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Abstract  

This thesis aimed to examine genetic and non-genetic (i.e. environmental) contributions to 

normal variation in the structure of the human brain. Disentangling and quantifying these 

sources of variance (genetic and environmental) may be crucial to our understanding of 

the genetic architecture of the brain and how it relates to normal function and mental 

health disorders.  

Studies show genetic and environmental factors, some of which overlap across the brain, 

contribute to individual differences in brain structure. Whether this genetic and 

environmental framework is similar across different samples is unknown. Further, some 

brain structures are difficult to delineate accurately and consistently; however, the 

reliability of imaging measures is also often overlooked. To provide a normative reference 

of healthy brain structure for future studies of neurological and psychiatric disorders, a 

reliable and robust map of genetic and environmental influences on the brain is required. 

We investigate this using two large, genetically informative samples of healthy adults with 

retest datasets: (QTIM Queensland Twin IMaging study, N = 1028; HCP Human 

Connectome Project, N = 1105). 

In the first empirical study, we estimated region-specific genetic and environmental 

influence (i.e. independent of global effects – whole brain total surface area/average 

cortical thickness) on surface area and thickness of 34 neuroanatomical regions (Chapter 

4). As expected, we found significant genetic influence for both surface area and 

thickness, and showed there is a wide range of heritability, which is generally independent 

of measurement reliability. Further, for several regions we found that a substantial amount 

of the variance was due to unique (non-shared) environmental factors rather than 

measurement error. Bivariate analyses revealed generally weak associations between the 

surface area of different regions, except within the occipital lobe. In contrast, cortical 

thickness was positively correlated within lobar divisions and negatively correlated across 

lobes. Further this covariation was mostly due to genetic factors. These results indicate 

that, independent of global effects, there is a complex pattern of region-specific, 

genetically mediated associations across the cortex, strongest for cortical thickness, and 

more limited for surface area. 

In Chapter 5, we estimated mean-standardised genetic and environmental variance in 

cortical and subcortical structure volumes, as well as total brain volume and bodyweight. 
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Mean-standardised measures reflect the amount of absolute genetic or environmental 

variance that exists in the trait – not relative to other variance components (as for 

heritability; Chapter 4), and may elucidate differences in the genetic architecture or 

developmental constraints of individual brain structures. Estimates of mean-standardised 

genetic variance ranged across the brain structures examined, and there was no 

association between mean-standardised and relative estimates of genetic variance. 

Differences in mean-standardised genetic variance across the brain were not explained by 

straightforward factors (e.g. measurement error, spatial topography), and further research 

is required to understand the implications of differences in mean-standardised measures 

of variance in the human brain.  

We then investigated bivariate associations between vertex-wise (i.e. continuous) 

measures of the cortical surface, using a clustering technique to identify a genetic 

parcellation of the cortex (Chapter 6). We found genetic divisions which were bilaterally 

symmetrical, and matched boundaries of structure and function. There was a consistent 

pattern of genetic parcellations across three large, twin datasets, indicating that genetic 

parcellations of cortical surface area are robust across sample and methodology. 

In the last empirical study, we investigated genetic and environmental covariation between 

cortical brain structure and a behavioural measure (reading ability; Chapter 7). In the HCP 

dataset, we found significant associations between reading ability and the surface area of 

several cortical regions in the reading network. This association is influenced by a 

common genetic factor; however, this genetic factor is not region-specific (i.e. effects are 

shared with whole brain total surface area). These findings were not replicated in the QTIM 

dataset, perhaps due to the relatively longer delay between reading assessments and 

image acquisition in this cohort. These results suggest that patterns of covariation between 

cortical structure and reading ability are not robust, and may be sensitive to sample-

specific methodology.  

Together these findings illustrate a complex and somewhat unexpected pattern of genetic 

and environmental influences on human brain morphology. Encouragingly, these patterns 

of genetic and environmental influence were largely similar between two independent 

datasets of healthy young adults, and further, differences in measurement error are 

unlikely to underlie these complexities. Future work should focus on high-level MRI data 

making use of more advanced analysis techniques (e.g. machine learning), and collect 

dense genetic and environmental variables (e.g. whole genome sequencing, early life 
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events) to facilitate the next wave of studies investigating the aetiology of variation in brain 

morphology. 
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1 Introduction 

1.1  General Introduction 

The human brain is the most complex structure in the known universe. It generates the 

higher consciousness associated with human creativity, but also the debilitating effects of 

mental illness. Due to differences in genetic and environmental influences during 

neurodevelopment, there is substantial variation in brain morphology among individuals. 

Disentangling and quantifying these sources of variance may be crucial to our 

understanding of the genetic architecture of the brain and how it relates to normal function 

and mental health disorders. As noted by Insel and Wang (2010), “the genetics of mental 

illness may really be the genetics of brain development”. 

Magnetic resonance imaging (MRI) allows for non-invasive, in vivo study of structural brain 

differences between individuals. This technology, combined with genetic modelling, has 

shown high heritability (the proportion of phenotypic variance in a trait due to genetic 

differences among individuals within a population) for global brain structure (e.g. total brain 

volume) (Blokland, de Zubicaray, McMahon, & Wright, 2012; Gu & Kanai, 2014; Jansen, 

Mous, White, Posthuma, & Polderman, 2015). However, quantifying the source of genetic 

and non-genetic (i.e. environmental) contributions to differences in individual brain 

structures, particularly for the cerebral cortex, as well as identifying how these factors 

contribute to associations across the brain, are continuing challenges.  

Further, some brain structures are difficult to delineate accurately and reliably, suggesting 

heterogeneity in measurement error across the brain. This is critical, as measurement 

error typically sets the upper limit for heritability (Dohm, 2002). The effect of measurement 

error on heritability estimates for a trait can be estimated by contrasting test-retest 

correlations with correlations between monozygotic (i.e. identical) twin pairs. However, 

such data is not widely available for prior research.  

 

1.2 Aims and Thesis Outline 

The goal of this thesis is to examine genetic and non-genetic contributions to normal brain 

variation in humans. To study this, a combination of in vivo imaging and twin studies was 

used. Twin studies assess not only the genetic and environmental variance of brain 

structure, but importantly, the genetic and environmental covariance between different 
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brain structure phenotypes (e.g. brain regions). In this thesis, we use two of the world’s 

largest, genetically informative samples of healthy adults (QTIM Queensland Twin IMaging 

study; HCP Human Connectome Project). Specifically, we aimed to: 

• quantify the variance components of region-specific variation in cortical surface 

area and thickness, and assess the genetic and non-genetic contributions to 

associations between cortical surface area and/or cortical thickness 

• compare amounts of mean-standardised genetic and non-genetic variance for 

individual brain structures 

• investigate whether patterns of genetic covariance are robust across sample and 

methodology 

• examine covariance between cortical structure and reading ability, and assess the 

genetic and non-genetic contributions to these associations 

In addressing these aims, we consider estimates of test-retest reliability for imaging 

phenotypes in both datasets to, importantly, consider the role of measurement error when 

examining genetic and environmental influences on brain morphology. Further, the use of 

two large independent datasets, consisting of participants of a similar age, facilitates the 

investigation of similarities in patterns of genetic and environmental variance across 

samples and imaging methodology. 

 

1.3 Chapter Overview 

In Chapter 2, we review the imaging genetics field. This provides a brief introduction to the 

techniques of twin imaging studies, as well as a meta-analysis of heritability estimates (the 

proportion of phenotypic variance attributed to genetic differences among individuals 

within a population) for structural brain phenotypes. Further, we discuss several issues 

with current estimates of heritability for brain structure. 

Chapter 3 details the image processing and quality checking undertaken to produce the 

imaging phenotypes used in this thesis. In addition, we discuss how these phenotypes are 

used more widely by the Enhancing NeuroImaging Genetics through Meta-Analysis 

(ENIGMA) consortium. 
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In the first empirical study (Chapter 4), we focus on variation in the cerebral cortex: the 

home of higher order cognition in humans. We examine patterns of region-specific (i.e. not 

shared throughout the whole brain) genetic and environmental influence on cortical 

surface area and thickness. In addition, we consider estimates of test-retest reliability to 

better evaluate differences in heritability across the cortex. We then investigate bivariate 

associations across the surface area and/or cortical thickness of cortical ROIs, and 

quantify the genetic and environmental contributions to these phenotypic associations. 

Lastly, we examine whether these patterns are replicable in an independent sample of 

twins and singletons.  

In Chapter 5, we investigate mean-standardised measures of genetic and environmental 

variance, an ancillary method of comparing variance components. Unlike proportional 

measures of variance (i.e. heritability, Chapter 4), mean-standardised estimates reflect the 

strength of factors which maintain or deplete variability in a trait, which in turn may provide 

insights into the development or genetic architecture of a trait. Estimates of mean-

standardised variance are typically neglected in imaging genetics, so in Chapter 5 we 

report estimates of mean-standardised genetic and environmental variance in the size of 

cortical, subcortical, and ventricular structures.  

Chapter 6 extends the work of Chapter 4, examining genetic covariance between vertex-

wise measures of the cortical surface (i.e. continuous as opposed to predefined regions). 

Using a clustering technique, we identify a genetic parcellation of the cortex in the QTIM 

and HCP datasets. We compare the similarity of the genetic divisions in our newly created 

parcellations to those previously defined in a sample of middle-aged males (Chen et al., 

2012) to assess whether a genetically identified parcellation of the cerebral cortex is robust 

across samples and acquisition methodology. 

In the last empirical chapter (Chapter 7), we investigate genetic and environmental 

covariation between cortical brain structure and a behavioural measure (reading ability). 

This chapter investigates whether cortical structures provide insights into the neurobiology 

underlying cognition. While several studies have investigated associations with general 

cognitive ability (Bohlken et al., 2014; Bohlken et al., 2016; Chiang et al., 2009; Vuoksimaa 

et al., 2016), studies of other cognitive processes are more limited. Here were focused on 

reading ability to improve the literature surrounding genetic influences on brain structure 

and cognition, and to study whether associations are robust across sample and 
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methodology. Lastly, we summarise the main findings from the above chapters, and 

discuss their implications within the broader context of this thesis (Chapter 8).  
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Abstract  

A wealth of empirical evidence is accumulating on the genetic mediation of brain structure 

phenotypes. This comes from twin studies that assess heritability and genetic covariance 

between traits, candidate gene associations, and genome-wide association studies 

(GWAS) that can identify specific genetic variants. Here we review the major findings from 

twin studies and consider how they inform on the genetic architecture of brain structure. 

The findings from twin studies show there is a strong genetic influence (heritability) on 

brain structure, and overlap of genetic effects (pleiotropy) between structures, and 

between structure and cognition. Though there is also evidence for genetic specificity, with 

distinct genetic effects across some brain regions. Together these studies are revealing 

new insights into the genetic architecture of brain morphology. As the scope of inquiry 

broadens, including measures that capture the complexity of the brain, along with larger 

samples and new analyses, such as genome-wide common trait analysis (GCTA) and 

polygenic scores, which combine variant effects for a phenotype, as well as whole-genome 

sequencing, more genetic variants for brain structure will be identified. Increasingly, large-

scale multi-site studies will facilitate this next wave of studies, and promise to enhance our 

understanding of the etiology of variation in brain morphology, as well as brain disorders. 

 

2.1 General Introduction 

Imaging genetics is a rapidly emerging field integrating imaging and genetic approaches to 

better understand the aetiology of normal brain variation and especially, mental illness. As 

magnetic resonance imaging (MRI) measures of brain morphology are thought to be closer 
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to the biology of genetic function than a behavioural phenotype or a disease syndrome 

itself, they are often used as endophenotypes to provide an objective tool to search for 

genetic variability in the brain (Glahn, Thompson, & Blangero, 2007; Gottesman & Gould, 

2003). To be the most useful, endophenotypes must meet certain criteria (Gottesman & 

Gould, 2003; Gottesman & Shields, 1967), including that the endophenotype is heritable. 

Endophenotypes have been hypothesised to have a simpler genetic architecture 

(Gottesman & Gould, 2003), or reduced genetic complexity (de Geus, 2010) than other 

complex traits and have higher penetrance for genetic variants because they are 

biologically closer to the genes. However, there is a shift in current perspective such that 

the importance of endophenotypes is not in gene discovery itself, but rather, in the critical 

insights they will likely provide into the neurobiology underlying neurodegenerative, 

developmental, and neuropsychiatric conditions (Iacono, Vaidyanathan, Vrieze, & Malone, 

2014).  

Here we review imaging genetic studies focussing on brain morphology, including twin 

studies that assess not only the heritability of brain structure, but, importantly, the genetic 

covariance between different brain structure phenotypes (e.g. brain regions). We review 

the major findings from each of these approaches, and consider how they inform on the 

genetic architecture of brain structure. We also provide a brief overview of the 

methodology, highlighting important design considerations and central themes that 

emerge from the work, which are relevant to future research.  

 

2.2 Twin and Family Imaging Studies 

Twin and family studies provide a powerful method to establish the heritability of brain 

imaging phenotypes (see below for a brief overview of how twin studies estimate 

heritability). The very first study examined total brain volume and included ten identical 

(monozygotic (MZ)) and nine non-identical (dizygotic (DZ) twin pairs (Bartley, Jones, & 

Weinberger, 1997). Today there are several large imaging cohorts for which structural 

scans have been acquired in over 100 pairs of twins (200 individuals) or multiple members 

from the one family. These studies include imaging cohorts from North America (CLDRC, 

GOBS/SAFHS, FHS, NIMH/PTS, NHLBI, QNTS, UNC, VETSA), Europe and the UK 

(FNTR, TEDS, NTR/UMCU) and Australia (OATS, QTIM, TWIN-E) (Table 2.1). Together, 

the cohorts cover a wide age range. Some cohorts themselves cover much of the lifespan 
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(FHS, GOBS/SAFHS, NTR/UMCU, TWIN-E), whereas others are more restricted with 

respect to age, focussing on either neonates and children (NIMH/PTS, QNTS, TEDS, 

UNC), adolescents and young adults (CLDRC, QTIM), middle-aged adults (FNTR, 

VETSA) or the elderly (NHLBI, OATS). Encouragingly, for a number of the cohorts 

(NIMH/PTS, NHLBI, NTR/UMCU, OATS, QTIM) imaging data are being acquired at more 

than one time point using the same imaging protocol. Longitudinal studies in genetically 

informative samples are vital to characterise the extent that changes in brain structure 

during the life course are due to genes and/or the environment. As can be seen in Table 

2.1, for almost all cohorts global and regional brain volumes have been extracted, with 

more recent efforts examining cortical topography and white matter integrity. For many 

cohorts, there is also extensive phenotyping on a wide range of measures, including 

cognition, as well as resting state and/or task based functional magnetic resonance 

imaging (fMRI) (Blokland et al., 2011; Koten et al., 2009). 

 

2.3 Estimating Heritability and Multivariate Genetic Analysis  

The pattern of MZ and DZ twin correlations provides a first indication of whether there is a 

genetic contribution to brain morphology. Increased similarity between MZ twins compared 

to DZ suggests that variation in brain structure is influenced by additive genetic factors, 

while increased similarity between DZ twins (DZ twin correlation is more than half the MZ 

twin correlation) suggests an effect of common (i.e. shared) environment. Non-additive 

genetic effects will further increase the degree of similarity between MZ twins compared to 

DZ, though large samples are required to detect non-additive genetic effects (Martin, 

Eaves, Kearsey, & Davies, 1978). As well as examining twin correlations most studies use 

standard ACE model fitting analysis in Mx (Neale & Cardon, 1992) to partition the variance 

in a structure into additive genetic (A), common environmental (C) and unique or non-

shared environmental (E) sources. Variation due to dominant genetic (D) effects can also 

be partitioned; though not simultaneously with C in samples where twins are reared 

together (C and D are confounded in this instance). See D. M. Evans, Gillespie, and Martin 

(2002), (Neale & Cardon, 1992) and Verweij, Mosing, Zietsch, and Medland (2012) for 

excellent reviews of the twin method and genetic analyses.
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Table 2.1 Twin and family cohorts with imaging data 
Cohort*  Reference n pairs MZ/DZ† Age range 

(years) 
Structural Imaging  
Phenotypes 

Cognitive phenotypes 

Twin      
Colorado Learning Disabilities 

Research Centre (CLDRC) 
Betjemann et al. 
(2010) 

41/30 12-24 Global, regional General cognitive ability, 
reading 

Finnish National Twin Registry 
(FNTR)  

Thompson et al. 
(2001) 

10/10 Mean=48±3 Voxel-wise morphometry General cognitive ability 

National Heart, Lung, and Blood 
Institute (NHLBI) 

 

Pfefferbaum, Sullivan, 
Swan, and Carmelli 
(2000) 

72/70 69-80 Global, regional, subcortical, white matter 
hyperintensities 

General cognitive ability 

National Institute of Mental Health 
(NIMH) / Paediatric Twin Study 
(PTS) 

Schmitt et al. (2007) 127/36 6-19 Global, regional, subcortical, cortical thickness General cognitive ability 

Netherlands Twin Registry (NTR)/ 
University Medical Centre 
Utrecht (UMCU) 

Brans et al. (2010) 102/131 9-69 Global, regional, subcortical, cortical thickness & 
surface area, white matter integrity, voxel-wise 
morphometry.  

General cognitive ability, 
working memory 

Older Adult Twins Study (OATS) Sachdev et al. (2009) 77/41 65-88 Global, regional, subcortical 
 

General cognitive ability, 
memory, language 

Quebec Newborn Twin Study 
(QNTS) 

Yoon, Fahim, 
Perusse, and Evans 
(2010) 

57/35 Mean=8 Global, regional, subcortical, cortical thickness, 
voxel-wise morphometry 

General cognitive ability 

Queensland Twin IMaging (QTIM) 
study 

(Blokland et al., 2014) 148/202 12-30 Global, regional, subcortical, cortical thickness & 
surface area, white matter integrity, voxel-wise 
morphometry 

General cognitive ability, 
reading 

Twins Early Development Study 
(TEDS) 

Rijsdijk et al. (2010) 31/35 Mean=9 Voxel-wise morphometry General cognitive ability, 
reading, mathematics 

The Twin study in Wellbeing 
using Integrative Neuroscience of 
Emotion (TWIN-E)‡ 

Gatt et al. (2012) 122 pairs 18-65 Global, regional, cortical thickness & surface area, 
white matter integrity 

General cognitive ability  

University of North Carolina (UNC) Gilmore et al. (2010) 41/50 0 – 1 week Global, regional, subcortical, white matter integrity   
Vietnam Era Twin Study of Aging 

(VETSA) 
Kremen, Franz, and 
Lyons (2013) 

110/92 51 - 59 Global, regional, cortical thickness & surface area, 
voxel-wise morphometry 

General cognitive ability, 
working memory 

Family/pedigree       
Framingham Heart Study (FHS) DeStefano et al. 

(2009) 
1538 subjects 34-97 Global, regional, subcortical Verbal memory, 

visuospatial memory 
Genetics of Brain Structure and 

Function (GOBS) / San Antonio 
Family Heart Study (SAFHS) 

Kochunov et al. 
(2011) 

1129 subjects 19 - 85 Global, regional, subcortical, cortical thickness & 
surface area, white matter integrity, voxel-wise 
morphometry 

General cognitive ability, 
working and declarative 
memory, language and 
emotional processing 

DZ dizygotic; MZ monozygotic. 
*Several cohorts function as combinations (NIMH/PTS, NTR/UMCU) or subsamples (GOBS/SAFHS). Cohorts with small sample sizes (<20 pairs) are not included.  
† Largest published complete pairs.  
‡ Sample size and age range are projected figures. 
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The twin design can be extended to include additional family members such as siblings, 

estimate the effects of covariates such as age to improve the fit of the model, allow 

multiple phenotypes to be studied simultaneously or to analyse more complex genetic and 

environmental influences (e.g. interaction terms such as gene-environment correlation). By 

including multiple phenotypes, as shown in Figure 2.1, it is possible to decompose the 

variance both within and between variables into genetic and environmental components. 

From this, genetic, environmental, and phenotypic correlations can be calculated, with the 

genetic correlation indicating the extent to which two different structural measures share 

genetic influence. For example, a genetic correlation of 1 indicates two traits are 

influenced completely by the same latent genetic factor(s). Several studies have examined 

the genetic overlap among different brain measures, and a few have investigated whether 

there is any genetic overlap across brain structure and cognition. We review these studies 

in the sections below.  

 

 

Figure 2.1 Correlated factors bivariate twin model. 
A, C, and E are the latent additive genetic, common environment and unique environment factors 
respectively, which influence cerebral grey and white matter volume. rg, rc and re are the genetic, common 
environmental and unique environmental correlations respectively, with rph the phenotypic correlation 
between the two observed traits. a, c and e represent parameter estimates, conceptualised as the strength 
of the latent factor on the phenotype.  
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Besides twin studies, heritability can also be estimated from family pedigrees (Kochunov et 

al., 2009). More recently it has become possible to estimate heritability directly from DNA 

(Yang, Lee, Goddard, & Visscher, 2011). This method, often called GCTA (Genome-wide 

Complex Trait Analysis), estimates the genetic influence (heritability) using genome-wide 

genotypes from very large samples (i.e. thousands) of unrelated individuals, rather than 

comparing MZ and DZ twins. GCTA detects only the genetic effects that are tagged by 

common single nucleotide polymorphisms (SNPs) (allele frequencies greater than 1%) 

available on a DNA array used in GWAS. Thus, GCTA heritability (or SNP heritability) is 

not expected to be as large as the heritability estimated from twin studies that can detect 

genetic influences due to DNA variants of any kind (Vinkhuyzen, Wray, Yang, Goddard, & 

Visscher, 2013). GCTA can also be extended to multivariate analysis to estimate the SNP 

heritability of each phenotype and the SNP-correlation between phenotypes (Wray et al., 

2014). To date only a few studies have estimated SNP heritability of brain imaging 

phenotypes (Adib-Samii et al., 2015; Bryant et al., 2013), mainly because very large 

samples are necessary, requiring genotypes and phenotypes to be shared among several 

research groups (which is not always possible). We discuss these results later. 

 

2.4 Heritability of Brain Structure 
The growing number of imaging studies in twins and families provides strong evidence that 

individual differences in brain structure are due to both genetic factors and the 

environment. Figure 2.2 shows heritability estimates for a range of measures, including 

global and regional brain volumes, subcortical volumes, cortical thickness and white matter 

integrity. These results are from a recent meta- and mega-analysis (Blokland et al., 2012; 

Kochunov et al., 2014), or a new meta-analysis, including data that has accumulated since 

2012. Heritability estimates range from moderate to high i.e. 40% to >80%. As noted 

previously (Blokland et al., 2012), lower heritability estimates are generally found for 

smaller brain structures relative to larger global or lobar structures. However, whether one 

structure has a higher heritability than the other needs to be interpreted with care. As seen 

in Figure 2.2, confidence intervals for heritability estimates overlap for many structures. 
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Figure 2.2 Heritaiblity estimates with 95% confidence intervals for brain structure 
Additive genetic estimates and 95% confidence intervals for (a) volumetric and cortical thickness and (b) 
fractional anisotropy (FA) white matter integrity. a) Meta-analysis combining estimates from Blokland et al. 
(2012) and 3 additional studies, some of which include new imaging phenotypes not included in Blokland et 
al. 2012; * denotes revised heritability estimate, and ^ denotes new phenotype. The meta-analyses including 
the additional studies (Batouli et al., 2014; den Braber et al., 2013; Renteria et al., 2014) used the same 
methodology as Blokland et al. (2012). Full ACE estimates available in Figure 2.3. b) FA white matter mega-
analysis estimates (Kochunov et al., 2014) publicly available from http://enigma.ini.usc.edu/ongoing/dti-
working-group/2014_nimg/. A harmonisation protocol combined DTI for 2248 participants from five cohorts 
followed by a mega-analysis to estimate heritability. 
3rd V third ventricle; AMYG amygdala; bilat bilateral; CB cerebellum; CAUD caudate; CC corpus callosum; 
CING_G cingulum gyrus; cGM cerebral grey matter; CST corticospinal tract; CR corona radiate; cortical 
thickness cortical thickness; cWM cerebral white matter; EC external capsule; FA fractional anisotropy; FR 
frontal; FX fornix; GM grey matter; GP globus pallidus; HIP hippocampus; IC internal capsule; ICV 
intracranial volume; IFO inferior fronto-occipital fasciculus; L left; LH left hemisphere; LV lateral ventricle; NA 
nucleus accumbens; OCC occipital; PAR parietal; PTR posterior thalamic radiation; PUT putamen; R right; 
RH right hemisphere; SFO superior fronto-occipital fasciculus; SLF superior longitudinal fasciculus; SS 
sagittal stratum; TBV total brain volume; TCV total cerebral volume; TEMP temporal; THAL thalamus; WM 
white matter.  
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Figure 2.3 Variance component estimates for brain structure (meta-analysis) 
Proportion of variance explained by additive genetic (‘A’), common or shared environment (‘C’), and unique 
or non-shared environment (‘E’) sources for (a) volumetric and cortical thickness and (b) fractional anisotropy 
(FA) white matter integrity brain phenotypes. ‘C’ effects were not estimated for FA measures; hence all non-
genetic variance is attributed to ‘E’.  
 

Notably, few studies have examined whether the heritability of imaging phenotypes is a 

function of gender (Chiang et al., 2011). By dividing twin pairs into five groups (MZ male, 

MZ female, DZ male, DZ female, DZ opposite sex pairs), sex limitation modelling can 

estimate both qualitative and quantitative differences between males and females (. i.e. is 

heritability larger in one sex than in the other (same genetic source, different magnitude), 

or whether a factor (genetic or environmental) effects one sex but not the other). As 

different neurodevelopmental trajectories for males and females have been reported 

(Dennison et al., 2013; Koolschijn & Crone, 2013; Lenroot & Giedd, 2010), and as the 

majority of the cohorts include both opposite and same sex pairs, these studies will be well 

placed to examine sex-dependent effects as their samples increase. Additionally, 

throughout development into old age, the structure of the brain changes over the life 
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course. While cross sectional studies have demonstrated heritability changes associated 

with age (Lenroot et al., 2009; Wallace et al., 2006), longitudinal twin studies (Schmitt et 

al., 2014; van Soelen et al., 2012) that are well powered (large samples) are needed to 

detect changes in heritability for different brain structures as a function of age. Recently, 

some progress was made when several groups with longitudinal imaging data on twins 

worked together as part of the ENIGMA Consortium to estimate the heritability of 

subcortical brain plasticity (Brouwer et al., 2015). 

Though heritability tells us nothing about the underlying genes or the number of genes 

involved or their effect size, the magnitude of the heritability estimate does provide some 

indication of the statistical power for discovering the causal genes of a trait (Bochud, 

2012). For example, if the heritability estimates of several brain structures are available, 

the structure with the highest heritability estimate can be chosen for genome-wide 

association studies (e.g. Stein et al. (2012) selected hippocampus and intracranial volume 

on this basis). A general benchmark is to consider heritability estimates below 20% as low, 

those between 20% and 50% as moderate, and estimates above 50% as high. Of the 67 

brain structure phenotypes in Figure 2.2 and Figure 2.3, two structures (bilateral lateral 

ventricles, corticospinal tract) are moderately heritable, with all others highly heritable. 

Nonetheless a high heritability estimate does not imply that genetic variants associated 

with the brain structure will have a large effect on the phenotype (Visscher, Hill, & Wray, 

2008). Limitations of heritability estimation include a lack of information on the mode of 

inheritance of the trait, and the possibility that heritability estimates may vary across 

populations or with time. This may be especially relevant to child and adolescent samples, 

with Schmitt et al. (2014) reporting increases in cortical thickness heritability estimates 

during the first two decades of life. The finding of a similar genetic architecture behind 

subcortical structures in young (Renteria et al. (2014) and middle-aged (Eyler et al., 2011) 

adults possibly suggests greater stability in heritability estimates following adolescence. In 

samples with a wide age range there may be cohort effects, which may confound the 

“equal environment” within the sample population (Bochud, 2012). 

The pervasiveness of a genetic contribution to brain structural measures does not mean 

that environmental influences are not important. Both genetic and environmental (non-

genetic) factors contribute to the variance in brain structure. Non-genetic factors include 

identifiable environmental factors and measurement error, though both are not well 

assessed. However, most recently imaging studies such as IMAGEMEND (Frangou, 2014) 
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have begun collecting both genetic and environmental data. This will facilitate 

considerations of the interplay between genes and the environment in the development of 

the brain, brain ageing, as well as psychiatric disorders. 

 

2.5 Issues in Estimating Heritability for Imaging Phenotypes 
Sample size, namely whether it is large enough to provide sufficient power to detect 

genetic variance (heritability) is an important consideration. Generally, the global brain 

measures in Figure 2.2 and Figure 2.3 are available on large samples; the smaller 

confidence intervals for the heritability estimates reflect this increased power. Many of the 

early imaging studies in twins were restricted by small sample size (Bartley et al., 1997; 

Pennington et al., 2000; I. C. Wright, Sham, Murray, Weinberger, & Bullmore, 2002) so the 

degree to which the results can be generalised to larger populations is somewhat limited. 

The high cost of brain imaging and twin recruitment are ever present factors impacting 

sample size for imaging genetics studies. The mega-analysis approach undertaken by 

Kochunov et al. (2014) is an engaging future research direction for addressing such 

concerns. In this method, imaging data from multiple sites are pooled together and 

analysed as one data set, ensuring homogeneity of processing. Though the sharing of 

data across research groups is not always possible, this technique allows for large sample 

sizes to be amassed and removes one level in which error variance may be introduced 

(measurement variability).  

Another issue is that some brain structures are more easily measured than others. In 

assessing or ranking heritability estimates, any differences in measurement error need to 

be considered. For example, the lower heritability estimates for smaller brain structures 

(e.g. nucleus accumbens) may be due to increased measurement error, as reflected in 

lower test-retest reliability (Morey et al., 2010; Nugent et al., 2013; Renteria et al., 2014). 

Measurement error artificially reduces the similarity between MZ twins and thereby 

reduces heritability estimates (i.e. reliability sets the upper limit for heritability by 

constraining the maximum possible correlation between MZ twins). How well a brain 

region or white matter tract can be reliably measured is often overlooked, but in the 

absence of test-retest reliability statistics it is difficult to determine if low heritability 

estimates are valid or simply reflect measurement error (Kuntsi et al., 2006). If test-retest 

statistics were provided alongside heritability estimates (e.g. as per Renteria et al. (2014)), 
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any differences in the genetic contribution across measures could be better evaluated. For 

example, as the intra-class correlation (ICC) is conceptually analogous to the r2 obtained 

in regression analysis (Rousson, Gasser, & Seifert, 2002), it is possible to make a direct 

comparison between the portion of variability not explained between the repeats (1 - r2 

test-retest or 1 – ICC test-retest) and e2 (variance due to non-shared environment and 

measurement error). Where e2 exceeds unreliability (1 - r2 test-retest), non-shared 

environmental influences are greater than measurement error. Conversely, measurement 

error is greater than non-shared environment when unreliability (1 - r2 test-retest) is greater 

than e2. Further, the accuracy of the heritability estimate can be increased by modelling 

unreliability (Kuntsi et al., 2006; Luciano et al., 2001), though this can result in an 

overestimation of the genetic effects (Luciano et al., 2001). Thus it is better to improve 

measurement of a phenotype rather than statistically adjust for measurement error (Kuntsi 

et al., 2006). For genetic association studies to build upon the findings of heritability 

estimates, imaging phenotypes, and the resulting heritability estimates, should be as 

reliable as possible. 

 A further consideration, especially when comparing or meta-analysing heritability 

estimates, is the use of different software to segment and measure the brain 

(Gronenschild et al., 2012; Morey et al., 2009), as well as the MRI platform or field strength 

used for scanning (Han et al., 2006; Jovicich et al., 2009). Variation in measurement can 

arise through differences in software methodologies (FreeSurfer, FSL, SPM), but also 

differences within the same analysis package (i.e. different versions of the same software). 

For instance, Renteria et al. (2014) reported test-retest Pearson’s correlations of 0.51 and 

0.52 for mean nucleus accumbens and amygdala volume respectively, extracted through 

FreeSurfer 5.1. Correlations from the same sample extracted through FreeSurfer 5.3, and 

with improved intensity inhomogeneity correction, increased to 0.68 and 0.77 respectively. 

Recently, standardised imaging and analysis protocols have been adopted for multi-site 

analyses (e.g. as implemented by the ENIGMA consortium) to address this issue and 

enhance phenotypic heritability. 

 
 

 

 



 44 

2.6 Overlapping or Distinct Genetic Factors? 
While the brain can be segmented into many regions and quantified in different ways, 

several brain structure phenotypes are highly correlated. For instance, individuals with a 

large grey matter volume also have a large white matter volume (Baare et al., 2001). 

Several twin studies have investigated whether different brain structure phenotypes are 

genetically correlated (Table 2.2). A number of these show high genetic correlations, such 

as between intracranial and thalamus volume (Renteria et al., 2014), cortical grey and 

white matter volume (Baare et al., 2001), grey matter volume and surface area (Winkler et 

al., 2010) and longitudinal change in total cerebral and cerebellum volume (van Soelen et 

al., 2013). The average phenotypic correlation for these studies is .60. The genetic 

correlations are slightly higher, ranging from 0.68 to 0.88, indicating an overlapping set of 

genes are responsible for the heritability of these brain structure phenotypes. Genetic 

correlations estimate the extent that genetic effects on one phenotype are correlated with 

the genetic effects on another phenotype, independent of their heritability. Overlapping 

genetic effects provide evidence for pleiotropy (each gene affects many traits) across the 

brain, and this has mostly been demonstrated between regional brain volumes and/or 

global measures.  

Examining cortical thickness in 54 cortical sub-regions, Schmitt et al. (2008) identified a 

single factor accounting for over 60% of the genetic variability in cortical thickness 

measurements. Using the same sample, they also reported a strong genetic factor 

influencing variation between lobar volumes (Schmitt et al., 2010). Interestingly, in both 

studies, after correcting for mean cortical thickness or total brain volume, regionally 

specific patterns of genetic influence emerged, showing that there is genetic specificity, 

with distinct genetic effects across brain regions. Examining cortical thickness, Chen et al. 

(2013) reported distinct clusters of genetic influence throughout the cortex, i.e. different 

sets of genes influenced cortical thickness in different areas of the cortex. The structuring 

of these clusters appeared to reflect differences in maturation timing, and also the division 

between primary and association cortex. However, in an older sample, genetic effects on 

lobar volumes tended to be general rather than specific (Batouli et al., 2014). Differences 

in sample age and methodology across studies may account for these findings. 

The low phenotypic and genetic correlations found for some of the studies shown in Table 

2.2 also suggest that a common genetic influence does not extend to all areas of the brain, 

or two measures of the same structure. For example, (Panizzon et al., 2009) and Winkler 
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et al. (2010) found that two standard measures of grey matter (cortical thickness and 

surface area), shared little genetic overlap. Further, Renteria et al. (2014) identified region 

specific genetic factors explaining over 50% of the heritability in hippocampus, caudate 

nucleus, amygdala, and nucleus accumbens volumetric measures. These findings 

confirmed those of a prior study (Eyler et al., 2011), and demonstrate a similar genetic 

framework for subcortical structures across young and older adults.  

Clearly, further work is needed to determine the pattern of genetic effects on brain 

structure phenotypes. A limited range of brain structure phenotypes have been examined 

and we have little understanding of whether the genetic covariance across brain structure 

phenotypes changes throughout the lifespan, or how such genetic organization reflects 

brain function.  

 

2.7 Shared Genetic Influences Across Brain Structure and Cognitive 

Ability 
Both brain structure (Blokland et al., 2012; Kremen et al., 2010) and cognitive ability 

(Deary, Penke, & Johnson, 2010; van Soelen et al., 2011) show substantial individual 

variability, much of which appears to be influenced by genetic factors. Multivariate studies 

have revealed that, to some degree, these genetic factors overlap. Table 2.3 displays 

phenotypic, genetic, and environmental correlations between measures of brain 

morphology and intelligence. Notably, the phenotypic correlations peak at approximately 

±.30, thus brain structure is at best moderately associated with cognitive ability. However, 

genetic and environmental influences can sometimes have opposing effects that cancel 

each other out (Brans et al., 2010). Alternatively, both genetic and environmental factors 

can have the same direction of influence and thus enhance the phenotypic correlation 

(Brouwer, van Soelen, et al., 2014), and in some cases, the association is largely due to a 

common genetic source (Brans et al., 2010). The majority of studies to-date have focused 

on total measures of grey and white matter tissue (Betjemann et al., 2010; Posthuma et 

al., 2003; Posthuma et al., 2002; van Leeuwen et al., 2009). Interesting, Vuoksimaa et al. 

(2015) recently demonstrated genetic associations between cortical volume and cognitive 

ability to be the result of variation in cortical surface area, but not cortical thickness. White 

matter tracts have also shown phenotypic and genetic overlap with cognition (Chiang et 

al., 2009; Karlsgodt et al., 2010), possibly illustrating biological networks underpinning 

intelligence. Overall, the low phenotypic correlations reported by studies signify that while 
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there does appear to be pleiotropy across brain structure and function, overlapping genes 

have only a small association with intelligence. Future studies focusing on the neural 

circuitry associated with cognitive ability (as opposed to global or anatomical brain 

divisions) may be able to tap into a greater phenotypic relationship between brain 

morphology and function, thereby identifying genetic factors with stronger genetic 

influences on cognition. Further, the relative importance of genetic and environmental 

factors may vary across the lifespan, with periods such as adolescence being of particular 

interest (Lenroot & Giedd, 2008) and a potential target for future work. 

Examining associations between brain development trajectories and whether this predicts 

cognitive performance, and whether shared genetic factors underlie such an association 

(and if this represents causality) are important future research questions. Additionally, as 

studies have shown environmental factors can influence intelligence (Bates, Lewis, & 

Weiss, 2013; Tucker-Drob, Rhemtulla, Harden, Turkheimer, & Fask, 2011; Turkheimer, 

Haley, Waldron, D'Onofrio, & Gottesman, 2003), determining if gene by environment 

interactions modify genetic associations between structure and cognition could prove 

crucial to our understanding of brain development. Also worth exploration is the gene-

environment correlation (Plomin, DeFries, & Loehlin, 1977), which denotes the possibility 

that differential environmental effects can occur as a function of genetics (active gene-

environment correlation). For example, individuals may choose to undertake mentally 

challenging activities (due to genetic influences) which may then influence cognitive ability 

or brain morphology. Furthermore, examining if the magnitude of genetic overlap between 

brain morphology and cognitive ability differs by brain regions and structural phenotype 

(cortical thickness, volume, white matter integrity) will aid in identifying “higher order” brain 

structures especially sensitive to genetic or environmental influences. Multivariate twin 

studies provide unparalleled insights into the genetic relationships between brain 

structures and behavioural traits, and offer basic insights into the genetic mechanisms 

behind the human brain, which genetic association studies can build upon.  
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Table 2.2 Shared genetic influence across brain structures.  

Note. Multivariate studies were identified through a PubMed search of the following terms: twin - brain - imaging - MRI - genetic. With a cut-off date of 1 July 2014, 
27 studies were identified, with an additional 18 studies identified manually through references. Those that could be quantified are summarised in Table 2.2 and 
Table 2.3, with those that could not be quantified (Chen et al., 2013; Chen et al., 2012; Chen et al., 2011; Chiang et al., 2012; Chiang et al., 2009; Eyler et al., 2011; 

Reference Cohort n pairs MZ/DZ (age in years) Phenotypes* rph rg re 
Posthuma et al. (2000) 
 

NTR / UMCU 53/58  
(19-69) 

ICV & CB - 0.57 0.44 

Pfefferbaum et al. (2000) 
 

NHLBI 45/40  
(68-78) 

CC msa height & LV bilat 0.66 0.68 0.58 

Baare et al. (2001) NTR / UMCU 54/58  
(19-69) 

cGM & cWM 
ICV & cWM 
ICV & cGM 
ICV & TBV 

0.59 
0.81 
0.84 
0.93 

0.68 
0.83 
0.90 
0.95 

0.03 
0.66 
0.49 
0.79 

Schmitt et al. (2007) NIMH 127/36  
(5-18) 

(Lowest rg) LV bilat & THAL bilat 
(Highest rg) TCV & THAL bilat 

- 
- 

0 
0.97 

-0.22 
0.35 

DeStefano et al. (2009) FHS 1538 subjects (34-97) (Lowest rg) OCC lobe & LV bilat 
(Highest rg) TEMP lobe & HIP bilat 

-0.01 
0.38 

0.01 
0.76 

0.01 
-0.11 

(Panizzon et al., 2009) VETSA 110/92 
 (51-59) 

cGM cortical thickness & surface area 
(Lowest rg) PCC R cortical thickness & surface area  
(Highest rg) lat OCC R cortical thickness & surface area 

0.01 
-0.06 
-0.03 

0.08 
0.01 
0.88 

-0.13 
-0.03 
-0.11 

Kochunov et al. (2009) SAFHS 459 subjects (19/85) Subcortical WMHI & ependymal WMHI - 0.46 0.07 
Kochunov et al. (2010) SAFHS 467 subjects (19-85) FA mean & L� mean 

FA mean & L|| mean 
L� mean & L|| mean 

- 
- 
- 

-0.68 
-0.70 
0.95 

- 
- 
- 

Rogers et al. (2010) GOBS 242 subjects (19-85) surface area mean & GI mean 
CV mean & GI mean 

- 
- 

-0.60 
-0.73 

- 
- 

Schmitt et al. (2010) NIMH 127/36  
(5-18) 

(Lowest rg) PAR GM & TEMP WM 
(Highest rg) FR GM & TEMP GM 

- 
- 

0.56 
0.94 

-0.10 
0.86 

Winkler et al. (2010) GOBS 486 subjects 
(26-85) 

(Lowest rg) PCUN GM & PCUN cortical thickness 
cGM & surface area 
(Highest rg) TEMP pole GM & TEMP pole surface area 

0.10 
0.85 
0.81 

0.03 
0.85 

1 

0.16 
0.85 
0.76 

Eyler et al. (2011) VETSA 110/92 
(51-59) 

(Lowest rg) THAL L & LV L 
THAL L & HIP R 
(Highest rg) CAUD L & CAUD R 

- 
- 
- 

0 
0.51 

1 

- 
- 
- 

Panizzon et al. (2012) VETSA 130/97  
(51-60) 

(Lowest rg) PCUN L WM/GM contrast & PCUN L cortical thickness  
(Highest rg) PCAL R WM/GM contrast & PCAL R cortical thickness 

0.15 
 

-0.54 

-0.01 
 

-0.89 

0.33 
 

-0.34 
van Soelen et al. (2012) NTR / UMCU 23/28 

(T1 Mean=9) 
(T2 Mean=12) 

(Lowest rg) Δ in FR R cortical thickness & Δ in sup TEMP L cortical thickness over 3 years 
(Highest rg) Δ in inf PAR L cortical thickness & Δ in inf FR L cortical thicknessΔ over 3 yrs 

0 
0.30 

-0.01 
1 

- 
- 

van Soelen et al. (2013) NTR / UMCU 23/28 
(T1 Mean=9) 
(T2 Mean=12) 

Δ in TCV & Δ in height over 3 yrs 
Δ in CB & Δ in height over 3 yrs  
Δ in TCV & Δ in CB over 3 yrs 

0.09 
0.24 
0.49 

0.39 
0.48 
0.88 

-0.13 
-0.05 
0.34 

Batouli et al. (2014) OATS 77/41 
(65-88) 

(Lowest rg) cGM & cWM 
(Highest rg) TEMP & TCV 

- 
- 

0.17 
0.95 

0.56 
0.90 

Renteria et al. (2014) QTIMS 148/202 
(16-29) 

(Lowest rg) CAUD mean & AMYG mean 
(Highest rg) ICV & THAL mean 

0.10 
0.76 

0.13 
0.86 

- 
- 
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Giedd, Schmitt, & Neale, 2007; Jahanshad et al., 2013; Rimol et al., 2010; Schmitt et al., 2009; Schmitt et al., 2008; Wallace et al., 2010; I. C. Wright et al., 2002) 
consistent with tabled findings. 
AMYG amygdala; bilat bilateral; CAUD caudate; CB cerebellum; CC corpus callosum; cGM cerebral grey matter; CV cerebral volume; cWM cerebral white matter; 
cortical thickness cortical thickness; FA fractional anisotropy; FR frontal; GI gyrification index; GM grey matter; HIP hippocampus; inf inferior; ICV intracranial 
volume; L left; lat lateral; L|| axial diffusivity; L⊥ radial diffusivity; LV lateral ventricle; msa midsagittal area; OCC occipital; PAR parietal; PCAL pericalcarine cortex; 
PCC posterior cingulate cortex; PCUN precuneus; R right; re environmental correlation; rg genetic correlation; rph phenotypic correlation; surface area surface area; 
sup superior; T1/T2 time one/time two; TBV total brain volume; TCV total cerebral volume; TEMP temporal; THAL thalamus; WM white matter; WMHI white matter 
hyperintensities; Δ change. 
*These phenotypes are volumes unless otherwise stated. Where results for many structures are reported, the regions with lowest and highest genetic correlations 
are shown.  
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Table 2.3 Shared genetic influence between brain structure and cognitive ability. 

bilat bilateral; CB cerebellum; CC corpus callosum; cGM cerebral grey matter; CING cingulum; CING_G cingulum gyrus; cortical thickness cortical thickness; CUN 
cuneus; cWM cerebral white matter; DB digits backwards; EC external capsule; EF executive function; FA fractional anisotropy; FMD facial memory display; FSIQ 
full scale intelligence; g general intelligence; GM grey matter; L left; LV lateral ventricle; MF medial frontal; MMSE Mini-mental state examination; OP occipital pole; 
PCL paracentral lobule; PIQ performance intelligence; PH parahippocampal; PS processing speed; PUT putamen; R right; RAVEN Raven standard progressive 
matrices; re environmental correlation; rg genetic correlation; rph phenotypic correlation; surface area surface area; SDRT spatial delayed response task; SLF 
superior longitudinal fasciculus; TCV total cerebral volume; THAL thalamus; VC verbal comprehension; VIQ verbal intelligence; WM white matter; WMem working 
memory; WMHI white matter hyperintensities; Δ change. 
*These phenotypes are volumes unless otherwise stated. Where results for many structures are reported, the regions with lowest and highest genetic correlations 
are shown. Refer to Table 2.2 for details regarding how studies were identified.  
 

 

Reference Cohort n pairs MZ/DZ 
(age in years) Phenotypes* rph rg re 

Pennington et al. (2000) CLDRC 25/23 
(>12) TCV & FSIQ - 0.48 - 

Carmelli, Reed, and DeCarli (2002) NHLBI 72/70 
(69-80) 

WMHI & EF 
WMHI & MMSE 

-0.20 
-0.20 

-0.24 
-0.36 

-0.22 
0 

Carmelli, Swan, DeCarli, and Reed 
(2002) NHLBI 72/67 

(69-80) 
LV L & EF 
LV R & EF 

-0.25 
-0.26 

-0.57 
-0.25 

- 
- 

Posthuma et al. (2002) NTR/UMCU 24/31 
(19-69) 

cGM & g 
cGM & WMem 
cWM & g 
cWM & Wmem 

0.25 
0.29 
0.24 
0.29 

0.29 
0.38 
0.24 
0.35 

- 
- 
- 
- 

Posthuma et al. (2003) NTR/UMCU 102/131 
(19-69) 

(Lowest rg) CB & VC 
(Highest rg) cGM & WMem 

- 
- 

0.03 
0.40 

-0.23 
-0.13 

Hulshoff Pol et al. (2006) NTR/UMCU 54/58 
(19-69) 

(Lowest rg) CC WM & VIQ 
(Highest rg) PH GM & PIQ 

0.14 
0.23 

0.15 
0.40 

- 
- 

van Leeuwen et al. (2009) NTR 48/64 
(Mean=9) 

(Lowest rg) cGM & PS 
(Highest rg) cGM & Raven 

0.06 
0.22 

0.09 
0.36 

0.05 
-0.16 

Betjemann et al. (2010) CLDRC 41/30 
(12-24) 

(Lowest rg) cGM & reading ability 
(Highest rg) cWM & PS 

0.15 
0.28 

0.14 
0.89 

- 
- 

Brans et al. (2010) NTR/UMCU 77/84 
(T1 Mean=30) 

(Lowest rg) Δ in MF L cortical thickness over 5 yrs & FSIQ 
(Highest rg) Δ in OP R cortical thickness over 5 yrs & FSIQ 

0.08 
0.34 

0.56 
1 

-0.66 
0.22 

Karlsgodt et al. (2010) GOBS 467 subjects (19-85) (Lowest rg) CING FA & DB 
(Highest rg) SLF FA & SDRT 

- 
- 

0.02 
0.59 

0.01 
0.25 

Glahn et al. (2013) GOBS 1129 subjects (18-83) (Lowest rg) EC FA & FMD 
(Highest rg) CING_G FA & SDRT 

0.06 
-0.08 

0 
-0.47 

0.11 
0.11 

Brouwer, Hedman, et al. (2014) NTR/UMCU 11/21 
(T1 19-56) 

(Lowest rg) Δ in whole brain L over 5 yrs & FSIQ 
(Highest rg) Δ in cWM L over 5 yrs & VIQ 

0.27 
0.29 

0.50 
1 

-0.17 
-0.41 

Brouwer, van Soelen, et al. (2014) NTR/UMCU 
 

23/28 
(Mean=12) 

(Lowest rg) PCL L cortical thickness & FSIQ 
(Highest rg) CUN L cortical thickness & VIQ 

-0.29 
-0.28 

-0.32 
-1 

-0.24 
0.39 

Bohlken et al. (2014) NTR/UMCU 
 

50/56 
(19-55) 

(Lowest rg) PUT bilat & FSIQ 
(Highest rg) THAL bilat & FSIQ 

0.01 
0.26 

0 
0.29 

0.08 
0.08 

Vuoksimaa et al. (2015) VETSA 131/96 
(51-60) 

cGM cortical thickness & general cognitive ability 
cGM surface area & general cognitive ability 

0.08 
0.21 

0.09 
0.24 

0.10 
0.21 
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2.8 Conclusions 
The findings emerging from the work reviewed here show that the genetic architecture of 

the brain is indeed complex. However, sample sizes are increasing in parallel with deep 

phenotyping and measures that capture the complexity of the brain. Large scale multi-site 

studies of brain structure phenotypes will enable well powered GWAS to discover more 

loci, which may be tied in with other information to further our understanding of the function 

of a particular genetic variant, and link to the neurobiology. The next stage of multi-site 

studies will also enable us to gain a more complete picture by examining the effect of rare 

variants, environmental risk factors, and gene by environment interactions, incorporating 

whole genome sequencing data, as well as the impact of epigenetic factors on brain 

structure. 
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3 Imaging Phenotypes/Contributions to the ENIGMA 
Consortium 

3.1 Datasets 
Two datasets were used in this thesis: the Queensland Twin Imaging study (QTIM) and 

the Human Connectome Project (HCP). The QTIM dataset consisted of brain imaging 

collected in a large (N > 1000), genetically informative sample of young adult monozygotic 

and dizygotic twin pairs and their non-twin singleton siblings (demographic and acquisition 

parameters are detailed in each empirical chapter). Participants were recruited from a 

program at the QIMR Berghofer Medical Research Institute (formally Queensland Institute 

of Medical Research), having previously participated in behavioural studies such as the 

Brisbane Adolescent Twin Study (M. J. Wright & Martin, 2004).  

Data from the HCP (S1200 release) (Glasser et al., 2016; Van Essen et al., 2012) was 

used as a secondary analysis sample (demographic and acquisition parameters are 

discussed in each empirical chapter). The S1200 release contains imaging data from a 

large (N > 1100), genetically informative sample of young adult monozygotic and dizygotic 

twin pairs and their non-twin siblings, as well as participants from entirely singleton 

families. In addition to imaging data, the HCP young adult dataset includes a wide range of 

behavioural phenotypes, including measures of cognitive, emotional, motor and sensory 

processes.  

 

3.2 Imaging Phenotypes  
For all empirical analyses in this thesis, measures of the cortex (volume, surface area, 

thickness) and subcortical/ventricular structures (volume) were derived using the 

FreeSurfer software suite (v5.3 for QTIM, v5.3-HCP for HCP; 

http://surfer.nmr.mgh.harvard.edu) and used as phenotypes. Imaging phenotypes in the 

QTIM dataset were wholly processed by myself, while HCP imaging phenotypes were 

processed by the HCP consortium (Glasser et al., 2013). In the QTIM dataset, subcortical 
structure and intracranial volume phenotypes were also extracted using FSL (v4.1.9; 



 

 

53 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). However, due to difficulties in FSL amygdala and 

hippocampal segmentations in the QTIM dataset, and to facilitate comparisons with the 

HCP dataset, only FreeSurfer phenotypes were included in analyses. 

 

3.2.1 Quality Checking 
The quality of QTIM imaging phenotypes was assessed in a two-step procedure. Firstly, 

raw brain scans were checked for acquisition artefacts. Secondly, the outputs of 

FreeSurfer processing (e.g. delineation of cortical regions of interest, segmentation of 

subcortical structures) were checked for errors. HCP imaging phenotypes were quality 

checked by the HCP consortium (Glasser et al., 2013).  

 

3.2.2 Acquisition Artefacts 
Acquisition artefacts occur due to issues with the MRI scanner itself or interactions 

between the participant and MRI scanner. In the QTIM dataset, there were a variety of 

imaging artefacts present, including head motion (Figure 3.1), metal induced (Figure 3.2), 

non-uniform (bias) intensity (Figure 3.3), susceptibility (Figure 3.4), flow/pulsation (Figure 

3.5), and radio frequency interference (Figure 3.6).  
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Figure 3.1 Head motion artefact 
Head movement during scanning. 

 



 

 

55 

 

Figure 3.2 Metal induced artefact 
In this example, the participant had dental braces.  
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Figure 3.3 Non-uniform (bias) intensity artefact 
In this example, the lower section of cerebellum (red circle) has greater signal intensity (much brighter) than 

rest of cerebellum. Some degree of intensity bias can be corrected; though the bias is likely too severe in the 

example scan below & as a result, parts of the cerebellum would not be recognised as brain. 
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Figure 3.4 Susceptibility artefact 
Often due to large sinuses. Typically, not a major issue, though automated image processing pipelines (e.g. 

FreeSurfer) can fail to recognise the affected area (red circle) as brain. 
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Figure 3.5 Flow/pulstation artefact 
Strong blood or cerebrospinal fluid flow causes ghost images of blood vessels to be seen in acquisition 
orientation; appears differently between coronal and sagittal acquisitions. In this thesis, I used a covariate to 

control for acquisition differences (Chapters 4,6,7) or excluded participants with a sagittal acquisition 

(Chapter 5).  
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Figure 3.6 Radio frequency artefact 
Radio frequency interference from within the MRI room appears as straight vertical lines, and is more 

noticeable after adjusting brightness levels (windowing). 



 

 

60 

3.2.3 Segmentation/Reconstruction/Delineation Errors 
Following image processing, subcortical/ventricular segmentations and cortical 

reconstructions/delineations were visually inspected following the procedures of the 

ENIGMA consortium (http://www.enigma.ini.usc.edu/). The ENIGMA quality checking 

procedure uses a combination of FreeSurfer output visual inspection, as well as statistical 

checks (i.e. distribution, outliers). Outputs were generally free of error, though some errors 

were present in the automated processing outputs (detailed below). Incorrectly 

delineated/segmented structures were excluded from analysis (number of incorrectly 

delineated cortical and subcortical structures are listed in Chapters 4 and 5). The 

percentage of individual subcortical and cortical structures excluded ranged from no 

exclusions to 1.68% (thalamus) and 2.28% (supramarginal gyrus) respectively in the QTIM 

dataset.   

 

 
Figure 3.7 Incorrect subcortical segmentation 
Here, the right hippocampus has been incorrectly segmented as cortical grey matter.  
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Figure 3.8 Incorrect cortical delineation 
As seen in the comparison of the template brain (left) and the participant brain (right), the pre-and post-
central gyri are incorrectly delineated.  
 

 

Figure 3.9 Incorrect cortical reconstruction 
Incorrect cortical delineation. Here, the pial surface (red line) has been incorrectly extended into the dura 

matter of the brain.  
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3.3 Contributions to the ENIGMA Consortium 
Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) is a worldwide 

consortium of brain scientists working on a range of large-scale neuroscience studies 

(Thompson et al., 2014). Through the consortium approach, ENIGMA can address 

questions that individual studies do not have the statistical power to address. ENIGMA 

studies are organised into working groups, and cover a variety of neuroimaging genetics 

topics, from genome-wide association studies (GWAS) and psychiatric disorders, to 

secondary projects such as brain plasticity, lateralization, and data harmonisation 

(Thompson et al., 2017).  

The imaging phenotypes produced as part of my candidature overlapped with the 

phenotypes examined by several ENIGMA working groups. Consequently, I contributed 

data to a number of ENIGMA working groups over the course of my thesis (Table 3.1). 

Furthermore, I contributed toward beta-testing of quality control scripts of ENGIMA 

protocols, as well as providing test-retest reliability estimates for imaging phenotypes 

based on the QTIM test-retest sample.  

By sharing data, the ENIGMA consortium can investigate questions of genetics and 

neuroscience that individual studies cannot. Importantly, the number of studies 

contributing data to ENGIMA projects continues to increase, as does the extent of 

ENIGMA working groups. Current ENGIMA studies (not yet published), to which I have 

contributed data on behalf of the QTIM study include a GWAS meta-analysis of cortical 

surface area and thickness, as well as a study of associations between copy number 

variants and brain structure. These projects, as well as many more to come, will likely offer 

great insights into the phenotypic implications of variations within the genome. 
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Table 3.1 Contributions of the QTIM dataset to ENIGMA publications 

Reference QTIM Contribution Phenotypes Findings 
(Adams et al., 2016) 
Novel genetic loci underlying 
human intracranial volume 
identified through genome-wide 
association, Nature Neuroscience 
 

845 participants ICV 7 genome-wide significant loci associated 
with ICV 

Brouwer et al. (2017) 
Genetic influences on individual 
differences in longitudinal changes 
in global and subcortical brain 
volumes: Results of the ENIGMA 
plasticity working group, Human 
Brain Mapping 
 

49 longitudinal participants (two scans 
each, at 16 and 20 years of age) 

Volume of seven subcortical 
structures, global structures 

Change in brain volume over time 
significantly heritable for all global and 
most subcortical structures 

Guadalupe et al. (2017) 
Human subcortical brain 
asymmetries in 15,847 people 
worldwide reveal effects of age and 
sex, Brain Imaging and Behaviour 
 

591 participants Volume of seven subcortical 
structures 

Significant heritability of asymmetric 
index for volume of globus pallidus, 
hippocampus, thalamus, putamen  

Hibar et al. (2015) 
Common genetic variants influence 
human subcortical brain structures, 
Nature 

364 participants Volume of seven subcortical 
structures, ICV 

8 genome-wide significant loci associated 
with putamen, hippocampus, caudate 
nucleus, ICV 

    
(Hibar et al., 2017) 
Novel genetic loci associated with 
hippocampal volume, Nature 
Communications 
 

845 participants Hippocampal volume 6 genome-wide significant loci associated 
with hippocampal volume 

Renteria et al. (2017) 
Subcortical brain structure and 
suicidal behaviour in major 
depressive disorder: a meta-
analysis from the ENIGMA-MDD 

331 controls, 27 MDD-NSS, 27 MDD-SS Volume of seven subcortical 
structures, lateral ventricles, ICV 

Smaller ICV for MDD-SS than controls 
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working group, Translational 
Psychiatry 
 
Schmaal et al. (2016) 
Subcortical brain alterations in 
major depressive disorder: findings 
from the ENIGMA Major Depressive 
Disorder working group, Molecular 
Psychiatry 
 

38 cases, 262 controls Volume of seven subcortical 
structures, lateral ventricles, ICV 

Significantly lower hippocampal volume 
for cases compared to controls 

Schmaal et al. (2017) 
Cortical abnormalities in adults and 
adolescents with major depression 
based on brain scans from 20 
cohorts worldwide in the ENIGMA 
Major Depressive Disorder Working 
Group, Molecular Psychiatry 

54 cases, 304 controls Cortical surface area and 
thickness for 68 (34 per 
hemisphere) regions 

Adolescent cases had lower total surface 
area than controls. Adults cases with 
MDD had less cortical thickness than 
controls in several regions (orbitofrontal 
cortex, anterior and posterior cingulate, 
insula and temporal lobes). 
 

ICV intracranial volume; MDD major depressive disorder; MDD-NSS major depressive disorder with no suicidal symptoms; MDD-SS major depressive disorder with suicidal symptoms 
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Abstract  

Quantifying the genetic architecture of the cerebral cortex is necessary for understanding 

disease and changes to the brain across the lifespan. Prior work shows that both surface 

area and cortical thickness are heritable. However, we do not yet understand the extent to 

which region-specific genetic factors (i.e. independent of global effects) play a dominant 

role in the regional patterning or inter-regional associations across the cortex. Using a 

population sample of young adult twins (N = 923), we show that the heritability of surface 

area and cortical thickness varies widely across regions, generally independent of 

measurement error. When global effects are controlled for, we detected a complex pattern 

of genetically mediated clusters of inter-regional associations, which varied between 

hemispheres. There were generally weak associations between the surface area of 

different regions, except within the occipital lobe, whereas cortical thickness was positively 

correlated within lobar divisions and negatively correlated across lobes, mostly due to 

genetic covariation. These findings were replicated in an independent sample of twins and 

siblings (N = 698) from the Human Connectome Project. The different genetic 

contributions to surface area and cortical thickness across regions reveal the value of 

quantifying sources of covariation to appreciate the genetic complexity of cortical 

structures. 
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4.1 Introduction 

Individual variation within the cerebral cortex can be related to both normal and abnormal 

behaviour (Bakken et al., 2012; Geschwind & Rakic, 2013; Schnack et al., 2015). This 

variation arises due to environmental or genetic factors and the interplay between the two, 

and their relative contributions may be crucial to elucidating the aetiology of mental illness 

and neurodegenerative diseases (Kendler, 2013; Zhao & Castellanos, 2016). Twin and 

family studies can partition the variance in a phenotype among individuals into genetic and 

environmental sources; they show that the proportion of variance attributed to genetic 

factors (heritability) for cortical structure (surface area and cortical thickness) varies 

substantially across different cortical regions (Eyler et al., 2012; Schmitt et al., 2008; 

Winkler et al., 2010).  

Several studies have investigated the degree to which genetic effects on different cortical 

structures/parcellations are correlated. Generally high genetic correlations have been 

reported between corresponding left/right hemisphere regions (Docherty et al., 2015; Eyler 

et al., 2014; Schmitt et al., 2008). Examining cortical thickness in 54 neuroanatomical 

regions of interest (ROIs), Schmitt et al. (2008) demonstrated strong and positive genetic 

correlations across the cortex. However, when whole brain mean cortical thickness was 

included as a covariate, regionally specific patterns of genetic influence emerged, showing 

there is genetic specificity, with distinct genetic effects across brain regions. Genetic 

covariance across surface area measures of neuroanatomical ROIs has not been 

examine, though a wide range of genetic correlations across genetically-identified cortical 

regions (corrected for total surface area) has been reported (Peng et al., 2016). Perhaps 

surprisingly, the genetic factors that affect surface area and cortical thickness are largely 

independent (Panizzon et al., 2009; Winkler et al., 2010), and this may be due to 

differences in the cellular processes that influence each measure during corticogenesis 

(Rakic, 2009). 

For all the evidence of a strong genetic influence on surface area and cortical thickness, 

the question remains whether genetic factors are the dominant force behind regional 

patterning or inter-regional associations across the cortex. Significant estimates of 

environmental variance (Kremen et al., 2010; Schmitt et al., 2008) and evidence of cortical 

variation associated with activity and behaviour (Erickson, Leckie, & Weinstein, 2014; 

Kuhn, Gleich, Lorenz, Lindenberger, & Gallinat, 2014; McEwen & Morrison, 2013) suggest 
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that neuroplasticity may underlie some aspects of cortical organization. Even so, it can be 

hard to differentiate environmental variance from measurement error - the two are 

attributed to the same factor in twin models as they are unrelated to twin similarity. 

However, by calculating the reliability of surface area/cortical thickness measures, 

estimates of the variance attributed to measurement unreliability can be considered in 

conjunction with estimates of genetic and environmental variance to better evaluate 

differences between variance components. Past studies of cortical variation have not 

examined the role of measurement reliability, nor the contribution of environmental factors 

to phenotypic associations across different cortical regions.  

In this study, we use the QTIM dataset (one of the largest in neuroimaging genetics, 

including brain scans from 157 monozygotic (MZ) and 194 dizygotic (DZ) twin pairs) to 

estimate region-specific genetic and environmental influence (i.e. independent of global 

effects) on surface area and cortical thickness in 34 ROIs. We then examine associations 

between regions, and the strength of genetic and environmental contributions to these 

associations. Using this large dataset, we seek to determine (1) whether regional 

differences in estimates of variance components across the cortex primarily reflect 

differences in measurement reliability, and (2), whether genetic factors contribute 

predominantly to phenotypic associations across different cortical neuroanatomical 

regions. For generalizability, we undertake the same analyses using an independent 

sample (237 twin pairs) from the Human Connectome Project (HCP). 

 

4.2 Materials and Methods 

4.2.1 Participants 

Participants were from the Queensland Twin IMaging (QTIM) study of brain structure and 

function (for example (Blokland et al., 2014; Chiang et al., 2009; de Zubicaray et al., 2008; 

Joshi et al., 2011; Whelan et al., 2016). Here we included 923 healthy, right-handed young 

adults (597 female, 326 male, mean age 22.27 ± 3.37 years, age range 15.40 to 30.11 

years), consisting of 157 MZ pairs (106 female, 51 male), 194 DZ pairs (88 female, 30 

male, 76 opposite sex), and 221 unpaired twins (75 MZ, 146 DZ; 133 female, 88 male). In 

addition, 53 participants were scanned a second time (mean duration between first and 



 

 

69 

second scan was 113.36 ± 52.25 days) to assess the test-retest reliability of imaging 

measures. Sample demographics are described in Table 4.1. Prior to scanning, 

participants were screened for neurological and psychiatric conditions, including loss of 

consciousness for more than 5 minutes, and general MRI contraindications. Zygosity of 

same-sex twin pairs was determined using a commercial kit (AmpFISTR Profiler Plus 

Amplification Kit, ABI) and later confirmed by genome-wide single nucleotide 

polymorphism genotyping (Illumina 610K chip). The study was approved by the Human 

Research Ethics Committees of the University of Queensland, QIMR Berghofer Medical 

Research Institute, and UnitingCare Health. Written informed consent was obtained from 

all participants, including a parent or guardian for those aged under 18 years. Participants 

received an honorarium for their time and to cover any transport expenses. 

 

Table 4.1 Demographic characteristics (mean ± SD) of the QTIM sample 
 Females Males Total 
Full Sample* (n = 597 individuals) (n = 326 individuals) (n = 923 individuals) 
Age (years) 22.20 ± 3.32 22.39 ± 3.46 22.27 ± 3.37 
FIQ† 111.76 ± 12.14 116.79 ± 13.11 113.55 ± 12.72 
Gestational age (weeks) ‡ 36.94 ± 2.69 37.21 ± 2.62 37.04 ± 2.66 
Birth weight (kg) 2.43 ± 0.50 2.64 ± 0.58 2.51 ± 0.54 
Socioeconomic index 61.06 ± 23.73 63.77 ± 24.40 62.03 ± 23.99 
Total surface area (mm2) 164049.03 ± 13046.33 184379.82 ± 14713.69 171229.79 ± 16759.10 
Mean cortical thickness (mm) 2.51 ± 0.09 2.51 ± 0.09 2.51 ± 0.09 
 Retest sub-sample (n = 31 individuals) (n = 22 individuals) (n = 53 individuals) 
Age (years) 24.15 ± 2.09 23.19 ± 2.33 23.75 ± 2.22 
FIQ 111.94 ± 11.88 120.91 ± 11.52 115.66 ± 12.45 
Gestational age (weeks) 37.92 ± 2.02 37.88 ± 2.43 37.90 ± 2.23 
Birth weight (kg) 2.60 ± 0.30 3.13 ± 0.51 2.80 ± 0.46 
Socioeconomic index 52.59 ± 24.04 72.48 ± 25.94 61.17 ± 26.56 
Total surface area (mm2) 160742.11 ± 10684.84 188993.09 ± 12223.13 172468.93 ± 17991.77 
Mean cortical thickness (mm) 2.52 ± 0.08 2.47 ± 0.11 2.50 ± 0.10 

*The QTIM sample (N=923 individuals) consisted of 157 MZ pairs, 194 DZ pairs, 75 unpaired MZ twins, and 
146 unpaired DZ twins. Unpaired twins were included to improve estimates of means and variances. The 
retest sample (i.e. participants scanned twice) consisted of a sub-sample of 53 participants, including 11 MZ 
pairs, 12 DZ pairs, and 7 unpaired twins. 
†Full-scale intelligence quotient (FIQ) measured using the Multidimensional Aptitude Battery (Jackson, 1984) 
as close as possible to participants’ 16th birthday. 
‡Gestational age, birth weight and socioeconomic status (McMillan, Beavis, & Jones, 2009) were obtained 
from parental reports when participants were 12 or 16 years of age. 
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4.2.2 Image Acquisition and Processing 

Imaging was conducted on a 4T Bruker Medspec (Bruker, Germany) whole-body MRI 

system paired with a transverse electromagnetic (TEM) head coil. Structural T1-weighted 

3D images were acquired (TR=1500 ms, TE=3.35 ms, TI=700 ms, 230 mm FOV, 0.9 mm 

slice thickness, 256 or 240 slices depending on acquisition orientation (86% coronal (256 

slices), 14% sagittal (240 slices)). Surface area and cortical thickness were measured 

using FreeSurfer (v5.3; http://surfer.nmr.mgh.harvard.edu/) previously reported in depth 

(Fischl & Dale, 2000). Prior to FreeSurfer analysis, the raw T1-weighted images were 

corrected for intensity inhomogeneity with SPM12 (Wellcome Trust Centre for 

Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Total surface area and mean 

cortical thickness were extracted for 34 regions of interest (ROI) per hemisphere from the 

Desikan-Killiany atlas (Desikan et al., 2006) (Appendix 2) contained within FreeSurfer. 

Measures for whole brain, global variables (total surface area, mean cortical thickness) 

were also extracted. Cortical reconstructions and ROI labelling were checked using the 

procedures of the ENIGMA consortium (enigma.ini.usc.edu), with incorrectly delineated 

cortical structures excluded from the analysis. Prior to analysis, raw scores were 

standardised (i.e. converted to z-scores) and outliers at ± 3.29 SD from the mean were 

replaced by the relevant threshold value (± 3.29; see Appendix 3 for the number of 

excluded and replaced values).  

 

4.2.3 Heritabilities of Cortical Surface Area and Thickness 

Genetic and environmental influences on cortical surface area and thickness were 

examined through twin analyses using the maximum-likelihood structural equation 

modelling package OpenMx 2.7.11 (Neale et al., 2016) in R 3.2.2 (R Core Team, 2015). 

Correlations between pairs of monozygotic and dizygotic twins were estimated for each 

ROI through saturated models in which the means and variances of twin 1 and twin 2 are 

equated. Next, the heritabilities of surface area and cortical thickness were estimated for 

each ROI in a series of univariate ACE models. Briefly, the classic twin model partitions 

the variance within a phenotype into additive genetic (A), common or shared environment 

(C) and unique or non-shared environment (E) sources (Neale & Cardon, 1992) (Appendix 

4). Correlations between additive genetic factors (A) are fixed to 1 for MZ and 0.5 for DZ 
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twins as MZ and DZ twins share 100% and (on average) 50% of their genetic material 

respectively. For common environment factors (C), correlations are fixed at 1 for both MZ 

and DZ twins (the model assumes MZ and DZ twins raised together experience similar 

environments), and the unique environment factors (E) are uncorrelated between twin 

pairs as this represents environmental influence affecting one twin only. Estimates of 

unique environment also include measurement error, as it is random and unrelated to twin 

similarity.  

To determine the most parsimonious model, nested models containing AE, CE, or E 

sources of variance were compared to the ACE decomposition. We assessed the fit of the 

constrained models by examining the -2 log likelihood difference between the ACE model 

and the reduced model (AE, CE or E). The difference in the maximum likelihood (assessed 

through the -2 log likelihood difference) is distributed as a chi-squared statistic for a given 

number of degrees of freedom (equal to the difference in the number of free parameters 

estimated), which denotes whether the parameter is significant. If a reduced model is 

significant, this indicates that the parameter removed from the model accounted for a 

significant proportion of the phenotypic variance. If a reduced model is not significant, this 

indicates that the fit of the nested model is not significantly worse than the unconstrained 

ACE model, and that the simpler model should be used as it provides a more 

parsimonious explanation of the fitted model (Neale & Cardon, 1992; Sham, 1998).   

Saturated and univariate models included a simultaneous means regression to adjust for 

effects of whole brain total surface area/mean cortical thickness, sex, linear and non-linear 

age effects (modelled through normal splines with three degrees of freedom), interactions 

between age and sex, and MRI acquisition orientation. The significance of covariate 

effects was tested by fitting reduced ACE models in which the covariate of interest was 

dropped from the model (i.e. the regression coefficient was set to zero), but all other 

covariates remained, and comparing the model fit with the full (i.e. all covariates included) 

ACE model. Maximum-likelihood 95% confidence-intervals were estimated for all model 

parameters. 
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4.2.4 Test-Retest Reliability 

Test-retest reliability was estimated by calculating the Pearson correlation coefficient 

between surface area/cortical thickness measures from time one and time two scans 

(covariate effects were removed by using regression residuals; same covariates as for 

heritability estimates). The square of the Pearson correlation coefficient (r2) can be used to 

make direct comparisons between the portion of variability not explained by the repeats (1 

- r2 test-retest) and e2 (variance due to non-shared environment and measurement error). 

Where e2 exceeds unreliability (1 - r2 test-retest), non-shared environmental influences are 

greater than measurement error. Conversely, measurement error is greater than non-

shared environment when unreliability (1 - r2 test-retest) is greater than e2. While 

unreliability can be modelled to disassociate the unique environmental variance 

component (‘E’) from measurement error (see Luciano et al. (2001) for an example), the 

size of our retest sample is too small to provide an accurate estimate of measurement 

unreliability (i.e. the retest sample of 53 individuals is substantially smaller than the twin 

sample of 351 pairs; hence, estimates of measurement error will be much rougher, and 

have wider confidence intervals than estimates of genetic/environmental variance).  

 

4.2.5 Associations Between Left/Right Homologous ROIs and Across 

Regions 

Prior studies (McKay et al., 2014; Winkler et al., 2010) have combined left and right 

hemisphere ROIs to form 34 bilateral brain phenotypes, reducing the number of statistical 

tests and possibly increasing power. Here, before combining measures from left and right 

regions, we estimated correlations between corresponding left/right ROIs, and then tested 

whether the genetic variance to left and right regions was the same. Bivariate analyses 

extended the univariate design to decompose the variance in a trait, and also the 

covariance between two traits, into genetic and unique environmental sources (Appendix 

4). As estimates of common environment (C) were small and could be dropped from all 

univariate models without a significant reduction in model fit (discussed later in 4.3.2), 

models specifying only additive genetic and unique environment sources of variance (i.e. 

AE) were tested. From the covariance decompositions, we further estimated genetic, 

unique or non-shared environmental (from this point forward referred to as environmental) 
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and phenotypic correlations. Genetic (environmental) correlations indicate the extent to 

which two phenotypes share genetic (environmental) variance. Both genetic and unique 

environmental correlations underlie the phenotypic correlation. As a high genetic 

correlation between two traits can be observed, even if the traits themselves have low 

heritability, a high genetic correlation can be misleading when genes explain only a small 

portion of the phenotypic variance. Hence, we examined shared genetic influence between 

ROIs by calculating the genetic contribution to the phenotypic correlation (rph-a): 

!(#$%	1	ℎ)*+,-.+/+,0)	× 	3)4),+5	56**)/-,+64	 ×	!(#$%	2	ℎ)*+,-.+/+,0) 

rph-a is easily conceptualised as the phenotypic correlation (rph) between two traits based 

only on the shared genetic variance. We similarly calculated the environmental 

contribution to the phenotypic correlation (rph-e). Both rph-a and rph-e were computed using 

variance estimates from the bivariate model in which the genetic (environmental) 

correlations were estimated. The significance of the genetic or environmental contribution 

to the phenotypic correlation was assessed by fitting a reduced model in which the genetic 

or environmental covariance between ROIs was set to zero and assessing model fit. The 

significance of the phenotypic correlation was assessed by setting both the genetic and 

environmental covariances between ROIs to zero.  

We then fitted nested sub-models in which the second genetic variable was dropped from 

the bivariate AE model (Appendix 4) to test if the genetic variance in corresponding 

left/right regions could be attributed to one genetic source without a significant reduction in 

model fit. Variables were entered into the bivariate Cholesky first in a left-right ordering, 

and as a second check, the variable order was reversed and the Cholesky decomposition 

was refitted. There were two brain regions for surface area (parahippocampal gyrus, 

superior temporal gyrus) and four for cortical thickness (superior frontal gyrus, pars 

opercularis, supramarginal gyrus and lateral occipital cortex) in which removal of the 

second genetic variance source resulted in a significantly worse fit (i.e., the same, or one, 

genetic source did not explain the genetic variance for both left and right brain regions as 

well as a model specifying two genetic variables). For all subsequent analyses, unilateral 

left/right ROIs were retained for these brain regions, with bilateral (mean of left and right) 

measures used for all other ROIs. In total, for surface area we derived 32 bilateral (mean 
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of left and right) and 4 unilateral regional measures (total of 36) and for cortical thickness 

30 bilateral and 8 unilateral measures (total of 38).  

Next, bivariate analyses were used to estimate phenotypic correlations, and the genetic 

and environmental contributions to the phenotypic correlations, for all possible pairs of 

surface area and cortical thickness ROI measures (74 in total; 36 surface area and 38 

cortical thickness). These 2,701 pairwise AE models populated a 74 by 74 correlation 

matrix (one each for phenotypic correlations, genetic & environmental contributions). The 

R package corrplot (Wei & Simko, 2016) was used to illustrate the correlation matrices. To 

further examine patterns of genetic covariance, and compare results with a previous 

examination of genetic covariance (Schmitt et al., 2009), we applied hierarchical clustering 

using Euclidian distances to the genetic association matrix using the R package gplots 

(Warnes et al., 2016). 

We used the Benjamini–Hochberg procedure to control the false discovery rate (FDR) for 

the multiple comparisons (Benjamini & Hochberg, 1995). Here, p values obtained from 

model fit likelihood ratio tests are ordered and ranked from smallest to largest (e.g. the 

smallest p value is ranked i=1, the next smallest is ranked i=2, and so on). The adjusted p 

value (or q value) is calculated by multiplying the individual p value (p(i)) by the total 

number of multiple comparisons (m) divided by the rank number (i): p(i)*(m/i). A q value 

less than 0.05 was considered significant. The procedure was applied separately to 

surface area and cortical thickness results for 1) covariate effects (m = 612; significance of 

9 covariates tested for 68 ROIs), 2) heritability estimates (m = 204; significance of three 

model fits (AE, CE, E) tested for 68 ROIs), 3) bivariate analyses of corresponding left/right 

regions (m = 102; significance of three covariances (phenotypic, genetic, environmental) 

tested between 34 left/right ROIs), 4) bivariate analyses of specific left/right genetic 

influence (m = 34; significance of dropping second genetic variance source for 34 ROIs), 

and 5) bivariate analyses of the 74 ROIs across the cortex (m = 630 for pairwise surface 

area, m = 703 for pairwise cortical thickness, m = 1368 for pairwise surface area and 

cortical thickness). All bivariate analyses included simultaneous means regressions to 

adjust for covariate effects (same covariates as for heritability estimates).  
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4.2.6 Replication in an Independent Sample 

Data from the Human Connectome Project (S1200 release) (Glasser et al., 2016; Van 

Essen et al., 2012) was used as a secondary analysis sample. The S1200 release 

contains imaging data for 1113 individuals from families; here, we included only 

participants classified as a twin (by genotype or self-report), as well as the non-twin 

siblings of these participants (i.e. families consisting purely of singletons were not 

examined). The final sample of 698 adults (399 female, 299 male, mean age 29.30 ± 3.60 

years, age range 22 to 36 years) consisted of 152 MZ pairs (93 female, 59 male), 85 DZ 

pairs (52 female, 33 male), 203 singleton siblings of twins (1-2 per family; 96 female, 107 

male), 10 members of singleton families (2 per family; 7 females, 3 males), and 11 

unpaired twins (6 female, 5 male). MZ and DZ twin zygosity was determined through 

genotyping, if available (215 of 237 pairs), otherwise by self-report (22 of 237 pairs). A 

subset of twins (n = 45 individuals) were scanned a second time (mean duration between 

first and second scan was 139.30 ± 68.99 days). Details relating to participant selection 

and MRI acquisition have been reported (Van Essen et al., 2012). Pre-processed 

FreeSurfer surface area and cortical thickness measures (Glasser et al., 2013) were used. 

We used bilateral composite measures (mean of left and right hemispheres) for all ROIs, 

with the exception of parahippocampal surface area, pericalcarine surface area, superior 

temporal surface area, transverse temporal surface area, and rostral anterior cingulate 

cortical thickness, where the genetic influence for left and right regions could not be 

constrained to one factor. All univariate and bivariate genetic analyses completed on the 

QTIM sample were undertaken on the HCP data, with simultaneous means regressions to 

control for covariate effects (same covariates as QTIM data, apart from acquisition 

orientation, which did not vary in the HCP dataset). Univariate and bivariate models were 

extended to include non-twin siblings in order to increase statistical power (Posthuma & 

Boomsma, 2000).  
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4.3 Results  

4.3.1 Preliminary Analyses 

The global effect of surface area/cortical thickness (i.e. total surface area and whole brain 

average cortical thickness) on each ROI was highly significant; standardised regression 

coefficients ranged from 0.26 (entorhinal cortex right) to 0.86 (superior frontal gyrus right) 

for surface area and 0.16 (entorhinal cortex right) to 0.81 (inferior parietal cortex right) for 

cortical thickness (regression coefficients and associated q values of all covariates are 

presented in Appendix 5 and Appendix 6). Test-retest correlations varied across ROIs, 

ranging from 0.30 to 0.97, and were generally high for surface area (test-retest correlation 

> 0.70 for 55/68 ROIs) and more moderate for cortical thickness (test-retest correlation > 

0.70 for 39/68 ROIs), with the mean reliability estimate (weighted by ROI size) being 

higher for surface area (0.84) than cortical thickness (0.72). Test-retest reliability estimates 

are shown in Figure 4.1a (also provided in Appendix 7 and Appendix 8).  

 

4.3.2 Heritability of Cortical Surface Area and Thickness 

For almost all ROIs, for both surface area (65/68) and cortical thickness (65/68) the MZ 

twin correlations were higher than the DZ correlations, suggesting individual variation in 

surface area and cortical thickness is genetically influenced (Appendix 7 and Appendix 9). 

ACE modelling indicated a range of heritability estimates across ROIs for both surface 

area and cortical thickness (Appendix 7; Figure 4.1a/b), from not heritable up to 0.65 for 

surface area and 0.55 for cortical thickness. Low heritability estimates were found for 

regions of poor reliability (e.g. insular cortex right (INS R) surface area; heritability = 0.33, 

test-retest correlation = 0.32), but also for regions of high reliability (e.g. postcentral gyrus 

left (POSTC L) surface area; heritability = 0.16, test-retest correlation = 0.97). Common 

environmental effects were small (c2 range 0 – 0.30) and non-significant for all ROIs (q = 

0.05). Unique or non-shared environmental variance was greater than measurement error 

(i.e. e2 greater than unreliability (1 - r2 test-retest)) for the majority of surface area (62/68) 

and cortical thickness (54/68) ROIs, suggesting that non-genetic variance was largely due 

to unique environmental factors rather than measurement error. Heritability estimates for 

total surface area and whole brain average cortical thickness were 0.91 and 0.58 
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respectively (corrected for all covariates excluding total surface area/mean cortical 

thickness). 

In Figure 4.1c, using bilateral measures (mean of left & right ROIs, for regions in which this 

was suitable), we map both the genetic and environmental variance using an AE model. 

As with unilateral measures, heritability estimates varied across the cortex, ranging from 

0.19 (frontal pole) to 0.75 (pericalcarine cortex) for surface area and 0.28 (banks of the 

superior temporal sulcus) to 0.68 (pericalcarine cortex) for cortical thickness.  

 

4.3.3 ROI Correlations Between Hemispheres  

Phenotypic correlations between corresponding left/right ROIs, though varying widely in 

magnitude (rph -0.06 to 0.65; Figure 4.2), were all significant. Phenotypic correlations 

greater than 0.40 were largely due to strong genetic covariation between left and right 

hemispheres. In contrast, phenotypic correlations less than 0.20 were due to weak genetic 

and environmental covariance, except for surface area of the caudal anterior cingulate 

where the low phenotypic correlation between left and right hemispheres (rph -0.06) was 

due to genetic and environmental contributions of opposing directions (rph-a 0.17, rph-e -

0.23). 
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Figure 4.1 Variance component estimates for surface area and cortical thickness 
Variance component estimates for surface area (a) and cortical thickness (b) for 68 ROIs (34 in each of the 

left (L) and right (R) hemisphere). a2 = additive genetic (red), c2 = common environment (green), e2 = unique 

environment (blue). * preceding x-axis labels denotes ROIs with heritability estimates (a2) significantly 

different from zero. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, 

Insular cortex). Reliability of left and right ROIs are denoted by black and pink dots respectively. Heritability 

estimates for lobar divisions (mean of ROIs, weighted by size) were: frontal 0.27, parietal 0.33 occipital 0.43, 

temporal 0.31, cingulate 0.27, insular cortex 0.32 for surface area and frontal 0.31, parietal 0.35, occipital 

0.32, temporal 0.29, cingulate 0.18, insular cortex 0.15. The lower panel maps the genetic and 

environmental variance for surface area (top row) and cortical thickness (bottom row) for up to 34 bilateral 

cortical regions in the QTIM (c) and HCP (d) samples. Heritability estimates range: 0.19 to 0.75 (QTIM 

surface area), 0.27 to 0.68 (QTIM cortical thickness), 0.15 to 0.81 (HCP surface area), 0.27 to 0.76 (HCP 

cortical thickness). For regions where genetic variance of left and right ROIs did not completely overlap (i.e. 

QTIM: surface area of the superior temporal and parahippocampal gyrus, and cortical thickness of the 

superior frontal gyrus, pars opercularis, supramarginal gyri and lateral occipital, HCP: surface area of the 

superior temporal, parahippocampal, and transverse temporal gyri, pericalcarine cortex, and cortical 
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thickness of the rostral anterior cingulate), the mean genetic (and environmental) variance of the left and 

right ROI is shown. N = 157/194 MZ/DZ pairs and 221 unpaired twins (QTIM), 152/85 MZ/DZ pairs and 224 

siblings/unpaired twins (HCP). ROI abbreviations listed in Appendix 2. 

 

 

Figure 4.2 Phenotypic correlations, with genetic and environmental contributions, between 
corresponding left/right ROIs for surface area and cortical thickness in the QTIM and HCP samples. 
Phenotypic correlations, with genetic and environmental contributions, between corresponding left/right ROIs 

for surface area and cortical thickness in the QTIM (a) and HCP (b) samples. Phenotypic correlations 

between corresponding left/right ROIs ranged from -0.05 to 0.65 (all significant) for QTIM and from 0.01 to 

0.71 (all significant except caudal anterior cingulate surface area) for HCP. Genetic covariance accounted 

primarily for phenotypic correlations between hemispheres, but this was not always the case (e.g. genetic 

and environmental influence of a similar magnitude contributed to the phenotypic correlation left and right 

cortical thickness of the superior frontal gyrus in the QTIM sample). While low phenotypic correlations were 

typically due to very weak genetic and environmental contributions, they were also found to mask somewhat 

larger opposing genetic and environmental influences in the caudal anterior cingulate surface area (see 

footnote 1 below). Regions with correlations not significantly different from zero are in grey.  

1 For one region there was significant opposing genetic and environmental influence (caudal anterior 

cingulate surface area: QTIM - rph -0.06, rph-a 0.17, rph-e -0.23, HCP - rph 0.01 (estimate not significant, q = 

0.051), rph-a 0.13, rph-e -0.11. 

2 In both samples, the highest phenotypic correlation was for pericalcarine surface area (rph 0.65 (QTIM) and 

0.71 (HCP)), with associations due almost entirely to genetic contributions.  
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4.3.4 ROI Correlations Across the Cortex 

There was a complex pattern of associations across cortical regions. For surface area, 

strong correlations were found between occipital lobe ROIs (rph 0.23 to 0.63), with weaker 

and mainly negative associations across lobar divisions (Figure 4.3a). Phenotypic 

associations (rph -0.30 to 0.63) were predominantly due to genetic contributions (rph-a -0.26 

to 0.54; Figure 4.3b lower) with very little environmental covariance (rph-e -0.20 to 0.19; 

Figure 4.3b upper). A much stronger pattern of positive correlations between regions 

within a lobar division was found for cortical thickness (Figure 4.3c). Moderate negative 

correlations were found between regions not sharing spatial proximity. Some regions (e.g. 

rostral middle frontal gyrus (RMFR), rostral anterior cingulate (RACING)) were associated 

with the majority of ROIs. The posterior (POSTCING) and isthmus (ISTHMCING) divisions 

of the cingulate were generally not associated with other regions across the cortex. 

Genetic contributions (rph-a -0.36 to 0.37; Figure 4.3d lower) largely accounted for 

phenotypic correlations (rph -0.42 to 0.59; Figure 4.3c), though some sparse patterns of 

environmental covariance (rph-e -0.22 to 0.27; Figure 4.3d upper) were present between 

prefrontal and temporal ROIs. The application of hierarchical cluster analysis to the genetic 

association matrices generally resulted in patterns following lobar organisation for cortical 

thickness, whereas for surface area, outside of occipital ROIs, there was a greater 

clustering of regions from different lobes (Appendix 10).  

 

4.3.5  ROI Correlations Between Surface Area and Cortical Thickness 

While we found that whole brain total surface area and mean cortical thickness were 

inversely associated (rph -0.26, rph-a = -0.21, rph-e = -0.05; measures corrected for all 

covariates excluding total surface area/mean cortical thickness), at the regional level 

associations between surface area and cortical thickness were sparse and while some 

were negative, others were positive (range: rph -0.34 to 0.25, rph-a -0.25 to 0.21, rph-e -0.31 

to 0.15; Appendix 11). These associations were weak, due to low genetic and 
environmental covariation, with the exception of pericalcarine surface area and cortical 
thickness in which a positive genetic and negative environmental contribution resulted in a 
weak phenotypic correlation (rph 0.04, rph-a 0.13, rph-e -0.09). 
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4.3.6 Replication Using the HCP sample 

Patterns of genetic and environmental (co)variance were similar across the QTIM and 

HCP datasets (Figure 4.1d, Figure 4.2b, Appendices 12-19). Evidence of separate genetic 
influence on left and right regions for parahippocampal and superior temporal gyri surface 
area was replicated. Further, the pattern of strong associations between surface area 
measures for occipital lobe ROIs, as well as the same pattern of positive associations 
within, and negative associations between, cortical thickness ROIs, was found. These 
associations were predominantly due to genetic factors, with some thinly dispersed 
environmental influence contributing to several cortical thickness associations. 
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Figure 4.3 Phenotypic correlations, with genetic and environmental contributions, for surface area 
and cortical thickness across regions in the QTIM sample.  
Phenotypic correlations, with genetic and environmental contributions, for surface area and cortical thickness 
across regions in the QTIM sample. Surface area (a) was mainly associated within rather than across lobar 
divisions, particularly for the occipital lobe. Phenotypic associations were predominantly due to genetic 
associations (c; lower triangle), with very few environmental associations (c; upper triangle). For cortical 
thickness (b) there is a much stronger pattern of associations. Correlations are positive within-lobe and 
negative between-lobes. These phenotypic associations are due largely to genetic covariance (d; lower 
triangle), however, some associations are due to environmental covariance (d; upper diagonal). * denotes a 
significant correlation (q value < 0.05). ROI abbreviations listed in Appendix 2. 

 

4.4 Discussion 

Here we extend prior work, showing there is a strong, region-specific genetic influence on 

the area and thickness of the human cerebral cortex (surface area up to 65%; cortical 

thickness up to 55%). A wide range of heritabilities, for both surface area and cortical 

thickness, is evident across the cortex, largely independent of measurement error. We 
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also show that there is substantial environmental variance, which is not due to 

measurement error, but find little evidence for any strong common (shared) environmental 

factors. In addition, we show that associations across regions are surprisingly complex. 

While for most regions genetic covariance accounts for phenotypic correlations between 

hemispheres, this was not always the case. For some ROIs the same genetic factor did 

not explain the genetic variance for both left and right hemisphere measures. Further, 

when we covaried for total surface area, with the exception of the occipital lobe, regional 

surface area was only weakly associated, suggesting that there are limited region-specific 

interrelationships for surface area. In contrast, cortical thickness of neighbouring regions 

was associated after controlling for mean cortical thickness; positively within lobar 

divisions and negatively across regions, mainly due to genetic covariance. Lastly, 

correlations between surface area and cortical thickness at the regional level did not follow 

the inverse relationship observed at the global level, rather there was a complex pattern of 

negative and positive regional associations.  

We report several novel results. Firstly, the striking finding that surface area/cortical 

thickness heritability estimates vary widely, largely independent of test-retest reliability, i.e. 

while high reliability was required to detect high heritability, a high reliability estimate did 

not guarantee a substantial genetic effect. Notably, across ROIs with high reliability (85 

(QTIM) and 114 (HCP) out of 136 ROIs with test-retest correlation > 0.75) heritability 

estimates ranged from zero to 0.65 (QTIM) and 0.79 (HCP). Also, while in general 

heritability estimates for QTIM and HCP were in line with those reported previously, 

particularly for ROIs with high test-retest reliability, there were some notable exceptions. 

For example, heritability for cortical thickness of the right parahippocampal gyrus (reliability 

~ 0.85 in QTIM and HCP) ranged from 6 to 55% across five datasets: QTIM, HCP, 

National Institute of Mental Health (Schmitt et al., 2008), Genetics of Brain Structure and 

Function Study (Winkler et al., 2010), Vietnam Era Twin Study of Ageing (Eyler et al., 

2012). In addition to differences across the samples, differences in imaging and/or genetic 

analyses may, in part, underlie these contrasting results. 

The wide range of heritability estimates we report here may relate to cortical 

neuroplasticity; an intrinsic characteristic of the cortex (Jancke, 2009; Pascual-Leone, 

Amedi, Fregni, & Merabet, 2005). Underlying differences in tissue organization and 

microstructure permit neural circuit plasticity (Zatorre, Fields, & Johansen-Berg, 2012), 
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allowing neural circuity to be formed/altered due to sensory experience and learning 

(Lendvai, Stern, Chen, & Svoboda, 2000; Pantev, Engelien, Candia, & Elbert, 2001; 

Trachtenberg et al., 2002). Indeed, we found a substantial environmental influence (e2 > 

0.60), which was not due to measurement error (test-retest correlation > 0.75), on both 

surface area and cortical thickness for several association areas in both the QTIM and 

HCP datasets (surface area: rostral/caudal middle frontal gyrus left and right, pars 

opercularis left and right, cortical thickness: posterior cingulate left and right). Greater 

environmental variation may be indicative of functional cortical areas adapting to 

environmental stimuli for development/function. This notion is consistent with a 

comparative study of non-human primates, (Gomez-Robles, Hopkins, Schapiro, & 

Sherwood, 2015), where human cortical morphology was shown to be substantially less 

heritable than in chimpanzees (lobe and sulcal dimension heritability estimates up to 0.65 

in humans and 0.77 in chimpanzees), with the lower heritability of human cortical 

organisation attributed to greater plasticity in humans. Though speculative, this capacity 

for greater plasticity in humans may also contribute to gene by environment interaction 

effects. Further, while plasticity is often discussed in terms of positive effects (e.g. 

learning), there are likely adverse effects associated with increased plasticity (e.g. a 

greater possibility of maladaptive brain circuits).  

Interestingly, the broad range of cortical heritability estimates we report here contrasts with 

that found for subcortical brain structures in the same sample (Renteria et al., 2014). For 

subcortical structure volumes, environmental variance was smaller and genetic variance 

substantially larger, even though test-retest reliability estimates for subcortical and cortical 

measures are comparable. The supposition that cortical variation is more environmentally 

mediated than subcortical variation is reasonable, given the cortex’s role in social 

interaction and learning, characteristics essential for human cognitive function and 

development (Boyd, Richerson, & Henrich, 2011). Conversely, the evolutionarily older 

subcortical system, responsible for behaviour regulation, emotion and memory, may 

require and/or be less malleable to interaction with the environment. This is not to say that 

subcortical structures are incapable of plasticity; an increasing body of work provides 

evidence for hippocampal and amygdala plasticity (Jhaveri et al., 2018; Kuhn et al., 2014; 

Leuner & Gould, 2010; Rabl et al., 2014; Sahay et al., 2011). Rather, we speculate that it 

is the uniquely human abilities afforded by the cerebral cortex (and their dependency upon 
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environmental influence) that is responsible for the higher levels of environmental variance 

found in the cortex.  

In addition to the wide range in heritability estimates, a second major finding was the 

complex patterning of genetic and environmental covariation, which had not been 

investigated previously. When we directly examined whether different genetic factors 

influence left/right cortical regions we found a specific (different) genetic influence between 

hemispheres for two regions - superior temporal gyrus surface area, parahippocampal 

gyrus surface area; findings replicated in the HCP sample. This specific left/right genetic 

influence has not been previously found (Eyler et al., 2014), likely due to the larger sample 

size of the present study. Further complexity was evident from the vastly different 

covariance patterns found for surface area compared to cortical thickness. surface area 

measures for neuroanatomical regions did not correlate highly (outside of the occipital 

lobe), suggesting that when covaried for total surface area, there are limited, and generally 

weak, region-specific genetic and environmental contributions to covariance across the 

area of cortical regions. Intriguingly, the occipital lobe appears as an anomaly. Structural 

covariation between occipital regions, occurring not as a function of overall brain size, has 

previously been shown in ex vivo measurements (Andrews, Halpern, & Purves, 1997). The 

authors related the importance of coordinated occipital variation to visual ability, though 

whether the degree of structural covariation relates to individual differences in visual ability 

is currently unknown. In the present study, structural interdependence between occipital 

regions appears mainly due to genetic factors, with some environmental influence, 

possibly in the form of experience-expectant plasticity (Greenough, Black, & Wallace, 

1987). 

The finding of generally weak genetic associations across the cortex for surface area 

appear to contrast with the work of Chen et al. (2012), in which 12, maximally genetically 

correlated divisions of the cortical surface were identified based on vertex-wise (i.e. 

continuous) surface area measures (corrected for total surface area). How could genetic 

covariance in surface area be best explained by 12 divisions, when the present study 

found generally weak associations (outside of the occipital lobe) between regional surface 

area? Firstly, vertex-based approaches to surface area measurement are more heritable 

than ROI-based surface area measures, possibly due to the degree of spatial averaging in 

vertex-based approaches (Eyler et al., 2012), which could result in higher genetic 
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correlations. Secondly, it is important to reiterate that the findings of Chen et al. (2012) and 

those of the present study are based on different metrics. Chen et al. (2012) examined 

genetic covariance through genetic correlations (i.e. the extent to which two ROIs share 

genetic variance, regardless of their contribution to phenotypic covariance), whereas we 

examined genetic correlations weighted by heritability to standardize genetic covariance in 

terms of its contribution to phenotypic covariance. Thus, these two metrics answer 

different questions regarding the role of genetics in cortical organisation.  

In contrast to surface area, we found cortical thickness covaried weakly to strongly across 

regions, and as effects of mean cortical thickness were removed, these associations were 

not due to a global factor. Highly correlated cortical regions share maturational trajectories 

(Alexander-Bloch, Raznahan, Bullmore, & Giedd, 2013; Fjell et al., 2015; Mechelli, Friston, 

Frackowiak, & Price, 2005) and form systems underlying perception, behaviour and 

cognition (Alexander-Bloch, Giedd, & Bullmore, 2013; A. C. Evans, 2013; Richmond, 

Johnson, Seal, Allen, & Whittle, 2016; Vertes & Bullmore, 2015). With genetic factors 

largely accounting for structural associations, these results suggest genes play an 

important role in the organisational principles of the cortex. Only Schmitt et al. (2008) has 

examined genetic covariance between cortical thickness measures of neuroanatomical 

regions. Using hierarchical cluster analysis, they identified two major blocks: a temporo-

occipital cluster and a fronto-parietal cluster. We did not find the same divisions, rather in 

QTIM we found a parietal/occipital cluster and a fronto-temporo-cingulate cluster, and in 

HCP we found a frontal cluster and temporo-occipital-cingulate-parietal cluster. These 

results suggest that patterns of genetic covariance in cortical thickness may not be stable 

from childhood to adulthood.  

Our finding that surface area and cortical thickness are only weakly associated (both 

negatively and positively) over a number of neuroanatomical regions, replicates and 

extends prior work showing regional surface area and cortical thickness to be distinct 

characteristics of the cortex (Panizzon et al., 2009; Winkler et al., 2010). As noted 

previously (Panizzon et al., 2009), these differences likely correspond to the cellular 

architecture of the cortex; neurons within the cerebral cortex are organized into 

ontogenetic columns (Mountcastle, 1997), with the size, number and density of cells within 

columns hypothesized to determine thickness, and the number of cortical columns 

responsible for surface area (Rakic, 1988). Thus, it is entirely rational that the genetic and 
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environmental factors that influence variation in surface area are separate from those 

responsible for cortical thickness variation. The unique contributions of surface area and 

cortical thickness variation to cortical morphometry and function should not be 

undervalued.  

In examining variation within the cerebral cortex, it is important not to disregard the effects 

of age and sex, as well as global factors. Very strong relationships between regional and 

global measures were found for surface area and to a lesser extent, cortical thickness. 

Prior studies have reported a degree of genetic overlap between global and regional 

measures, stronger for surface area than cortical thickness (Eyler et al., 2012; Winkler et 

al., 2010). Without adjustment for global effects, it is likely that genetic associations across 

cortical regions would be substantially higher, particularly for surface area. Whether 

regions with a greater degree of region-specific genetic variance provide better 

phenotypes for genome association studies is an intriguing future research direction. 

Subtle but complex age and sex effects were found in the current sample. Age and sex 

effects are well documented for cortical thickness (Salat et al., 2004; Sowell et al., 2007; 

Tamnes et al., 2010; van Soelen et al., 2012), but effects for surface area have been 

difficult to establish as studies have focused on cortical volume rather than area. Based on 

the present results, we posit that after controlling for total cortical area, small and sparse 

regional sex differences in cortical surface area are present. Studies of sexual 

dimorphisms within the cortex may provide insights into disorders with sex specific risk 

factors. 

A limitation of the present study is that surface area and cortical thickness measures were 

estimated for cortical regions based on macroanatomical landmarks (gyri and sulci), with 

such regions not completely representing cytoarchitectural variation within the cortex. 

Measures of genetic covariation on a continuous basis throughout the cortical ribbon 

(Chen et al., 2013; Cui et al., 2016; Eyler et al., 2012; Schmitt et al., 2009) may provide an 

elegant means to circumvent this limitation. Also, cortical parcellations based on structural, 

functional, and connectional imaging data (Fan et al., 2016; Glasser et al., 2016) provide 

an enticing basis for ROI measures with increased neuroanatomical precision. 

Nevertheless, the Desikan-Killiany atlas has been, and will continue to be, one of the main 

cortical parcellations used in studying surface area and cortical thickness. An 

understanding of genetically and environmentally mediated variance within these regions 
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will aid interpretation of past and future studies using this cortical parcellation. We 

additionally note that the Cholesky decomposition used to test the similarity of sources of 

genetic variance in left/right brain regions does not explicitly model common and specific 

factors (Loehlin, 1996), and future research should examine alternate methods to asses 

common and specific sources of variance in corresponding left/right brain structures (Wen 

et al., 2016).  

 

4.5 Conclusions 

A complex pattern of genetic and environmental influences underlie the surface area and 

cortical thickness of the cerebral cortex. When controlling for global effects, region-specific 

genetic factors account for much of the structural variation within anatomically distinct 

cortical regions, but environmental sources are clearly involved. Identifying cellular and 

molecular level changes within the brain which intercede between genetically and 

environmentally mediated variation is a challenging next step, but one that will likely go far 

in advancing our understanding of the origins of normal and abnormal brain circuitry. 
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5 
 

Absolute and Relative Estimates of 

Genetic and Environmental Influence on 

Brain Structure Volume 

This chapter is based on: 

Strike, L. T., Hansell, N. K., Thompson, P. M., de Zubicaray, G. I., McMahon, K. L., 

Zietsch, B. P., & Wright, M. J. (2017). Mean-standardised and relative estimates of genetic 

and environmental influence on brain structure. Manuscript in preparation. 
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Abstract  

Comparing estimates of the amount of genetic and environmental variance for different 

brain structures may elucidate differences in the genetic architecture or developmental 

constraints of individual brain structures. However, most studies compare estimates of 

relative genetic (heritability) and environmental variance in brain structure, which do not 

reflect differences in absolute variance between brain regions. Here we used a population 

sample of young adult twins and singleton siblings of twins (n = 831; M = 23 years) to 

estimate the absolute genetic and environmental variance, standardised by the phenotypic 

mean, in the size of cortical, subcortical, and ventricular brain structures. Mean-

standardised genetic variance differed widely across structures (17-fold range: 0.77% 

(hippocampus) to 13.08% (lateral ventricles)), but the range of estimates within cortical, 

subcortical, or ventricular structures was more moderate (2 to 4-fold range). There was no 

association between mean-standardised and relative measures of genetic variance in 

brain structure. We found similar results in an independent sample (n = 1105, M = 29 

years, Human Connectome Project). These findings open important new lines of enquiry: 

namely, understanding the bases of these variance patterns, and their implications 

regarding the genetic architecture, evolution, and development of the human brain. 
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5.1 Introduction 

Despite broad similarities (e.g. in lobar divisions, primary gyri and sulci), the anatomy of 

the human brain varies substantially across individuals. The majority of this variation is 

likely normal and has both genetic and non-genetic (i.e. environmental) causes (Gu & 

Kanai, 2014; Jansen et al., 2015). Estimates of raw or non-standardised genetic or 

environmental variance can be compared (Kremen et al., 2012), but this is problematic 

because variance may, in part, be determined by structure size, making it difficult to 

interpret variance differences between structures of different size. Hence, genetic and non-

genetic variance components need to be standardised to facilitate comparisons across 

different brain regions.  

Additive genetic variance is normally standardised by dividing the genetic variance by the 

total phenotypic variance, giving heritability (h2; the proportion of phenotypic variance 

attributed to additive genetic differences among individuals within a population). Studies 

show high heritability for global brain traits (e.g. intracranial volume, 0.90, or 90% 

(Renteria et al., 2014)), whereas estimates for specific structures across the brain vary 

widely (Joshi et al., 2011; Kremen et al., 2010; Renteria et al., 2014; Schmitt et al., 2014; 

Winkler et al., 2010). However, a problem with comparing heritability across brain regions 

is that higher heritability could reflect higher genetic variance, or lower environmental 

variance, or both; it is therefore uninformative with respect to patterns of actual variation 

across structures. A solution is to standardize genetic and environmental variance by the 

phenotypic mean; then variance estimates are independent of measurement units and can 

be compared across traits. For genetic variance, this statistic equals the additive genetic 

variance divided by the square of the phenotypic mean (Charlesworth, 1984, 1987; 

Hansen, Pélabon, & Houle, 2011; Houle, 1992) (IA; henceforth referred to as mean-

standardised genetic variance) and provides absolute estimates of genetic variance that 

are robust to other sources of variance. 

Several studies comparing mean-standardised phenotypic variance in brain structures 

provide an intriguing first look at the strength and patterns of variability in the brain. In 

these studies, estimates of phenotypic variance in the volume of individual brain 

components differed substantially across the brain (Allen, Damasio, & Grabowski, 2002; 

Kennedy et al., 1998; Lange, Giedd, Castellanos, Vaituzis, & Rapoport, 1997) (Table 5.1). 

These differences were found not only between structural divisions (e.g. cortical, 
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subcortical), but also within divisions (e.g. mean-standardised phenotypic variance for 

amygdala volume was substantially greater than for hippocampal volume (Lange et al., 

1997)). Only one study has examined mean-standardised genetic variance in the human 

brain. Miller and Penke (2007) calculated the mean-standardised genetic variance for total 

brain-volume (IA = 0.61%), based on a meta-analysis of 19 studies, and also found this 

was substantially smaller than for other human organs or life-history traits (e.g. body 

weight in females IA = 2.46%, heart ventricle volume IA = 7.08%). 

Here, we use a population sample of young adult twins and singleton siblings of twins from 

the Queensland Twin IMaging (QTIM) study (n = 831) to compare, for the first time, mean-

standardised estimates of additive genetic, environmental, and phenotypic variance across 

brain structures. In addition, we assess the association between mean-standardised and 

relative (i.e. heritability) measures of genetic variance. Comparisons with traits of different 

dimensionality (e.g. length, area) are difficult, as variation increases with the number of 

dimensions (Garcia-Gonzalez, Simmons, Tomkins, Kotiaho, & Evans, 2012; Hansen et al., 

2011; Houle, 1992). Hence, we examined only volumetric measures of the brain (45 

cortical, subcortical, and ventricular structures), as well as total brain volume, and a 

comparable volumetric, non-brain phenotype (body weight). We include estimates of test-

retest reliability to assess the contribution of measurement error towards trait variance. To 

assess the generalizability of our findings, we perform the same analyses in an 

independent sample of twins and singletons (n = 1105) from the Human Connectome 

Project (HCP).  
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Table 5.1 Published estimates of mean-standardised phenotypic variance in brain structure volume  

Reference 
Sample 
Size 

Age Structure CVP* IP 

Lange et al. (1997) 115 4 to 20 years Total cerebrum 11.30% 1.28% 
   Superior temporal gyrus 11.50% 1.32% 
   Putamen 9.40% 0.88% 
   Caudate 12.70% 1.61% 
   Lateral ventricles 63.50% 40.32% 
   Hippocampus 10.30% 1.06% 
   Amygdala 19.30% 3.72% 
   Globus pallidus 15.40% 2.37% 
   Cerebellum 10.70% 1.14% 
   Corpus callosum 14.70% 2.16% 

Kennedy et al. (1998) †  20 
Mean age 20 
years 

Total cerebrum 9.50% 0.90% 

   Frontal lobe (mean) 9.50% 0.90% 
   F1 (min) 11.70% 1.37% 
   JPL (max) 30.00% 9.00% 
   Parietal lobe (mean) 14.40% 2.07% 
   PCN (min) 14.40% 2.07% 
   SGa (max) 33.70% 11.36% 
   Temporal lobe (mean) 13.40% 1.80% 
   INS (min) 11.10% 1.23% 
   T2a (max) 34.70% 12.04% 
   Occipital lobe (mean) 11.60% 1.35% 
   LING (min) 17.60% 3.10% 
   OP (max) 49.00% 24.01% 

Allen et al. (2002) 46 22 to 49 years Left hem 8.80% 0.77% 
   Right hem 9.40% 0.88% 
   Left frontal 12.60% 1.59% 
   Right frontal 11.50% 1.32% 
   Left temporal 12.40% 1.54% 
   Right temporal 13.20% 1.74% 
   Left parietal 9.20% 0.85% 
   Right parietal 11.20% 1.25% 
   Left occipital 13.60% 1.85% 
   Right occipital 13.80% 1.90% 
   Left cingulate 17.90% 3.20% 
   Right cingulate 17.30% 2.99% 
   Left insula 14.40% 2.07% 
   Right insula 14.30% 2.04% 
   Left cerebellum 9.80% 0.96% 
   Right cerebellum 9.60% 0.92% 
   Left lateral ventricle 66.20% 43.82% 
   Right lateral ventricle 69.10% 47.75% 

F1 superior frontal gyrus; JPL juxtaparacentral lobule; INS insula; LING lingual gyrus; OP occipital pole; PCN 
precuneus; SGa supramarginal gyrus, anterior; T2a middle temporal gyrus, anterior. 
*Mean-standardised phenotypic variance was reported as the coefficient of variation (CVP; phenotypic 
variance divided by the phenotypic mean); estimates are displayed here as the opportunity for selection (IP; 
the square of the coefficient of variation). 
†For Kennedy et al. (1998), the mean of estimates for each lobar division is presented, as well as the 
minimum and maximum estimate. 
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5.2 Method 

5.2.1 Participants 

Participants were from the Queensland Twin IMaging (QTIM) study of brain structure and 

function (Blokland et al., 2014; Chiang et al., 2011; de Zubicaray et al., 2008; Strike et al., 

2018; Whelan et al., 2016). For the present study, we included twins and singleton siblings 

of twins, scanned between age 15 and 30 years, for whom T1-weighted images were 

available. The sample consisted of 831 healthy, right-handed young adults (63% female, 

M = 23.04 years, SD = 3.33 years), including 127 monozygotic (MZ) and 161 dizygotic 

(DZ) twin pairs, 3 triplet trios (all DZ), 164 unpaired twins, and 82 siblings of twins (0-2 per 

family). In addition, 45 participants were scanned a second time (mean duration between 

first and second scan was 113.15 ± 56.30 days) to assess the test-retest reliability of 

imaging measures. Prior to scanning, participants were screened for neurological and 

psychiatric conditions, including loss of consciousness for more than 5 minutes, and 

general MRI contraindications. Zygosity of same-sex twin pairs was determined using a 

commercial kit (AmpFISTR Profiler Plus Amplification Kit, ABI) and later confirmed by 

genome-wide single nucleotide polymorphism genotyping (Illumina 610K chip). The study 

was approved by the Human Research Ethics Committees at the University of 

Queensland, QIMR Berghofer Medical Research Institute, and UnitingCare Health. Written 

informed consent was obtained from all participants, including a parent or guardian for 

those aged under 18 years. Participants received an honorarium for their time and to cover 

any transport expenses. 

 

5.2.2 Image Acquisition and Processing 

Imaging was conducted on a 4T Bruker Medspec (Bruker, Germany) whole-body MRI 

system paired with a transverse electromagnetic (TEM) head coil. Structural T1-weighted 

3D images were acquired (TR=1500 ms, TE=3.35 ms, TI=700 ms, 230 mm FOV, 0.9 mm 

slice thickness, 256 slices). Scans were corrected for intensity inhomogeneity with SPM12 

(Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm) 

prior to extracting cortical, subcortical, and ventricular volumes (mm3) using FreeSurfer 

(v5.3; http://surfer.nmr.mgh.harvard.edu/) previously reported in depth (Fischl and Dale 
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2000). These included volumes for 34 cortical (regions of interest (ROI) from the Desikan-

Killiany atlas (Desikan et al., 2006)) and 7 subcortical (hippocampus, amygdala, putamen, 

caudate, thalamus, nucleus accumbens, globus pallidus) structures per hemisphere, as 

well as the lateral ventricle and choroid plexus from each hemisphere, and the 3rd and 4th 

ventricles. In addition, total brain volume (FreeSurfer variable BrainSegVolNotVent) was 

extracted. Structure segmentation and labelling were checked using the procedures of the 

ENIGMA consortium (enigma.ini.usc.edu), with incorrectly delineated structures excluded 

from the analysis (number of excluded structures listed in Appendix 20). For each bilateral 

structure, we then computed a mean volume using the left and right hemisphere volumes. 

Test-retest reliability was estimated using Pearson correlations for a subset of participants 

scanned twice (n = 45, approximately three months apart). The centroid of each cortical 

ROI was calculated (FreeSurfer command mri_surfcluster; centroids for right hemisphere 

regions used) to allow for comparisons with spatial topography (i.e. anterior-posterior, 

superior-inferior, medial-lateral).  

 

5.2.3 Estimation of Variance Components 

Raw/non-standardised additive genetic (VA), environmental (VE), and phenotypic (VP) 

variances in ventricular, subcortical, and cortical volumes were estimated in a series of 

univariate models using structural equation modelling using the OpenMx 2.7.12 package 

(Neale et al., 2016) in R 3.3.3 (R Core Team, 2017), which provides maximum-likelihood 

estimates for model parameters. Briefly, the variance within a phenotype is partitioned into 

additive genetic (A) and unique/non-shared environment (E) sources by contrasting 

phenotypic covariance between MZ and DZ twins (Neale & Cardon, 1992). Estimates of 

unique environment also include measurement error, as it is random and unrelated to twin 

similarity. Variance due to common/shared environment was also estimated, but estimates 

were small and could be dropped from all models without significantly worsening fit. 

Hence, a model specifying only A and E sources of variance was used. 95% maximum-

likelihood confidence intervals were estimated for all mean-standardised and relative 

variance measures through OpenMx.  
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5.2.4 Mean-Standardised Variance 

Estimates of raw/non-standardised additive genetic and environmental variance (detailed 

in the previous section) for each phenotype were then standardised by the phenotypic 

mean. Mean-standardised genetic variance (IA) equals the additive genetic variance (VA) 

divided by the phenotypic mean of the trait squared: 

%8 =
:;
<̅> 

Here, IA is an extension of the index of opportunity for natural selection (I; the extent to 

which variation in a population could be subject to selection (larger values indicate a 

greater opportunity for selection (Crow, 1958))). Similar to IA, I (denoted here as IP) is the 

phenotypic variance (VP) divided by the phenotypic mean of the trait squared: 

%? =
:?
<̅>	 

Mean-standardised genetic variance is also commonly expressed as the coefficient of 

additive genetic variance (CVA)(Hansen et al., 2011; Houle, 1992), which is intrinsically 

related to the measure of mean-standardised genetic variance used in the present study 

(IA = CVA
2). IA is favoured in studies of evolvability or artificial selection, since it is 

interpreted as the expected percentage change per generation under a unit of selection 

(Garcia-Gonzalez et al., 2012; Hansen, Pelabon, Armbruster, & Carlson, 2003; Hansen et 

al., 2011). In addition to mean-standardised additive genetic (IA) and phenotypic (IP) 

variance, we estimated mean-standardised unique environmental variance (IE; unique 

environmental variance divided by the phenotypic mean of the trait squared) for all brain 

measures.  

We further calculated relative estimates of genetic (a2 or h2) and environmental (e2) 

variance by dividing raw/non-standardised additive genetic variance (VA) or unique 

environmental variance (VE) by total phenotypic variance (VP). Both mean-standardised 

and relative variance estimates are dimensionless units, which can be expressed as a 

percentage. 

For comparison with a volumetric, non-brain phenotype, we also estimated mean-

standardised variance components of body weight (kilograms). Comparisons with traits of 
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different dimensionality (e.g. length, area) are difficult, as variation increases with the 

number of dimensions (Garcia-Gonzalez et al., 2012; Hansen et al., 2011; Houle, 1992). 

Downscaling estimates based on dimensionality is sometimes used to facilitate 

comparison in these situations (Houle, 1992; Lande, 1977), but this only appropriate for 

perfectly geometrically proportioned objects (Garcia-Gonzalez et al., 2012). Further, the 

mean-standardised variance can only be estimated for traits measured on a true ratio 

scale, with an absolute zero (Garcia-Gonzalez et al., 2012). Hence, we are unable to 

compare mean-standardised variance in brain structures with traits of different 

dimensionality (e.g. height), or traits without true ratio measurement scales (e.g. 

intelligence or personality). 

 

5.2.5 Replication in an Independent Sample 

Data from the Human Connectome Project (HCP: S1200 release)(Glasser et al., 2016; 

Van Essen et al., 2012) was used as a secondary analysis sample. Here we included 

1105 adults (604 females, M = 28.80 years, SD = 3.70 years), consisting of 152 

monozygotic (MZ) and 85 dizygotic (DZ) twin pairs, 16 unpaired twins, 208 siblings of 

twins (0-2 per family), and 407 members of singleton families (1-4 per family). MZ and DZ 

twin zygosity was determined through genotyping, if available (215 of 237 pairs), otherwise 

by self-report (22 of 237 pairs). Details relating to participant selection and MRI acquisition 

have been reported elsewhere (Van Essen et al., 2012). All analyses completed on the 

QTIM sample were undertaken on the HCP data, including test-retest reliability on a sub-

sample of participants who were scanned twice (n = 45, mean duration between first and 

second scan was 139.30 ± 68.99 days).  

 

5.3 Results 

The mean of estimates of mean-standardised genetic variance (IA) in the QTIM dataset 

were highest for ventricular structures (6.88% compared to < 1.40% for cortical and 

subcortical structure volumes), and considerably higher than for body weight (3.80%) 

(Figure 5.1a). Further, mean-standardised genetic variance for cortical and subcortical 

structures was, on average, only slightly higher than for total brain volume (IA = 0.90%). 
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Figure 5.1 Average of mean-standardised variance component estimates in the QTIM and HCP 
datasets 
Average of mean-standardised genetic (IA), environmental (IE), and phenotypic (IP) variances of cortical, 
subcortical, and ventricular volumes, as well as total brain volume and body weight in the QTIM (a) and HCP 
(b) datasets. On average, mean-standardised variance estimates were substantially larger for the ventricles 
compared to other brain structures (cortical, subcortical, total brain). Estimates for body weight were smaller 
(nearly less than half) than the ventricular structures, but larger (> 2 times) than that for cortical or subcortical 
structures. Genetic and phenotypic variance components estimates were generally larger in the HCP (b) 
dataset compared to QTIM (a), whereas environmental estimates were similar.  

 

Figures 5.2a, 5.3a and 5.3d show estimates of IA ranged from a high of 13.08% for the 

lateral ventricles to a low of 0.77% for hippocampal volume (Appendix 21), representing a 

17-fold range in mean-standardised genetic variance across the brain structure volumes 

examined. However, this wide range in IA was substantially reduced when the ventricular 

structures were excluded (0.77% to 2.22%, 2.88-fold range), and within each of the 

structural divisions we observed a similar range in IA: cortical 2.74-fold (Figure 5.2a), 

subcortical 2.05-fold (Figure 5.3a), ventricular 3.88-fold (Figure 5.3d). We found no 

evidence for an association between mean-standardised genetic variance and test-retest 

correlation, mean structure size, or spatial direction (Appendix 22), indicating that regional 

differences in IA estimates were not explained by straightforward factors relating to 

measurement error or simple patterns of brain morphology (e.g. greater IA estimates for 

larger structures, greater IA estimates for anterior than posterior structures). Descriptive 

statistics and raw/non-standardised variance component estimates are presented in 

Appendix 20. 



 

 

99 

For the majority of structures, mean-standardised environmental variance was less than 

the genetic variance (36/45 structures with non-overlapping 95% confidence intervals; 

Figure 5.2 and Figure 5.3). An exception to this was the frontal pole, where the mean-

standardised environmental variance (which includes measurement error; IE ± 95% CI: 

1.65% (1.39%, 2.01%)) was significantly greater than the corresponding estimate of 

genetic variance (IA ± 95% CI: 0.94% (0.59%, 1.31%)). For both cortical and subcortical 

structure volumes, we also found that estimates of mean-standardised environmental 

variance were strongly associated with test-retest reliability correlation (r = -0.71, p = 

2.84E-06 and r = -0.99, p = 2.16E-05 respectively; Appendix 22). This suggests that 

differences in mean-standardised environmental variance is largely due to variation in 

measurement error. Further, mean-standardised environmental variance for cortical 

structures correlated with mean volume (r = -0.65, p = 2.81E-05), which remained 

significant after controlling for test-retest correlation (r = -0.61, p = 1.58E-04).  

There was 2.53-fold range in relative genetic variance estimates (i.e. heritability) across 

brain structures (frontal pole h2 36% to putamen h2 92%; Figure 5.2c; Figure 5.3c/f; 

Appendix 21); a substantially smaller range compared to the 17-fold range in mean-

standardised genetic variance. Cortical and subcortical structures with high relative genetic 

variance (>75%) generally had more moderate mean-standardised variance (0.77-1.42%), 

with high mean-standardised and relative genetic variance found only for the pericalcarine 

cortex (2.22% and 86% respectively). Relative genetic variance estimates for the 

ventricles, which had significantly higher mean-standardised genetic variance than 

subcortical/cortical structures (3.37-13.08%), ranged from 66% to 77%. Moderate relative 

genetic variance (~ 50%) was due to low mean-standardised genetic variance (cortical 

ROIs: pars triangularis, frontal pole) or high mean-standardised environmental variance 

(cortical ROIs: entorhinal, temporal pole, caudal anterior cingulate). We also found no 

correlation between estimates of mean-standardised and relative genetic variance 

(ventricular r = -0.70, p = .29; subcortical r = -0.45, p = .31; cortical r = 0.13, p =.46). 
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Figure 5.2 Mean-standardised and relative genetic and environmental variances for cortical 
structures in the QITM dataset 
Mean-standardised genetic (a) and environmental (b) variances (with 95% confidence intervals), as well as 
relative genetic and environmental variance components (c) for cortical structures in the QTIM dataset. 
Estimates are presented in descending order of mean-standardised genetic variance. Mean-standardised 
genetic variance was largest for the pericalcarine cortex, and smallest for the medial orbitofrontal gyrus (a). 
Approximately half of the cortical structures had more mean-standardised genetic variance than total brain 
volume (18/34 structures with non-overlapping 95% confidence intervals with total brain volume, Appendix 
20), and all cortical structures had less mean-standardised genetic variance than body weight. Estimates of 
mean-standardised environmental variance were generally less than genetic variance, with the exception of 
the frontal pole (b). Moderate relative genetic variance (c; ~ 50%) was due to low mean-standardised genetic 
variance (pars triangularis, frontal pole) or high mean-standardised environmental variance (entorhinal, 
temporal pole, caudal anterior cingulate). 
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Figure 5.3 Mean-standardised and relative genetic and environmental variances for subcortical and 
ventricular structures in the QITM dataset 
Mean-standardised genetic (a, d) and environmental (b, e) variances (with 95% confidence intervals), as well 
as relative genetic and environmental variance components (c, f) for subcortical (top row) and ventricular 
(bottom row) structures in the QTIM dataset. Estimates are presented in descending order of mean-
standardised genetic variance. For subcortical structures, mean-standardised genetic variance was largest 
for the nucleus accumbens, and smallest for the hippocampus and thalamus (a). Further, mean-standardised 
genetic variance for subcortical structures was like that for total brain volume, though estimates for the 
nucleus accumbens and caudate did not overlap with total brain volume (95% confidence intervals, Appendix 
21). For ventricular structures, genetic and environmental variance was largest for the lateral ventricles, and 
smallest for the choroid plexus (d, e). Mean-standardised environmental variance was smaller than genetic 
variance for all subcortical (b) and ventricular structures (e). Despite having the highest mean-standardised 
genetic variance for their structure type, the nucleus accumbens (subcortical) and lateral ventricles 
(ventricular) had the lowest relative genetic variance (c, f) on account of the large environmental variance for 
these structures. 

 

5.3.1 Replication Using the HCP Sample 

Using the same methodology, estimates of mean-standardised genetic variance were, on 

average, larger in the HCP dataset (Appendices 23-25) compared to the QTIM dataset; 

however, patterns of mean-standardised genetic variance were similar between two 

datasets (Figure 5.4). The lateral ventricles had the largest mean-standardised genetic 

variance in the HCP dataset, though this estimate was substantially larger than in the 
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QTIM dataset (IA ± 95% CI: HCP 19.43% (15.88%, 23.44%), QTIM 13.08% (10.37%, 

16.00%)). Estimates of mean-standardised genetic variance for cortical structures followed 

a similar pattern for both datasets (Figure 5.4), with some noticeable differences (e.g. 

rostral anterior cingulate IA ± 95% CI: QTIM 1.61% (1.27%, 1.97%), HCP 2.51% (2.06%, 

2.94%). In both samples, mean-standardised genetic variance in subcortical structures 

was largest for the nucleus accumbens, and smallest for the hippocampus and thalamus, 

though the ranking of estimates for other subcortical structures differed between the two 

datasets. The association between mean-standardised environmental variance and mean 

volume for cortical structures was replicated (r = -0.69, p <.001; Appendix 26), and 

remained significant after controlling for test-retest correlation (r = -0.63, p = 7.44E-05). 

The finding of high mean-standardised and relative genetic variance for pericalcarine 

cortex was replicated, and there was no association between mean-standardised and 

relative variance estimates (cortical structures r = 0.14, p =.43; subcortical structures r = -

0.45, p = .31; ventricular structures r = -0.62, p = .39).  
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Figure 5.4 Mean-standardised genetic variance estimates for cortical, subcortical, and ventricular 
structres in the QTIM and HCP datasets 
Mean-standardised genetic variance estimates for cortical (a), subcortical (b) and ventricular (c) brain 
volumes in the QTIM (left column) and HCP (right column) datasets. Estimates of mean-standardised 
genetic variance for cortical structures followed a similar pattern for both datasets (a), with some noticeable 
differences (e.g. rostral anterior cingulate (RACING), caudal anterior cingulate (CACING). In both datasets, 
mean-standardised genetic variance in subcortical structures was largest for the nucleus accumbens, and 
smallest for the hippocampus and thalamus (b). The lateral ventricles had the largest mean-standardised 
genetic variance of any structure in the HCP dataset, and this estimate was substantially larger than in the 
QTIM dataset (c). Abbreviations for cortical regions listed in Appendix 2. 
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5.4 Discussion 

Here, for the first time, we examine the mean-standardised genetic and environmental 

variance in the size of cortical, subcortical, and ventricular brain structures in humans. In 

contrast to relative estimates (e.g. heritability), which have been widely used in 

neuroimaging genomics studies, the mean-standardised approach does not scale 

raw/non-standardised variance components to total phenotypic variance. Instead, it 

estimates the absolute genetic and environmental variance in a trait, and uses the 

phenotypic mean of the trait to standardise variance components. Thus, estimates of 

mean-standardised variance are robust to other variance sources, and inform on the 

strength of factors which maintain or deplete variability in brain anatomy.  

The most striking finding was the large mean-standardised variance for the ventricular 

system (particularly the lateral ventricles) compared to other brain structures, and that this 

substantial variance in ventricular volume was largely due to genetic factors. This is 

consistent with studies of mean-standardised phenotypic variance (Allen et al., 2002; 

Lange et al., 1997), though estimates for lateral ventricle volume were substantially larger 

(40.32% and 47.75% respectively) than those of the present examination (QTIM 19.96%, 

HCP 28.60%). This contrast is likely due to the small sample sizes (n = 115 and 46 

respectively) and superseded imaging methods of past studies. Here we showed that this 

high phenotypic variance is mainly due to genetic factors, with only a small amount of the 

variance attributed to the environment. The finding of large mean-standardised genetic 

variance for ventricular volume (much larger than all other brain structures) is somewhat 

unexpected, as studies generally report lower amounts of mean-standardised genetic 

variance for morphological traits compared to life-history and complex behavioural traits 

(Coltman, O'Donoghue, Hogg, & Festa-Bianchet, 2005; Garcia-Gonzalez et al., 2012; 

Houle, 1992; Miller & Penke, 2007). For instance, estimates of mean-standardised additive 

genetic variance for male bighorn sheep bodyweight and reproductive success are 0.27% 

and 22.09% respectively (Coltman et al., 2005). 

Why would a morphological trait such as lateral ventricular volume show such large 

variation? Ventricular enlargement is often considered a marker of tissue atrophy in both 

normal ageing and disease (Apostolova et al., 2012; Carmichael et al., 2007; Nestor et al., 

2008; Thompson et al., 2006), but estimates in the present study were of healthy adults. 

Previous studies have suggested the large mean-standardised phenotypic variance in the 
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volume of the lateral ventricles reflects accumulated variability in surrounding structures 

(Lange et al., 1997); however, in the present study we did not find large mean-

standardised variance for surrounding subcortical structures, namely the hippocampus and 

caudate (in fact, estimates for these structures were among the smallest found). The large 

variance found for life-history traits is typically explained by the composite nature of these 

traits, which integrate variation across the lifespan. Because of this, it is likely that a 

greater number of loci (and more mutations), more environmental variables, and the 

interactions between them, contribute to variation in life-history traits (Hansen et al., 2011; 

Houle, 1992; Miller & Penke, 2007). While not a life-history trait, the early embryonic 

development of the ventricular system (Lowery & Sive, 2009), if influenced by many more 

genetic and environmental factors, could explain the large mean-standardised variation in 

this structure. 

The high mean-standardised variance (particularly genetic) for ventricular structures could 

also represent a lack of selection pressures (stabilising or directional) throughout 

evolution. All else being equal, brain structures that have been subject to strong selection 

should show less genetic variance than structures under weaker selection pressures, as 

selection should deplete additive genetic variance (Barton & Keightley, 2002). Hence, the 

larger mean-standardised genetic variance for ventricular structures might suggest a lack 

of strong selection pressures, whereas the small genetic variance found for limbic system 

structures such as the hippocampus and thalamus might imply that the size of these 

structures was under stronger selection pressures across evolution. Indeed, the 

contribution of genetic variants to human hippocampal volume was shown to be 

significantly greater in evolutionarily conserved regions compared to other functional 

categories of the genome (Hibar et al., 2017). Small variation for structures could further 

be interpreted in regards to canalization: a narrowing of variation to increase robustness to 

genetic (and environmental) perturbations (Waddington, 1942). From this perspective, 

stabilising selection may have resulted in brain structures that are crucial to physiological 

and/or cognitive function evolving to a robust optimum. However, the all-else-is-equal 

assumption is paramount to these inferences. That is, for differences in genetic variance 

amounts to predict historical associations with selection, the genetic architecture and 

factors influencing brain structure must be the same. 
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It is important to also consider the role of ontogenetic (developmental) constraints when 

comparing variation between traits. For instance, the smaller mean-standardised genetic 

variance for cortical and subcortical brain structures (IA range 0.77% to 2.22%) compared 

to body weight (IA = 3.80%) might correspond to the stronger physical constraints over 

brain structure (which is constrained by the skull, dura matter, and subarachnoid space) 

compared to body weight (which can vary more freely). Interestingly, the larger variation in 

body weight is likely not entirely due to freely varying composition factors such as muscle, 

fat, and organ mass, as estimates of mean-standardised phenotypic variance for human 

skeletal weight (IP range 1.97% to 4.39%, calculated from data reviewed by Wagner and 

Heyward (2000)) fall between the estimates for mean-standardised phenotypic variance in 

cortical/subcortical structures (IP range 0.88% to 3.64%) and body weight (IP = 4.75%) in 

the present study. Further, the physical constraints imposed by the limited space available 

within the cranium likely impacts the variation of individual brain structures. As the 

ventricular system arises within the cavities of the primary brain vesicles (Carpenter, 2016; 

Fujii, Youssefzadeh, Novel, & Neman, 2016; Lowery & Sive, 2009), it begins to develop 

before subcortical and cortical structures. As a consequence, it may be under less strict 

physical constraints and vary more freely than later developing structures.  

Measures of mean-standardised variance may shed light on the findings of past studies. 

ENIGMA, a worldwide consortium of brain imaging scientists, has conducted meta-

analyses of case-control cohorts for a number of diseases, including major depressive 

disorder (Schmaal et al., 2017; Schmaal et al., 2016), schizophrenia (van Erp et al., 2016), 

bipolar disorder (Hibar et al., 2016) and attention deficit hyperactivity disorder (Hoogman 

et al., 2017). Of the subcortical structures examined so far in these analyses, the 

hippocampus is the only structure to show a statistically significantly difference in the 

mean volume between patients and matched controls across all disorders (Thompson et 

al., 2017), and is the only subcortical structure to show a difference for major depressive 

disorder (Schmaal et al., 2016). This is noteworthy in the context of the present results 

because mean-standardised phenotypic variance estimates for the hippocampus were the 

lowest of the subcortical structures examined in the QTIM and HCP datasets. Therefore, 

the common finding of mean differences in hippocampal volume in all these analyses 

could reflect in part, the increased statistical power granted by the small variation present 

in (normal) hippocampal volume, which makes group differences easier to detect. The 
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effect of normal variation and the sample size required to detect group differences should 

not be underestimated, especially as the high-price of in vivo imaging studies often prohibit 

large sample sizes. We suggest that future studies could carefully consider their research 

design and focus on structures with minimal phenotypic variance to maximise their 

statistical power.  

The substantial mean-standardised environmental variance found for several structures 

should not be disregarded. Negative associations between mean-standardised 

environmental variance and test-retest reliability correlation or structure size were 

expected as measurement error is attributed to environmental variance in twin modelling. 

Though differences in measures of mean-standardised environmental variance might be 

due to a range of factors (e.g. complexity of the phenotype, developmental constraint, 

interaction with external environment, measurement error), they are of great importance as 

they demonstrate that the unusually low relative genetic variance (i.e. heritability) of 

several brain structures (e.g. caudal anterior cingulate h2 = 46.26%, entorhinal cortex h2 = 

51.63%) were not a result of unusually low levels of mean-standardised additive genetic 

variance in these structures (e.g. caudal anterior cingulate IA =1.36%, IE = 1.58%; 

entorhinal cortex IA = 1.88%, IE = 1.76%). 

Mean-standardised variance estimates differed between QTIM and HCP, though the 

patterns of variation were similar. The most prominent difference between the samples 

was in the lateral ventricles (HCP IA = 19.43%; QTIM IA = 13.08%). Interestingly, even if 

participants are excluded based on their ventricle-to-brain ratio (outliers at ± 3.29 SD 

excluded), mean-standardised variance estimates for the lateral ventricles remain larger in 

the HCP dataset (IA = 16.66%) compared to the QTIM dataset (IA = 12.61%). Further, 

these differences in genetic variance could reflect sampling error due to the small sample 

size of twins used to distinguish genetic from environmental variance. However, estimates 

of mean-standardised phenotypic variance (which are more stable than 

genetic/environmental) for the lateral ventricles also differed between the datasets (QTIM 

IP = 19.96%, HCP IP = 28.60%), suggesting that sampling error is unlikely to be the main 

cause of this difference. As QTIM is a predominantly Caucasian sample, it is possible that 

differences in variance component estimates reflect the more diverse ethnic and racial 

composition of the HCP sample, which approximates that of the U.S. population (Van 

Essen et al., 2013). Differences in test-retest reliability estimates suggest measurement 
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error differs between the samples, which could additionally lead to differences in structure 

variability (e.g. temporal pole: QTIM IP 3.26%, test-retest correlation 0.50, HCP IP 1.61%, 

test-retest correlation 0.71). 

In the present study, we found no association between mean-standardised and relative 

measures of genetic variance for brain structure. This is consistent with studies of other 

biological and life-history traits (Hansen et al., 2011; Houle, 1992), and relates to a 

common misconception of heritability – that low heritability reflects low genetic variance 

(Visscher, Hill, et al., 2008). This is an important point, as it has been suggested that low 

heritability in brain structure relates to a reduction of genetic variance (Lenroot et al., 

2009). Low heritability can result from low genetic variance, but conversely, it could also 

be due to high environmental variance (e.g. despite having the highest mean-standardised 

genetic variance for subcortical structures, the nucleus accumbens had the lowest relative 

genetic variance because of the large mean-standardised environmental variance for this 

structure). Further, as noise due to measurement error inflates estimates of environmental 

variance, measurement error can also substantially influence heritability. It is important to 

always consider these points when comparing estimates of heritability. 

One limitation of mean-standardised absolute variance measures is that only traits on a 

true ratio scale can be compared, meaning that many human traits (e.g. intelligence) are 

unsuitable for mean-standardised measures (Visscher, Hill, et al., 2008). This limitation 

could be circumvented by future studies examining individual task scores (e.g. number of 

correct responses) rather than composite, factors scores. Curiously this has been 

examined in chimpanzees (e.g. spatial memory, IA = 20.68%) (Woodley Of Menie, 

Fernandes, & Hopkins, 2015), but not in humans. Further, the confound of variation 

scaling with dimensionality limits our ability to compare traits of different dimensions (e.g. 

body height (linear) and brain volume (cubic)).  

This was the first comparison of mean-standardised measures of absolute variance 

(genetic and environmental) in brain structure. We uncovered significant and, in some 

cases, striking variation in variances across different regions. This variation did not follow 

any obvious patterns, precluding straightforward explanations. These findings open 

important new lines of enquiry: namely, understanding the bases of these variance 
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patterns, and their implications regarding the genetic architecture, evolution, and 

development of the human brain.  
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Abstract  

Structural and functional magnetic resonance imaging measures have provided a variety 

of means to parcellate the human brain. An alternative method is to map the brain based 

on genetic correlations (i.e. shared genetic influences), first demonstrated in a sample of 

middle-aged male twins (Vietnam Era Twin Study of Ageing; VETSA). The replicability of 

genetic parcellations across different imaging datasets is yet to be determined. Here, we 

examine cortical genetic patterning of surface area in two large twin datasets: the 

Queensland Twin IMaging study (QTIM; N = 1028, 65% female, mean ± SD age 22.39 ± 

3.32 years, 157/194 MZ/DZ pairs), and the Human Connectome Project (HCP; N = 1105, 

55% female, mean ± SD age 29 ± 3.70 years, 152/85 MZ/DZ pairs). We compare the 

similarity of the parcellations in the QTIM and HCP datasets to the parcellation developed 

in the VETSA study. Divisions were identified based on cortical surface area, with cortical 

regions influenced by a common genetic factor grouped together. Twelve genetic divisions 

of the cortex were identified. These clusters were bilaterally symmetrical, and matched 

boundaries of structure and function. There was a consistent pattern of genetic 

parcellations across three large, twin datasets, indicating that genetic parcellations of 

cortical surface area are robust across sample and methodology. This suggests that 

delineating the cortical surface based on shared genetic influence is a valid method of 

cortical parcellation, and one that has the potential to further our understanding of how 

genes shape the organisation and development of the cerebral cortex. 
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6.1 Introduction 

Integral to our understanding of how the brain works is a coherent and valid division of the 

structural and functional boundaries of the cerebral cortex. To date, regions of interest 

(ROI) in the cortex have been delineated predominantly on anatomical characteristics 

(Brodmann, 1909; Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010), 

functional specialisation (Power et al., 2011; Shen, Tokoglu, Papademetris, & Constable, 

2013), and recently, integrated multi-modal data (Fan et al., 2016; Glasser et al., 2016). 

Another method of mapping the brain, one very much understudied, is to examine how 

genetic effects have shaped the regionalisation of the cortex.  

Several studies have shown that genetic factors account for a significant proportion of 

variance in cortical structure (Eyler et al., 2012; Schmitt et al., 2008; Strike et al., 2018). 

Patterns of covariance between cortical structures are predominantly due to a common 

genetic factor (Strike et al., 2018), and this genetic (co)variance is independent of global 

genetic factors, suggesting the presence of region-specific genetic patterning. Chen et al. 

(2012) developed a data-driven, hypothesis free method to examine how the development 

of distinct cortical regions is genetically influenced. Using a bivariate twin design, they 

estimated genetic correlations between vertex-wise measures of surface area across the 

cortex. Genetic correlations provide an estimate of how much the genetic influences on 

two different cortical regions overlap. Applying a data-driven clustering technique to the 

matrix of genetic correlations, they divided the cortical surface into 12 clusters of maximal 

shared genetic influence. These clusters corresponded to biologically meaningful 

boundaries, and were predominantly bilaterally symmetrical.  

In an effort to reduce image dimensionality and increase power, the genetically identified 

clusters of Chen et al. (2012) have been used as a cortical parcellation atlas in studies 

examining the genetic architecture of the cortex (Chen et al., 2015; Peng et al., 2016). 

However, a direct replication of the study design used by Chen et al. (2012), which was 

restricted to middle-aged males, has not been undertaken. In changing our perspective on 

cortical delineation to one based on genetic influence, it is important to investigate whether 

genetically mediated patterns replicate across age, sex, and sample; no matter how valid 

the results seem, the results of cluster analysis are inappropriate unless they are 

replicated. 
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In the current study, we examine genetic patterning of the cortical surface in two large, 

genetically informative samples of healthy young adults: the Queensland Twin IMaging 

(QTIM) study, and the Human Connectome Project (HCP). We compare the similarity of 

the parcellations in the QTIM and HCP datasets to the parcellation developed by Chen et 

al. (2012), in the Vietnam Era Twin Study of Ageing (VETSA) sample of middle-aged 

males. Briefly, bivariate twin modelling is used to estimate genetic correlations between 

vertex-wise surface area measures of the cerebral cortex. A clustering technique is then 

applied to the genetic correlation matrix to identify genetically similar cortical regions.  

 

6.2 Methods 

6.2.1 Study Participants and Imaging Protocols 

Genetic parcellations were examined in two genetically informative datasets (QTIM, HCP), 

and compared with the parcellation developed by Chen et al. (2012), identified in the 

VETSA surface area dataset. Table 6.1 describes the imaging methodology and main 

demographic differences across the samples/datasets. 

 

6.2.1.1 QTIM – the Queensland Twin IMaging study 

The sample included 1028 healthy, right-handed young adults (65% female, mean age 

22.39 ± 3.32 years, age range 15.40 to 30.11 years), consisting of 157 MZ pairs (106 

female, 51 male), 191 DZ pairs (88 female, 30 male, 76 opposite sex), 3 triplet trios (all 

DZ), 221 unpaired twins, and 102 singleton siblings of twins (0-2 per family). Prior to 

scanning, participants were screened for neurological and psychiatric conditions, including 

loss of consciousness for more than 5 minutes, and general MRI contraindications. 

Zygosity of same-sex twin pairs was determined using a commercial kit (AmpFISTR 

Profiler Plus Amplification Kit, ABI) and later confirmed by genome-wide single nucleotide 

polymorphism genotyping (Illumina 610K chip). The study was approved by the Human 

Research Ethics Committees of the University of Queensland, QIMR Berghofer Medical 

Research Institute, and UnitingCare Health. Written informed consent was obtained from 
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all participants, including a parent or guardian for those aged under 18 years. Participants 

received an honorarium for their time and to cover any transport expenses. 

Imaging was conducted on a 4T Bruker Medspec (Bruker, Germany) whole-body MRI 

system paired with a transverse electromagnetic (TEM) head coil. Structural T1-weighted 

3D images were acquired (TR=1500 ms, TE=3.35 ms, TI=700 ms, 230 mm FOV, 0.9 mm 

slice thickness, 256 or 240 slices depending on acquisition orientation (86% coronal (256 

slices), 14% sagittal (240 slices)). Cortical surfaces were reconstructed using FreeSurfer 

(v5.3; http://surfer.nmr.mgh.harvard.edu/) previously reported in depth (Fischl & Dale, 

2000). Prior to FreeSurfer analysis, the raw T1-weighted images were corrected for 

intensity inhomogeneity with SPM12 (Wellcome Trust Centre for Neuroimaging, London, 

UK; http://www.fil.ion.ucl.ac.uk/spm). 

 

6.2.1.2 HCP – the Human Connectome Project  

Data from the Human Connectome Project (S1200 release) (Glasser et al., 2016; Van 

Essen et al., 2012) was used as a secondary analysis sample. Here we included 1105 

adults (55% female, M = 28.80 years, SD = 3.70 years, age range 22 – 37 years), 

consisting of 152 monozygotic (MZ) and 85 dizygotic (DZ) twin pairs, 16 unpaired twins, 

208 siblings of twins (0-2 per family), and 407 members of singleton families (1-4 per 

family). MZ and DZ twin zygosity was determined through genotyping, if available (215 of 

237 pairs), otherwise by self-report (22 of 237 pairs). Details relating to participant 

selection and MRI acquisition have been reported elsewhere (Van Essen et al., 2012). 

Pre-processed FreeSurfer data was used (Glasser et al., 2013). All analyses completed on 

QTIM were undertaken on the HCP data.  

 

6.2.2 Vertex-Wise Surface Area 

FreeSurfer cortical surfaces are generated as a tessellation (series of triangular meshes), 

with vertices formed by the meeting point of the triangles. Individual surfaces were 

resampled to template space (fsaverage; 163842 vertices per hemisphere), smoothed with 

2819 iterations of nearest neighbour smoothing, then down-sampled by registration to a 

lower-order template (fsaverage4; 2502 vertices per hemisphere). See (Winkler et al., 

2018) for further details on the nearest neighbour interpolation used by FreeSurfer when 
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resampling surfaces. Surface area was calculated by taking the average area of the 

triangles around each vertex.  

 

Table 6.1 Demographic and imaging information for the three datasets used in this study 
 QTIM HCP VETSA 

Participants  1028 (157/194 MZ/DZ 
pairs, 326 unpaired 

twins/singleton 
siblings) 

1105 (152/85 MZ/DZ 
pairs, 631 unpaired 

twins/singleton 
siblings) 

474 (110/93 MZ/DZ 
pairs, 68 unpaired 

twins) 

Sex 65% female 55% female 100% male 
Mean ± SD age 

(years)  
22.39 ± 3.32  28.80 ± 3.70 55.80 ± 2.60 

Age range (years) 15-30 22-37 51-59 
Scanner 4T Bruker Medspec 3T Custom Siemens 

Skyra 
1.5T Siemens 

N-acquisitions 1 x T1-weighted 2 x T1-weighted, 2 x 
T2-weighted 

2 x T1-weighted 

Voxel-size (mm) 0.9375 x 0.9375 x 0.9 
mm 

0.7 mm isotropic 1.3 x 1.0 x 1.3 mm 

Reference (Strike et al., 2018) Glasser et al. (2016) Chen et al. (2012) 

 

6.2.3 Statistical Analysis 

Genetic correlations of vertex-wise surface area were estimated using maximum-likelihood 

structural equation modelling using the OpenMx 2.7.11 package (Boker et al., 2011; Neale 

et al., 2016) in R 3.2.2 (R Core Team, 2015). Bivariate analyses were used to estimate 

genetic correlations for all possible pairs of vertex-wise surface area measures (4613 in 

total; medial wall vertices were excluded). These 10,637,578 pairwise AE models 

populated a 4613 by 4613 correlation matrix. Effects of whole brain total surface area (sum 

of all vertices), sex, linear and non-linear age effects (modelled through normal splines 

with three degrees of freedom), interactions between age and sex, and MRI acquisition 

orientation (QTIM only) were controlled for in all bivariate analyses (regression residuals 

used as input for model fitting). 

In the classic twin model, the variance within a phenotype is partitioned into additive 

genetic (A), common or shared environment (C) and unique or non-shared environment 

(E) sources (Neale & Cardon, 1992). Based on our previous findings of non-significant 

common environmental influences on cortical surface area (Strike et al., 2018), we fitted 

models which estimated additive genetic (A) and unique or non-shared environment (E) 
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sources of variance. Correlations between additive genetic factors (A) are fixed to 1 for MZ 

and 0.5 for DZ twins as MZ and DZ twins share 100% and (on average) 50% of their 

genetic material respectively, and unique environmental factors (E) are uncorrelated 

between twin pairs as this represents environmental influences affecting one co-twin only. 

Estimates of unique environment also include measurement error, as it is random and 

unrelated to twin similarity. 

Bivariate analyses extend the univariate design to decompose the covariance between 

two traits, as well as the variance in each trait, into genetic and environmental sources. 

Models were extended to include non-twin siblings to increase statistical power (Posthuma 

and Boomsma 2000). From the covariance decompositions, we further estimated genetic 

correlations, which indicate the extent to which two phenotypes share genetic variance 

(e.g. a genetic correlation of 1 indicates that two traits are influenced by the same set of 

genes, and a genetic correlation of 0 indicates two traits are genetically unique).  

 

6.2.4 Fuzzy Clustering 

Similar to the approach of Chen et al. (2012), we used a fuzzy clustering algorithm to 

partition the genetic correlation matrix using the cluster package (Maechler, Rousseeuw, 

Struyf, Hubert, & Hornik, 2017) in R 3.3.3 (R Core Team, 2017). In fuzzy clustering, each 

data point is spread out over the number of specified clusters, and the degree to which a 

data point belongs to a cluster is denoted through the membership coefficient (which 

ranges from 0 to 1, and sum to 1 for a given data point). A hard clustering is achieved by 

assigning the data point to the cluster with the highest membership coefficient. The optimal 

number of clusters was determined using silhouette coefficients, which combine two 

cluster properties: cohesion (intra-cluster differences) and separation (inter-cluster 

differences). In both the QTIM and HCP datasets, silhouette coefficients plateaued after 

11 to 12 clusters (Figure 6.1). A final solution of 12 clusters was selected for both QTIM 

and HCP datasets based on the peak of silhouette coefficients and to facilitate 

comparisons with results in the VETSA sample (Chen et al., 2012).  

The similarity of clustering solutions with the neuroanatomical ROIs of the Desikan-Killiany 

atlas (Desikan et al., 2006), and also the similarity of clusters between datasets, was 
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illustrated using the riverplot package (Weiner, 2017) implemented in R 3.3.3 (R Core 

Team, 2017). In addition, we measured cluster similarity by calculating the Rand index, 

which ranges from 0 (no agreement between any vertices) to 1 (identical clustering). To 

account for clustering similarity due to chance, we additionally calculated the adjusted 

Rand index. Raw and adjusted Rand indexes were calculated using the fossil package 

(Vavrek, 2011) in R 3.3.3 (R Core Team, 2017). 

 

 

Figure 6.1 Plot of silhouette coefficients for clustering solutions in QTIM and HCP datasets.  
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6.3 Results 

6.3.1 Genetic Parcellations for the QTIM and HCP Datasets 

Figure 6.2 displays the genetic parcellations for the QTIM (a) and HCP (b) datasets. 

Cluster size ranged from 280 (cluster 2) to 587 vertices (cluster 12) for QTIM, and 290 

(cluster 4) to 507 (cluster 7) vertices for HCP. Clusters were symmetrical between the left 

and right hemispheres, though some subtle differences were present (e.g. QTIM cluster 9 

– 64 more vertices assigned to the left hemisphere than the right hemisphere). Clusters 

were generally nested within lobar divisions of the cortex. In Figure 6.3 we show that 

several clusters had a strong similarity with anatomical ROIs from the Desikan-Killiany 

atlas (Figure 6.3a/b). For example, there was substantial overlap between cluster 10 and 

the superior parietal (SUPPR) ROI in both the QTIM and HCP datasets. Some Desikan-

Killiany ROIs were completely subsumed by genetic divisions (e.g. pericalcarine (PERIC) 

and QTIM cluster 12), while other ROIs were split across multiple genetic divisions (e.g. 

superior frontal gyrus (SUPFR) and QTIM clusters 1,2,3).  

 

6.3.2 Pairwise Cluster Comparisons 

Cluster similarity was moderate to high between the QTIM and HCP datasets (Figure 

6.4a), except for clusters 4, 5 and 11, where less than 32% of vertices in these clusters 

corresponded across QTIM and HCP. Even so, this low correspondence was generally 

due to the assignment of vertices to neighbouring clusters. For example, the lower 

similarity for cluster 11 is because HCP cluster 11 overlaps with QTIM cluster 10, and 

QTIM cluster 11 overlaps with HCP cluster 12 (Figure 6.4a, Figure 6.2a/b). A similar 

pattern of corresponding genetic clusters (i.e. moderate to high similarity between clusters, 

assignment of vertices to neighbouring clusters) was found between QTIM and VETSA 

(Figure 6.4b), and between HCP and VETSA datasets (Figure 6.4c). There were no 

instances in which a cluster in one dataset was associated equally with multiple clusters in 

another dataset. Cluster similarity between the QTIM and VETSA dataset (Rand index 

0.94, adjusted Rand index 0.61) was greater than between the QTIM and HCP dataset or 

HCP and VETSA dataset (Rand index 0.92, adjusted Rand index 0.52 for both 

comparisons).  
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6.3.3 Similarity Across all Three Datasets 

Vertices assigned to the same cluster across all three datasets are displayed in Figure 

6.2d (VETSA cluster solution used as the reference for percentage overlap). Cluster 

similarity ranged from 1% (cluster 11) up to 98% (cluster 8). Similarity was greatest in 

temporal (clusters 7,8), parietal (clusters 9,10) and pre-frontal (cluster 2) cortical regions 

(similarity > 60%). Clusters 5 and 11 showed the lowest similarity across datasets 

(similarity < 10%). For cluster 11, the HCP dataset was dissimilar to the delineations found 

for QTIM and VETSA, while for cluster 5, delineations were different across all three 

datasets. Differences in delineation for HCP compared with both QTIM and VETSA can be 

seen in the riverplots in Figure 6.4a and Figure 6.4c. 

 

 

Figure 6.2 12-cluster, genetic parcellations across three datasets 
12-cluster, genetic parcellations for the a) QTIM, b) HCP, and c) VETSA datasets (the VETSA parcellation 
was provided by Chen et al. (2012)). The concordance image (d) shows the vertices assigned to the same 
cluster across all three datasets. The percentage of vertices in the VETSA cluster which were assigned to 
the corresponding cluster in both the QTIM and HCP datasets are presented next to the concordance image. 
Concordance was highest for clusters 2,7,8,9,10 (> 60% of vertices in these clusters were assigned to the 
same cluster across the three datasets – VETSA used as the reference solution for percentage overlap). 
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Figure 6.3 Similarity of neruoanaotmical and genetic parcellations in the QTIM and HCP datasets 
Similarity of vertex-membership between genetic and Desikan-Killiany parcellations for the QTIM (a) and 
HCP (b) datasets. Lines represent the correspondence of vertices between the genetic and neuroanatomical 
parcellations, with the width of the lines representing the number of vertices. For example, in the QTIM 
dataset (a) the thick line from cluster 10 to the Desikan-Killiany ROI superior parietal cortex (SUPPR) 
indicates a high similarity between the genetic and neuroanatomical region. Line colour corresponds to 
parcellation colour, shown in Figure 6.2 for genetic ROIs, and at the bottom of Figure 6.3 for Desikan-Killiany 
ROIs. Abbreviations for cortical regions listed in Appendix 2. 
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Figure 6.4 Similarity of vertex-membership across datasets 
Similarity of vertex-membership for genetic parcellations between a) HCP and QTIM, b) QTIM and VETSA, 
and c) HCP and VETSA datasets. Percentages denote the proportion of vertices in the second dataset which 
were assigned to the same cluster in the first dataset. For example, 51% of vertices assigned to cluster 1 in 
the HCP dataset were assigned to cluster 1 in the QTIM dataset.  

 

6.4 Discussion  

We investigated the replicability of a data-driven and hypothesis free, genetically identified 

parcellation of the cerebral cortex. We found a similar number of clusters in the QTIM and 

HCP datasets as compared to a previous study of middle-aged males (VETSA). 

Genetically identified divisions were predominantly bilaterally symmetrical, and several 

clusters corresponded to existing neuroanatomical regions. There was a largely consistent 

pattern of genetic parcellations across three large, twin datasets, indicating that genetic 

parcellations of cortical surface area are robust across sample and methodology. This 

suggests that delineating the cortical surface based on shared genetic influence is a valid 
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method of cortical parcellation, and one that has the potential to further our understanding 

of how genes shape the organisation and development of the cerebral cortex. 

There were several similarities in the cluster solutions across the three datasets. Firstly, 

the study showed 11-12 to be the optimal number of clusters in the QTIM and HCP 

datasets, like that found previously in the VETSA dataset (Chen et al., 2012). The 

selection of number of clusters was primarily driven by the silhouette coefficient metric (an 

index of cluster validity and cohesion), which showed that 11-12 was the optimal number 

of clusters in the data. By specifying 12 clusters for both QTIM and HCP, this facilitated a 

direction comparison to the original VETSA research (Chen et al., 2012). A twelve-cluster 

solution is substantially less than other cortical atlases (e.g. 34 ROIs - Desikan-Killiany; 

210 ROIs - Brainnetome); however, it is imperative to consider that the genetic 

parcellations within the present study represent the primary structure of genetic patterning. 

Cortical surfaces were down-sampled and spatially smoothed, which improves the 

reliability of genetic correlations and decreases computational time, but also precludes us 

from examining genetic effects at a fine-grained detail. Recently, Cui et al. (2016) used a 

similar methodology to the present study, but with less down-sampling, to genetically 

parcellate specific cortical regions into finer subdivisions. Examining genetic parcellations 

at a higher resolution may provide further insights into cortical regionalization and is an 

exciting future research direction.  

Secondly, we found that predominantly, the clusters were bilaterally symmetrical across all 

three datasets. This symmetry was found when clustering was applied to genetic 

correlations considering both hemispheres simultaneously. Interestingly, an earlier 

iteration of the genetic parcellations in the QTIM and HCP datasets, in which clustering 

was applied to genetic correlations separately in the left and right hemispheres (Couvy-

Duchesne et al., 2018), found a greater level of asymmetry between hemispheres. Genetic 

correlations between corresponding hemisphere regions are typically stronger than 

genetic correlations within hemispheres (Strike et al., 2018), and left/right regions are 

generally merged before neighbouring regions in hierarchical cluster analyses (Docherty et 

al., 2015; Schmitt et al., 2008). Hence, without these strong left/right associations to drive 

groupings, it is possible that cluster solutions will be more asymmetrical when derived 

separately if different patterns of covariance exist within each hemisphere. 
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Thirdly, we showed that there was a consistent pattern of genetic parcellations across 

datasets. This is consistent with the results of Cui et al. (2016), who used a similar 

methodology to genetically parcellate several specific cortical regions, and reproduced 

these parcellations in an independent dataset. It is reasonable to expect that cluster 

similarity will worsen with the more datasets considered, because of sample and 

methodological differences. Indeed, cluster similarity across all three datasets was 

typically less than between any two datasets. Encouragingly, we show that poor cluster 

correspondence was largely due to the assignment of vertices to neighbouring clusters, 

not wholly different clusters. This is important, as it suggests that similarities in genetic 

patterning are present, and further methodological refinement may result in cortical 

boundaries that are highly replicable across multiple datasets.  

Similarities in genetic parcellations between the QTIM/HCP and VETSA datasets are 

especially interesting given the substantially older mean age of the VETSA dataset (56 

years, compared to 22 and 29 years for QTIM and HCP respectively). Reductions in 

cortical surface area associated with ageing are well documented (Hogstrom, Westlye, 

Walhovd, & Fjell, 2013; Lemaitre et al., 2012; Storsve et al., 2014), and the results of the 

present study suggest that patterns of genetic covariance are stable from young-adulthood 

to middle-age. However, this inference is drawn from cross-sectional data, and imaging 

genetics studies with a longitudinal design are required to accurately estimate the stability 

of these genetic effects.  

As the present study took no steps towards data harmonization prior to analyses, 

comparisons between cluster solutions can be considered as worst-case; they show the 

similarity between datasets with no additional input. It is likely that, at least to some 

degree, differences in imaging methodology contributed to dissimilarities between cluster 

solutions. The three datasets examined here varied in terms of field strength, voxel size 

and acquisition parameters. Differences in these factors are known to affect structural MRI 

measurements within the brain (Jovicich et al., 2009; Morey et al., 2010), and could result 

in differences in patterns of genetic covariance. The number of clusters specified could 

also impact similarity between datasets. For example, silhouette coefficients showed that 

the optimal solution for the HCP dataset was 11 clusters (12 was used as it was the most 

consistent number of clusters across datasets). Though we did not examine cluster 

similarity between 11 cluster solutions (or between a 11 cluster HCP solution and a 12 
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cluster QTIM/VETSA solution), it is possible that altering the number of clusters specified 

could improve the similarity of clustering solutions between datasets. It is also possible 

that differences in measurement error (which impacts the estimation of genetic 

correlations) could lead to different cluster solutions between datasets. However, as test-

retest reliability correlations are high for surface area measures in both the QTIM and HCP 

datasets (Strike et al., 2018), measurement error is unlikely to strongly influence the 

results of the present study.  

The results of the present study suggest that a genetically identified parcellation of the 

cerebral cortex would be a valuable addition to the field of neuroimaging 

genetics/genomics, and there are likely many advantages to developing such a 

parcellation. Primarily, a cortical atlas delineated on genetic variance may provide 

phenotypes that are closer to the level of genetic influence than atlases derived from 

phenotypic information. These genetic ROIs may improve power for studies seeking to 

identify behaviours and/or genetic variants associated with cortical surface area. To this 

end, clusters which showed a high similarity across all three datasets would be excellent 

phenotypes. Further, genetic parcellation reduces the burden of multiple comparison 

correction by reducing the dimensionality of the cortical surface (a standard FreeSurfer 

cortical surface has ~300,000 data points) into 12 clusters of shared genetic influence. 

Delineating genetic clusters in a larger dataset (possibly through a mega-analysis 

approach) would be an interesting next step in this area.  

 

6.5 Conclusion 

In conclusion, this study provides evidence of a consistent pattern of genetic parcellations 

of the cortex, which is robust across different samples and methodologies. This suggests 

that delineating the cortical surface based on shared genetic influence is a valid method of 

cortical parcellation, and one that has the potential to further our understanding of how 

genes shape the organisation and development of the cerebral cortex. The present study 

is an important step in changing our perspective on brain mapping from phenotypically 

based to genetically based methods. 
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Genetic and Environmental Covariation 

Between Cortical Brain Structure 

(Surface Area, Thickness) and Reading 

Ability 

This chapter is based on: 

Strike, L. T., Hansell, N. K., McMahon, K. L., Luciano, M., Bates, T. C., Martin, N. G., . . . 

de Zubicaray, G. I. (2017). Genetic and environmental covariation between cortical brain 

structure (surface area, thickness) and reading ability. Manuscript in preparation. 
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Abstract  

Language ability, cortical surface area and thickness are all strongly influenced by genetic 

factors. We investigated genetic and environmental covariation between reading ability 

and cortical structure in regions previously implicated in language function in 992 twins 

and singletons from the Human Connectome Project (HCP; mean ± SD age at reading test 

and scanning = 28.81 ± 3.71 years). A replication analysis was performed using similar 

data from an independent sample from the Queensland Twin IMaging study (QTIM; N = 

676; mean ± SD age at reading test = 17.08 years ± 3.05 years; mean ± SD age at 

scanning 22.56 ± 3.21 years). In the HCP dataset, reading ability was significantly 

associated with the surface area, but not the thickness, of several cortical regions in the 

reading network. These associations were due predominantly to genetic effects shared 

between brain structure and reading ability. However, when covaried for whole brain total 

surface area, these associations were no longer significant, suggesting that regional 

associations are mediated through a global genetic factor shared with whole brain total 

surface area. These findings were not replicated in the QTIM dataset, perhaps due to the 



 

 

127 

relatively longer delay between reading assessments and image acquisition in this cohort. 

The small correlations found suggest larger studies are required to further investigate how 

structural variation relates to written language ability. 

 

7.1 Introduction  

Functional neuroimaging studies have consistently identified a core network of perisylvian 

brain regions involved in comprehending and producing language (see Friederici (2011); 

C. J. Price (2012) for overviews). Even so, we do not yet know how structural variation in 

these regions relates to reading ability. Nor do we know whether such relationships 

develop because of genetic or environmental influences, or both. Elucidating these 

associations will guide studies investigating links between brain morphology and genetic 

variants associated with reading and language ability (Gialluisi, Guadalupe, Francks, & 

Fisher, 2017; Udden, Snijders, Fisher, & Hagoort, 2017). 

Given its importance to cognition, studies of the underlying anatomy and physiology of 

linguistic ability have typically focused on the cortex. Most work has focussed on more 

severe developmental reading disabilities (e.g., dyslexia; for a meta-analysis and review, 

see Linkersdorfer, Lonnemann, Lindberg, Hasselhorn, and Fiebach (2012)); fewer studies 

examine variation associated with normal skill development. In addition, most of the 

studies investigating links between brain structure and reading ability (for review, see 

(Linkersdorfer et al., 2012; Richardson & Price, 2009; Richlan, Kronbichler, & Wimmer, 

2013)) have used voxel-based morphometry to examine differences in grey matter volume 

or density. As grey matter volume is a product of the surface area and thickness of the 

cortex; variation in grey matter volume can result from changes in either of these 

measures, or both. Further, cortical surface area and thickness have been shown to be 

genetically independent (Panizzon et al., 2009; Strike et al., 2018; Winkler et al., 2010). As 

such, investigating each of these structural measures separately, rather than merging 

them into a volume index may make it easier to detect specific phenotypic and genetic 

brain correlates of reading ability.  

So far, few studies have related structural measures of the cortex to reading ability. In 

healthy adults aged 19 to 66 years, Blackmon et al. (2010) report both positive and 

negative correlations between a single measure of irregular word reading and cortical 
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thickness of key language regions bilaterally while controlling for age. Greater thickness of 

the superior temporal and angular gyri was associated with higher scores, while the 

opposite relationship was observed for the fusiform, inferior frontal and supramarginal gyri. 

Goldman and Manis (2013) investigated regions within the left hemisphere reading 

network, in a sample of university students. Cortical thickness of the angular gyrus and 

pars triangularis of the inferior frontal gyrus was correlated with several measures of 

regular word reading skill and print exposure (a measure of reading experience). Zhang et 

al. (2013) also reported positive correlations between regular English and Chinese word 

and pseudoword reading and left fusiform gyrus thickness in university students. In a 

sample of children aged 5 to 11 years, Lu et al. (2007) reported greater cortical thickness 

in the left inferior frontal gyrus to be associated with improved phonological processing. 

Twin and family studies have shown variance in reading ability and disability to be 

moderately to largely influenced by genetic factors (Astrom, Wadsworth, & DeFries, 2007; 

Bates et al., 2004), and further, genes linked to cortical brain development have been 

associated with reading and language traits (Bates et al., 2010; Gialluisi et al., 2014; Lind 

et al., 2010; Luciano et al., 2007). As substantial genetic influence has been identified for 

structural imaging measures linked to language (Kremen et al., 2010; Lenroot et al., 2009; 

McKay et al., 2014), it is possible that these measures share a partially overlapping 

genetic origin. Yet, only one study has examined shared genetic influence between brain 

structure and reading. In a twin sample of children with and without a history of reading 

problems (Betjemann et al., 2010), the authors found a low phenotypic correlation 

between a composite score of reading ability and total brain volume (rph = .22), which was 

due to genetic influences shared between the two. Furthermore, the authors found 

suggestive evidence for a genetic factor influencing total brain volume and reading ability, 

independent of the other cognitive measures examined (performance IQ, verbal IQ, 

processing speed). Dyslexia studies have suggested that as surface area represents 

cortical folding patterns determined prenatally, genetic influences may be largely 

responsible for surface area abnormalities in individuals with reading disability (Black et 

al., 2012; Frye et al., 2010; Hosseini et al., 2013). However, genetically informative 

samples have not yet been used to relate cortical surface area and thickness to reading 

ability in the normal range. 
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Here we use the Human Connectome Project (HCP) dataset (one of the largest samples 

including reading and brain phenotypes, N = 992) to test whether the genetic factors 

influencing structural variation in cortical language regions overlap with those influencing 

measures of reading. We assessed two measures of the cortex (surface area and 

thickness) and one reading measure. Genetic studies of reading skill often include IQ as a 

covariate to increase sensitivity of reading ability (Bates et al., 2010; Luciano et al., 2013; 

Luciano et al., 2007); here, we do likewise. However, as the association between reading 

ability and IQ may differ between typical and dyslexic readers (Ferrer, Shaywitz, Holahan, 

Marchione, & Shaywitz, 2010), we performed a secondary analysis without correction for 

IQ. We selected cortical regions identified as part of the language network in previous 

studies (see Goldman and Manis (2013) for an overview), examining both left and right 

hemispheres. We expected to find significant correlations between surface area, cortical 

thickness, and written language ability, consistent with prior findings. Further, we expected 

that the genetic factors that influence reading and spelling ability would overlap with the 

genetic factors influencing cortical thickness and surface area of language network 

regions. For generalizability, we undertake the same analyses using an independent 

sample (N = 676) from the QTIM study. 

 

7.2 Materials and Methods 

7.2.1 Participants 

Data from the Human Connectome Project (HCP; S1200 release) (Glasser et al., 2016; 

Van Essen et al., 2012) was used. The S1200 release contains imaging data for 1113 

individuals from families; here, we included only right-handed participants (laterality score 

> 0). The final sample of 992 adults (55% female, mean age 28.81 ± 3.71 years, age 

range 22 to 36 years) consisted of 129 MZ pairs (82 female, 47 male), 67 DZ pairs (40 

female, 27 male), 51 unpaired twins, 189 singleton siblings of twins (0 – 2 members per 

family), and 360 members of entirely singleton families (1 – 4 per family). MZ and DZ twin 

zygosity was determined through genotyping, if available (179 of 196 pairs), otherwise by 

self-report (17 of 196 pairs). A subset of twins (n = 45 individuals) completed the scan 

protocol and behavioural battery a second time (mean duration between first and second 
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visit was 139.30 ± 68.99 days). Details relating to participant selection and MRI acquisition 

have been reported (Van Essen et al., 2012).  

 

7.2.2 Reading Measure 

Reading ability was assessed through the NIH Toolbox Oral Reading Recognition Test 

(TORRT), administered as part of the NIH Toolbox Cognition Battery (NIHTB-CB) 

(Weintraub et al., 2013). Broadly, this test measures participants’ ability to pronounce 

single printed words, and/or ability to recognize letters. Letters and words are presented 

one at a time on a computer screen, and participants are instructed to read them aloud. 

Unadjusted, standardised (mean 100, standard deviation 15) scores were used. To control 

for general cognitive ability, a composite total intelligence score was derived from the 

NIHTB-CB with TORRT scores excluded (i.e. the average of the unadjusted standardised 

scores for Picture Vocabulary, Flanker, Dimensional Change Card Sort, Picture Sequence 

Memory, List Sorting, and Pattern Comparison tests). Past-year personal income was 

used as an indicator of socio-economic status (Bucholz et al., 1994). The test-retest 

reliability of the TORRT was estimated by calculating the Pearson correlation coefficient 

between TORRT scores from time one and time two visits. 

 

7.2.3 Cortical Surface Area and Thickness Measures 

High resolution T1-weighted and T2-weighted images (0.7mm isotropic) were collected on 

a customised 3 T Siemens Skyra (details pertaining to acquisition have been previously 

discussed in detail Glasser et al. (2013); Van Essen et al. (2012)). Pre-processed 

FreeSurfer cortical surface area and thickness measures (Glasser et al., 2013) were used. 

Regions of interest (ROIs) examined here were based on the reading network adopted by 

Goldman and Manis (2012) (see Figure 7.1), with a measure of total surface area and 

mean cortical thickness produced for each ROI. Measures for whole brain, global variables 

(total surface area, mean cortical thickness) were also extracted. Covariate effects and 

test-retest reliability are discussed elsewhere (Strike et al., 2018).  
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Figure 7.1 Regions of interest involved in the written language network investigated in the present 
study.  
Regions of interest were based on the reading network adopted by Goldman and Manis (2012). 

 

7.2.4 Heritability of Reading Ability 

Genetic and environmental influences on reading ability were examined through twin 

analyses using the maximum-likelihood structural equation modelling package OpenMx 

2.7.12 (Neale et al., 2016) in R 3.3.3 (R Core Team, 2017). MZ and DZ/twin-sibling 

correlations were estimated for reading ability through saturated models in which means 

and variances were equated within MZ and DZ/twin-sibling pairs. Next, the heritability of 

reading ability was estimated in a univariate ACE model. Briefly, the classic twin model 

partitions the variance within a phenotype into additive genetic (A), common or shared 

environment (C) and unique or non-shared environment (E) sources (Neale & Cardon, 

1992) (Appendix 4). Correlations between additive genetic factors (A) are fixed to 1 for MZ 

and 0.5 for DZ twins as MZ and DZ twins share 100% and (on average) 50% of their 

genetic material respectively. For common environment factors (C), correlations are fixed 

at 1 for both MZ and DZ twins (the model assumes MZ and DZ twins raised together 

experience similar environments), and the unique environment factors (E) are uncorrelated 

between twin pairs as this represents environmental influence affecting one twin only. 

Estimates of unique environment also include measurement error, as it is random and 

unrelated to twin similarity. Here, the classic twin model was extended to include non-twin 

siblings (maximum of two per family) in order to increase statistical power (Posthuma & 

Boomsma, 2000). The saturated and univariate model included a simultaneous means 
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regression to adjust for effects of sex, linear and non-linear age effects (modelled through 

normal splines with three degrees of freedom), interactions between age and sex, and 

past-year personal income. To determine the most parsimonious model, nested models 

containing AE, CE, or E sources of variance were compared to the ACE decomposition. 

We assessed the fit of the constrained models by examining the -2 log likelihood 

difference between the ACE model and the reduced model (AE, CE or E). The difference 

in the maximum likelihood (assessed through the -2 log likelihood difference) is distributed 

as a chi-squared statistic for a given number of degrees of freedom (equal to the 

difference in the number of free parameters estimated), which denotes whether the 

parameter is significant. If a reduced model is significant, this indicates that the parameter 

removed from the model accounted for a significant proportion of the phenotypic variance. 

Maximum-likelihood 95% confidence-intervals were estimated for all model parameters. 

The significance of covariate effects was tested by fitting reduced ACE models in which 

the covariate of interest was dropped from the model (i.e. the regression coefficient was 

set to zero), but all other covariates remained, and comparing the model fit with the full 

(i.e. all covariates included) ACE model.  

 

7.2.5 Associations Between Brain Structure and Reading Ability 

Phenotypic correlations between cortical structure and reading ability were estimated by 

extending the univariate design to decompose the variance in a trait, and the covariance 

between two traits, into genetic and unique environmental sources (Appendix 4). As 

effects of common environment (C) were not significant for reading ability in the univariate 

model, or a previous examination of cortical surface area and thickness in both the HCP 

and QTIM datasets (Strike et al., 2018), they were not assessed in bivariate analyses. The 

significance of the phenotypic correlation was assessed by setting both the genetic and 

environmental covariances between cortical structure and reading ability to zero and 

assessing whether this reduced model fit. To control for the multiple comparisons, we 

applied a Bonferroni correction by a factor of 13 (reflecting one global and 12 ROI 

measures) to obtain a significance threshold of 0.0038 (0.05/13) for phenotypic 

associations.  
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When a significant phenotypic correlation was found, we further estimated the genetic and 

unique or non-shared environmental (from this point forward referred to as environmental) 

correlations. Genetic (environmental) correlations indicate the extent to which two 

phenotypes share genetic (environmental) variance. Both genetic and unique 

environmental correlations underlie the phenotypic correlation. As a high genetic 

correlation between two traits can be observed, even if the traits themselves have low 

heritability, a high genetic correlation can be misleading when genes explain only a small 

portion of the phenotypic variance. Hence, we examined shared genetic influence between 

cortical structure and reading ability by calculating the genetic contribution to the 

phenotypic correlation (rph-a): 

!(#$%	1	ℎ)*+,-.+/+,0) 	× 	3)4),+5	56**)/-,+64	 ×	!(#$%	2	ℎ)*+,-.+/+,0) 
rph-a is easily conceptualised as the phenotypic correlation (rph) between two traits based 

only on the shared genetic variance. We similarly calculated the environmental 

contribution to the phenotypic correlation (rph-e). Both rph-a and rph-e were computed using 

variance estimates from the bivariate model in which the genetic (environmental) 

correlations were estimated. Bivariate models included a simultaneous means regression 

to adjust for effects of sex, linear and non-linear age effects (modelled through normal 

splines with three degrees of freedom), interactions between age and sex, past-year 

personal income (reading ability only), and IQ (total intelligence composite score excluding 

TORRT; reading ability only).  

 

7.2.6 Replication in an Independent Sample (QTIM) 

Participants in the replication sample were drawn from the Queensland Twin IMaging 

(QTIM) study of brain structure and function (for example (Blokland et al., 2014; Chiang et 

al., 2009; de Zubicaray et al., 2008) for whom measures of reading (Bates et al., 2004; 

Bates et al., 2007) and general cognitive ability (Wainwright et al., 2004) were also 

available. The present sample (i.e., participants with brain imaging and reading measures) 

consisted of 676 healthy, right-handed young adults (58% female), comprising of 78 MZ 

pairs (51 female, 27 male), 161 DZ pairs (62 female, 32 male, 67 opposite sex), 127 

unpaired twins, and 71 singleton siblings of twins (0 – 2 members per family). Mean ± SD 

age at scanning was 22.56 years ± 3.21 years (range 16.02 – 30.11 years), with reading 
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and cognition assessed on average, five and a half years earlier (range 12.27 – 24.83 

years). Zygosity was determined from DNA using a commercial kit (AmpFISTR Profiler 

Plus Amplification Kit, ABI) and was later confirmed on a genome-wide single nucleotide 

polymorpism genotyping platform (Illumina 610K chip). The study was approved by the 

Human Research Ethics Committees of the QIMR Berghofer Medical Research Institute, 

The University of Queensland, and Uniting Health Care. Written informed consent was 

obtained from all participants, including a parent or guardian for those aged under 18 

years. Participants received an honorarium for each study.  

Imaging was conducted on a 4 T Bruker Medspec (Bruker, Germany) whole-body MRI 

system paired with a transverse electromagnetic (TEM) head coil. Structural T1-weighted 

3D images were acquired (TR=1500ms, TE=3.35ms, TI=700ms, 230mm FOV, 0.9mm 

slice thickness, 256 or 240 slices depending on acquisition orientation (86% coronal (256 

slices), 14% sagittal (240 slices)). Cortical thickness and surface area measurements were 

extracted using the FreeSurfer software package (v5.3), 

http://surfer.nmr.mgh.harvard.edu/ previously reported in depth (Desikan et al., 2006; 

Fischl & Dale, 2000). Prior to FreeSurfer analysis, the raw T1-weighted images were 

corrected for intensity inhomogeneity with SPM (SPM12; Wellcome Trust Centre for 

Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Cortical reconstructions and 

ROI labelling were checked using the ENIGMA quality checking procedure 

(enigma.ini.usc.edu).  

Measures of reading ability were collected several years prior to scanning. The 

Components of Reading Examination (CORE) (Bates et al., 2004; Castles & Coltheart, 

1993), provides scores for regular, irregular, and non-word reading ability. CORE 

measures were collected through two separate studies. Test scores were calculated as the 

number of correct responses for the individual component subtests and were Box-Cox 

transformed to attain normality. A principal component factor score (CORE-PC) was 

derived from individual subtests, explaining 79% of the variance. Performance IQ was 

collected at age 16 years using the Multidimensional Aptitude Battery (Jackson, 1984). 

SES was assessed through the AUSEI06 (McMillan et al., 2009). QTIM measures were 

corrected for the same covariates as HCP measures, additionally controlling for slice 

acquisition direction (structural MRI measures only) and study source (CORE-PC score 

only). Duration between brain scanning and language testing was included as a covariate 
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for all bivariate analyses. All analyses completed on the HCP dataset were undertaken in 

the QTIM dataset. 

 

7.3 Results 

7.3.1 Demographics, Heritability, Covariate Effects, and Reliability of Reading 

Ability 

Descriptive statistics, heritability estimates and covariate effects for reading ability in the 

HCP and QTIM datasets are presented in Table 7.1. Twin correlations for reading ability 

score for MZ and DZ pairs were 0.64 and 0.37 respectively (HCP), and 0.75 and 0.23 

respectively (QTIM). Heritability estimates (‘A’; 95% CI) for reading ability were significant 

in both samples: HCP 0.52 (0.29, 0.70), QTIM 0.72 (0.58, 0.81). Estimates of common 

environmental influence (‘C’; 95% CI) were small for both datasets and could be dropped 

from models without significantly worse model fit: HCP 0.09 (0.00, 0.26); QTIM 0.00, (0.00, 

0.08). Unique environmental effects (‘E’; 95% CI) accounted for 0.38 (0.30, 0.49) and 0.28 

(0.19, 0.40) of the total phenotypic variance in the HCP and QTIM datasets respectively. 

Socioeconomic status and IQ were significant covariates in both datasets. A 1 SD increase 

in the socio-economic status measure was associated with a 0.10 SD and 0.15 SD 

increase in reading ability score in the HCP and QTIM datasets respectively, while a 1 SD 

increase in IQ was associated with a 0.36 SD and 0.29 SD increase in reading ability 

score in the QTIM and HCP datasets respectively, all other variables held constant). The 

test-retest reliability correlation of reading ability (controlling for covariate effects) was 0.65 

in the HCP dataset. 

 

7.3.2 Associations Between Cortical Structure and Reading Ability 

There was a significant phenotypic correlation between TORRT score and whole brain 

total surface area (rph = 0.15, p = 2.35E-05), which was due to a genetic contribution (rph-a 

= 0.13, rph-e = 0.02; Appendix 27). As shown in Figure 7.2, there was a significant 

phenotypic correlation between TORRT score and cortical surface area for six reading 

network ROIs (rph range 0.10 to 0.15). For three of these ROIs (superior temporal gyrus 
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left, fusiform gyrus left and right), the significant phenotypic association was due to genetic 

effects shared between reading ability and cortical surface area (Appendix 27). Phenotypic 

correlations between mean cortical thickness (whole brain or ROI) and reading ability were 

not significant (Appendix 27). Heritability estimates for individual cortical measures ranged 

from 0.41 to 0.70 for surface area, and from 0.54 to 0.76 for cortical thickness (Appendix 

27), and heritability estimates for global measures were 0.93 (total surface area) and 0.86 

(mean cortical thickness); heritability estimates taken from bivariate AE models between 

cortical structure and reading ability. Analyses without IQ as a covariate yielded similar 

findings to those controlling for IQ (results not shown). 

 

Table 7.1 Descriptive statistics for the HCP and QTIM datasets 
 HCP QTIM 

N 992 676 
Reading Age (Mean ± SD) 28.81 ± 3.71 years 17.08 ± 3.05 years 

Reading Age (Range) 22 - 36 years 12 - 25 years 
MRI Age (Mean ± SD) Same as reading 22.56 ± 3.21 years 

MRI Age (Range) Same as reading 16 - 30 years 
% Female 55% 60% 

Reading Ability Heritability* 0.52 0.72 
Reading Ability Covariates† Beta (p value) Beta (p value) 

Age -0.03 (0.58) 0.29 (1.77E-04) 
Age2 0.17 (5.96E-04) 0.32 (5.95E-05) 
Age3 0.22 (1.33E-03) 0.15 (0.10) 
Sex 0.09 (0.63) 0.37 (0.19) 

Age x sex 0.04 (0.43) 0.01 (0.92) 
Age2 x sex -0.25 (0.02) -0.13 (0.44) 
Age3 x sex -0.19 (4.63E-03) 0.03 (0.76) 

SEI 0.10 (4.90E-04) 0.15 (2.37E-04) 
IQ 0.36 (2.24E-31) 0.29 (1.42E-15) 

Reading Test Source‡ NA 0.48 (9.03E-06) 
*Heritability estimate for reading ability from univariate ACE model. Heritability estimates from the AE model 
were 0.63 (HCP) and 0.72 (QTIM). 
†Dummy variables were coded sex (male = 0, female = 1), reading test source (study 1 = 0, study 2 = 1); all 
other variables were standardised prior to analysis. The significance of covariate effects was tested by fitting 
ACE models in which the covariate of interest was dropped from the model (i.e. the regression coefficient 
was set to zero), but all other covariates remained, and assessing the significance of the covariate via 
likelihood ratio test. 
‡Reading measures in the QTIM datasets were collected through two separate studies 

 

7.3.3 The Influence of Global Effects 

When whole brain total surface area was included as a covariate in models, associations 

between regional surface area and reading ability were no longer significant (results not 

shown), indicating that genetic covariance between TORRT score and ROI surface area 
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was not region-specific (i.e. it was shared with whole brain surface area). Phenotypic 

correlations between regional cortical thickness and TORRT score remained not 

significant after correction for whole brain average cortical thickness (results not shown). 

Analyses without IQ as a covariate yielded similar findings to those controlling for IQ 

(results not shown). 

 

 
Figure 7.2 Phenotypic correlations, with genetic and environmental contributions, between surface 
area of reading network ROIs and TORRT score in the HCP dataset.  
Cortical regions in dark grey are not part of the reading network, and regions in silver are reading network 
ROIs for which a non-significant phenotypic correlation was found. 

 

7.3.4 Replication of Associations in QTIM 

The phenotypic and genetic association between total surface area and reading ability was 

not replicated in the QTIM dataset, neither were associations between regional cortical 

surface area (ROIs: inferior parietal left, supramarginal gyrus right, superior temporal gyrus 

left and right, fusiform gyrus left and right) and reading ability (Appendix 28). Moreover, 

there were no significant phenotypic associations between cortical surface area or 

thickness and reading ability (CORE-PC score) for any reading network ROIs. In addition, 

all phenotypic correlations were not significant when corrected for global effects, or not 

corrected for IQ. 
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7.4 Discussion  

Here we determined whether brain structure and reading ability are linked, and if so, 

whether this association results from shared genetic influences. This is the first study to 

examine genetic associations between measures of cortical structure (i.e. surface area 

and cortical thickness), and reading skill in non-impaired individuals. Whole brain total 

surface area showed a positive phenotypic association with reading ability, independent of 

general cognitive ability and socio-economic status. This association was underpinned by 

genetic factors shared between surface area and reading ability. However, this association 

was not replicated in an independent sample. In both datasets, no region-specific 

associations (i.e. independent of global effects) were found between reading ability and 

the surface area/cortical thickness of individual brain structures. 

The estimate of heritability for reading ability in the HCP dataset (52%; ACE model) was 

less than the estimate for QTIM (72%; ACE model), as well as other published estimates 

(Betjemann et al., 2010; Davis et al., 2014)(66% and 72% respectively; both estimates 

from ACE models). This was likely due to the older age of the HCP sample (mean 29 

years) compared to other datasets (17 years (QTIM); 11 years (Betjemann et al., 2010); 12 

years (Davis et al., 2014)). The phenotypic association between reading ability and whole 

brain surface area in the HCP dataset (rph = 0.21) is consistent with the results of 

Betjemann et al. (2010), in which an association was reported between total brain volume 

and reading ability (rph = 0.22) in a paediatric sample of good and poor readers. Further, in 

both the HCP dataset and the results of Betjemann et al. (2010), the phenotypic 

association between brain structure and reading ability was due to genetic influence 

shared between the two. The failure to replicate this association in an independent sample 

(QTIM) could relate to the substantial duration between brain imaging and reading 

assessment (mean duration 5.5 years) in the QTIM sample. Further, the strong negative 

skew of raw reading subtests in the QTIM sample could reflect a sampling bias of good 

readers (i.e. variation in written language ability was not adequately measured in the 

sample, making it difficult to detect associations with variation in cortical structure).  

Previous studies that related reading ability to cortical structure reported a thicker cortex in 

primarily left-hemisphere regions (Blackmon et al., 2010; Goldman & Manis, 2013; Zhang 

et al., 2013), and thinner cortex bilaterally to be associated with irregular word reading 

proficiency (Blackmon et al., 2010). Yet, in our comparatively large adult samples we failed 
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to observe any significant correlations between reading ability and cortical thickness. One 

possibility is that prior reports reflected, at least in part, contributions from IQ. However, in 

both the HCP and QTIM samples, region-specific associations between reading skill and 

brain structure were not significant with or without the inclusion of IQ as a covariate. More 

likely, the lack of consistency with past studies may relate to their substantially smaller 

sample sizes (Blackmon et al., 2010; Goldman & Manis, 2013; Zhang et al., 2013), N = 60, 

28, 226 respectively). It is also possible that associations between reading ability and 

cortical thickness vary across developmental stages (as reported for general intelligence 

(Menary et al., 2013)) and/or are specific to the measures of reading skill utilised.  

Brain imaging studies of dyslexia - a developmental disorder of reading – have reported 

cortical abnormalities in the language network bilaterally, primarily using measures of 

regular word and pseudoword reading, and grey matter volume (a function of cortical 

surface area and thickness). Meta-analyses implicated inferior frontal, occipitotemporal 

(fusiform gyrus) and inferior parietal (supramarginal gyrus) regions bilaterally (see 

Linkersdörfer, Lonnemann, Lindberg, Hasselhorn, & Fiebach, 2012; Richlan, Kronbichler, 

& Wimmer, 2013). Further, reduced inferior frontal and fusiform gyrus surface areas have 

been reported in adults with dyslexia as compared to controls (Frye et al., 2010), and 

Welcome, Chiarello, Thompson, and Sowell (2011) demonstrated reduced radial 

expansion (a measure similar to surface area) of multiple brain regions in poor compared 

to proficient adult readers. Surface area reductions have also been associated with 

maternal history of reading disability (Black et al., 2012), as have differences in structural 

brain networks constructed from surface area measures in individuals with familial risk for 

dyslexia (Hosseini et al., 2013. As most neuroimaging studies of dyslexia were conducted 

with children or adults who have experienced reading difficulty over a number of years, the 

cortical abnormalities reported could reflect either an etiological mechanism, or they could 

result from impoverished reading experience (Norton, Beach, & Gabrieli, 2014). This may 

explain why, in our sample of typical readers, no regional associations between reading 

ability and surface area were found.  

Researchers face many issues when assessing the phenotypic and genetic relationships 

between brain structure and language. For example, developmental timing differs between 

cortical regions, with higher-order association cortices maturing after lower-order 

sensorimotor cortices (Gogtay et al., 2004; Stiles & Jernigan, 2010). Further, genetic 
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influence on cortical thickness may gradually increase throughout late childhood and 

adolescence; there may also be sex differences in the maturation of language centres 

(including Broca’s and Wernicke’s areas) (Schmitt et al., 2014). By contrast, genetic 

influence on reading and spelling is greater during middle childhood years (7 to 9 years), 

possibly due to formal education in primary school reducing environmental influence 

(Byrne et al., 2013; Kovas et al., 2013). Consequently, the age(s) at which brain structure 

and language measures are acquired will affect the phenotypic and genetic relationships 

reported, so a longitudinal approach would be ideal.  

The results suggest some further steps. Firstly, as reading ability involves multiple 

processes, a single measure of reading ability may not adequately disentangle the 

underlying sub-components that contribute to variation in reading ability. Hence, future 

studies could use multiple measures of reading ability, each indexing different sub-

processes of reading ability, when examining associations with cortical structure (He et al., 

2013). Similarly, structural equation modelling could be used to decompose language 

ability into latent factors to enhance the detection of the neural substrates of language 

ability (Hoffman et al., 2017). Secondly, ROIs in the current study were based on standard 

anatomical delineations. These may not map directly onto functional and/or genetic 

divisions of the brain. A next step in this research could use ROIs based on brain 

functional networks, genetic networks, or structural connectivity. Such regions may show 

stronger associations than those based on anatomical divisions. Further, expanding 

analyses to include measures of white-matter integrity would allow testing the role of 

regional connectivity in language. In addition, although we controlled our written-language 

measures for domain general cognitive ability, associations found between reading ability 

may also represent other domain general cognitive abilities, such as working memory. It 

would be valuable to assess such associations through multivariate twin modelling, in 

which multiple cognitive abilities could be entered. Then the unique genetic covariance 

associated with brain structure and reading / spelling ability (and not general cognitive 

ability) could be estimated. Lastly, although our sample is one of the larger cohorts with 

both imaging and language measures, our ability to detect significant covariation is limited 

by sample size. Further, our analyses lack the power to fully explore potential common 

environmental influences, such as lateralised effects of family-level environment on brain 

structure or brain-behaviour linkages. These await larger studies.  
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7.5 Conclusion 

We found a significant association between whole brain total surface area and 

performance on the NIH Toolbox Oral Reading Recognition Test, independent of general 

cognitive ability and socio-economic status. This phenotypic association was due to 

genetic influences shared between the two. However, we were unable to replicate this 

finding in an independent sample using similar but not identical reading measures, 

possibly due to the substantial duration between language testing and brain imaging in 

that sample. In both datasets, region specific associations between cortical structure (i.e. 

independent of global effects) and reading ability were weak and not significant. We 

conclude that previously reported associations between cortical structure and reading 

ability may reflect, at least in part, confounding factors such as general cognitive ability 

and/or socio-economic status, and suggest that larger studies are required to further 

investigate associations between variation in reading ability and cortical structure.  
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Discussion and Conclusion 
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8 Discussion and Conclusion 

8.1 Overview 

This thesis aimed to examine genetic and non-genetic (i.e. environmental) contributions to 

normal variation in the structure of the human brain. Past studies show heritability 

estimates for global brain phenotypes (e.g. total brain volume) are well established, but the 

robustness of genetic effects for cortical structures are yet to be completely demonstrated. 

This is likely because of differences in the datasets used (sample size, participant age, 

study design (twin or family), and/or imaging methodology). Further, studies had not 

evaluated the reliability of their imaging measures, a critical step as measurement error 

typically sets the upper limit for heritability. To provide a normative reference of healthy 

brain structure for future studies of neurological and psychiatric disorders, a reliable and 

robust map of genetic and environmental influences on the brain is required. 

To this end, I followed two mains lines of study: firstly, quantifying the strength of genetic 

and environmental influences on phenotypic variance in brain structure (Chapters 4-5), 

and secondly, examining the genetic and environmental covariance between different 

brain structures, as well as between brain structure and cognitive ability (Chapters 5-7). 

Importantly, two independent imaging datasets, consisting of participants of a comparable 

age, were used to investigate similarities in patterns of genetic and environmental variance 

across samples and imaging methodology. Further, estimates of test-retest reliability for 

imaging measures were considered in conjunction with estimates of genetic and 
environmental variance to better evaluate differences in variance components within and 
between datasets. The following sections summarise the main findings from the above 

chapters (Table 8.1), and discus their implications within the broader context of this thesis. 
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Table 8.1 Aims and findings of empirical thesis chapters 
Chapter Aim/s Findings 

4. Genetic Complexity of Cortical 

Structure: Differences in Genetic and 

Environmental Factors Influencing 

Cortical Surface Area and Thickness 

• Estimate heritability of cortical surface area 

and thickness for 68 ROIs 

• Test for associations across ROIs for cortical 

surface area and/or cortical thickness 

• Estimate the genetic and environmental 

contributions to phenotypic associations 

across ROIs 

• Conduct the same analyses within an 

independent sample (HCP) to check for 

consistent patterns and whether effects are 

robust 

• Examine the reliability of imaging measures, 

and the degree to which they affect estimates 

of heritability  

• A wide range of region-specific heritability estimates 

(up to 65% (surface area) and 55% (cortical thickness)) 

• Heritability largely independent of test-retest reliability 

• For most ROIs, residual variance (i.e. not attributed to 

genetics) largely due to unique environmental 

influence, not measurement error 

• Wide variety in phenotypic correlations between 

corresponding left/right ROIs 

• Sparse phenotypic correlations across surface area 

measures, more moderate correlations across cortical 

thickness measures (covaried for global effects) 

• Genetic covariance responsible for phenotypic 

associations within surface area and cortical thickness 

ROIs, some environmental contributions to phenotypic 

associations for cortical thickness, indicating region-

specific genetically mediated networks are strongest 

for cortical thickness 

• Very little association between surface area and 

cortical thickness, replicating past studies showing 

surface area and thickness to be distinct characteristics 

of the cerebral cortex 

• Patterns of genetic variance similar in an independent 

dataset (HCP)   

   

5. Mean-Standardised and Relative 

Estimates of Genetic and 

Environmental Influence on Brain 

Structure Volume 

• Examine absolute amounts of variance 

components (standardised by the phenotypic 

mean) for ventricular, subcortical, and cortical 

volumes 

• Compare mean-standardised and relative 

measures of genetic variance 

• Use an independent sample (HCP) to 

examine whether findings can be replicated 

• A wide overall range in mean-standardised phenotypic 

variance (17-fold range), largest for the lateral 

ventricles, smallest for the hippocampus 

• Within structural divisions (ventricular, subcortical, 

cortical), ranges were more moderate, and similar 

across divisions (2 to 4-fold range) 

• No association between mean-standardised and 

relative genetic variance 



 

 

145 

• Patterns of mean-standardised genetic variance not 

explained by differences in measurement error or 

structure size 

• Results were similar in an independent sample (i.e. 

significantly larger mean-standardised genetic variance 

for the lateral ventricles compared to 

cortical/subcortical structures, moderate range in 

estimates across divisions (cortical, subcortical, 

ventricular) 

   

6. A Consistent Pattern of Genetic 

Parcellations of Cortical Surface Area 

Across Three Large Twin Datasets 

• Parcellate the cortical surface based on 

genetic covariance in cortical surface area 

• Compare genetic parcellations across 

datasets (QTIM, HCP, VETSA) 

• Genetic covariance best explained by 11-12 clusters in 

QTIM and HCP datasets 

• Clusters bilaterally symmetrical, matched boundaries of 

structure and function 

• Consistent pattern of genetic parcellations across three 

large, twin datasets, indicating that genetic 

parcellations of cortical surface area are robust across 

sample and methodology 

   

7. Genetic and Environmental 

Covariation Between Cortical Brain 

Structure (Surface Area, Thickness) 

and Reading Ability 

• Estimate phenotypic associations between 

reading ability and regional surface 

area/thickness of reading network ROIs 

• Quantify genetic and environmental 

contributions to phenotypic associations 

• Use an independent sample (QTIM) to 

examine whether findings can be replicated 

• HCP: significant phenotypic associations between 

surface area of several reading network ROIs and 

reading ability score, due to genetic covariance 

• Associations shared with whole brain total surface area 

(i.e. not region specific) 

• Findings not replicated in QTIM, suggesting the effects 

is not robust across sample and methodology, or not 

reliable  
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8.2 Genetic Variance 
Understanding the role of genetic influence on the brain is critical to understanding the 

regionalisation of the cortex (i.e. distinctions of structure/function). This thesis shows that 

at both the univariate and bivariate level (Chapter 4), there is significant, region-specific 

genetic influence on cerebral cortex variation (surface area, thickness) in the QTIM 

dataset. The strength of these genetic effects was not equal across ROIs, giving rise to a 

wide range of heritability estimates (surface area up to 65%; cortical thickness up to 55%), 

and regionalised, genetically mediated networks across the cortex. Importantly, these 

regional differences in genetic influences were largely independent of measurement error. 

Hence, dissimilarities in region-specific variance across the brain may reflect differences in 

function, maturational timing, evolution, experienced-related plasticity, and/or trophic 

influences (Eyler et al., 2011; Lenroot et al., 2009; Mechelli et al., 2005). Further, these 

findings were replicated in an independent sample of twins and singletons (HCP), 

indicating these region-specific effects are robust across sample and imaging methodology 

(discussed in more detail below).  

In Chapter 5 we found no association between mean-standardised and relative measures 

of genetic variance for brain structure. Though this was expected based on studies of 

other biological and life-history traits (Hansen et al., 2011; Houle, 1992), it was important 

to empirically demonstrate this for human brain morphology. This lack of association is 

significant, as it indicates that new insights into brain development could be gained from 

changing the way in which the variance components of brain structure are considered. For 

example, investigating amounts of mean-standardised variance (genetic/environmental) in 

brain structure for healthy controls and patients could reflect differences in the histogenetic 

processes underlying brain development between these groups. While further research is 

required to understand the implications of differences in mean-standardised absolute 

variance amounts, their usefulness may lie in elucidating patterns of genetic variance in 

the brain not visible through heritability estimates. 

Building upon the results of Chapter 4, we estimated genetic associations across the 

cortical surface at a finer detail (i.e. vertex-wise), using a clustering algorithm to create a 

genetic parcellation of the cerebral cortex (Chapter 6). Despite the presence of greater 

genetic covariance for cortical thickness than surface area at the ROI level (Chapter 4), we 
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focused on the more reliable cortical measure, surface area, to maximise our ability to 

detect genetic covariance. The finding of generally weak, region-specific genetic 

associations across the cortex for surface area (Chapter 4) appear in contrast to the 

findings of Chapter 6, in which 12, maximally genetically correlated divisions of the cortical 

surface area were identified based on vertex-wise surface area measures. How could 

genetic covariance in cortical surface area be best explained by a 12-cluster solution, 

when the results of Chapter 4 suggest that outside of the occipital lobe, there is little 

region-specific genetic covariance between regional surface area?  

Firstly, vertex-based measures of surface area are more heritable than ROI-based 

measures, possibly due to the degree of spatial averaging in vertex-based approaches 

(Eyler et al., 2012), which could result in higher genetic covariance. Secondly, similarities 

in the genetic associations between cortical locations for ROI and vertex-wise measures 

suggest that both approaches tell a similar story, albeit in different ways. For example, in 

the QTIM dataset, the strong genetic covariance at the ROI level found in the occipital lobe 

(Chapter 4, Figure 4.3b) was reflected in the delineation of Cluster 12, which consisted 

largely of the four bilateral occipital ROIs (Chapter 6, Figure 6.2a and Figure 6.3a). 

Further, low genetic covariance was found between the superior temporal and 

inferior/middle temporal gyri (Chapter 4, Figure 4.3b), which is mirrored in the delineation 

of Cluster 6 (which includes vertices from the superior temporal ROI) and Cluster 7 (which 

includes vertices from the middle and inferior temporal ROIs; Chapter 6, Figure 6.2a and 

Figure 6.3a). Though it is difficult to compare results from ROI and vertex-wise analyses 

(as vertex-wise measures are not constrained to the predefined boundaries of ROI 

measures), the similarities between the approaches support the existence of genetically-

mediated cortical networks.  

 

8.3 Environmental Variance 
While imaging genetics studies typically focus on genetic effects, it is equally important to 

consider non-genetic (i.e. environmental) influence on individual differences in brain 

structure. At the univariate level, we found significant and substantial environmental 

influence on variation for cortical surface area and thickness (Chapter 4), and cortical, 

subcortical, and ventricular volumes (Chapter 5). In-line with previous twin imaging 
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studies, these environmental effects were predominantly attributed to unique or non-

shared environment (‘E’) rather than common or shared environment factors (‘C’) 

(Blokland et al., 2012; Kremen et al., 2010; Schmitt et al., 2008). However, it is important 

to consider that the sample size of twin imaging studies is typically underpowered to detect 

common environment effects; using theoretical predictions, Visscher, Gordon, and Neale 

(2008) estimate sample sizes into the thousands to detect small to moderate effects of 

common environment. Hence, the non-significant estimates of variance attributed to 

common environment sources by studies (the present thesis included) is likely due to a 

lack of power rather than the absence of ‘C’ effects. Increasing the number of twin pairs 

improves the ability to detect ‘C’ effects, but this is generally not possible for imaging 

studies due to the prohibitive cost of MRI acquisition. In the absence of large sample sizes 

and/or very strong ‘C’ effects, it may be more pertinent to use models specifying only 

additive genetic and unique-environment variance sources (AE), and possibly use ‘non-

traditional’ study designs to detect common environment effects (see Burt (2014) for a 

further discussion of ‘non-traditional’ designs).  

We found that inter-regional associations across the cortex were predominantly due to 

genetic, not environmental covariation (Chapter 4). This is interesting given that univariate 

analyses showed that a substantial proportion of variance in brain structure was attributed 

to environmental factors. This would suggest that the sparse environmental associations 

found were not due to a lack of environmental variance (which would reduce our ability to 

detect environmental associations). The lack of environmental associations may indicate 

that a large proportion of variance attributed to unique environmental sources represents 

stochastic biological effects or experiences that do not relate to structural covariance 

networks in the cortex. Additionally, the rarity of non-genetic covariance might indicate that 

environmentally mediated structural networks are limited, or not detected at the 

macroscale.  

While the genome provides a limited search space for identifying the causes of genetic 

variation, the causes of environmental variation are inherently more difficult to elucidate. 

Individual differences due to environmental factors could relate to any number of factors 

(e.g. drug and alcohol use, childhood adverse events), as well as stochastic biological 

effects that cannot be predicted. However, elucidating the causes of environmental 

variance in the brain can be greatly assisted by collecting data on high quality, 
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environmental variables. In this regard, the Human Connectome Project (Van Essen et al., 

2013) is an excellent example.  

 

8.4 Robustness of Findings Across Datasets 
As meta/mega-analysis approaches become more common in imaging genetics (e.g. 

ENIGMA (Thompson et al., 2014), CHARGE (Psaty et al., 2009)), it is important to 

consider the replicability of findings from different samples, field strengths, and acquisition 

parameters. Encouragingly, in this thesis we show that patterns of genetic variance, at 

both the univariate (Chapters 4, 5) and bivariate (Chapters 4, 6, 7) level were generally 

robust across different samples and methodologies. Importantly in Chapter 6, we found 

that patterns of genetic parcellations of cortical surface area were similar across three 

independent twin datasets. Studies like Chapter 6 are critical to our understanding of the 

consistency of genetic effects across different samples with different MRI acquisition 

parameters.  

That is not to say that results were identical between the two datasets. Most notably, the 

association between cortical structure and reading ability in the HCP dataset was not 

replicated in the QTIM dataset (Chapter 7). This finding could indicate that associations 

between cortical structure and reading ability are not robust across sample and 

methodology. Conversely, if samples and measures are equivalent between datasets, 

then shared genetic effects between brain structure and written language ability may not 

be reliable.  

It is important to learn the lessons of imaging candidate gene studies, where many 

underpowered studies reported associations between candidate genes and brain 

measures that were never replicated. As imaging datasets like the HCP are publicly 

available, replicability should be a focus for imaging genetics studies.  

 

8.5 Test-Retest Reliability 
One of the advantages of software suites such as FreeSurfer is that it provides 

reproducible measures of brain structure (Han et al., 2006; Jovicich et al., 2009; Madan & 
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Kensinger, 2017; Morey et al., 2010), which tend to show high consistency with expert, 

manual delineations (Desikan et al., 2006; Morey et al., 2009; Ochs et al., 2015; Perlaki et 

al., 2017). However, we cannot assume that all brain measures extracted from automated 

segmentations are highly accurate and reliable; we must consider that measurement 

reliability is likely region-specific. The importance of considering the test-retest reliability of 

imaging measures alongside estimates of (co)variance in brain morphology was stated 

many times throughout this thesis, and should not be undervalued. Measurement error 

artificially reduces the similarity between MZ twins, in turn reducing our ability to detect 

genetic variance. Phenotypes with high test-retest reliability provide greater confidence 

that heritability estimates are not limited by measurement reliability (i.e. estimates would 

not be larger if the phenotype was more reliably measured), and that variance attributed to 

residual sources represents the effect of unique environmental factors and not 

measurement error. 

The results of this thesis suggest that indeed, estimates of variance components for 

region-specific cortical surface area/thickness are largely independent of measurement 

error (Chapter 4). This is encouraging, particularly as the imaging datasets used (QTIM, 

HCP) varied in terms of their imaging methodology. Morphological measures in the QTIM 

dataset were extracted from a single T1 weighted image, whereas the corresponding 

measures for the HCP dataset were extracted from multiple T1 and T2 weighted images. A 

comparison of the test-retest correlations from the QTIM and HCP datasets (Chapter 4) 

shows that test-retest correlations are higher for HCP measurements, particularly for 

cortical thickness. MRI measures of cortical thickness are especially sensitive to variability 

in tissue contrast, and it is likely that the higher quality acquisition parameters of the HCP 

dataset are reflected in the higher test-retest correlations for that dataset.  

Future studies should focus on maximising the test-retest reliability of their imaging 

phenotypes to maximise their ability to detect genetic and environmental effects. This is 

particularly relevant for studies seeking to use novel image acquisition or analysis 

techniques that are not as widely used and validated as existing methodologies such as 

FreeSurfer morphometry statistics.  
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8.6 Genes, Brain, and Behaviour 
In Chapter 7, we found significant associations between reading ability and the surface 

area of several cortical regions in the reading network. This association is influenced by a 

common genetic factor; however, this genetic factor is not region-specific (i.e. effects are 

shared with whole brain total surface area). Evidence of region-specific associates 

between brain structure and cognition have been difficult to elucidate, with genetic 

variance between individual brain structures and cognitive phenotypes typically shared 

with a global brain phenotype (Bohlken et al., 2014; Bohlken et al., 2016). The genetic 

association between brain structure and cognitive ability appears to be influenced by a 

complex configuration of brain development (Vuoksimaa et al., 2016), and is unlikely to be 

detected using broad measures of brain morphology. Large samples, using a multivariate, 

whole brain approach will likely be required to detect an association between individual 

differences in brain structure and cognition (Ritchie et al., 2015).  

Patterns of structural covariance (Chapters 4, 6) may recapitulate functional networks in 

the brain, as synaptic connectivity and/or use-dependent growth between brain regions 

may lead to brain structures covarying in their morphology (Alexander-Bloch, Giedd, et al., 

2013). However, further studies are required to quantify the relationship between structural 

covariance and brain function to advance the use of structural covariance as a metric to 

understand behavioural and mental illness.  

Elucidating pathways between genes, brain, and behaviour is an incredibly difficult task, 

and the field of neuroimaging genetics is very much still in the early stages of 

understanding these relationships. It is hoped that the insights provided by this thesis into 

the genetic and environmental factors underlying anatomical organisation advance our 

understanding of the structure of neural circuits underlying brain function.   

 

8.7 The Continuing Importance of Twin Imaging Studies 
At a time when the sample size of brain imaging GWAS are increasing to over 20,000 

participants (Adams et al., 2016; Hibar et al., 2017), one might wonder if twin studies are 

still relevant to the field of neuroimaging genetics/genomics. However, we argue that there 
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is still much to learn about genetic (and non-genetic) influences on the brain from twin and 

family imaging studies.  

As mentioned in Chapter 2, heritability can be estimated directly from the genome through 

CGTA (Yang et al., 2011). However, GCTA requires very large sample sizes (i.e. 

thousands) to produce accurate heritability estimates. While this approach is feasible for 

consortia and biobanks, imaging studies are generally too small to accurately estimate 

GCTA heritability (without data sharing, which is not always possible). Hence, the classical 

twin design provides a methodology to estimate heritability in a much smaller sample size. 

The smaller sample sizes required for twin studies compared to studies of unrelated 

individuals allow twin studies to collect extensive phenotypic data. Hence, twin studies 

provide a powerful method to establish the heritability of novel imaging phenotypes (e.g. 

complex task fMRI, connectome imaging) and/or examine the genetic overlap between 

neuroimaging measures and behavioural phenotypes (e.g. substance use, diet, sleep, 

risk-taking). In this way, twin studies can provide the crucial, first evidence of genetic 

contributions to the complexities of the brain and behaviour, which later, larger studies can 

expand upon. 

The discordant MZ twin design is another strong example of the usefulness of twin studies. 

As MZ twin pairs are naturally matched on genetic and shared environmental 

backgrounds, they provide a powerful method to examine the influence of unique 

environmental factors in situations where a characteristic/disease is present in one twin 

pair member but not the other (van Dongen, Slagboom, Draisma, Martin, & Boomsma, 

2012; Vitaro, Brendgen, & Arseneault, 2009). The value of this approach lies in its ability to 

distinguish phenotypic associations that are due to causation (one phenotype influences 

another) from associations due to overlapping effects (two phenotypes are influenced by 

the same genetic or environmental influences). Though this method is constrained by the 

availability of MZ twin pairs discordant for a phenotype, it may be able to provide important 

insights into the biological pathways underlying complex traits that standard case-control 

studies cannot. Another possible extension of twin analysis is to examine casual 

relationships through family confounding (Hopper et al., 2012). This approach, like 

Mendelian randomisation (Greenland, 2000), aims to determine if observed relationships 

are causal, and if so, infer the direction of this causality. However, the applicability of this 
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technique to twin imaging studies is yet to be examined, and the discordant MZ twin 

design is likely the best method to examine causality in twin studies of brain and function.    

 

8.8 Potential Limitations 
Though both the QTIM and HCP datasets have the benefit of comprising of healthy young 

adult participants with extensive imaging and non-imaging phenotyping, there are several 

potential limitations of these datasets. Foremost is the suggestion that results based on 

twin studies are not generalizable to the wider population (i.e. singletons) due to 

differences in intrauterine and family environments in twins compared to singletons (Hay & 

O'Brien, 1983; B. Price, 1950). However, studies have demonstrated that twin designs 

provide valid measures of heritability for brain morphometry, and importantly, that these 

results are generalizable to the non-twin population (Ordaz et al., 2010; Pol et al., 2002).  

There is likely a slight sampling/participation bias in both datasets. Females outweigh 

males in both datasets (approximately 65% and 55% of participants were female in the 

QTIM and HCP datasets respectively). To control for this bias, sex (and sex by age 

interactions) were included as covariates in all analyses. Further, participants from the 

QTIM and HCP datasets were, on average, more intelligence than the general population 

(based on intelligence composite scores). As structural differences have been observed in 

individuals with high intelligence (Brant et al., 2013), this is a limitation that cannot be 

dismissed. However, the inclusion of global brain measures (i.e. total surface area, mean 

cortical thickness) as covariates may have reduced effects of high intelligence. This topic 

awaits further research. 

Lastly, it must be noted that while sample sizes in this thesis are large for imaging studies, 

they are small for twin studies. Both the QTIM and HCP datasets would benefit from 

increased sample sizes, which would improve the accuracy of variance components 

estimates, particularly for common environment estimates (Visscher, Gordon, et al., 2008). 
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8.9 Future Directions 
Future twin studies should use high-level MRI acquisition techniques to measure brain 

structure at a finer detail, and focus on measures of structural connectivity and/or complex 

task fMRI to demarcate neural networks. At the same time, future studies should examine 

the reliability of their imaging measures to ensure that their ability to detect genetic effects 

is not limited by measurement error. If so, studies should seek to improve the test-retest 

reliability of their measures (e.g. altering acquisition parameters, using the average of 

multiple scans).  

Longitudinal studies are required to investigate the stability of genetic effects across the 

lifespan, particularly during critical neurodevelopmental periods like infancy and 

adolescence. Further, longitudinal studies provide a valuable method to evaluate changes 

in behavioural measures and possible corresponding changes in brain structure. 

Importantly, longitudinal studies should also examine group differences (e.g. sex, 

socioeconomic status) across neurodevelopment.  

In Chapter 4, we investigated region-specific variance by using a whole brain covariate 

(total surface area/mean cortical thickness) to remove variance explained by a common, 

whole brain factor. However, a better methodology may be to use multivariate (as opposed 

to bivariate) twin modelling, as used by Renteria et al. (2014) when investigating the 

genetic architecture of subcortical structures. Multivariate models allow for the 

identification of common and region-specific variance sources, and may further quantify 

the extent that genetic and/or environmental effects are shared across, or unique to, 

individual cortical regions. Further extending multivariate studies to include subcortical, 

cerebellar, and white matter structures is a promising future direction which may help in 

detecting associations with behavioural phenotypes (Ritchie et al., 2015; Sabuncu et al., 

2012).  

At the genomics level, measures sharing genetic covariance (Chapter 4) could be used as 

phenotypes in multivariate GWAS, which would likely increase statistical power to identify 

genetic variants (Couvy-Duchesne et al., 2016), a valuable addition to neuroimaging 

genetics studies, which are typically underpowered. Additionally, the genetic clusters that 

showed high similarity across datasets (Chapter 6) are interesting phenotypes for future 

GWAS, as they may be closer to the level of genetic function than neuroanatomical 
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regions. Further, using genomic techniques to investigate the genetic architecture of 

structures with low and high mean-standardised absolute genetic variance could elucidate 

what underlies the wide range of variability in brain morphology (Chapter 5). Lastly, it is 

important to look beyond common genetic variants in seeking to understand the 

complexity of the brain; the characterisation of epigenetic modifications (Wiers, 2012), 

copy number variants (Redon et al., 2006), and gene expression (Kang et al., 2011) in the 

brain are likely to shed new light on individual differences in brain morphology.  

 

8.10 Conclusion 
This thesis illustrates a complex pattern of genetic and environmental influences on human 

brain morphology. Encouragingly, these patterns of genetic and environmental influence 

were largely similar between two independent datasets of healthy young adults, and 

further, differences in measurement error are unlikely to underlie these complexities. 

Future work should focus on more sophisticated MRI analysis, and collect dense genetic 

and environmental variables, to facilitate the next wave of studies investigating the 

aetiology of variation in brain morphology.
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Appendix 2 The Desikan-Killiany Atlas, with Total Surface Area and Mean Cortical Thickness 
Estimates in the QTIM Dataset  

 

Total surface area (mm2; black) and mean cortical thickness (mm; blue) for 34 regions of interest (per hemisphere) of the Desikan-

Killiany atlas. Grey outline denotes lobar divisions (frontal, parietal, occipital, temporal, cingulate, insular). 

BSTS banks of the superior temporal sulcus; CACING caudal anterior cingulate; CMFR caudal middle frontal gyrus; CUN cuneus cortex; 

ENT entorhinal cortex; FRP frontal pole; FUS fusiform gyrus; INFPAR inferior parietal cortex; INFTEMP inferior temporal gyrus; INS 

insular cortex; ISTHMCING isthmus cingulate; LATOCC lateral occipital cortex; LATORB lateral orbitofrontal cortex; LING lingual gyrus; 

MEDORB medial orbitofrontal cortex; MIDTEMP middle temporal gyrus; PARAC paracentral lobule; PARAH parahippocampal gyrus; 

PARSOPE pars opercularis; PARSORB pars orbitalis; PARSTR pars triangularis; PERIC pericalcarine cortex; POSTC postcentral gyrus; 

POSTCING posterior cingulate; PREC precentral gyrus; PRECUN; precuneus cortex; RACING rostral anterior cingulate; RMFR rostral 
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middle frontal gyrus; SUPFR superior frontal gyrus; SUPPAR superior parietal cortex; SUPTEMP superior temporal gyrus; SMG 

supramarginal cortex; TEMPP temporal pole; TTEMP transverse temporal cortex.
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Appendix 3 Descriptive Statistics for Surface Area and Cortical Thickness in the QTIM Dataset 
Number of excluded measures, mean (SD), minimum, maximum, percentage difference between male and female raw means, and 

number of outliers (± 3.29 SD) for QTIM surface area and cortical thickness (N = 923). 

      Surface Area (mm2)   Cortical Thickness (mm) 

  Excluded*   Mean (SD) Minimum Maximum M/F Diff† Outliers‡   Mean (SD) Minimum Maximum M/F Diff† Outliers‡ 

Frontal              
Superior frontal gyrus left 0  7344 (860) 5068 10177 11.81 2  2.96 (0.15) 2.49 3.47 -1.97 2 

Superior frontal gyrus right 1  7131 (846) 4843 10094 11.23 2  2.82 (0.14) 2.35 3.31 -1.33 3 
Rostral middle frontal gyrus left 1  5746 (797) 3708 8977 13.47 2  2.48 (0.13) 2.08 2.9 -1.49 1 

Rostral middle frontal gyrus right 2  5827 (794) 3903 9376 12.75 4  2.29 (0.12) 1.95 2.7 -2.04 2 
Caudal middle frontal gyrus left 1  2381 (383) 1315 3528 10.82 0  2.76 (0.15) 2.17 3.33 0.53 2 

Caudal middle frontal gyrus right 0  2158 (400) 1187 3554 12.25 3  2.64 (0.15) 2.17 3.26 -0.31 3 
Pars opercularis left 1  1735 (267) 1020 2619 9.80 1  2.78 (0.15) 2.33 3.49 1.13 2 

Pars opercularis right 3  1437 (236) 803 2342 9.85 3  2.7 (0.16) 2.3 3.23 0.16 2 
Pars triangularis left 1  1330 (205) 791 2064 11.49 2  2.6 (0.16) 2.08 3.06 -2.16 1 

Pars triangularis right 3  1511 (250) 913 2422 10.60 2  2.51 (0.15) 2.14 2.96 -1.13 0 
Pars orbitalis left 1  638 (83) 425 937 9.67 1  2.69 (0.24) 1.94 3.65 -3.45 2 

Pars orbitalis right 0  774 (101) 493 1169 11.21 1  2.56 (0.23) 1.87 3.29 -3.03 0 
Lateral orbitofrontal cortex left 1  2535 (318) 1663 3557 9.17 0  2.57 (0.17) 2.03 3.07 -2.63 1 

Lateral orbitofrontal cortex right 0  2510 (329) 1668 3837 10.30 1  2.49 (0.17) 1.94 3.06 -1.39 3 
Medial orbitofrontal cortex left 0  1889 (250) 1147 2826 9.19 2  2.32 (0.18) 1.74 2.9 -3.54 1 

Medial orbitofrontal cortex right 0  1863 (235) 1147 2604 8.13 0  2.27 (0.19) 1.7 2.99 -3.88 1 
Precentral gyrus left 4  4916 (598) 3508 7128 13.35 3  2.68 (0.13) 2.19 3.08 -0.05 5 

Precentral gyrus right 8  4968 (609) 3588 7148 12.79 1  2.62 (0.13) 2.06 3.15 -0.59 7 
Paracentral lobule left 2  1382 (189) 810 2079 7.20 2  2.53 (0.15) 2.08 3.07 -0.30 1 

Paracentral lobule right 1  1553 (236) 995 2459 9.98 5  2.53 (0.16) 1.97 3.05 -0.03 2 
Frontal pole left 0  219 (35) 110 339 7.56 1  2.73 (0.35) 1.82 4.01 -8.28 3 

Frontal pole right 0  288 (43) 172 451 7.45 1  2.6 (0.33) 1.74 3.73 -7.89 2 
Parietal              

Superior parietal cortex left 0  5494 (668) 3762 8565 10.94 2  2.29 (0.11) 1.95 2.66 1.19 0 
Superior parietal cortex right 0  5560 (678) 3747 7867 11.65 1  2.33 (0.12) 1.92 2.66 0.95 1 

Inferior parietal cortex left 0  4578 (646) 2973 6903 12.62 2  2.51 (0.13) 2.16 3.02 1.94 3 
Inferior parietal cortex right 1  5471 (755) 3766 8327 13.54 4  2.64 (0.13) 2.13 3.14 1.10 4 

Supramarginal cortex left 8  3949 (590) 2438 6328 13.48 3  2.72 (0.14) 2.23 3.19 1.96 4 
Supramarginal cortex right 10  3769 (532) 2335 6024 12.12 4  2.72 (0.13) 2.31 3.1 1.16 0 
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Postcentral gyrus left 4  4179 (508) 3029 6023 11.69 2  2.18 (0.12) 1.85 2.52 0.94 0 
Postcentral gyrus right 8  4011 (513) 2791 5841 11.88 4  2.15 (0.12) 1.74 2.58 0.55 5 

Precuneus cortex left 0  3910 (497) 2684 5696 12.53 4  2.51 (0.13) 2.07 2.95 1.78 2 
Precuneus cortex right 0  4099 (545) 2802 5887 13.07 1  2.56 (0.13) 2.09 3 1.44 2 

Occipital              
Lateral occipital cortex left 0  4868 (578) 3398 6782 11.97 1  2.09 (0.11) 1.71 2.52 0.11 3 

Lateral occipital cortex right 0  4826 (616) 3167 7003 12.62 1  2.27 (0.12) 1.94 2.7 -0.09 1 
Lingual gyrus left 0  3049 (411) 1965 4210 10.90 0  2.02 (0.11) 1.66 2.43 1.70 3 

Lingual gyrus right 0  3170 (392) 2013 4512 9.78 1  2.08 (0.12) 1.72 2.57 1.39 3 
Cuneus cortex left 0  1523 (215) 916 2332 11.71 3  1.9 (0.13) 1.55 2.43 0.03 1 

Cuneus cortex right 1  1599 (222) 803 2275 12.76 2  1.93 (0.14) 1.53 2.43 -0.60 2 
Pericalcarine cortex left 0  1387 (231) 766 2160 10.88 2  1.73 (0.13) 1.33 2.15 -0.54 1 

Pericalcarine cortex right 0  1576 (243) 797 2262 11.53 0  1.68 (0.14) 1.33 2.15 -1.17 2 
Temporal              

Superior temporal gyrus left 2  3800 (471) 2528 5993 11.59 5  2.78 (0.18) 2.24 3.31 -0.29 0 
Superior temporal gyrus right 2  3597 (414) 2573 5172 9.50 3  2.76 (0.17) 2.19 3.36 0.22 2 

Middle temporal gyrus left 2  2874 (417) 1788 4228 12.40 0  2.64 (0.2) 2.12 3.31 -1.02 1 
Middle temporal gyrus right 2  3231 (438) 2153 4732 12.31 2  2.64 (0.19) 2.11 3.35 -2.19 3 
Inferior temporal gyrus left 2  3120 (484) 1881 4897 12.89 4  2.32 (0.18) 1.83 2.99 -1.70 2 

Inferior temporal gyrus right 2  3010 (473) 1888 4994 12.45 4  2.43 (0.18) 1.82 3.05 -2.73 2 
Banks of the superior temporal sulcus left 0  1014 (175) 569 1792 11.62 6  2.54 (0.18) 1.91 3.14 2.58 2 

Banks of the superior temporal sulcus right 0  945 (148) 592 1546 11.21 3  2.69 (0.17) 2.17 3.33 0.91 2 
Fusiform gyrus left 1  3273 (432) 1967 5049 11.50 3  2.42 (0.17) 1.88 3.05 -1.33 1 

Fusiform gyrus right 2  3217 (438) 1849 4703 12.72 1  2.57 (0.15) 2.09 3.07 -0.84 1 
Transverse temporal cortex left 1  501 (85) 298 861 8.38 4  2.27 (0.23) 1.35 3.05 -0.75 2 

Transverse temporal cortex right 0  358 (62) 228 573 7.93 3  2.36 (0.22) 1.6 2.97 0.41 1 
Entorhinal cortex left 1  423 (87) 170 759 13.94 5  2.73 (0.43) 1.57 4.24 -0.47 2 

Entorhinal cortex right 3  372 (97) 109 814 9.24 10  2.81 (0.47) 1.69 4.45 0.44 2 
Temporal pole left 3  480 (62) 279 676 7.80 1  3.15 (0.48) 1.63 4.42 -7.31 0 

Temporal pole right 4  427 (69) 189 661 3.44 3  3.21 (0.53) 1.36 4.56 -2.31 1 
Parahippocampal gyrus left 3  734 (107) 483 1103 8.87 3  2.73 (0.26) 1.96 3.47 0.06 0 

Parahippocampal gyrus right 1  723 (102) 437 1190 9.19 8  2.65 (0.23) 1.98 3.4 0.36 2 
Cingulate              

Rostral anterior cingulate left 0  847 (165) 363 1499 13.28 2  2.99 (0.22) 2.23 3.73 -2.42 2 
Rostral anterior cingulate right 1  726 (145) 349 1301 13.07 5  2.78 (0.23) 2 3.51 -1.40 1 

Caudal anterior cingulate left 1  650 (135) 336 1148 8.64 4  2.84 (0.22) 2.19 3.73 -1.82 5 
Caudal anterior cingulate right 1  782 (158) 322 1488 9.62 5  2.68 (0.22) 2.11 3.43 -0.73 2 

Posterior cingulate left 0  1189 (183) 674 1875 9.44 1  2.72 (0.17) 2.2 3.42 0.46 2 
Posterior cingulate right 1  1212 (183) 767 1797 10.23 0  2.68 (0.15) 2.18 3.31 1.43 2 

Isthmus cingulate left 1  990 (179) 570 1636 14.15 4  2.67 (0.21) 2.04 3.52 0.65 3 
Isthmus cingulate right 0  930 (161) 535 1712 10.75 2  2.61 (0.22) 2 3.27 1.26 0 

Insular              
Insular cortex left 1  2294 (297) 1543 3533 9.69 7  2.96 (0.17) 2.41 3.4 2.07 0 
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Insular cortex right 1   2310 (296) 1644 3582 10.31 4   2.94 (0.19) 2.27 3.49 1.48 2 
*Variables were excluded based on visual inspection of the accuracy of cortical parcellations as per ENIGMA protocols (enigma.ini.usc.edu).  
†Percentage difference between male and female raw means; positive (negative) percentage denotes larger/thicker value for males (females). 
‡Outliers ± 3.29 SD from the mean were replaced by the corresponding threshold value (i.e. ± 3.29). 
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Appendix 4 The Classic Twin Design and the AE Bivariate Twin Design 

 

(a) The classic twin (ACE) model. The model partitions the variance in a phenotype into additive genetic (A), common or shared 

environment (C) and unique or non-shared environment (E) sources (Neale and Cardon 1992). Estimates of unique environment also 

include measurement error, as it is random and unrelated to twin similarity. The additive genetic factors (A) correlate at 1 for MZ and 0.5 

for DZ twins (who share 100% and (on average) 50% of their genetic material respectively), the common environment factors (C) 

correlate at 1 for both MZ and DZ (the model assumes MZ and DZ twins raised together experience similar environments), and the 

unique environment factors (E) are uncorrelated between twin pairs as this represents environmental influence affecting one twin only. To 

determine the most parsimonious model, nested models containing AE, CE, or E sources of variance were compared to the fully 

saturated ACE decomposition. We assessed the fit of the constrained models by examining the -2 log likelihood difference between the 

ACE model and the reduced model (AE, CE or E). The difference in the maximum likelihood (assessed through the -2 log likelihood 

difference) is distributed as a chi-squared statistic for a given number of degrees of freedom (equal to the difference in the number of free 

parameters estimated), which denotes whether the parameter is significant. If a reduced model is significant, this indicates that the 
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parameter removed from the model accounted for a significant proportion of the phenotypic variance. (b) The AE bivariate twin design. 

The variance in the observed variables (phenotypes; denoted as rectangles) is partitioned into additive genetic (A) and unique 

environment (E) sources; represented as circles. Effects of common environment (C) were not assessed in this model. The correlation 

between genetic components is equal to 1 for MZ and 0.5 for DZ twins respectively. Double headed arrows represent the covariance 

between variables, or the covariance of a variance with itself. Unique environment components are uncorrelated. The design assumes 

that the first genetic variable (A1) explains genetic variance in the first phenotype (superior frontal gyrus left surface area) and the second 

phenotype (superior frontal gyrus right surface area). Any variance in the second phenotype (i.e. specific variance) which is not due to 

the first latent variable is assumed to be due to a second latent variable (A2). Latent variables are specified for each source of variance 

specified in the model. It is important to note that while the first genetic variable (A1) explains variance in the first and second phenotype, 

it cannot be interpreted as a common factor as it includes both common (a21) and specific (a11) variance (Loehlin, 1996). From the 

covariance decompositions, we further estimated genetic, environmental, and phenotypic correlations. Genetic (environmental) 

correlations indicate the extent to which two phenotypes share genetic (environmental) variance. Both genetic and environmental 

correlations underlie the phenotypic correlation. As a high genetic correlation between two traits can be observed, even if the traits 

themselves have low heritability, a high genetic correlation can be misleading when genes explain only a small portion of the phenotypic 

variance. Hence, we examined shared genetic influence between ROIs by calculating the genetic contribution to the phenotypic 

correlation (rph-a): 

!(#$%	1	ℎ)*+,-.+/+,0) 	× 	3)4),+5	56**)/-,+64	 ×	!(#$%	2	ℎ)*+,-.+/+,0) 

rph-a is easily conceptualised as the phenotypic correlation (rph) between two traits based only on the shared genetic variance. We 

similarly calculated the environmental contribution to the phenotypic correlation (rph-e). Both rph-a and rph-e were computed using variance 

estimates from the bivariate model in which the genetic (environmental) correlations were estimated. The significance of the genetic or 
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environmental contribution to the phenotypic correlation was assessed by fitting a reduced model in which the genetic or unique 

environmental covariance between ROIs (a21 or e21 respectively) was set to zero and assessing model fit. The significance of the 

phenotypic correlation was assessed by setting both the genetic and environmental covariances between ROIs to zero.
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Appendix 5 Regression Coefficients and q values for Surface Area Covariates in the QTIM 
Dataset 

  Total Surface Area Age Age2 Age3 Sex Age x Sex Age2 x Sex Age3 x Sex Acquisition Orientation* 

  
Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value 

Frontal                   

Superior frontal gyrus left 0.85 3.44E-187 -0.04 0.51 -0.07 0.19 -0.10 0.06 -6.73E-04 1.00 0.03 0.76 0.01 0.98 0.03 0.76 -0.13 0.09 

Superior frontal gyrus right 0.86 1.23E-180 -0.01 0.90 -0.06 0.32 -0.09 0.15 0.13 0.68 0.02 0.78 -0.03 0.89 0.02 0.89 1.02E-03 1.00 

Rostral middle frontal gyrus left 0.82 2.19E-157 0.01 0.93 -0.02 0.86 -0.07 0.33 0.14 0.68 -0.03 0.72 -0.04 0.84 6.83E-04 1.00 -0.25 2.89E-04 
Rostral middle frontal gyrus right 0.81 5.98E-142 0.02 0.84 0.02 0.87 0.03 0.81 0.18 0.60 -0.03 0.78 -0.09 0.67 -0.07 0.38 -0.19 0.02 

Caudal middle frontal gyrus left 0.61 1.52E-58 -0.14 0.03 -0.02 0.91 0.05 0.71 -0.21 0.67 0.19 4.05E-03 0.01 0.98 -0.10 0.36 0.10 0.55 

Caudal middle frontal gyrus right 0.66 5.81E-67 -3.46E-03 0.98 0.04 0.78 -0.03 0.86 0.11 0.84 -1.42E-03 1.00 0.01 0.99 3.02E-03 0.99 -0.17 0.17 

Pars opercularis left 0.61 8.65E-56 0.03 0.84 -0.01 0.96 -0.09 0.46 0.34 0.35 -0.02 0.87 -0.10 0.74 0.06 0.73 -0.14 0.32 

Pars opercularis right 0.61 4.26E-56 0.06 0.55 -0.03 0.84 -0.07 0.60 0.07 0.90 -0.09 0.34 0.09 0.77 0.07 0.68 -0.08 0.71 

Pars triangularis left 0.60 1.43E-56 0.08 0.38 -0.06 0.61 -0.09 0.38 0.03 0.96 -0.10 0.23 0.07 0.84 0.11 0.36 -0.07 0.74 

Pars triangularis right 0.58 3.67E-51 0.03 0.84 0.04 0.80 7.86E-04 1.00 0.19 0.72 -0.03 0.87 -0.06 0.86 0.03 0.89 0.01 0.96 

Pars orbitalis left 0.64 2.24E-68 0.05 0.61 -0.11 0.12 -0.03 0.83 -0.05 0.93 -0.08 0.33 0.08 0.79 -0.02 0.90 0.11 0.46 

Pars orbitalis right 0.57 7.91E-55 0.05 0.69 0.04 0.79 0.05 0.74 0.14 0.78 -0.02 0.87 -0.21 0.27 -0.09 0.50 0.19 0.11 

Lateral orbitofrontal cortex left 0.78 5.29E-119 0.05 0.52 -0.06 0.54 -0.01 0.91 0.10 0.83 -0.08 0.30 0.08 0.72 0.03 0.85 0.53 4.47E-13 
Lateral orbitofrontal cortex right 0.70 9.17E-87 0.05 0.68 1.02E-03 1.00 0.02 0.87 0.22 0.59 -0.06 0.60 -0.08 0.78 -0.06 0.67 -0.27 3.04E-03 

Medial orbitofrontal cortex left 0.69 2.09E-81 0.05 0.68 -0.09 0.25 -3.06E-04 1.00 -0.18 0.71 -0.03 0.85 0.20 0.26 0.02 0.91 -0.17 0.12 

Medial orbitofrontal cortex right 0.79 3.61E-113 0.13 0.03 0.05 0.61 0.03 0.86 0.40 0.13 -0.11 0.11 0.02 0.96 0.07 0.58 0.29 4.32E-04 
Precentral gyrus left 0.73 2.07E-121 0.06 0.40 -0.11 0.06 -0.09 0.18 -0.36 0.11 -0.02 0.84 0.10 0.58 0.05 0.66 0.07 0.66 

Precentral gyrus right 0.72 6.40E-108 3.00E-03 0.98 -0.02 0.83 -0.10 0.17 -0.04 0.93 0.02 0.89 -0.06 0.78 0.05 0.71 0.15 0.10 

Paracentral lobule left 0.63 2.20E-64 -0.04 0.74 -0.14 0.07 -0.08 0.53 -0.10 0.86 0.02 0.90 0.19 0.35 -6.43E-04 1.00 -0.02 0.93 

Paracentral lobule right 0.62 4.96E-62 0.01 0.96 -0.15 0.03 -0.14 0.13 -0.24 0.60 -0.02 0.90 0.22 0.22 0.07 0.60 -0.09 0.60 

Frontal pole left 0.48 1.58E-33 -0.16 0.03 -0.03 0.84 0.01 0.96 -0.10 0.87 0.11 0.21 0.08 0.79 0.03 0.87 -0.34 1.05E-03 
Frontal pole right 0.40 9.32E-25 -0.02 0.89 0.08 0.47 -0.05 0.74 0.29 0.54 0.01 0.96 -0.14 0.66 0.05 0.78 -0.27 0.02 

Parietal                   

Superior parietal cortex left 0.76 2.04E-110 -0.03 0.78 0.03 0.83 3.53E-03 0.98 -0.12 0.78 0.07 0.38 0.04 0.87 -0.01 0.96 -0.03 0.87 

Superior parietal cortex right 0.79 6.92E-126 -0.08 0.25 0.13 0.02 0.15 0.01 0.10 0.81 0.09 0.16 -0.15 0.34 -0.09 0.27 0.20 0.02 
Inferior parietal cortex left 0.74 1.07E-103 -0.01 0.97 0.02 0.89 0.05 0.67 0.02 0.98 0.02 0.89 -0.05 0.86 -0.08 0.41 -0.14 0.21 

Inferior parietal cortex right 0.72 4.74E-102 -0.03 0.76 0.01 0.90 -0.04 0.72 0.16 0.69 0.02 0.86 -0.20 0.19 -0.02 0.89 0.11 0.36 

Supramarginal cortex left 0.74 3.61E-106 -0.02 0.84 -0.02 0.86 2.38E-04 1.00 -0.10 0.84 0.04 0.73 0.01 0.96 -0.01 0.93 0.02 0.93 

Supramarginal cortex right 0.70 1.82E-89 -0.11 0.08 -0.12 0.08 -0.01 0.94 -0.45 0.07 0.08 0.27 0.22 0.14 0.05 0.73 0.21 0.02 
Postcentral gyrus left 0.80 3.78E-139 -0.08 0.14 -0.04 0.72 0.03 0.79 -0.06 0.89 0.09 0.11 -0.01 0.96 4.24E-03 0.98 0.05 0.72 

Postcentral gyrus right 0.78 2.92E-122 -0.08 0.17 0.02 0.84 0.02 0.89 0.16 0.68 0.07 0.30 -0.14 0.38 -0.05 0.67 0.17 0.08 

Precuneus cortex left 0.79 3.19E-135 -0.02 0.83 0.05 0.60 0.08 0.33 0.01 0.99 4.19E-03 0.97 -0.06 0.78 -0.06 0.59 0.06 0.72 

Precuneus cortex right 0.78 1.34E-131 0.01 0.93 0.02 0.89 0.03 0.81 -0.03 0.94 0.01 0.93 -0.04 0.89 -0.04 0.78 0.14 0.13 

Occipital                   

Lateral occipital cortex left 0.67 7.46E-88 -0.05 0.63 -0.04 0.72 0.05 0.72 -0.47 0.05 0.06 0.49 0.13 0.54 2.05E-03 1.00 -0.29 4.77E-04 
Lateral occipital cortex right 0.64 5.92E-77 0.01 0.93 -0.09 0.26 0.02 0.89 -0.63 0.01 -0.03 0.84 0.25 0.10 1.11E-03 1.00 -0.25 0.01 

Lingual gyrus left 0.60 2.58E-59 -0.03 0.79 0.04 0.78 -0.02 0.89 -0.20 0.68 -0.01 0.92 0.11 0.68 0.05 0.74 -0.59 6.76E-11 
Lingual gyrus right 0.63 6.76E-64 -0.04 0.74 -0.02 0.91 0.05 0.72 -0.45 0.13 -0.02 0.90 0.25 0.14 0.02 0.89 -0.11 0.52 

Cuneus cortex left 0.55 1.11E-49 0.07 0.51 -0.03 0.86 0.05 0.74 -0.47 0.11 -0.05 0.68 0.20 0.32 -0.01 0.96 -0.23 0.06 
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Cuneus cortex right 0.66 3.12E-78 -0.06 0.45 0.03 0.84 0.08 0.46 -0.43 0.11 0.08 0.32 0.14 0.53 1.17E-03 1.00 -0.12 0.36 

Pericalcarine cortex left 0.45 6.36E-30 0.02 0.90 0.04 0.78 0.03 0.87 -0.10 0.87 -0.04 0.79 0.03 0.93 -3.77E-03 0.99 -0.56 7.62E-08 
Pericalcarine cortex right 0.51 2.90E-39 -0.05 0.72 0.05 0.74 0.06 0.68 -0.39 0.27 0.04 0.79 0.15 0.55 0.02 0.90 -0.35 1.16E-03 

Temporal                   

Superior temporal gyrus left 0.79 4.73E-136 -0.01 0.96 0.02 0.84 0.01 0.96 0.10 0.79 1.32E-03 1.00 -0.07 0.76 -0.01 0.91 0.17 0.06 

Superior temporal gyrus right 0.81 1.51E-136 0.05 0.52 0.06 0.46 -0.04 0.77 0.52 0.01 -0.08 0.24 -0.16 0.30 0.02 0.90 0.20 0.02 
Middle temporal gyrus left 0.71 3.38E-96 0.12 0.03 0.10 0.13 0.01 0.96 0.30 0.31 -0.06 0.51 -0.14 0.47 0.05 0.72 0.48 7.09E-10 

Middle temporal gyrus right 0.79 5.34E-136 0.12 0.01 0.03 0.76 -0.05 0.66 -0.02 0.97 -0.08 0.20 0.11 0.58 0.09 0.23 0.31 1.27E-05 
Inferior temporal gyrus left 0.69 1.99E-85 0.02 0.85 0.05 0.67 0.01 0.96 0.15 0.74 -0.05 0.63 -0.06 0.84 0.04 0.79 0.15 0.21 

Inferior temporal gyrus right 0.67 1.80E-84 -0.03 0.78 0.11 0.10 0.07 0.53 0.23 0.54 -2.22E-03 0.99 -0.16 0.36 -0.03 0.84 0.43 1.55E-07 
Banks of the superior temporal sulcus left 0.55 4.08E-48 -0.05 0.68 0.10 0.26 0.11 0.26 0.19 0.71 -0.02 0.90 -0.14 0.60 -0.11 0.36 -0.03 0.90 

Banks of the superior temporal sulcus right 0.57 3.65E-54 0.04 0.76 0.04 0.77 -0.04 0.81 0.14 0.79 -0.05 0.72 -0.06 0.85 0.01 0.97 0.03 0.90 

Fusiform gyrus left 0.75 6.24E-103 -1.39E-03 1.00 -2.89E-03 0.99 0.11 0.18 -0.08 0.87 0.01 0.96 0.04 0.90 -0.07 0.51 -0.27 1.47E-03 
Fusiform gyrus right 0.74 7.78E-99 -0.04 0.68 0.11 0.12 0.14 0.05 0.23 0.53 0.03 0.81 -0.24 0.11 -0.11 0.19 0.03 0.87 

Transverse temporal cortex left 0.59 9.62E-50 0.07 0.51 -0.06 0.66 -0.05 0.74 0.17 0.75 -0.02 0.89 0.04 0.90 0.03 0.87 0.15 0.32 

Transverse temporal cortex right 0.67 5.15E-67 -0.01 0.97 -0.01 0.93 0.14 0.13 0.37 0.29 -0.03 0.81 -0.01 0.97 -0.07 0.67 -0.03 0.89 

Entorhinal cortex left 0.39 2.83E-23 -0.09 0.33 -0.01 0.93 0.10 0.46 -0.13 0.84 0.06 0.68 -0.11 0.74 -0.11 0.36 -0.42 4.16E-05 
Entorhinal cortex right 0.26 4.88E-10 -0.02 0.90 0.02 0.90 0.06 0.72 0.06 0.93 0.04 0.82 -0.16 0.60 -0.11 0.43 0.75 3.11E-13 

Temporal pole left 0.50 4.55E-36 0.03 0.81 0.05 0.68 -0.03 0.89 0.27 0.58 -0.02 0.92 -0.10 0.76 0.09 0.51 -0.06 0.79 

Temporal pole right 0.37 9.62E-20 0.05 0.68 0.07 0.63 0.01 0.96 0.27 0.59 0.06 0.68 -0.06 0.86 0.04 0.85 0.63 1.14E-10 
Parahippocampal gyrus left 0.51 2.15E-39 -0.05 0.67 0.02 0.90 0.04 0.84 4.63E-03 1.00 0.08 0.44 -0.04 0.91 -0.04 0.83 -0.21 0.10 

Parahippocampal gyrus right 0.55 1.89E-46 0.05 0.69 0.05 0.72 0.01 0.98 0.35 0.36 -0.05 0.74 -0.19 0.41 -0.04 0.84 0.09 0.66 

Cingulate                   

Rostral anterior cingulate left 0.71 6.92E-87 -0.01 0.95 0.04 0.74 0.09 0.40 0.26 0.50 0.02 0.90 -0.07 0.79 -0.06 0.68 -0.04 0.85 

Rostral anterior cingulate right 0.58 8.84E-52 -0.03 0.81 0.01 0.96 0.02 0.89 0.07 0.90 0.06 0.66 -0.06 0.86 -0.04 0.84 -0.06 0.76 

Caudal anterior cingulate left 0.57 4.12E-44 0.01 0.98 -0.01 0.97 0.03 0.87 0.17 0.77 -1.24E-04 1.00 0.02 0.96 -0.06 0.74 0.11 0.58 

Caudal anterior cingulate right 0.54 6.18E-43 -0.05 0.67 0.12 0.16 0.15 0.10 0.53 0.10 0.05 0.74 -0.28 0.14 -0.14 0.18 -0.11 0.50 

Posterior cingulate left 0.62 3.44E-57 0.05 0.68 -0.02 0.91 -0.04 0.82 0.06 0.91 -0.04 0.78 0.06 0.85 0.02 0.90 -0.02 0.93 

Posterior cingulate right 0.71 7.42E-83 0.11 0.13 -0.04 0.74 -0.06 0.60 0.17 0.72 -0.10 0.17 0.08 0.78 0.06 0.68 0.02 0.94 

Isthmus cingulate left 0.67 6.68E-74 0.02 0.89 0.01 0.96 -0.01 0.93 -0.01 1.00 -0.01 0.94 0.04 0.90 0.07 0.59 0.06 0.78 

Isthmus cingulate right 0.68 3.62E-74 0.10 0.17 0.02 0.89 -0.05 0.74 0.26 0.53 -0.09 0.32 0.05 0.89 0.08 0.51 -0.04 0.87 

Insular                   

Insular cortex left 0.69 3.44E-87 0.05 0.66 0.01 0.96 -0.04 0.77 0.05 0.92 -0.10 0.19 0.14 0.49 0.16 0.04 0.07 0.72 

Insular cortex right 0.71 3.24E-95 0.09 0.19 4.20E-03 0.98 -0.01 0.96 0.04 0.94 -0.07 0.42 0.10 0.68 0.14 0.10 0.15 0.16 
Note. Estimates significant at q < 0.05 appear in bold. A positive estimate for sex indicates a larger surface area for females. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular). A positive estimate for acquisition orientation indicates a larger surface area for sagittal acquisitions. Dummy 
variables were coded sex (male = 0, female = 1), acquisition orientation (coronal = 0, sagittal = 1), and all other variables were standardised prior to analyses. 
* There were many significant acquisition orientation effects for surface area ROIs. To ensure that differences in acquisition orientation were not adversely affecting our results we compared heritability estimates in the full sample (351 pairs) to the subsample in which scans were collected using the same acquisition orientation 
(287 pairs, coronal orientation). Results (not shown) were very similar between the two samples (average difference in heritability estimates 5%); some moderate differences were observed, though 95% confidences intervals overlapped for all estimates between the two samples. 
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Appendix 6 Regression Coefficients and q values for Cortical Thickness Covariates in the QTIM 
Dataset  

  Average Thickness Age Age2 Age3 Sex Age x Sex Age2 x Sex Age3 x Sex Acquisition Orientation* 

  
Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value Regression 

Coefficient q value Regression 
Coefficient q value 

Frontal                   

Superior frontal gyrus left 0.73 1.21E-148 -0.04 0.57 -0.15 4.54E-03 -0.08 0.24 0.17 0.51 -0.04 0.52 0.16 0.24 0.05 0.58 -0.34 6.02E-06 
Superior frontal gyrus right 0.76 1.12E-143 0.09 0.13 -0.03 0.73 0.01 0.90 0.30 0.23 -0.15 3.16E-03 0.07 0.68 0.03 0.76 -0.48 1.73E-10 

Rostral middle frontal gyrus left 0.64 4.85E-95 0.03 0.68 -0.16 0.01 -0.11 0.19 0.07 0.84 -2.82E-03 0.98 0.11 0.56 -2.39E-03 0.98 -0.12 0.29 
Rostral middle frontal gyrus right 0.56 4.72E-64 0.13 0.07 -0.05 0.62 -0.02 0.84 0.49 0.09 -0.10 0.21 -0.01 0.96 0.02 0.85 -0.31 4.35E-03 

Caudal middle frontal gyrus left 0.63 2.61E-90 -0.08 0.26 -0.17 0.01 -0.08 0.38 -0.31 0.29 0.07 0.38 0.06 0.76 -0.06 0.58 -0.49 1.28E-08 
Caudal middle frontal gyrus right 0.60 6.55E-81 -0.01 0.90 -0.14 0.03 -0.06 0.52 -0.31 0.29 0.06 0.45 0.15 0.41 0.01 0.90 0.21 0.04 

Pars opercularis left 0.61 3.91E-82 1.28E-04 1.00 -0.11 0.15 -0.14 0.07 -0.29 0.33 -0.02 0.86 0.07 0.73 0.04 0.73 -0.48 8.06E-08 
Pars opercularis right 0.60 8.93E-77 0.06 0.46 2.61E-03 0.98 -4.05E-03 0.97 0.33 0.26 -0.01 0.94 -0.26 0.09 -0.13 0.16 0.01 0.93 

Pars triangularis left 0.58 1.16E-73 -0.02 0.80 -0.09 0.28 -0.03 0.76 0.18 0.58 0.13 0.07 -0.03 0.90 -0.12 0.19 -0.21 0.05 
Pars triangularis right 0.57 3.33E-66 0.15 0.02 0.05 0.61 -0.05 0.65 0.41 0.17 -0.07 0.39 -0.11 0.58 -0.02 0.87 -0.01 0.97 

Pars orbitalis left 0.46 1.48E-45 0.03 0.72 -0.02 0.83 -0.07 0.52 0.33 0.29 -0.03 0.73 0.01 0.97 0.01 0.91 0.41 1.44E-05 
Pars orbitalis right 0.35 8.89E-23 0.06 0.55 -0.05 0.67 -0.07 0.52 0.40 0.25 -0.10 0.28 0.03 0.90 0.08 0.49 0.07 0.67 

Lateral orbitofrontal cortex left 0.54 2.03E-71 -0.01 0.88 -0.02 0.82 -0.03 0.80 0.29 0.31 0.02 0.79 -0.01 0.97 -0.01 0.93 0.54 2.38E-10 
Lateral orbitofrontal cortex right 0.49 5.62E-51 0.07 0.38 0.08 0.39 0.02 0.84 0.50 0.08 -0.04 0.67 -0.20 0.27 -0.03 0.83 0.53 4.03E-08 

Medial orbitofrontal cortex left 0.40 2.12E-31 0.03 0.75 -0.09 0.31 -0.06 0.57 0.38 0.26 -0.05 0.64 0.06 0.81 0.03 0.83 -0.13 0.35 
Medial orbitofrontal cortex right 0.44 5.50E-37 0.04 0.67 0.09 0.32 0.06 0.58 0.74 0.01 -0.07 0.46 -0.18 0.38 -0.08 0.47 -0.22 0.08 

Precentral gyrus left 0.69 1.83E-107 -0.03 0.76 0.02 0.87 0.07 0.46 -0.01 0.97 7.74E-06 1.00 -0.05 0.81 -0.11 0.21 -0.40 5.29E-06 
Precentral gyrus right 0.67 7.93E-103 0.04 0.58 -0.03 0.75 0.09 0.30 -0.19 0.55 0.01 0.90 0.12 0.51 -0.10 0.29 -0.43 1.62E-06 
Paracentral lobule left 0.59 1.38E-71 -0.10 0.16 -0.07 0.40 -0.05 0.65 -0.05 0.89 0.08 0.33 0.01 0.97 -0.01 0.91 -0.55 5.81E-09 

Paracentral lobule right 0.62 7.13E-81 -0.08 0.30 -0.14 0.04 -0.06 0.52 -0.43 0.11 0.11 0.14 0.17 0.32 -0.03 0.83 -0.39 5.89E-05 
Frontal pole left 0.29 3.05E-17 0.04 0.71 0.08 0.43 0.12 0.25 0.61 0.04 -0.13 0.12 0.07 0.79 -0.04 0.79 -0.35 1.11E-03 

Frontal pole right 0.34 6.76E-22 0.05 0.62 0.14 0.11 0.16 0.09 0.59 0.06 0.02 0.85 -0.01 0.96 -0.08 0.52 -0.34 3.31E-03 
Parietal                   

Superior parietal cortex left 0.68 1.01E-122 -0.15 2.61E-03 -0.11 0.06 -0.04 0.66 -0.70 4.68E-04 0.09 0.17 0.21 0.12 0.08 0.32 0.02 0.88 
Superior parietal cortex right 0.70 5.43E-117 -0.09 0.17 -0.03 0.68 0.02 0.82 -0.52 0.02 0.06 0.47 0.16 0.32 0.04 0.67 -0.33 1.84E-04 

Inferior parietal cortex left 0.70 2.82E-118 -0.11 0.05 -0.14 0.02 -0.02 0.82 -0.87 1.18E-05 0.11 0.08 0.21 0.15 0.02 0.84 -0.18 0.06 
Inferior parietal cortex right 0.81 1.44E-174 -0.03 0.62 -0.05 0.39 0.06 0.40 -0.36 0.08 0.01 0.88 0.02 0.90 -0.10 0.16 -0.38 3.01E-08 

Supramarginal cortex left 0.70 3.66E-120 -0.08 0.22 -0.07 0.32 -0.08 0.35 -0.48 0.03 4.23E-03 0.97 0.04 0.84 0.01 0.90 -0.54 6.65E-12 
Supramarginal cortex right 0.75 6.95E-138 -0.01 0.89 -0.04 0.57 0.02 0.86 -0.40 0.08 -0.01 0.89 0.05 0.76 -0.03 0.79 -0.25 2.70E-03 

Postcentral gyrus left 0.63 4.72E-86 -0.02 0.80 0.09 0.27 0.02 0.86 -0.24 0.45 0.04 0.63 0.02 0.91 0.05 0.62 -0.56 1.69E-09 
Postcentral gyrus right 0.56 9.71E-63 -0.02 0.87 0.03 0.79 -0.09 0.33 -0.23 0.51 -0.07 0.46 0.16 0.41 0.17 0.07 -0.52 1.54E-07 
Precuneus cortex left 0.69 3.01E-124 -0.13 0.01 -0.17 1.77E-03 -0.13 0.05 -0.74 1.40E-04 0.04 0.58 0.21 0.11 0.07 0.41 -0.25 2.95E-03 

Precuneus cortex right 0.73 1.06E-126 -0.10 0.07 -0.07 0.28 -0.08 0.28 -0.43 0.06 0.06 0.39 0.06 0.76 0.03 0.76 -0.56 2.68E-13 
Occipital                   

Lateral occipital cortex left 0.62 5.84E-82 -0.02 0.84 0.18 4.89E-03 0.12 0.16 0.14 0.68 0.03 0.79 -0.11 0.57 0.04 0.72 -0.03 0.87 
Lateral occipital cortex right 0.69 1.57E-109 -0.03 0.76 0.09 0.18 0.07 0.46 -0.29 0.29 0.05 0.51 0.13 0.46 0.09 0.34 0.30 6.29E-04 

Lingual gyrus left 0.50 3.36E-52 -0.08 0.31 0.02 0.83 -0.03 0.77 -0.17 0.63 0.04 0.68 -0.03 0.89 0.09 0.39 -0.79 6.14E-16 
Lingual gyrus right 0.50 6.66E-51 -0.07 0.39 -0.11 0.19 -0.12 0.21 -0.59 0.03 0.04 0.67 0.22 0.22 0.09 0.38 -0.80 3.11E-16 
Cuneus cortex left 0.41 2.17E-30 -0.07 0.49 -0.09 0.34 -0.03 0.84 -0.36 0.30 0.04 0.72 0.21 0.29 0.12 0.28 -0.02 0.89 

Cuneus cortex right 0.43 1.09E-34 -0.08 0.34 -0.04 0.73 -0.06 0.57 -0.22 0.57 0.06 0.57 0.16 0.46 0.07 0.55 -0.17 0.23 
Pericalcarine cortex left 0.34 2.64E-21 0.02 0.86 0.08 0.41 0.03 0.83 0.09 0.84 0.01 0.90 0.01 0.97 0.07 0.57 -0.13 0.43 
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Pericalcarine cortex right 0.34 4.66E-21 -0.03 0.80 -0.06 0.58 -0.06 0.62 -0.20 0.61 0.06 0.55 0.21 0.32 0.09 0.46 -0.20 0.17 
Temporal                   

Superior temporal gyrus left 0.67 4.83E-118 0.02 0.80 0.24 1.91E-06 0.17 0.01 0.36 0.13 -9.31E-04 0.99 -0.26 0.05 -0.08 0.38 0.62 6.84E-16 
Superior temporal gyrus right 0.65 1.22E-105 0.15 4.26E-03 0.21 1.45E-04 0.14 0.05 0.15 0.61 -0.05 0.48 -0.15 0.34 -0.04 0.67 0.79 5.16E-23 

Middle temporal gyrus left 0.47 8.97E-55 0.03 0.70 0.12 0.07 0.09 0.29 0.48 0.06 -0.05 0.52 -0.25 0.11 -0.02 0.83 1.04 1.71E-32 
Middle temporal gyrus right 0.50 3.80E-65 0.16 3.64E-03 0.08 0.32 0.09 0.28 0.43 0.08 -0.11 0.08 -0.12 0.51 -0.10 0.28 1.03 1.87E-33 
Inferior temporal gyrus left 0.48 1.15E-43 -2.15E-03 0.98 0.09 0.32 0.07 0.52 0.58 0.05 -0.01 0.89 -0.23 0.23 -0.02 0.88 0.13 0.39 

Inferior temporal gyrus right 0.52 3.34E-63 1.91E-03 0.98 0.10 0.22 0.08 0.39 0.41 0.14 0.06 0.44 -0.14 0.46 -0.08 0.39 0.71 2.61E-15 
Banks of the superior temporal sulcus left 0.44 6.30E-38 -0.06 0.49 -0.08 0.38 -0.07 0.51 -0.46 0.14 0.02 0.84 0.01 0.97 -0.07 0.55 -0.31 4.55E-03 

Banks of the superior temporal sulcus right 0.52 4.17E-53 -0.03 0.73 -0.03 0.74 0.07 0.51 -0.53 0.07 0.06 0.51 0.13 0.51 -0.09 0.38 -0.20 0.08 
Fusiform gyrus left 0.54 2.73E-57 -0.03 0.74 0.09 0.31 0.06 0.58 0.44 0.15 -0.02 0.88 -0.15 0.46 4.93E-03 0.97 0.04 0.80 

Fusiform gyrus right 0.62 2.79E-87 -0.02 0.80 0.04 0.68 0.03 0.80 0.07 0.84 1.71E-04 1.00 -0.03 0.90 -0.06 0.52 0.35 8.53E-05 
Transverse temporal cortex left 0.50 1.89E-46 -0.02 0.86 0.21 2.87E-03 0.09 0.38 0.09 0.83 0.04 0.74 -0.06 0.80 -0.02 0.90 0.11 0.46 

Transverse temporal cortex right 0.48 1.61E-44 0.03 0.73 0.17 0.02 -0.02 0.87 -0.03 0.93 2.60E-03 0.98 -0.01 0.98 0.06 0.63 -0.04 0.83 
Entorhinal cortex left 0.19 1.14E-10 0.10 0.14 0.15 0.02 0.06 0.56 0.12 0.74 -0.06 0.45 -0.05 0.80 0.09 0.37 1.46 2.57E-54 

Entorhinal cortex right 0.16 4.44E-06 0.08 0.34 0.12 0.13 0.14 0.14 -0.12 0.76 -3.88E-03 0.97 -0.01 0.96 -0.02 0.87 1.27 2.08E-36 
Temporal pole left 0.33 9.32E-27 0.12 0.07 0.16 0.02 0.06 0.52 0.42 0.13 -0.03 0.76 -0.03 0.89 -0.01 0.92 1.00 2.54E-28 

Temporal pole right 0.34 7.65E-26 0.19 2.39E-03 0.31 7.53E-07 0.23 3.12E-03 0.47 0.12 -0.06 0.47 -0.24 0.19 -0.08 0.49 1.00 1.77E-25 
Parahippocampal gyrus left 0.31 3.00E-17 -0.04 0.68 0.10 0.32 0.05 0.67 0.51 0.13 -3.25E-04 1.00 -0.32 0.09 -0.09 0.46 -0.38 1.63E-03 

Parahippocampal gyrus right 0.33 3.22E-19 -0.03 0.80 0.08 0.46 0.06 0.63 0.06 0.89 0.06 0.58 -0.13 0.57 -0.08 0.51 -0.04 0.84 
Cingulate                   

Rostral anterior cingulate left 0.51 2.11E-51 0.09 0.30 0.04 0.71 0.06 0.61 0.20 0.58 -0.03 0.76 0.05 0.83 -0.04 0.76 -0.12 0.41 
Rostral anterior cingulate right 0.45 1.51E-39 0.07 0.46 0.23 8.22E-04 0.14 0.14 0.55 0.07 -0.01 0.91 -0.25 0.17 -0.11 0.33 -0.49 1.65E-06 

Caudal anterior cingulate left 0.34 4.76E-23 0.04 0.66 -0.02 0.87 -0.01 0.94 0.18 0.65 -0.02 0.87 -0.01 0.97 -0.04 0.79 0.42 8.83E-05 
Caudal anterior cingulate right 0.37 3.82E-24 0.04 0.73 0.05 0.61 -0.07 0.57 0.10 0.82 0.03 0.76 2.66E-03 0.99 0.09 0.46 -0.30 0.01 

Posterior cingulate left 0.44 2.52E-42 -0.10 0.16 -0.17 0.02 -0.22 4.35E-03 -0.35 0.27 0.08 0.32 0.12 0.56 0.07 0.54 0.37 2.69E-04 
Posterior cingulate right 0.44 2.11E-39 -0.16 0.02 -0.10 0.25 -0.08 0.46 -0.40 0.21 0.06 0.54 0.03 0.90 -0.07 0.55 -0.53 6.40E-08 

Isthmus cingulate left 0.32 5.07E-19 -0.18 0.02 -0.01 0.97 0.04 0.79 -0.02 0.96 0.08 0.41 -0.09 0.71 -0.05 0.73 -0.15 0.32 
Isthmus cingulate right 0.30 6.00E-17 -0.12 0.17 -0.03 0.82 0.06 0.62 -0.29 0.46 0.05 0.62 0.04 0.88 -0.07 0.57 -0.58 2.05E-07 

Insular                   
Insular cortex left 0.55 6.44E-61 0.09 0.25 0.13 0.10 0.01 0.91 -0.03 0.95 0.05 0.57 -0.21 0.25 0.03 0.80 -0.10 0.46 

Insular cortex right 0.52 3.94E-59 0.11 0.12 0.13 0.08 0.05 0.60 -0.11 0.77 -0.05 0.56 -0.08 0.69 0.02 0.88 0.63 1.88E-12 
Note. Estimates significant at q < 0.05 appear in bold. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular). A positive estimate for sex indicates a thicker cortex for females. A positive estimate for acquisition orientation indicates a thicker cortex for sagittal acquisitions. Dummy variables 

were coded sex (male = 0, female = 1), acquisition orientation (coronal = 0, sagittal = 1), and all other variables were standardised prior to analyses. 

* There were many significant acquisition orientation effects for cortical thickness ROIs. To ensure that differences in acquisition orientation were not adversely affecting our results we compared heritability estimates in the full sample (351 pairs) to the subsample in which scans were collected using the same acquisition 

orientation (287 pairs, coronal orientation). Results (not shown) were very similar between the two samples (average difference in heritability estimates was 5%); some moderate differences were observed, though 95% confidences intervals overlapped for all estimates between the two samples. 
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Appendix 7 Variance Component Estimates for QTIM Surface Area and Cortical Thickness 
Twin correlations, estimates of variance components, model fit comparisons, and test-retest correlations for surface area and cortical 

thickness of left and right cortical regions in the QTIM dataset.  

 Twin Correlations (95% CI) Variance Components (95% CI) q value Test-Retest Reliability 
 MZ DZ a2 c2 e2 No A No C No AC r trt 1 - r2 trt 

Surface Area           
Frontal           

Superior frontal gyrus left 0.46 (0.33, 0.57) 0.15 (0.02, 0.27) 0.41 (0.17, 0.52) 0.00 (0.00, 0.00) 0.59 (0.48, 0.71) 0.01 1.00 4.68E-08 0.90 0.19 
Superior frontal gyrus right 0.32 (0.18, 0.45) 0.32 (0.18, 0.44) 0.03 (0.00, 0.40) 0.30 (0.00, 0.41) 0.67 (0.55, 0.78) 1.00 0.11 8.21E-08 0.96 0.08 

Rostral middle frontal gyrus left 0.27 (0.12, 0.41) 0.19 (0.05, 0.32) 0.22 (0.00, 0.43) 0.08 (0.00, 0.31) 0.71 (0.57, 0.86) 0.48 0.89 3.21E-04 0.95 0.11 
Rostral middle frontal gyrus right 0.28 (0.13, 0.42) 0.23 (0.09, 0.35) 0.19 (0.00, 0.44) 0.12 (0.00, 0.33) 0.69 (0.56, 0.84) 0.54 0.67 4.72E-05 0.92 0.15 

Caudal middle frontal gyrus left 0.36 (0.22, 0.49) 0.15 (-0.01, 0.31) 0.38 (0.07, 0.50) 0.00 (0.00, 0.00) 0.62 (0.50, 0.76) 0.05 1.00 1.36E-05 0.95 0.11 
Caudal middle frontal gyrus right 0.37 (0.23, 0.50) 0.02 (-0.13, 0.17) 0.31 (0.10, 0.43) 0.00 (0.00, 0.14) 0.69 (0.57, 0.83) 0.03 1.00 3.86E-04 0.91 0.16 

Pars opercularis left 0.34 (0.20, 0.47) 0.17 (0.03, 0.31) 0.31 (0.00, 0.45) 0.02 (0.00, 0.31) 0.67 (0.55, 0.81) 0.23 1.00 1.85E-05 0.94 0.12 
Pars opercularis right 0.16 (-0.00, 0.31) 0.11 (-0.03, 0.24) 0.09 (0.00, 0.29) 0.06 (0.00, 0.23) 0.85 (0.71, 0.97) 0.94 0.95 0.11 0.94 0.12 

Pars triangularis left 0.32 (0.18, 0.45) 0.12 (-0.02, 0.25) 0.30 (0.00, 0.41) 0.00 (0.00, 0.23) 0.70 (0.59, 0.83) 0.12 1.00 1.93E-04 0.93 0.13 
Pars triangularis right 0.28 (0.12, 0.41) 0.04 (-0.09, 0.17) 0.24 (0.01, 0.37) 0.00 (0.00, 0.15) 0.76 (0.63, 0.90) 0.10 1.00 0.01 0.95 0.10 

Pars orbitalis left 0.14 (-0.01, 0.29) 0.15 (0.00, 0.29) 0.00 (0.00, 0.28) 0.15 (0.00, 0.25) 0.85 (0.72, 0.96) 1.00 0.54 0.06 0.85 0.28 
Pars orbitalis right 0.39 (0.24, 0.51) 0.08 (-0.07, 0.23) 0.33 (0.07, 0.45) 0.00 (0.00, 0.00) 0.67 (0.55, 0.80) 0.05 1.00 5.97E-05 0.80 0.37 

Lateral orbitofrontal cortex left 0.38 (0.24, 0.51) 0.08 (-0.06, 0.22) 0.35 (0.14, 0.47) 0.00 (0.00, 0.14) 0.65 (0.53, 0.78) 0.02 1.00 3.62E-05 0.72 0.48 
Lateral orbitofrontal cortex right 0.39 (0.25, 0.52) 0.05 (-0.10, 0.20) 0.34 (0.13, 0.46) 0.00 (0.00, 0.14) 0.66 (0.54, 0.80) 0.02 1.00 8.16E-05 0.41 0.83 

Medial orbitofrontal cortex left 0.16 (0.00, 0.30) 0.10 (-0.05, 0.24) 0.14 (0.00, 0.30) 0.02 (0.00, 0.22) 0.83 (0.70, 0.97) 0.77 1.00 0.12 0.40 0.84 
Medial orbitofrontal cortex right 0.19 (0.03, 0.34) 0.07 (-0.07, 0.21) 0.20 (0.00, 0.32) 0.00 (0.00, 0.23) 0.80 (0.68, 0.94) 0.48 1.00 0.04 0.64 0.59 

Precentral gyrus left 0.51 (0.37, 0.61) 0.27 (0.13, 0.40) 0.50 (0.16, 0.61) 0.01 (0.00, 0.28) 0.48 (0.39, 0.61) 0.01 1.00 2.19E-11 0.95 0.11 
Precentral gyrus right 0.43 (0.29, 0.55) 0.21 (0.07, 0.35) 0.44 (0.10, 0.55) 0.00 (0.00, 0.25) 0.56 (0.45, 0.70) 0.03 1.00 1.06E-07 0.95 0.10 
Paracentral lobule left 0.35 (0.21, 0.47) 0.28 (0.14, 0.41) 0.09 (0.00, 0.44) 0.24 (0.00, 0.40) 0.66 (0.54, 0.78) 0.89 0.23 1.06E-07 0.91 0.17 

Paracentral lobule right 0.21 (0.06, 0.36) 0.16 (0.02, 0.28) 0.21 (0.00, 0.39) 0.04 (0.00, 0.27) 0.75 (0.61, 0.91) 0.52 1.00 4.97E-03 0.82 0.32 
Frontal pole left 0.12 (-0.04, 0.27) 0.06 (-0.08, 0.20) 0.12 (0.00, 0.25) 0.00 (0.00, 0.18) 0.88 (0.75, 1.00) 0.80 1.00 0.42 0.39 0.85 

Frontal pole right -0.01 (-0.18, 0.15) -0.02 (-0.15, 0.11) 0.00 (0.00, 0.13) 0.00 (0.00, 0.09) 1.00 (0.87, 1.00) 1.00 1.00 1.00 0.55 0.70 
Parietal           

Superior parietal cortex left 0.51 (0.38, 0.61) 0.22 (0.08, 0.35) 0.48 (0.16, 0.57) 0.00 (0.00, 0.26) 0.52 (0.43, 0.63) 0.01 1.00 1.82E-11 0.94 0.12 
Superior parietal cortex right 0.41 (0.27, 0.53) 0.19 (0.06, 0.32) 0.31 (0.00, 0.48) 0.06 (0.00, 0.36) 0.62 (0.52, 0.75) 0.19 0.95 6.01E-08 0.95 0.09 

Inferior parietal cortex left 0.47 (0.33, 0.58) 0.31 (0.18, 0.43) 0.28 (0.00, 0.56) 0.18 (0.00, 0.43) 0.54 (0.43, 0.67) 0.19 0.37 7.11E-12 0.93 0.13 
Inferior parietal cortex right 0.43 (0.29, 0.55) 0.27 (0.14, 0.39) 0.47 (0.12, 0.59) 0.02 (0.00, 0.28) 0.51 (0.41, 0.65) 0.03 1.00 6.94E-10 0.89 0.22 

Supramarginal cortex left 0.40 (0.26, 0.53) 0.17 (0.04, 0.30) 0.40 (0.11, 0.51) 0.00 (0.00, 0.21) 0.60 (0.49, 0.73) 0.03 1.00 6.63E-07 0.97 0.05 
Supramarginal cortex right 0.25 (0.09, 0.40) 0.19 (0.04, 0.32) 0.15 (0.00, 0.40) 0.11 (0.00, 0.31) 0.74 (0.60, 0.88) 0.72 0.74 1.51E-03 0.91 0.17 

Postcentral gyrus left 0.16 (-0.00, 0.31) 0.08 (-0.06, 0.21) 0.16 (0.00, 0.29) 0.00 (0.00, 0.21) 0.84 (0.71, 0.98) 0.66 1.00 0.16 0.97 0.06 
Postcentral gyrus right 0.39 (0.24, 0.51) 0.25 (0.11, 0.38) 0.28 (0.00, 0.51) 0.11 (0.00, 0.38) 0.61 (0.49, 0.75) 0.27 0.70 1.18E-07 0.93 0.13 

Precuneus cortex left 0.46 (0.33, 0.58) 0.33 (0.21, 0.45) 0.27 (0.00, 0.56) 0.20 (0.00, 0.44) 0.53 (0.43, 0.67) 0.23 0.27 4.98E-12 0.94 0.12 
Precuneus cortex right 0.40 (0.26, 0.52) 0.18 (0.04, 0.31) 0.40 (0.11, 0.51) 0.00 (0.00, 0.22) 0.60 (0.49, 0.73) 0.03 1.00 4.77E-07 0.86 0.27 

Occipital           
Lateral occipital cortex left 0.41 (0.27, 0.53) 0.16 (0.02, 0.29) 0.39 (0.12, 0.50) 0.00 (0.00, 0.20) 0.61 (0.50, 0.74) 0.03 1.00 7.80E-07 0.85 0.28 

Lateral occipital cortex right 0.42 (0.28, 0.54) 0.18 (0.04, 0.31) 0.41 (0.11, 0.52) 0.00 (0.00, 0.23) 0.59 (0.48, 0.72) 0.03 1.00 3.81E-07 0.93 0.13 
Lingual gyrus left 0.52 (0.40, 0.62) 0.17 (0.03, 0.30) 0.50 (0.29, 0.59) 0.00 (0.00, 0.15) 0.50 (0.41, 0.62) 7.71E-04 1.00 6.39E-11 0.93 0.13 
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Lingual gyrus right 0.57 (0.46, 0.67) 0.21 (0.07, 0.35) 0.56 (0.34, 0.64) 0.00 (0.00, 0.17) 0.44 (0.36, 0.55) 2.34E-04 1.00 4.49E-14 0.88 0.23 
Cuneus cortex left 0.40 (0.26, 0.52) 0.31 (0.18, 0.43) 0.08 (0.00, 0.43) 0.29 (0.00, 0.44) 0.62 (0.51, 0.73) 0.90 0.11 3.82E-10 0.86 0.27 

Cuneus cortex right 0.28 (0.13, 0.42) 0.09 (-0.05, 0.23) 0.27 (0.00, 0.39) 0.00 (0.00, 0.22) 0.73 (0.61, 0.87) 0.16 1.00 3.30E-03 0.77 0.41 
Pericalcarine cortex left 0.61 (0.50, 0.69) 0.36 (0.23, 0.47) 0.48 (0.19, 0.68) 0.12 (0.00, 0.36) 0.40 (0.32, 0.50) 4.01E-03 0.56 1.24E-20 0.95 0.10 

Pericalcarine cortex right 0.66 (0.57, 0.74) 0.27 (0.14, 0.39) 0.65 (0.46, 0.72) 0.00 (0.00, 0.00) 0.35 (0.28, 0.44) 1.78E-06 1.00 1.65E-22 0.90 0.19 
Temporal           

Superior temporal gyrus left 0.53 (0.41, 0.63) 0.18 (0.04, 0.31) 0.50 (0.28, 0.60) 0.00 (0.00, 0.00) 0.50 (0.40, 0.62) 1.25E-03 1.00 8.24E-11 0.83 0.31 
Superior temporal gyrus right 0.51 (0.38, 0.61) 0.33 (0.20, 0.44) 0.39 (0.08, 0.61) 0.13 (0.00, 0.37) 0.48 (0.39, 0.60) 0.04 0.52 1.31E-14 0.63 0.60 

Middle temporal gyrus left 0.45 (0.31, 0.56) 0.20 (0.06, 0.32) 0.42 (0.08, 0.53) 0.00 (0.00, 0.27) 0.58 (0.47, 0.71) 0.04 1.00 2.23E-08 0.86 0.26 
Middle temporal gyrus right 0.40 (0.27, 0.52) 0.06 (-0.09, 0.20) 0.34 (0.14, 0.46) 0.00 (0.00, 0.15) 0.66 (0.54, 0.78) 0.02 1.00 5.83E-06 0.78 0.39 
Inferior temporal gyrus left 0.37 (0.22, 0.49) 0.23 (0.10, 0.35) 0.25 (0.00, 0.48) 0.11 (0.00, 0.36) 0.64 (0.52, 0.78) 0.32 0.72 5.84E-07 0.78 0.40 

Inferior temporal gyrus right 0.31 (0.17, 0.44) 0.28 (0.13, 0.41) 0.08 (0.00, 0.43) 0.23 (0.00, 0.39) 0.68 (0.56, 0.81) 0.94 0.27 2.86E-06 0.81 0.35 
Banks of the superior temporal sulcus left 0.31 (0.15, 0.46) 0.04 (-0.09, 0.17) 0.25 (0.00, 0.38) 0.00 (0.00, 0.17) 0.75 (0.62, 0.89) 0.11 1.00 0.01 0.94 0.11 

Banks of the superior temporal sulcus right 0.18 (0.01, 0.33) -0.02 (-0.15, 0.12) 0.12 (0.00, 0.26) 0.00 (0.00, 0.14) 0.88 (0.74, 1.00) 0.38 1.00 0.40 0.80 0.36 
Fusiform gyrus left 0.29 (0.13, 0.43) 0.15 (-0.00, 0.29) 0.21 (0.00, 0.40) 0.06 (0.00, 0.31) 0.73 (0.60, 0.87) 0.52 1.00 9.54E-04 0.87 0.25 

Fusiform gyrus right 0.38 (0.24, 0.50) 0.13 (-0.01, 0.26) 0.36 (0.08, 0.47) 0.00 (0.00, 0.21) 0.64 (0.53, 0.77) 0.04 1.00 4.86E-06 0.87 0.24 
Transverse temporal cortex left 0.41 (0.28, 0.53) 0.09 (-0.05, 0.23) 0.35 (0.11, 0.46) 0.00 (0.00, 0.19) 0.65 (0.54, 0.77) 0.03 1.00 3.10E-06 0.89 0.21 

Transverse temporal cortex right 0.31 (0.15, 0.44) 0.18 (0.04, 0.31) 0.30 (0.00, 0.46) 0.03 (0.00, 0.31) 0.67 (0.54, 0.83) 0.27 1.00 7.56E-05 0.88 0.22 
Entorhinal cortex left 0.17 (0.02, 0.32) 0.04 (-0.10, 0.19) 0.16 (0.00, 0.29) 0.00 (0.00, 0.00) 0.84 (0.71, 0.98) 0.44 1.00 0.16 0.59 0.65 

Entorhinal cortex right 0.30 (0.14, 0.44) 0.13 (-0.01, 0.26) 0.26 (0.00, 0.39) 0.02 (0.00, 0.28) 0.73 (0.61, 0.87) 0.36 1.00 6.57E-04 0.50 0.75 
Temporal pole left 0.12 (-0.03, 0.26) 0.09 (-0.05, 0.22) 0.08 (0.00, 0.27) 0.05 (0.00, 0.20) 0.87 (0.73, 1.00) 0.96 1.00 0.25 0.31 0.90 

Temporal pole right 0.14 (-0.02, 0.29) -0.04 (-0.18, 0.10) 0.09 (0.00, 0.22) 0.00 (0.00, 0.13) 0.91 (0.78, 1.00) 0.52 1.00 0.67 0.45 0.80 
Parahippocampal gyrus left 0.40 (0.26, 0.52) 0.17 (0.01, 0.31) 0.39 (0.07, 0.50) 0.00 (0.00, 0.25) 0.61 (0.50, 0.74) 0.05 1.00 1.78E-06 0.78 0.40 

Parahippocampal gyrus right 0.39 (0.24, 0.52) 0.18 (0.04, 0.31) 0.39 (0.06, 0.50) 0.00 (0.00, 0.25) 0.61 (0.50, 0.75) 0.06 1.00 1.78E-06 0.69 0.53 
Cingulate           

Rostral anterior cingulate left 0.37 (0.23, 0.49) 0.19 (0.05, 0.33) 0.38 (0.01, 0.49) 0.00 (0.00, 0.29) 0.62 (0.51, 0.75) 0.10 1.00 4.43E-07 0.85 0.27 
Rostral anterior cingulate right 0.10 (-0.06, 0.25) 0.08 (-0.07, 0.22) 0.01 (0.00, 0.23) 0.08 (0.00, 0.19) 0.91 (0.77, 1.00) 1.00 0.92 0.43 0.79 0.37 

Caudal anterior cingulate left 0.48 (0.35, 0.59) 0.06 (-0.09, 0.20) 0.42 (0.25, 0.53) 0.00 (0.00, 0.11) 0.58 (0.47, 0.71) 1.54E-03 1.00 3.09E-07 0.95 0.10 
Caudal anterior cingulate right 0.07 (-0.08, 0.22) 0.04 (-0.12, 0.19) 0.08 (0.00, 0.22) 0.00 (0.00, 0.16) 0.92 (0.78, 1.00) 0.95 1.00 0.80 0.97 0.07 

Posterior cingulate left 0.32 (0.16, 0.46) 0.11 (-0.03, 0.25) 0.29 (0.00, 0.41) 0.00 (0.00, 0.25) 0.71 (0.59, 0.85) 0.16 1.00 7.26E-04 0.92 0.15 
Posterior cingulate right 0.31 (0.17, 0.44) 0.11 (-0.03, 0.25) 0.29 (0.00, 0.40) 0.00 (0.00, 0.26) 0.71 (0.60, 0.84) 0.18 1.00 2.26E-04 0.91 0.17 

Isthmus cingulate left 0.41 (0.27, 0.53) 0.30 (0.16, 0.42) 0.27 (0.00, 0.54) 0.16 (0.00, 0.41) 0.57 (0.46, 0.72) 0.26 0.48 4.38E-09 0.84 0.29 
Isthmus cingulate right 0.41 (0.27, 0.53) 0.22 (0.07, 0.35) 0.41 (0.04, 0.53) 0.01 (0.00, 0.29) 0.58 (0.47, 0.72) 0.07 1.00 6.07E-08 0.83 0.32 

Insular           
Insular cortex left 0.34 (0.18, 0.48) 0.15 (0.00, 0.29) 0.32 (0.00, 0.44) 0.00 (0.00, 0.30) 0.68 (0.56, 0.83) 0.25 1.00 2.74E-04 0.57 0.68 

Insular cortex right 0.34 (0.20, 0.47) 0.12 (-0.02, 0.25) 0.33 (0.06, 0.45) 0.00 (0.00, 0.20) 0.67 (0.55, 0.80) 0.06 1.00 7.72E-05 0.32 0.90 
           

Cortical Thickness           
Frontal           

Superior frontal gyrus left 0.47 (0.34, 0.58) 0.34 (0.21, 0.46) 0.19 (0.00, 0.53) 0.26 (0.00, 0.47) 0.55 (0.44, 0.67) 0.40 0.16 3.88E-12 0.82 0.33 
Superior frontal gyrus right 0.37 (0.22, 0.50) 0.15 (0.01, 0.28) 0.36 (0.05, 0.47) 0.00 (0.00, 0.23) 0.64 (0.53, 0.78) 0.06 1.00 2.83E-05 0.69 0.53 

Rostral middle frontal gyrus left 0.30 (0.15, 0.43) 0.18 (0.05, 0.31) 0.26 (0.00, 0.44) 0.05 (0.00, 0.30) 0.69 (0.56, 0.84) 0.32 0.94 9.88E-05 0.57 0.67 
Rostral middle frontal gyrus right 0.55 (0.43, 0.64) 0.28 (0.15, 0.40) 0.44 (0.12, 0.61) 0.08 (0.00, 0.34) 0.48 (0.39, 0.59) 0.02 0.79 5.06E-15 0.65 0.57 

Caudal middle frontal gyrus left 0.37 (0.22, 0.49) 0.04 (-0.09, 0.18) 0.29 (0.08, 0.41) 0.00 (0.00, 0.15) 0.71 (0.59, 0.84) 0.03 1.00 3.47E-04 0.82 0.33 
Caudal middle frontal gyrus right 0.29 (0.14, 0.43) 0.17 (0.03, 0.31) 0.32 (0.00, 0.45) 0.01 (0.00, 0.29) 0.67 (0.55, 0.83) 0.21 1.00 1.77E-04 0.75 0.44 

Pars opercularis left 0.35 (0.21, 0.47) 0.18 (0.03, 0.32) 0.27 (0.00, 0.45) 0.06 (0.00, 0.34) 0.67 (0.55, 0.80) 0.29 0.94 8.34E-06 0.63 0.60 
Pars opercularis right 0.23 (0.08, 0.36) 0.23 (0.09, 0.36) 0.00 (0.00, 0.35) 0.23 (0.00, 0.33) 0.77 (0.64, 0.87) 1.00 0.24 2.86E-04 0.75 0.43 

Pars triangularis left 0.08 (-0.07, 0.23) 0.10 (-0.05, 0.24) 0.00 (0.00, 0.00) 0.09 (0.00, 0.19) 0.91 (0.76, 1.00) 1.00 0.75 0.38 0.76 0.42 
Pars triangularis right 0.37 (0.24, 0.49) 0.09 (-0.04, 0.23) 0.35 (0.14, 0.46) 0.00 (0.00, 0.14) 0.65 (0.54, 0.78) 0.01 1.00 1.15E-05 0.70 0.50 

Pars orbitalis left 0.28 (0.12, 0.42) 0.04 (-0.10, 0.19) 0.23 (0.00, 0.36) 0.00 (0.00, 0.21) 0.77 (0.64, 0.90) 0.16 1.00 0.01 0.68 0.54 
Pars orbitalis right 0.48 (0.36, 0.59) 0.09 (-0.05, 0.23) 0.42 (0.22, 0.52) 0.00 (0.00, 0.15) 0.58 (0.48, 0.70) 3.19E-03 1.00 5.89E-09 0.71 0.50 
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Lateral orbitofrontal cortex left 0.31 (0.16, 0.44) 0.15 (0.01, 0.29) 0.32 (0.00, 0.44) 0.00 (0.00, 0.27) 0.68 (0.56, 0.83) 0.16 1.00 1.47E-04 0.62 0.62 
Lateral orbitofrontal cortex right 0.38 (0.24, 0.50) 0.21 (0.06, 0.34) 0.31 (0.00, 0.48) 0.06 (0.00, 0.34) 0.63 (0.52, 0.76) 0.18 0.94 4.43E-07 0.56 0.69 

Medial orbitofrontal cortex left 0.35 (0.20, 0.47) 0.21 (0.08, 0.33) 0.25 (0.00, 0.45) 0.09 (0.00, 0.34) 0.66 (0.55, 0.80) 0.31 0.76 2.12E-06 0.63 0.60 
Medial orbitofrontal cortex right 0.45 (0.32, 0.56) 0.23 (0.10, 0.35) 0.41 (0.07, 0.54) 0.03 (0.00, 0.30) 0.56 (0.46, 0.69) 0.04 1.00 8.59E-10 0.51 0.74 

Precentral gyrus left 0.48 (0.35, 0.59) 0.18 (0.03, 0.32) 0.45 (0.14, 0.55) 0.00 (0.00, 0.24) 0.55 (0.45, 0.67) 0.02 1.00 3.70E-09 0.88 0.22 
Precentral gyrus right 0.49 (0.36, 0.60) 0.32 (0.18, 0.43) 0.36 (0.03, 0.59) 0.14 (0.00, 0.39) 0.50 (0.40, 0.63) 0.07 0.49 7.02E-13 0.74 0.45 
Paracentral lobule left 0.38 (0.24, 0.50) 0.13 (-0.01, 0.26) 0.36 (0.11, 0.47) 0.00 (0.00, 0.18) 0.64 (0.53, 0.76) 0.02 1.00 3.73E-06 0.68 0.53 

Paracentral lobule right 0.44 (0.31, 0.55) 0.26 (0.12, 0.38) 0.35 (0.00, 0.54) 0.09 (0.00, 0.36) 0.57 (0.46, 0.69) 0.11 0.77 6.58E-10 0.78 0.40 
Frontal pole left 0.08 (-0.08, 0.23) 0.06 (-0.08, 0.21) 0.05 (0.00, 0.23) 0.04 (0.00, 0.18) 0.92 (0.77, 1.00) 1.00 1.00 0.60 0.57 0.67 

Frontal pole right 0.27 (0.13, 0.41) 0.20 (0.06, 0.33) 0.14 (0.00, 0.40) 0.13 (0.00, 0.32) 0.73 (0.60, 0.86) 0.69 0.60 1.86E-04 0.71 0.50 
Parietal           

Superior parietal cortex left 0.44 (0.30, 0.55) 0.13 (-0.02, 0.27) 0.40 (0.17, 0.51) 0.00 (0.00, 0.18) 0.60 (0.49, 0.72) 0.01 1.00 2.24E-07 0.85 0.28 
Superior parietal cortex right 0.46 (0.33, 0.57) 0.25 (0.12, 0.37) 0.43 (0.09, 0.57) 0.03 (0.00, 0.30) 0.53 (0.43, 0.66) 0.03 1.00 1.60E-10 0.86 0.26 

Inferior parietal cortex left 0.26 (0.12, 0.40) 0.07 (-0.07, 0.21) 0.24 (0.00, 0.36) 0.00 (0.00, 0.22) 0.76 (0.64, 0.89) 0.18 1.00 0.01 0.58 0.66 
Inferior parietal cortex right 0.35 (0.21, 0.48) -0.03 (-0.16, 0.11) 0.27 (0.10, 0.39) 0.00 (0.00, 0.10) 0.73 (0.61, 0.87) 0.02 1.00 3.19E-03 0.78 0.39 

Supramarginal cortex left 0.37 (0.23, 0.50) 0.16 (0.03, 0.29) 0.35 (0.00, 0.46) 0.00 (0.00, 0.29) 0.65 (0.54, 0.79) 0.13 1.00 6.50E-06 0.80 0.37 
Supramarginal cortex right 0.25 (0.10, 0.39) 0.12 (-0.02, 0.25) 0.27 (0.00, 0.39) 0.00 (0.00, 0.23) 0.73 (0.61, 0.89) 0.20 1.00 4.68E-03 0.87 0.24 

Postcentral gyrus left 0.54 (0.43, 0.64) 0.25 (0.11, 0.38) 0.55 (0.29, 0.64) 0.00 (0.00, 0.20) 0.45 (0.36, 0.56) 7.14E-04 1.00 2.57E-14 0.88 0.23 
Postcentral gyrus right 0.42 (0.29, 0.54) 0.24 (0.09, 0.37) 0.32 (0.00, 0.52) 0.09 (0.00, 0.37) 0.59 (0.48, 0.72) 0.16 0.79 8.18E-09 0.78 0.39 

Precuneus cortex left 0.38 (0.24, 0.50) 0.21 (0.07, 0.33) 0.33 (0.00, 0.49) 0.05 (0.00, 0.33) 0.62 (0.51, 0.76) 0.15 0.94 2.52E-07 0.82 0.32 
Precuneus cortex right 0.38 (0.24, 0.50) 0.04 (-0.10, 0.18) 0.32 (0.14, 0.44) 0.00 (0.00, 0.12) 0.68 (0.56, 0.81) 0.01 1.00 6.83E-05 0.75 0.43 

Occipital           
Lateral occipital cortex left 0.45 (0.31, 0.56) 0.31 (0.18, 0.43) 0.24 (0.00, 0.54) 0.19 (0.00, 0.43) 0.56 (0.45, 0.69) 0.27 0.29 5.79E-11 0.61 0.63 

Lateral occipital cortex right 0.32 (0.17, 0.45) 0.13 (-0.00, 0.27) 0.33 (0.05, 0.46) 0.00 (0.00, 0.19) 0.67 (0.54, 0.81) 0.06 1.00 2.19E-04 0.77 0.41 
Lingual gyrus left 0.49 (0.37, 0.59) 0.23 (0.09, 0.35) 0.48 (0.16, 0.57) 0.00 (0.00, 0.26) 0.52 (0.43, 0.64) 0.01 1.00 4.43E-12 0.79 0.38 

Lingual gyrus right 0.35 (0.21, 0.47) 0.30 (0.17, 0.42) 0.15 (0.00, 0.47) 0.22 (0.00, 0.41) 0.63 (0.51, 0.76) 0.58 0.20 4.75E-09 0.82 0.33 
Cuneus cortex left 0.44 (0.31, 0.54) 0.12 (-0.01, 0.25) 0.41 (0.22, 0.51) 0.00 (0.00, 0.13) 0.59 (0.49, 0.71) 2.80E-03 1.00 3.71E-08 0.77 0.41 

Cuneus cortex right 0.38 (0.25, 0.51) 0.05 (-0.09, 0.18) 0.34 (0.16, 0.46) 0.00 (0.00, 0.11) 0.66 (0.54, 0.80) 0.01 1.00 8.25E-05 0.82 0.33 
Pericalcarine cortex left 0.52 (0.40, 0.62) 0.30 (0.18, 0.41) 0.48 (0.17, 0.63) 0.06 (0.00, 0.30) 0.46 (0.37, 0.58) 0.01 0.87 2.57E-14 0.73 0.46 

Pericalcarine cortex right 0.49 (0.36, 0.60) 0.33 (0.21, 0.44) 0.36 (0.03, 0.60) 0.15 (0.00, 0.39) 0.50 (0.40, 0.62) 0.07 0.41 5.61E-13 0.72 0.48 
Temporal           

Superior temporal gyrus left 0.40 (0.26, 0.52) 0.20 (0.06, 0.33) 0.36 (0.00, 0.49) 0.02 (0.00, 0.32) 0.62 (0.51, 0.75) 0.12 1.00 2.98E-07 0.71 0.49 
Superior temporal gyrus right 0.33 (0.19, 0.46) 0.14 (-0.00, 0.27) 0.31 (0.00, 0.42) 0.00 (0.00, 0.27) 0.69 (0.58, 0.82) 0.16 1.00 6.92E-05 0.70 0.51 

Middle temporal gyrus left 0.40 (0.26, 0.52) 0.09 (-0.05, 0.23) 0.36 (0.15, 0.48) 0.00 (0.00, 0.15) 0.64 (0.52, 0.77) 0.01 1.00 7.60E-06 0.76 0.42 
Middle temporal gyrus right 0.38 (0.24, 0.50) 0.20 (0.07, 0.33) 0.30 (0.00, 0.47) 0.06 (0.00, 0.34) 0.64 (0.53, 0.77) 0.19 0.91 2.52E-07 0.61 0.63 
Inferior temporal gyrus left 0.38 (0.24, 0.50) 0.28 (0.15, 0.40) 0.21 (0.00, 0.49) 0.18 (0.00, 0.40) 0.62 (0.50, 0.75) 0.38 0.35 7.30E-09 0.43 0.81 

Inferior temporal gyrus right 0.32 (0.17, 0.45) 0.24 (0.11, 0.36) 0.27 (0.00, 0.49) 0.09 (0.00, 0.34) 0.64 (0.51, 0.80) 0.30 0.74 3.73E-06 0.52 0.73 
Banks of the superior temporal sulcus left 0.19 (0.04, 0.33) 0.17 (0.03, 0.30) 0.01 (0.00, 0.31) 0.17 (0.00, 0.28) 0.82 (0.68, 0.92) 1.00 0.44 0.01 0.74 0.45 

Banks of the superior temporal sulcus right 0.18 (0.03, 0.32) 0.13 (-0.02, 0.26) 0.14 (0.00, 0.33) 0.05 (0.00, 0.24) 0.81 (0.67, 0.95) 0.73 0.94 0.04 0.76 0.42 
Fusiform gyrus left 0.38 (0.25, 0.49) 0.23 (0.09, 0.35) 0.34 (0.00, 0.50) 0.05 (0.00, 0.32) 0.61 (0.50, 0.74) 0.12 0.94 5.14E-08 0.54 0.71 

Fusiform gyrus right 0.32 (0.17, 0.46) 0.18 (0.04, 0.32) 0.27 (0.00, 0.45) 0.05 (0.00, 0.32) 0.68 (0.55, 0.83) 0.31 0.94 7.63E-05 0.30 0.91 
Transverse temporal cortex left 0.36 (0.21, 0.48) 0.17 (0.03, 0.30) 0.35 (0.00, 0.46) 0.00 (0.00, 0.29) 0.65 (0.54, 0.79) 0.14 1.00 9.97E-06 0.49 0.76 

Transverse temporal cortex right 0.41 (0.27, 0.52) 0.11 (-0.02, 0.24) 0.37 (0.16, 0.48) 0.00 (0.00, 0.15) 0.63 (0.52, 0.76) 0.01 1.00 1.69E-06 0.78 0.40 
Entorhinal cortex left 0.26 (0.11, 0.40) 0.21 (0.07, 0.34) 0.07 (0.00, 0.38) 0.18 (0.00, 0.33) 0.75 (0.62, 0.87) 0.94 0.40 2.35E-04 0.49 0.76 

Entorhinal cortex right 0.35 (0.21, 0.48) 0.14 (-0.00, 0.27) 0.33 (0.00, 0.44) 0.00 (0.00, 0.00) 0.67 (0.56, 0.80) 0.11 1.00 3.15E-05 0.48 0.77 
Temporal pole left 0.32 (0.18, 0.45) 0.04 (-0.09, 0.17) 0.26 (0.04, 0.38) 0.00 (0.00, 0.16) 0.74 (0.62, 0.86) 0.06 1.00 9.58E-04 0.43 0.81 

Temporal pole right 0.29 (0.14, 0.43) -0.03 (-0.18, 0.11) 0.22 (0.02, 0.35) 0.00 (0.00, 0.13) 0.78 (0.65, 0.92) 0.07 1.00 0.02 0.45 0.80 
Parahippocampal gyrus left 0.40 (0.26, 0.52) 0.15 (-0.00, 0.29) 0.40 (0.13, 0.51) 0.00 (0.00, 0.19) 0.60 (0.49, 0.73) 0.02 1.00 1.77E-06 0.92 0.15 

Parahippocampal gyrus right 0.47 (0.34, 0.58) 0.27 (0.13, 0.39) 0.51 (0.17, 0.60) 0.00 (0.00, 0.26) 0.49 (0.40, 0.62) 0.01 1.00 1.22E-10 0.84 0.30 
Cingulate           

Rostral anterior cingulate left 0.26 (0.12, 0.39) 0.20 (0.06, 0.33) 0.07 (0.00, 0.36) 0.18 (0.00, 0.32) 0.76 (0.64, 0.87) 0.94 0.41 1.80E-04 0.56 0.69 
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Rostral anterior cingulate right 0.30 (0.15, 0.43) 0.14 (0.00, 0.27) 0.25 (0.00, 0.39) 0.03 (0.00, 0.29) 0.73 (0.61, 0.86) 0.35 1.00 4.24E-04 0.66 0.56 
Caudal anterior cingulate left 0.37 (0.23, 0.49) 0.10 (-0.05, 0.24) 0.35 (0.13, 0.47) 0.00 (0.00, 0.15) 0.65 (0.53, 0.78) 0.02 1.00 3.05E-05 0.69 0.52 

Caudal anterior cingulate right 0.34 (0.20, 0.47) 0.04 (-0.10, 0.18) 0.29 (0.09, 0.41) 0.00 (0.00, 0.14) 0.71 (0.59, 0.84) 0.03 1.00 5.03E-04 0.78 0.39 
Posterior cingulate left 0.22 (0.07, 0.36) 0.24 (0.10, 0.37) 0.00 (0.00, 0.34) 0.23 (0.00, 0.33) 0.77 (0.64, 0.87) 1.00 0.19 4.15E-04 0.85 0.28 

Posterior cingulate right 0.25 (0.10, 0.39) 0.19 (0.05, 0.32) 0.20 (0.00, 0.42) 0.08 (0.00, 0.30) 0.72 (0.58, 0.87) 0.49 0.81 5.03E-04 0.86 0.27 
Isthmus cingulate left 0.38 (0.24, 0.50) 0.33 (0.19, 0.45) 0.15 (0.00, 0.49) 0.24 (0.00, 0.43) 0.61 (0.49, 0.73) 0.57 0.18 1.74E-09 0.91 0.17 

Isthmus cingulate right 0.39 (0.26, 0.51) 0.28 (0.14, 0.40) 0.26 (0.00, 0.51) 0.14 (0.00, 0.39) 0.60 (0.49, 0.74) 0.26 0.51 8.51E-09 0.83 0.31 
Insular           

Insular cortex left 0.21 (0.06, 0.35) 0.19 (0.05, 0.32) 0.00 (0.00, 0.32) 0.20 (0.00, 0.29) 0.80 (0.67, 0.90) 1.00 0.34 2.01E-03 0.62 0.62 
Insular cortex right 0.35 (0.20, 0.48) -0.01 (-0.15, 0.14) 0.29 (0.09, 0.41) 0.00 (0.00, 0.13) 0.71 (0.59, 0.85) 0.03 1.00 9.17E-04 0.43 0.82 

Note. Surface area and cortical thickness of each region is adjusted for total surface area/mean cortical thickness, linear and non-linear age effects, sex, interactions between age and sex, and acquisition 
orientation. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular). a2 = additive genetic influences; c2 common or shared environmental influences; e2 unique or non-
shared environmental influences; No A = test of CE model (no additive genetic influence); No C = test of AE model (no common environmental influence); No AC = test of E model (no additive genetic or 
common environmental influence). Heritability estimates (a2) significantly different from zero (significant ‘No A’; q value < 0.05) appear in bold. Variance explained by measurement error (1 - r2 test-retest 
correlation) was greater than non-shared environment (e2) in the following ROIs: surface area – lateral orbitofrontal right, medial orbitofrontal left, superior temporal right, entorhinal right, temporal pole left, 
insula right, cortical thickness – rostral middle frontal right, lateral orbitofrontal right, medial orbitofrontal right, lateral occipital left, inferior temporal left and right, fusiform left and right, transverse temporal 
left, entorhinal left and right, temporal pole left and right, insular right. 
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Appendix 8 Test-Retest Correlations for QTIM Surface Area 
and Cortical Thickness  

 

Test-retest reliability correlations varied across ROIs, ranging from 0.30 to 0.97, and were 

generally high for surface area (a) (reliability >70% for 55/68 ROIs) and more moderate for 

cortical thickness (b) (reliability >70% for 39/68 ROIs), with the mean reliability estimate 

(weighted by ROI size) being higher for surface area (0.84) than cortical thickness (0.72). 

Reliability was generally similar for corresponding left/right regions, though there were 

some exceptions (insular surface area, lateral orbitofrontal surface area, middle temporal 

gyrus cortical thickness, transverse temporal cortical thickness, fusiform cortical 

thickness). Poor reliability estimates (less than 50%) were generally limited to small (e.g. 

entorhinal, temporal pole) and difficult to measure ROIs (e.g. insular, orbitofrontal). Test-

retest reliability was estimated by calculating the Pearson’s correlation coefficient between 

surface area/cortical thickness measures from time one and time two scans (covariate 

effects were removed by using regression residuals; same covariates as for heritability 

estimates). The test-retest sample consisted 53 participants who were scanned a second 

time (mean duration between first and second scan was 113.36 ± 52.25 days). 
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Appendix 9 Twin and Test-Retest Correlations for QTIM Surface Area and Cortical  

 

Twin correlations with 95% confidence intervals, and test-retest reliability correlations for surface area (top) and cortical thickness 

(bottom) for 68 ROIs (34 in each of the left (L) and right (R) hemisphere in the QTIM sample. For almost all ROIs, for both surface area 

(65/68) and cortical thickness (65/68) the MZ twin correlations were higher than the DZ correlations, suggesting individual variation in 

surface area and cortical thickness is genetically influenced. 
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Appendix 10 Heatmaps of Genetic Correlations Across ROIs 
for QTIM Surface Area and Cortical Thickness  
 

 

Heatmaps, with hierarchal clustering applied, of the genetic correlations across ROIs 

(weighted by heritability) for a) surface area and b) cortical thickness, and genetic 

correlations across ROIs (not weighted by heritability) for c) surface area and d) cortical 

thickness in the QTIM dataset. 



 

 

207 

Appendix 11 Phenotypic Correlations with Genetic and Environmental Contributions, between 
QTIM Surface Area and Cortical Thickness 

 

Phenotypic correlations (left), with genetic (middle) and environmental (right) contributions, between surface area and cortical thickness 

across regions in the QTIM sample. * denotes a significant correlation (q value < 0.05).  
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Appendix 12 Descriptive Statistics for Surface Area and Cortical Thickness in the HCP Dataset 
Number of excluded measures, mean (SD), minimum, maximum, percentage difference between male and female raw means, and number of outliers (± 3.29 SD) 

for HCP surface area and cortical thickness (N = 698). 

      Surface Area (mm2)   Cortical Thickness (mm) 
  Excluded*   Mean (SD) Minimum Maximum M/F Diff+ Outliers‡   Mean (SD) Minimum Maximum M/F Diff+ Outliers‡ 

Frontal              
Superior frontal gyrus left 0 

 
7374 (916) 5405 10695 13.20 4 

 
2.84 (0.12) 2.49 3.26 -0.23 1 

Superior frontal gyrus right 0 
 

7237 (916) 5221 11507 13.57 2 
 

2.87 (0.12) 2.47 3.29 0.09 1 
Rostral middle frontal gyrus left 0 

 
6020 (788) 4049 8461 14.04 0 

 
2.57 (0.11) 2.27 3.01 0.90 1 

Rostral middle frontal gyrus right 0 
 

6237 (829) 4311 8773 13.67 0 
 

2.58 (0.11) 2.22 2.96 0.79 0 
Caudal middle frontal gyrus left 0 

 
2404 (429) 1405 4114 13.90 4 

 
2.73 (0.11) 2.43 3.15 0.88 1 

Caudal middle frontal gyrus right 0 
 

2226 (412) 1176 3666 13.89 3 
 

2.75 (0.11) 2.38 3.08 0.47 0 
Pars opercularis left 0 

 
1710 (279) 1128 2868 11.75 2 

 
2.79 (0.11) 2.45 3.25 1.10 1 

Pars opercularis right 0 
 

1445 (250) 859 2864 12.22 5 
 

2.83 (0.12) 2.41 3.23 0.98 2 
Pars triangularis left 0 

 
1302 (212) 865 2098 12.54 5 

 
2.63 (0.12) 2.31 3.01 0.79 0 

Pars triangularis right 0 
 

1518 (253) 913 2393 11.87 2 
 

2.70 (0.12) 2.29 3.20 1.03 2 
Pars orbitalis left 1 

 
639 (87) 399 902 12.90 0 

 
2.78 (0.14) 2.39 3.18 -0.61 0 

Pars orbitalis right 0 
 

797 (104) 485 1097 12.50 0 
 

2.84 (0.15) 2.24 3.50 0.17 2 
Lateral orbitofrontal cortex left 0 

 
2643 (317) 1706 3672 12.21 0 

 
2.82 (0.11) 2.48 3.33 1.29 1 

Lateral orbitofrontal cortex right 0 
 

2571 (325) 1647 3828 12.70 3 
 

2.84 (0.12) 2.48 3.22 1.09 0 
Medial orbitofrontal cortex left 0 

 
1985 (304) 1239 2980 12.89 1 

 
2.57 (0.15) 2.17 3.18 1.02 2 

Medial orbitofrontal cortex right 0 
 

1849 (231) 1161 2886 11.56 2 
 

2.74 (0.13) 2.40 3.22 0.81 2 
Precentral gyrus left 1 

 
4809 (560) 3547 6962 11.78 2 

 
2.73 (0.10) 2.42 3.10 0.76 1 

Precentral gyrus right 1 
 

4893 (575) 3359 7027 12.50 3 
 

2.73 (0.11) 2.19 3.11 0.69 4 
Paracentral lobule left 0 

 
1317 (191) 879 2068 10.29 1 

 
2.56 (0.12) 2.19 2.90 -0.39 0 

Paracentral lobule right 0 
 

1506 (223) 1009 2378 12.22 2 
 

2.58 (0.13) 2.22 3.00 -0.22 0 
Frontal pole left 0 

 
203 (35) 111 317 11.72 0 

 
2.84 (0.20) 2.30 3.65 -0.46 1 

Frontal pole right 0 
 

279 (47) 159 465 12.89 1 
 

2.87 (0.20) 2.29 3.68 -0.44 1 
Parietal 

             

Superior parietal cortex left 0 
 

5502 (702) 3694 8020 11.45 2 
 

2.29 (0.10) 1.99 2.54 -0.42 0 
Superior parietal cortex right 0 

 
5511 (686) 3758 7727 12.05 0 

 
2.33 (0.10) 2.04 2.61 -0.26 0 

Inferior parietal cortex left 0 
 

4627 (680) 2917 6753 14.48 0 
 

2.58 (0.10) 2.24 2.97 -0.15 1 
Inferior parietal cortex right 0 

 
5578 (803) 3599 8234 16.06 2 

 
2.65 (0.10) 2.23 2.99 0.33 4 

Supramarginal cortex left 0 
 

3930 (573) 2664 6190 15.37 1 
 

2.66 (0.11) 2.25 3.03 -0.01 2 
Supramarginal cortex right 0 

 
3694 (539) 2207 5570 13.17 1 

 
2.70 (0.11) 2.36 3.02 0.17 0 

Postcentral gyrus left 1 
 

4141 (507) 2872 6136 12.92 1 
 

2.22 (0.09) 1.87 2.55 0.09 2 
Postcentral gyrus right 1 

 
3961 (491) 2744 6076 12.08 5 

 
2.24 (0.10) 1.92 2.64 0.20 3 

Precuneus cortex left 0 
 

3850 (499) 2554 5685 13.65 1 
 

2.53 (0.10) 2.24 2.83 0.30 0 
Precuneus cortex right 0 

 
4068 (562) 2664 6051 14.08 3 

 
2.56 (0.11) 2.21 2.88 0.34 0 

Occipital 
             

Lateral occipital cortex left 0 
 

4739 (614) 3197 6703 13.29 0 
 

2.30 (0.10) 1.97 2.56 0.32 0 
Lateral occipital cortex right 0 

 
4621 (630) 3042 6438 13.42 0 

 
2.35 (0.10) 2.03 2.64 0.78 0 
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Lingual gyrus left 0 
 

3093 (442) 1876 4880 12.49 2 
 

2.18 (0.10) 1.89 2.48 1.15 0 
Lingual gyrus right 0 

 
3120 (431) 1955 4921 12.33 2 

 
2.20 (0.11) 1.77 2.57 0.76 1 

Cuneus cortex left 0 
 

1466 (215) 837 2241 13.43 1 
 

2.09 (0.11) 1.77 2.45 0.32 1 
Cuneus cortex right 0 

 
1501 (236) 536 2292 13.44 6 

 
2.10 (0.11) 1.74 2.44 -0.25 0 

Pericalcarine cortex left 0 
 

1477 (245) 733 2203 12.22 0 
 

2.01 (0.11) 1.65 2.40 0.03 2 
Pericalcarine cortex right 0 

 
1614 (261) 896 2438 11.94 0 

 
2.01 (0.12) 1.63 2.40 0.51 0 

Temporal 
             

Superior temporal gyrus left 0 
 

3833 (460) 2622 5359 12.39 0 
 

2.90 (0.12) 2.55 3.30 1.12 1 
Superior temporal gyrus right 0 

 
3643 (420) 2665 5245 10.96 1 

 
2.95 (0.13) 2.51 3.34 1.63 1 

Middle temporal gyrus left 0 
 

3146 (435) 1979 4750 13.52 3 
 

2.99 (0.12) 2.66 3.36 0.34 0 
Middle temporal gyrus right 0 

 
3493 (462) 2259 5225 13.12 1 

 
3.06 (0.13) 2.67 3.41 1.16 0 

Inferior temporal gyrus left 0 
 

3410 (517) 2210 5703 14.60 2 
 

2.94 (0.12) 2.60 3.31 0.94 0 
Inferior temporal gyrus right 0 

 
3270 (486) 1969 4812 14.01 0 

 
2.98 (0.12) 2.60 3.31 0.87 0 

Banks of the superior temporal sulcus left 0 
 

1054 (171) 665 1660 11.65 2 
 

2.68 (0.13) 2.31 3.03 0.64 0 
Banks of the superior temporal sulcus right 0 

 
974 (143) 609 1487 11.10 2 

 
2.80 (0.14) 2.24 3.25 0.75 1 

Fusiform gyrus left 0 
 

3375 (461) 2335 5288 13.98 3 
 

2.89 (0.10) 2.54 3.29 0.20 1 
Fusiform gyrus right 0 

 
3270 (459) 2151 5018 14.66 2 

 
2.90 (0.11) 2.49 3.27 0.44 3 

Transverse temporal cortex left 0 
 

453 (77) 285 700 12.41 0 
 

2.68 (0.16) 2.23 3.17 -0.21 0 
Transverse temporal cortex right 0 

 
333 (55) 196 545 11.17 3 

 
2.75 (0.16) 2.18 3.39 0.89 2 

Entorhinal cortex left 6 
 

427 (79) 276 685 15.48 1 
 

3.31 (0.25) 2.50 4.32 0.32 2 
Entorhinal cortex right 0 

 
366 (85) 195 720 18.12 3 

 
3.42 (0.25) 2.66 4.22 0.25 0 

Temporal pole left 0 
 

501 (60) 331 725 9.25 2 
 

3.43 (0.28) 2.62 4.26 -1.41 0 
Temporal pole right 0 

 
437 (58) 280 621 6.85 0 

 
3.67 (0.29) 2.77 4.46 0.23 0 

Parahippocampal gyrus left 1 
 

727 (113) 435 1233 10.10 4 
 

2.74 (0.26) 2.01 3.40 -0.41 0 
Parahippocampal gyrus right 0 

 
699 (110) 412 1232 12.15 4 

 
2.71 (0.21) 2.00 3.31 -0.53 0 

Cingulate 
             

Rostral anterior cingulate left 2 
 

873 (169) 441 1457 16.97 1 
 

3.04 (0.18) 2.51 3.63 0.84 1 
Rostral anterior cingulate right 20 

 
672 (140) 321 1128 16.62 0 

 
3.02 (0.20) 2.37 3.64 1.30 0 

Caudal anterior cingulate left 2 
 

691 (145) 393 1263 12.02 4 
 

2.70 (0.17) 2.26 3.25 0.55 2 
Caudal anterior cingulate right 20 

 
803 (161) 428 1588 11.03 1 

 
2.54 (0.17) 2.04 3.13 -0.68 1 

Posterior cingulate left 2 
 

1215 (179) 794 1869 11.82 2 
 

2.57 (0.11) 2.23 2.91 0.61 0 
Posterior cingulate right 20 

 
1243 (195) 841 2015 12.26 2 

 
2.54 (0.11) 2.20 2.89 0.97 0 

Isthmus cingulate left 35 
 

1049 (191) 641 1642 17.36 0 
 

2.34 (0.16) 1.84 2.80 -0.10 0 
Isthmus cingulate right 23 

 
971 (158) 597 1536 13.59 4 

 
2.34 (0.15) 1.83 2.87 1.58 2 

Insular 
             

Insular cortex left 5 
 

2267 (261) 1701 3189 10.86 1 
 

3.06 (0.14) 2.58 3.44 2.81 1 
Insular cortex right 0 

 
2412 (295) 1710 3401 12.07 1 

 
3.02 (0.14) 2.53 3.44 2.69 1 

Note. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular) 
*Variables were excluded based on visual inspection of the accuracy of cortical parcellations as per ENIGMA protocols (enigma.ini.usc.edu).  
+Percentage difference between male and female raw means; positive (negative) percentage denotes larger/thicker value for males (females). 
‡Outliers ± 3.29 SD from the mean were replaced by the corresponding threshold value (i.e. ± 3.29). 
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Appendix 13 Covariate Effects for Surface Area Measures in the HCP Dataset 
Regression coefficients and q values for surface area covariates in the HCP sample. 

 Total Surface Area Age Age2 Age3 Sex Age x Sex Age2 x Sex Age3 x Sex 

 
Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Frontal                 
Superior frontal gyrus left 0.89 1.50E-134 0.02 0.83 -0.03 0.76 0.03 0.87 -0.18 0.67 -0.01 0.98 0.11 0.66 -0.07 0.51 

Superior frontal gyrus right 0.88 3.35E-127 0.01 0.93 -0.03 0.80 0.01 0.98 -0.18 0.67 -0.02 0.90 0.12 0.59 -0.01 0.98 
Rostral middle frontal gyrus left 0.82 4.29E-106 -0.02 0.93 0.04 0.69 0.12 0.18 0.04 0.98 -0.04 0.80 -0.06 0.85 -0.13 0.09 

Rostral middle frontal gyrus right 0.84 2.11E-104 0.01 0.97 0.03 0.81 0.03 0.89 0.01 0.98 -0.05 0.67 0.03 0.98 -0.04 0.83 
Caudal middle frontal gyrus left 0.70 3.61E-50 -0.02 0.92 0.01 0.98 1.34E-03 1.00 0.06 0.98 0.01 0.98 0.01 0.98 0.01 0.98 

Caudal middle frontal gyrus right 0.70 4.41E-50 -0.09 0.33 0.01 0.98 -0.01 0.98 0.22 0.78 0.10 0.34 -0.10 0.81 -0.03 0.92 
Pars opercularis left 0.68 8.78E-50 -0.15 0.03 0.08 0.46 0.05 0.86 0.24 0.76 0.11 0.31 -0.11 0.81 -0.02 0.98 

Pars opercularis right 0.66 7.40E-49 -0.04 0.80 4.87E-03 0.98 -0.05 0.86 0.11 0.93 -0.01 0.98 0.06 0.93 0.08 0.67 

Pars triangularis left 0.59 4.50E-33 0.07 0.60 -4.82E-04 1.00 0.02 0.98 0.15 0.89 -0.04 0.87 -0.11 0.82 -0.04 0.92 
Pars triangularis right 0.55 1.80E-29 -0.05 0.79 0.04 0.83 0.12 0.54 0.11 0.95 0.02 0.98 -0.12 0.81 -0.06 0.84 

Pars orbitalis left 0.65 1.34E-49 -0.04 0.80 0.02 0.95 0.13 0.29 -0.32 0.58 0.01 0.98 0.05 0.95 -0.10 0.48 
Pars orbitalis right 0.65 2.89E-54 0.01 0.98 -4.63E-03 0.98 -1.03E-03 1.00 -0.40 0.38 0.01 0.98 0.14 0.67 -1.39E-03 1.00 

Lateral orbitofrontal cortex left 0.87 8.51E-116 -0.06 0.32 0.10 0.09 0.19 0.01 0.17 0.74 0.06 0.48 -0.17 0.37 -0.18 0.01 
Lateral orbitofrontal cortex right 0.82 5.04E-96 -0.03 0.84 0.09 0.17 0.17 0.03 0.55 0.05 -0.02 0.96 -0.36 0.01 -0.21 2.92E-03 

Medial orbitofrontal cortex left 0.70 6.78E-55 -0.01 0.98 0.05 0.71 -0.02 0.98 -0.10 0.93 0.03 0.87 0.06 0.93 0.06 0.80 

Medial orbitofrontal cortex right 0.82 8.53E-90 3.53E-03 0.98 0.11 0.08 0.15 0.11 0.05 0.98 0.02 0.93 -0.06 0.91 -0.14 0.15 
Precentral gyrus left 0.80 5.76E-83 0.01 0.98 -0.04 0.80 0.05 0.79 -0.33 0.41 0.01 0.98 0.14 0.65 -0.03 0.91 

Precentral gyrus right 0.80 2.11E-91 -0.02 0.90 -3.59E-04 1.00 0.07 0.67 -0.46 0.12 0.03 0.82 0.17 0.44 -0.04 0.82 
Paracentral lobule left 0.67 9.25E-46 -0.01 0.98 0.03 0.89 0.23 0.03 -0.21 0.80 0.05 0.80 0.08 0.89 -0.13 0.37 

Paracentral lobule right 0.67 2.36E-51 0.05 0.67 0.03 0.87 0.15 0.24 -0.18 0.82 -0.04 0.84 0.09 0.83 -0.06 0.79 

Frontal pole left 0.52 1.18E-28 0.04 0.82 -0.04 0.82 -0.11 0.59 0.11 0.95 -0.07 0.69 0.02 0.98 0.05 0.87 
Frontal pole right 0.53 1.65E-31 0.03 0.89 -0.02 0.93 0.01 0.98 -0.09 0.97 -0.11 0.37 0.05 0.95 -0.03 0.96 

Parietal                 
Superior parietal cortex left 0.78 5.46E-75 0.03 0.82 -0.02 0.92 -0.21 0.01 0.28 0.58 -0.02 0.92 -0.01 0.98 0.19 0.02 

Superior parietal cortex right 0.75 2.05E-73 -0.05 0.67 0.05 0.67 -0.12 0.27 0.47 0.14 0.01 0.98 -0.22 0.25 0.06 0.69 
Inferior parietal cortex left 0.76 1.43E-79 -0.01 0.98 -0.05 0.67 -0.06 0.78 0.02 0.98 0.02 0.97 1.22E-03 1.00 0.10 0.45 

Inferior parietal cortex right 0.73 2.83E-75 -0.06 0.48 -0.01 0.98 0.01 0.98 -0.21 0.71 0.06 0.59 -0.03 0.97 -0.02 0.95 

Supramarginal cortex left 0.73 4.40E-82 0.02 0.92 0.02 0.95 0.01 0.98 -0.12 0.87 -0.01 0.98 0.03 0.97 0.03 0.93 
Supramarginal cortex right 0.73 3.48E-68 0.09 0.22 0.01 0.98 -0.02 0.98 0.25 0.67 -0.07 0.55 -0.07 0.87 0.06 0.76 

Postcentral gyrus left 0.80 3.16E-97 -0.08 0.19 0.01 0.98 0.10 0.34 -0.17 0.79 0.08 0.36 -0.01 0.98 -0.11 0.27 
Postcentral gyrus right 0.79 3.71E-87 -9.05E-05 1.00 -0.04 0.80 -0.03 0.89 -0.12 0.88 0.05 0.69 0.05 0.92 0.01 0.98 
Precuneus cortex left 0.80 2.85E-102 0.01 0.98 -0.07 0.31 -0.08 0.48 0.03 0.98 -0.03 0.86 0.01 0.98 0.02 0.95 

Precuneus cortex right 0.81 1.45E-92 0.03 0.82 0.01 0.98 -0.03 0.92 0.07 0.95 -0.02 0.96 -0.02 0.98 0.02 0.94 
Occipital                 

Lateral occipital cortex left 0.74 1.27E-69 -0.02 0.96 0.11 0.18 0.06 0.76 0.08 0.95 0.01 0.98 -0.13 0.69 -0.03 0.92 
Lateral occipital cortex right 0.73 5.76E-70 1.78E-03 1.00 0.07 0.48 0.08 0.67 -0.13 0.87 0.05 0.69 -0.03 0.98 -0.08 0.61 

Lingual gyrus left 0.64 4.15E-45 0.11 0.19 -0.04 0.82 -0.11 0.49 0.40 0.42 -0.09 0.48 -0.15 0.69 0.06 0.80 
Lingual gyrus right 0.66 4.05E-51 0.07 0.55 0.01 0.98 -0.16 0.17 0.48 0.23 -0.06 0.67 -0.18 0.58 0.08 0.66 
Cuneus cortex left 0.62 1.60E-42 0.02 0.92 -0.08 0.51 -0.12 0.38 -0.24 0.72 -0.01 0.98 0.11 0.80 0.04 0.87 

Cuneus cortex right 0.62 7.18E-42 0.01 0.98 0.02 0.97 3.87E-03 0.99 0.29 0.67 -5.40E-04 1.00 -0.20 0.51 -0.08 0.70 
Pericalcarine cortex left 0.54 2.89E-28 0.05 0.76 0.01 0.98 -0.03 0.97 0.06 0.98 -0.04 0.88 0.02 0.98 0.03 0.96 
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Pericalcarine cortex right 0.56 1.42E-30 0.01 0.98 0.05 0.79 0.01 0.98 0.24 0.79 0.01 0.98 -0.12 0.81 -0.03 0.94 
Temporal                 

Superior temporal gyrus left 0.80 2.04E-99 0.03 0.83 0.08 0.27 0.01 0.98 0.12 0.84 0.01 0.98 -0.08 0.80 1.78E-03 1.00 

Superior temporal gyrus right 0.86 7.58E-115 0.02 0.87 0.02 0.87 0.01 0.98 0.21 0.67 -0.01 0.98 -0.03 0.98 0.01 0.98 
Middle temporal gyrus left 0.83 1.30E-94 0.02 0.92 -0.03 0.80 -0.05 0.80 0.12 0.87 -0.06 0.60 0.02 0.98 0.06 0.70 

Middle temporal gyrus right 0.82 6.60E-99 0.01 0.98 -0.08 0.23 -0.08 0.51 0.01 0.98 -0.02 0.92 0.07 0.83 0.08 0.51 
Inferior temporal gyrus left 0.75 4.36E-73 -4.89E-03 0.98 -0.10 0.23 -0.07 0.67 -0.41 0.29 -7.94E-04 1.00 0.23 0.27 0.08 0.67 

Inferior temporal gyrus right 0.77 3.59E-79 -0.08 0.32 -0.07 0.51 0.07 0.69 -0.36 0.40 0.09 0.33 0.15 0.59 -0.04 0.87 
Banks of the superior temporal 

sulcus left 0.55 1.15E-31 0.02 0.96 -0.07 0.67 -0.02 0.98 -0.02 0.98 -0.03 0.90 0.04 0.98 0.04 0.92 
Banks of the superior temporal 

sulcus right 0.61 1.75E-40 -0.06 0.69 -0.03 0.92 -0.06 0.82 -0.02 0.98 0.06 0.69 0.02 0.98 0.06 0.80 

Fusiform gyrus left 0.70 3.18E-72 -0.09 0.18 -0.05 0.69 -0.03 0.90 -0.35 0.38 0.12 0.11 0.08 0.84 -0.01 0.98 
Fusiform gyrus right 0.76 2.02E-88 0.03 0.84 -0.12 0.04 -0.10 0.34 -0.14 0.82 -0.04 0.80 0.12 0.68 0.09 0.40 

Transverse temporal cortex left 0.60 1.75E-38 -0.01 0.98 0.11 0.27 0.14 0.37 -0.20 0.81 0.07 0.69 0.03 0.98 -0.12 0.48 
Transverse temporal cortex right 0.65 7.92E-44 0.07 0.61 0.06 0.71 0.06 0.80 -0.02 0.98 -0.04 0.83 0.08 0.89 0.02 0.98 

Entorhinal cortex left 0.52 9.28E-29 -0.03 0.92 1.78E-03 1.00 -0.12 0.48 -0.36 0.59 0.01 0.98 0.14 0.74 0.16 0.24 

Entorhinal cortex right 0.39 3.29E-15 -0.03 0.93 -0.02 0.96 -0.13 0.48 -0.30 0.69 0.02 0.95 0.05 0.97 0.14 0.40 
Temporal pole left 0.42 4.82E-18 0.13 0.18 -0.13 0.21 -0.27 0.02 -0.42 0.48 -0.08 0.67 0.24 0.46 0.22 0.06 

Temporal pole right 0.42 2.98E-16 0.01 0.98 -0.13 0.29 -0.12 0.59 -0.63 0.22 0.01 0.98 0.40 0.11 0.18 0.23 
Parahippocampal gyrus left 0.60 5.17E-39 0.06 0.65 -0.03 0.90 -0.14 0.28 -0.13 0.90 0.01 0.98 0.18 0.60 0.14 0.32 

Parahippocampal gyrus right 0.72 4.21E-56 0.11 0.14 -0.01 0.98 -0.06 0.80 0.24 0.70 -0.07 0.59 1.06E-03 1.00 0.06 0.80 
Cingulate                 

Rostral anterior cingulate left 0.83 3.92E-87 0.05 0.67 0.09 0.27 0.06 0.74 0.61 0.04 -0.07 0.51 -0.24 0.22 -0.07 0.67 

Rostral anterior cingulate right 0.58 6.45E-37 0.06 0.65 -0.02 0.95 -0.07 0.79 -0.21 0.80 -0.03 0.93 0.12 0.80 0.11 0.49 
Caudal anterior cingulate left 0.59 1.71E-36 0.01 0.98 -0.02 0.94 -0.02 0.98 0.29 0.69 -0.01 0.98 -0.04 0.98 0.01 0.98 

Caudal anterior cingulate right 0.57 5.63E-35 0.01 0.98 -0.01 0.98 -0.03 0.93 0.32 0.67 -0.07 0.69 -3.61E-03 1.00 0.05 0.87 
Posterior cingulate left 0.65 1.67E-48 -0.05 0.69 0.05 0.79 0.12 0.46 0.16 0.86 0.06 0.67 -0.13 0.72 -0.07 0.74 

Posterior cingulate right 0.73 1.11E-58 0.03 0.91 -0.09 0.34 -0.05 0.86 -0.14 0.87 -0.04 0.81 0.21 0.46 0.07 0.69 

Isthmus cingulate left 0.71 1.57E-55 0.04 0.79 -0.05 0.70 -0.12 0.42 0.04 0.98 -0.04 0.82 -0.02 0.98 0.08 0.68 
Isthmus cingulate right 0.71 1.73E-57 -0.08 0.37 -7.25E-04 1.00 0.08 0.67 0.17 0.82 0.01 0.98 -0.08 0.86 -0.07 0.72 

Insular                 
Insular cortex left 0.76 3.68E-79 0.06 0.51 -0.05 0.67 0.08 0.61 -0.55 0.07 0.02 0.94 0.26 0.17 -0.05 0.82 

Insular cortex right 0.73 2.70E-71 0.11 0.08 0.05 0.67 0.10 0.46 -0.34 0.44 -0.04 0.80 0.12 0.70 -1.40E-03 1.00 

Note. Estimates significant at q < 0.05 appear in bold. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular). A positive estimate for sex indicates a larger surface area 

for females. Dummy variables were coded sex (male = 0, female = 1), and all other variables were standardised prior to analyses. 
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Appendix 14 Covariate Effects for Cortical Thickness Measures in the HCP Dataset 
Regression coefficients and q values for cortical thickness covariates in the HCP sample. 

  Average Thickness Age Age2 Age3 Sex Age x Sex Age2 x Sex Age3 x Sex 

 Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Regression 
Coefficient q value 

Frontal                 
Superior frontal gyrus left 0.73 2.35E-107 -0.07 0.37 -0.10 0.16 -0.15 0.08 0.22 0.64 -0.03 0.83 0.09 0.75 0.14 0.15 

Superior frontal gyrus right 0.77 6.23E-122 -0.08 0.22 -0.05 0.58 -0.07 0.61 0.21 0.64 -0.01 0.97 0.01 0.97 0.05 0.72 
Rostral middle frontal gyrus left 0.75 3.48E-110 -0.05 0.61 -0.10 0.16 -0.10 0.41 -0.01 0.97 -0.01 0.95 0.04 0.94 0.10 0.41 

Rostral middle frontal gyrus right 0.75 1.57E-109 -0.07 0.33 -0.07 0.41 -0.08 0.56 -0.10 0.86 0.01 0.97 0.08 0.80 0.07 0.57 
Caudal middle frontal gyrus left 0.71 2.19E-93 -0.06 0.50 -0.01 0.95 -0.06 0.73 0.20 0.69 -0.06 0.60 -0.07 0.84 0.01 0.97 

Caudal middle frontal gyrus right 0.76 1.84E-108 -0.13 0.02 0.01 0.97 0.02 0.96 0.11 0.85 -0.01 0.96 -0.02 0.97 0.01 0.97 
Pars opercularis left 0.71 7.05E-90 -0.12 0.06 -0.04 0.79 -0.04 0.85 -0.06 0.95 0.04 0.82 -0.03 0.97 0.05 0.82 

Pars opercularis right 0.69 1.08E-80 -0.06 0.58 -0.02 0.90 -0.03 0.93 -0.30 0.56 0.06 0.62 0.07 0.85 0.04 0.85 
Pars triangularis left 0.67 9.99E-76 -0.07 0.50 -0.05 0.72 -0.07 0.70 0.24 0.65 0.06 0.66 -0.18 0.53 -0.02 0.95 

Pars triangularis right 0.72 2.61E-89 -0.14 0.03 -0.05 0.64 -0.02 0.95 -0.26 0.61 0.10 0.36 0.06 0.91 0.02 0.95 
Pars orbitalis left 0.56 8.12E-48 -0.07 0.60 -0.02 0.92 -0.03 0.94 0.09 0.95 0.11 0.41 0.02 0.97 -0.01 0.97 

Pars orbitalis right 0.67 1.12E-75 3.48E-03 0.97 -0.03 0.85 -0.06 0.75 -0.06 0.96 -0.03 0.84 0.14 0.65 0.11 0.44 
Lateral orbitofrontal cortex left 0.59 9.82E-61 -0.08 0.43 -0.12 0.16 -0.14 0.30 -0.55 0.16 0.03 0.84 0.23 0.38 0.11 0.44 

Lateral orbitofrontal cortex right 0.63 4.89E-66 -0.01 0.95 -0.05 0.68 -0.07 0.69 -0.38 0.44 -0.02 0.95 0.17 0.57 0.07 0.69 
Medial orbitofrontal cortex left 0.37 3.98E-18 -0.03 0.88 -0.14 0.22 0.02 0.97 -0.89 0.04 0.01 0.97 0.44 0.09 0.05 0.85 

Medial orbitofrontal cortex right 0.48 2.69E-33 -0.10 0.37 -0.05 0.75 0.04 0.91 -0.19 0.82 0.04 0.86 0.03 0.97 -0.08 0.69 
Precentral gyrus left 0.77 7.58E-114 -0.01 0.97 0.04 0.65 -0.03 0.85 0.17 0.73 -0.04 0.74 -0.07 0.83 0.06 0.67 

Precentral gyrus right 0.78 5.02E-109 -0.02 0.90 0.03 0.85 0.01 0.96 0.32 0.44 -0.03 0.82 -0.17 0.50 -0.01 0.97 
Paracentral lobule left 0.68 5.12E-78 -0.04 0.75 0.03 0.85 0.09 0.57 -0.02 0.97 0.09 0.41 0.05 0.93 -0.02 0.95 

Paracentral lobule right 0.68 3.93E-74 0.04 0.79 0.01 0.97 -0.07 0.67 0.44 0.33 -0.02 0.96 -0.12 0.73 0.04 0.84 
Frontal pole left 0.47 8.08E-31 -0.08 0.54 -0.14 0.16 -0.13 0.48 -0.40 0.51 0.03 0.93 0.36 0.16 0.12 0.52 

Frontal pole right 0.47 5.55E-33 -0.09 0.42 -0.07 0.59 -0.07 0.75 0.08 0.95 0.02 0.96 0.07 0.90 0.01 0.97 
Parietal                 

Superior parietal cortex left 0.77 4.35E-113 0.04 0.66 0.07 0.42 0.08 0.59 0.50 0.11 -3.05E-03 0.97 -0.20 0.38 -0.06 0.69 
Superior parietal cortex right 0.80 7.10E-131 0.04 0.61 0.09 0.21 0.10 0.41 0.27 0.50 0.06 0.57 -0.14 0.54 -0.07 0.56 

Inferior parietal cortex left 0.83 2.21E-124 0.10 0.10 2.03E-03 0.98 -0.07 0.62 0.71 0.01 -0.12 0.12 -0.22 0.26 -0.01 0.96 
Inferior parietal cortex right 0.87 3.58E-151 0.05 0.56 0.07 0.40 0.02 0.92 0.49 0.06 -0.06 0.51 -0.22 0.18 -0.04 0.81 

Supramarginal cortex left 0.83 2.27E-131 0.02 0.91 0.02 0.93 -0.01 0.97 0.31 0.42 -0.03 0.82 -0.07 0.81 -0.01 0.97 
Supramarginal cortex right 0.86 6.80E-147 -0.08 0.21 0.06 0.50 0.10 0.37 0.16 0.74 0.06 0.57 -0.10 0.69 -0.09 0.44 

Postcentral gyrus left 0.72 5.12E-91 0.04 0.75 0.02 0.95 2.73E-03 0.98 -0.14 0.83 0.02 0.95 0.12 0.68 0.03 0.89 
Postcentral gyrus right 0.70 8.70E-85 0.06 0.60 0.10 0.25 0.08 0.62 0.05 0.96 -0.03 0.84 -0.01 0.97 -1.02E-03 0.99 

Precuneus cortex left 0.78 1.23E-121 0.02 0.88 0.06 0.49 0.08 0.53 0.35 0.37 -0.02 0.91 -0.19 0.37 -0.08 0.52 
Precuneus cortex right 0.78 6.65E-113 5.49E-04 0.99 0.10 0.19 0.07 0.62 0.46 0.19 -0.01 0.97 -0.27 0.15 -0.10 0.43 

Occipital                 
Lateral occipital cortex left 0.70 1.83E-91 0.11 0.06 0.03 0.84 -0.02 0.94 -0.09 0.91 -0.06 0.61 0.09 0.75 0.04 0.85 

Lateral occipital cortex right 0.72 2.15E-101 0.03 0.75 0.10 0.18 0.10 0.41 -0.04 0.97 0.02 0.92 -0.07 0.84 -0.05 0.75 
Lingual gyrus left 0.49 2.73E-37 -0.01 0.97 0.07 0.62 0.13 0.41 0.13 0.89 0.09 0.53 -0.24 0.42 -0.12 0.48 

Lingual gyrus right 0.47 6.80E-34 -0.04 0.83 0.05 0.75 0.07 0.70 0.22 0.75 0.10 0.42 -0.25 0.41 -0.17 0.21 
Cuneus cortex left 0.52 9.17E-40 -0.02 0.95 0.12 0.23 0.09 0.61 0.04 0.97 0.07 0.61 -0.11 0.79 -0.08 0.66 

Cuneus cortex right 0.56 4.56E-45 0.03 0.84 0.14 0.14 0.10 0.58 0.36 0.55 0.05 0.79 -0.23 0.46 -0.08 0.65 
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Pericalcarine cortex left 0.41 1.06E-23 -0.06 0.69 4.43E-03 0.97 -0.05 0.86 -0.04 0.97 0.14 0.21 -0.01 0.97 -0.02 0.96 
Pericalcarine cortex right 0.40 5.02E-22 0.02 0.94 -0.03 0.89 -1.32E-03 0.99 -0.32 0.65 0.09 0.57 0.09 0.85 -0.05 0.85 

Temporal                 
Superior temporal gyrus left 0.75 1.47E-98 0.03 0.81 0.01 0.97 -0.01 0.97 -0.22 0.67 0.02 0.95 0.03 0.95 -0.02 0.95 

Superior temporal gyrus right 0.80 6.00E-114 -4.17E-03 0.97 0.08 0.41 0.08 0.56 -0.07 0.95 0.00 1.00 -0.14 0.60 -0.08 0.56 
Middle temporal gyrus left 0.78 1.22E-102 0.07 0.42 0.05 0.65 0.02 0.95 0.68 0.02 -0.06 0.62 -0.35 0.04 -0.12 0.35 

Middle temporal gyrus right 0.80 1.33E-113 0.03 0.75 0.08 0.35 0.05 0.75 0.06 0.95 -0.05 0.68 -0.12 0.68 -0.04 0.85 
Inferior temporal gyrus left 0.73 2.95E-88 0.10 0.21 0.06 0.58 0.06 0.71 -0.10 0.91 -0.04 0.79 -0.02 0.97 -0.05 0.83 

Inferior temporal gyrus right 0.76 1.27E-96 0.07 0.46 0.05 0.65 0.06 0.70 -0.30 0.55 -0.03 0.85 0.10 0.75 -0.01 0.97 
Banks of the superior temporal sulcus left 0.63 5.83E-59 0.04 0.79 0.05 0.71 0.13 0.41 0.27 0.64 0.02 0.95 -0.24 0.38 -0.20 0.07 

Banks of the superior temporal sulcus right 0.62 1.50E-61 0.06 0.61 0.04 0.79 -0.02 0.97 0.42 0.41 -0.08 0.58 -0.22 0.44 -0.02 0.97 
Fusiform gyrus left 0.72 1.24E-88 0.14 0.03 0.07 0.52 -0.01 0.97 0.03 0.97 -0.11 0.26 0.07 0.85 0.08 0.58 

Fusiform gyrus right 0.73 2.66E-91 0.08 0.41 0.02 0.93 0.03 0.93 -0.13 0.85 -0.05 0.66 0.09 0.81 0.02 0.96 
Transverse temporal cortex left 0.48 5.96E-33 -0.01 0.97 -0.03 0.89 0.07 0.75 -0.09 0.94 0.11 0.41 0.02 0.97 -0.11 0.52 

Transverse temporal cortex right 0.50 8.36E-39 3.72E-03 0.97 0.04 0.82 0.05 0.84 0.09 0.94 -4.53E-03 0.97 -0.11 0.78 -0.10 0.57 
Entorhinal cortex left 0.37 2.81E-17 0.06 0.73 0.08 0.59 0.01 0.97 0.13 0.92 -0.04 0.89 -0.04 0.96 0.02 0.96 

Entorhinal cortex right 0.33 3.43E-14 0.07 0.65 0.03 0.89 0.06 0.83 -0.87 0.06 0.08 0.66 0.37 0.21 -0.08 0.72 
Temporal pole left 0.38 2.06E-18 0.07 0.62 0.01 0.97 -0.05 0.85 -0.04 0.97 0.01 0.97 0.16 0.72 0.11 0.62 

Temporal pole right 0.38 1.57E-20 -0.01 0.97 0.10 0.43 0.11 0.59 -0.20 0.82 0.12 0.40 -2.69E-03 0.99 -0.09 0.65 
Parahippocampal gyrus left 0.30 2.64E-12 -0.02 0.93 0.07 0.68 0.06 0.85 0.15 0.89 0.06 0.73 -0.06 0.94 0.02 0.96 

Parahippocampal gyrus right 0.32 4.02E-13 -0.08 0.60 -0.01 0.97 0.02 0.97 -0.49 0.44 0.15 0.21 0.24 0.52 0.01 0.97 
Cingulate                 

Rostral anterior cingulate left 0.39 3.50E-19 0.07 0.62 -0.12 0.41 -0.18 0.29 -0.62 0.24 -0.02 0.96 0.35 0.23 0.11 0.61 
Rostral anterior cingulate right 0.29 1.06E-10 -0.09 0.56 -0.01 0.97 -0.01 0.97 -0.20 0.83 0.07 0.69 2.10E-03 0.99 -0.02 0.97 

Caudal anterior cingulate left 0.29 6.28E-12 -0.13 0.21 -0.03 0.89 3.58E-03 0.98 -0.20 0.83 0.10 0.52 0.07 0.93 0.01 0.97 
Caudal anterior cingulate right 0.29 1.03E-10 -0.09 0.52 -0.07 0.69 0.01 0.97 -0.04 0.97 0.02 0.95 0.12 0.82 0.02 0.97 

Posterior cingulate left 0.44 8.52E-30 -0.13 0.16 -0.10 0.41 -0.07 0.74 -0.19 0.81 0.06 0.69 0.08 0.86 -0.02 0.95 
Posterior cingulate right 0.48 2.52E-34 -0.09 0.44 -0.08 0.55 -0.01 0.97 0.23 0.74 -0.01 0.97 -0.18 0.60 -0.08 0.69 

Isthmus cingulate left 0.29 2.30E-11 -0.01 0.97 -0.08 0.60 -0.01 0.97 0.07 0.97 -0.04 0.89 0.06 0.94 0.02 0.96 
Isthmus cingulate right 0.21 6.62E-06 -0.04 0.84 -0.04 0.86 0.01 0.97 0.03 0.97 -0.02 0.95 -0.10 0.85 -0.05 0.86 

Insular                 
Insular cortex left 0.40 4.73E-25 0.04 0.83 -0.02 0.92 -0.09 0.68 -0.04 0.97 -0.08 0.58 -0.20 0.56 0.02 0.96 

Insular cortex right 0.41 2.48E-25 -0.01 0.97 -0.12 0.32 -0.14 0.43 -0.23 0.75 1.47E-03 0.99 -0.10 0.83 0.04 0.89 
Note. Estimates significant at q < 0.05 appear in bold. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, Cingulate, Insular). A positive estimate for sex indicates a thicker cortex for 
females. Dummy variables were coded sex (male = 0, female = 1), and all other variables were standardised prior to analyses. 
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Appendix 15 Variance Component Estimates for HCP Surface Area and Cortical Thickness 
Twin Correlations, Estimates of Variance Components, Model Fit Comparisons, and Test-Retest Correlations for Surface Area and Cortical Thickness of Left and 

Right Cortical Regions in the HCP Dataset. 

  Twin Correlations (95% CI) Variance Components (95% CI) q value Test-Retest Reliability 
  MZ DZ/twin-sibling a2 c2 e2 No A No C No AC r trt 1 - r2 trt 

Surface Area           

Frontal           

Superior frontal gyrus left 0.46 (0.32, 0.58) 0.17 (0.07, 0.28) 0.43 (0.24, 0.55) 0.00 (0.00, 0.12) 0.57 (0.45, 0.70) 1.09E-03 1.00 1.08E-08 0.96 0.07 
Superior frontal gyrus right 0.38 (0.23, 0.51) 0.11 (0.02, 0.21) 0.35 (0.17, 0.48) 0.00 (0.00, 0.11) 0.65 (0.52, 0.78) 0.01 1.00 6.00E-06 0.94 0.11 

Rostral middle frontal gyrus left 0.37 (0.22, 0.50) 0.14 (0.04, 0.24) 0.35 (0.12, 0.47) 0.00 (0.00, 0.14) 0.65 (0.53, 0.78) 0.01 1.00 2.66E-06 0.97 0.06 
Rostral middle frontal gyrus right 0.34 (0.19, 0.47) 0.24 (0.15, 0.34) 0.21 (0.00, 0.47) 0.13 (0.00, 0.33) 0.65 (0.53, 0.80) 0.29 0.36 3.39E-09 0.97 0.06 

Caudal middle frontal gyrus left 0.27 (0.12, 0.42) 0.13 (0.03, 0.22) 0.28 (0.00, 0.41) 0.00 (0.00, 0.19) 0.72 (0.59, 0.86) 0.11 1.00 1.29E-04 0.98 0.05 
Caudal middle frontal gyrus right 0.25 (0.10, 0.39) 0.32 (0.22, 0.42) 0.00 (0.00, 0.19) 0.30 (0.15, 0.39) 0.70 (0.60, 0.79) 1.00 1.94E-03 2.69E-10 0.98 0.04 

Pars opercularis left 0.30 (0.14, 0.44) 0.02 (-0.06, 0.12) 0.20 (0.03, 0.34) 0.00 (0.00, 0.09) 0.80 (0.66, 0.93) 0.06 1.00 0.02 0.97 0.06 
Pars opercularis right 0.09 (-0.06, 0.24) 0.08 (0.00, 0.17) 0.05 (0.00, 0.27) 0.06 (0.00, 0.18) 0.89 (0.73, 0.98) 1.00 0.82 0.11 0.94 0.12 

Pars triangularis left 0.41 (0.28, 0.53) 0.28 (0.19, 0.37) 0.38 (0.08, 0.58) 0.09 (0.00, 0.29) 0.53 (0.42, 0.67) 0.03 0.59 1.01E-13 0.97 0.05 
Pars triangularis right 0.24 (0.09, 0.39) 0.15 (0.07, 0.24) 0.24 (0.00, 0.41) 0.04 (0.00, 0.24) 0.72 (0.59, 0.88) 0.25 0.97 3.52E-05 0.96 0.07 

Pars orbitalis left 0.32 (0.17, 0.46) 0.26 (0.15, 0.36) 0.14 (0.00, 0.45) 0.18 (0.00, 0.36) 0.67 (0.54, 0.81) 0.57 0.21 1.55E-08 0.88 0.23 
Pars orbitalis right 0.11 (-0.05, 0.26) 0.17 (0.07, 0.27) 0.00 (0.00, 0.22) 0.15 (0.00, 0.24) 0.85 (0.74, 0.93) 1.00 0.11 1.94E-03 0.92 0.15 

Lateral orbitofrontal cortex left 0.48 (0.35, 0.59) 0.32 (0.23, 0.42) 0.34 (0.08, 0.57) 0.14 (0.00, 0.33) 0.52 (0.42, 0.64) 0.03 0.29 3.50E-18 0.92 0.15 
Lateral orbitofrontal cortex right 0.32 (0.17, 0.46) 0.21 (0.11, 0.31) 0.28 (0.00, 0.45) 0.05 (0.00, 0.26) 0.67 (0.55, 0.81) 0.14 0.86 2.16E-07 0.74 0.45 

Medial orbitofrontal cortex left 0.22 (0.06, 0.37) 0.12 (0.03, 0.22) 0.21 (0.00, 0.36) 0.02 (0.00, 0.22) 0.77 (0.64, 0.92) 0.37 1.00 2.24E-03 0.43 0.81 
Medial orbitofrontal cortex right 0.41 (0.28, 0.54) 0.12 (0.02, 0.23) 0.37 (0.17, 0.48) 0.00 (0.00, 0.13) 0.63 (0.52, 0.75) 0.01 1.00 1.00E-07 0.88 0.23 

Precentral gyrus left 0.38 (0.24, 0.51) 0.25 (0.15, 0.35) 0.33 (0.03, 0.51) 0.06 (0.00, 0.27) 0.61 (0.49, 0.75) 0.06 0.77 1.17E-09 0.97 0.05 
Precentral gyrus right 0.44 (0.31, 0.56) 0.16 (0.07, 0.25) 0.42 (0.25, 0.54) 0.00 (0.00, 0.10) 0.58 (0.46, 0.70) 8.07E-04 1.00 1.02E-09 0.92 0.15 
Paracentral lobule left 0.32 (0.18, 0.46) 0.15 (0.06, 0.24) 0.32 (0.05, 0.44) 0.00 (0.00, 0.18) 0.68 (0.56, 0.82) 0.05 1.00 5.52E-06 0.94 0.11 

Paracentral lobule right 0.33 (0.18, 0.46) 0.08 (-0.01, 0.17) 0.28 (0.09, 0.41) 0.00 (0.00, 0.10) 0.72 (0.59, 0.85) 0.02 1.00 5.42E-04 0.91 0.18 
Frontal pole left 0.10 (-0.05, 0.26) 0.06 (-0.03, 0.15) 0.11 (0.00, 0.24) 0.00 (0.00, 0.15) 0.89 (0.76, 1.00) 0.77 1.00 0.34 0.57 0.68 

Frontal pole right 0.10 (-0.06, 0.25) 0.01 (-0.09, 0.10) 0.06 (0.00, 0.19) 0.00 (0.00, 0.11) 0.94 (0.81, 1.00) 0.68 1.00 0.81 0.71 0.50 
Parietal           

Superior parietal cortex left 0.54 (0.42, 0.65) 0.28 (0.18, 0.38) 0.54 (0.27, 0.65) 0.02 (0.00, 0.22) 0.44 (0.35, 0.56) 4.21E-04 1.00 5.59E-17 0.98 0.04 
Superior parietal cortex right 0.45 (0.32, 0.57) 0.30 (0.19, 0.40) 0.28 (0.00, 0.54) 0.16 (0.00, 0.36) 0.56 (0.45, 0.69) 0.09 0.27 1.01E-13 0.90 0.19 

Inferior parietal cortex left 0.39 (0.24, 0.51) 0.19 (0.10, 0.29) 0.42 (0.14, 0.53) 0.00 (0.00, 0.19) 0.58 (0.47, 0.72) 0.01 1.00 3.92E-09 0.98 0.05 
Inferior parietal cortex right 0.34 (0.19, 0.47) 0.11 (0.02, 0.21) 0.34 (0.13, 0.46) 0.00 (0.00, 0.13) 0.66 (0.54, 0.79) 0.01 1.00 4.01E-06 0.97 0.06 

Supramarginal cortex left 0.32 (0.17, 0.45) 0.16 (0.07, 0.26) 0.33 (0.00, 0.44) 0.00 (0.00, 0.22) 0.67 (0.56, 0.82) 0.09 1.00 3.80E-06 0.98 0.04 
Supramarginal cortex right 0.27 (0.12, 0.41) 0.14 (0.05, 0.24) 0.29 (0.00, 0.41) 0.00 (0.00, 0.21) 0.71 (0.59, 0.87) 0.15 1.00 1.27E-04 0.97 0.05 

Postcentral gyrus left 0.22 (0.06, 0.37) 0.07 (-0.02, 0.17) 0.19 (0.00, 0.31) 0.00 (0.00, 0.17) 0.81 (0.69, 0.94) 0.24 1.00 0.02 0.98 0.04 
Postcentral gyrus right 0.20 (0.05, 0.35) 0.13 (0.04, 0.22) 0.17 (0.00, 0.35) 0.04 (0.00, 0.22) 0.79 (0.65, 0.93) 0.52 0.96 2.24E-03 0.95 0.10 

Precuneus cortex left 0.41 (0.27, 0.53) 0.30 (0.20, 0.39) 0.24 (0.00, 0.51) 0.17 (0.00, 0.37) 0.59 (0.47, 0.73) 0.20 0.21 3.94E-13 0.96 0.08 
Precuneus cortex right 0.49 (0.36, 0.60) 0.19 (0.08, 0.30) 0.46 (0.24, 0.56) 0.00 (0.00, 0.15) 0.54 (0.44, 0.66) 1.08E-03 1.00 1.17E-11 0.97 0.05 

Occipital           
Lateral occipital cortex left 0.50 (0.37, 0.61) 0.19 (0.09, 0.30) 0.46 (0.27, 0.57) 0.00 (0.00, 0.00) 0.54 (0.43, 0.66) 4.34E-04 1.00 2.42E-11 0.96 0.07 

Lateral occipital cortex right 0.48 (0.34, 0.59) 0.16 (0.06, 0.26) 0.43 (0.26, 0.54) 0.00 (0.00, 0.11) 0.57 (0.46, 0.70) 5.42E-04 1.00 3.75E-09 0.92 0.15 
Lingual gyrus left 0.58 (0.47, 0.68) 0.21 (0.11, 0.31) 0.58 (0.43, 0.68) 0.00 (0.00, 0.10) 0.42 (0.32, 0.53) 2.17E-06 1.00 1.46E-16 0.93 0.14 

Lingual gyrus right 0.63 (0.53, 0.72) 0.29 (0.19, 0.38) 0.63 (0.44, 0.71) 0.00 (0.00, 0.15) 0.37 (0.29, 0.47) 6.33E-07 1.00 5.91E-23 0.81 0.34 
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Cuneus cortex left 0.54 (0.42, 0.64) 0.35 (0.26, 0.44) 0.40 (0.14, 0.63) 0.15 (0.00, 0.34) 0.45 (0.35, 0.57) 0.01 0.22 6.34E-22 0.96 0.07 
Cuneus cortex right 0.41 (0.26, 0.53) 0.12 (0.03, 0.21) 0.40 (0.22, 0.53) 0.00 (0.00, 0.09) 0.60 (0.47, 0.75) 2.54E-03 1.00 1.23E-06 0.77 0.41 

Pericalcarine cortex left 0.78 (0.72, 0.84) 0.42 (0.32, 0.50) 0.76 (0.58, 0.85) 0.04 (0.00, 0.22) 0.19 (0.15, 0.25) 3.50E-13 0.86 7.61E-45 0.95 0.10 
Pericalcarine cortex right 0.79 (0.72, 0.84) 0.34 (0.24, 0.44) 0.79 (0.66, 0.84) 0.00 (0.00, 0.12) 0.21 (0.16, 0.28) 7.43E-15 1.00 7.56E-38 0.93 0.13 

Temporal   0.46 (0.27, 0.57) 0.00 (0.00, 0.00) 0.54 (0.43, 0.66) 4.34E-04 1.00 2.42E-11   
Superior temporal gyrus left 0.37 (0.23, 0.50) 0.23 (0.13, 0.33) 0.28 (0.00, 0.48) 0.08 (0.00, 0.28) 0.64 (0.52, 0.78) 0.11 0.66 5.15E-09 0.96 0.07 

Superior temporal gyrus right 0.37 (0.23, 0.50) 0.21 (0.11, 0.32) 0.30 (0.00, 0.47) 0.06 (0.00, 0.27) 0.64 (0.53, 0.78) 0.10 0.79 1.11E-08 0.97 0.06 
Middle temporal gyrus left 0.45 (0.32, 0.57) 0.16 (0.05, 0.26) 0.43 (0.23, 0.54) 0.00 (0.00, 0.13) 0.57 (0.46, 0.70) 1.39E-03 1.00 3.39E-09 0.96 0.08 

Middle temporal gyrus right 0.53 (0.41, 0.64) 0.19 (0.09, 0.29) 0.50 (0.34, 0.60) 0.00 (0.00, 0.10) 0.50 (0.40, 0.62) 3.52E-05 1.00 2.17E-13 0.95 0.09 
Inferior temporal gyrus left 0.45 (0.31, 0.57) 0.18 (0.08, 0.27) 0.43 (0.26, 0.54) 0.00 (0.00, 0.11) 0.57 (0.46, 0.69) 6.23E-04 1.00 3.05E-10 0.98 0.04 

Inferior temporal gyrus right 0.25 (0.09, 0.39) 0.17 (0.07, 0.26) 0.21 (0.00, 0.40) 0.05 (0.00, 0.25) 0.73 (0.60, 0.88) 0.34 0.86 8.93E-05 0.95 0.09 
Banks of the superior temporal sulcus left 0.24 (0.08, 0.38) 0.10 (0.01, 0.20) 0.26 (0.00, 0.38) 0.00 (0.00, 0.19) 0.74 (0.62, 0.89) 0.15 1.00 9.23E-04 0.96 0.08 

Banks of the superior temporal sulcus right 0.21 (0.05, 0.36) 0.13 (0.03, 0.22) 0.20 (0.00, 0.37) 0.04 (0.00, 0.23) 0.77 (0.63, 0.91) 0.42 1.00 8.80E-04 0.94 0.11 
Fusiform gyrus left 0.19 (0.04, 0.34) 0.19 (0.09, 0.28) 0.00 (0.00, 0.32) 0.18 (0.00, 0.27) 0.81 (0.67, 0.89) 1.00 0.18 5.02E-05 0.96 0.08 

Fusiform gyrus right 0.43 (0.29, 0.54) 0.10 (-0.00, 0.20) 0.35 (0.19, 0.47) 0.00 (0.00, 0.10) 0.65 (0.53, 0.77) 2.24E-03 1.00 3.12E-07 0.94 0.12 
Transverse temporal cortex left 0.34 (0.19, 0.47) 0.20 (0.10, 0.30) 0.23 (0.00, 0.43) 0.08 (0.00, 0.28) 0.69 (0.57, 0.83) 0.21 0.70 5.56E-07 0.93 0.13 

Transverse temporal cortex right 0.40 (0.26, 0.52) 0.18 (0.09, 0.28) 0.41 (0.15, 0.53) 0.00 (0.00, 0.17) 0.59 (0.47, 0.72) 0.01 1.00 1.57E-08 0.89 0.20 
Entorhinal cortex left 0.35 (0.20, 0.48) 0.13 (0.04, 0.24) 0.31 (0.07, 0.43) 0.00 (0.00, 0.16) 0.69 (0.57, 0.81) 0.03 1.00 7.54E-06 0.69 0.52 

Entorhinal cortex right 0.39 (0.26, 0.52) 0.13 (0.03, 0.23) 0.35 (0.15, 0.47) 0.00 (0.00, 0.14) 0.65 (0.53, 0.77) 0.01 1.00 3.40E-07 0.80 0.37 
Temporal pole left 0.27 (0.12, 0.41) 0.12 (0.03, 0.22) 0.26 (0.00, 0.38) 0.00 (0.00, 0.19) 0.74 (0.62, 0.89) 0.15 1.00 5.04E-04 0.80 0.35 

Temporal pole right 0.33 (0.18, 0.46) 0.21 (0.11, 0.31) 0.24 (0.00, 0.46) 0.10 (0.00, 0.30) 0.67 (0.54, 0.81) 0.24 0.57 4.68E-08 0.70 0.51 
Parahippocampal gyrus left 0.48 (0.36, 0.59) 0.33 (0.24, 0.42) 0.40 (0.12, 0.63) 0.13 (0.00, 0.33) 0.47 (0.36, 0.60) 0.02 0.31 4.90E-19 0.89 0.22 

Parahippocampal gyrus right 0.47 (0.34, 0.58) 0.28 (0.18, 0.37) 0.38 (0.11, 0.57) 0.09 (0.00, 0.28) 0.54 (0.43, 0.66) 0.02 0.58 4.30E-14 0.85 0.28 
Cingulate           

Rostral anterior cingulate left 0.20 (0.04, 0.34) 0.23 (0.14, 0.32) 0.00 (0.00, 0.26) 0.23 (0.05, 0.32) 0.77 (0.65, 0.85) 1.00 0.03 2.57E-07 0.87 0.24 
Rostral anterior cingulate right 0.27 (0.11, 0.41) -0.01 (-0.10, 0.09) 0.15 (0.00, 0.30) 0.00 (0.00, 0.09) 0.85 (0.70, 0.99) 0.13 1.00 0.18 0.93 0.14 

Caudal anterior cingulate left 0.17 (0.01, 0.32) 0.12 (0.03, 0.21) 0.11 (0.00, 0.33) 0.07 (0.00, 0.22) 0.82 (0.67, 0.94) 0.76 0.75 0.01 0.95 0.10 
Caudal anterior cingulate right 0.38 (0.23, 0.52) -0.05 (-0.15, 0.05) 0.21 (0.05, 0.36) 0.00 (0.00, 0.06) 0.79 (0.64, 0.94) 0.03 1.00 0.04 0.95 0.10 

Posterior cingulate left 0.30 (0.15, 0.43) 0.11 (0.00, 0.22) 0.27 (0.00, 0.39) 0.00 (0.00, 0.20) 0.73 (0.61, 0.86) 0.11 1.00 9.86E-05 0.95 0.09 
Posterior cingulate right 0.45 (0.32, 0.57) 0.08 (-0.03, 0.19) 0.37 (0.22, 0.49) 0.00 (0.00, 0.09) 0.63 (0.51, 0.76) 9.23E-04 1.00 4.24E-07 0.89 0.20 

Isthmus cingulate left 0.38 (0.23, 0.51) 0.05 (-0.05, 0.16) 0.29 (0.12, 0.43) 0.00 (0.00, 0.00) 0.71 (0.57, 0.84) 0.01 1.00 3.91E-04 0.89 0.21 
Isthmus cingulate right 0.28 (0.12, 0.43) 0.11 (0.01, 0.21) 0.26 (0.00, 0.38) 0.00 (0.00, 0.17) 0.74 (0.62, 0.89) 0.11 1.00 1.83E-03 0.82 0.33 

Insular           
Insular cortex left 0.29 (0.14, 0.42) 0.15 (0.06, 0.25) 0.29 (0.00, 0.41) 0.00 (0.00, 0.21) 0.71 (0.59, 0.86) 0.13 1.00 3.84E-05 0.78 0.39 

Insular cortex right 0.41 (0.27, 0.53) 0.22 (0.13, 0.32) 0.37 (0.08, 0.52) 0.04 (0.00, 0.25) 0.59 (0.48, 0.72) 0.03 0.94 1.68E-10 0.65 0.58 
           

Cortical Thickness           
Frontal           

Superior frontal gyrus left 0.66 (0.56, 0.74) 0.40 (0.30, 0.49) 0.52 (0.30, 0.72) 0.14 (0.00, 0.32) 0.34 (0.27, 0.43) 3.39E-05 0.25 3.50E-29 0.91 0.17 
Superior frontal gyrus right 0.64 (0.54, 0.73) 0.31 (0.21, 0.41) 0.64 (0.42, 0.72) 0.00 (0.00, 0.00) 0.36 (0.28, 0.45) 1.33E-06 1.00 1.33E-24 0.85 0.28 

Rostral middle frontal gyrus left 0.53 (0.40, 0.63) 0.35 (0.25, 0.44) 0.37 (0.11, 0.61) 0.15 (0.00, 0.35) 0.48 (0.38, 0.59) 0.01 0.25 7.56E-20 0.88 0.22 
Rostral middle frontal gyrus right 0.40 (0.25, 0.52) 0.32 (0.21, 0.42) 0.14 (0.00, 0.42) 0.25 (0.03, 0.42) 0.61 (0.50, 0.74) 0.50 0.05 1.98E-13 0.84 0.29 

Caudal middle frontal gyrus left 0.53 (0.41, 0.63) 0.28 (0.17, 0.38) 0.53 (0.25, 0.63) 0.01 (0.00, 0.22) 0.46 (0.37, 0.58) 0.00 1.00 2.64E-16 0.94 0.11 
Caudal middle frontal gyrus right 0.31 (0.16, 0.44) 0.15 (0.06, 0.25) 0.31 (0.00, 0.42) 0.00 (0.00, 0.21) 0.69 (0.58, 0.84) 0.10 1.00 8.48E-06 0.84 0.29 

Pars opercularis left 0.47 (0.33, 0.58) 0.13 (0.03, 0.23) 0.40 (0.24, 0.51) 0.00 (0.00, 0.10) 0.60 (0.49, 0.72) 5.46E-04 1.00 1.20E-08 0.87 0.25 
Pars opercularis right 0.20 (0.05, 0.35) 0.20 (0.10, 0.29) 0.01 (0.00, 0.32) 0.19 (0.00, 0.29) 0.80 (0.66, 0.89) 1.00 0.14 3.39E-05 0.89 0.21 

Pars triangularis left 0.38 (0.24, 0.51) 0.06 (-0.04, 0.16) 0.30 (0.14, 0.43) 0.00 (0.00, 0.09) 0.70 (0.57, 0.83) 4.70E-03 1.00 9.99E-05 0.74 0.45 
Pars triangularis right 0.36 (0.21, 0.49) 0.17 (0.08, 0.27) 0.36 (0.06, 0.48) 0.00 (0.00, 0.20) 0.64 (0.52, 0.78) 0.04 1.00 9.02E-08 0.90 0.18 

Pars orbitalis left 0.26 (0.11, 0.40) 0.14 (0.04, 0.25) 0.21 (0.00, 0.37) 0.03 (0.00, 0.24) 0.76 (0.63, 0.89) 0.29 0.99 3.40E-04 0.84 0.29 
Pars orbitalis right 0.27 (0.11, 0.41) 0.05 (-0.04, 0.14) 0.19 (0.01, 0.32) 0.00 (0.00, 0.11) 0.81 (0.68, 0.93) 0.07 1.00 0.02 0.75 0.43 

Lateral orbitofrontal cortex left 0.34 (0.19, 0.47) 0.24 (0.14, 0.34) 0.16 (0.00, 0.43) 0.15 (0.00, 0.34) 0.68 (0.56, 0.81) 0.39 0.26 5.98E-09 0.77 0.41 
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Lateral orbitofrontal cortex right 0.31 (0.16, 0.44) 0.09 (-0.01, 0.19) 0.26 (0.06, 0.39) 0.00 (0.00, 0.00) 0.74 (0.61, 0.86) 0.04 1.00 5.58E-04 0.70 0.51 
Medial orbitofrontal cortex left 0.15 (-0.01, 0.29) 0.14 (0.04, 0.24) 0.04 (0.00, 0.31) 0.12 (0.00, 0.24) 0.83 (0.69, 0.93) 1.00 0.44 2.40E-03 0.45 0.79 

Medial orbitofrontal cortex right 0.34 (0.19, 0.47) 0.21 (0.10, 0.32) 0.21 (0.00, 0.43) 0.10 (0.00, 0.31) 0.69 (0.57, 0.81) 0.25 0.52 1.52E-07 0.73 0.46 
Precentral gyrus left 0.38 (0.23, 0.51) 0.29 (0.18, 0.40) 0.15 (0.00, 0.45) 0.22 (0.00, 0.40) 0.63 (0.51, 0.76) 0.48 0.11 4.01E-11 0.88 0.23 

Precentral gyrus right 0.49 (0.36, 0.60) 0.14 (0.03, 0.24) 0.46 (0.30, 0.57) 0.00 (0.00, 0.09) 0.54 (0.43, 0.67) 1.65E-04 1.00 1.70E-09 0.80 0.36 
Paracentral lobule left 0.43 (0.29, 0.55) 0.22 (0.12, 0.32) 0.43 (0.12, 0.54) 0.00 (0.00, 0.22) 0.57 (0.46, 0.70) 0.01 1.00 4.21E-11 0.82 0.32 

Paracentral lobule right 0.48 (0.35, 0.59) 0.23 (0.13, 0.33) 0.46 (0.20, 0.56) 0.00 (0.00, 0.19) 0.54 (0.44, 0.66) 2.10E-03 1.00 1.65E-12 0.80 0.36 
Frontal pole left 0.29 (0.14, 0.43) 0.12 (0.02, 0.22) 0.28 (0.00, 0.40) 0.00 (0.00, 0.19) 0.72 (0.60, 0.86) 0.10 1.00 1.31E-04 0.83 0.30 

Frontal pole right 0.29 (0.14, 0.42) 0.18 (0.06, 0.28) 0.21 (0.00, 0.41) 0.07 (0.00, 0.28) 0.72 (0.59, 0.86) 0.34 0.75 8.48E-06 0.70 0.51 
Parietal           

Superior parietal cortex left 0.65 (0.56, 0.73) 0.29 (0.19, 0.39) 0.64 (0.47, 0.71) 0.00 (0.00, 0.13) 0.36 (0.29, 0.46) 6.58E-08 1.00 1.33E-24 0.92 0.15 
Superior parietal cortex right 0.62 (0.52, 0.70) 0.35 (0.24, 0.44) 0.52 (0.28, 0.68) 0.09 (0.00, 0.27) 0.39 (0.31, 0.49) 7.10E-05 0.56 1.45E-25 0.85 0.28 

Inferior parietal cortex left 0.49 (0.36, 0.59) 0.26 (0.16, 0.35) 0.46 (0.18, 0.59) 0.03 (0.00, 0.23) 0.51 (0.41, 0.64) 3.16E-03 1.00 1.24E-14 0.90 0.19 
Inferior parietal cortex right 0.49 (0.36, 0.60) 0.18 (0.08, 0.28) 0.47 (0.29, 0.58) 0.00 (0.00, 0.11) 0.53 (0.42, 0.65) 2.40E-04 1.00 2.11E-11 0.81 0.35 

Supramarginal cortex left 0.46 (0.32, 0.57) 0.18 (0.09, 0.27) 0.44 (0.24, 0.55) 0.00 (0.00, 0.13) 0.56 (0.45, 0.68) 1.04E-03 1.00 1.20E-10 0.85 0.28 
Supramarginal cortex right 0.39 (0.25, 0.52) 0.16 (0.07, 0.25) 0.40 (0.18, 0.51) 0.00 (0.00, 0.13) 0.60 (0.49, 0.73) 4.82E-03 1.00 1.71E-08 0.78 0.39 

Postcentral gyrus left 0.55 (0.43, 0.65) 0.34 (0.23, 0.43) 0.42 (0.16, 0.63) 0.12 (0.00, 0.33) 0.45 (0.36, 0.57) 4.64E-03 0.38 3.32E-20 0.88 0.22 
Postcentral gyrus right 0.64 (0.54, 0.72) 0.31 (0.20, 0.41) 0.64 (0.43, 0.72) 0.00 (0.00, 0.17) 0.36 (0.28, 0.45) 8.70E-07 1.00 3.38E-25 0.84 0.30 

Precuneus cortex left 0.59 (0.48, 0.68) 0.25 (0.14, 0.35) 0.55 (0.37, 0.64) 0.00 (0.00, 0.14) 0.45 (0.36, 0.55) 7.23E-06 1.00 4.54E-18 0.87 0.25 
Precuneus cortex right 0.48 (0.35, 0.60) 0.20 (0.09, 0.31) 0.45 (0.22, 0.56) 0.00 (0.00, 0.16) 0.55 (0.44, 0.67) 1.61E-03 1.00 7.19E-11 0.92 0.15 

Occipital           
Lateral occipital cortex left 0.51 (0.39, 0.62) 0.35 (0.25, 0.45) 0.32 (0.05, 0.58) 0.19 (0.00, 0.39) 0.49 (0.39, 0.61) 0.04 0.12 5.43E-20 0.94 0.12 

Lateral occipital cortex right 0.56 (0.45, 0.66) 0.27 (0.17, 0.37) 0.58 (0.35, 0.67) 0.00 (0.00, 0.18) 0.42 (0.33, 0.53) 4.96E-05 1.00 1.23E-18 0.91 0.18 
Lingual gyrus left 0.47 (0.34, 0.58) 0.31 (0.21, 0.41) 0.32 (0.04, 0.57) 0.15 (0.00, 0.35) 0.53 (0.42, 0.66) 0.04 0.25 1.64E-15 0.84 0.30 

Lingual gyrus right 0.54 (0.42, 0.64) 0.31 (0.22, 0.40) 0.52 (0.25, 0.67) 0.06 (0.00, 0.26) 0.42 (0.33, 0.54) 6.93E-04 0.73 3.32E-20 0.57 0.67 
Cuneus cortex left 0.52 (0.40, 0.62) 0.33 (0.24, 0.43) 0.37 (0.11, 0.61) 0.15 (0.00, 0.34) 0.48 (0.38, 0.60) 0.01 0.25 9.39E-20 0.92 0.15 

Cuneus cortex right 0.50 (0.37, 0.61) 0.22 (0.11, 0.32) 0.46 (0.24, 0.56) 0.00 (0.00, 0.16) 0.54 (0.44, 0.65) 6.97E-04 1.00 8.42E-13 0.88 0.22 
Pericalcarine cortex left 0.37 (0.23, 0.50) 0.31 (0.22, 0.40) 0.21 (0.00, 0.50) 0.19 (0.00, 0.39) 0.60 (0.47, 0.74) 0.26 0.13 7.64E-13 0.86 0.27 

Pericalcarine cortex right 0.55 (0.43, 0.65) 0.31 (0.21, 0.41) 0.54 (0.27, 0.65) 0.02 (0.00, 0.23) 0.44 (0.35, 0.55) 3.35E-04 1.00 1.14E-18 0.78 0.38 
Temporal           

Superior temporal gyrus left 0.50 (0.37, 0.61) 0.21 (0.11, 0.31) 0.47 (0.27, 0.57) 0.00 (0.00, 0.13) 0.53 (0.43, 0.65) 3.69E-04 1.00 7.29E-12 0.90 0.20 
Superior temporal gyrus right 0.58 (0.47, 0.68) 0.28 (0.17, 0.38) 0.58 (0.34, 0.66) 0.00 (0.00, 0.18) 0.42 (0.34, 0.53) 4.96E-05 1.00 8.22E-19 0.89 0.21 

Middle temporal gyrus left 0.33 (0.18, 0.46) 0.20 (0.10, 0.30) 0.30 (0.00, 0.47) 0.05 (0.00, 0.27) 0.65 (0.53, 0.80) 0.12 0.88 2.33E-07 0.88 0.23 
Middle temporal gyrus right 0.36 (0.21, 0.49) 0.14 (0.05, 0.24) 0.33 (0.08, 0.45) 0.00 (0.00, 0.16) 0.67 (0.55, 0.80) 0.03 1.00 4.56E-06 0.89 0.20 
Inferior temporal gyrus left 0.36 (0.21, 0.49) 0.21 (0.12, 0.31) 0.29 (0.00, 0.48) 0.07 (0.00, 0.28) 0.64 (0.52, 0.79) 0.12 0.73 1.20E-08 0.87 0.24 

Inferior temporal gyrus right 0.38 (0.24, 0.51) 0.15 (0.05, 0.26) 0.32 (0.09, 0.43) 0.00 (0.00, 0.18) 0.68 (0.57, 0.79) 0.02 1.00 1.67E-06 0.81 0.34 
Banks of the superior temporal sulcus left 0.26 (0.10, 0.40) 0.05 (-0.05, 0.15) 0.21 (0.00, 0.34) 0.00 (0.00, 0.12) 0.79 (0.66, 0.93) 0.09 1.00 0.02 0.89 0.20 

Banks of the superior temporal sulcus right 0.20 (0.04, 0.35) 0.04 (-0.04, 0.14) 0.15 (0.00, 0.28) 0.00 (0.00, 0.13) 0.85 (0.72, 0.98) 0.22 1.00 0.10 0.94 0.12 
Fusiform gyrus left 0.27 (0.11, 0.41) 0.09 (-0.01, 0.19) 0.22 (0.00, 0.35) 0.00 (0.00, 0.16) 0.78 (0.65, 0.91) 0.12 1.00 3.87E-03 0.85 0.27 

Fusiform gyrus right 0.38 (0.24, 0.51) 0.10 (-0.01, 0.21) 0.32 (0.13, 0.44) 0.00 (0.00, 0.13) 0.68 (0.56, 0.80) 0.01 1.00 8.48E-06 0.87 0.24 
Transverse temporal cortex left 0.34 (0.19, 0.47) 0.20 (0.10, 0.30) 0.29 (0.00, 0.47) 0.05 (0.00, 0.27) 0.65 (0.53, 0.80) 0.12 0.86 2.42E-07 0.78 0.39 

Transverse temporal cortex right 0.33 (0.18, 0.46) 0.21 (0.11, 0.31) 0.23 (0.00, 0.45) 0.09 (0.00, 0.30) 0.68 (0.55, 0.82) 0.22 0.56 1.49E-07 0.67 0.54 
Entorhinal cortex left 0.24 (0.08, 0.38) 0.14 (0.04, 0.24) 0.18 (0.00, 0.36) 0.06 (0.00, 0.24) 0.77 (0.64, 0.90) 0.43 0.84 5.07E-04 0.66 0.57 

Entorhinal cortex right 0.32 (0.17, 0.45) 0.06 (-0.04, 0.16) 0.24 (0.07, 0.37) 0.00 (0.00, 0.10) 0.76 (0.63, 0.89) 0.03 1.00 2.33E-03 0.76 0.43 
Temporal pole left 0.21 (0.05, 0.35) 0.13 (0.03, 0.23) 0.13 (0.00, 0.33) 0.07 (0.00, 0.24) 0.80 (0.67, 0.93) 0.62 0.75 3.13E-03 0.43 0.82 

Temporal pole right 0.20 (0.05, 0.35) 0.13 (0.03, 0.23) 0.17 (0.00, 0.34) 0.04 (0.00, 0.22) 0.79 (0.66, 0.93) 0.47 0.98 3.32E-03 0.56 0.69 
Parahippocampal gyrus left 0.48 (0.35, 0.59) 0.19 (0.09, 0.30) 0.46 (0.23, 0.56) 0.00 (0.00, 0.16) 0.54 (0.44, 0.66) 1.36E-03 1.00 3.75E-12 0.93 0.14 

Parahippocampal gyrus right 0.46 (0.32, 0.57) 0.15 (0.05, 0.25) 0.43 (0.26, 0.55) 0.00 (0.00, 0.10) 0.57 (0.45, 0.70) 6.41E-04 1.00 3.98E-09 0.85 0.28 
Cingulate           

Rostral anterior cingulate left 0.30 (0.15, 0.43) 0.20 (0.10, 0.29) 0.24 (0.00, 0.45) 0.08 (0.00, 0.29) 0.68 (0.55, 0.83) 0.26 0.70 5.97E-07 0.71 0.50 
Rostral anterior cingulate right 0.30 (0.15, 0.44) 0.11 (0.01, 0.21) 0.27 (0.04, 0.39) 0.00 (0.00, 0.15) 0.73 (0.61, 0.86) 0.05 1.00 5.58E-04 0.76 0.42 
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Caudal anterior cingulate left 0.41 (0.27, 0.53) 0.18 (0.07, 0.28) 0.38 (0.15, 0.49) 0.00 (0.00, 0.00) 0.62 (0.51, 0.75) 0.01 1.00 4.17E-08 0.69 0.52 
Caudal anterior cingulate right 0.44 (0.30, 0.57) 0.16 (0.06, 0.26) 0.40 (0.21, 0.52) 0.00 (0.00, 0.13) 0.60 (0.48, 0.72) 2.51E-03 1.00 3.72E-08 0.85 0.27 

Posterior cingulate left 0.36 (0.21, 0.49) 0.16 (0.06, 0.27) 0.35 (0.06, 0.47) 0.00 (0.00, 0.20) 0.65 (0.53, 0.79) 0.04 1.00 1.67E-06 0.87 0.24 
Posterior cingulate right 0.40 (0.26, 0.53) 0.17 (0.07, 0.27) 0.38 (0.12, 0.49) 0.00 (0.00, 0.18) 0.62 (0.51, 0.75) 0.01 1.00 1.58E-08 0.92 0.16 

Isthmus cingulate left 0.34 (0.18, 0.47) 0.23 (0.12, 0.34) 0.22 (0.00, 0.47) 0.12 (0.00, 0.33) 0.66 (0.53, 0.81) 0.30 0.45 9.02E-08 0.65 0.58 
Isthmus cingulate right 0.37 (0.22, 0.51) 0.12 (0.02, 0.23) 0.31 (0.09, 0.43) 0.00 (0.00, 0.15) 0.69 (0.57, 0.81) 0.02 1.00 9.83E-06 0.84 0.30 

Insular           
Insular cortex left 0.31 (0.16, 0.45) 0.14 (0.05, 0.24) 0.30 (0.01, 0.42) 0.00 (0.00, 0.19) 0.70 (0.58, 0.84) 0.07 1.00 1.90E-05 0.51 0.74 

Insular cortex right 0.41 (0.26, 0.53) 0.11 (0.01, 0.21) 0.35 (0.17, 0.48) 0.00 (0.00, 0.10) 0.65 (0.52, 0.78) 4.08E-03 1.00 3.89E-06 0.37 0.87 
Note. Surface area and cortical thickness of each region is adjusted for total surface area/mean cortical thickness, linear and non-linear age effects, sex, and interactions between age and sex. ROIs are grouped in lobar divisions (Frontal, Parietal, Occipital, Temporal, 
Cingulate, Insular). a2 = additive genetic influences; c2 common or shared environmental influences; e2 unique or non-shared environmental influences; No A = test of CE model (no additive genetic influence); No C = test of AE model (no common environmental influence); No 
AC = test of E model (no additive genetic or common environmental influence). Heritability estimates (a2) significantly different from zero (significant ‘No A’; q value < 0.05) appear in bold. Variance explained by measurement error (1 - r2 test-retest correlation) was greater 
than non-shared environment (e2) in the following ROIs: surface area – medial orbitofrontal left, insular right, cortical thickness – lingual gyrus right, temporal pole left, insular left and right.  
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Appendix 16 Twin and Test-Retest Correlations for HCP Surface Area and Cortical Thickness  

 

Twin correlations with 95% confidence intervals, and test-retest reliability correlations for surface area (top) and cortical thickness 

(bottom) for 68 ROIs (34 in each of the left (L) and right (R) hemisphere in the HCP sample.  
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Appendix 17 Surface Area and Cortical Thickness ACE Estimates and Test-Retest Correlations 
in the HCP Dataset 

 

Variance components for surface area (top) and cortical thickness (bottom) for 68 ROIs (34 in each of the left (L) and right (R) 

hemisphere) in the HCP sample. a2 = additive genetic (red), c2 = common environment (green), e2 = unique environment (blue). * 

denotes ROIs with heritability estimates (a2) significantly different from zero. ROIs are grouped in lobar divisions (Frontal, Parietal, 

Occipital, Temporal, Cingulate, Insular).
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Appendix 18 Phenotypic Correlations, with Genetic and 
Environmental Contributions, for HCP Surface Area and 
Cortical Thickness 

 

Phenotypic correlations, with genetic and environmental contributions, for surface area 

and cortical thickness across regions in the HCP sample. Association across regions 

follow a similar pattern to that observed in the QTIM sample (Figure 4.3). ROI 

abbreviations listed in Appendix 2. * denotes a significant correlation (q value < 0.05).  
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Appendix 19 Phenotypic Correlations with Genetic and Environmental Contributions, between 
HCP Surface Area and Cortical Thickness 

 

Phenotypic correlations (left), with genetic (middle) and environmental (left) contributions, between surface area and cortical thickness 

across regions in the HCP sample. * denotes a significant correlation (q value < 0.05). 
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Appendix 20 Means and Variances for Brain Structure Volumes 
and Body Weight in the QTIM Dataset 
Means and raw/non-standardised variance components (additive genetic (VA), 
environmental (VE), and phenotypic (Vp)) for brain structure volumes (mm3) and body 
weight (kg) for QTIM (N = 831).  

 Mean (SD) VA VE VP Excluded† 
Cortical      
Frontal      

Superior frontal  24124 (2587) 5847705 844419 6692123 4 
Rostral middle frontal  16622 (2193) 3882586 925251 4807837 6 
Caudal middle frontal  6770 (1116) 910359 334591 1244950 5 

Pars opercularis 4970 (697) 322936 162657 485593 9 
Pars triangularis 4275 (613) 188857 186735 375592 8 

Pars orbitalis 2450 (323) 57177 47434 104612 5 
Lateral orbitofrontal  6992 (846) 518567 197874 716441 5 
Medial orbitofrontal  4988 (602) 200796 161669 362465 4 

Precentral  14198 (1630) 2271940 385254 2657194 13 
Paracentral lobule 3943 (555) 222637 84875 307513 7 

Frontal pole 996 (160) 9322 16362 25684 4 
Parietal      

Superior parietal  14147 (1683) 2338020 494232 2832252 4 
Inferior parietal  14699 (1952) 2979655 830492 3810147 5 
Supramarginal  11550 (1539) 1897186 472249 2369435 19 

Postcentral  9952 (1252) 1169480 397965 1567445 13 
Precuneus  10733 (1354) 1563091 270710 1833801 4 

Occipital      
Lateral occipital  12048 (1430) 1574271 470160 2044431 4 

Lingual  7001 (923) 674538 176634 851172 4 
Cuneus  3211 (461) 158069 54860 212929 5 

Pericalcarine  2359 (379) 123483 20349 143832 4 
Temporal      

Superior temporal  11823 (1354) 1306335 528285 1834620 8 
Middle temporal  9960 (1376) 1204139 689396 1893534 8 
Inferior temporal  8623 (1301) 1120767 573030 1693798 8 

Banks of the superior temporal  2552 (400) 100487 59499 159986 4 
Fusiform  9164 (1168) 962651 402684 1365335 7 

Transverse temporal  1097 (177) 18304 13106 31411 5 
Entorhinal  1395 (266) 36560 34248 70808 7 

Temporal pole 2023 (365) 58377 75181 133558 9 
Parahippocampal  2250 (269) 50340 22041 72381 7 

Cingulate      
Rostral anterior cingulate 2620 (433) 110610 76914 187525 5 
Caudal anterior cingulate 2159 (370) 63223 73440 136663 6 

Posterior cingulate 3449 (466) 138844 78730 217574 5 
Isthmus cingulate 2694 (420) 128959 47371 176329 5 

Insular       
Insular  6814 (786) 476302 141178 617479 5 

Subcortical      
Thalamus 7731 (775) 537833 63492 601325 14 
Putamen 6062 (643) 379492 33325 412817 0 

Hippocampus 4163 (391) 133426 19349 152775 6 
Caudate 4052 (483) 213537 19456 232993 13 

Amygdala 1669 (197) 28154 10782 38936 4 
Globus Pallidus 1581 (178) 24719 7048 31767 5 

Nucleus Accumbens 707 (108) 7885 3681 11566 0 
Ventricular      

Lateral Ventricle 6234 (2785) 5083541 2671700 7755241 0 
3rd Ventricle 738 (182) 22819 10146 32965 0 
4th Ventricle 1647 (498) 186996 60831 247827 0 

Choroid Plexus 1256 (263) 53142 15849 68991 0 
Global      

Total Brain Volume 1120104 (108283) 11235950382 489341605 11725291987 0 
Body Weight 69 (15) 181 45 226 55* 

Note. Brain structure volumes (mm3) not corrected for total brain volume, age or sex. Body weight measured in kilograms. 
†N participants excluded from total sample (N = 831) after quality control. *Body weight not available for 55 participants. 
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Appendix 21 Mean-Standardised and Relative Variances Estimates, and Test-Retest 
Correlations for Brain Structure Volume and Body Weight in the QTIM Dataset 
Mean-standardised and relative (proportion of total phenotypic variance) variance estimates (with 95% confidence intervals), and test-

retest correlations, for cortical, subcortical, and ventricular volumes, as well as total brain volume and body weight, in the QTIM dataset. 

 Mean-Standardised Variance Estimates Relative Variance Estimates  
 Genetic (IA) Environmental (IE) Phenotypic (IP) Genetic (a2, h2) Environmental (e2) Test Retest Correlation 
  (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)  

Cortical       
Frontal       

Superior frontal  1.00% (0.88, 1.14) 0.15% (0.11, 0.19) 1.15% (1.04, 1.27) 87.38% (83.41, 90.27) 12.62% (9.73, 16.59) 0.97 
Rostral middle frontal  1.41% (1.21, 1.62) 0.33% (0.26, 0.43) 1.74% (1.56, 1.92) 80.76% (74.47, 85.30) 19.24% (14.70, 25.53) 0.96 
Caudal middle frontal  1.99% (1.67, 2.34) 0.73% (0.58, 0.94) 2.72% (2.46, 3.01) 73.12% (64.93, 79.30) 26.88% (20.70, 35.07) 0.95 

Pars opercularis 1.31% (1.06, 1.57) 0.66% (0.52, 0.83) 1.97% (1.77, 2.19) 66.50% (57.01, 73.90) 33.50% (26.10, 42.99) 0.95 
Pars triangularis 1.03% (0.74, 1.33) 1.02% (0.82, 1.24) 2.05% (1.86, 2.28) 50.28% (37.46, 60.94) 49.72% (39.06, 62.54) 0.97 

Pars orbitalis 0.95% (0.72, 1.19) 0.79% (0.63, 0.95) 1.74% (1.57, 1.94) 54.66% (42.97, 64.22) 45.34% (35.78, 57.03) 0.88 
Lateral orbitofrontal  1.06% (0.89, 1.25) 0.40% (0.32, 0.51) 1.47% (1.32, 1.63) 72.38% (64.40, 78.50) 27.62% (21.50, 35.60) 0.84 
Medial orbitofrontal  0.81% (0.61, 1.01) 0.65% (0.52, 0.81) 1.46% (1.32, 1.62) 55.40% (43.95, 64.77) 44.60% (35.23, 56.05) 0.85 

Precentral  1.13% (0.98, 1.28) 0.19% (0.15, 0.25) 1.32% (1.19, 1.47) 85.50% (80.80, 88.89) 14.50% (11.11, 19.20) 0.98 
Paracentral lobule 1.43% (1.22, 1.68) 0.55% (0.44, 0.69) 1.98% (1.78, 2.21) 72.40% (64.63, 78.39) 27.60% (21.61, 35.37) 0.97 

Frontal pole 0.94% (0.59, 1.31) 1.65% (1.39, 2.01) 2.59% (2.35, 2.87) 36.30% (23.00, 48.10) 63.70% (51.90, 77.00) 0.69 
Parietal       

Superior parietal  1.17% (1.01, 1.34) 0.25% (0.20, 0.32) 1.42% (1.27, 1.58) 82.55% (77.21, 86.50) 17.45% (13.50, 22.79) 0.97 
Inferior parietal  1.38% (1.18, 1.47) 0.38% (0.31, 0.49) 1.76% (1.59, 1.95) 78.20% (71.84, 83.01) 21.80% (16.99, 28.16) 0.97 
Supramarginal  1.42% (1.22, 1.65) 0.35% (0.28, 0.46) 1.78% (1.60, 1.97) 80.07% (73.74, 84.71) 19.93% (15.29, 26.26) 0.97 

Postcentral  1.18% (0.99, 1.38) 0.40% (0.32, 0.51) 1.58% (1.42, 1.77) 74.61% (67.00, 80.35) 25.39% (19.65, 33.00) 0.98 
Precuneus  1.36% (1.18, 1.55) 0.23% (0.19, 0.30) 1.59% (1.43, 1.76) 85.24% (80.51, 88.67) 14.76% (11.33, 19.49) 0.98 

Occipital       
Lateral occipital  1.08% (0.91, 1.27) 0.32% (0.25, 0.42) 1.41% (1.27, 1.57) 77.00% (69.38, 82.55) 23.00% (17.45, 30.62) 0.94 

Lingual  1.38% (1.18, 1.59) 0.36% (0.28, 0.46) 1.74% (1.58, 1.94) 79.25% (72.80, 84.02) 20.75% (15.98, 27.20) 0.96 
Cuneus  1.53% (1.29, 1.80) 0.53% (0.42, 0.68) 2.07% (1.86, 2.31) 74.24% (66.40, 80.14) 25.76% (19.86, 33.60) 0.96 

Pericalcarine  2.22% (1.94, 2.54) 0.37% (0.29, 0.47) 2.59% (2.32, 2.89) 85.85% (81.27, 89.16) 14.15% (10.84, 18.73) 0.96 
Temporal       

Superior temporal  0.93% (0.79, 1.10) 0.38% (0.30, 0.48) 1.31% (1.18, 1.46) 71.20% (62.88, 77.60) 28.80% (22.40, 37.12) 0.88 
Middle temporal  1.21% (1.01, 1.46) 0.69% (0.56, 0.87) 1.91% (1.72, 2.12) 63.59% (54.42, 71.02) 36.41% (28.98, 45.58) 0.9 
Inferior temporal  1.51% (1.26, 1.80) 0.77% (0.62, 0.97) 2.28% (2.05, 2.54) 66.17% (57.05, 73.39) 33.83% (26.61, 42.95) 0.82 

Banks of the superior temporal  1.54% (1.22, 1.85) 0.91% (0.73, 1.16) 2.46% (2.21, 2.74) 62.81% (52.37, 71.06) 37.19% (28.94, 47.63) 0.92 
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Fusiform  1.15% (0.95, 1.36) 0.48% (0.38, 0.61) 1.63% (1.46, 1.81) 70.51% (61.87, 77.12) 29.49% (22.88, 38.13) 0.82 
Transverse temporal  1.52% (1.20, 1.87) 1.09% (0.88, 1.36) 2.61% (2.36, 2.91) 58.27% (47.92, 66.76) 41.73% (33.24, 52.08) 0.92 

Entorhinal  1.88% (1.40, 2.38) 1.76% (1.42, 2.11) 3.64% (3.28, 4.05) 51.63% (39.87, 61.51) 48.37% (38.49, 60.13) 0.61 
Temporal pole 1.43% (0.99, 1.88) 1.84% (1.50, 2.26) 3.26% (2.95, 3.63) 43.71% (31.15, 54.58) 56.29% (45.42, 68.85) 0.5 

Parahippocampal  0.99% (0.84, 1.18) 0.44% (0.34, 0.56) 1.43% (1.29, 1.59) 69.55% (60.43, 76.49) 30.45% (23.51, 39.57) 0.89 
Cingulate       

Rostral anterior cingulate 1.61% (1.27, 1.97) 1.12% (0.90, 1.40) 2.73% (2.47, 3.04) 58.98% (48.64, 67.35) 41.02% (32.65, 51.36) 0.89 
Caudal anterior cingulate 1.36% (0.96, 1.77) 1.58% (1.28, 1.95) 2.93% (2.65, 3.26) 46.26% (33.65, 56.97) 53.74% (43.03, 66.35) 0.97 

Posterior cingulate 1.17% (0.95, 1.39) 0.66% (0.54, 0.82) 1.83% (1.65, 2.04) 63.81% (54.61, 71.19) 36.19% (28.81, 45.39) 0.98 
Isthmus cingulate 1.78% (1.48, 2.09) 0.65% (0.51, 0.84) 2.43% (2.18, 2.71) 73.14% (64.88, 79.36) 26.86% (20.64, 35.12) 0.95 

Insular        
Insular  1.03% (0.87, 1.18) 0.30% (0.24, 0.39) 1.33% (1.20, 1.48) 77.14% (69.78, 82.55) 22.86% (17.45, 30.22) 0.92 

Subcortical       
Thalamus 0.90% (0.79, 1.02) 0.11% (0.08, 0.14) 1.01% (0.91, 1.12) 89.44% (85.88, 91.96) 10.56% (8.04, 14.12) 0.96 
Putamen 1.03% (0.92, 1.16) 0.09% (0.07, 0.12) 1.12% (1.02, 1.25) 91.93% (89.38, 93.77) 8.07% (6.23, 10.62) 0.95 

Hippocampus 0.77% (0.68, 0.87) 0.11% (0.09, 0.14) 0.88% (0.80, 0.98) 87.33% (83.24, 90.28) 12.67% (9.72, 16.76) 0.92 
Caudate 1.30% (1.15, 1.47) 0.12% (0.09, 0.15) 1.42% (1.28, 1.57) 91.65% (88.90, 93.61) 8.35% (6.39, 11.10) 0.99 

Amygdala 1.01% (0.86, 1.19) 0.39% (0.31, 0.50) 1.40% (1.26, 1.56) 72.31% (63.91, 78.67) 27.69% (21.33, 36.09) 0.79 
Globus Pallidus 0.99% (0.85, 1.14) 0.28% (0.22, 0.37) 1.27% (1.14, 1.42) 77.81% (69.90, 83.41) 22.19% (16.59, 30.10) 0.84 

Nucleus Accumbens 1.58% (1.29, 1.88) 0.74% (0.58, 0.94) 2.31% (2.09, 2.58) 68.18% (58.99, 75.31) 31.82% (24.70, 41.01) 0.54 
Ventricular       

Lateral Ventricle 13.08% (10.37, 16.00) 6.87% (5.35, 8.89) 19.96% (17.66, 22.70) 65.55% (55.00, 73.63) 34.45% (26.37, 45.00) 1 
3rd Ventricle 4.19% (3.45, 5.02) 1.86% (1.46, 2.39) 6.05% (5.42, 6.78) 69.22% (59.88, 76.37) 30.78% (23.89, 40.12) 0.97 
4th Ventricle 6.89% (5.84, 8.07) 2.24% (1.79, 2.85) 9.14% (8.23, 10.18) 75.45% (68.51, 80.77) 24.55% (19.23, 31.49) 0.98 

Choroid Plexus 3.37% (2.88, 3.91) 1.01% (0.80, 1.27) 4.38% (3.93, 4.89) 77.03% (70.49, 82.03) 22.97% (17.97, 29.51) 0.93 
Global       

Total Brain Volume 0.90% (0.80, 1.00) 0.04% (0.03, 0.05) 0.93% (0.85, 1.03) 95.83% (94.52, 96.67) 4.17% (3.33, 5.62) 0.99 
Body Weight 3.80% (3.25, 4.42) 0.94% (0.74, 1.23) 4.75% (4.25, 5.33) 80.15% (73.73, 84.84) 19.85% (15.16, 26.27) NA* 

*Test-retest reliability data not available for body weight.  
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Appendix 22 Associations with Mean-Standardised Variance Estimates in the QTIM Dataset 
Correlations between mean-standardised genetic and environmental variance estimates and test-retest correlation, mean structure volume, and spatial direction 

(medial-lateral, anterior-posterior, superior-inferior) in the QTIM dataset 

  Correlation with  
Test-Retest p value 

Correlation with  
Mean Volume p value   

Cortical 34 structures      
Mean-standardised genetic (IA) -0.02 0.93 -0.29 0.10   

Mean-standardised environmental (IE) -0.71 2.84E-06 -0.65* 2.81E-05   
Subcortical 7 structures      

Mean-standardised genetic (IA) -0.66 0.11 -0.49 0.26   
Mean-standardised environmental (IE) -0.99 2.16E-05 -0.78 0.04   

Ventricular 4 structures      
Mean-standardised genetic (IA) 0.83 0.17 0.96 0.04   

Mean-standardised environmental (IE) 0.80 0.20 0.98 0.02   
  Correlation with 

Medial-lateral direction p value 
Correlation with 

Anterior-posterior direction p value 
Correlation with 

Superior-inferior direction p value 
Cortical 34 structures      

Mean-standardised genetic (IA) -0.11 0.55 -0.34 0.05 0.10 0.57 
Mean-standardised environmental (IE) -0.07 0.69 0.43 0.01 -0.46 0.01 

Note. Estimates in bold were significant at a Bonferroni corrected significance level of 0.0028 (0.05/18). Spatial directions (medial-lateral, anterior-posterior, superior-
inferior) are illustrated in Figure 5.4a. 
*After controlling for test-retest reliability, the correlation between mean-standardised environmental variance and mean structure volume for subcortical and cortical 
structures remained significant (r = -0.61, p = 1.58E-04).  
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Appendix 23 Mean-Standardised and Relative Variances Estimates for HCP Brain Structure 
Volume 
Mean-standardised and relative (proportion of total phenotypic variance) variance estimates (with 95% confidence intervals), and test-

retest correlations, for cortical, subcortical, and ventricular volumes, as well as total brain volume and body weight, in the HCP dataset.  

 Mean-Standardised Variance Estimates Relative Variance Estimates  

 Genetic (IA) Environmental (IE) Phenotypic (IP) Genetic (a2, h2) Environmental (e2) Test Retest Correlation 

  (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)  

Cortical       

Frontal       

Superior frontal  1.38% (1.24, 1.53) 0.12% (0.10, 0.15) 1.50% (1.37, 1.65) 91.91% (89.47, 93.67) 8.09% (6.33, 10.53) 0.99 

Rostral middle frontal  1.59% (1.42, 1.78) 0.21% (0.17, 0.26) 1.80% (1.65, 1.98) 88.42% (85.01, 90.93) 11.58% (9.07, 14.99) 0.99 

Caudal middle frontal  1.95% (1.69, 2.26) 0.79% (0.65, 0.96) 2.74% (2.50, 3.02) 71.12% (64.39, 76.62) 28.88% (23.38, 35.61) 0.99 

Pars opercularis 1.60% (1.38, 1.86) 0.67% (0.55, 0.83) 2.27% (2.09, 2.50) 70.32% (62.73, 76.40) 29.68% (23.60, 37.27) 0.99 

Pars triangularis 1.43% (1.15, 1.72) 0.87% (0.71, 1.08) 2.30% (2.10, 2.53) 62.00% (52.58, 69.86) 38.00% (30.14, 47.42) 0.98 

Pars orbitalis 1.14% (0.97, 1.33) 0.41% (0.34, 0.51) 1.56% (1.42, 1.71) 73.52% (66.28, 79.18) 26.48% (20.82, 33.72) 0.97 

Lateral orbitofrontal  1.24% (1.10, 1.39) 0.19% (0.15, 0.24) 1.43% (1.30, 1.57) 86.81% (82.99, 89.64) 13.19% (10.36, 17.01) 0.98 

Medial orbitofrontal  1.17% (1.02, 1.34) 0.32% (0.26, 0.41) 1.49% (1.36, 1.64) 78.45% (72.00, 83.26) 21.55% (16.74, 28.00) 0.93 

Precentral  1.19% (1.06, 1.32) 0.14% (0.11, 0.18) 1.33% (1.21, 1.46) 89.23% (86.00, 91.58) 10.77% (8.42, 14.00) 0.99 

Paracentral lobule 1.50% (1.31, 1.72) 0.44% (0.35, 0.55) 1.94% (1.77, 2.14) 77.44% (71.29, 82.18) 22.56% (17.82, 28.71) 0.97 

Frontal pole 1.20% (0.92, 1.50) 1.14% (0.95, 1.37) 2.34% (2.14, 2.57) 51.35% (41.02, 60.34) 48.65% (39.66, 58.98) 0.88 

Parietal       

Superior parietal  1.34% (1.19, 1.50) 0.21% (0.17, 0.26) 1.55% (1.41, 1.70) 86.44% (82.66, 89.28) 13.56% (10.72, 17.34) 0.97 

Inferior parietal  1.55% (1.35, 1.75) 0.38% (0.31, 0.48) 1.93% (1.76, 2.13) 80.21% (74.54, 84.48) 19.79% (15.52, 25.46) 0.99 
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Supramarginal  1.53% (1.32, 1.76) 0.44% (0.35, 0.56) 1.97% (1.81, 2.17) 77.64% (71.17, 82.53) 22.36% (17.47, 28.83) 0.99 

Postcentral  1.24% (1.07, 1.40) 0.37% (0.29, 0.46) 1.60% (1.47, 1.77) 77.15% (70.45, 82.21) 22.85% (17.79, 29.55) 0.98 

Precuneus  1.46% (1.30, 1.63) 0.22% (0.18, 0.28) 1.68% (1.53, 1.84) 86.85% (83.14, 89.62) 13.15% (10.38, 16.86) 0.99 

Occipital       

Lateral occipital  1.72% (1.51, 1.93) 0.33% (0.26, 0.42) 2.05% (1.88, 2.26) 84.01% (79.06, 87.61) 15.99% (12.39, 20.94) 0.99 

Lingual  1.78% (1.58, 1.91) 0.31% (0.25, 0.39) 2.09% (1.90, 2.30) 85.06% (80.99, 88.16) 14.94% (11.84, 19.01) 0.98 

Cuneus  1.79% (1.56, 2.04) 0.46% (0.37, 0.58) 2.25% (2.05, 2.46) 79.37% (73.59, 83.78) 20.63% (16.22, 26.41) 0.96 

Pericalcarine  2.50% (2.24, 2.80) 0.34% (0.28, 0.43) 2.85% (2.60, 3.13) 87.93% (84.61, 90.43) 12.07% (9.57, 15.39) 0.98 

Temporal       

Superior temporal  1.31% (1.15, 1.47) 0.25% (0.20, 0.32) 1.56% (1.42, 1.72) 84.10% (79.25, 87.65) 15.90% (12.35, 20.75) 0.99 

Middle temporal  1.59% (1.41, 1.79) 0.28% (0.22, 0.35) 1.87% (1.71, 2.06) 85.19% (81.04, 88.31) 14.81% (11.69, 18.96) 0.99 

Inferior temporal  1.93% (1.68, 2.18) 0.44% (0.35, 0.56) 2.37% (2.17, 2.62) 81.41% (75.92, 85.49) 18.59% (14.51, 24.08) 0.99 

Banks of the superior temporal  1.56% (1.28, 1.85) 0.74% (0.59, 0.93) 2.30% (2.09, 2.53) 67.75% (58.76, 74.87) 32.25% (25.13, 41.24) 0.98 

Fusiform  1.54% (1.33, 1.76) 0.42% (0.34, 0.53) 1.96% (1.80, 2.15) 78.36% (72.17, 83.06) 21.64% (16.94, 27.83) 0.99 

Transverse temporal  1.89% (1.58, 2.20) 0.91% (0.76, 1.11) 2.80% (2.55, 3.09) 67.56% (59.66, 74.00) 32.44% (26.00, 40.34) 0.97 

Entorhinal  2.16% (1.78, 2.57) 1.22% (1.00, 1.46) 3.38% (3.08, 3.73) 63.87% (55.27, 71.00) 36.13% (29.00, 44.73) 0.92 

Temporal pole 0.62% (0.44, 0.81) 1.00% (0.87, 1.14) 1.61% (1.48, 1.77) 38.33% (28.11, 47.90) 61.67% (52.10, 71.89) 0.71 

Parahippocampal  1.41% (1.22, 1.63) 0.47% (0.38, 0.59) 1.88% (1.73, 2.06) 74.76% (67.78, 80.18) 25.24% (19.82, 32.22) 0.95 

Cingulate       

Rostral anterior cingulate 2.51% (2.06, 2.94) 0.93% (0.72, 1.21) 3.44% (3.16, 3.77) 72.94% (63.80, 79.67) 27.06% (20.33, 36.20) 0.98 

Caudal anterior cingulate 2.13% (1.63, 2.64) 1.35% (1.05, 1.72) 3.47% (3.15, 3.84) 61.24% (49.31, 70.75) 38.76% (29.25, 50.69) 0.98 

Posterior cingulate 1.51% (1.28, 1.74) 0.52% (0.41, 0.65) 2.03% (1.84, 2.24) 74.44% (67.05, 80.10) 25.56% (19.90, 32.95) 0.99 

Isthmus cingulate 1.81% (1.51, 2.10) 0.71% (0.56, 0.89) 2.51% (2.28, 2.78) 71.90% (63.94, 78.11) 28.10% (21.89, 36.06) 0.96 

Insular        

Insular  1.22% (1.07, 1.39) 0.28% (0.22, 0.35) 1.50% (1.37, 1.65) 81.47% (76.13, 85.48) 18.53% (14.52, 23.87) 0.96 

Subcortical       
Thalamus 0.93% (0.82, 1.06) 0.18% (0.14, 0.23) 1.11% (1.02, 1.22) 83.80% (78.88, 87.41) 16.20% (12.59, 21.12) 0.91 
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Putamen 1.22% (1.09, 1.36) 0.18% (0.14, 0.23) 1.40% (1.29, 1.53) 87.20% (83.56, 89.92) 12.80% (10.08, 16.44) 0.97 
Hippocampus 0.99% (0.89, 1.10) 0.08% (0.07, 0.11) 1.07% (0.98, 1.18) 92.22% (89.80, 93.95) 7.78% (6.05, 10.20) 0.94 

Caudate 1.32% (1.18, 1.48) 0.19% (0.15, 0.24) 1.51% (1.39, 1.66) 87.34% (83.77, 90.02) 12.66% (9.98, 16.23) 0.99 
Amygdala 1.54% (1.37, 1.72) 0.18% (0.14, 0.23) 1.71% (1.56, 1.89) 89.66% (86.47, 91.97) 10.34% (8.03, 13.53) 0.95 

Globus Pallidus 1.50% (1.27, 1.74) 0.53% (0.43, 0.67) 2.03% (1.85, 2.24) 73.70% (66.53, 79.30) 26.30% (20.70, 33.47) 0.87 
Nucleus Accumbens 1.98% (1.71, 2.26) 0.47% (0.38, 0.61) 2.45% (2.23, 2.71) 80.69% (74.64, 85.11) 19.31% (14.89, 25.36) 0.90 

Ventricular       
Lateral Ventricle 19.43% (15.88, 23.44) 9.17% (7.30, 11.51) 28.60% (25.39, 32.44) 67.94% (59.35, 74.82) 32.06% (25.18, 40.65) 1.00 

3rd Ventricle 3.33% (2.85, 3.84) 0.93% (0.74, 1.19) 4.26% (3.86, 4.67) 78.12% (71.42, 83.10) 21.88% (16.90, 28.58) 0.98 
4th Ventricle 9.06% (7.93, 10.32) 1.51% (1.19, 1.94) 10.57% (9.55, 11.77) 85.73% (81.17, 89.00) 14.27% (11.00, 18.83) 0.98 

Choroid Plexus 10.20% (8.99, 11.56) 1.67% (1.34, 2.11) 11.87% (10.72, 13.22) 85.91% (81.97, 88.87) 14.09% (11.13, 18.03) 0.97 

Global       
Total Brain Volume 1.16% (1.06, 1.28) 0.04% (0.03, 0.05) 1.20% (1.11, 1.31) 96.69% (95.80, 97.35) 3.31% (2.60, 4.28) 1.00 

Body Weight 4.39% (3.81, 5.02) 1.00% (0.80, 1.28) 5.40% (4.89, 5.98) 81.42% (75.76, 85.60) 18.58% (14.40, 24.24) 0.99 
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Appendix 24 Mean-Standardised and Relative Genetic and 
Environmental Variance Estimates for HCP Cortical Structure 
Volumes  

 

Mean-standardised genetic (a) and environmental (b) variances (with 95% confidence 

intervals), as well as relative genetic and environmental variance components (c) for 

cortical structures in the HCP dataset. Estimates are presented in descending order of 

mean-standardised genetic variance in the QTIM dataset. 
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Appendix 25 Mean-Standardised and Relative Genetic and Environmental Variance Estimates 

for HCP Subcortical and Ventricular Structure Volumes  

 

Mean-standardised genetic (a, d) and environmental (b, e) variances (with 95% confidence intervals), as well as relative genetic and 

environmental variance components (c, f) for subcortical (top row) and ventricular (bottom row) structures in the HCP dataset. Estimates 

are presented in descending order of mean-standardised genetic variance in the QTIM dataset.  
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Appendix 26 Associations with Mean-Standardised Variance Estimates in the HCP Dataset 

  
Correlation with  

Test-Retest p value 
Correlation with  
Mean Volume p value   

Cortical 34 structures      
Mean-standardised genetic (IA) 0.42 0.01 -0.21 0.23   

Mean-standardised environmental (IE) -0.44 0.01 -0.69* 5.20E-06   
Subcortical 7 structures      

Mean-standardised genetic (IA) -0.32 0.49 -0.88 0.01   
Mean-standardised environmental (IE) -0.76 0.05 -0.65 0.12   

Ventricular 4 structures      
Mean-standardised genetic (IA) 1.00 4.94E-03 0.90 0.10   

Mean-standardised environmental (IE) 0.96 0.04 0.99 0.01   

  
Correlation with 

Medial-lateral direction p value 
Correlation with 

Anterior-posterior direction p value 
Correlation with 

Superior-inferior direction p value 
Cortical 34 structures      

Mean-standardised genetic (IA) -0.22 0.20 -0.26 0.13 0.04 0.83 
Mean-standardised environmental (IE) -0.12 0.49 0.33 0.06 -0.26 0.14 

Note. Estimates in bold were significant at a Bonferroni corrected significance level of 0.0028 (0.05/18). Spatial directions (medial-lateral, anterior-posterior, superior-
inferior) are illustrated in Figure 5.4a.  
*After controlling for test-retest reliability, the correlation between cortical mean-standardised environmental variance and mean structure volume remained 
significant (r = -0.63, p = 7.44E-05).  
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Appendix 27 Associations Between HCP Cortical Structure and 

Reading Ability  
Heritability of Cortical Structure, Phenotypic Association with Reading Ability (rph) and 

Significance Test, Genetic (rph-a) and Environmental (rph-e) Contribution to the Phenotypic 

Correlation in the HCP Dataset. 

 Heritability (95% CI) rph (95% CI) p value* rph-a (95% CI) rph-e (95% CI) 
Surface Area      

Frontal      
Pars opercularis left 0.52 (0.41, 0.61) 0.06 (-0.01, 0.13) 0.17   

Pars opercularis right 0.41 (0.30, 0.52) 0.10 (0.04, 0.17) 0.01   
Pars triangularis left 0.52 (0.42, 0.61) -0.02 (-0.09, 0.05) 0.69   

Pars triangularis right 0.41 (0.29, 0.52) 0.04 (-0.03, 0.10) 0.44   
Parietal 

     

Inferior parietal cortex left 0.69 (0.61, 0.76) 0.12 (0.05, 0.18) 5.62E-04 0.07 (-0.02, 0.15) 0.05 (0.00, 0.10) 
Inferior parietal cortex right 0.65 (0.56, 0.72) 0.11 (0.04, 0.17) 0.01   

Supramarginal cortex left 0.65 (0.55, 0.72) 0.09 (0.02, 0.16) 0.03   
Supramarginal cortex right 0.55 (0.44, 0.65) 0.10 (0.04, 0.17) 2.32E-03 0.05 (-0.04, 0.14) 0.06 (-0.00, 0.12) 

Temporal 
     

Superior temporal gyrus left 0.67 (0.59, 0.74) 0.14 (0.07, 0.20) 2.58E-04 0.12 (0.04, 0.20) 0.01 (-0.04, 0.07) 
Superior temporal gyrus right 0.68 (0.59, 0.74) 0.12 (0.05, 0.19) 7.46E-04 0.08 (-0.00, 0.16) 0.04 (-0.01, 0.09) 

Fusiform gyrus left 0.62 (0.53, 0.69) 0.12 (0.06, 0.19) 8.42E-04 0.15 (0.07, 0.23) -0.02 (-0.08, 0.03) 
Fusiform gyrus right 0.70 (0.62, 0.77) 0.15 (0.08, 0.21) 7.50E-05 0.17 (0.08, 0.25) -0.02 (-0.07, 0.03) 

Global      
Total Surface Area 0.93 (0.91, 0.94) 0.15 (0.09, 0.22) 2.35E-05 0.13 (0.06, 0.21) 0.02 (-0.01, 0.05) 

      
Cortical Thickness      

Frontal      
Pars opercularis left 0.64 (0.54, 0.72) -0.01 (-0.08, 0.06) 0.20   

Pars opercularis right 0.54 (0.44, 0.63) -0.01 (-0.07, 0.06) 0.88   
Pars triangularis left 0.57 (0.46, 0.67) -0.03 (-0.10, 0.04) 0.29   

Pars triangularis right 0.64 (0.55, 0.71) -0.02 (-0.08, 0.05) 0.50   
Parietal      

Inferior parietal cortex left 0.71 (0.62, 0.77) -0.08 (-0.15, -0.01) 0.03   
Inferior parietal cortex right 0.75 (0.69, 0.81) -0.06 (-0.13, 0.01) 0.20   

Supramarginal cortex left 0.76 (0.69, 0.81) -0.03 (-0.09, 0.04) 0.42   
Supramarginal cortex right 0.70 (0.63, 0.77) -0.01 (-0.08, 0.05) 0.52   

Temporal      
Superior temporal gyrus left 0.68 (0.59, 0.74) -0.00 (-0.07, 0.07) 0.59   

Superior temporal gyrus right 0.68 (0.60, 0.75) -0.01 (-0.08, 0.06) 0.61   
Fusiform gyrus left 0.56 (0.45, 0.65) 0.04 (-0.02, 0.11) 0.26   

Fusiform gyrus right 0.66 (0.57, 0.73) 0.02 (-0.04, 0.09) 0.79   
Global      

Average Cortical Thickness 0.86 (0.81, 0.89) -0.02 (-0.09, 0.05) 0.23   
Note. Genetic and environmental contributions estimated for significant phenotypic associations only. Genetic contributions were 
significant (95% CI did not span zero) for associations between reading score and superior temporal gyrus left surface area, and 
fusiform gyrus left/right surface area.   
*p values in bold are significant at a Bonferroni corrected p value of 0.004 (0.05/13). 
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Appendix 28 Associations Between QTIM Cortical Structure 

and Reading Ability 
      

Heritability of Cortical Structure, Phenotypic Association with Reading Ability (rph) and 

Significance Test, Genetic (rph-a) and Environmental (rph-e) Contribution to the Phenotypic 

Correlation in the QTIM Dataset. 

  Heritability (95% CI) rph (95% CI) p value rph-a (95% CI) rph-e (95% CI) 
Surface Area      

Parietal      
Inferior parietal cortex left 0.56 (0.43, 0.67) -0.04 (-0.12, 0.04) 0.63 -0.05 (-0.16, 0.06) 0.01 (-0.06, 0.08) 

Supramarginal cortex right 0.58 (0.46, 0.68) 0.03 (-0.05, 0.12) 0.66 0.05 (-0.06, 0.16) -0.02 (-0.09, 0.05) 
Temporal      

Superior temporal gyrus left 0.75 (0.64, 0.82) 0.01 (-0.07, 0.10) 0.93 0.01 (-0.11, 0.12) 0.01 (-0.06, 0.08) 
Superior temporal gyrus right 0.70 (0.59, 0.78) -0.02 (-0.11, 0.06) 0.79 -0.01 (-0.12, 0.10) -0.01 (-0.08, 0.05) 

Fusiform gyrus left 0.54 (0.40, 0.65) -0.05 (-0.13, 0.03) 0.48 -0.06 (-0.17, 0.05) 0.01 (-0.06, 0.09) 
Fusiform gyrus right 0.63 (0.49, 0.73) -0.02 (-0.10, 0.07) 0.90 -0.02 (-0.13, 0.10) -0.00 (-0.07, 0.07) 

Global      
Total Surface Area 0.90 (0.87, 0.93) -0.00 (-0.08, 0.08) 0.92 0.01 (-0.08, 0.10) -0.01 (-0.05, 0.03) 

      
Note. Analyses only run for brain/language pairings that were significant in the HCP dataset.  
 


