variables, Xð0; 1Þ (we will use the
notation that Xðμ; s2Þ is a random variable sampled from the
normal distribution with mean μ and variance s2 and make
use of the properties cXð0; s2Þ ¼ Xð0; c2s2Þ and Xð0; s2Þ þ
Xð0; s02Þ ¼ Xð0; s2 þ s02Þ where each variable is indepen-
dent). Then,

Ω̃2 ¼
�XΛ

n⃗

ffiffiffi
n

p ðx̃n⃗ sin nt̃ − p̃n⃗ cos nt̃Þ
�
2

ðA1Þ

¼
�Xnmax

n⃗

ffiffiffi
n

p ðXð0; 1Þ sin nt̃ − Xð0; 1Þ cosnt̃Þ
�
2

ðA2Þ

¼
�Xnmax

n⃗

ffiffiffi
n

p ðXð0; sin2nt̃Þ − Xð0; cos2nt̃ÞÞ
�
2

ðA3Þ

¼
�Xnmax

n⃗

ffiffiffi
n

p ðXð0; sin2nt̃þ cos2nt̃ÞÞ
�2

ðA4Þ

¼
�Xnmax

n⃗

ðXð0; nÞÞ
�
2

ðA5Þ

¼
�
X

�
0;
Xnmax
n⃗

n

��2
ðA6Þ

¼
�Xnmax

n⃗

n

�
Xð0; 1Þ2: ðA7Þ

Thus, generalizing to nf fields, we have

Ω̃2 ¼
�Xnmax

n⃗

n

�Xnf
i¼1

Xð0; 1Þ2 ðA8Þ

Ω̃2 ¼
�Xnmax

n⃗

n

�
χ2nf ; ðA9Þ

where we used the definition of χ2k as the sum of k standard
normal random variables. To compute the sum over n⃗,
we have (for a spherical cutoff, see next section)

Pnmax
n⃗ n≈R nmax

0 ndn⃗ ¼ πn4max ¼ πðLΛ
2π Þ4. Computing Ω2 now (noting

that L drops out, as it should):

Ω2 ¼ 8π2

3L4
Ω̃2 ðA10Þ

Ω2 ¼ 8π2

3L4
π

�
LΛ
2π

�
4

χ2nf ðA11Þ

Ω2 ¼ Λ4

6π
χ2nf : ðA12Þ

APPENDIX B: CONVERGENCE TESTS

Before beginning discussion of convergence, we must
discuss our desired precision for determining HðΛÞ. Some
parameters resulted in relative uncertainty, while others
give absolute uncertainty values. In order to see overall
trends in H with confidence, we aimed for 1% uncertainty
in H from each parameter, or an absolute precision of
10−6t−1P , whichever was higher (here we reintroduce the
unit of the Planck time tP).

1. Cutoff method

Whereas a cubic cutoff was used in [7], i.e., each
component i satisfies jnij < nmax, we used a spherical
cutoff n ¼ jnj < nmax. This difference does not affect the
results greatly, except that it slightly modifies the effective
Λ being tested—with a cubic cutoff, the highest actual
frequency is

ffiffiffi
3

p
Λ instead of Λ itself.

2. Interpolation method and tres
The method of interpolation turns out to be crucially

important for convergence, in particular when a larger tres is
being used. We found, as shown in Fig. 10, that of three
inbuilt MATLAB interpolation methods (linear method,
pchip method, and spline method), a spline interpolation
converged most quickly. It appears that the salient feature
of the spline method which gives this advantage is that it
extends past the upper and lower extremes of the sample
points, increasing the magnitude of fluctuations of Ω, as
seen in the upper left panel of Fig. 10. The other methods
underestimate the deviations to Ω, which typically results
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in a weaker parametric resonance effect, as seen in the
lower left panel of Fig. 10. Because oscillations ofΩ2 occur
on a timescale of 1=Λ, as discussed in Sec. III, tres should
be fixed in proportion to this time period. From Fig. 10, we
see that setting tres ¼ 1=3Λ is sufficient for uncertainty to
remain within 1%.

3. Dependence on ODE solver tolerance

The ODE solver being used, MATLAB’s ode45,
accepts a choice of relative tolerance, which we denote
ε. This represents the acceptable relative error in the
solution per unit time, relative to its own magnitude, so
it is another parameter we can tune to maximize accuracy
and computational efficiency. Within the accepted toler-
ance range, the amplitude of aðtÞ may deviate from its true
value (typically, it will decrease) by a fairly consistent
factor each cycle, which we call r (defined as a ratio, i.e.,
a perfect solution would have r ¼ 1). Thus, log jaj is
misestimated by an increment of logðrÞ per cycle, which
means that as time goes on, our estimation of log jaj will
linearly deviate from its true value with time. Because H is
calculated as the slope of log jaj, the effect of this numerical
artifact will be to modify the observed H by a constant ΔH
compared to the correct result. As the number of cycles
increases, i.e., when

ffiffiffiffiffi
nf

p Λ2 increases, this will occur more

quickly, so we need a smaller tolerance. For this reason, we
choose the parametrization,

εðΛÞ ¼ 10−ε0ffiffiffiffiffi
nf

p Λ2
; ðB1Þ

and investigate the dependence ofH on ε0. In Fig. 11, in the
lower right, this dependence is displayed for a number of
cutoffs, and we see that ε0 ¼ 4 (i.e., ε ¼ 0.0001ffiffiffi

nf
p Λ2) is enough to

constrain jΔHj < 10−6t−1P .

4. Dependence on duration of simulation
and number of samples

The duration of simulation and the number of samples
are closely linked—both result in an approximate linear
increase in computational difficulty (in both parts of the
calculation: determining Ω, in which there will be linearly
more time steps or modes needed for calculation; and for
determining aðtÞ fromΩ, because of the number and length
of differential equations needing to be solved increasing
linearly). Furthermore, both result in an inverse-square-root
relationship between uncertainty in H and size of N or tf,
respectively. This is because the total number of time steps
being computed, “nt,” is proportional to Ntf, and the
uncertainty in estimating the averageH across all time steps
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FIG. 10. Here, we see the effects of three different interpolation methods for Ω. In the top left panel, the true variation in Ω2 is
contrasted with three interpolation methods: linear, pchip, and spline. Here Λ ¼ 5, and the resolution is very coarse (tres ¼ 0.2) to
exaggerate the effect. The resultant solutions of aðtÞ are shown in the bottom left. On the right, the resulting error inH is shown for each
interpolation method, for a range of time resolutions and two cutoff values (Λ ¼ 5 above and Λ ¼ 10 below). For both cutoffs, the
results converge much more quickly for the spline method, indicating that tres ¼ 1=3Λ is sufficient to constrain uncertainty within 1%.
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can be computed using the usual formula, ΔH ¼ σ=
ffiffiffiffi
nt

p
,

where σ is the standard deviation. As shown in Fig. 11,
100 samples with tf ¼ 50000Λ−1 is sufficient to constrain
ΔH
H < 1%.

5. Dependence on width of box

Finally, let us consider the dependence on the width of
the box L. The error for low L stems from the way in which
the modes are discretized in n space. The sphere of allowed

modes for a given field has volume given by 4πn3max
3

¼ Λ3L3

6π2
,

and because the modes are spaced as an integer lattice, the
number of modes should approximate this volume. At low
nmax, the difference between the actual number of modes
and the volume of the sphere in n-space becomes signifi-
cant, but the approximation improves for larger nmax. This
means that the accuracy improves for both higher L
and higher Λ, as is shown in Fig. 12, and LΛ ¼ 50 is
sufficient for convergence within a few percent (note that
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FIG. 11. On the left, contourmaps are shown for the percentage uncertainty inH dependent on the number of samples (N) and duration of
simulation (tf). The top showsΛ ¼ 5, withL ¼ 10, and the bottomΛ ¼ 10 andL ¼ 5; this means that they will have the samemaximum
jnj ¼ LΛ

2π , and thus the same number of modes for consistency. Note that they have very similar contours, indicating that the precision
dependsmainly on tfΛ (the y-axis),N (the x-axis), andLΛ ¼ 2πnmax (which is the same between the two). In the bottom right, we show the
relationship between the absoluute uncertainty in H and the ODE tolerance ε, parametrized by ε0 as described in Eq. (B1).
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FIG. 12. Here we examine the dependence of the simulations on the box length L, for Λ ¼ 5 on the left and Λ ¼ 10 on the right.
Notice that once L is multiplied by Λ, the convergence appears to occurs at a consistent rate between the two graphs, with LΛ ¼ 50
being sufficient for convergence within 1%.
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this graph also includes the error from tf and N, so it will
not completely converge as L → ∞).

APPENDIX C: MATHIEU EQUATION

We wish to use Ω2 ¼ Ω2
0ð1þ ε cos γtÞ, from Eq. (17),

as an approximation to Eq. (8). There is obviously some
choice about how to implement this, but we will start
by ensuring that the variance and mean of the two Ω2

functions agree. First, let us evaluate these for the Mathieu
equation:

hΩ2i ¼ Ω2
0 ðC1Þ

VarðΩ2Þ ¼ Ω4
0ð1þ 2εhcos γti þ ε2hcos2γtiÞ − Ω4

0 ðC2Þ

VarðΩ2Þ ¼ Ω4
0ε

2

2
: ðC3Þ

Thus, we can determine ε for our approximation by setting

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VarðΩ2Þ

p
Ω2

0

. As shown in [7], with just one field,

Eq. (8) can be written in the form:

Ω2
1 ¼ Ω2

0;1

�
1þ

Z
2Λ

0

fðγÞ cos γtþ gðγÞ sin γtdγ
�
; ðC4Þ

whereΩ2
0;1 ¼ Λ4

6π, and f and g are operator-valued functions.
We can exploit the fact that the expectation values and

statistical properties of Ω2 are invariant under time trans-
lations to select t ¼ 0 for the sake of determining variance,
etc. Then we only need fðγÞ:

fðγÞ ¼ −
16π2

Λ4

Z
Λ

0

d3k1d3k2

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffi
ω1ω2

p
2

× ðak1
ak2

þ a†k1
a†k2

Þδðγ − ω1 − ω2Þ ðC5Þ

On the vacuum, hfðγÞi ¼ 0 so hΩ2
1i ¼ Ω2

0;1, and:

VarðΩ2
1Þ ¼ Ω4

0;1

�
h1i þ

��Z
2Λ

0

fðγÞ2
���

−Ω4
0;1 ðC6Þ

¼ Ω4
0;1

��Z
2Λ

0

fðγÞ2
��

ðC7Þ

This expectation value simplifies to exactly 2, i.e.,

VarðΩ2
1Þ ¼ 2Ω4

0;1: ðC8Þ

Now, this was for one field, but because multiple fields act
as multiple identical and independent variables identical to
Ω2

1, we get more generally:

Ω2
0 ¼ hΩ2

nf i ¼ nfΩ2
0;1 ¼

nfΛ4

6π
ðC9Þ

VarðΩ2
nf Þ ¼ nfVarðΩ2

1Þ ðC10Þ
¼ 2nfΩ4

0;1 ðC11Þ

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nfΩ4

0;1Þ
q

nfΩ2
0;1

¼ 2ffiffiffiffiffi
nf

p ðC12Þ

With these values set, then, we have r ¼ 2Ω0

γ ¼ 2
ffiffiffi
nf

p Λ2

γ
ffiffiffiffi
6π

p , for a

variety of γ values between 0 and 2Λ as per Fig. 1. At the
highest γ, this corresponds to r ¼ Λ

ffiffiffiffinf
6π

p
. To make it into the

form of Eq. (17), we should choose the “most important” γ�
and then replace fðγÞwith aDirac delta function δðγ − γ�Þ. It
is important to account for two factors: the strength of the
resonance (as we do not want to select a γ with no resonance
at all, i.e., a white region of Fig. 9), and also the amplitude of
Ω2’s oscillations at that frequency, as given by (see Fig. 1):

PðγÞ ¼ hfðγÞ2i ðC13Þ

¼
(

2
35ΛðγΛÞ7; 0≤γ≤Λ
2

35Λð− γ7

Λ7þ70 γ3

Λ3−168 γ2

Λ2þ140 γ
Λ−40Þ; Λ≤γ≤2Λ:

ðC14Þ

We can quantify the resonance using the Mathieu exponent
H, which is computed according to [33] using

HðγÞ ¼ H

�
r ¼ 2Λ2

γ

ffiffiffiffiffiffi
nf
6π

r
; ε ¼ 2ffiffiffiffiffi

nf
p

�
: ðC15Þ

We then choose γ� such that it maximizes the product
FðγÞ ¼ PðγÞHðγÞ.
Now, we should consider the dimensions of these quan-

tities in order to normalize Fðγ�Þ and quantify the actual
growth of theH in the simulations. Because of the way that
the Mathieu functions are computed, HðγÞ quantifies the
growth in nondimensionalized units of time; specifically, eH

is the growth factor per time unit 2=γ. Given that our actualH
is a frequency, to rescale it appropriatelywe need tomultiply
by γ�=2 to reinstate units of frequency.
The units of Pðγ�Þ are inverse frequency, because it is

integrated to give a normalized total power. Thus we should
multiply by the width of frequencies which all contribute to
excite the resonance—i.e., multiply by the width of the
relevant resonance band from Fig. 9. For example, if γmin
and γmax denote the lowest and highest γ which lie in the
resonance band, then we multiply by Δγ ¼ γmax − γmin.
All in all, we have

Hestimate ¼ Pðγ�ÞHðγ�Þ γ
�

2
Δγ: ðC16Þ

This is the estimate used in Fig. 7.

CAN THE FLUCTUATIONS OF THE QUANTUM VACUUM … PHYS. REV. D 98, 063506 (2018)

063506-17



[1] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
[2] S. M. Carroll, W. H. Press, and E. L. Turner, ARA&A 30,

499 (1992).
[3] J. Martin, C. R. Phys. 13, 566 (2012).
[4] A. D. Dolgov, arXiv:astro-ph/9708045.
[5] L. Susskind and M. Dine, Am. J. Phys. 75, 382 (2007).
[6] Ø. G. Grøn, Eur. J. Phys. 39, 043001 (2018).
[7] Q. Wang, Z. Zhu, and W. G. Unruh, Phys. Rev. D 95,

103504 (2017).
[8] L. Rosenfeld, Nucl. Phys. 40, 353 (1963).
[9] L. Parker and D. Toms, Quantum Field Theory in Curved

Spacetime: Quantized Fields and Gravity (Cambridge
University Press, Cambridge, England, 2009).

[10] N. Birrell and P. Davies, Quantum Fields in Curved
Space, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 1984).

[11] K. Eppley and E. Hannah, Found. Phys. 7, 51 (1977).
[12] C. Anastopoulos and B. L. Hu, New J. Phys. 16, 085007

(2014).
[13] N. Straumann, Eur. J. Phys. 20, 419 (1999).
[14] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 09, 373

(2000).
[15] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[16] J. C. Baez and E. F. Bunn, Am. J. Phys. 73, 644 (2005).

[17] B. L. Hu and E. Verdaguer, Living Rev. Relativity 11, 3
(2008).

[18] R. Martín and E. Verdaguer, Phys. Rev. D 60, 084008
(1999).

[19] E. K. Akhmedov, arXiv:hep-th/0204048.
[20] J. F. Koksma and T. Prokopec, arXiv:1105.6296.
[21] G. Ossola and A. Sirlin, Eur. Phys. J. C 31, 165 (2003).
[22] F. R. Klinkhamer, JETP Lett. 86, 73 (2007).
[23] J. A. Wheeler, Phys. Rev. 97, 511 (1955).
[24] D. T. Crouse, Appl. Phys. A 122, 472 (2016).
[25] F. Caravelli and F. Markopoulou, Phys. Rev. D 86, 024019

(2012).
[26] F. D. Mazzitelli and L. G. Trombetta, Phys. Rev. D 97,

068301 (2018).
[27] Q. Wang andW. G. Unruh, Phys. Rev. D 97, 068302 (2018).
[28] E. Santos, arXiv:1805.03018.
[29] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed.

(Butterworth-Heinemann, Oxford, England, 1976).
[30] B. Van Der Pol and M. Strutt, Philos. Mag. 5, 18 (1928).
[31] H. Nijmeijer and T. I. Fossen, Parametric Resonance in

Dynamical Systems (Springer, New York, 2012).
[32] M. Robnik and V. Romanovski, Open Syst. Inf. Dyn. 13,

197 (2006).
[33] F. A. Alhargan, SIAM Rev. 38, 239 (1996).

CREE, DAVIS, RALPH, WANG, ZHU, and UNRUH PHYS. REV. D 98, 063506 (2018)

063506-18

https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1146/annurev.aa.30.090192.002435
https://doi.org/10.1016/j.crhy.2012.04.008
http://arXiv.org/abs/astro-ph/9708045
https://doi.org/10.1119/1.2710490
https://doi.org/10.1088/1361-6404/aab57f
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.1103/PhysRevD.95.103504
https://doi.org/10.1016/0029-5582(63)90279-7
https://doi.org/10.1007/BF00715241
https://doi.org/10.1088/1367-2630/16/8/085007
https://doi.org/10.1088/1367-2630/16/8/085007
https://doi.org/10.1088/0143-0807/20/6/307
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1142/S0218271800000542
https://doi.org/10.1016/S0370-1573(03)00120-0
https://doi.org/10.1119/1.1852541
https://doi.org/10.12942/lrr-2008-3
https://doi.org/10.12942/lrr-2008-3
https://doi.org/10.1103/PhysRevD.60.084008
https://doi.org/10.1103/PhysRevD.60.084008
http://arXiv.org/abs/hep-th/0204048
http://arXiv.org/abs/1105.6296
https://doi.org/10.1140/epjc/s2003-01337-7
https://doi.org/10.1134/S0021364007140019
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1007/s00339-016-9853-9
https://doi.org/10.1103/PhysRevD.86.024019
https://doi.org/10.1103/PhysRevD.86.024019
https://doi.org/10.1103/PhysRevD.97.068301
https://doi.org/10.1103/PhysRevD.97.068301
https://doi.org/10.1103/PhysRevD.97.068302
http://arXiv.org/abs/1805.03018
https://doi.org/10.1080/14786440108564441
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1007/s11080-006-8222-0
https://doi.org/10.1137/1038040

