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Abstract
Deficits in copying (“constructional apraxia”) is generally defined as a multifaceted deficit. The 
exact neural correlates of the different types of copying errors are unknown. To assess wheth-
er the different categories of errors on the pentagon drawing relate to different neural cor-
relates, we examined the pentagon drawings of the MMSE in persons with subjective cogni-
tive complaints, mild cognitive impairment, or early dementia due to Alzheimer’s disease. We 
adopted a qualitative scoring method for the pentagon copy test (QSPT) which categorizes 
different possible errors in copying rather than the dichotomous categories “correct” or “in-
correct.” We correlated (regional) gray matter volumes with performance on the different 
categories of the QSPT. Results showed that the total score of the QSPT was specifically as-
sociated with parietal gray matter volume and not with frontal, temporal, and occipital gray 
matter volume. A more fine-grained analysis of the errors reveals that the intersection score 
and the number of angles share their underlying neural correlates and are associated with 
specific subregions of the parietal cortex. These results are in line with the idea that construc-
tional apraxia can be attributed to the failure to integrate visual information correctly from 
one fixation to the next, a process called spatial remapping. © 2018 The Author(s)
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Copying a drawing is a complex cognitive operation that involves various cognitive 
domains, including visual perception, visual imagery, and graphic production (i.e., translating 
the visual image to a motor command [1]). Deficits in copying can occur after stroke [2, 3], 
but are also observed in Alzheimer’s disease (AD) [4, 5], dementia with Lewy bodies [4], and 
patients with mild cognitive impairment (MCI) [5, 6]. Deficits in copying are generally referred 
to as “constructional apraxia,” defined as an acquired deficit in copying even simple drawings 
accurately, without difficulties in making individual motor movements [7]. Besides diffi-
culties in copying, constructional apraxia is also characterized by problems in building and 
assembling objects. Ala et al. [4] reported that 60% of patients with AD included in their study 
had drawing difficulties, as objectified using the Pentagon copying task of the Mini-Mental 
State Examination (MMSE).

 The range of cognitive functions involved in copying implies that a unifying explanation 
for all constructional apraxia is implausible. Given that a widespread neural network is 
required for accurate copying [8], damage to different parts of this network could result in 
different symptoms on copying tasks. It has therefore been suggested that constructional 
apraxia should not be considered a unitary deficit, but is better defined as a multifaceted 
deficit that can be the result of different neural correlates [9]. It has indeed been suggested 
that deficits after frontal or parietal damage differ [for a review, see 10]. In this explanation, 
damage to the frontal regions is more related to errors in perseveration, resulting in patients 
producing the same figure repeatedly, and errors in planning, resulting in poor overall orga-
nization [11]. Parietal damage results in rotational errors and errors in orientation [12], due 
to deficits in visuospatial and selective attention. It has recently even been proposed that the 
key deficit in constructional apraxia is the failure to integrate visual information correctly 
from one eye movement fixation to the next, a crucial function of the posterior parietal cortex 
[3]. However, the exact neural correlates of the different types of copying errors are currently 
unknown.

 Copying can be assessed using a wide range of tasks, with some studies using the pentagon 
copying task of the MMSE [e.g., 13] and other studies using the Rey-Osterrieth complex figure 
[e.g., 3]. The pentagon copying task is particularly interesting, given the wide use of the MMSE 
to assess general cognitive abilities and the known time benefits of using short drawing tests 
early in the disease process [14]. Qualitative and reproducible methods to evaluate the 
pentagon sub-item have long been lacking, however. This has resulted in a debate in the liter-
ature about the criteria for considering a copy normal or abnormal [e.g., 15], casting doubt 
about the observed dissociations between the different neurodegenerative disorders based 
on the pentagon copying task. Recently, a qualitative scoring method for the pentagon copy 
test was developed with a good interrater and intrasubject reliability [16]. This method, 
termed the “qualitative scoring method for the pentagon copy test” (QSPT), categorizes 
different possible errors in copying, resulting in more information about the quality of the 
copy than the dichotomous categories “correct” or “incorrect.” The use of dichotomous cate-
gories potentially omits relevant information on the cognitive processes associated with 
copying figures. This new approach is therefore promising, as specific errors on this copying 
test could point to specific underlying neural correlates. QSPT allows for scoring the pentagon 
drawing on various specific categories, such as the correct number of angles, the correct 
distance between the objects, and any possible incorrect rotation that might be present in the 
copy. For instance, Mitolo et al. [17] proposed that the number of angles is the optimal way 
to distinguish between dementia with Lewy bodies and AD [see also 6]. 

Currently, the different neural correlates of the individual categories of the QSPT are 
lacking. Therefore, to assess whether the different categories of errors on the pentagon 
drawing relate to different neural correlates, we examined the pentagon drawings in a 
memory clinic population, specifically persons with subjective cognitive complaints (SCC), 
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MCI, or early dementia due to AD. More specifically, we correlated (regional) gray matter 
volumes on 3T MRI with performance on the different categories of the QSPT. Based on the 
previous literature, we expected errors in perseveration and planning to be associated with 
lower frontal gray matter volumes, whereas errors in the spatial relationship among 
constituent elements to be associated with lower parietal gray matter volumes.

Methods

Participants
Ninety-four participants with cognitive complaints were recruited through the memory clinic at the 

University Medical Center Utrecht between October 2009 and February 2013. Eligibility criteria for a stan-
dardized research workup for these patients were: (1) Mini-Mental Status Examination (MMSE) score ≥20, 
(2) no other psychiatric or neurological disorder that could affect cognitive functioning apart from neurode-
generative disorders or cerebrovascular disease, (3) no recent nondisabling stroke (< 2 years) or any disabling 
stroke, major depression or a history of alcohol or substance abuse. The standardized evaluation included 
medical history, physical and neurological examination, laboratory testing (general measures, such as 
glucose, kidney functioning, hemoglobin, and TSH, which are commonly performed in a memory clinic 
setting), neuropsychological assessment (described later in more detail), and a 3T MRI scan. Four partici-
pants were excluded due to unreliable volumetric measurements on MRI (e.g., movement artefacts). For the 
present study, all participants with a diagnosis of early dementia due to AD (eAD), amnestic MCI (aMCI), or 
SCC were included. Diagnoses were established in a multidisciplinary meeting according to internationally 
accepted criteria (NINCDS-ADRDA criteria for AD [18]; Petersen criteria for aMCI, i.e. 1.5 SD below the 
normative average [19]). 

Forty-one participants met the criteria for eAD (30 probable AD, 11 possible AD). Patients with other 
types of dementia (n = 4) were excluded. Thirty-eight participants met the criteria for aMCI. Participants with 
SCC (n = 7) were included if they had acquired SCC, without objective impairments on neuropsychological 
testing. For the purpose of this study, participants with SCC were included to ensure a wider total perfor-
mance range on neuropsychological assessment and gray matter volumes on MRI. The study was carried out 
in accordance with the principles of the Declaration of Helsinki and approved by the local ethics committee. 
All participants gave written informed consent. 

Neuropsychological Assessment
Participants performed a standardized neuropsychological assessment. Tests were administered by a 

trained neuropsychologist and covered the major cognitive functions. Briefly, the test battery included the 
following tests: the forward condition of the Digit Span (Wechsler Adult Intelligence Scale 3rd edition, WAIS-
III) was used to assess attention. Working memory was assessed with the backward condition of the WAIS-III 
Digit Span. For memory, the Visual Association Test and the Dutch version of the Rey Auditory Verbal 
Learning Test (RAVLT, immediate and delayed recall) were used. The Trail Making Test was included as a 
measure of processing speed (Part A) and executive functioning (Part B/Part A ratio). Similarly, the Stroop 
Color Word Test was used to assess processing speed (Card I and II) and executive functioning (Card III/Card 
II ratio). Executive functioning and language were additionally assessed using a Category Fluency test (animal 
naming). Visual perception was assessed with the Incomplete Letters and Position Discrimination subtests 
of the Visual Object and Space Perception battery (VOSP). The Mini Mental-State Examination (MMSE) was 
included as a measure of global cognition functioning.

Reevaluation of MMSE-Pentagon Scoring
Copying the overlapping pentagons is a standard sub-item of the MMSE. Traditionally, it is scored 

dichotomously as either correct or incorrect. A correct copy entails the reproduction of two figures with 5 
angles that intersect forming a four-angled figure. Qualitative evaluation of the pentagon copy is generally 
not performed, thereby omitting potentially relevant information on the cognitive processes associated with 
copying figures. To this aim, Caffarra et al. [16] introduced a qualitative and reproducible method to evaluate 
the pentagon copy (qualitative scoring method of the pentagon copy test; QSPT). It takes into account five 
criteria of judgment (Table 1): number of angles, distance/intersection between the two figures, closing/
opening of the contour, rotation of one or both pentagons, and closing-in. A total score is also calculated 
corresponding to the sum of the individual scores of each parameter, ranging from 0 to 13. All pentagon 
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drawings were collected from the original MMSE forms and were independently reevaluated according to 
the QSPT criteria by two of the authors (S.v.d.S., E.v.d.B.). Any discrepancies between the scores were solved 
in a consensus meeting. See scoring examples in Figure 1.

MRI Data
MRI data were acquired on a Philips 3T scanner (Achieva; Philips, Best, The Netherlands). For each 

participant, a standardized MRI scan protocol was performed, consisting of a 3D T1-weighted sequence (192 
slices, voxel size: 1.00 × 1.00 × 1.00 mm, repetition time/echo time: 7.9/4.5 ms). The 3D T1-weighted images 
were processed using the recon-all pipeline in Freesurfer (http://surfer.nmr.mgh.harvard.edu [20]). Within 
this pipeline, the brain mask and reconstructed cortical surfaces were visually inspected, and segmentation 
inaccuracies were manually corrected according to the Freesurfer user guidelines. The Desikan-Killiany 
gyral-based cortical atlas [21] was used to subdivide the gray matter segmentations into anatomical/func-
tional brain regions. The gray matter volumes per lobe and per brain region were extracted and used for 
further analyses.

Statistical Analysis
Between-group differences in characteristics were analyzed with analysis of variance for continuous 

variables, Mann-Whitney U tests for nonparametric data, and χ2 tests for proportions. The association 
between the total QSPT score and gray matter volume of the total frontal, parietal, temporal, and occipital 
lobes was examined in the total study population by linear regression analysis adjusted for age, sex, and total 
intracranial volume. In case of a statistically significant association, subsequent linear regression analysis 
was performed on the gray matter volume of the subareas of this lobe and the subscores of the QSPT (adjusted 
for age, sex, and total intracranial volume). As no participant showed closing-in on the pentagon copy, this 
variable was dropped from the analysis. 

Table 1. Qualitative scoring method of the pentagon copying test (QSPT) [16]

Parameter Performance Score

1. Number of angles 10 4
10±1 3
10±2 2
7–5 1
<5 or >12 0

2. Distance/intersection Correct intersection 4
Wrong intersection 3
Contact without intersection 2
No contact, distance <1 cm 1
No contact, distance >1 cm 0

3. Closure/openinga Closing both figures 2
Closing only one figure 1
Opening both figures 0

4. Rotationb Correct orientation of both figures 2
Rotation of one figure (either one figure is absent or it is not a 
pentagon, then it is not assessable)

1

Rotation of both figures (or both not assessable like pentagons) 0

5. Closing-in Absent 1
Present 0

Total Sum of 1–5 0–13

Scoring criteria based on Caffarra et al. [16]. a Figure is considered close even though two sides do not 
touch each other but the distance is ≤1 mm. b When there is no figure or figure is not a pentagon (then rotation 
is not assessable) the score is 0. When rotation is less than 45°, figure is not considered rotated. Tremor is 
ignored.
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Further, a sensitivity analysis was performed on “classic” brain areas associated with Alzheimer type 
pathology (e.g., medial temporal lobe, precuneus) and measures of memory (Visual Association Test, RAVLT 
immediate and delayed recall). This way, we could determine whether the observed associations with the 
QSPT subscores are specific to constructional apraxia or due to a more general effect of disease severity. All 
analyses were performed with SPSS version 21 (IBM Corp.). 

Results

The characteristics of the study population are presented in Table 2. The aMCI and eAD 
patients were older than the SCC group (F(2, 83) = 2.17, p < 0.05). The eAD group had a low- 
er level of education (p = 0.03). There was no significant between-group difference in sex 
(χ2(2) = 5.0, p = 0.08). As expected, the MMSE score was significantly lower for the eAD group 
compared to aMCI and SCC (p < 0.01). The mean MMSE score of 24.4 (SD 2.3) for the eAD 
patients indeed indicates early stage AD. The original dichotomous (correct/incorrect) 
scoring method of the pentagon copy results in a high percentage (> 78%) of correct responses. 
There was no significant between group difference in total QSPT score (F(2, 83) = 1.49, p < 
0.05).

Association between Gray Matter Volume and QSPT Pentagon Scoring
The QSPT total score showed a significant association with parietal gray matter volume 

(adjusted standardized regression coefficient beta 0.39 (95% confidence interval 0.08 to 

1. Angles 
2. Intersection
3. Closure
4. Rotation
5. Closing-in
Total

4
4
1
2
1
12

1. Angles
2. Intersection
3. Closure
4. Rotation
5. Closing-in
Total

3
4
1
1
1
10

1. Angles
2. Intersection
3. Closure
4. Rotation
5. Closing-in
Total

2
2
2
0
1
7

1. Angles
2. Intersection
3. Closure
4. Rotation
5. Closing-in
Total

3
0
0
1
1
5

1. Angles
2. Intersection
3. Closure
4. Rotation
5. Closing-in
Total

1
0
0
0
1
2Fig. 1. Scoring examples of the 

QSPT pentagon scoring system.
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0.71, p < 0.01), but not with the gray matter volumes of the frontal, temporal, or occipital lobes 
(0.28 [–0.08 to 0.64]; 0.25 [–0.06 to 0.57]; 0.25 [–0.05 to 0.55], all p > 0.05). Table 3 shows the 
results of the linear regression analysis of the gray matter volume of the cortical subregions 
of the parietal lobe and the subscores of the QSPT. These analyses show that the superior, 
inferior, supramarginal, and postcentral parietal gray matter volumes are associated with the 
number of angles and the intersection scores of the pentagon copy (range 0.27 [0.01 to 0.53] 
to 0.45 [0.19 to 0.72], p < 0.05). In addition, the supramarginal parietal gray matter volume 
is associated with rotation of the pentagon (0.30 [0.02 to 0.58], p < 0.05), and the posterior 
cingulate gray matter volume shows an association with the intersection of the pentagon 
copy (0.29 [0.03 to 0.55], p < 0.05). The closure criterion of the QSPT was not associated with 
any of the parietal cortical subregions (range –0.17 [–0.48 to 0.14] to 0.10 [–0.16 to 0.36], all 
p > 0.05). Because of the ordinal nature of several of the QSPT variables, all analyses were 
repeated with ordinal regression analysis (PLUM). These analyses yielded highly similar 
results (data not shown).

Sensitivity Analyses
The previously described results indicate an association between (cortical subregions of) 

the parietal lobe and the qualitative scoring criteria of the pentagon. As a sensitivity analysis, 
we additionally examined the association between brain regions that are typically affected in 
AD and measures of memory (Visual Association Test, RAVLT immediate and delayed recall). 
Indeed, the Visual Association Test is significantly associated with the volume of the precuneus 
(standardized regression coefficient 0.58 [0.30 to 0.88], p < 0.01) and the middle temporal 
(0.32 [0.03 to 0.59], p < 0.05) and parahippocampal volume (0.31 [0.05 to 0.53], p < 0.05), but 
also shows modest associations with the inferior temporal and fusiform gyrus (see Table 4). 
The RAVLT delayed recall test also shows specific associations with the precuneus (0.46 [0.20 
to 0.73], p < 0.01), the superior, middle, and inferior temporal regions, and the volumes of the 

Table 2. Characteristics of the study sample

SCC MCI AD

Subjects, n 7 38 41
Age, years 69.3 (8.4) 75.1 (8.6) 76.4 (8.2)
Males 6 (86%) 16 (42%) 23 (56%)
Educationa 5.1 (1.5) 5.2 (1.3) 4.7 (1.6)
Median CDR score (IQR) 0.5 (0–0.5) 0.5 (0.5–0.5) 1 (0.5–1.0)
MMSE 28.9 (0.7) 27.4 (1.8) 24.4 (2.3)

Pentagon scoring
Correct pentagon copy 6 (86%) 34 (90%) 32 (78%)
QSPT total (range 0–13) 11.9 (1.5) 11.6 (1.3) 10.9 (2.1)

Gray matter volumes (in % ICV)
Frontal GMV 10.6 (1.3) 9.7 (1.1) 9.4 (1.2) 
Parietal GMV 7.3 (1.0) 6.6 (0.7) 6.2 (0.7)
Temporal GMV 6.7 (0.7) 5.9 (0.8) 5.5 (0.7)
Occipital GMV 3.0 (0.4) 2.7 (0.3) 2.5 (0.3)

Data are means (SD) or n (%) unless otherwise specified. SCC, subjective cognitive complaints; AD, 
Alzheimer’s disease, GMV, gray matter volume; CDR, Clinical Dementia Rating; IQR, interquartile range; 
MMSE, Mini-Mental State Examination; QSPT, qualitative scoring method for the pentagon copy test; MCI, 
mild cognitive impairment. a Education scored in 7 levels according to the Dutch system, 1 = less than primary 
school, 7 = university degree. 
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entorhinal and parahippocampal regions (range of standardized regression coefficients 0.22 
[0.01 to 0.43] to 0.40 [0.13 to 0.64], all p < 0.05). The RAVLT immediate recall test showed 
association with a wider range of both parietal and temporal areas (Table 4), possibly indi-
cating additional involvement of other (nonmemory) processes, such as attention and exec-
utive functioning.

Discussion

Deficits in copying can occur after both frontal and parietal damage. The aim of the 
present study was to correlate the different categories of errors on the pentagon drawing to 
neural correlates. We used a novel method to categorize different possible errors in copying, 
the QSPT [16].

Results showed that the total score of the QSPT was specifically associated with parietal 
gray matter volume and not with frontal, temporal, and occipital gray matter volume. Results 

Table 4. Linear regression analysis of the association between gray matter volume and memory performance

RAVLT immediate RAVLT delayed Visual association test

Parietal gray matter volume
Superior parietal 0.23 (–0.03 to 0.50) 0.18 (–0.05 to 0.41) 0.08 (–0.17 to 0.33)
Inferior parietal 0.51 (0.26 to 0.78)** 0.26 (0.02 to 0.50)* 0.24 (–0.07 to 0.50)
Supramarginal 0.42 (0.15 to 0.71)** 0.14 (–0.12 to 0.40) –0.01 (–0.29 to 0.26)
Postcentral 0.37 (0.08 to 0.68)* 0.21 (–0.06 to 0.48) 0.25 (–0.03 to 0.53)
Precuneus 0.58 (0.30 to 0.88)** 0.46 (0.20 to 0.73)** 0.57 (0.30 to 0.53)**
Posterior cingulate 0.15 (–0.12 to 0.42) 0.17 (–0.07 to 0.41) 0.10 (–0.15 to 0.35)
Isthmus cingulate 0.19 (–0.11 to 0.49) 0.14 (–0.12 to 0.41) 0.16 (–0.12 to 0.44)

Temporal gray matter volume
Superior temporal 0.59 (0.03 to 0.86)** 0.30 (0.03 to 0.57)* 0.22 (–0.07 to 0.49)
Middle temporal 0.50 (0.22 to 0.80)** 0.36 (0.09 to 0.64)* 0.32 (0.03 to 0.59)*
Inferior temporal 0.42 (0.13 to 0.68)** 0.40 (0.13 to 0.64)** 0.30 (0.02 to 0.54)*
Fusiform 0.38 (0.12 to 0.67)** 0.18 (–0.07 to 0.45) 0.27 (0.01 to –0.54)*
Transverse temporal 0.25 (0.01 to 0.49)* 0.15 (–0.07 to 0.38) 0.18 (–0.05 to 0.40)
Entorhinal 0.17 (–0.06 to 0.40) 0.22 (0.01 to 0.43)* 0.09 (–0.08 to 0.27) 
Parahippocampal 0.49 (0.22 to 0.73)** 0.45 (0.22 to 0.68)** 0.31 (0.05 to 0.53)*

Analyses adjusted for age, sex, and total intracranial volume. Data are standardized regression coefficients beta and 95% 
confidence interval. RAVLT, Rey Auditory Verbal Learning Test. * p < 0.05, ** p < 0.01.

Table 3. Linear regression analysis of the gray matter volume in parietal subregions and QSPT pentagon scoring

QSPT total QSPT angles QSPT intersection QSPT closure QSPT rotation

Superior parietal 0.32 (0.07 to 0.57)* 0.31 (0.06 to 0.55)* 0.31 (0.06 to 0.56)* 0.10 (–0.16 to 0.36) 0.16 (–0.09 to 0.42)
Inferior parietal 0.18 (–0.09 to 0.45) 0.27 (0.01 to 0.53)* 0.28 (0.02 to 0.55)* –0.16 (–0.44 to 0.11) 0.10 (–0.17 to 0.37)
Supramarginal 0.37 (0.10 to 0.65)* 0.45 (0.19 to 0.72)* 0.39 (0.11 to 0.66)* –0.07 (–0.36 to 0.22) 0.30 (0.02 to 0.58)*
Postcentral 0.28 (–0.02 to 0.57) 0.33 (0.04 to 0.62)* 0.37 (0.08 to 0.66)* –0.12 (–0.43 to 0.18) 0.22 (–0.07 to 0.51)
Precuneus 0.13 (–0.17 to 0.44) 0.25 (–0.05 to 0.55) 0.21 (–0.09 to 0.52) –0.17 (–0.48 to 0.14) 0.10 (–0.21 to 0.40)
Posterior cingulate 0.28( 0.02 to 0.54)* 0.24 (–0.02 to 0.49) 0.29 (0.03 to 0.55)* 0.08 (–0.19 to –0.35) 0.18 (–0.08 to 0.44)
Isthmus cingulate 0.09 (–0.20 to 0.39) 0.20 (–0.08 to 0.49) 0.01 (–0.29 to 0.30) 0.04 (–0.26 to 0.34) 0.13 (–0.16 to 0.42)

Analyses adjusted for age, sex, and total intracranial volume. Data are standardized regression coefficients beta and 95% confidence interval. QSPT, qualitative 
scoring method for the pentagon copy test. * p < 0.05.
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from overall performance on the pentagon task have until now been inconsistent (and focused 
specifically on patients with Parkinson’s disease), with one study pointing specifically to gray 
matter volume in the frontal cortex [22] and another study revealing additional temporopa-
rietal involvement [23]. Importantly, these studies did not look at the different categories of 
errors. We included patients with different neural disorders and/or cognitive complaints to 
ensure a wide range of gray matter volumes on MRI.

The QSPT provides a fine-grained categorization of errors. When examining the corre-
lation of the different categories with gray matter volume, we only observed clear associa-
tions with parietal regions. Although the closure criterion was not associated with any region, 
the number of angles and the intersection score were associated with various subregions of 
the parietal cortex. The rotation score was the only category that was associated with one 
parietal region, namely the supramarginal parietal cortex. The validity of these results was 
supported by a sensitivity analysis in which we observed an association between brain 
regions that are typically affected in AD and measures of memory, indicating that the observed 
association with the QSPT subscores are specific to constructional apraxia and not due to a 
more general effect of disease severity.

Of the various categories of errors, the correct number of angles is of particular interest. 
Previous studies using the QSPT have observed that the number of angles is able to distin-
guish dementia with Lewy bodies from AD [6, 17]. Mitolo et al. [17] claim that correct copying 
of the number of errors requires subjects to generate a visual image of the image stored in 
semantic memory. Although this is an interesting suggestion, it is difficult to understand how 
such a mechanism would be specific to the number of angles and not be reflected in a correct 
intersection or a correct closure. Furthermore, our study has revealed that performance on 
the correct number of angles has the same neural correlates as the intersection score. 

Given the strong involvement of the posterior parietal cortex in accounting for the 
different categories of errors, one interesting hypothesis to explain the copying deficits 
observed in our study was proposed by Russell et al. [3]. They proposed that constructional 
apraxia can be attributed to the failure to integrate visual information correctly from one 
fixation to the next, a process called “spatial remapping.” To process visual information, the 
visual system redirects the high-acuity fovea to objects of interest in the visual field by 
rapidly moving the eyes, i.e. saccades. Although saccades dramatically alter the visual input, 
we subjectively experience a stable visual world, that is, a world in which items of interest 
are available for processing both before and after a saccade [24, 25]. Therefore, with each 
new fixation, our brain has to integrate the old and new retinal images with information 
about the current eye position and the magnitude and direction in which gaze was displaced 
by the most recent saccade. The saving, updating, and relocalization of the different parts 
of a visual scene, referred to as spatial remapping, allows us to accurately determine the 
location of external targets and generate eye or limb movements to these targets [26, 27]. 
This process has been particularly linked to the posterior parietal cortex [28]. After damage 
to the posterior parietal cortex, patients have difficulties in spatial remapping [3, 29, 30], 
which might result in difficulties on a copying task. In such a task, spatial information about 
a figure has to be maintained across saccades, as copying requires the execution of saccades 
between the original figure and the participant’s drawing. When spatial information is lost 
across saccades, the construction of the original figure is lost, resulting in a loss of memory 
for the correct number of angles and the correct rotation. Furthermore, a loss of the relation 
between the two individual pentagons across saccades will result in an incorrect inter-
section between the two figures. The only category that was not specific to a neural region, 
the closure criterion, might then only require object memory. Good performance on this 
criterion only involves memory that the objects need to be closed, and no spatial infor-
mation.
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Although we aimed to include a wide range of gray matter atrophy by including persons 
with SCC, MCI, and early dementia due to AD, it might be that the current findings are specific 
to the current sample. Most importantly, we included AD patients in a relatively early stage 
of their disease. This could have influenced the fact that we only observed associations with 
parietal areas. For instance, we excluded one category of errors, namely closing-in, as these 
errors were not observed in our sample. Interestingly, errors in closing-in have been asso-
ciated with frontal dysfunction [e.g., 31], although these errors of closing-in were not observed 
in the pentagon copying task but on other, more elaborate, copying tasks. As our study was 
specific to the relatively simple pentagon copying task, our results might not generalize to 
tasks tapping into more complex visuoconstruction, such as the Rey Complex Figure Task. 
Further, our groups were not equally large, with only 7 patients with SCC, compared to the 
much larger groups of patients with MCI and early dementia due to AD (both around 40). It 
is therefore important to note that our study was not aimed at comparing performance 
between these groups, but rather focused on the neural correlates of the different types of 
copying errors. Finally, our diagnoses of AD were not supported by biomarker evidence of 
Alzheimer’s pathology. 

As mentioned earlier, constructional apraxia is not a uniform deficit. The current study 
has revealed that the pentagon copying task is specifically sensitive to parietal damage and 
might therefore be a too simple task to grasp the full spectrum of possible drawing errors as 
a result of neurodegenerative gray matter atrophy. We have shown that a more fine-grained 
analysis of the errors in this task reveals that the intersection score and the number of angles 
share their underlying neural correlates and are associated with specific subregions of the 
parietal cortex. 

Appendix

Members of the Utrecht Vascular Cognitive Impairment (VCI) Study Group involved in the present study 
(in alphabetical order by department).

University Medical Center Utrecht, the Netherlands, Department of Neurology: G.J. Biessels, C. Maher, 
S.M. Heringa, L.J. Kappelle, Y.D. Reijmer, J. Verwer; Department of Radiology/Image Sciences Institute: J. de 
Bresser; Department of Geriatrics: H.L. Koek; Hospital Diakonessenhuis Zeist, the Netherlands: M. Hamaker, 
R. Faaij, M. Pleizier, E. Vriens; Erasmus MC University Medical Center, the Netherlands, Department of 
Neurology: E. van den Berg.
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