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Abstract 

Functional magnetic resonance imaging (fMRI) enables the non-invasive investigation of 

human brain function. Identifying functionally segregated regions involved in the processing 

of sensory information and higher cognitive functions has provided detailed insight into its 

organisational architecture. The acquisition of fMRI data at ultra-high field provides 

enhanced signal sensitivity and contrast, and new acquisition techniques are continuously 

developed to increase image resolution and acquisition speed. The ultimate goal is to 

maximize functional sensitivity, i.e. the ability to detect and localise neurovascular activity 

using fMRI. Given the overwhelming number of parameters that need to be selected to 

compile an fMRI acquisition protocol, and their complex influences on image fidelity and 

contrast, ascertaining functional sensitivity is fundamental for every fMRI experiment. Only 

then a faithful representation of the underlying neurovascular activity can be obtained, 

forming the basis for new insights into brain function. 

In this thesis, I will discuss key constituents of functional sensitivity, provide an overview of 

the impact of fMRI acquisition parameters, and outline relevant evaluation measures. I will 

then apply this framework to the functional imaging of the nuclei of the basal ganglia, whose 

tissue properties cause a reduction in functional sensitivity compared to cortical areas. I will 

show how multi-echo fMRI – a new class of fMRI data acquisition techniques – can 

overcome this limitation. By rapidly acquiring sets of images with different signal properties, 

the extensive signal loss in subcortical regions can be mitigated without sacrificing functional 

sensitivity in cortical areas. 

Subsequently, I will investigate the noise properties of fMRI data acquired with a sub-second 

sampling interval at the single-subject level. Single-subject fMRI is especially relevant for 

clinical applications, but requires comprehensive noise modelling for valid inference. 

Accordingly, I will show that modelling of physiological noise sources such as cardiac and 

respiratory activity, and advanced pre-whitening schemes are necessary for valid inference 

using fast acquisition techniques. 

To finish, I will introduce a custom software toolbox – uniQC – which provides a general 

framework to evaluate functional sensitivity. In particular, uniQC combines various 

visualisation tools with straightforward access to common mathematical and image 

operations and essential fMRI preprocessing steps in an object-oriented framework. 

Importantly, the handling of images with arbitrary dimensionality – such as multi-echo or 

multi-coil images – is inherently provided, and individual processing steps are generalized 

accordingly. Thus, flexible, yet straightforward evaluation of fMRI data becomes possible. 
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This thesis provides thorough guidance on the evaluation of functional sensitivity for fMRI, 

and how acquisition and analysis strategies can be tailored to specific research questions 

to obtain the best data possible. Utilizing advanced acquisition and analysis techniques to 

improve functional sensitivity across the whole brain will ultimately facilitate a more 

comprehensive understanding of human brain function. 
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1.1 Aims and objectives 

Functional magnetic resonance imaging (fMRI) enables the non-invasive investigation of 

human brain function. New data acquisition techniques for fMRI are continuously developed 

to increase image resolution, acquisition speed and contrast. The ultimate goal is to 

maximize functional sensitivity, i.e. the ability to detect and localise neurovascular activity 

using fMRI. Given the overwhelming number of parameters that need to be selected to 

compile an fMRI acquisition protocol, and their complex influences on image fidelity and 

contrast, ascertaining functional sensitivity is fundamental for every fMRI experiment. Here, 

I will discuss key constituents of functional sensitivity, provide an overview of the impact of 

fMRI acquisition parameters, and outline relevant evaluation measures. In Chapter 2, I will 

examine functional sensitivity for multi-echo fMRI – a new class of data acquisition 

techniques. Subsequently in Chapter 3, I will investigate the effect of increased acquisition 

speed on serial correlations, and how this can affect estimates of functional sensitivity. In 

Chapter 4, I will present uniQC - a computational framework implemented as a MATLAB 

toolbox to perform interactive, flexible and comprehensive evaluation of functional 

sensitivity. 

1.2 Functional magnetic resonance imaging 

1.2.1 Overview 

In an fMRI experiment, magnetic resonance imaging (MRI) is utilized to acquire a time series 

of images reflecting neuronal activity. More precisely, changes in image intensity over time 

depict local changes in brain physiology, indicative of neuronal activity. To then infer on the 

location of neuronal activity, statistical analysis is performed on the image time series. In the 

following, key concepts of MRI, the physiological basis of the employed contrast mechanism 

and the statistical analysis are briefly revisited to initialize the discussion of functional 

sensitivity. For the interested reader, a guide to detailed literature is given at the end of this 

brief summary. 

1.2.2 Contrast mechanisms in fMRI 

MRI utilizes the principles of nuclear magnetic resonance for signal and contrast generation. 

The image contrast is governed by the relaxation times and the timing of the employed 

acquisition protocol (= sequence). The longitudinal relaxation time 𝑇1 describes the rate of 

regrowth to the equilibrium magnetisation after the application of a radio-frequency (RF) 

pulse (Brown et al., 2014a). The 𝑇1 value of cortical grey matter at a main magnetic (𝐵0) field 

strength of 7 Tesla (T) is estimated at approximately 1940 ms, but pronounced differences 
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between measurement methods and brain regions have been observed (Wright et al., 2008). 

In fMRI, the repeated excitation of the same spins can introduce unwanted intensity 

fluctuations due to 𝑇1 relaxation. To overcome this, the Ernst angle 𝛼𝐸𝑟𝑛𝑠𝑡 can be used, 

which provides maximal available signal given the repetition time (𝑇𝑅) and the longitudinal 

relaxation time 𝑇1 (Brown et al., 2014b): 

The transverse relaxation times 𝑇2 and 𝑇2
∗ describe the dephasing of the transverse 

magnetization. 𝑇2 characterizes irreversible spin-spin interaction, and 𝑇2
∗ additionally 

contains contributions from local field inhomogeneities. In fMRI, 𝑇2
∗-weighted images using 

a gradient recalled echo (GRE) sequence are commonly employed, because they provide 

higher sensitivity and efficiency compared to the 𝑇2-weighted images produced by spin-echo 

acquisitions (Boyacioğlu et al., 2014). However, spin-echo fMRI has the potential to provide 

better sensitivity to micro-vasculature (Yacoub et al., 2003). The 𝑇2
∗ in cortical grey matter 

at 7T has been estimated at approximately 33 ms, but shorter 𝑇2
∗ values have been observed 

in subcortical nuclei such as the caudate (20 ms) and putamen (16 ms) (Peters et al., 2007). 

The signal model to characterize the impact of the effective transverse relaxation time 𝑇2
∗ on 

the image intensity 𝐼 reads 

where 𝜌 is the spin density and 𝑇𝐸 is the echo time. Consequently, a change in 𝑇2
∗ can be 

observed as a change in image intensity 𝐼. 

1.2.3 BOLD contrast and the hemodynamic response function 

The fluctuations in image intensity reflect neuronal activity based on two mechanisms. First, 

the hemodynamic response (Buxton et al., 1998) causes an increase in the ratio of 

oxygenated to de-oxygenated blood following neuronal activity (Bandettini et al., 1992; 

Kwong et al., 1992; Ogawa et al., 1992). This net decrease of the amount of de-oxygenated 

blood (Fox and Raichle, 1986; Malonek et al., 1997) is induced by an increase of blood flow 

followed by blood volume changes (Hoge et al., 1999). Although the contrast mechanism 

used in fMRI is based on changes in blood oxygenation, the hemodynamic response itself 

is mainly driven by neurotransmitter signalling, most notably glutamate (Attwell and 

Iadecola, 2002). In combination with the large number of neurons contained in one voxel 

(100 000 neurons in 1µl or 1 mm3 of grey matter), inference on the underlying neuronal 

𝛼𝐸𝑟𝑛𝑠𝑡 = arccos (exp (−
𝑇𝑅

𝑇1
)). (1) 

𝐼 ∝ 𝜌 ⋅ exp (−
𝑇𝐸

𝑇2
∗). (2) 
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processes remains challenging (Logothetis, 2008). In general, the hemodynamic response 

is seen as a reflection of input and intracortical processing rather than spiking output 

(Logothetis et al., 2001). 

The level of blood oxygenation affects the local effective transverse relaxation time 𝑇2
∗ 

because deoxygenated hemoglobin is paramagnetic (Ogawa et al., 1990). Following the net 

increase in oxygenated blood, an increase in 𝑇2
∗ can be observed, resulting in an intensity 

increase in 𝑇2
∗-weighted images. This contrast mechanism is termed blood oxygenation level 

dependent (BOLD) contrast. Note that this definition of contrast generation neglects inflow 

effects, which can be substantial under certain conditions (Duyn et al., 1994). 

The hemodynamic response function (HRF) (Glover, 1999a) was introduced to model the 

expected signal change following a stimulus (Figure 1-1). Characteristic timings of the HRF 

are the delay of the response (6 s) and the delay of the undershoot (16 s) (Glover, 1999a). 

In the statistical analysis, the HRF is then used to model the expected signal time course. 

 

Figure 1-1: Illustration of the hemodynamic response function (HRF). Following a stimulus at time 
0, a delayed signal increase can be observed lasting several seconds. Return to baseline conditions 
can take up to 30 seconds. 

1.2.4 Image encoding in fMRI 

To form an image, i.e. to localize the change in 𝑇2
∗, spatial encoding of the object needs to 

be performed. Image encoding in MRI is enabled through the application of external, 

temporally-varying gradient fields 𝐺(𝑡). Thus, the location of the spin density 𝜌(𝑟) is encoded 
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through the introduction of a complex phase term (eq. (3)). The resulting signal 𝑠(𝑡) obtained 

in a receiver coil from an imaging volume 𝑉 then reads 

Image encoding is best visualised in k-space, which expresses the signal in terms of a 

Fourier transform of the spin density. The k-space trajectory describes the sampling pattern 

within that k-space (Figure 1-2). In fMRI, echo-planar imaging (EPI) (Mansfield, 1984) is 

commonly employed to enable fast image acquisition. Therein, a 2D k-space (𝑘𝑥(𝑡), 𝑘𝑦(𝑡))  

 

Figure 1-2: Illustration of a 2D k-space. The echo-time is defined as the time when the centre of  
k-space is sampled. The number of k-space lines is indicated by 𝑁𝑦, and the echo spacing Δ𝑘𝑦 is 

the time between two consecutive echoes. 

is read out after one RF excitation by temporally varying the external gradient fields 𝐺(𝑡): 

Given a sufficient k-space coverage, the reconstructed image �̂�(𝑟) can then be estimated 

via an inverse Fourier transform of the measured signal 𝑠(𝑡) (Brown et al., 2014c). Using a 

GRE EPI readout, the final image intensity 𝐼 is then also weighted by transverse relaxation 

time 𝑇2
∗ (eq. (2)). This provides the basis for the fast acquisition of a 𝑇2

∗-weighted image time 

series for fMRI. This image time series is then analysed to infer on the location of stimulus 

induced signal changes, and, thereby, neuronal activity. 

𝑠(𝑡) ≈ ∫ 𝜌(𝑟) ⋅ exp(−𝑖2𝜋�⃗⃗�(𝑡) ⋅ 𝑟)
𝑉

𝑑𝑟. (3) 

𝑘𝑥(𝑡) = 𝛾 ∫ 𝐺𝑥(𝑡′)𝑑𝑡′
𝑡

0
, 

𝑘𝑦(𝑡) = 𝛾 ∫ 𝐺𝑦(𝑡′)𝑑𝑡′
𝑡

0
. 

(4) 
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1.2.5 The general linear model 

The general linear model (GLM) expresses the image intensity values 𝑌1 acquired over time 

as a combination of the design matrix 𝑋 describing the experimental manipulations, the 

(unknown) parameters 𝛽 and a random error 𝑒 following a normal distribution with 

variance 𝜎2 (Kiebel and Holmes, 2007): 

𝑌 = 𝑋𝛽 + 𝑒. (5) 

The design matrix comprises the expected signal, which is estimated by convolving the HRF 

with a vector containing the timing of the experimental manipulation. The 𝛽 parameters are 

then estimated at each voxel and statistical inference is performed to identify those voxel 

where the measured signal resembles the expected signal. For this purpose, a t-value can 

be computed from the parameter estimates �̂� and their variance 𝑉𝑎𝑟(�̂�): 

𝑇 =
𝑐𝑇�̂�

√𝑉𝑎𝑟(𝑐𝑇�̂�)

, 
(6) 

where the contrast vector 𝑐 encodes the model parameters of interest. The variance of the 

parameter estimates depends on the residual variance �̂�2 and the design matrix: 

𝑇 =
𝑐𝑇�̂�

√�̂�2𝑐𝑇(𝑋𝑇𝑋)−1𝑐
. (7) 

The residual variance estimate �̂�2 is obtained from the error 𝑒 and the 𝐽 − 𝑝 degrees of 

freedom, with 𝐽 being the number of observations and 𝑝 = 𝑟𝑎𝑛𝑘(𝑋): 

�̂�2 =
𝑒𝑇𝑒

𝐽 − 𝑝
. (8) 

The resulting statistical map is then thresholded to identify those locations with high t-scores, 

i.e. good congruency between measured and modelled signal and low noise levels. 

1.2.6 Further reading 

For the interested reader, an excellent introduction to fMRI can be found in Functional 

magnetic resonance imaging (Huettel et al., 2008), and more personal reviews in 20 Years 

of fMRI (Bandettini, 2012). A general discussion of MRI is presented in Magnetic Resonance 

Imaging: Physical Principles and Sequence Design (Brown et al., 2014d). Detailed 

information on nuclear magnetic resonance and on pulse sequences are provided in 

Principles of Nuclear Magnetism (Abragam, 1983) and the Handbook of MRI Pulse 

Sequences (Bernstein, 2005), respectively. An overview of current developments in image 

                                            
1 The change in notation from 𝐼 to 𝑌 represents the transition from the field of MRI to the field of statistical 
parametric mapping (SPM). 
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acquisition for (f)MRI is compiled in Neuroimaging with Ultra-high Field MRI: Present and 

Future (Polimeni and Uludag, 2018) and Pushing the spatio-temporal limits of MRI and fMRI 

(Yacoub and Wald, 2018). The foundations of the statistical analysis of fMRI data and 

advanced modelling strategies are outlined in Statistical Parametric Mapping: The Analysis 

of Functional Brain Images (Friston et al., 2006). Specific details of noise correction methods 

for fMRI are discussed in Cleaning up the fMRI time series: Mitigating noise with advanced 

acquisition and correction strategies (Murphy and Bright, 2017). Latest insights into brain 

physiology and organisation are summarized in Functional architecture of the human brain 

(Van Den Heuvel et al., 2017). 

1.3 Definition of functional sensitivity 

1.3.1 BOLD sensitivity 

In an fMRI experiment, an image time series is acquired depicting fluctuations in the image 

intensity over time. These image fluctuation reflect neuronal activity over time across a large 

number of locations (voxels) simultaneously. When evaluating functional sensitivity, this 

spatio-temporal nature of the fMRI data needs to be considered. 

The temporal properties of functional sensitivity can be assessed using the definition of 

BOLD sensitivity (𝑆𝐵𝑂𝐿𝐷) as introduced by Deichmann et al. (2002) and Posse et al. (1999). 

Therein, BOLD sensitivity is defined as the change in image intensity Δ𝐼 given a change 

in 𝑇2
∗: 

𝑆𝐵𝑂𝐿𝐷 = Δ𝐼|𝑇2∗→𝑇2∗+Δ𝑇2∗. (9)2 

To find the echo time that maximizes BOLD sensitivity, equation (9) is simplified using 

equation (2) and a first order Taylor expansion (Deichmann et al., 2002; Posse et al., 1999) 

or differential (Poser et al., 2006) to 

𝑆𝐵𝑂𝐿𝐷 = 𝐼 ⋅ 𝑇𝐸, (10) 

which reaches its maximum at 

𝑇𝐸 = 𝑇2
∗. (11) 

To incorporate subsequent developments in image acquisition and analysis, this definition 

of BOLD sensitivity has been extended further. Following the introduction of the GLM to the 

                                            
2 Note that equation (9) is usually stated in the form 𝑆𝐵𝑂𝐿𝐷 = Δ𝐼\Δ𝑇2

∗ (Deichmann et al., 2002; Poser et al., 
2006; Posse et al., 1999). However, Δ𝐼 is a function of Δ𝑇2

∗ (2), prohibiting the optimization of individual 
parameters. Thus, this slight adjustment has been made to only include independent parameters in the 
definition of BOLD sensitivity. Nevertheless, the mechanism of the signal genesis, i.e. the change of 𝑇2

∗ to  
𝑇2
∗ + Δ𝑇2

∗, is still expressed. 



35 
 

analysis of fMRI data (Friston et al., 1994), the standard deviation 𝜎𝑡𝑖𝑚𝑒 of the temporal 

noise has been included (eq. (8)) (Poser et al., 2006): 

The temporal noise 𝜎𝑡𝑖𝑚𝑒 consists of thermal noise 𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙, low frequency drifts and other 

system noise 𝜎𝑠𝑦𝑠𝑡𝑒𝑚, physiological noise 𝜎𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦, i.e. fluctuations related to cardiac and 

respiratory activity, un-modelled neuronal activity 𝜎𝑛𝑒𝑢𝑟𝑜𝑛𝑎𝑙 and motion 𝜎𝑚𝑜𝑡𝑖𝑜𝑛 (Bianciardi et 

al., 2009; Friston et al., 1996, for a recent review see Liu, 2016). The overall temporal 

noise 𝜎𝑡𝑖𝑚𝑒 is given by (Krüger and Glover, 2001) 

𝜎𝑡𝑖𝑚𝑒 = √𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙
2 + 𝜎𝑠𝑦𝑠𝑡𝑒𝑚

2 + 𝜎𝑝ℎ𝑦𝑠𝑖𝑜𝑙𝑜𝑔𝑦
2 + 𝜎𝑛𝑒𝑢𝑟𝑜𝑛𝑎𝑙

2 + 𝜎𝑚𝑜𝑡𝑖𝑜𝑛
2 . (13) 

Note the lower bound that is imposed on 𝜎𝑡𝑖𝑚𝑒, which is the maximum of the individual noise 

components. As a consequence, a reduction in thermal noise does not necessarily result in 

a reduction of temporal noise, if other noise sources, such as physiological noise, are 

considerably stronger (Triantafyllou et al., 2005). 

The second extension to the definition of BOLD sensitivity followed the introduction of 

simultaneous multi-slice (SMS) imaging (Breuer et al., 2005; Larkman et al., 2001) to fMRI 

(Feinberg et al., 2010; Setsompop et al., 2012), providing a considerable gain in acquisition 

speed. Accordingly, the number of samples 𝑁 that can be acquired per unit time increases, 

reducing the variance of the parameter estimates in the statistical analysis (Kasper, 2014; 

Kiebel and Holmes, 2007, eq. (7)). Hence, the definition of BOLD sensitivity has been 

extended further to incorporate the number of samples (Barth and Poser, 2011): 

𝑆𝐵𝑂𝐿𝐷 =
Δ𝐼|𝑇2∗→𝑇2∗+Δ𝑇2∗ ⋅ √𝑁

𝜎𝑡𝑖𝑚𝑒
. (14) 

The number of samples 𝑁 can also be replaced by the inverse of the repetition time providing 

BOLD sensitivity per unit time. In summary, BOLD sensitivity can be increased by (i) a larger 

change in image intensity for a given Δ𝑇2
∗, (ii) a larger Δ𝑇2

∗ for a given neuronal activity, (iii) 

a reduction in noise and (iv) a higher number of samples. 

1.3.2 Spatial specificity 

The second aspect when evaluating functional sensitivity concerns the spatial domain of the 

fMRI data, i.e. the spatial specificity. Spatial specificity describes the ability to locate and 

differentiate sites of neuronal activation. First investigations of the physiologically imposed 

lower bound on spatial specificity estimated the point spread function (PSF) of the BOLD 

response to be below 2 mm for fMRI at 7T (Shmuel et al., 2007). However, new empirical 

evidence (Koopmans et al., 2010; Shi et al., 2017) and the development of specific analysis 

𝑆𝐵𝑂𝐿𝐷 =
Δ𝐼|𝑇2

∗→𝑇2
∗+Δ𝑇2

∗

𝜎𝑡𝑖𝑚𝑒
. (12) 
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strategies for high-resolution fMRI data (Polimeni et al., 2017) have challenged these initial 

findings. Currently, a trend towards imaging of structures as small as cortical laminae and 

columns (< 0.5 mm, Mountcastle et al., 1955) can be observed (Chaimow et al., 2018; 

Lawrence et al., 2017; Nasr et al., 2016; Stephan et al., 2017a). This becomes possible 

because the underlying tissue microstructure (Uludağ et al., 2009) and the stimulus timing 

(Sheth, 2004) are important components shaping the BOLD PSF. Equivalently, the image 

acquisition also determines spatial specificity, which can be described by an image PSF 

(Robson et al., 1997). 

Furthermore, the statistical analysis following the image acquisition additionally impacts the 

spatial specificity. In classical statistics using the GLM, random field theory (Worsley, 2007) 

is applied to overcome the multiple comparison problem and perform statistical inference. 

Therein, two mechanism determine the spatial specificity of the obtained statistical map. The 

first is the required smoothness (Friston, 2007a; Nichols and Hayasaka, 2003), which is 

often assured by spatially smoothing the images during preprocessing, significantly reducing 

the spatial specificity. Recommendations for the full width at half maximum (FWHM) of the 

necessary smoothness can be as high as 6 voxel FWHM (Nichols and Hayasaka, 2003). 

Second, the chosen topological feature, i.e. peaks, clusters or excursion sets, also 

determine the spatial specificity (Friston, 2007a). Peak (or voxel) - level inference is based 

on the height of the peak, giving it the highest localising power. Cluster-level inference 

utilizes the spatial extent of a cluster, providing less localising power but more sensitivity. 

Ultimately, set-level inference has the highest sensitivity, because it basically tests the 

statistical map as a whole, but is rarely used due to its very low spatial specificity. However, 

the loss in spatial specificity through smoothing and cluster-level inference provides a much 

needed increase in statistical power to detect activation and was certainly enabling in the 

wide-spread application of fMRI (Nichols and Hayasaka, 2003). 

To illustrate the interplay between the different mechanisms governing spatial specificity, 

one could assume Gaussian kernels as the PSFs of the individual components. Then, the 

overall spatial specificity can be expressed in terms of the standard deviation of a Gaussian 

kernel 𝜎𝑠𝑝𝑎𝑐𝑒 as 

𝜎𝑠𝑝𝑎𝑐𝑒 = √𝜎𝑀𝑅𝐼
2 + 𝜎𝐵𝑂𝐿𝐷

2 + 𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔
2 + 𝜎𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠

2 . (15) 

containing the contributions from the imaging process 𝜎𝑀𝑅𝐼, the BOLD response 𝜎𝐵𝑂𝐿𝐷, 

spatial smoothing 𝜎𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 and distortions 𝜎𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠. The distortions are introduced 

through the sensitivity of EPI to inhomogeneities in the main magnetic field, leading to voxel 

mislocations (Hutton et al., 2002). These voxel mislocations can cause a mismatch between 
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the fMRI and an anatomical reference image, impeding the reliable identification of a site of 

activation (Brett et al., 2002). Similarly as for the temporal noise, a lower bound is imposed 

on 𝜎𝑠𝑝𝑎𝑐𝑒, which is limited to the largest width of the individual components. Hence, an 

increase in image resolutions needs to be accompanied by an appropriate statistical 

analysis to improve overall spatial specificity. 

In summary, functional sensitivity depends on the sensitivity within a voxel to detect a signal 

change (BOLD sensitivity) and the ability to accurately locate this signal change (spatial 

specificity). Since one can be traded in for the other, both need to be assessed when 

evaluating functional sensitivity. Ultimately, the image acquisition can be tailored to the 

image analysis a priori (Kasper et al., 2014), increasing overall functional sensitivity. 

1.4 Impact of acquisition parameters and statistical modelling on functional 

sensitivity 

1.4.1 Field strength 

MRI technology and sequences are continuously developed, allowing the researcher to 

select from a wide range of acquisition options. Due to the large number of interdependent 

parameters with different (and often opposing) effects on functional sensitivity, a 

compromise needs to be found optimizing both BOLD sensitivity and spatial specificity for a 

specific research question. 

The most widespread improvement in functional sensitivity can be achieved through an 

increase in field strength. The image signal-to-noise ratio (SNR) for a given voxel volume 

increases linearly (Edelstein et al., 1986) or supralinearly (Pohmann et al., 2016) with field 

strength. Thus, the maximally achievable temporal SNR (tSNR) also increases, which is 

determined by thermal noise only (Krüger and Glover, 2001). Additionally, the BOLD 

contrast increases through both an increase in Δ𝐼 for a given Δ𝑇2
∗ (Gati et al., 1997; Okada 

et al., 2005) and an increase in Δ𝑇2
∗ for a given stimulus (van der Zwaag et al., 2009) 

(eq. (14)). Spatial specificity can be increased by utilizing the increased image SNR to 

increase the spatial resolution (𝜎𝑀𝑅𝐼
2 ). Furthermore, contributions from draining veins are 

reduced at higher field strength (Boxerman et al., 1995; Gati et al., 1997; Uludağ et al., 2009) 

decreasing the BOLD PSF (𝜎𝐵𝑂𝐿𝐷
2 ) (Shmuel et al., 2007). 

1.4.2 Acquisition strategies 

New sequence and reconstruction methods have enabled an increase in image acquisition 

speed providing more samples 𝑁 per unit time, increasing BOLD sensitivity (eq. (14)) . EPI 
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can be seen as an enabling technique for fMRI, allowing the acquisition of a single image 

slice in tens of milliseconds and, accordingly, the acquisition of a whole image volume in a 

few seconds. However, GRE EPI is sensitive to image distortions and signal loss (Jezzard 

and Clare, 1999). Inhomogeneities in the 𝐵0- field cause additional phase contributions 

mostly along the phase encoding direction, effectively introducing a voxel mislocation 

(𝜎𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠
2 ), and degrading spatial specificity (eq. (15)). The voxel displacement Δ𝑦 in the 

phase encoding direction is given by (Jezzard and Clare, 1999)  

Δ𝑦 =
Δ𝜈(𝑦)

𝐵𝑊𝑃𝐸
, (16) 

where Δ𝜈(𝑦) is the spatial distribution of the frequency offset and 𝐵𝑊𝑃𝐸 is the bandwidth per 

voxel in the phase encoding direction. The bandwidth per voxel corresponds to the 

frequency offset that would cause a voxel displacement of exactly one voxel length (Polimeni 

et al., 2017). An alternative formulation using the echo spacing Δ𝑡𝑦 and the number of 

(acquired) phase encoding steps 𝑁𝑦 (Figure 1-2) is given by (Holland et al., 2010): 

Δ𝑦 = Δ𝜈(𝑦) ⋅ Δ𝑡𝑦 ⋅ 𝑁𝑦. (17) 

Additionally, signal loss can be caused by through-plane dephasing, which occurs in areas 

with strong susceptibility differences, for example at air-tissue interfaces. Therein, a strong 

susceptibility gradient in the slice direction introduces an additional decay term in 

equation (2), leading to a much faster signal dephasing (Volz et al., 2009). A number of 

methods have been put forward to counteract distortions and signal loss in EPI. Their aim 

is to either counteract the frequency offset Δ𝜈(𝑦), reduce the sensitivity of the acquisition to 

field inhomogeneities by minimizing Δ𝑡𝑦 or 𝑁𝑦, or correct for the voxel displacement Δ𝑦.  

The most commonly applied measure to minimize Δ𝜈(𝑦) is 𝐵0 shimming (Balteau et al., 

2010), where shim coils are used to produce magnetic fields counteracting 𝐵0 

inhomogeneities. Signal loss in areas with remaining inhomogeneities can then be further 

reduced through slice-specific z-shimming (Glover, 1999b; Schneider et al., 2015). 

Additional improvement can be obtained through an appropriate choice of a number of 

sequence parameters, such as slice-tilt and phase-encoding direction (De Panfilis and 

Schwarzbauer, 2005; Speck et al., 2008; Weiskopf et al., 2006), slice thickness (Poser et 

al., 2006; Robinson et al., 2004), resolution (Robinson et al., 2008; Weiskopf et al., 2007) 

and echo time (Poser and Norris, 2009; Stocker et al., 2006, but cf. Gorno-Tempini et al., 

2002). Retrospective correction techniques utilize field maps to correct the voxel 

displacement Δ𝑦 either in k-space (Man et al., 1997) or in image-space (Hutton et al., 2002; 

Jezzard and Clare, 1999). 
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The development of receive arrays has enabled parallel imaging (Griswold et al., 2002; 

Pruessmann et al., 1999), providing a decrease in the number of phase encoding steps 𝑁𝑦 

by an acceleration factor 𝑅, which can considerably reduce distortions (Poser et al., 2006). 

Further, the length of the readout train, and, hence, the repetition time can be shortened, 

allowing the acquisition of an increased number of samples 𝑁 per unit time. Additionally, the 

reduction in the readout train length significantly reduces the echo time, allowing either 

shorter echo times or higher image resolution with the same echo time. Because 𝑇2
∗ values 

decrease with field strength (Peters et al., 2007), the optimality criterion in equation (11) 

imposes shorter echo times for higher field strength. Hence, parallel imaging enables 

optimal BOLD sensitivity for high-resolution fMRI at ultra-high field. Disadvantages are the 

decrease in image SNR by a factor of √𝑅, and the spatially varying noise amplification due 

to the ill-conditioning of the image reconstruction problem (Pruessmann et al., 1999). 

Additionally, SMS imaging (Breuer et al., 2005; Feinberg et al., 2010; Larkman et al., 2001; 

Setsompop et al., 2012) provides a dramatic increase in acquisition speed at little cost of 

image SNR (Moeller et al., 2010). 

1.4.3 Noise reduction in fMRI 

The reduction of temporal noise 𝜎𝑡𝑖𝑚𝑒 in the image time series can be achieved during the 

image acquisition, the image reconstruction or the statistical analysis. Most methods target 

individual noise sources, and, hence, a combination of several noise reduction methods is 

usually required. Prospective techniques can reduce the impact of motion (Speck et al., 

2006) and low-frequency drifts and breathing-related field fluctuations (Duerst et al., 2015). 

Similarly during image reconstruction, fluctuations in the main magnetic (Hu and Kim, 1994) 

and the image encoding fields (Bollmann et al., 2017) can also be addressed. Incorporated 

into the statistical analysis are a number of dedicated preprocessing steps, targeting 

different noise sources: the impact of motion is reduced through the alignment of the image 

time series (Friston et al., 1996), and thermal noise is reduced through spatial smoothing 

(Friston, 2007b). Motion, low-frequency drifts and physiological noise can also be addressed 

during the statistical modelling by incorporating appropriate confound regressors (Hutton et 

al., 2011; Kiebel and Holmes, 2007). A more detailed overview on noise reduction strategies 

can be found in Murphy et al. (2013) and Caballero-Gaudes and Reynolds (2016). 

1.5 Evaluating functional sensitivity 

Functional sensitivity is, for example, assessed when developing a new fMRI acquisition 

technique or compiling an fMRI acquisition protocol for a specific research question. This 
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allows the tailoring of the acquisition parameters to the region of interest and the ensuing 

statistical analysis. Given the large number of components and their non-linear interactions, 

functional sensitivity is often evaluated in a hierarchical fashion (Welvaert and Rosseel, 

2013). Therein, a number of surrogate measures describing individual aspects of functional 

sensitivity are utilized. This allows the gradual evaluation and optimization of parameters 

using easily accessible measures first, and only later on employing more involved fMRI 

experiments. 

Image quality is usually assessed first when evaluating functional sensitivity. It provides 

information about the spatial specificity in terms of distortion level, ghosting, blurring, 

coverage, areas of signal loss and resolution. The main disadvantage is the predominantly 

manual interpretation through visual inspection. At this stage, also the ensuing statistical 

analysis should be considered, for example the proposed smoothing kernel in relation to the 

voxel size. A first estimate of BOLD sensitivity can already be obtained using equation (10). 

However, this estimate can be misleading in areas with strong susceptibility gradients, which 

cause a shift in the local effective echo time (Deichmann et al., 2002). 

Next, the tSNR can be obtained from the fMRI image time series by computing the ratio of 

its mean and standard deviation over time (Friedman and Glover, 2006; Welvaert and 

Rosseel, 2013). Thereby, the temporal noise 𝜎𝑡𝑖𝑚𝑒, a key component of BOLD sensitivity 

(eq. (12)), can be evaluated. However, the relationship between tSNR and BOLD sensitivity 

is highly non-linear, and depends on a number of factors ranging from echo time and 

resolution to effect size (Δ𝐼) and false-positive level (Murphy et al., 2007). Similarly, Fera et 

al. (2004) observed that an increase in tSNR does not necessarily induce an equally high 

increase in t-score. 

The contrast-to-noise ratio (CNR), which is analogue to the BOLD sensitivity as defined in 

equation (12), is often employed in the assessment of data quality (Geissler et al., 2007; 

Welvaert and Rosseel, 2013). It is independent from the design efficiency and the number 

of samples, which can, under certain conditions, provide direct insight into properties such 

as effect size and noise level. 

Ultimately, evaluation of functional sensitivity is commonly performed using t-scores whose 

definition (eq. (7)) resembles the definition of functional sensitivity in equation (14). However, 

equation (14) does not take into account the effect of serial correlations and confound 

modelling, which can have considerable impact especially at higher field strengths (Hutton 

et al., 2011; Kasper et al., 2017) and for fast sequences (Chapter 3). 

Note that in practice, the optimality criterion in equation (11) can be relaxed, and a range of 

echo times can provide an adequate BOLD sensitivity (Gorno-Tempini et al., 2002; Poser 
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and Norris, 2009). To compute CNR or t-scores across the whole brain, a global change of 

𝑇2
∗ is required. A global change in blood oxygenation can, for example, be induced by breath-

hold experiments (Bright and Murphy, 2013). Alternatively, stimuli inducing known neuronal 

activity are employed to evaluate functional sensitivity in a region-of-interest (ROI). This is 

especially useful if targeting specific brain regions either because of their functional role or 

known deficits in functional sensitivity. 

In summary, functional sensitivity consists of BOLD sensitivity and spatial specificity, which 

are both dependent on a number of acquisition parameters. In practice, individual 

constituents of functional sensitivity are evaluated before performing comprehensive 

statistical analysis. In the reminder of this thesis, I will apply this framework for the evaluation 

of functional sensitivity to new fMRI sequences and introduce its implementation in the 

uniQC toolbox. 

1.6 Outline of the thesis 

 Chapter 2 illustrates sequence evaluation for a multi-echo SMS EPI. Therein, the 

nuclei of the basal ganglia were specifically targeted, which are characterized by their 

short 𝑇2
∗ values (Peters et al., 2007), leading to reduced BOLD sensitivity compared 

to cortical areas (eq. (11)). Based on initial promising results (Bollmann et al., 2015), 

a comprehensive assessment of a single-echo vs multi-echo SMS EPI was 

performed including all levels from basic tSNR and image quality measures, to single 

subject CNR maps, and, ultimately, group-level t-scores and extent of activation. 

 Chapter 3 investigates serial correlations in SMS EPI with sub-second temporal 

resolution. The definition of BOLD sensitivity as stated in equation (12) and (14) 

assumes independence between sampling points, which is not the case for fMRI data 

(Friston et al., 1994). In this study, the interaction between repetition time and serial 

correlations was investigated, alongside the impact of physiological noise modelling. 

It could be concluded that advanced pre-whitening schemes are required for valid 

inference using fMRI data acquired at these short temporal scales. 

 Chapter 4 presents the Unified NeuroImaging Quality Control (uniQC) toolbox, which 

was developed over the course of this thesis. It incorporates the concepts discussed 

here, and is meant to provide easy access to a wide range of fMRI time series quality 

measures. These include basic quality measures, such as mean and tSNR images, 

and versatile visualisation tools as required in the initial development stage. 

Additionally, image operations and common preprocessing steps up to whole 
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statistical analysis using SPM3 are provided. The underlying design theme was to 

provide flexible handling of a large range of data types, but at the same time ensure 

reproducibility through data provenance and documentability provided by the strict 

usage of function calls in an object-orientated framework. 

 Chapter 5 discusses implications for future studies, advanced pre-whitening 

schemes, and new measures for functional sensitivity. 

                                            
3 http://www.fil.ion.ucl.ac.uk/spm/ 
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 Abstract 

The nuclei of the basal ganglia pose a special problem 

for functional MRI, especially at ultra-high field, because 

T2* variations between different regions result in 

suboptimal BOLD sensitivity when using gradient-echo 

echo-planar imaging (EPI). Specifically, the iron-rich 

lentiform nucleus of the basal ganglia, including the 

putamen and globus pallidus, suffers from substantial 

signal loss when imaging is performed using 

conventional single-echo EPI with echo times (TE) 

optimized for the cortex. Multi-echo EPI acquires several 

echoes at different echo times for every imaging slice, 

allowing images to be reconstructed with a weighting of 

echo times that is optimized individually for each voxel 

according to the underlying tissue or T2* properties. Here 

we show that multi-echo simultaneous multi-slice (SMS) 

EPI can improve functional activation of iron-rich 

subcortical regions while maintaining sensitivity within 

cortical areas. Functional imaging during a motor task 

known to elicit strong activations in the cortex and the 

subcortex (basal ganglia) was performed to compare the 

performance of multi-echo SMS EPI to single-echo SMS 

EPI. Notably within both the caudate nucleus and 

putamen of the basal ganglia, multi-echo SMS EPI 

yielded higher tSNR (an average 84% increase) and 

CNR (an average 58% increase), an approximate 3-fold 

increase in supra-threshold voxels, and higher t-values 

(an average 39% increase). The degree of improvement 

in the group level t-statistics was negatively correlated to 

the underlying T2* of the voxels, such that the shorter the 

T2*, as in the iron-rich nuclei of the basal ganglia, the 

higher the improvement of t-values in the activated 

region. 
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2.1 Introduction 

Blood oxygenation level dependent (BOLD) fMRI is most commonly performed using a 

gradient-echo echo-planar imaging (GE-EPI) sequence at high (3T) or ultra-high field (≥ 7T) 

for enhanced functional sensitivity. In conventional GE-EPI sequences, the functional 

contrast depends on the chosen echo time (TE). The maximum BOLD contrast occurs at 

the TE at which the difference in the T2* signal decay of the oxygenated states of 

hemoglobin is maximal. In a first approximation, this is achieved when matching the TE with 

the effective transverse relaxation time (T2*) of the underlying tissue (Gati et al., 1997; 

Triantafyllou et al., 2005). A particular challenge for functional MRI of subcortical nuclei is 

the significant regional variation in T2* that exists across different brain regions, specifically 

between cortical and subcortical regions, i.e. T2* in subcortical nuclei is considerably shorter 

than in cortical regions (Cohen-Adad et al., 2012; Deistung et al., 2013; Sedlacik et al., 2014; 

Yao et al., 2009). 

The significant regional variation in T2* across different brain areas is caused by two effects, 

i.e. (i) by tissue-intrinsic (microscopic T2 and diffusion) as well as mesoscopic (smaller than 

voxel size, but larger scale than microscopic) relaxation effects, and (ii) by macroscopic 

effects from static field inhomogeneities. The macroscopic effects are caused by magnetic 

susceptibility differences at the interfaces between tissue, air, and bone (Volz et al., 2009) 

or suboptimal shim settings and can result in signal loss and image distortions. As these 

macroscopic effects depend on acquisition parameters such as slice-thickness and 

orientation, they can be partly reduced by optimizing a range of sequence properties 

including slice tilt and phase-encoding direction in a whole-brain (Robinson et al., 2008; 

Weiskopf et al., 2007, 2006) or in a slice-by-slice fashion (Brunheim et al., 2017; Stocker et 

al., 2006). 

While these techniques are well-suited to compensate for large-scale, temporally static, and 

gradually changing susceptibility gradients in space, they cannot compensate for 

microscopic and mesoscopic effects caused by the high iron content within the basal ganglia 

nuclei (Gelman et al., 1999; Ordidge et al., 1994), which lead to a short T2* in these brain 

regions (Peters et al., 2007; Robinson et al., 2004; Schenck, 2003). The reduced T2* then 

causes considerable signal loss in EPI images using a single TE optimized for cortical 

regions (Berger et al., 2016; Koopmans et al., 2011; van der Zwaag et al., 2009; Yacoub et 

al., 2001) as this TE is usually much longer than the T2* of the basal ganglia nuclei at ultra-

high field (Cohen-Adad et al., 2012; Deistung et al., 2013). Hence it is impossible for single-

echo EPI to provide an optimal BOLD sensitivity for the entire brain. 
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Multi-echo fMRI is a technique that has been shown to compensate for regional T2* variation 

and enhance functional sensitivity (Posse et al., 1999). Multi-echo imaging involves 

collecting multiple sets of echoes at a range of different TEs, which can then be combined 

to optimize functional sensitivity in a voxel-wise manner depending on the optimal TE for the 

underlying tissue. Applied to GE-EPI and in combination with parallel imaging, multi-echo 

EPI has been shown to improve functional sensitivity at both 3T (Poser et al., 2006) and 7T 

(Poser and Norris, 2009) with larger improvements seen in regions suffering from 

susceptibility-induced inhomogeneities. Here, we investigate the capabilities of multi-echo 

imaging to compensate for the mesoscopic, within-voxel inhomogeneities that occur in iron-

rich subcortical nuclei such as the basal ganglia while retaining high sensitivity in cortical 

regions. In this study, we combined the multi-echo readout with a state-of-the-art 

implementation of a simultaneous-multislice (SMS) acquisition and reconstruction technique 

to obtain a sub-second volume repetition time (TR) for whole-brain imaging. 

2.2 Theory 

2.2.1 Multi-echo imaging for fMRI 

Multi-echo EPI is a functional imaging technique that can increase the BOLD sensitivity while 

simultaneously reducing image distortions and signal loss (Poser and Norris, 2009). In 

essence, multi-echo imaging involves acquiring multiple echoes in one shot following a 

single RF pulse. This opens up various possibilities for how to process the data and to exploit 

the additional information that is obtained by simultaneously acquiring the BOLD signal at 

different echo times. A straightforward option is to combine the different echoes into a single 

image time series, which can then be processed and analyzed in a conventional manner 

just like a single-echo acquisition; this is the path chosen for the present study. The change 

in T2* due to changes in blood oxygen level can also be investigated directly by fitting a 

mono-exponential decay to the different echoes (Speck and Hennig, 1998). Another option 

that has gained interest recently is to use the multi-echo information for automatic denoising 

with the MEICA technique (Kundu et al., 2017, 2014, 2012). This method attempts to 

separate ‘BOLD like’ from ‘non-BOLD like’ signal components (and filter out the latter) by 

performing an ICA across the spatial concatenation of the multiple echoes and then 

characterizing their TE dependence as T2* induced (linear TE dependence, i.e. BOLD like) 

or S0 induced (no TE dependence, i.e. artefact like). However, the focus of this study was 

on BOLD sensitivity, and the ability of multi-echo EPI to provide more uniform sensitivity 
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across different underlying T2* values; hence, we chose a form of weighted echo 

combination as described below. 

Echo combination using a weighted summation has been shown to maximize the contrast-

to-noise-ratio (CNR) by matching the weights applied to images of different echo times to 

the bell-shaped BOLD sensitivity curve (Posse et al., 1999). However, this requires the 

accurate knowledge of the T2* values at each voxel location. An alternative strategy has 

been proposed by Poser et al. (2006), in which the different echoes are weighted directly by 

their measured CNR. To avoid confounds through task related signal changes, the tSNR 

needs to be estimated from additional calibration scans. However, a simple average across 

the different TE images outperformed the CNR-weighted average in regions with short T2* 

(Poser and Norris, 2009), and a recent study by Kettinger et al. (2016) has shown that all 

combination schemes perform equally well. Here, we used the temporal average of the time 

series (AVG) instead of the tSNR. The benefit of this weighting scheme is that the weights 

can be directly estimated from the data and no additional calibration scans or model 

assumptions are required. Importantly, changes in the signal due to BOLD fluctuations (i.e. 

due to task or resting-state fluctuations) do not influence the weights as they primarily affect 

the estimated variance, but not the average. 

𝑤𝑛 =
𝐴𝑉𝐺𝑛 ⋅ 𝑇𝐸𝑛
∑𝐴𝑉𝐺𝑛 ⋅ 𝑇𝐸𝑛

 (18) 

One potential limitation of multi-echo EPI is the prolonged readout time, which is especially 

challenging for 7T-applications due to the short T2* values in grey matter and subcortical 

nuclei in comparison to lower field strength (Peters et al., 2007; Yao et al., 2009). However, 

parallel imaging can be used to drastically reduce the number of phase encoding steps, 

which in turn reduces the EPI readout time and simultaneously increases the bandwidth in 

phase encoding direction to reduce image distortions and blurring (Poser et al., 2006). This 

has enabled the successful applications of multi-echo EPI at 7T to reduce artefacts and 

enhance functional contrast (Poser and Norris, 2009). In a separate development, SMS EPI 

(Feinberg et al., 2010; Setsompop et al., 2012) based on earlier work by Larkman et al. 

(2001) and Breuer et al. (2005) has brought the capability to significantly reduce the TR by 

acquiring multiple slices at once; for a review on this topic see Barth et al. (2016). In this 

study, we combine both the ME-EPI and SMS-EPI techniques, which allows us to acquire 

multi-echo EPI with whole-brain coverage at a temporal resolution of well below one second 

TR. 



50 
 

2.2.2 Motor cortex and basal ganglia 

When performing complex motor movements, activity is elicited in a wide network of areas 

including cortical motor areas and subcortical nuclei of the basal ganglia and thalamus 

(Bednark et al., 2015; Cunnington et al., 2002; Lehericy et al., 2006). These subcortical 

nuclei within the basal ganglia are known to be high in iron content. Early post-mortem 

histological evidence showed that non-heme iron levels vary throughout the brain with 

highest concentration consistently found within the basal ganglia, particularly within the 

lentiform nucleus that contains regions of the putamen and globus pallidus (Drayer et al., 

1986; Hallgren and Sourander, 1958). These early findings have been confirmed in-vivo 

through recently developed MRI techniques that form susceptibility-weighted images 

sensitive to iron levels (Deistung et al., 2013; Haacke et al., 2005, 2004; Schafer et al., 2012; 

Schweser et al., 2011). While the high iron content of the basal ganglia can be exploited for 

anatomical imaging to improve delineation of structural boundaries (Abosch et al., 2010), it 

is highly detrimental for the functional contrast necessary for fMRI. This is particularly 

problematic at high magnetic field strengths as the signal decays even more rapidly resulting 

in shorter T2* and very little signal remaining at typically used TEs (Schenck, 2003). Multi-

echo EPI sequences may therefore be ideally suited to whole-brain fMRI of complex motor 

movements at 7T, to improve the concurrent imaging of cortical and subcortical areas that 

differ in underlying T2* values and thereby to compensate for the signal loss typical seen in 

fMRI of the basal ganglia. 

2.3 Methods 

To test whether multi-echo EPI can improve functional imaging of cortical and subcortical 

areas over single-echo EPI for a complex motor task, we performed whole-brain fMRI during 

finger motor movements known to elicit coordinated activity in primary motor cortex (M1), 

supplementary motor cortex (SMA), and the basal ganglia. Data were collected using both 

single-echo and multi-echo sequences for each participant to allow direct comparison 

between MRI sequence types. 

2.3.1 Participants 

N = 10 right-handed participants (7 female) in the age range of 21-30 years, (M = 25.1, SD 

= 3.6 years) with no history of neurological or psychiatric diseases participated in this study. 

The experiment was conducted with the understanding and written consent of each subject 

and was approved by the local ethics committee and in accordance with national guidelines. 
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2.3.2 Experimental design 

Participants performed motor movements in response to visual cues while inside the MRI 

scanner (Figure 2-1). The visual stimuli were presented on a projector screen at the back of 

the scanner, viewed from a mirror mounted on the head coil. There were two experimental 

conditions, simple and complex finger-movements, which both involved making four-finger 

motor movements by pressing buttons in sequence on a four-button response box with the 

index, middle, ring, and little fingers of the right hand. Previous work has shown that this 

movement task elicits focal clusters of differential activity in cortical motor areas and within 

the basal ganglia (Bednark et al., 2015). The rationale was to therefore use these two 

conditions to localize and then examine the responses in voxels simultaneously activated in 

both cortex and subcortex under multi-echo versus single-echo imaging sequences. 

The motor responses in both conditions (i.e. simple and complex) were self-paced and 

differed only in the duration of button presses. The stimulus for the simple movement 

condition (Figure 2-1A) consisted of four equal sized and evenly spaced dashes. Subjects 

made four consistent, medium length button presses with the same stimulus presented for 

each trial within a simple block. For the complex movement condition (Figure 2-1B), the 

stimulus consisted of dots and dashes indicating button presses of different durations, in a 

Morse code style. Dots represented a short button press while dashes represented a long 

button press, with a combination of two short and two long presses per presentation. 

Therefore, there were six possible combinations of short and long button presses for the 

complex condition. A single trial of either the simple or complex movement condition 

involved the visual cue being presented for 2500 ms, followed by a fixation cross that was 

presented for another 500 ms, as shown in Figure 2-1. Subjects were instructed to complete 

the movement before the next presentation of the fixation cross but to remain consistent, 

taking up the entire available time to complete the movement. 

The fMRI paradigm followed a block design consisting of three types of blocks: simple 

movement, complex movement, and rest (Figure 2-1C). Each movement block contained 

six single trials (3000 ms trial length), in which participants performed either the simple or 

complex movement, resulting in a total block length of 18 s. In every complex movement 

block, each of the six possible combination of short and long button presses was presented 

once. Between complex movement blocks, the order of presentation of the different 

combinations was randomized. In the simple movement block, participants performed the 

simple movement repeatedly. In the rest block, participants were instructed to passively view 

the fixation cross. 
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For all participants, each fMRI run started with a rest block (Figure 2-1C). The order of the 

first presentation of each of the two following movement conditions was then 

counterbalanced between participants. Specifically, half of the participants followed the 

order of rest – simple – complex – rest – complex – simple repeated, while the other half 

followed the order of rest – complex – simple – rest – simple – complex repeated. An extra 

rest block was also included following the final movement condition to ensure the BOLD 

signal associated with the movement was acquired. In total, each movement condition was 

presented six times and a full run lasted of 342 s. Two functional runs were collected using 

each sequence (i.e. single-echo and multi-echo) within the scan session, and the order was 

counterbalanced with respect to acquisition sequence. 

 

 

Figure 2-1: Experiment overview. For the simple movement condition (A) participants made four 
consistent medium length button presses corresponding to the four evenly spaced dashes. For the 
complex movement condition (B) participants completed combinations of two short and two long 
button presses corresponding to dots and dashes. Importantly, the stimulus in the complex condition 
changed with each presentation, while the stimuli in the simple condition remained the same. For 
both simple and complex conditions, the fixation cross was present for 500 ms with the stimulus 
presented for 2500 ms. Each run started with a rest block of 18s (C), followed by simple – complex 
– rest – complex – simple blocks for half of the participants. The other half the participants started 
with the complex movement condition. In total, six simple and six complex blocks were presented 
per run, and each run lasted for 342 s. 
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Before beginning the experiment, participants completed a training run. The training was 

sufficiently short to ensure the complex movement sequences were not learned, but 

participants were able to become familiar with the visual cues, button responses and 

requirements of the task. This training took place either outside the scanner on a standard 

desktop computer and keyboard or in the scanner before the first functional scan. 

2.3.3 Magnetic resonance imaging data acquisition 

All images were acquired on a whole-body 7T Siemens Magnetom MRI scanner (Siemens 

Healthcare, Erlangen, Germany) with a 32-channel head coil (Nova Medical, Wilmington, 

US). B0 shimming up to 3rd order was employed to minimize field inhomogeneity. The 

single-echo images were acquired using the CMRR SMS sequence implementation (release 

11a) (https://www.cmrr.umn.edu/multiband/). The multi-echo acquisition used a SMS 

version of the multi-echo sequence described in Poser and Norris (2009). When choosing 

the sequence settings, the following key parameters were kept equal for both sequences to 

facilitate the comparison: spatial resolution (to prevent tSNR changes through differences in 

voxel volume), total scan time, in-plane acceleration factor using GRAPPA (Griswold et al., 

2002) and slice acceleration factor using SMS (to obtain comparable image quality). SMS 

reconstruction was done using the slice-GRAPPA technique (Setsompop et al., 2012) as 

implemented in the CMRR sequence for the single-echo EPI, and the MGH blipped-CAIPI 

SMS-EPI sequence (https://www.nmr.mgh.harvard.edu/software/c2p/sms) for the multi-

echo sequence. The CMRR implementation for the single-echo sequence was chosen as it 

is a well-established, commonly used sequence for single-echo EPI (Van Essen et al., 

2013). It also offers increased reconstruction speed compared to other sequences such as 

the single echo version of the multi-echo sequence. The in-plane acceleration factor was 

selected based on the multi-echo sequence to facilitate the acquisition of three echoes with 

sufficiently short echo times. Further shortening of the EPI echo trains was effected by use 

of phase partial Fourier (6/8) in case of the multi-echo sequence. The slice acceleration 

factor was chosen to provide sub-second temporal resolution for whole-brain acquisition. 

Images were acquired with axial slices covering the brain from the most dorsal cortex to 

approximately midway through the cerebellum. 

In detail, both sequences shared the following acquisition parameters: isotropic voxel size = 

2.5 mm, matrix size = 84 x 84, FOV = 212 x 212 mm, number of slices = 48, flip angle = 35°, 

GRAPPA acceleration factor = 2, SMS acceleration factor = 4. The TE for the single-echo 

acquisition was set to 23 ms, slightly shorter than the measured optimum for 7T BOLD fMRI 

in cortical areas (Berger et al., 2016; Koopmans et al., 2011; van der Zwaag et al., 2009; 
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Yacoub et al., 2001). The three echoes of the multi-echo sequence were acquired at 9.9 ms, 

28 ms and 45 ms, respectively. While resolution and acceleration factors were equal for both 

sequences, the TR was set to the minimal possible length to maximize the number of 

acquired samples for a given run-length, resulting in a TR of 589 ms for the single-echo 

sequence and 830 ms for the multi-echo sequence.  

For anatomical reference, a three-dimensional whole brain T1-weighted structural image 

was acquired for each participant using a prototype MP2RAGE sequence (WIP 900) 

(Marques et al., 2010; O’Brien et al., 2014) with the following parameters: TE = 2.5 ms, TR 

= 4300 ms, flip angle (FA) = 5° and 6°, inversion time (TI) = 840 ms and 2370 ms, GRAPPA 

factor = 3, acquisition matrix = 320 x 300 x 256 and an isotropic voxel size of 0.75 mm. 

2.3.4 Preprocessing 

All MRI data preprocessing was performed using the AFNI analysis package (Cox, 1996). 

Each functional EPI volume was registered to the volume with the minimum outlier fraction 

(i.e. the volume that is least different from all the others after detrending) to correct for head 

motion. The subject’s anatomical images were aligned with the functional data by skull-

stripping and then aligning the anatomical to the same EPI base (with minimum outlier 

fraction) using AFNI’s align_epi_anat.py script. The functional data for each subject was 

transformed into a standard space by computing the transform required to non-linearly warp 

the subject’s anatomical to match the Montreal Neurological Institute (MNI) 152 template at 

0.75 mm isotropic resolution (Fonov et al., 2009) and then applying this tranform to the 

functional data. 

The initial preprocessing steps were performed identically for both the single-echo and multi-

echo data, with the only difference being that there were three sets of images per run for the 

multi-echo data rather than a single set per run as in the case of the single-echo data. 

Weighted summation based on the temporal average as described in section 2.1 was then 

used to combine the different echoes. To obtain estimates of T2* values in cortical and sub-

cortical regions, we performed a voxel-wise linear fit on the logarithm across the three 

echoes for each subject on the temporal average, assuming a mono-exponential decay and 

low noise levels. 

2.3.5 Single-subject analysis 

All functional time-courses were scaled to percent signal change (i.e. each voxel time series 

was scaled to have a mean of 100) before calculating a multiple linear regression. The 

regression model contained 2 regressors corresponding to each experimental condition 



55 
 

(simple and complex movement, Figure 2-1C) generated by convolving the stimulus timing 

of each condition with a canonical hemodynamic response function model. A further 6 

regressors, estimated from the volume registration step and representing the participant’s 

head movement during the scan, were also included. From the calculated regression model, 

contrast-to-noise ratio (CNR) was calculated on a voxel-wise basis for each condition by 

dividing each voxel’s beta or linear contrast value from the general linear model analysis by 

the standard deviation of the residual error of the time-series for that voxel. Results from the 

single-subject regression analysis were then used in a second stage group analysis as 

described below (section Group analysis). 

In addition to the task-based fMRI, resting state scans were acquired for a single participant 

to assess the tSNR achieved with both sequences. To this end, 50 volumes were collected 

at rest using each sequence, and tSNR images were calculated by dividing the mean signal 

in each voxel by its standard deviation across all 50 volumes. The tSNR was then compared 

across regions of interest (ROIs) by calculating the average tSNR of all voxels within each 

ROI. 

ROIs for the tSNR analysis included cortical regions M1 and SMA as well as the subcortical 

caudate nucleus (CN) and putamen (PUT) within the basal ganglia. The cortical regions 

were defined using the Harvard-Oxford atlas developed at the Center for Morphometric 

Analysis (CMA), and distributed with the FMRIB Software Library (FSL) (Desikan et al., 

2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006). This probabilistic atlas 

was thresholded at 33 % and resampled to match the resolution of the functional data 

(2.5 mm isotropic). For the subcortical nuclei, the basal ganglia were first identified using a 

recently published basal ganglia atlas derived from high-resolution 7T anatomical imaging 

(Keuken et al., 2014). As this atlas defines the striatum as a single ROI, the striatum was 

then manually divided into the CN, PUT, and ventral striatum (VST) based on the guidelines 

set forth by Tziortzi et al. (2014). 

2.3.6 Group analysis 

To construct group statistical parametric maps to examine effects across all participants, 

mixed effects meta-analyses were performed using AFNI’s 3dMEMA. This program models 

both within- and across-subject variability and therefore requires both the regression 

coefficients or a general linear contrast among them as well as the associated t-statistic from 

each subject. Being interested in the voxels that respond differentially to the complex vs. 

simple movement conditions, we used the general linear contrast between the two 
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regression coefficients (complex – simple) and the corresponding t-statistics from each 

subject to construct the group maps. 

The mixed effects meta-analysis was first performed separately for the single-echo and 

combined multi-echo data to construct sequence-specific group maps. The overall extent of 

activation detected using the different sequences was compared by counting the number of 

active voxels within each atlas-based ROI (section Single-subject analysis) for each 

sequence-specific group map. Voxels were defined as active if they survived a threshold set 

to the false discovery rate (FDR)-corrected q value of 0.05 (Genovese et al., 2002). 

Next, those voxels within the atlas-based ROIs that were commonly activated in both 

sequences, i.e. those showing a significantly different response to the complex movement 

condition compared to the single movement condition across both sequences, were 

identified. To this end, data from both sequences were combined into one dataset and the 

same mixed effects meta-analysis was performed. The rationale for not including the entire 

structural ROIs was that only small regions within the relevant basal ganglia nuclei were 

expected to show activation due to the motor task (Bednark et al., 2015). Therefore, 

including all voxels within a structural ROI for analysis would result in a very small effect 

size, as the majority of voxels within the ROI would not show significant activation. These 

functionally-defined ROIs were then applied to the sequence-specific group maps to 

compare the t-statistic values measured using each sequence across an identical set of 

voxels. These same ROIs were also applied to group CNR maps constructed by voxel-wise 

averaging of the individual subject CNR maps. 

2.4 Results and discussion 

2.4.1 tSNR in a single subject 

tSNR images were computed for each sequence using the resting state scans with an equal 

number of volumes from a single subject to illustrate basic signal properties (Figure 2-2A) 

(Welvaert and Rosseel, 2013) and indicate the effect of weighting the first echo in the basal 

ganglia (Figure 2-2B). Figure 2-2A (top) shows a single axial slice of the tSNR images 

computed for the single-echo data (left) and for the combined multi-echo data (right). The 

slice shown intersects the BG (red arrows), and as expected, although tSNR is high in the 

cortex, considerable signal loss can be seen in the basal ganglia in the single-echo data. 

The combined multi-echo data, however, suffers far less from this signal void, profiting from 

the increased signal levels incorporated from the earlier echo. This is illustrated in the tSNR  
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Figure 2-2: tSNR maps. (A) tSNR maps. Top, increased tSNR was found for the combined multi-
echo acquisitions compared to the single-echo sequence. Red arrows indicate dark areas of signal 
loss in the basal ganglia. Bottom, tSNR maps of each echo of the multi-echo sequence illustrating 
the relatively homogenous tSNR for the first echo and the signal loss in the basal ganglia at the later 
echoes. (B) Weighting maps at same slice for each echo (see Eq. 1) with higher values for the first 
echo in the basal ganglia. (C) Average tSNR in each ROI showing the increased tSNR for the multi-
echo sequence. Error bars represent standard deviation of the tSNR across all voxels in each ROI. 

images (Figure 2-2A, bottom) and echo weighting maps (Figure 2-2B) constructed 

separately for the individual echo data collected with the multi-echo sequence. Note the 
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increased contribution of the first echo in the basal ganglia illustrated in the echo weighting 

maps.  

To quantify the tSNR in each ROI we averaged across all voxels in each ROI (Figure 2-2C) 

finding that the multi-echo sequence yielded higher tSNR in all ROIs, both cortical and 

subcortical with an average increase in tSNR of 84 % in the basal ganglia ROIs. This was 

further supported by a paired-sample t-test performed on the tSNR values across all voxels 

within the ROIs, finding that the tSNR was significantly greater for the multi-echo sequence 

(M=116, SD=42) than the single-echo sequence (M=70, SD=25); t(6835)= -114, p<0.001. 

These results show that, as expected, tSNR of the multi-echo sequence is increased overall, 

partially due to a longer readout; making better use of the ‘dead time’ after the RF excitation 

is indeed one of the advantages of multi-echo EPI (Poser and Norris, 2009). 

When optimizing both sequences, we aimed to keep key parameters, such as resolution, in-

plane and slice acceleration factor, FOV and reconstruction technique (Setsompop et al., 

2012), equal to facilitate the comparison and interpretation of the results. Note that the same 

flip angle was also used for both sequences despite different TRs. While image SNR 

strongly depends on the chosen flip angle with respect to the repetition time, tSNR remains 

nearly constant across a broad range of flip angles (Gonzalez-Castillo et al., 2011). Hence, 

we do not expect a noticeable impact on the tSNR measurements due to using the same 

flip angle at different TRs. Furthermore, reconstruction performance between the two 

sequences might differ slightly (e.g. g-factor related noise amplification), similar to when 

comparing the same sequence with different acceleration factors (Chen et al., 2015; Moeller 

et al., 2010; Setsompop et al., 2012). This is related to variations in the sequence 

implementation and the additional partial Fourier factor employed in the multi-echo 

acquisition, and hence, could not be fully avoided. 

2.4.2 Group statistical parametric mapping 

Group t-statistic maps were computed separately for the single-echo (Figure 2-3A) and 

combined multi-echo (Figure 2-3B) data to examine how the spatial distribution and extent 

of the detected activation compared between the two sequences. Bilateral activation was 

detected in each ROI for both sequences with the multi-echo sequence showing a greater 

extent of activation in all ROIs except the SMA (Figure 2-3C). Qualitative comparison of the 

activation maps across sequences reveals the most striking difference is in the area of the 

basal ganglia (Figure 2-3A,B – green arrows), with a much greater extent of activation and 

larger t-statistics evident in the multi-echo data. For example, we observed about a 3-fold 

increase in supra-threshold voxel in both the putamen and caudate nucleus for the multi- 
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Figure 2-3: Group activation maps. Group activation maps displayed on a series of axial slices. (A) 
Single-echo and (B) multi-echo group t-statistic maps, both thresholded at a FDR-corrected q<0.05. 
Top illustrates a mosaic of slices across both cortical and subcortical ROIs. Bottom shows zoomed 
in version of two slices from the mosaic (denoted by red outline) showing considerable differences 
in basal ganglia activation between the two sequences. Green arrows point to regions in the basal 
ganglia showing marked improvement with the multi-echo sequence. Purple arrows point to 
significant activation in the thalamus, which, although not included in the subcortical ROI, also shows 
an improvement with the multi-echo sequence. (C) Number of functionally active voxels detected 
(i.e. those surviving threshold) within each ROI. 

echo sequence (Figure 2-3C). In addition to the a priori defined subcortical ROIs, significant 

bilateral activation was also detected in the thalamus (Figure 2-3A,B – purple arrows). 

Although it is clear that a greater extent of activation was detected in the region of the 

thalamus using the multi-echo sequence compared to the single-echo, the responses in this 

region were not analysed further. Recall that the group activation maps in Figure 2-3 were 

constructed using the contrast between the complex and simple movement conditions. 
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Group activation maps for the two movement conditions vs. rest are included as 

supplementary material (Figure S1 and Figure S2) and, as expected, showed a much 

broader extent of cortical activation similar to that elicited by a conventional finger tapping 

motor paradigm. 

2.4.3 Comparing activation parameters 

To compare activation parameters across sequences and brain region, we extracted these 

from an identical set of voxels within each functionally-defined ROI (see section 3.6 for more 

on ROI definition and see supplementary Figure S3 for an illustration of the ROIs). A 2-way 

repeated measures ANOVA was performed to test the effect of sequence (single-echo, 

multi-echo) and ROI (M1, SMA, CN, PUT) on the magnitude of the t-statistic associated with 

the linear contrast between the two movement conditions (Figure 2-4A). Mauchly's test 

revealed that the assumption of sphericity was violated so the Greenhouse-Geisser 

correction was used. A main effect was found for both sequence [F(1, 138)=111, p<0.001)] 

and ROI [F(2.5, 340)=24, p<0.001)] as well as significant interaction between the two [F(2.6, 

361)=46, p<0.001)]. The significant interaction indicates that the effect of the sequence was 

 

Figure 2-4: Group activation parameters. Comparing group activation parameters across sequence 
and brain region. (A) Increase in mean t-statistic was observed in putamen, caudate and M1 with 
highest improvement in the subcortical nuclei. (B) Increased CNR values were found in all ROIs. 
Error bars represent standard error of the mean. 
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dependent on the ROI. As can be seen in Figure 2-4A, it is clear that the improvement in t-

statistic provided by the multi-echo sequence is greater in subcortical compared to cortical 

areas, with one of the cortical areas (SMA) actually showing a decrease in magnitude of the 

t-statistics when using multi-echo compared to single-echo data. When interpreting the t-

statistics results here and in Figure 2-3, it is important to note that, when computing statistical 

maps on the single-subject level prior to performing the group analysis, the degrees-of-

freedom differed between the two sequences due to the single-echo sequence having a 

shorter TR (approximately 30 % more volumes were acquired using the single-echo 

sequence compared to the multi-echo sequence). Hence, the improvement seen using the 

multi-echo sequence is in spite of the advantage afforded by the faster TR of the single-

echo sequence. 

To better understand the improvement in t-statistic afforded by the multi-echo sequence, 

additional 2-way repeated measures ANOVAs were performed to test the effect of sequence 

(single-echo, multi-echo) and ROI (M1, SMA, CN, PUT) on the CNR (Figure 2-4B). Again, 

a Greenhouse-Geisser correction was used as Mauchly's test revealed that the assumption 

of sphericity was violated. A main effect was found for both sequence [F(1, 138)=240, 

p<0.001)] and ROI [F(2.2, 305)=210, p<0.001)] as well as a mild interaction between the 

two [F(2.0, 280)=3.5, p=0.03)]. Inspection of Figure 2-4B reveals that the functional CNR 

was significantly higher for the multi-echo compared to the single-echo data in all ROIs 

(p<0.001). Together, these results demonstrate that increase in CNR on the single-subject 

level can translate to an improvement in t-statistics on the group level, with higher t-value 

gains in the subcortical regions. 

2.4.4 Relationship of sensitivity gains to T2* 

The main goal of this study was to investigate the potential benefit of using a multi-echo EPI 

sequence to improve the simultaneous imaging of cortical and subcortical areas with 

different underlying T2* values. From previous work, it was expected that multi-echo imaging 

would improve image quality across the whole-brain, however, it was also predicted that this 

improvement would be greater in iron-rich subcortical nuclei marked by lower T2* values 

compared to cortical areas. In section 4.3, it was shown that improvement in t-statistic was 

indeed greater in subcortical areas compared to cortical regions. To further examine this 

issue, T2* values were estimated at each voxel and then compared to the degree of 

improvement in t-statistic provided by the multi-echo sequence. As expected, the average 

T2* varied across ROIs with the subcortical nuclei being marked by shorter T2* estimates 

than the cortical areas [ROI(mean,SD): M1(25.2, 3.7); SMA(30.9, 9.7); CN(18.3, 2.4); 
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PUT(17.5, 2.9)]. Interestingly, these values are close to the T2* values reported in (Peters 

et al., 2007), indicating that indeed the major source of signal dephasing in the basal ganglia 

are microscopic and mesoscopic susceptibility variations and not macroscopic field 

inhomogeneities. Figure 2-5 shows that there is a distinct correspondence between the T2* 

estimate and the improvement in t-statistic. It appears that the improvement is greatest in 

subcortical regions with lower T2* values relative to the cortical regions, with one of the 

cortical regions (SMA) actually showing a decrease in the average t-statistic when using the 

multi-echo sequence (Figure 2-5). This relationship is further supported by a significant 

negative voxel-wise correlation between the T2* estimate and the improvement in t-statistic 

(r = -0.2665, P<.001). 

 

Figure 2-5: Improvement in t-statistic across brain regions. Main plot illustrates the voxel-wise 
comparison between the improvement in t-statistic and an estimate of the underlying T2*. Insets 
shows the average improvement (upper right) and T2* (lower right) in each ROI. Error bars represent 
standard error of the mean. 

2.5 Conclusions and recommendations 

This technical note demonstrates that multi-echo imaging can be used to improve the 

concurrent functional imaging of the cortex and subcortex at 7T compared to conventional 

single-echo EPI. As predicted, the greatest improvement in detecting activation was seen in 

the iron-rich, subcortical nuclei of the basal ganglia. Importantly, this was achieved while 

maintaining sensitivity to functional activity in the cortex although a slight decrease in 

performance was seen in the supplementary motor area. The improvement afforded by 

multi-echo imaging was achieved by maximizing sensitivity to different echo times at each 
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voxel through a weighted combination of the multiple echoes. By combining multi-echo 

imaging with a SMS acquisition scheme, it was possible to collect all three echoes with 

whole-brain coverage at a temporal resolution well below one second. Hence, the multi-

echo SMS EPI sequence implemented here is well-suited to serve a wide range of functional 

imaging experiments.  

One potential limitation for multi-echo EPI is the longer required echo train length. Using 

moderate parallel imaging factors and a conventional voxel size, we were, however, able to 

achieve sufficiently short TEs for imaging the iron rich basal ganglia nuclei at 7T. When 

higher resolution is required, one could either increase the acceleration factors of the parallel 

imaging methods employed here or resort to alternative acquisition schemes such as 

segmented Cartesian readouts (Hoogenraad et al., 2000; Li et al., 2002) or multi-echo 

spirals (Barth et al., 1999). Additionally, one could also further reduce the number of echoes, 

essentially acquiring only one early and one late echo. Given that the estimated average 

T2* in the Putamen was much higher than the first TE of the multi-echo sequence, it might 

be possible to increase the resolution and, thereby, lengthen the first TE to still obtain 

sufficient sensitivity in the iron-rich basal ganglia nuclei. 

While in this study the main focus was on increased sensitivity to the BOLD signal, multi-

echo EPI-based techniques to reduce noise contributions from physiology are powerful 

means to further increase functional sensitivity. For example, MEICA has been shown to 

reliably detect and remove physiological noise from fMRI time series (Kundu et al., 2014, 

2012). Physiological noise (i.e. signal fluctuations in fMRI time series associated with cardiac 

and respiratory activity (Weisskoff et al., 1993) constitutes a major source of unwanted 

signal fluctuations (Bianciardi et al., 2009) increasing with field strength (Triantafyllou et al., 

2005). Physiological noise is particularly problematic near the basal ganglia nuclei due to 

their proximity to major veins, with physiological noise modelling being shown to provide up 

to 30 % tSNR gain in these subcortical nuclei at 3T (Kasper et al., 2017). In this respect, the 

results obtained here represent a lower bound on the boost in sensitivity provided by multi-

echo EPI at ultra-high field, with a further potential increase in sensitivity and specificity 

through physiological noise modelling (Boyacioğlu et al., 2015). 

We conclude that multi-echo EPI acquisition offers increased BOLD sensitivity in regions 

with short T2*, such as the basal ganglia, and should be chosen over conventional GE-EPI 

when concurrently imaging cortical regions and iron-rich subcortical nuclei at 7T. 
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2.7 Appendix A. Supplementary data 

 

Figure S1: Group activation maps displayed on a series of axial slices for the complex movement 
(cm) – rest contrast. (A) Single-echo and (B) multi-echo group t-statistic maps, both thresholded at 
a FDR-corrected q<0.05. 
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Figure S2: Group activation maps displayed on a series of axial slices for the simple movement 
(sm) – rest contrast. (A) Single-echo and (B) multi-echo group t-statistic maps, both thresholded 
at a FDR-corrected q<0.05. 

 

Figure S3: Functionally-defined ROIs on a series of axial slices. Colors represent different ROIs: 
yellow = left M1, orange = right M1, red = left SMA, blue = right SMA, cyan = left CN, green = right 
CN, pink = left PUT, purple = right PUT. Note that the ROIs are shown on the same montage of 
slices displayed in Figure 2-3, Figure S1 and Figure S2. 
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 Abstract 

When performing statistical analysis of single-subject 

fMRI data, serial correlations need to be taken into 

account to allow for valid inference. Otherwise, the 

variability in the parameter estimates might be under-

estimated resulting in increased false-positive rates. 

Serial correlations in fMRI data are commonly 

characterized in terms of a first-order autoregressive 

(AR) process and then removed via pre-whitening. The 

required noise model for the pre-whitening depends on a 

number of parameters, particularly the repetition time 

(TR). Here we investigate how the sub-second temporal 

resolution provided by simultaneous multislice (SMS) 

imaging changes the noise structure in fMRI time series. 

We fit a higher-order AR model and then estimate the 

optimal AR model order for a sequence with a TR of less 

than 600 ms providing whole brain coverage. We show 

that physiological noise modelling successfully reduces 

the required AR model order, but remaining serial 

correlations necessitate an advanced noise model. We 

conclude that commonly used noise models, such as the 

AR(1) model, are inadequate for modelling serial 

correlations in fMRI using sub-second TRs. Rather, 

physiological noise modelling in combination with 

advanced pre-whitening schemes enable valid inference 

in single-subject analysis using fast fMRI sequences. 
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3.1 Introduction 

In functional MRI (fMRI), blood-oxygen-level-dependent (BOLD)-weighted images are 

acquired in a rapid, successive fashion depicting changes in deoxyhemoglobin content in 

the brain over time (Bandettini et al., 1992; Kwong et al., 1992; Ogawa et al., 1992). The 

signal of interest is the time series in each voxel comprising the local hemodynamic 

response (Boynton et al., 1996; Buxton et al., 1998; Fox et al., 1988). A statistical model is 

then applied to draw an inference about the effect of an experimental manipulation and its 

significance. In this process, serial correlations, i.e. correlations between the errors of 

successive samples, need to be taken into account for valid inference. 

Statistical analysis of fMRI time series is often performed using a mass-univariate general 

linear model to assess the effect of a task in each voxel (Friston et al., 1994). The basic 

model at each voxel reads 𝑌 = 𝑋𝑤 + 𝑒; where 𝑌 are the observations (data), 𝑋 is the design 

matrix containing the explanatory variables, 𝑤 are the (unknown) parameters on which the 

inference is based and 𝑒 is the error following a normal distribution with 𝑒~𝑁(0, 𝜎2𝑉) (Kiebel 

and Holmes, 2007). Here, 𝑉 describes the serial correlations over time. When performing a 

statistical test, this correlation structure needs to be taken into account to obtain the desired 

false-positive rate, such that the estimated variance of �̂� is not biased, and too liberal 

thresholds are prevented (Purdon and Weisskoff, 1998; Woolrich et al., 2001; Worsley et 

al., 2002). Importantly, the estimate of 𝑤 itself remains unbiased but becomes more variable 

when disregarding serial correlations in the data (Wooldridge, 2013; Worsley et al., 2002). 

Serial correlations initially reduce the effective degrees of freedom (Worsley and Friston, 

1995), and pre-whitening4 is traditionally performed to remove the serial correlations from 

the data and the model (Woolrich et al., 2001). 

In combination with physiological noise modelling, pre-whitening using an autoregressive 

(AR) model of order 1 has been a successful strategy to improve the validity of drawn 

                                            
4Pre -wh i ten ing  re l i es  on  accura te  knowledge o f  the  e r ro r  covar iance  mat r i x  𝑉,  wh ich  depends  on  a  number  
o f  ( scan)  pa ramete rs  and  i s  the re fo re  usua l l y  es t ima ted  f rom the  da ta  i t se l f .  The  e r ro r  covar iance  mat r i x  

con ta ins  the  va r iance  o f  the  e r ro r  s igna l  w i th  i t se l f  sh i f ted  by  i nc reas ing  t ime lag  𝜏 (F r i s ton  e t  a l . ,  1994) .  

The  paramete r  es t imat ion  i s  pe r fo rmed in  two  s teps .  F i rs t ,  t he  res idua ls  𝑟 = 𝑌 − 𝑋�̂� a re  es t imated  us ing  

o rd ina ry  l eas t  squares ,  i .e .  the  pseudo inverse  𝑋− o f  the  des ign  mat r i x  i s  used to  es t ima te  �̂� = 𝑋−𝑌.  The  

covar iance  mat r i x  𝑉 can  then  be  es t imated  f rom the  res idua ls ,  choos ing  be tween  severa l  pa ramet r i c  and 
non-paramet r i c  methods  (Wool r i ch  e t  a l . ,  2001)  w i th  neg l i g ib le  b ias  (March in i  and  Smi th ,  2003) .  Wi th in  the  
SPM f ramework  (h t tp : / /www. f i l . i on .uc l .ac .uk /spm/ ) ,  Res t r i c ted  Max imum L ike l i hood (ReML)  i s  used to  

es t imate  the  hyperparamete rs  𝜆 mode l l i ng  the  se r ia l  co r re la t i ons .  Var iance  es t ima tes  tend to  be  ve ry  no isy  

(Wool r i ch  e t  a l . ,  2001;  Wors ley  e t  a l . ,  2002) ,  and i t  i s  the re fo re  assumed tha t  the  covar iance  mat r i x  𝑉(𝜆) i s  

the  same i n  a l l  voxe ls  and on ly  the  va r iance 𝜎2 d i f f e rs  be tween  voxe ls ,  i . e .  the  pa t te rn  o f  se r ia l  co r re la t i ons  
i s  the  same in  a l l  voxe ls ,  bu t  i t s  ampl i tude  i s  d i f fe ren t  a t  each voxe l .  Th i s  a l l ows  the  poo l i ng  ac ross  voxe ls  
to  g ive  a  h igh l y  p rec i se  es t ima te ,  and the  e r ro r  covar iance mat r i x  i s  then t rea ted  as  a  known quant i t y  i n  the  

subsequen t  in fe rence  (G laser  and  Fr i s ton ,  2007) .  S ince  ReML requ i res  a  l i near  mode l  fo r  𝑉,  a  f i rs t -o rder  

l i near  approx imat ion  o f  an  au to regress ive  (AR)  p rocess  o f  o rder  1  a round  the  expans ion  po in t  o f  𝑎1 = 0.2 i s  

used to  mode l  the  e r ro r  covar iance .  Second ,  𝑉 i s  then used to  fo rm the  p re -wh i ten ing  mat r i x  𝑀 = 𝑉−1 2⁄  g i v ing  

𝑀𝑌 = 𝑀𝑋𝑤 + 𝑧 w i th  𝑧~𝑁(0, 𝜎2𝐼) and  𝑧 = 𝑀𝑒.  Th i s  mode l  now con fo rms  to  the  spher ic i t y  assumpt ion  and  the  
degrees  o f  f reedom rever t  to  the i r  c lass ica l  va lues .  
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inferences for fMRI time series with a repetition time (TR) above 2 seconds (Lund et al., 

2006). Similarly, Worsley et al. (2002) found an AR(1) to be adequate for most voxels. 

However, it has been hypothesized that a higher AR model order might be required to 

reliably capture serial correlations for data sets with considerably shorter TRs (Lund et al., 

2006). Given the recent acceleration of echo-planar imaging (EPI) employing simultaneous 

multislice (SMS) techniques (Breuer et al., 2005; Larkman et al., 2001; Setsompop et al., 

2012) - for a recent review see Barth et al. (2016) - one can now easily achieve sub-second 

temporal resolution for whole-brain acquisitions (Feinberg et al., 2010; Moeller et al., 2010). 

Hence, it is becoming increasingly important to address the effect of short TRs in fMRI 

analyses. Increased false-positive rates were observed empirically in resting-state data with 

a TR of 1 second but without physiological noise modelling (Eklund et al., 2012). Similarly, 

when using higher AR-model orders for pre-whitening in an event-related paradigm, a 

reduction in t-values was found for sequences with TRs below 2 seconds (Sahib et al., 

2016). However, the underlying mechanisms and sources of serial correlations remain 

unknown. Therefore, we investigate serial correlations in fMRI time series with sub-second 

TR achieved using SMS EPI to assess changes in the noise correlation structure that need 

to be taken into account for valid inference. 

We characterize serial correlations in terms of an AR process, and use the Variational 

Bayesian (VB) framework for fMRI time series (Penny et al., 2003) to estimate the optimal 

AR model order required for a short-TR sequence. VB implements Bayesian statistics for 

neuroimaging and offers a framework for parameter estimation complementary to classical 

statistics (Friston et al., 2002). Pertinent to the present study, the classical general linear 

model is extended by introducing an AR noise process of arbitrary order 𝑝. Instead of 

computing a pre-whitening matrix, serial correlations are explicitly modelled and integrated 

into the parameter estimation. The statistical model now reads 𝑌 = 𝑋𝑊 + 𝐸, where 𝑌 is the 

[𝑇 × 𝑁] data matrix, 𝑋 is the [𝑇 × 𝐾] design matrix, 𝑊 is a [𝐾 × 𝑁] matrix of regression 

coefficients and 𝐸 is the [𝑇 × 𝑁] error matrix for 𝑁 voxels at 𝑇 points in time using 𝐾 

regressors (Penny et al., 2007, 2005). This constitutes a spatio-temporal model of the fMRI 

data to directly incorporate dependencies between voxels (Penny et al., 2005). The 

autoregressive process at voxel 𝑛 is modelled as 𝑦𝑛 = 𝑋𝑤𝑛 + 𝑒𝑛, with 𝑒𝑛 = �̃�𝑛𝑎𝑛 + 𝑧𝑛. Here, 

𝑒𝑛 models an AR process where 𝑎𝑛 are the AR coefficients, �̃�𝑛 are the ‘embedded’ errors, 

i.e. the error of 𝑝 previous samples, and 𝑧𝑛 describes independent and identically distributed 

Gaussian errors. The priors over the regression and AR coefficients are used to model 

spatial dependencies across voxels, whereas the posterior factorizes over voxels and 
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parameter types making the update equations tractable (Penny et al., 2005). Using the VB 

framework, model parameters are estimated by maximizing the free energy 𝐹, which 

constitutes a lower bound on the model evidence, and can be used for Bayesian model 

selection to obtain the optimal AR model order (Penny et al., 2003). Therefore, VB is well 

suited to estimate the AR coefficients and to choose an optimal noise model. 

As mentioned previously, physiological noise modelling can improve the validity of drawn 

inferences using fMRI data by reducing the required AR model order (Lund et al., 2006). 

Signal fluctuations related to cardiac and respiratory activity have been identified as major 

sources of structured noise in fMRI data (Bianciardi et al., 2009; Hutton et al., 2011). Signal 

fluctuations related to respiration enter the fMRI time series signal either through changes 

in venous oxygenation content (Windischberger et al., 2002) or through modulation of the 

main magnetic field (Van de Moortele et al., 2002) and higher image encoding fields 

(Bollmann et al., 2017; Vannesjo et al., 2015), which induce geometric distortions across 

the whole EPI image. Cardiac activity induces high and localized signal variability through 

mechanisms such as vessel pulsation (Dagli et al., 1999; Kasper et al., 2017). Physiological 

signal fluctuations can be modelled as a Fourier expansion of the cardiac and respiratory 

phase utilizing their intrinsic periodicity (Glover et al., 2000), thereby providing nuisance 

regressors which can then be included as covariates in the statistical analysis. Additionally, 

significant signal contributions related to changes in cardiac and respiratory rate have been 

identified causing low-frequency oscillations in fMRI time series (Birn et al., 2006, 2008; 

Chang et al., 2009). Another source of unwanted signal fluctuations are movement related 

effects (Friston et al., 1996). Changes in voxel position alter the spin history, thereby 

inducing signal fluctuations which can last for several seconds and depend on the voxel 

position in previous scans. Thus, a serially correlated signal is introduced into the fMRI time 

series. In summary, a range of physiological processes introduce unwanted, serially 

correlated signals that need to be taken into account in the modelling of fMRI time series 

data. Here, we investigate the impact of physiological noise modelling (including movement 

in addition to cardiac and respiratory activity) on the noise structure as well as on the optimal 

AR model order. 

3.2 Materials and Methods 

3.2.1 Data acquisition 

MRI data were acquired on a MAGNETOM 7T whole-body scanner (Siemens Healthcare, 

Erlangen, Germany) with a 32-channel head coil (Nova Medical, Wilmington, US). To 
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achieve sufficiently short TRs, SMS EPI (Feinberg et al., 2010; Setsompop et al., 2012) was 

utilized to acquire multiple slices at once. The CMRR SMS implementation (release 11a) 

(https://www.cmrr.umn.edu/multiband/) was used and reconstruction was performed using 

the slice-GRAPPA technique (Setsompop et al., 2012). FMRI data were acquired with a 

short-TR sequence to investigate serial correlations and their interaction with physiological 

noise modelling. The results were then compared to those obtained from data acquired with 

a longer, more common TR. Imaging parameters for the short-TR sequence were: TR = 

589 ms, voxel size = 2.5 mm isotropic, TE = 23 ms, SMS-acceleration-factor = 4, GRAPPA-

factor = 2, FOV = 212 mm x 212 mm, number of slices = 48, number of scans = 581. Imaging 

parameters for the long-TR sequence were: TR = 1990 ms, voxel size = 1.3 mm isotropic, 

TE = 25 ms, SMS-acceleration-factor = 3, GRAPPA-factor = 3, Partial Fourier = 7/8, FOV = 

212 mm x 212 mm, number of slices = 96, number of scans = 188. 

3.2.2 Study design 

The project was approved by the University of Queensland’s Medical Research Ethics 

Committee. N = 10 healthy, right handed participants with normal or corrected to normal 

vision participated in the study after giving written, informed consent. The data were 

acquired as part of a larger study comparing different sequence parameter settings for fMRI 

at 7T. For six participants (five female), cardiac and respiratory data were recorded 

concurrently with the image acquisition using a breathing belt and an ECG system (Brain 

Products, Gilching, Germany) and their data were analysed here. 

Participants performed a finger tapping task consisting of blocks of simple movement, 

complex movement and rest. In the simple movement condition, a visual stimulus of four 

dashed lines was presented and participants were asked to respond with consistent, 

medium length button presses of the index, middle, ring and little fingers of the right hand in 

sequential order. In the complex movement condition, a visual stimulus consisting of two 

dots and two dashed lines, indicating short and long button presses, was presented. In each 

block, the visual cue (2500 ms duration) followed by a fixation cross (500 ms duration) was 

shown six times, resulting in an 18 s block length. In the complex condition, each of the six 

possible combinations of two short and two long button presses were presented in a 

randomized order. In the rest condition, only the fixation cross was shown. For two 

participants, the first run of each sequence followed the order [rest - complex - simple - rest 

- simple - complex - repeated], while for the remaining four participants, the simple condition 

was presented first [rest - simple - complex - rest - complex - simple - repeated]. In total, 

one run of the task lasted 342 s, containing 6 blocks of rest, simple and complex movement 
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and an additional rest block at the end. For each sequence parameter setting, two runs of 

fMRI data were acquired. For the second run of each sequence, the order of movement 

conditions was reversed. 

3.2.3 Preprocessing 

Preprocessing was performed using SPM12 (r6224, Wellcome Trust Centre for 

Neuroimaging, London, UK) and Matlab (R2016a, The MathWorks, Inc., Natick, MA, US). 

For anatomical reference, an EPI image with an isotropic voxel size of 1 mm was chosen. 

Upon visual inspection, it provided better alignment in distortion prone areas such as frontal 

regions and around the ventricles than the additionally acquired T1-weighted image 

following the rationale in Grabner et al. (2014). To provide a robust starting point for the 

image segmentation, this reference image was first coregistered to the MNI305 T1 template. 

Next, the image was segmented using the unified segmentation algorithm (Ashburner and 

Friston, 2005) to retrieve tissue probability maps (TPMs) in subject space as well as the 

deformations field from and to MNI and subject space. The functional data were 

preprocessed in the following way: Realignment using the two-pass procedure. 

Coregistration (including resampling using a 7th order B-spline) to the reference anatomical 

EPI image for the first run, coregistration to the mean image of the first run for the second 

run to improve between-run alignment. Last, smoothing of the functional images was 

performed using a Gaussian smoothing kernel with 5 mm full-width-at-half-maximum 

(FWHM) size. All analyses were performed in subject space. 

3.2.4 Physiological noise modelling 

Peripheral ECG data were preprocessed using an in-house implementation and the fieldtrip 

toolbox (Oostenveld et al., 2011) for data read-in. Following the recommendations in Ritter 

et al. (2007), a simple gradient artefact correction was used fitting an offset and a moving 

average template (computed from the current, the previous and following 4 scans), followed 

by low-pass filtering and downsampling to 100 Hz. Preprocessed cardiac and raw breathing 

data were used to compute the Fourier expansion of cardiac and respiratory phase (Glover 

et al., 2000) as implemented in the physIO toolbox (Kasper et al., 2017) with a cardiac model 

order of 3, a respiratory model order of 4, and an interaction model order of 1 (Harvey et al., 

2008). Changes in respiratory and cardiac rate were modelled using the respiration 

response function (RRF) (Birn et al., 2008) and cardiac response function (CRF) (Chang et 

al., 2009), respectively. Following the recommendations in Chang et al. (2009) and 

Falahpour et al. (2013), and to accommodate the (negative) latency of -8 s between the 
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estimated RRF from the breath-hold experiments and the rest data found in Birn et al. 

(2008), specific delay values were estimated for the RRF and CRF for each individual 

participant. Based on the latencies reported in Birn et al. (2008), delay values of -12, -8, -4, 

0, 4, 8 and 12 s were examined. The response delay for each participant was then defined 

based on the highest number of supra-threshold voxels obtained in an F-test for each 

response function using the first short-TR run of each subject. To model remaining signal 

fluctuations related to movement, the Volterra expansion of the realignment parameters was 

used (Friston et al., 1996). The derivative, square and squared derivative of the realignment 

parameters totalling 24 regressors were estimated for the short-TR sequence. 

3.2.5 Model estimation and analysis 

Two task regressors for the simple and complex movement condition were constructed by 

specifying the respective onsets and duration (18s) of each block. The resulting box 

functions were then convolved with the canonical hemodynamic response function using the 

standard parameters provided in SPM12 and its temporal and dispersion derivatives. 

To investigate the impact of physiological noise modelling, the estimation process was 

repeated with four different sets of nuisance regressors: (i) ‘no phys’ uses the realignment 

and task regressors, but no physiological noise regressors, (ii) ‘RETROICOR’ adds the 

physiological noise regressors as described in the RETROICOR model (Glover et al., 2000) 

to the task and realignment regressors, (iii) ‘RETROICOR + RRF + CRF’ incorporates the 

RETROICOR regressors and RRF (Birn et al., 2008) and CRF (Chang et al., 2009), (iv) 

‘RETROICOR + Volterra’ contains RETROICOR regressors in combination with the Volterra 

expansion of the realignment parameters (Friston et al., 1996) for the short-TR sequence. 

Similar to previous studies, the short-TR sequence was downsampled by a factor of 4 to 

create an artificial long-TR sequence (Boyacioğlu et al., 2015; Todd et al., 2017). Thereby, 

an fMRI time series that matches the spatial resolution of the short-TR sequence but has 

the temporal characteristics as if it were acquired with a TR of 2356 ms was obtained. This 

permitted the effect of serial correlations to be investigated on a downsampled short-TR 

sequence with otherwise identical signal properties compared to the short-TR sequence and 

on the long-TR sequence in a more realistic setting when taking full advantage of current 

imaging capabilities. 

Bayesian model estimation was then performed to investigate the strength and 

characteristics of serial correlations in the fMRI time series. To this end, the VB framework 

(Penny et al., 2003, 2005) was used to compute log model evidence maps, containing the 

contribution to the overall model evidence from each voxel (Penny et al., 2007), for different 
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AR model orders ranging from 1 to 10. This enabled the determination of the optimal AR 

model order in each voxel required to model the serial correlations in the fMRI data. In 

addition, the impact of physiological noise modelling on serial correlations was investigated 

by using the four different sets of nuisance regressors described above. An uninformative 

(flat) signal prior and unweighted graph Laplacian (Harrison et al., 2007, 2008) noise priors 

were chosen for the Bayesian model estimation which was performed in a slice-by-slice 

fashion. To include the same data for different AR model orders, and thereby to allow a 

comparison between log model evidence maps, the first 𝑝 − 1 scans with 𝑝 being the 

respective AR model order were removed from the data (Penny et al., 2003). The optimal 

AR model order for every voxel was determined as the AR model with the highest log model 

evidence for each set of nuisance regressors. To examine the evidence for a higher order 

AR-model in the presence of physiological noise modelling, log Bayes factors comparing AR 

model orders 4 to 1 were computed as the difference of the respective log model evidences 

(Kass and Raftery, 1995) for the ‘RETROICOR + RRF + CRF’ model for all three sequences 

and, in addition, the ‘RETROICOR+Volterra’ model for the case of the short-TR sequence. 

The optimal AR model order was then summarized by computing the mean distribution of 

the voxel count over all subjects and runs in 6 different regions of interest (ROIs). The voxel 

count (in %) represents the number of voxel with AR model order 1 to 10 being the winning 

model, i.e. having the highest log model evidence, divided by the total number of voxel in 

each region. The 6 ROIs comprised the three tissue classes cerebrospinal fluid (CSF), grey 

matter (GM) and white matter (WM) as well as three regions expected to be involved in the 

task, i.e. primary motor cortex (M1), supplementary motor area (SMA) and putamen 

(Bednark et al., 2015). The cortical ROIs M1 and SMA were defined using the Harvard-

Oxford cortical structural atlas as distributed with the FMRIB Software Library (Desikan et 

al., 2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006). The ROI for the 

putamen was derived from high-resolution 7T imaging (Keuken et al., 2014; Tziortzi et al., 

2011). The ROIs were limited to grey matter by multiplying each ROI with a grey matter 

mask derived by thresholding the grey matter TPM at 0.9. 

To visualize the noise characteristics fitted by the different AR models, their power spectra 

were estimated using the SPM function spm_ar_freq.m. For each voxel, the AR coefficients 

of the winning model were extracted and the spectra estimated. For each AR model order, 

the obtained spectra were then averaged and compared across the four different noise 

modelling schemes. Additionally, the spectrum when using an AR model of order 1 was 

compared to the spectrum using the optimal AR model. 
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Classical model estimation was performed to investigate the spectrum of the residuals 

visualizing the impact of physiological noise modelling and pre-whitening on the frequency 

content of the image time series and providing insight into possible remaining noise sources. 

Therein, the two different pre-whitening strategies as provided in SPM 12 were used: either 

the AR(1) or the FAST model, which uses a dictionary of covariance components based 

upon exponential covariance functions. Likewise as for the Bayesian model estimation, 

classical model estimation was performed for the four different noise modelling schemes 

with either of the pre-whitening options. The average amplitude spectrum of all grey matter 

voxels was then computed from the residual time series obtained after model fitting. 

In summary, Bayesian model estimation was performed using data with three TRs (589 ms, 

1990 ms and 2356 ms), and four noise modelling methods (no phys; RETROICOR; 

RETROICOR + RRF + CRF, RETROICOR + Volterra). Similarly, classical model estimation 

was performed using either an AR(1) model or the FAST option in SPM for pre-whitening. 

To investigate the effect of spatial smoothing, the analysis was repeated on the un-

smoothed data obtained with the short-TR sequence. 

3.3 Results 

3.3.1 Optimal AR model orders and the impact of physiological noise modelling 

To investigate serial correlations and the effect of physiological noise modelling for the short-

TR sequence, optimal AR model orders obtained for the four noise modelling schemes are 

illustrated in Figure 3-1. A high optimal AR model order of up to 10 was found in large areas, 

especially in CSF and grey matter regions, when no physiological noise modelling was 

performed (Figure 3-1, 1st column). This indicates a complex, non-white noise structure in 

the fMRI time series. Including RETROICOR regressors to model cardiac and respiratory 

signal fluctuations successfully reduced the optimal AR model order to approximately 4 and 

below (Figure 3-1, 2nd column). High AR model orders remained in ventricles and anterior 

and posterior tissue-air boundaries. Additional regressors for variations in cardiac rate and 

respiration (‘RETROICOR + RRF + CRF’) had a localized effect (white arrow in Figure 3-1, 

3rd column). Including additional movement regressors (‘RETROICOR + Volterra’) mainly 

reduced optimal AR model orders at the anterior and posterior tissue-air boundaries (white 

arrows in Figure 3-1, 4th column). In general, white matter areas showed lower AR model 

orders, with some voxel having an optimal AR model order of 1. 
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Figure 3-1: Estimated optimal AR model orders for the short-TR sequence without physiological 
noise modelling (1st column), with RETROICOR regressors (2nd column), with RETROICOR 
regressors and cardiac and respiration response function modelling (3rd column) and with 
RETROICOR regressors and Volterra expansion of the realignment parameters (4th column) 
illustrated on the example of 4 axial slices (subject 1, run 1, TR = 589 ms, 2.5×2.5×2.5 mm3, 
smoothed with a 5 mm FHWM Gaussian kernel). The white arrows indicate a local reduction of 
optimal AR model orders for the RETROICOR + RRF + CRF noise model (3rd column) and a 
reduction of optimal AR model orders at anterior and posterior tissue-air boundaries for the 
RETROICOR + Volterra noise model (4th column). 

The distribution of optimal AR model orders shows the impact of physiological noise 

modelling for different tissue classes and in different cortical and subcortical regions (Figure 

3-2): Grey matter had a large number of voxels with a high optimal AR model order without 

physiological noise modelling, i.e. 37 % of the voxels had an optimal AR model order > 5 

(Figure 3-2, top left). For comparison, 48 % of the voxels in CSF (Figure 3-2, centre left), 

but only 20 % of the voxels in white matter had an optimal AR model order > 5 (Figure 3-2, 

top bottom). Including RETROICOR regressors had the largest impact reducing the number 

of voxels with optimal AR model order > 5 to 16 % in grey matter, 21 % in CSF, and 10 % 

in white matter. Adding RRF + CRF regressors further reduced this amount by 1 % in all 

three tissue classes. Additional movement regressors had a slightly larger impact, reducing 

the number of voxels with optimal AR model orders > 5 to 14 % in grey matter, 17 % in CSF 

and 9 % in white matter. In total, 68 % of the grey matter voxels had an AR optimal model 
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order ranging between 2 and 4 when using the RETROICOR noise modelling scheme 

(Figure 3-2, top left). The highest voxel count in grey matter was obtained for an AR model 

order of 4, with 28 % favouring this AR model under the RETROICOR + Volterra noise 

modelling scheme. Interestingly, the voxel count for an optimal AR model order of 1 was 

< 7 % in all three tissue classes even with physiological noise modelling. 

 

Figure 3-2: Distribution of optimal AR model orders. Mean and standard deviation across subjects 
and runs of the voxel count (%) for each optimal AR model order in 6 different regions-of-interest 
without physiological noise modelling (black), with RETROICOR regressors (red), with RETROICOR 
regressors and cardiac and respiration response function modelling (orange) and with RETROICOR 
regressors and Volterra expansion of the realignment parameters (blue) for the short-TR sequence 
(TR = 589 ms, 2.5×2.5×2.5 mm3, smoothed with a 5 mm FHWM Gaussian kernel). The voxel count 
represents the number of voxel with AR model order 1 to 10 being the winning model, i.e. having the 
highest log model evidence, divided by the total number of voxel in each region. 

The grey matter voxels in M1 and SMA showed comparable properties with regard to voxel 

count and impact of physiological noise modelling as the whole grey matter. When including 

RETROICOR regressors 69 % of the voxels in M1 supported an optimal AR model order 

between 2 and 4, and only 15 % supported an AR model order > 5 (Figure 3-2, top right). 

Similarly in SMA, 60 % of the voxels supported an optimal AR model order between 2 and 

4 and only 12 % supported an AR model order > 5. (Figure 3-2, centre right). However, the 

voxel count for an optimal AR model order of 1 (20 %) was much higher than in the 
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previously discussed ROIs. Including additional regressors for cardiac and respiration 

response modelling (RETROICOR + RRF + CRF) or additional movement regressors 

(RETROICOR + Volterra) had a smaller impact giving results comparable to the 

RETROICOR noise model. The distribution of optimal AR model orders in the putamen 

showed a different pattern, with a maximum of 46 % supporting an AR model order of 2 and 

only 9 % of the voxels with an optimal AR model order > 3 when including the RETROICOR 

regressors (Figure 3-2, bottom right). As in the SMA, the voxel count supporting an AR 

model order of 1 (33 %) was much higher than in the whole grey matter. 

In summary, tissue-class and region-specific distributions of optimal AR model orders were 

found. Including physiological noise regressors successfully reduced the number of voxel 

with high AR model orders and, consequently, increased the voxel count with low optimal 

AR model orders. Nevertheless, an AR model of order 1 proved insufficient for most voxels. 

Most grey matter areas still had an optimal AR model order ranging between 2 and 4. 

In comparison, optimal AR model orders for the long-TR sequence remained low, with the 

majority of voxels having an optimal AR model order of 1 or 2 even without physiological 

noise modelling (Figure 3-3A, left column). Elevated AR model orders were observed in the 

vicinity of the circle of Willis and the ventricles, but also close to the insula and the anterior 

cingulate cortex (white arrows in Figure 3-3A, left column). Including regressors for 

physiological noise successfully reduced the optimal AR model order in these areas (Figure 

3-3A, centre and right column), with virtually no difference between RETROICOR regressors 

only and the ‘RETROICOR + CRF + RRF’ noise modelling scheme. Optimal AR model 

orders for the downsampled short-TR sequence (Figure 3-3B) exhibited nearly identical 

characteristics as for the long-TR data. Slightly higher AR model orders were observed in a 

small number of voxels without physiological noise modelling (Figure 3-3B, left column). 

When including physiological noise regressors, low optimal AR model orders of 1 or 2 were 

obtained (Figure 3-3B, centre and right column). 
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Figure 3-3: Estimated optimal AR model orders for the long TR sequence. Estimated optimal AR 
model orders without physiological noise modelling (LEFT), with RETROICOR regressors (CENTRE) 
and with RETROICOR regressors and cardiac and respiration response function modelling (RIGHT) 
for (A) the long-TR sequence (subject 1, run 1, TR = 1990 ms, 1.3×1.3×1.3 mm3, smoothed with a 5 
mm FWHM Gaussian kernel) and (B) the downsampled short-TR sequence (subject 1, run 1, TR = 
2356 ms, 2.5×2.5×2.5 mm3, smoothed with a 5 mm FWHM Gaussian kernel). The white arrows 
indicate elevated AR model orders obtained without physiological noise modelling in the vicinity of 
the circle of Willis, the insula and the anterior cingulate cortex. 

The voxel count across subjects and runs for the long-TR sequences showed a majority of 

voxel with an optimal AR model order of 1 (Figure 3-4A). Even without physiological noise 

modelling, 45 % of the grey matter (Figure 3-4A, top left), 39 % of the CSF (Figure 3-4A, 

centre left), and 74 % of the white matter voxels (Figure 3-4A, bottom left) had an optimal 

AR model order of 1. These numbers were increased to 52% for grey matter and CSF, and 

81 % for white matter voxels when including ‘RETROICOR + CRF + RRF’ regressors. 

Accordingly, the number of voxels with optimal AR model order > 3 was below 6 % in all 

three tissue classes. The distribution of optimal AR model orders in M1 and SMA grey matter 

voxels mimicked the characteristics observed in the whole grey matter (Figure 3-4A, top and 

centre right). As observed for the short-TR sequence, the distribution in the putamen is 

distinct from the previous ROIs and resembled features comparable to white matter voxels 

with 85 % of the voxels having an optimal AR model of order 1 when including RETROICOR 

+ RRF + CRF regressors (Figure 3-4A, bottom right). This number was only slightly reduced 
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(to 80 %) when no physiological noise modelling was performed. Optimal AR model orders 

for the downsampled short-TR sequence follow a similar distribution, but with slightly higher 

values for AR model order 2 (Figure 3-4B). Including RETROICOR + RRF + CRF regressors, 

49 % of the voxel in CSF (Figure 3-4B, top left), 51 % of the voxel in grey matter (Figure 

3-4B, centre left) and 70 % of the voxel in white matter (Figure 3-4B, bottom left) had an 

optimal AR model order of 1. The number of voxels with optimal AR model order > 3 was 

below 3 % in all three tissue classes. Again, M1 (Figure 3-4B, top right) and SMA (Figure 

3-4B, centre right) had comparable properties as the whole grey matter, with 51 % and 43 % 

of the voxel having an optimal AR model order of 1. Similarly, the highest number of voxels 

with optimal AR model order 1 (80 %) were found in the putamen. 

In summary, the choice of the physiological noise modelling scheme has limited influence 

on the optimal AR model order for the long-TR sequence and the downsampled short-TR 

sequence, with largest effects in CSF and grey matter regions. A majority of voxel have an 

optimal AR model order of 1 or 2 even in the absence of physiological noise modelling. 

 

Figure 3-4: Distribution of optimal AR model orders. Mean and standard deviation across subjects 
and runs of the voxel count (%) for each optimal AR model order in 6 different regions-of-interest 
without physiological noise modelling (black), with RETROICOR regressors (red), and with 
RETROICOR regressors and cardiac and respiration response function modelling (orange) for (A) 
the long-TR sequence (TR = 1990 ms, 1.3×1.3×1.3 mm3, smoothed with a 5 mm FWHM Gaussian 
kernel) and (B) the downsampled short-TR sequence (TR = 2356 ms, 2.5×2.5×2.5 mm3, smoothed 
with a 5 mm FWHM Gaussian kernel). The voxel count represents the number of voxels with AR 
model order 1 to 10 being the winning model, i.e. having the highest log model evidence, divided by 
the total number of voxels in each region. 
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3.3.2 Bayes factor analysis 

To assess the statistical significance of the obtained optimal orders, log Bayes factors were 

computed as the difference in log model evidence (Kass and Raftery, 1995). For the short-TR 

sequence, log Bayes factors comparing an AR model of order 4 to an AR model of order 1 

showed positive evidence (BF > 3, corresponding to a posterior model probability > 95 %) 

for the higher AR model order in large areas of the brain, even when including RETROICOR 

+ RRF + CRF (Figure 3-5, 1st column) or RETRICOR + Volterra regressors (Figure 3-5, 2nd 

column). Some white matter voxel showed support for the AR(1)-model as expected from 

Figure 1, where AR(1) was the winning model. In contrast, for the long-TR sequence positive 

evidence was mostly found for the AR(1)-model, with only a few patches favouring an AR  

 

Figure 3-5: Log Bayes Factor for AR model order 4 vs. AR model order 1 for the short-TR 
sequence with RETROICOR regressors and cardiac and respiration response function modelling 
(1ST COLUMN), RETROICOR regressors and Volterra expansion of the realignment parameters (2ND 

COLUMN), the long-TR sequence with RETROICOR and cardiac and respiration response 
modelling (3RD COLUMN) and the downsampled short-TR sequence with RETROICOR and cardiac 
and respiration response modelling (4TH COLUMN) (subject 1, run 1, smoothed with a 5 mm FWHM 
Gaussian kernel). High log Bayes factors (> 3) indicate positive evidence for an AR model of order 
4, whereas negative log Bayes factors below -3 indicate support for an AR model of order 1. Log 
Bayes factors between -3 and 3 indicate no clear evidence for either model. 
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model order of 4 (Figure 3-5, 3rd column). Similarly for the downsampled short-TR sequence, 

positive evidence was mostly found for the AR(1) model compared to the AR(4) model 

(Figure 3-5, 4th column). However, in large areas of the brain, log Bayes factors remain very 

low, indicating no clear evidence for any of the two models. 

3.3.3 AR coefficient analysis 

The spectra in Figure 3-6 illustrate the noise characteristics that were fitted by the different 

AR models. Frequencies found in the fMRI time series are down weighted, i.e. showing a 

dip in the estimated spectra. For example, the spectra for AR model order 10 without 

physiological noise modelling (Figure 3-6, 2nd column, bottom) showed a clear dip at the 

cardiac frequency (~ 0.66 Hz) indicating that a strong signal was present at this frequency 

and has been fitted by the AR model. Across all AR model orders, damping of low frequency 

oscillations was observed (Figure 3-6, left). Up to AR model order 4, no differences in the 

spectra obtained from the different noise modelling schemes were found. However, the  

 

Figure 3-6: Spectrum of AR models. Spectrum (solid line = mean, dotted line = standard deviation) 
of different AR models in grey matter for the short-TR sequence (subject 1, run 1, TR = 589 ms, 
2.5×2.5×2.5 mm3, smoothed with a 5 mm FWHM Gaussian kernel). Spectrum without physiological 
noise modelling (black), with RETROICOR regressors (red), with RETROICOR regressors and 
cardiac and respiration response function modelling (orange) and with RETROICOR regressors and 
Volterra expansion of the realignment parameters (blue) when using only AR coefficients from 
matching optimal AR model orders (LEFT). Spectrum of AR(1) (orange) and spectrum of matching 
higher order models (black) when using RETROICOR regressors and cardiac and respiration 
response function modelling (RIGHT). 
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Figure 3-7: AR coefficient maps in one axial slice for an AR model of order 1 (TOP) and order 4 
(BOTTOM) without physiological noise modelling (LEFT) and with the RETROICOR model (RIGHT) 
(subject 1, run 1, TR = 589 ms, 2.5×2.5×2.5 mm3, smoothed with a 5 mm FWHM Gaussian kernel). 
High first order coefficients were found in all grey matter voxels for both AR model orders and 
physiological noise modelling approaches. Higher order coefficients retain anatomical structure up 
to 4th order (BOTTOM). However, RETROICOR modelling reduces the coefficient values 
successfully with a more homogenous distribution of the higher order coefficients (BOTTOM, 
RIGHT). 

spectra showed increased damping of low frequency components with increasing AR model 

order. For even higher AR model orders, cardiac and respiratory frequencies can be found 

in the spectrum, especially in the case of no physiological noise modelling. Comparing the 

spectrum of the winning model with the AR(1)-model when including RETOICOR, RRF and 
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CRF regressors shows that the AR(1)-model can only approximate the required, more 

complex shape of the power spectra in the voxel with higher optimal AR model order (Figure 

3-6, right). The largest differences were observed for the high frequency part of the 

spectrum. 

The estimated AR parameter maps retain anatomical structures indicative of tissue specific 

noise processes (Figure 3-7). High first order AR coefficients > 0.8 were obtained for the 

AR(1) and the AR(4) model in grey matter regions. Higher order AR coefficients were mainly 

present in grey matter voxels and nearly zero in white matter (Figure 3-7, bottom left). 

Including RETROICOR regressors reduced the higher order coefficients values, providing a 

more homogenous spatial distribution (Figure 3-7, bottom right). 

3.3.4 Noise spectrum and FAST for pre-whitening 

The average spectrum of the residual image time series visualizes remaining noise 

contributions after classical model estimation (Figure 3-8 and Figure 3-9). The spectrum of 

the ‘no phys’ modelling scheme was utilized to identify possible remaining noise sources. In 

particular, the short-TR sequence showed distinct peaks in good agreement with the 

measured heart and breathing rates (Figure 3-8): cardiac – 0.66Hz (aliased), respiration – 

0.31 Hz, interaction – 0.35 Hz, as well as low frequency oscillations in grey matter following 

a 1/f characteristic. Including RETROICOR regressors successfully removed the cardiac 

and respiratory frequency components. The impact of the low frequency regressors 

modelling cardiac and respiratory variations (RETROICOR + RRF + CRF) or remaining 

movement-related signal fluctuations (RETROICOR + Volterra) was limited, with most of the 

remaining 1/f noise compared to the AR(1) model (Figure 3-8, top). Note that the cardiac 

and respiratory components remain in the spectrum. Adding RETROICOR regressors 

removed these physiological noise peaks, resulting in a nearly flat, i.e. white, noise 

distribution across frequencies. 
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Figure 3-8: Average spectrum of the residual image time series using the classical model estimation 
algorithm and pre-whitening with an AR(1) model (TOP) or the FAST option (BOTTOM) without 
physiological noise modelling (black), with RETROICOR regressors (red), with RETROICOR 
regressors and cardiac and respiration response function modelling (orange) and with RETROICOR 
regressors and Volterra expansion of the realignment parameters (blue) for the short-TR sequence 
(subject 1, run 1, TR = 589 ms, 2.5×2.5×2.5 mm3, smoothed). 

The average spectrum of the long-TR sequence showed a nearly flat noise distribution 

across frequencies when pre-whitening with the AR(1) model (Figure 3-9A, top) or FAST 

(Figure 3-9A, bottom). Individual contributions from the heavily aliased physiological 

frequencies (0.09 Hz – cardiac, 0.16 Hz – respiration, and 0.1 Hz – interaction) could not be 

discerned. Including physiological noise regressors reduced the energy content across a 

broad range of frequencies, with only a slight reduction in peak height and number. Similarly 

for the downsampled short-TR sequence, both pre-whitening options resulted in a nearly flat 

noise distribution (Figure 3-9B) with not distinct peaks at the aliased physiological 

frequencies (0.18 Hz – cardiac, 0.1 Hz – respiration and 0.08 Hz – interaction). 
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Figure 3-9: Average spectrum of the residual image time series using the classical model estimation 
algorithm and pre-whitening with an AR(1) model (TOP) or the FAST option (BOTTOM) without 
physiological noise modelling (black), with RETROICOR regressors (red) and with RETROICOR 
regressors and cardiac and respiration response function modelling (orange) for the long-TR 
sequence (A) (subject 1, run 1, TR = 1990 ms, 1.3×1.3×1.3 mm3, smoothed with a 5 mm FWHM 
Gaussian kernel) and the downsampled short-TR sequence (B) (subject 1, run 1, TR = 2356 ms, 
2.5×2.5×2.5 mm3, smoothed with a 5 mm FWHM Gaussian kernel). 

3.3.5 Impact of smoothing 

Estimating optimal AR model orders on the un-smoothed data showed very high AR model 

orders mainly in CSF-bearing regions, but also close to the insula and the anterior cingulate 

cortex (white arrows in Figure 3-10, 1st column), as well as moderate optimal AR model 

orders in grey matter regions without physiological noise modelling (Figure 3-10, 1st column). 

Nearly all white matter voxels showed an optimal AR model order of 1. Including 

RETROICOR regressors successfully reduced the higher AR model orders in CSF and grey 

matter regions, with a remaining AR model order of 2 to 4 in most grey matter areas (Figure 

3-10, 2nd column). Some voxels with AR model order 10 can be found in posterior and 

anterior regions near tissue-air boundaries (white arrow in Figure 3-10, 2nd column). Adding 

RRF + CRF regressors had a limited impact on optimal AR model orders (Figure 3-10, 3rd 

column). The additional movement regressors (RETROICOR + Volterra) reduced optimal 

AR model orders in a small number of voxels at the posterior and anterior tissue-air 

boundaries (white arrow in Figure 3-10, 4th column). 
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Figure 3-10: Estimated optimal AR model orders for the short-TR sequence without physiological 
noise modelling (1st column), with RETROICOR regressors (2nd column), with RETROICOR 
regressors and cardiac and respiration response function modelling (3rd column) and with 
RETROICOR regressors and Volterra expansion of the realignment parameters (4th column) when 
no smoothing was applied (subject 1, run 1, TR = 589 ms, 2.5×2.5×2.5 mm3). The white arrows 
indicate high remaining optimal AR model orders at posterior and anterior tissue-air boundaries with 
RETROICOR regressors (2nd column), and their slight reduction when including RETROICOR + 
Volterra regressors (4th column). 

3.4 Discussion 

3.4.1 Effect of TR and physiological noise on optimal AR model order 

The high AR model orders found in the short-TR sequence indicate a complex noise 

covariance structure that needs to be taken into account when drawing inference on single-

subject fMRI data. As expected, physiological noise regressors as provided through the 

RETROICOR model (Glover et al., 2000) successfully reduced serial correlations in the fMRI 

time series, resulting in decreased optimal AR model orders. However, optimal AR model 

orders ranging between two and four were still found even after including physiological noise 

regressors. 

The broad distribution of optimal AR model orders across all grey matter voxels contradicts 

remaining task related activity as a possible noise source. Also, the low optimal AR model 
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order found in white matter excludes the possibility of hardware related sources which would 

affect grey and white matter equally. In the power spectra in Figure 3-6 and the residuum 

spectra in Figure 3-8 not a single unique frequency could be identified driving the observed 

effects. Rather, a broad 1/f noise characteristic and large variance around the cardiac peaks 

were observed. This indicates un-modelled neuronal activity (Bianciardi et al., 2009), given 

the high intrinsic serial correlation of the hemodynamic response function (Arbabshirani et 

al., 2014), as well as remaining physiological fluctuations not captured by the linear 

RETROICOR model as possible sources. Noise sources of even higher frequency seem 

unlikely other than the known cardiac and respiratory fluctuations and their higher harmonics 

(Weisskoff et al., 1993). 

Accounting for remaining low frequency oscillations through cardiac and respiration 

response function modelling had a comparatively limited impact, indicating either their 

localized reach or that more individualized response functions might be required (Falahpour 

et al., 2013). If specialized equipment is available, more direct measures of end-tidal CO2 

through carbon-dioxide data (Wise et al., 2004) and blood flow and oxygenation using near-

infrared spectroscopy data (Frederick et al., 2012) could improve the modelling of 

physiological processes in the low-frequency range. Including the Volterra expansion of the 

realignment regressors to model remaining movement related signals (Friston et al., 1996) 

had a small impact mainly limited to voxels at tissue-air boundaries. Importantly, motion 

regressors characterizing translation and rotation were included in all analysis schemes, 

and therefore, apparent bulk motion through respiration-induced fluctuations in the main 

magnetic field is included even in the ‘no phys’ option. Hence, serial correlations introduced 

through respiration could be slightly underestimated in the results presented here. 

Low AR model orders were obtained for the long-TR and the downsampled short-TR 

sequence in line with previous studies (Lund et al., 2006; Penny et al., 2003). Despite their 

different spatial resolutions, virtually identical results were obtained from both sequences, 

indicating that extensive aliasing in sequences with a TR above 2 seconds presumably 

renders individual noise processes indistinguishable, resulting in low optimal AR model 

orders. This is in line with the observation of a negligible change in t-values with increasing 

AR model order for data acquired with long TRs and a reduction in t-values with increasing 

AR model order for data acquired with shorter TRs (Sahib et al., 2016). 

3.4.2 Implications for error modelling in statistical inference 

When using pre-whitening to account for serial correlations, the complex noise structure 

found in the data acquired with sub-second TR needs to be accommodated in the estimation 
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of the error covariance 𝑉. When choosing the AR model order for spectral estimation, too 

low AR model orders result in too smooth estimates, whereas too high AR model orders can 

lead to spurious peaks (Schlindwein and Evans, 1992). Applied to empirical data, using a 

higher AR model order rather than a too low AR model order has been recommended for 

spectral estimation (Boardman et al., 2002; Schlindwein and Evans, 1992). Alternatively, the 

FAST noise model introduced in SPM12 has shown promising results, as indicated in the 

frequency spectra of the residuals (Figure 3-8, bottom). However, the cardiac and 

respiratory peak could not be accounted for, and, therefore, additional noise modelling 

strategies targeting these specific frequencies are required. Either identifying the noise 

sources and incorporating nuisance regressors for physiological fluctuations or specifying a 

comprehensive noise model that can capture serial correlations obtained from a broad range 

of TR values might be the way forward. 

As observed previously (Kaneoke et al., 2012), noise characteristics varied across tissue 

classes and cortical and subcortical regions. Grey matter voxels showed properties of both 

CSF and white matter, which could be partially introduced through the applied spatial 

smoothing and partial volume effects. Indeed, the optimal AR model orders obtained for the 

unsmoothed data show extended white matter areas with optimal AR model order 1, 

elevated AR model orders in grey matter, and extreme values almost exclusively in CSF-

bearing regions. While smoothing might introduce noise in adjacent voxels, it also 

considerably increases the signal-to-noise ratio (SNR) and functional sensitivity. These 

results highlight that careful selection of voxels for noise estimation purposes is required, as 

previously suggested in Purdon et al. (2001) and Woolrich et al. (2001). Pooling across 

voxels to estimate the stationary temporal covariance 𝑉 might thus remain feasible when 

carefully selecting voxels with similar noise properties. 

When using the VB framework to infer about regional activation in response to a task, spatial 

priors express the spatial contingency of evoked responses (Penny et al., 2005) as well as 

any further prior knowledge. Given the distinct noise properties of different tissue classes 

found in this work and previous studies (Penny et al., 2003; Woolrich et al., 2001), one might 

conclude that tissue specific priors could improve noise modelling. However, Penny et al. 

(2007) showed that Gaussian Markov Random Field priors (Woolrich et al., 2004), which 

assume the AR coefficient to vary smoothly, supersede tissue specific priors modelling the 

spatial variability in serial correlations. Given the observed variance in optimal AR model 

orders (Figure 3-10) and AR coefficient values (Figure 3-7) between different cortical and 

subcortical regions we anticipate a similar outcome for the data presented here. 
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3.4.3 Limitations and considerations 

When employing SMS acceleration to increase BOLD sensitivity in fMRI time series, two 

counteracting mechanisms need to be considered. On one hand, the temporal SNR 

decreases with increasing SMS acceleration factor (Chen et al., 2015). On the other hand, 

the number of samples per unit time increases, although the effective degrees of freedom 

do not rise at the same rate due to serial correlations. First investigations show that 

moderate SMS acceleration factors between two and six strike a balance between the two 

(Todd et al., 2016). It is clear, however, that the effects of physiological noise needs to be 

further evaluated when employing SMS acceleration, given its determining role for temporal 

SNR (Todd et al., 2017; Triantafyllou et al., 2005). Importantly, the spatial variability of 

different noise processes might render different SMS-factors optimal for different ROIs 

(Todd et al., 2017). 

We have limited our considerations to the single-subject level, keeping in mind the increased 

interest in using ultra-high field fMRI in single subject studies (Branco et al., 2016; De 

Martino et al., 2011; Stephan et al., 2017b). However, group studies employing mixed-effect 

models also rely on the precise estimation of effect sizes and their variance (Chen et al., 

2012). Since an unbiased estimator is used for the parameters, random-effects analyses 

are more robust against deviations in the error covariance estimation. 

3.5 Conclusion 

Unlike fMRI time series with a longer, more conventional TR of ~ 2 s, SMS EPI data with a 

short TR of ~ 600 ms exhibit a complex noise structure that cannot be captured by an AR(1) 

model. While physiological noise modelling successfully reduces serial correlations, an 

advanced noise model is still required to account for the non-white noise content. Otherwise, 

single-subject analyses of fMRI data with sub-second TR will result in increased false 

positive rates, effectively declaring voxels as active without the prescribed significance. 

Hence, for valid inference on single subject-level with sub-second TR, more advanced pre-

whitening schemes in combination with physiological noise modelling are necessary. 
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 Abstract 

The challenge of unified and comprehensive quality 

control (QC) in MRI results from the vast amount of 

artefact sources combined with the complex processing 

pipelines applied to the data. Beyond standard image 

quality measures, MRI sequence development is often in 

need of flexible diagnostic tools to test diverse 

hypotheses on artefact origin, such as hardware 

fluctuations, k-space spikes, or subject movement. 

These tests are usually performed in a sequential order, 

where one outcome informs the next evaluation. This 

necessitates fast switching between mathematical image 

operations and interactive display of multi-dimensional 

data to assess image properties from a range of different 

perspectives. Additionally, for complex image analysis 

pipelines, as employed, for example, in fMRI, direct 

access to the standard analysis packages is required to 

ultimately evaluate functional sensitivity of new 

sequence prototypes. In this work, we introduce the 

uniQC toolbox that provides seamless combination of 

algebraic matrix operations, image processing, 

visualisation options and data provenance in an intuitive, 

object-oriented framework using MATLAB, and 

interfacing SPM for all fMRI-related pre-processsing and 

statistical analysis steps. Therein, processing of 4D 

image time series data is generalised to an arbitrary 

number of dimensions to handle data from, for example, 

multiple receiver coils, multi-echo or phase fMRI data in 

a unified framework along with classical statistical 

analysis and powerful visualisation options. Here, we 

present the underlying class structure of the uniQC 

toolbox and typical use cases in fMRI sequence 

development. 
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4.1 Introduction 

Developing new methods for magnetic resonance imaging (MRI) requires continuous data 

evaluation via flexible and interactive diagnostic tools. Therein, artefact sources need to be 

identified, image quality measures estimated, and, ultimately, complex analysis pipelines 

need to be executed. Additionally, operation on and visualisation of multi-dimensional data 

is required to accommodate the development of new contrast mechanisms and acquisition 

techniques. Here we present the uniQC toolbox, which utilizes an object-oriented design to 

integrate visualisation, image operations and established processing steps as implemented 

in SPM5 to provide a flexible and interactive n-dimensional image analysis framework. 

In particular when evaluating new acquisition methods for functional MRI (fMRI), 

advancements at the single image level need to be translated to the image time series, and, 

ultimately, to the statistical map obtained from an intricate analysis pipeline. Examples of 

recent developments in MRI acquisition include new radio-frequency (RF) pulses (Breuer et 

al., 2005; Feinberg et al., 2010; Larkman et al., 2001; Setsompop et al., 2012) and new 

readout trajectories such as 3D echo-planar imaging (EPI) (Poser et al., 2010) or spirals 

(Glover, 2012). Additionally, noise correction methods including prospective motion 

correction (Speck et al., 2006), real-time shim feedback (Duerst et al., 2015) and concurrent 

magnetic field monitoring (Barmet et al., 2008; Bollmann et al., 2017) have been developed 

to counteract major noise sources during the image acquisition. New contrast mechanisms 

such as multi-echo EPI (Poser et al., 2006), functional quantitative susceptibility mapping 

(Özbay et al., 2016) or cerebral-blood-volume fMRI (Huber et al., 2017) extend the common 

4D dimensionality of the image time series, and require handling of multi-dimensional data 

with several coils, echoes, magnitude/phase or tag/control pairs. Common to all of these 

approaches is that they affect the image formation at a fundamental level, but the ultimate 

goal is to increase sensitivity and/or specificity for detecting signal changes indicative of 

neuronal activity. 

The uniQC toolbox was specifically designed to assist during methods development, the 

translation of these methods to neuroscientific practice (study design/piloting), and the 

quality control (QC) during data acquisition. Since every experiment is different during 

sequence evaluation and study design/piloting, a unique pipeline is required for QC, often 

with interactive features. Given the vast amount of artefact sources, such as coil gain 

fluctuations, k-space spikes, or subject movement, but also errors introduced by the 

operator, fast switching between image operations and visualisation of multi-dimensional 

                                            
5 http://www.fil.ion.ucl.ac.uk/spm/ 
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data becomes necessary to assess image properties from a range of perspectives. 

Importantly, this assessment is usually performed in a sequential order, where one outcome 

informs the next evaluation, and, hence, does not follow a prescribed protocol. This flexibility 

needs to be accompanied by reproducibility, to ensure that the whole of the experiment, i.e. 

the data acquisition and analysis, is well documented. Thus, uniQC provides a unified 

framework that allows flexibility while preserving reproducibility, to easily adapt the data 

analysis to changes in the data acquisition. In addition, an established pipeline might be 

used for QC within a larger study, requiring its universal application. The uniQC toolbox 

provides this unified universal approach respecting the uniqueness of QC criteria in MR 

methods development. As a consequence, flexibility, reproducibility and accessibility are the 

design principles governing the development of uniQC. 

Flexibility is concerned with the handling of various MRI data and the combination of different 

operations. Essentially, MRI data are images concatenated along multiple dimensions 

forming n-dimensional data matrices containing diverse information about the object under 

investigation. Examples include the composition of 3D volumes from 2D slices or 4D image 

time series from 3D volumes. New developments such as phase fMRI (Bianciardi et al., 

2014) or multi-echo EPI (Poser et al., 2006) require representation and analysis of MRI data 

of arbitrary dimensionality. Data flexibility is provided here as a natural extension from 4D to 

n-dimensional data matrices giving the researcher the ability to handle and label each 

individual dimension as desired. Furthermore, operational flexibility is achieved by providing 

basic image analysis building blocks such as tSNR assessment, image comparisons, 

contrast enhancement, region-of-interest (ROI) analysis or smoothing. These elementary 

units can then be combined to perform a complex evaluation tailored to the data at hand. 

Additionally, visual assessment plays a crucial role when evaluating MRI data. Hence, 

different options are provided here to fit a variety of needs, which are fully integrated into 

the same framework as the image analysis. 

Reproducibility is pursued by eschewing a graphical user interface, but providing an object-

oriented implementation where everything is scriptable in an easy-to-read fashion, and, 

thereby, documented. Further, through the object-oriented implementation, the interaction 

between methods and data is well defined. To prevent substantial rewrite of existing code, 

SPM is tightly integrated into uniQC and provides data nifti6 file read and write, 

preprocessing and model estimation functions. 

                                            
6 https://nifti.nimh.nih.gov/ 
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Accessibility is enabled by the overloading of common operators and the integration with 

the html-based MATLAB7 help browser (doc). Thereby, basic image operations can be 

combined into complex analysis, while the resulting code remains easy to read also for non-

expert programmers. Additionally, the object-oriented design provides a well-defined 

interface for specific contributions to enhance and adapt the functionality. 

It is these design criteria that set uniQC apart from other toolboxes, which provide similar 

underlying functions. For example, after creating an object I of the uniQC-class MrImage 

from a multi-echo time series (I = MrImage('multi_echo.nii')), realigning this data 

set using the realignment parameters from the first echo and applying them to the 

subsequent echoes amounts to I.realign('representationIndexArray', 

{'echo', 1}, 'applicationIndexArray', {'echo', 1:3}). Similarly, a 5D data 

set of single coil images (C = MrImage('multi_coil.nii')) can be easily realigned 

based on the sum-of-squares combined image using operator overloading via 

C.realign('representationIndexArray', sum(C.^2, 'coil'), 

'applicationIndexArray', {'coil', 1:8}). Integrating new functions, or simply 

utilizing built-in MATLAB image operations is facilitated via 

I.perform_unary_operation(@(x) medfilt3(x), '3d'), which automatically 

applies the MATLAB 3D median filter at every image for each time point and echo. 

In summary, uniQC provides a seamless integration of algebraic matrix operations, image 

processing, visualisation options and data provenance enabling flexible and interactive MRI 

data evaluation. In the following Methods chapter, we will first introduce the key classes 

MrImage and MrSeries and then provide an overview of the overall class structure. In the 

Results section, we will highlight selected applications, and present reference 

demonstrations for the use of all classes. 

4.2 Methods 

4.2.1 Overview 

Central to uniQC is the MrImage class, which contains one image consisting of an n-

dimensional data matrix and the corresponding image geometry (Figure 4-1, right). Methods 

of MrImage include algebraic matrix operations (I + 3), image operations (I.imclose) 

and visualisation (I.plot). Thus, MrImage represents the fundamental functional unit 

which encapsulates all basic operations. Based on this, MrSeries is a collection of  

                                            
7 The MathWorks, Inc., Natick, MA, US 
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Figure 4-1: Overview of MrImage and MrSeries. MrImage (right) builds the interface with 

MATLAB and translates built-in algebraic matric operations, image operations and visualisation 

from data matrices to image objects. MrSeries (left) provides a framework for processing of 

image time series. General functions for QC analysis, ROI analysis, preprocessing and statistical 

analysis (via SPM) are provided within MrSeries and can be arbitrarily combined. 

MrImages to facilitate a comprehensive time series analysis (Figure 4-1, left). For example, 

basic QC measures such as mean and tSNR are computed from the functional image 

(S.compute_stat_images), and then evaluated using masks to define specific regions 

of interest (S.analyse_rois). Additionally, the impact of common preprocessing steps 

performed on functional and/or structural images (S.realign) can similarly be included in 

the evaluation. Ultimately, statistical maps are estimated using the functional image and the 

information contained in the general linear model (GLM) 

(S.specify_and_estimate_1st_level). Throughout, the modularization of methods in 

MrImage allows direct access to principal operations in fMRI methods and data evaluation 

and their flexible combination into complex analysis pipelines. 

To allow for fast prototyping of image analysis pipelines, it is beneficial to keep data and 

operations close together, to swiftly switch between different tasks. Combining both image 

data and operations in one container is the natural outset to an object-oriented approach. 

MATLAB's equivalent bracket and dot-notation for object methods then allows for very 

compact representations of QC tasks. For example, visualising the SNR benefit of 

realignment of a 4D image time series I could be expressed as plot(abs(I.snr-
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I.realign.snr), with abs, snr and realign all being methods of the image that return 

a modified image, and plot acting as a non-modifying visualization method. Furthermore, 

MATLAB’s operator overloading (here -/minus) makes for an intuitive syntax for most 

algebraic image operations. The next sections will introduce each class in more detail and 

also outline specifics concerning their implementation. 

4.2.2 MrImage 

MrImage contains data and meta-data of one n-dimensional image. Figure 4-2 shows an 

overview of its properties and methods (also available via doc MrImage or 

methods(MrImage)). Properties include the n-dimensional data array, the object name 

(for plotting and referencing within MrSeries, e.g. 'with new method'), an info array 

which is automatically populated when calling methods (operator(nameImage1, 

nameImage2)), and parameters to control saving and plot options. Handling of the image 

geometry is facilitated through a number of complex properties, which are objects 

themselves. The dimInfo contains the dimensionality information in the voxel space 

defined by the data, i.e. it describes the properties of the n-dimensional data matrix. To place 

this data matrix into world space, the affineGeometry contains the affine transformation 

matrix using the nifti convention. MrImageGeometry is a dependent object that combines 

the information from both dimInfo and affineGeometry to provide geometry information 

most commonly used in fMRI analyses: field-of-view (FOV), number of voxels, resolution, 

repetition time (TR), offcenter, rotation, shear. The results of ROI analysis are stored in rois 

containing a cell of MrRoi objects. 

A MrImage object can, in the simplest case, be constructed from a data matrix (I = 

MrImage(data_matrix)). The dimInfo and affineGeometry will incorporate the 

dimensionality information obtained from data (nSamples and nDims) and otherwise resort 

to default values. Specific dimensionality information can be incorporated during 

construction as well, allowing to specify the sampling of the data: I = 

MrImage(data_matrix, 'dimLabels', {'x', 'y', 'z', 't', 'echo', 

'coil'}, 'units', {'mm', 'mm', 'mm', 's', 'ms', 'samples'}, 

'resolutions', [1.5 1.5 2 0.65 32 1]). Read-in functions for nifti, Philips par/rec 

and mat-files are provided as well. 
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Figure 4-2: Properties and methods of the MrImage class. A complete overview can be obtained 

via methods(MrImage). The algebraic matrix operations create an intuitive syntax, e.g. (I1 .* 

I2) + I3. The image operations generalize 2D image operations to nD images. The spm 4D 

operations encapsulate preprocessing steps within SPM. The plot properties are controlled via 
property/value pairs and offer a range of visualisation options. 

Methods of MrImage can be divided into 5 categories: input/output operations, algebraic 

matrix operations, image operations, SPM 4D operations and plot operations (Figure 4-2, 

right). Operator overloading8 is employed to allow the intuitive concatenation of processing 

options. For example, object and non-object variables can be easily combined using 

common mathematical symbols (I_plus_3 = I + 3). In combination with the defined 

dimLabels, subsets of data can be intuitively accessed, and combined with processing 

and plot operations in one step (plot(I1.abs – I2.abs), 'z', 15, 'coil', 1:3). 

Thereby, the visual inspections becomes part of the processing pipeline and is inherently 

documented and reproducible. 

                                            
8 https://au.mathworks.com/help/matlab/matlab_oop/implementing-operators-for-your-class.html 
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4.2.3 MrSeries 

The MrSeries class is a collection of MrImage objects to perform evaluation of (f)MRI data 

(Figure 4-3). The methods of MrSeries, governed by the parameters stored in the 

parameters field, directly operate on these images and populate them accordingly. Further, 

MrSeries automatically creates a folder structure that, in conjunction with the 

processingLog, documents the performed analysis (Figure 4-3, right). This allows to 

restore a previous processing step (MrSeries.restore('realign')), and provides an 

interface to other software compatible to the nifti format. 

 

Figure 4-3: Properties and methods of the MrSeries class. The folder structure (right) is the 

result of demo_preprocessing and demo_model_estimation_1st_level. 

4.2.4 Class structure 

The following chapter provides an overview of all classes defined within the uniQC toolbox: 

MrImage, MrSeries, MrDimInfo, MrDataNd, MrAffineGeometry, 

MrImageGeometry, MrGlm, MrRoi, MrCopyData, MrImageSpm4D, and MrUnitTest. 

Table 4-1 summarizes the class name, the purpose, exemplary operations and the parent  
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class purpose operations parent 

MrImage Contains and 

analyses one 

nD image 

I.compute_masks; 

I.imfill; 

I.plot; 

MrDataNd 

MrSeries Contains and 

analyses a 

selection of 

MrImages 

S.compute_stat_images; 

S.coregister; 

S.specify_and_estimate_1st_level 

MrCopyData 

MrDimInfo Contains 

dimensionality 

information 

DI.select; 

DI.split; 

DI.permute; 

MrCopyData 

MrDataNd Contains nD 

data arrays 

D1 + D2; 

D.select; 

D.abs; 

MrCopyData 

MrAffineGeometry Contains affine 

geometry 

AG.apply_transformation; MrCopyData 

MrImageGeometry Contains 

common 

parameters for 

time series 

data 

disp(IG) MrCopyData; 

dependent property of 

MrImage 

MrGlm Contains 

experiment 

information 

G.init_glm; MrCopyData 

MrRoi Contains data 

and summary 

statistics of 

ROIs 

R.compute_stats; 

R.plot; 

MrCopyData 

MrCopyData Deep recursive 

copy and 

object 

comparisons 

CD.copyobj; 

CD.comp; 

handle 

MrImageSpm4D Wrapper for 

SPM functions  

I4D.realign; 

I4D.segment; 

MrImage 

MrUnitTest Unit test run(UT); unittest.TestCase 

Table 4-1: Overview of all uniQC classes indicating their name, purpose, exemplary operations and 
parent class. 
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class. After MrImage and MrSeries have been introduced above, MrDimInfo, 

MrDataNd, MrAffineGeometry, MrImageGeometry, MrGlm, MrRoi and MrCopyData 

will be described in more detail here. Information about MrImageSpm4D can be found in the 

chapter Integration with SPM and MrUnitTest is described in Unit testing. 

MrDimInfo contains all dimensionality information describing an n-dimensional data matrix. 

Figure 4-4 illustrates properties of MrDimInfo, dependent properties, and their geometric 

interpretation in an n-dimensional data set. MrDimInfo provides the means to handle and 

label data matrices with arbitrary dimensions. The center location and extent of each sample 

are given by samplingPoints and samplingWidths, respectively. Descriptions of each 

dimension are contained in dimLabels and units (defaults are 'x', 'y', 'z', 't', 

'coil', 'echo' for dimLabels and 'mm', 'mm', 'mm', 's', 'nil', 'ms' for units). 

Resolutions are derived from samplingPoints and contain the (equidistant) spacing 

between them. Ranges give the first and last sampling point. The number of dimensions 

and the number of samples in each dimension are contained in nDims and nSamples, 

respectively. The samplingWidths can be used, for example, to express the slice gap, 

i.e., difference between slice thickness and slice distance (resolutions), or to convert 

ranges into FOV (+ samplingWidths, see Figure 4-4). 

Properties of MrDimInfo and their dependencies are summarized in Figure 4-4 (left). The 

construction of an MrDimInfo object from different input data is illustrated on the right hand 

side. In the first case, samplingPoints are explicitly given alongside dimLabels and 

units. If no dimLabels or units are given, default values are assumed, since no empty 

dimLabels or units are allowed. If not given explicitly, samplingWidths are initialized 

to the same values as resolutions (assuming, e.g., no slice gap). Later on, when 

resolutions are changed in an existing MrDimInfo object, samplingWidths remain 

unaltered (except if set explicitly). Thus, when selecting a subset of samples, 

samplingWidths can provide information on the extent of a sample even when the 

sampling points are non-equidistant and, hence, a resolution is no longer defined. 

Information about the sampling points can also be provided using a combination of other 

(dependent) properties, as illustrated in Figure 4-5 in the subsequent rows. When nSamples 

and ranges are given as an input, equidistant spacing is assumed to create the 

samplingPoint array. Similarly, nSamples and resolutions, in conjunction with one 

sampling point and its array index, can be used to create all sampling points. When creating  
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Figure 4-4: Properties defining MrDimInfo include samplingPoints, samplingWidths, 

dimLabels and units. The dependent properties resolutions, ranges, nSamples and 

nDims are derived from sampling points. 
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an MrDimInfo object from a nifti or Philips par/rec file, nSamples, resolutions and the 

first sampling points are extracted from the header. 

Note that MrDimInfo describes the n-dimensional data array through an orthogonal 

coordinate system originating at the first sample. This allows the comprehensive description 

of other kinds of data besides images, e.g., raw coil (k-space) data or k-space trajectories, 

and incorporates higher dimensions, e.g., time, coils, echo time and contrast, within the 

same framework that describes image data. When forming an image, MrAffineGeometry 

provides the transformation to the nifti neuroimaging coordinate system. 

 

Figure 4-5: Constructor of MrDimInfo using different property/value pairs. MrDimInfo can be 

constructed from properties (orange) as well as a combination of dependent properties (yellow). 
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A key feature to easily access, display and manipulate subsets of data is the direct dot-

notation of user-defined properties, e.g., by referring to 

dimInfoObject.MyDimLabel.resolutions, which is enabled by overloading 

MATLAB’s subsref and subsasgn functions. An example output is given below (case 1b in 

demo_dim_info.m): 

MrDimInfo with properties: 

nDims: 5 

nSamples: [64 50 33 100 8] 

resolutions: [3 3 3 2.5000 1] 

ranges: [2×5 double] 

dimLabels: {'x' 'y' 'z' 't' 'coil'} 

units: {'mm'  'mm'  'mm'  's'  'nil'} 

samplingPoints: {1×5 cell} 

samplingWidths: {[3]  [3]  [3]  [2.5000]  [1]} 

MrDataNd contains the n-dimensional data described in MrDimInfo and provides general 

algebraic matrix operations (note that it does not rely on the implicit expansion of arrays as 

introduced in MATLAB R2016b). Properties include the data matrix, the object name, and 

info field, parameters and a MrDimInfo object (cf. Figure 4-2). Note that MrDataNd has no 

affineGeometry and can be used as a general storage for non-image data. 

MrAffineGeometry stores the affine transformation of an image in nifti convention. It uses 

spm_matrix to translate an affine transformation matrix into offcentre (translation), 

rotation, shear, and resolution (scaling). Note that the affine geometry is in general 

disregarded during plot and images are presented in voxel space. The display options in 

SPM (MrImage.plot('plotType', 'spmi')) allow the visualisation when applying the 

affine geometry. 

MrImageGeometry offers convenient access to geometry information for 4D data sets, i.e. 

for fMRI time series analysis. It contains the ‘classical’ geometric information to describe a 

4D data set, i.e. FOV_mm [1x3], nVoxels [1x4], resolution_mm [1x3], TR_s [1x1], 

offcentre_mm [1x3], rotation_deg [1x3], shear [1x3], sliceOrientation 

[1x1], and coordinateSystem (scanner or nifti). MrImageGeometry is constructed 

from MrAffineGeometry and MrDimInfo. As the geometry of an MrImage object, it is a 

dependent property and does not have a set – method, only a constructor. It is always 

created on the fly from MrDimInfo and MrAffineGeometry to ensure clear update rules. 

The displayOffset from MrAffineGeometry is used to specify the offcenter_mm 
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according to the coordinate system (i.e. nifti is first voxel, scanner is centre of imaging 

volume). 

MrGlm is used to specify the first-level (single-subject) GLM and to provide an interface to 

the SPM design specification and estimation. An overview of its properties, a description of 

these and an example are given in Table 4-2. 

MrRoi contains the results of ROI analysis. MrRoi is interfaced best using methods of 

MrImage to extract the data in a slice-by-slice fashion (I.extract_rois(mask)). Then, 

descriptive statistics such as mean, snr, min and max can be computed per slice and over 

the whole (ROI) volume (I.compute_roi_stats()). Results can directly be visualised 

as time series values or histograms (I.rois{1}.plot). 

MrCopyData is a super class that provides a clone-method for all object classes, (i.e., 

a deep recursive copy, in contrast to the default reference copy behaviour for handle objects 

in MATLAB) and recursive find and comparison utilities. Thereby, independent copies of 

objects can be created allowing different processing streams from the same source image, 

such as creating a mask from a mean image. All uniQC classes are derived from 

MrCopyData. 

4.2.5 File management 

The file management within MrSeries is illustrated in Figure 4-3. The results of each 

processing step are saved in a consecutively numbered folder starting with the automatically 

created unprocessed data. The overall save path is stored in S.parameters.save.path 

and populated on create with pwd/MrSeries_date_time, which can then be adapted by 

the user. During save, the data and the MrSeries object are separated, allowing easy 

access to the data and straightforward interfacing with other tools. The data created in each 

step are saved as nifti images or text files (e.g. for the realignment parameters) and the 

MrSeries object is saved as a .mat file, but stripped of the data. To restore a previous 

analysis, the MrSeries constructor can be called with the used save path (S = 

MrSeries(path)). Within MrSeries, one can also revert to previous instances of the 

MrSeries object by calling the restore function (S.restore(iProcessingStep)). 

Similarly, MrImage allows to define a path and a filename (including the file extension) which 

are used during saving. Note that the object name is used for referencing within the 

application of different processing steps and the filename is used when saving the data. 

While MrSeries automatically saves the data after each processing steps, MrImage 

requires the user to manually save the data (I.save). 
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property description example 

regressors confound regressors included in the 

model estimation (e.g. realignment 

parameters) 

[nxm] matrix with n being the 

number of volumes 

conditions cells of names, onsets and durations 

describing the stimulus timing 

names = {'stimulus'} 

onsets = {[10 20 30]} 

durations = {[5]}) 

timingUnits units in which the TR is specified 'secs' or 'scans' 

repetitionTime timing of the image acquisition (in 

timingUnits) 

2.5 

hrfDerivatives derivatives of the hemodynamic 

response 

[0 0] - canonical only 

[1 0] - temporal derivative 

[0 1] - dispersion derivative 

[1 1] - both 

maskingThreshold intensity threshold [0 1] applied to 

the mean image to exclude voxels 

below the given proportion of the 

global intensity 

0.8 

-Inf includes all voxels 

explicitMasking explicit mask image for parameter 

estimation 

'masks/brain_mask.nii' 

estimationMethod parameter estimation method 'classical' or 

'Bayesian' 

serialCorrelations serial correlations model used for 

pre-whitening (classical only) 

'AR(1)' or 'FAST' 

ARModelOrderBayes AR model order for pre-whitening 

(Bayes only) 

3 

gcon contrast vector for contrast 

estimation (Bayes only) 

[1 0] 

[1 -1] 

designMatrix design matrix scaled for display loads SPM.xX.nKX 

parameters contains file path and the SPM 

directory 

 

Table 4-2: Overview of MrGlm properties which are derived from the SPM estimate batch. 
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4.2.6 Integration with SPM 

SPM operations are integrated via the intermediate class MrImageSpm4D. MrImageSpm4D 

contains one real-valued, 3 or 4-dimensional image, which forms the input into the SPM 

functions compute_tissue_probability_maps, coregister, realign, smooth, 

and t_filter. When extending these operations to n-dimensional images, a number of 

possible scenarios occur, which are best illustrated on the example of realign: 

1) complex image time series (complex 4D) – estimate realignment parameters on 

magnitude image and apply to magnitude and phase image 

2) multi-echo image time series (real 5D) – estimate realignment parameters on first 

echo and apply to all echoes 

3) multi-coil image time series (real 5D) – estimate realignment parameters on the 

combined image and apply to individual coil images 

4) multi-contrast image time series (real 5D) – estimate and apply realignment 

parameters for each contrast individually 

Thus, one has to specify the application dimension and the representation dimension on 

which the parameters are estimated. In the first example, the representation dimension is 

the magnitude image and the application dimensions are the magnitude and phase images, 

respectively. Similarly for the multi-echo and multi-coil images. Here, the representation 

dimension are the first echo or the coil-combined image and the application dimensions are 

the individual echoes or coil images. The last example estimates and applies the 

realignment parameters independently for each image. Other SPM operations can be seen 

as special cases of these scenarios. For example, smooth has no representation 

dimension, but the data need to be split into 4D images for SPM. Hence, it's beneficial to 

select the split dimensions as the dimensions with the smallest number of sampling points. 

Note that the first 3 dimensions are seen as the image forming dimensions, typically x, y, 

and z. In the case of t_filter, the representation and application dimensions are typically 

a one-to-one matching. In contrast, the transformation parameters and flow fields estimated 

via coregister and compute_tissue_probability_maps need to be applied to all 

dimensions. In summary, when extending SPM functions to the n-dimensional case, one 

has to specify which data forms the representation dimension and how the estimated 

parameters are then transferred to the application dimension. 
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4.2.7 Unit testing 

Unit testing is implemented in MrUnitTest using the object-oriented framework provided 

within MATLAB (testsuite introduced in R2016a). Class constructors are tested using 

either reference parameters (e.g. MrDimInfo via 

MrUnitTest.make_dimInfo_reference) or test data sets. The whole test suite 

(test/unit_test_main) can be run via TestSuite or individual test can be selected 

using tags (class names or 'Constructor') or test case names. Currently, MrUnitTest 

contains test methods for the constructor and methods of MrDimInfo, 

MrAffineGeometry, MrImageGeometry and MrDataNd. 

4.2.8 Coding conventions 

The coding conventions employed in uniQC follow the MATLAB Style Guidelines 2.0 by 

Richard Johnson. A short summary and designated conventions for uniQC are available in 

custom_coding_conventions.pdf in the guidelines folder. The most notable deviation from 

the coding conventions was designed to enhance the readability: methods are named using 

underscores, e.g. compute_tissue_probability_maps instead of 

computetissueprobabilitymaps. All properties, however, remain mixed case. 

Auxiliary classes, i.e. classes that are used as a property of another class, start with the 

whole class name, e.g. MrImage and MrImageGeometry. To easily identify classes 

belonging to uniQC, all classes start with Mr. In the directory utils, functions for creating 

new classes, methods and enumeration are provided. To utilise the native documentation 

options in MATLAB, one-line descriptions are added to class definitions, properties and 

methods, which are then displayed when calling doc MrClass. Furthermore, all 

conventions are compatible with the hyperlinked documentation displayed in the MATLAB 

help browser. Throughout uniQC, ('propertyName', propertyValue) pairs are used 

instead of sequential input to accommodate the large number of possible inputs for the most 

versatile methods (e.g. plot) and the user-defined naming of dimensions. 

4.2.9 Example data 

A number of example data sets are included in the uniQC toolbox and stored in 

data/nifti and data/parrec. In particular, examples include a 3D nifti image, a short 

4D time series, a long 4D single-echo time series for model estimation, a 5D multi-echo time 

series, a 5D deformation field, a folder filled with 3D nifti images forming a 5D image, and a 

4D Philips par/rec file. These files are used in the examples below and in the demo scripts. 
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4.3 Results 

4.3.1 Example Use Cases 

In the following section, a number of example use cases will be discussed in detail, 

illustrating the usage and interplay of the different classes introduced above. All example 

scripts can be found in the folder demo/[MrClassName]. Additionally, a short overview for 

all demos within the uniQC toolbox is provided below. The demos provide detailed 

instructions for specific key methods of each class, comments on optimal usage and 

implementation specifics. They are best run either step-by-step in debug mode or by 

executing one code section at a time, and are meant to serve as a point of reference together 

with the documentation (doc MrClass.method). 

4.3.2 Visualisation tools 

First, the different visualisation tools provided within uniQC will be introduced, which play a 

key role in the data evaluation. A comprehensive overview is provided in 

MrImage/demo_plot_images, which also produced the output presented in Figure 4-6. 

Using plot with default settings will show the first 3D volume in a montage plot9, i.e. the first 

two dimensions are shown as slices and the third as tiles (Figure 4-6A). Any subset of the 

data can be selected using the defined dimLabels (I.plot('t', 1:15, 'echo', 2, 

'coil', [3,6,7])). Note that all samples of any non-selected dimension will be plotted 

and additional figures will be created to accommodate images with more than 3 dimensions. 

Visualising data in this way allows the implicit documentation of the performed assessment, 

i.e. the specific dimension and array index are explicitly documented, and no manual 

interaction is required to re-create the same plot. Overlay images 

(I.plot('overlayImages', I.edge)) can be added to the plot which allows, for 

example, the assessment of segmentation and ROI definitions (Figure 4-6B). The 

overlayImages can be a cell array of an arbitrary number of MrImage objects including 

masks, edges and maps. The useSlider option allows to interactively scroll through a 4D 

image or play a video across dimensions (Figure 4-6C). To explore a 3D volume, the 3d 

option provides 3 orthogonal images and a 3D view10. Note that the images are displayed 

in matrix space and any 3D image can be selected, for example slice along time or across 

                                            
9 Plotting only the first 3D volume was chosen as a default option to prevent the un-intentional output of, for 
example, a whole time series with potentially several hundreds of volumes. 
10 Adapted from vis3d.m by Joshua Stough (April 2013) from the MATLAB file exchange 
(http://ch.mathworks.com/matlabcentral/fileexchange/37268-3d-volume-visualization/content/vis3d.m) 
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coils. Access to the common SPM visualisation options (I.plot('plotType', 'spmi') 

is provided as well, and, depending on the input data, display or check registration is chosen 

automatically. 

 

Figure 4-6: Plot operations for MrImage using 2D slices and tiles (A-C) and 3D volumes (D,E). 

4.3.3 Image operations 

An overview of all image and algebraic matrix operations is presented in Figure 4-2, and 

examples are provided in MrImage/demo_image_math_imcalc_fslmaths. The 

method calls are chosen such that they provide a natural extension of the MATLAB syntax, 

i.e. abs(I) internally computes abs(I.data). Further, arithmetic operators are 

overloaded allowing I + 3 and I1./I2. However, the image object always needs to be  
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 % load data 

I = MrImage(fileTest); 

% compute tSNR and plot 

snrI = I.snr(); 

snrI.plot; 

 % add Gaussian noise to the image time series 

% make noise image with same dimensions as I 

noise = MrImage(randn(I.geometry.nVoxels)); 

noise.name = 'random noise'; 

noise.plot; 

 % add just a bit noise, though 

noiseI = I.scale + noise .* 0.05;  

noiseI.name = 'noisy image time series'; 

noiseI.plot; 

 % remove noise via smoothing 

noiseISmoothed = noiseI.smooth(2); % FWHM = 2 

noiseISmoothed.name = 'smoothed time series'; 

noiseISmoothed.plot; 

 % filter using matlab 3D median filter 

IMedianFilter = NoiseI.perform_unary_operation(... 

@(x) medfilt3(x), '3d'); 

IMedianFilter.name = 'median filtered image'; 

IMedianFilter.plot; 

 % compute tSNR and plot 

noiseISmoothedSnr = noiseISmoothed.snr; 

noiseISmoothedSnr.plot('displayRange', [0 35]); 

 % compute tSNR and plot 

IMedianFilterSnr = IMedianFilter.snr; 

IMedianFilterSnr.plot('displayRange', [0 35]); 

Figure 4-7: Illustration and code for algebraic matrix and image operations using MrImage. First, 

the tSNR of the raw time series is estimated (A). Next, a random noise image is generated (B) and 
added to an image time series (C). The introduced noise is then removed using the Gaussian 
smoothing kernel in SPM (D) or a median filter supplied in MATLAB (E). Last, the resulting tSNR of 
the two processing options is compared (F and G). 
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the first item, i.e. 3 + I will produce an error. Operations frequently encountered in time 

series analysis are integrated as well, such as I.snr, which computes the temporal SNR. 

Image operations including I.imclose and I.imfill, which have a native MATLAB 2D 

implementation, are automatically applied repeatedly to generalize to higher order 

dimensions. Key methods in the implementation of these operations are 

perform_unary_operation and perform_binary_operation. These methods have 

a function handle and the application dimension as input, and generalize the application of 

arbitrary operations on the MrImage object, including the update of the dimInfo and the 

info field. Figure 4-7 illustrates the combination of algebraic matrix operations, image 

operations and visualisation by adding random noise to an image time series and applying 

different filters to remove it. Note how the MATLAB-internal image operation medfilt3 can 

easily be integrated and is then automatically applied for each 3D image along the time 

series (Figure 4-7E). Further, the resulting tSNR maps a directly scaled when calling the plot 

method ('displayRange', [0 35]) (Figure 4-7FG). 

4.3.4 Quality control pipeline for fMRI data 

The quality control pipeline presented below will introduce MrSeries and illustrate how it 

encapsulates operations commonly performed during quality control and analysis of fMRI 

data (the complete script is provided in demo_fmri_qa). As illustrated in Figure 4-1 and 

Figure 4-3, MrSeries contains a number of MrImage objects, which are automatically 

populated during the relevant method call. Examples include the computation and 

visualisation of key statistical images such mean, std, tSNR, coeffVar and 

diffLastFirst (Figure 4-8A). Preprocessing steps are integrated in a similar manner, 

such that S.realign will update the data and the regressors in the glm (Figure 4-8B). After 

computing statistical images form the realigned data, different sliceDimensions can be 

chosen to visualize the images in different planes (Figure 4-8C). The slider allows the 

interactive exploration of the whole data set (Figure 4-8D). To perform a ROI analysis, a 

mask image needs to be created (Figure 4-8E), followed by the extraction of data and tSNR 

values (Figure 4-8F). Finally, a principal component analysis (PCA) is performed to identify 

possible artefactual fluctuations (Figure 4-8G). 
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 (A) % load data 

S = MrSeries(fileRaw) 

% compute times series statistics 

S.compute_stat_images; 

S.mean.plot; 

 (B) % realign image time series 

S.realign; 

% check realignment parameters 

S.glm.plot_regressors; 

 (C) % check sd images sagittal views 

S.sd.plot('sliceDimension', 1, 'x', 48:69, 'rotate90',2) 

 (D) % any image fluctuations or drifts? 

diffMean = S.data – S.mean; 

diffMean.plot('useSlider', true); 

 (E) % compute mask from mean for ROI analysis 

S.parameters.compute_masks.nameInputImages = 'mean'; 

S.parameters.compute_masks.nameTargetGeometry = 'mean'; 

S.parameters.compute_masks.threshold = 

S.mean.prctile(75); 

S.compute_masks(); 

 (F) % perform ROI analysis 

S.parameters.analyze_rois.nameInputImages = {'data', 

'snr'}; 

S.parameters.analyze_rois.nameInputMasks = '.*mask'; 

S.analyze_rois(); 

 (G) % perform spatial PCA 

PC4D = S.data.pca(3); 

Figure 4-8: Illustration of MrSeries for quality control using statistical images (A, C), realignment 

parameters (B), difference images (D), ROI analyses (E, F) and a principal component analysis (G). 
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4.3.5 Extension to n-dimensional data sets 

Based on the scenarios identified in the section Integration with SPM, the following syntax 

was developed to specify the representation and application dimensions (Table 4-3). More 

details can be found in demo_multi_echo_realign and demo_split_complex. 

Scenario Syntax 

0) real 4D 

dimLabels = 'x' 'y' 'z' 't' 

I.realign – this is the standard case 

which is also natively available in SPM 

1) complex 4D 

dimLabels = 'x' 'y' 'z' 't' 

I.realign – data are automatically split 

and estimation is performed on the 

magnitude images and the realignment 

parameters are then applied to the phase 

images 

2) multi-echo 5D 

dimLabels = 'x' 'y' 'z' 't' 'echo' 

I.realign('applicationIndexArray', 

{'echo', 1:3}) – the representation index 

is automatically chosen as the first index of 

all extra (non-4D) dimensions and the 

realignment parameters are then applied to 

all echoes 

3) multi-coil 5D 

dimLabels = 'x' 'y' 'z' 't' 'coil' 

I.realign('representationIndexArray', 

sum(I.^2, 'coil'), 

'applicationIndexArray', {'coil', 

1:8}) – the representation index is now the 

sum-of-squares combined image and the 

realignment parameters are then applied to 

all single-coil images 

4)  multi-contrast 5D 

dimLables = 'x' 'y' 'z' 't' 'c' 

I.realign('representationIndexArray', 

{'c', 1:5}, 'applicationIndexArray', 

{'c', 1:5}) – the representation index are 

the individual contrast images, and the 

realignment parameters are applied in a 

one-to-one mapping 

Table 4-3: Overview of Scenarios of different realignment schemes including real 4D (0), complex 
4D (1), and different configurations of real 5D data (2-4). 
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4.3.6 Demos overview 

MrImage/demo_add_overlay.m: Illustrates how to use plot with overlayImages and 

compares it to an implementation using native MATLAB code. 

MrImage/demo_constructor.m: Illustrates how MrImage objects can be created from 

nifti files, folders and Philips par/rec files. 

MrImage/demo_coregister.m: Illustrates how to coregister a structural to a functional 

image and the difference between changing (only) the geometry and reslicing the 

coregistered image. 

MrImage/demo_image_math_imcalc_fslmaths.m: Illustrates how to estimate image 

properties and compare different images. 

MrImage/demo_multi_echo_realign.m: Illustrates the syntax to extend SPM 

preprocessing options to n-dimensional data. 

MrImage/demo_plot_images.m: Illustrates the versatile plot options; see also section 

Visualisation tools. 

MrImage/demo_roi_analysis.m: Template for a fast analysis of regions-of-interest 

defined using tissue masks and manually drawn masks, which can be saved and, thereby, 

enhance the documentation of the performed analysis. 

MrImage/demo_spikes.m: Illustrates the performance of different visualisation options 

such as mean and tSNR images and dynamic displays to identify k-space spikes. 

MrImage/demo_split_complex.m: Illustrates how complex data are automatically split 

and combined to perform SPM preprocessing operations. 

 

MrSeries/demo_fmri_qa.m: Illustrates how to combine different visualisations and 

image operations to inspect an fMRI time series. 

MrSeries/demo_model_estimation_1st_level.m: Illustrates how to specify a 1st 

level model using MrGlm and estimating its parameters using the classical restricted 

maximum Likelihood approach within SPM (Kiebel and Holmes, 2007). Note that this 

requires the output of MrSeries/demo_preprocessing. 
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MrSeries/demo_model_estimation_1st_level_Bayesian.m: Illustrates how to 

estimate the same model as in MrSeries/demo_model_estimation_1st_level using 

a Variational Bayesian framework (Penny et al., 2003). Note that this requires the output of 

MrSeries/demo_model_estimation_1st_level and 

MrSeries/demo_preprocessing. 

MrSeries/demo_preprocessing.m: Example preprocessing script for fMRI data. 

Illustrates how MrSeries automatically updates data and populates appropriate properties 

such as mean, snr, sd images, tissue probability maps and masks. 

MrSeries/demo_snr_analysis_mrseries.m: Example of a tSNR assessment in 

different ROIs illustrating the impact of different preprocessing steps on tSNR in grey matter. 

 

MrDimInfo/demo_dim_info.m: The MrDimInfo class implements data selection and 

access used in plots and computations. The demo covers the creation of dimInfo objects, 

retrieving parameters via get_dims and dimInfo.dimLabel, adding/setting dimensions, 

retrieving array indices and sampling points, selecting a subset of dimensions and creating 

dimInfos from files. Note that dimInfo does not know about the affineGeometry, i.e. 

all sampling points are with reference to the data matrix. 

 

MrAffineGeometry/demo_affine_geometry.m: Exemplifies creation of a 

MrAffineGeometry object using a nifti file, a Philips par/rec file, prop/val pairs or an affine 

transformation matrix. 

 

MrImageGeometry/demo_image_geometry.m: Shows how an MrImageGeometry 

object can be created from file or via MrDimInfo and MrAffineGeometry objects. 

 

MrDataNd/demo_save.m: Illustrates how data are split to allow compatibility with SPM 

read-in. 

 

MrCopyData/demo_copy_data.m: Shows the functionality of MrCopyData for deep 

cloning and recursive operations. 
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4.4 Discussion and conclusion 

4.4.1 Summary 

We have presented the uniQC toolbox that integrates image operations and visualisation for 

multi-dimensional data sets. UniQC provides a framework with intuitive access to well-

established SPM operations and versatile built-in MATLAB functions. Thus, it enables the 

implementation of flexible and interactive analysis workflows during (f)MRI sequence 

development and the adaptive design of QC pipelines when translating new acquisition 

techniques into neuroscientific practice. 

Following the development towards the acquisition of large data sets (Van Essen et al., 

2013), QC analysis (Esteban et al., 2017) and the prescription of complex analysis pipelines 

(Gorgolewski et al., 2011) have produced powerful tools to handle large data sets. In 

contrast, Lipsia (Lohmann et al., 2001) provides advanced visualisation tools for statistical 

maps on cortical segmentations, but is very prescriptive with regard to the performed 

analysis. UniQC takes a slightly different stance, and focuses on the in-depth analysis of 

one data set, as often encountered in methods development, ideally right next to the scanner 

console during data acquisition. Therein, flexibility, reproducibility and accessibility are 

pursued by adapting an already established syntax, i.e. MATLAB and SPM commands, the 

modularization of workflows into small functional units, and the integration of comprehensive 

meta-data for documentation. 

4.4.2 Comparison to other fMRI analysis software 

Most SPM user will be familiar with spm_imcalc, and also its restrictions to either a few 

images or operations along the 4th dimension. Thus, spm_imcalc is sufficient to compute 

a tSNR image, but lacks flexibility to easily compare the average tSNR within a ROI before 

and after realignment (see demo_snr_analysis_mrseries for the implementation within 

uniQC). The FSL software package (Jenkinson et al., 2012) provides similar functions as 

uniQC. However, a fundamental difference is the strictly defined dimensionality (4D image 

time series for fMRI) in FSL, which is not the case in uniQC. Further, uniQC is integrated 

into a powerful and versatile development environment (MATLAB), whereas a text editor is 

sufficient, but also the limit, for the development of shell scripts as used in FSL. For example, 

executing one code section at a time in MATLAB allows the concurrent development and 

documentation of a performed analysis. Visualisation (fslview), matrix operations (fslmaths) 

and processing options (e.g. flirt) are all separate programs in FSL, and their integration is 

required solely from the user side. The documentation of the processing steps is also the 
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responsibility of the user, especially when using the GUI or the command line. To increase 

the ease of use, uniQC features one common interface to all processing steps, allows their 

straightforward concatenation and provides versatile and built-in documentation options.  

Apart from new conceptual developments, the integration of uniQC into SPM and MATLAB 

provides a number of important advantages to lower the barrier of entry in comparison to 

other software packages such as MINC11, AFNI (Cox, 1996), Freesurfer (Fischl, 2012) and 

FSL – at the cost of requiring a MATLAB license. In particular, the high-level language and 

the syntax chosen in uniQC allows also non-expert programmers to easily express their 

ideas and interact playfully with the data. Additionally, the cross-platform compatibility of 

uniQC allows different users to collaboratively evaluate a data set or the same user to 

analyse their data using different underlying computing infrastructure. In comparison, MINC, 

AFNI, Freesurfer and FSL are all intended for Linux – and often specific flavours or versions 

thereof – or MacOS. Using these tools under Windows either requires virtual machines, 

WSL12, or Cygwin13 rebuilds, which then need constant maintenance from the developers14. 

As a consequence, MINC, AFNI and FSL require, next to elaborate installation guidelines, 

root access/administrator privileges15,16,17, which are often not available on shared 

infrastructure. However, the installation of uniQC amounts to downloading SPM and uniQC 

and adding the path of the respective directories (addpath(SpmDirectory) for SPM and 

addpath(genpath(uniQcDirectory)) for uniQC). The most important advantage, 

though, is the easy integration of extensions or new algorithms. Because MATLAB code is 

directly interpreted, the underlying code is readily accessible and readable, and new 

features do not require re-compilation for different platforms. This allows to build a user and 

developer community, where already existing MATLAB code can be integrated and new 

features can be added without requiring experience in C++ or other low-level languages. 

Due to the modularisation, provided by the object-oriented design, users will not require a 

full immersion into the uniQC code base to extend the functionality of the framework. 

                                            
11 https://en.wikibooks.org/wiki/MINC 
12 https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux 
13 https://www.cygwin.com/ 
14 from https://en.wikibooks.org/wiki/MINC/Tutorials/BinaryInstalls accessed at the 27th of May, 2018: "For this 
build type I have not yet figured out a nice consistent way to build .deb dpkg files under debian that work. Nor 
have I put the time into figuring our the cygwin installer package structure (but will eventually). So what this 
means is that the cygwin download is a static .tar.gz archive of pre-compiled binaries that I build and release 
from time to time." 
15 https://en.wikibooks.org/wiki/MINC/Tutorials/BinaryInstalls 
16 https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/background_install/install_instructs/steps_linux_ubuntu16.html 
17 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation/Linux 
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UniQC is in particular driven to facilitate the interaction between the data and the users, 

allowing them to bring their expert knowledge into the data evaluation. In contrast to MINC, 

AFNI, Freesurfer, FSL, MRIQC, Nypipe and Lipsia, which are developed for fMRI data 

analysis to investigate brain function, uniQC specifically targets the data analysis performed 

during the development of new data acquisition techniques (Figure 4-9). Thus, uniQC will 

be valuable to everyone who requires a general framework for the analysis of high-

dimensional images, sequence and methods developers who are familiar with MATLAB but 

have limited experience with neuroimaging analysis software, and for SPM – users who 

want to add a QC pipeline to their standard analysis. Specifically during the translation into 

neuroscientific practice, one has to ascertain that the chosen method is appropriate for the 

designated application and the obtained benefits outweigh the additional effort. Additionally, 

an adaptive QC framework is required to ensure the continuous performance of a new 

technique. Therein, the quality measures established during the initial development need to 

be closely monitored to identify problems early on, along-side the more common outcomes 

of complex fMRI data analysis pipelines. 

 

Figure 4-9: Application stages and corresponding software requirements for image processing 
toolboxes. The uniQC toolbox main application stage is methods development and the translation 
of these methods into neuroscientific practice. During the pilot of a study, for example, different 
options need to be considered before the data acquisition from a group of subject begins. During 
the data acquisition, the established quality measures need to be closely monitored. Ultimately, 
many tools are available for data analysis of large data sets, but the established workflows through 
uniQC can be translated up to this stage. 
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4.4.3 Limitations and Outlook 

Limitations of uniQC include its dependence on the object-oriented framework in MATLAB, 

which is rapidly developing. Thus, fairly recent versions of MATLAB are required for good 

performance and full functionality, e.g. testsuite (introduced in R2016a) or 

numArgumentsFromSubscript for subsref (introduced in R2015b). Additionally, the 

storage of large data matrices in RAM and the creation of MrCopyObjects within methods 

can reduce performance in environments with low memory capabilities. 

Next enhancements of uniQC include the support of other data or file formats, such as read-

in functions for ISMRMRD or BIDS file structures, additional plot operations for MrDataNd 

to better visualize k-space data or k-space trajectories, and the extension of the unit test to 

all constructors and critical methods. 

4.5 Software note 

UniQC is released under the GPL (version 3.0) and available online via 

https://github.com/CAIsr/uniQC.  
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5.1 Summary 

The non-invasive investigation of brain function using fMRI has significantly advanced our 

understanding of cognitive processes and brain diseases (see e.g. Bullmore, 2012; Rosen 

and Savoy, 2012). Therein, functional sensitivity needs to be sufficiently high to obtain a 

faithful representation of the underlying neurovascular activity. Ascertaining adequate 

functional sensitivity homogeneously across the whole brain can be challenging, because it 

depends not only on the employed acquisition protocol, but also on its interaction with the 

underlying tissue microstructure. For example, increased iron levels as encountered in the 

sub-cortical nuclei of the basal ganglia reduce the effective transverse relaxation time 𝑇2
∗. 

Thus, the functional sensitivity in these areas is reduced compared to cortical regions. In 

this thesis, I have investigated the performance of multi-echo fMRI to overcome these 

limitations. I showed that functional sensitivity could be successfully increased in the basal 

ganglia nuclei, while preserving the sensitivity at the level of the cortex (Chapter 2 – Using 

multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical 

nuclei of the basal ganglia at ultra-high field (7T)). This findings suggest that multi-echo fMRI 

might be particularly beneficial when investigating motor functions in patients with 

Parkinson's disease as these patients have been shown to have heavily increased iron 

levels in the caudate and globus pallidus (Wang et al., 2016), and, hence considerably 

shorter 𝑇2
∗ in these areas compared to healthy controls. As demonstrated here, by using 

multi-echo fMRI it is possible to tailor the functional sensitivity to the properties of the 

underlying tissue, promising the means to overcome this issue. 

To further the general applicability of fMRI at the single-subject level, I have investigated the 

impact of simultaneous multi-slice (SMS) acquisitions on functional sensitivity (Breuer et al., 

2005; Feinberg et al., 2010; Larkman et al., 2001; Setsompop et al., 2012). This sequence 

type provides increased acquisition speed, i.e. more samples per unit time, and, thereby, 

increased statistical power to detect an effect. Especially when using fMRI to make clinically 

relevant predictions, valid inference at the single-subject level is necessary (Branco et al., 

2016; Stephan et al., 2017b). Here, I showed that modelling of physiological noise sources 

such as cardiac and respiratory activity, in combination with advanced pre-whitening 

schemes are crucial for single-subject fMRI using fast acquisition schemes (Chapter 3 - 

Serial correlations in single-subject fMRI with sub-second TR). Thus, the concurrent 

measurement of cardiac and respiratory traces should from part of every fMRI experiment 

at 7T. 

Over the course of this thesis, it has been necessary to assess functional sensitivity across 

all levels ranging from basic image quality to temporal signal-to-noise-ratios (tSNR), 
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contrast-to-noise-ratios (CNR), and t-scores. In particular during the development and 

evaluation of new acquisition strategies (Bollmann et al., 2017, Chapter 2 and Chapter 3), 

these measures need to be computed in a flexible, yet easily accessible manner. In 

particular, the convenient handling of multi-dimensional data, for example obtained by multi-

echo fMRI (Chapter 2), is not integrated in other fMRI analysis software. Thus, a general 

framework for the analysis of fMRI data and the evaluation of functional sensitivity has been 

developed. As a result, the uniQC toolbox was conceived to represent MRI data of arbitrary 

dimensionality and generalize matrix, image and preprocessing operations across these 

dimensions (Chapter 4 - Interactive and flexible quality control in fMRI sequence evaluation: 

the uniQC toolbox). For example, developmental versions of uniQC have already 

substantially simplified the evaluation of new acquisition schemes (Chapter 3, Bollmann et 

al., 2018; Kasper et al., 2018; Wyss et al., 2017), improvement of contrast mechanisms for 

arterial spin labelling at ultra-high field (Zimmer et al., 2016) and assessment of advanced 

noise modelling schemes (Kasper et al., 2017). 

5.2 Advanced pre-whitening schemes for single-subject fMRI 

Following the initial assessment of the pre-whitening performance of the FAST model in 

Chapter 3, Corbin et al. (2018) have provided a more detailed evaluation. In particular, they 

have assessed the pre-whitening performance based on the 𝑇𝑅 and the number of model 

components, and observed a slight dependence on the subject and the 𝑇𝑅. They confirmed 

our finding that the AR(1) model is insufficient to accurately model serial correlations in 

sequences with short 𝑇𝑅. In conclusion, they could derive a robust FAST model, which, in 

combination with physiological noise modelling, showed good pre-whitening performance 

across a range of 𝑇𝑅𝑠 and high computational stability. 

5.3 T-score testing for the mean as a measure of functional sensitivity 

Revisiting the definition of BOLD sensitivity in equation (14)  

𝑆𝐵𝑂𝐿𝐷 =
Δ𝐼|𝑇2∗→𝑇2∗+Δ𝑇2∗ ⋅ √𝑁

𝜎𝑡𝑖𝑚𝑒
.  

shows a number of similarities to the t-score presented in equation (7). 

𝑇 =
𝑐𝑇�̂�

√�̂�2𝑐𝑇(𝑋𝑇𝑋)−1𝑐
. 

In both, a measure of effect size (Δ𝐼 and �̂�, respectively) is compared to the variance of the 

noise (𝜎𝑡𝑖𝑚𝑒 and �̂�). A notable difference is the assumption of an independent and identically 

distributed error in equation (14), which is not the case for fMRI time series, and in particular 
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not for acquisitions with short TR (Chapter 3). Further, equation (14) does not take into 

account noise modelling in the GLM, which can substantially increase BOLD sensitivity by 

reducing �̂� (Hutton et al., 2011; Kasper et al., 2017). In particular in the presence of serial 

correlations, t-scores estimated using an appropriate pre-whitening model represent a more 

accurate measure of BOLD sensitivity. 

However, if noise properties of different sequences or the increased number of samples 

afforded by faster acquisitions are investigated, comparing t-scores rests on the assumption 

of equal effect sizes Δ𝐼 across different sessions. Since the BOLD response can be 

significantly altered by covariates such as attention even in primary sensory areas (Puckett 

et al., 2017), an elaborate design will be required to counteract these effects (as 

implemented in Chapter 2). An alternative formulation, based on the GLM, has been 

introduced in Corbin et al. (2018). Therein, BOLD sensitivity is assessed by t-score testing 

for the mean signal 𝐼:̅ 

𝑆𝐵𝑂𝐿𝐷 =
𝑐0
𝑇�̂�

√�̂�2𝑐0
𝑇(𝑋𝑤

𝑇𝑋𝑤)
−1𝑐0

=
𝐼̅

�̂�𝜂0
=
𝑡𝑆𝑁𝑅

𝜂0
 (19) 

where 𝑐0 is the contrast vector for the mean, 𝑋𝑤 is the pre-whitened design matrix, and 𝜂0 

characterizes the effective degrees of freedom. In the absence of serial correlations, 𝜂0 

reduces to √1/𝑁, i.e. the degrees of freedom assumed in equation (14). However, the 

numerator between the two definitions differs. Here, the effect size estimates are excluded, 

making it an easy-to-apply measure for functional sensitivity. Therein, the overall temporal 

noise, the effect of confound modelling, the effect of pre-whitening, and the design efficiency 

including the effective degrees of freedom, can be assessed simultaneously (Corbin et al., 

2018). 

5.4 Implications for group-level inference 

Most neuroimaging studies perform group level inference to generalize their findings to the 

population. Therein, mixed-effect analysis18 are performed, which describe a hierarchical, 

two-level process, in which a population effect with a between-subject variance 𝜎𝑏
2 give rise 

to an observation at the single-subject level with within-subject variance 𝜎𝑤
2 . Using a 

summary-statistics approach, the mean estimates �̂� from the first level are taken as the input 

of the second level, thereby implicitly containing contributions from within- and between-

subject variance. Since the restricted maximum likelihood estimation scheme provides 

                                            
18 Note that mixed-effects analysis as known from statistics have been introduced into the neuroimaging 
literature as random-effects analysis, but there is no difference between the two terms (Penny and Holmes, 
2007). 
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unbiased parameter estimates, a group-level inference is extremely robust against 

underestimation of within-subject variance (Penny and Holmes, 2007). However, the group-

level inference employed in Chapter 2 (Chen et al., 2012) explicitly combines effect size 

estimates and their variance. Since rapid acquisition schemes were used for both multi-echo 

and single-echo data, the single-subject t-scores might be inflated. However, the 

comparison performed in Chapter 2 still holds, because the within-subject variance is either 

equally underestimated in both conditions, or even more so for the single-echo condition 

because of its shorter 𝑇𝑅. Thus, conclusions about the relative sensitivity can still be drawn. 

The impact of a full-mixed effects analysis compared to a summary statistics approach 

remains to be explored. For example, Kirilina et al. (2016) investigated advanced acquisition 

schemes using multi-echo and 3D readouts to increase functional sensitivity. While robust 

improvements where observed at the single-subject level, high inter-subject variability 

limited the translation to the group level. Similarly, we have observed even stronger 

improvements at the single subject level for the multi-echo acquisition (Chapter 2). In 

general, between-subject variance can have three underlying sources: true differences in 

neuronal activity, differences in physiology and variance introduced through the 

measurement process. An example of a known confound in physiology are age-related 

changes in the cerebrovascular system (Bangen et al., 2009). Further, the orientation of the 

cortical sheet to the main magnetic field can have a significant impact on the measured 

signal (Viessmann et al., 2018). Thus, new acquisition techniques may not only target 

variance at the single-subject level, but also reduce unwanted differences between subjects. 

5.5 The impact of spatial specificity on statistical power 

We have discussed the definition of functional sensitivity, and in particular how both BOLD 

sensitivity and spatial specificity influence overall functional sensitivity. Note that the 

definition of these two deviates from the definition of sensitivity (true positive rate) and 

specificity (true negative rate) in classical hypothesis testing. This originated from a 

challenge particular to fMRI, i.e. the use of voxel-based analysis to form topological 

inference. During the data acquisition, a continuous object is discretised, and the signal is 

averaged within pre-specified volume elements (= voxels). These voxels are neither 

independent nor does their spatial extent typically match organisational features of brain 

function. To draw conclusions independent from the underlying sampling grid, inference is 

usually performed to identify regions, cluster or peaks as active. Consequently, before 

sensitivity or specificity in the classical sense can be estimated, the underlying fundamental 

test item, and in particular its spatial extent, need to be specified. The spatial specificity 
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introduced here serves the purpose to illustrate the different parameters which define this 

test item. Importantly, spatial specificity also impacts BOLD sensitivity, and functional 

sensitivity thus needs to be evaluated considering both. Then, classical evaluation of 

sensitivity and specificity, such as receiver operating characteristics estimation can be 

performed (Nandy and Cordes, 2004; Skudlarski et al., 1999; Sorenson and Wang, 1996). 

Especially in group analyses, fMRI faces a second challenge related to spatial specificity 

and BOLD sensitivity, caused by the small number of independent samples (subjects) 

compared to the large number of tested variables (voxels/clusters/peaks). This gives rise to 

two effects, the first one is the low reproducibility of fMRI studies due to inflated false positive 

rates (Button et al., 2013; Eklund et al., 2015; Ioannidis, 2005). In response, a white paper 

has been compiled by the neuroimaging community describing best practices in data 

analysis and sharing (Nichols et al., 2017), and commitments towards implementing these 

practices have been made by scientific journals (“Fostering reproducible fMRI research,” 

2017). However, inference in fMRI does not stop at the question of the presence or absence 

of an effect, but most of the interpretation rests on the spatial distribution of the observed 

activity pattern or estimated connectivity parameters. There, the second problem, which has 

been discussed to a lesser degree, but potentially has even larger impact, manifests. 

Cremers et al. (2017) show how too low power, i.e. too little sensitivity, does not simply lead 

to non-significant findings, but rather produces spurious, misleading patterns, which in turn 

lead to heavily compromised models of brain function. For example, strong, localized effects 

where observed in small subsamples with a typical group size for a cognitive task. However, 

the full spatial extent of the response could only be identified using the full sample with more 

than 450 participants. Furthermore, considerable differences between the regions identified 

as active within each subsample were observed, although all of them were contained within 

the results obtained from the whole sample. Consequently, spatial specificity needs to match 

the underlying distribution of neuronal activity for optimal functional sensitivity. 

5.6 Outlook 

We have seen how the definition of functional sensitivity has developed over time. Being 

initially a measure of effect size only (Deichmann et al., 2002) (eq. (9)), it evolved towards 

a measure of the ability to detect an effect above the noise floor (Poser et al., 2006) (eq. 

(12)). Following from the statistical analysis, it now incorporates also measures of how 

efficiently signal and noise can be estimated (Corbin et al., 2018) (eq. (19)). In the future, 

new demands could include estimates on power or reproducibility – accelerated through the 
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development towards clinical fMRI19, or the ability to delineate fine-grained sub-structures 

(Kashyap et al., 2017). Thus, the interaction between the data acquisition and the analysis 

will continue to shape the definition of functional sensitivity. 

                                            
19 http://www.thebrainblog.org/2018/05/18/if-how-when-fmri-might-go-clinical/ 
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