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Learning Cross-Modality Representations
from Multi-Modal Images

Gijs van Tulder and Marleen de Bruijne

Abstract—Machine learning algorithms can have difficulties
adapting to data from different sources, for example from differ-
ent imaging modalities. We present and analyze three techniques
for unsupervised cross-modality feature learning, using a shared
autoencoder-like convolutional network that learns a common
representation from multi-modal data. We investigate a form of
feature normalization, a learning objective that minimizes cross-
modality differences, and modality dropout, in which the network
is trained with varying subsets of modalities. We measure
the same-modality and cross-modality classification accuracies
and explore whether the models learn modality-specific or
shared features. This paper presents experiments on two public
datasets, with knee images from two MRI modalities, provided
by the Osteoarthritis Initiative, and brain tumor segmentation
on four MRI modalities from the BRATS challenge. All three
approaches improved the cross-modality classification accuracy,
with modality dropout and per-feature normalization giving
the largest improvement. We observed that the networks tend
to learn a combination of cross-modality and modality-specific
features. Overall, a combination of all three methods produced
the most cross-modality features and the highest cross-modality
classification accuracy, while maintaining most of the same-
modality accuracy.

Index Terms—Representation learning, Transfer learning, Au-
toencoders, Deep learning

I. INTRODUCTION

Many machine learning methods that work well on data
that is similar to their training data might fail on data with
different characteristics. This can lead to practical problems
in medical image analysis, for example when existing models
need to be applied to scans acquired with different imaging
protocols or with different scanners. In these cases, transfer
learning approaches can help to improve results, by allowing
data from different sources to be used to train a single
model that works for all sources. This paper proposes one
of these approaches, based on representation learning using
convolutional neural networks (CNNs). We present and study
several ways to encourage a CNN to learn a common feature
representation from heterogeneous data, in order to obtain a
source-independent representation that is similar for data from
all sources. This common representation makes it possible
to train a model on data from one source and apply it to
data from another. We apply these methods in cross-modality
experiments.
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Fig. 1. Schematic overview of the axial CNN for two modalities. For each
modality m, the input xm is encoded into a representation fm(xm). The
representations for all modalities are averaged into a mean representation
f(x), which is then used to compute reconstructions gm(f(x)) for all
modalities. Each additional modality adds an extra input and output plane
and is included in the average for the central layer.

Neural networks for cross-modality learning, such as the
model presented here, have been popular in computer vision
for some years (starting with [1]) and have more recently also
been applied to medical images (e.g., [2]). Similar approaches
to transfer knowledge between modalities have also been used
to learn from incomplete datasets with missing modalities
(e.g., [3] and [4]). In contrast with previous work learning
a joint representation using a single transformation for all
modalities (e.g., [5]), we propose cross-modality networks
that learn a separate transformation for each modality. This
allows the networks to model more complex transformations
between modalities, such as intensity inversions, instead of
merely learning modality-invariant features that are expressed
in the same way in all modalities.

Cross-modality classification is a relatively unexplored topic
in medical image analysis, but has received more attention in
multimedia retrieval, most often in works on cross-modality
classification of images and text (e.g., [6]–[11]). Feng et
al. [9] present cross-modal retrieval experiments in cross-
modal feature learning, using autoencoders and restricted
Boltzmann machines to learn shared representations from
images and text. They evaluate a learning objective similar
to the similarity term discussed in this paper, as well as a
form of modality dropout. Srivastava and Salakhutdinov [10]
use deep Boltzmann machines to learn joint representations
for text and images, reporting that multi-modal learning can
improve results even if some modalities are not available at
test time. Ngiam et al. [1] present cross-modality classification
experiments with restricted Boltzmann machines and deep au-
toencoders, showing that speech classification can be improved
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by learning from video and audio. They train with a form of
modality dropout to learn models that are robust to inputs with
missing modalities. Vukotić et al. [11] present cross-modal
deep networks based on deep autoencoders, aiming to learn
a common hidden representation from text and images in a
video hyperlinking task. In the medical domain, Moradi et
al. [12] proposed a cross-modality neural network combining
text and images for semi-automatic annotation of medical
images, using a two-step approach that first extracts features
from text and images and then learns a mapping between
the two domains. In this paper, we propose a single-step
method to learn cross-domain representations from multi-
modal medical images, and evaluate a number of additions
to obtain representations that perform well in cross-modality
classification.

Recent work using adversarial learning provides an alter-
native method for unsupervised domain adaptation, using an
adversarial loss function. This can be done at the image
level or at the feature representation level. Adversarial domain
adaptation on an image level can be implemented with cycle-
consistent generative adversarial networks (CycleGANs). For
example, Zhang et al. [13] applied this to CT and MRI data,
by training a CycleGAN to convert MRI data to CT and back.
In this case, the discriminator network attempts to discriminate
between CT derived from MRI data and real CT images. On
a feature level, the adversarial loss can be implemented by
a discriminator network that attempts to identify the source
modality of a sample from its feature representation. For
example, Kamnitsas et al. [14] applied this to an MRI and
CT brain segmentation task, and describe how the adversarial
loss helps to produce a feature representation that is more
similar across modalities. Unlike the methods proposed in this
paper, the adversarial methods do not use corresponding image
samples from both domains, but rely solely on the adversarial
loss to learn the translation.

We present results of patch-wise cross-modality classifica-
tion experiments on two multi-modal datasets: a knee cartilage
segmentation dataset with two different MRI sequences, and
a brain tumor segmentation dataset with four MRI sequences.
Voxel classification approaches such as the deep convolutional
networks used in this paper have been used previously for both
types of data. For example, knee cartilage segmentation has
been approached with texture features (e.g., [15]) and deep
neural networks [16]. Texture-based voxel classification also
gave good results for the brain tumor segmentation problem
(see [17] for an overview). In recent years, deep convolutional
networks have also been applied to this problem (e.g., [18]).

For both datasets, we use unlabeled training data with multi-
ple modalities per subject to train an axial CNN [2] that learns
source-specific transformations that map data from each source
to a single common representation. We evaluate this common
representation in a transfer learning setting, training a classifier
on labeled data from one source and applying it to data from
another. We combine the basic cross-modality architecture
with three techniques to further improve cross-modality feature
learning: modality dropout [1], [4], a similarity term [2], and
a normalization step. We analyze whether the models learn
mostly shared features, mostly modality-specific features, or a
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Fig. 2. The structure used for the encoding and decoding parts of the network,
with the size of intermediate representations shown between the blocks.

combination of both.
In this paper, we use an axial neural network architecture

that is similar to the architecture that we used in our earlier
work on the similarity term [2], although that paper used a
much simpler network without convolutional layers. The idea
of using a separate network path for each input source also
appears in work by Ngiam et al. [1] and Havaei et al. [4] on
modality dropout, although the latter only applied it to the
input side of a supervised classification network and not to
reconstruction. To the best of our knowledge, the combination
of all three methods and the extensive evaluation and analysis
of the feature representations learned by the different methods
is a novel contribution of this paper.

This paper is organized as follows. Section II outlines
the basic model and the three techniques to improve cross-
modality feature learning. Section III discusses the datasets.
Section IV gives an overview of the experiments, the results of
which are presented in Section V. Section VI and Section VII
discuss the conclusions.

II. METHODS

We investigate the axial convolutional neural network [2]
(Fig. 1) for cross-modality learning. This is an autoencoder-
like model that learns a common representation for data
from multiple modalities, which can then be used for cross-
modality classification: training a classifier on data from one
modality and applying it to data from another, using the
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shared representation as a common feature description for
samples from both modalities. In this section, we describe
the model and three extensions that can further improve the
cross-modality similarity of the representations.

A. Axial convolutional neural network
We construct a multi-input autoencoder network (Fig. 1)

that has an input x =
{
x1,x2, . . . ,xM

}
with corresponding

input patches xm for each of the M modalities. For a
modality m, given an input patch xm, the network uses a
modality-specific encoding transformation fm to compute the
representation fm (xm). Because the model should produce
the same representation for each of the modalities, we compute
the mean representation f (x) = 1

M

∑M
m=1 f

m (xm) and use
this as the input for the modality-specific decoding transforma-
tions gm (f (x)). The network is trained with an autoencoder
objective to minimize the sum of the reconstruction errors:

Lrecon =
M∑

m=1

|gm (f (x))− xm| . (1)

The model is trained with paired input patches x ={
x1,x2, . . . ,xM

}
. We assume that the images are registered

and that there is a voxelwise correspondence between all
patches xm for a given sample. Furthermore, although the
network can handle incomplete training samples for which
not all M modalities are available, it needs sufficient training
pairs to learn the correspondences between all modalities.

The encoding and decoding transformations in our models
are implemented as convolutional networks (Fig. 2) with a
sequence of convolution and batch normalization layers. The
encoding part of the network uses strided, valid convolutions
to avoid border effects in the central layer. The decoding part is
the inverse of the encoding part, using transposed convolutions
to reconstruct the original input size. All inner layers use leaky
rectified linear units; the reconstruction layer is linear to allow
it to reproduce the full range of input values.

Taking the mean representation over all modalities en-
codes our goal of learning a common representation across
modalities in the structure of the network: ideally, we want
the representation fm (xm) ≈ f (x) to be the same for all
modalities m. Using the average representation instead of a
single shared layer makes it possible to train and test with
incomplete data for which not all modalities are available:
by dividing the sum by the correct number of modalities, the
scale of the combined feature values becomes independent of
the number of input modalities.

Averaging the representations over all modalities is not
sufficient to learn cross-modality representations, because it
still allows the network to learn modality-specific features. If
the network is always trained with complete training samples,
for which all modalities are always available, it might allocate
a different part of the feature representation to each modality.
This would produce a single feature vector that can be used
to reconstruct all modalities, but it would not produce a true
cross-modality representation, because it is still dependent on
all input modalities. To obtain a true cross-modality repre-
sentation, we need to change how the model is trained. The
remainder of this section presents three techniques to do this.
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Complete input

After modality dropout

Axial CNN
Minibatch i, sample 2
Complete input

After modality dropout

Axial CNN

Minibatch i, sample 3
Complete input

After modality dropout

Axial CNN
Minibatch i, sample 4
Complete input

After modality dropout

Axial CNN

Fig. 3. Schematic illustration of modality dropout with four modalities. We
select a random subset of 1 to 4 modalities for each sample in each minibatch.
The network is only given the selected input modalities to compute the central
representation, but we ask it to reconstruct all modalities and optimize the full
reconstruction error. The subsets are generated independently for each sample,
so a minibatch can contain multiple modality combinations. We generate a
new random subset each time a sample is used for training.

B. Modality dropout

The first approach (used, for example, in [1] and [4]) mod-
ifies the training procedure. In the default training procedure,
the network is never explicitly forced to learn to reconstruct
one modality from another, because all modalities are always
available for all training samples. If the representation is
sufficiently large, the network might learn to use a separate
part of the representation for each modality. Modality dropout
prevents this by disabling modalities at random during train-
ing, computing the mean representation from a random subset
of modalities while still optimizing the reconstructions for
all modalities. For a model with M modalities, we select a
random subset of 1 to M input modalities in each update
step. We generate a random subset each time a sample is
included in a minibatch: the modalities can be different each
time a sample is used, and each minibatch can contain multiple
modality combinations (see Fig. 3). Using incomplete inputs
for training means that the network can no longer rely on the
original modality for its reconstruction, but is forced to learn
cross-modality reconstructions and representations.

C. Similarity term in the learning objective

The second approach explicitly adds cross-modality learning
to the learning objective, similar to the approach in [2]. We
compute the difference between the modality-specific repre-
sentations fm (xm) and the mean representation f (x). We
add this to the original learning objective (1) with a tunable
weight α ∈ [0, 1]:

Lsim =
M∑

m=1

|fm (xm)− f (x)| , (2)

Lcombined = (1− α)Lrecon + αLsim. (3)

Choosing α large enough will cause the network to reduce
the differences between the representations for each modality.
However, it is equally important not to set α too high: choosing
a value very close to 1 will disregard the reconstruction error
and can produce representations that may be very similar, but
are also very uninformative.
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The similarity term as defined in (2) can have another
undesired effect: it can be trivally minimized by reducing
the absolute feature values, so it might lead to very small
or completely disabled feature values. This reduces the loss
but does nothing to improve the cross-modality similarity.
To prevent this trivial optimization, we normalize all feature
vectors to zero mean and unit standard deviation.

D. Per-feature normalization

Global normalization across all features still allows cross-
modality differences between individual features: they can be
active for one modality and disabled in another. Our third
approach is therefore to normalize each individual feature
to zero mean and unit standard deviation, before averaging
the modality-specific representations to get the mean repre-
sentation. This per-feature normalization helps to remove a
large part of the differences between modalities, and allows
the network to focus on more meaningful ways to improve
the representation similarity. We implement this normalization
using a standard batch normalization procedure [19] to learn
estimates of standard deviation and mean for each feature, per-
modality, and to normalize the feature to zero-mean and unit
standard deviation. The batch normalization formula provides
scaling and shift parameters (β and γ in [19]), which allow
the model to scale and shift the features away from a zero
mean and unit standard deviation. In our case, doing so
could reintroduce differences between modalities. We fix the
parameters to β = 1 and γ = 0 to prevent this. (Note
that we only make this change for this specific per-feature
normalization step. We use the standard batch normalization
formula for the batch normalization layers in the network, as
shown in Fig. 1.)

III. DATA

We performed experiments for two tasks: knee cartilage
segmentation and brain tumor segmentation. In both cases,
we evaluate our methods on a patch-based classification task
in which we train classifiers to label the center voxel of a
15 × 15 × 15 voxel neighborhood. We take paired patches
from all modalities of a subject, such that the patch in each
modality represents the same physical location.

For the experiments on knee segmentation, we used knee
MRI images from the Osteoarthritis Initiative (OAI) [20],
with the manual cartilage and meniscus segmentations from
the iMorphics subset. For each subject, the dataset provides
normal (N) and fat-suppressed (FS) MRI scans (Fig. 4a),
made shortly after each other, which disagree on the inten-
sity of some tissue types. The normal scans also have a
somewhat better resolution. The dataset provides registered
and resampled scans for each subject, to a common voxel
spacing of 0.36×0.36×0.7mm. We extracted paired patches of
15×15×15 voxels, using the annotation of the center voxel in
the normal scan as the patch label to define a three-class clas-
sification problem (cartilage, meniscus and background). The
background voxels were sampled from a background mask,
which we constructed by dilating the cartilage and meniscus
segmentations with 10 voxels. We used N–FS pairs from

Normal

Fat-suppressed

(a) OAI

T1 Contrast-enhanced T1 (T1+c)

T2 FLAIR

(b) BRATS

Fig. 4. Example scans from OAI and BRATS, showing the two knee MRI
modalities and four brain MRI modalities.

baseline and 12-month follow-up sessions from 88 subjects,
excluding two pairs that were not properly aligned. For each
of the 172 pairs we extracted a randomly sampled, balanced
set of 5000 cartilage, 5000 meniscus and 5000 background
patches. Before extracting the patches, we normalized each
scan to have a zero mean and unit standard deviation in the
background and foreground voxels.

Our second dataset uses data from the BRATS brain tumor
segmentation challenge [17], which provides T1, contrast-
enhanced T1 (T1+c), T2 and FLAIR scans for each subject
(Fig. 4b). The challenge dataset (BRATS 2015) provides
manual segmentations of four tumor components and a brain
mask for each subject. The images and segmentations for each
subject have been registered to the contrast-enhanced T1 scan
and resampled to a 1× 1× 1mm voxel size. For each subject,
we extract patches from 15 × 15 × 15 at the same position
in each modality and use the label of the center voxel as the
label of this sample. Because some of the tumor components
are only visible on some of the modalities and we evaluate
single-modality cross-modality classification, we merged the
four tumor components into a single class to formulate a
two-class classification problem (tumor vs. non-tumor brain
tissue). The dataset contains scans of 220 subjects, for each
of which we extracted a balanced set of 5000 foreground and
5000 background patches. Before extracting the patches, we
normalized each scan to have a zero mean and unit standard
deviation in the brain mask.

IV. EXPERIMENTS

We present a comparison of all combinations of the three
techniques: modality dropout, per-feature normalization and a
range of weights α for the similarity term. For each combi-
nation, we trained axial neural networks to learn a common
feature representation. We then used the resulting networks to
compute a feature vector for each modality.

To evaluate the suitability of the common representation
for classification, we trained random forest classifiers on the
features extracted by each axial neural network. We distinguish
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two scenarios: same-modality and cross-modality classifica-
tion. For same-modality classification, we trained the classifier
on the features obtained from one modality and evaluate it
on a feature vector obtained from the same modality. For
cross-modality classification, we trained the classifier using
the features derived from a different modality than the one
used in testing.

As part of our analysis, we investigate to what extent the
models learn modality-specific or shared features. We do this
by training classifiers with only a subset of features, ranked by
the normalized cross-modality correlation (suggested in [21]).
We start with the feature that has the most similar values across
modalities and gradually add more, training a new random
forest for each subset.

Our networks were implemented using Keras [22] and
Theano [23]. We used stochastic gradient descent for 100
epochs on the OAI dataset and 50 epochs on the BRATS
dataset, which was sufficient for the networks to converge to
a stable state. The minibatch size was 64 patches, the learning
rate was 0.3 and the learning rate decay was 0.000002. We
used Scikit-learn [24] with the default settings to train random
forest classifiers with 30 trees.

We compare the results of our axial CNNs with those
of two baseline methods. Both baselines use the same layer
architecture as our axial networks (Fig. 2), but instead of learn-
ing multiple modality-specific transformations, the baseline
methods learn only a single transformation that is shared by
all modalities. In this way, they resemble normal autoencoders
that encode and decode a single input patch and optimize its
reconstruction error.

The two baselines use different training data to learn a
common representation. The first baseline method is trained to
reconstruct the training modality from itself, which produces
a transformation that we also apply to the testing modality.
For example, in a cross-modality classification experiment
with modalities A and B, the first baseline method learns its
representation only from patches of modality A, but the same
representation is used to compute the features for the patches
from modality B at test time. The second baseline learns the
transformation from all modalities combined. In the example
with A and B, this baseline would learn its representation from
a mixture of patches from A and patches from B, without
knowing which modality each patch is from.

We report results obtained in five-fold cross-validation. For
each dataset, we divided the paired scans in five random
subsets of approximately equal size, making sure that all scans
of a subject were kept in the same subset. Using each subset
in turn for testing, we first trained the axial neural networks on
the remaining four subsets and used these networks to compute
features for the training and test samples. For each subset, we
trained the random forest classifiers on data from the training
set and evaluate it on the test set. We report the mean accuracy
over all five folds.

We used a slightly modified procedure for the experiments
with subsets of most-correlated features, since these cross-
modality correlations need to be computed on data that was
not used to learn the representation. For these experiments, we
introduced a second, two-fold cross-validation step to compute

Input patch, normal (N) and fat-suppressed (FS) modalities

N

FS

Reconstructed from both modalities

N

FS

Reconstructed from normal (N) input

N

FS

Reconstructed from fat-suppressed (FS) input

N

FS

Fig. 5. Original input and reconstructions for 15 patches from the OAI
dataset, showing the center slice from each 3D patch. The reconstructions
are generated by an axial neural network trained with modality dropout, per-
feature normalization and a weight α = 0.1 for the similarity term. The first
reconstruction is generated from the central representation computed from
both input modalities. The second and third reconstructions are computed
using the central representation from the normal input or the fat-suppressed
input modality only.

the results: we split each test subset in two halves, ensuring
that all data from the same subject is in the same half, and
in turn use one half to select the features and the other half
to evaluate the classifier. We report the mean results over all
5×2 subsets, covering all samples in the dataset. If all features
are selected, this is equivalent to the normal five-fold cross-
validation.

V. RESULTS

This section presents the results of our experiments. First,
Section V-A presents the same-modality and cross-modality
classification accuracy for the various models. This provides
a overview of the performance of the proposed methods and
that of the baseline methods. We present the results for both
datasets, averaged over all five cross-validation folds.

Then, we take a closer look at the feature representations
learned by each model. Section V-B shows the standard
deviation, the cross-modality correlation, and the mutual in-
formation scores of the individual features. These metrics
provide an insight into how the modality dropout, per-feature
normalization and the similarity term influence the feature
learning process. Since each network is initialized randomly
and has a different feature representation, it is not possible to
average the measurements for individual features over multiple
cross-validation folds. We present the plots for one fold on the
OAI dataset, but found similar results for the other OAI folds
and on the BRATS dataset.

Finally, Section V-C tries to identify whether models learn
mostly shared or mostly modality-specific features, We show
the classification accuracy obtained using subsets of features
with the highest cross-modality correlation. This section shows
the results for the OAI dataset, averaged over all five folds.

A. Same-modality and cross-modality classification accuracy
Table I shows the classification accuracy for each combi-

nation of methods, measured on both datasets, as well as the
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TABLE I
CLASSIFICATION ACCURACY OF RANDOM FORESTS TRAINED WITH FEATURES LEARNED USING THE AXIAL NEURAL NETWORK OR THE BASELINE
MODELS, COMPARING THE ACCURACY IN SAME-MODALITY AND CROSS-MODALITY CLASSIFICATION. A COMBINATION OF MODALITY DROPOUT,

PER-FEATURE NORMALIZATION AND THE SIMILARITY TERM GIVES THE BEST CROSS-MODALITY CLASSIFICATION PERFORMANCE. THE TABLE REPORTS
THE MEAN CLASSIFICATION ACCURACY OVER FIVE CROSS-VALIDATION FOLDS AND OVER ALL MODALITY COMBINATIONS (NORMAL AND

FAT-SUPPRESSED SCANS FOR OAI, T1/T1+C/T2/FLAIR FOR BRATS).

Same-modality classification Cross-modality classification

OAI knee dataset Weight of the similarity term α Weight of the similarity term α

Axial neural network 0.0 0.1 0.2 0.5 0.0 0.1 0.2 0.5

No modality dropout, no per-feature normalization 80.0 79.1 79.2 78.9 33.5 52.5 53.7 57.0
No modality dropout, with per-feature normalization 80.4 79.7 79.3 78.6 43.6 65.2 63.1 62.2
Modality dropout, no per-feature normalization 81.8 81.1 80.7 80.3 43.4 63.2 67.1 70.7
Modality dropout and per-feature normalization 81.6 81.5 81.1 80.7 77.0 78.7 78.7 78.2

Baseline network

Features from all modalities 79.6 70.0
Features from the training modality only 79.4 69.0

Same-modality classification Cross-modality classification

BRATS brain tumor dataset Weight of the similarity term α Weight of the similarity term α
Axial neural network 0.0 0.1 0.2 0.5 0.0 0.1 0.2 0.5

No modality dropout, no per-feature normalization 73.0 71.9 71.5 69.8 50.2 51.8 51.7 51.4
No modality dropout, with per-feature normalization 72.6 73.4 73.9 72.9 52.2 55.9 57.5 60.0
Modality dropout, no per-feature normalization 77.5 76.9 76.8 76.5 51.7 55.3 55.9 57.4
Modality dropout and per-feature normalization 77.5 77.5 77.2 76.8 65.8 66.8 67.0 67.9

Baseline network

Features from all modalities 69.4 54.9
Features from the training modality only 70.0 55.1

performance of the baseline methods on the same data. The
table shows the average results over all modality pairs: the
exact performance depends on which modalities are combined,
because some modalities have more in common than others.
However, the general pattern and the ordering of the methods
were similar for all modality pairs.

The results show that the axial neural network with the
additions discussed in this paper can provide much better
cross-modality results than the baseline methods that do not
take cross-modality differences into account. On both datasets,
the baseline methods achieve a much lower accuracy in cross-
modality classification than in same-modality classification.
The axial neural network also shows a drop in performance
going from same-modality to cross-modality classification,
but this drop is much smaller. On the knee dataset, the
best-performing axial neural network obtains a cross-modality
accuracy that is very close to its same-modality accuracy. On
the brain tumor dataset, the performance drop is larger, but
the axial neural network still performs much better on cross-
modality classification than the baseline methods.

Table I shows the results for axial networks with all com-
binations of the three techniques. The best cross-modality ac-
curacy was obtained with a combination of modality dropout,
per-feature normalization and the similarity term. Removing
the similarity term from this combination of methods de-
creased the cross-modality performance only a little, suggest-
ing that modality dropout and per-feature normalization are
the most important.

Comparing individual techniques over all different combi-

nations, both modality dropout and per-feature normalization
consistently provide an improvement of the classification ac-
curacy. The contribution of the similarity term is less clear: it
can give an important improvement if either modality dropout
or per-feature normalization is missing, but if both are present
the additional improvement of the similarity term is small.
However, while the improvement from adding the similarity
term might be large or small, it is usually positive: adding the
similarity term with an appropriate weight never lead to a large
decrease in same-modality or cross-modality performance.

To illustrate the reconstruction part of the network, Fig. 5
shows some of the reconstructions produced by the best-
performing network for the OAI dataset. These reconstructions
are not used for classification, which is based only on the
central feature representation, but it is still useful to see that the
network is able to reconstruct the main structures in the image
and can also reproduce some of the inter-modality differences.

B. Feature characteristics
The second part of our investigation considers the informa-

tion content of individual features. For each feature in each
modality, Fig. 6 shows the mutual information score between
the feature value and the class label, the standard deviation,
and the normalized cross-modality correlation for each feature.
The features are sorted by mutual information in the first
modality: from the most informative feature on the left to the
least informative on the right.

We interpret these plots by comparing the values of each
feature in the two modalities: a cross-modality feature will
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(d) Modality dropout, with per-feature normalization.

Fig. 6. Characteristics of the 128 features learned for one fold of the OAI knee data, for different network configurations. The features are sorted by decreasing
mutual information scores. First row: mutual information (MI) between the feature values and the class label, when feature values are computed from normal
(up/blue) or fat-suppressed (down/orange) scans. Second row: standard deviation (SD) of each feature. Third row: normalized cross-correlation (NCC) between
the values computed from both sources. Without modality dropout or per-feature normalization (a) there is a large difference in values between modalities.
Combining all three methods (d) produces features that are much more similar, which suggests that they might be more useful for cross-modality classification.

have a similar meaning in both modalities, and will show sim-
ilar values in these plots. Conversely, if the plots show a large
difference between the values for both modalities, the feature
is unlikely to be useful for cross-modality classification.

The most basic model, without modality dropout, per-
feature normalization or similarity term, produces features that
have very different standard deviations and mutual information
scores in each modality (Fig. 6a). This suggests that this
basic model learns some modality-specific features that are
informative for one modality, but not for the other. Adding
modality dropout, per-feature normalization and the similarity
term makes the features much more similar across domains.
The plots for the combination of all methods (Fig. 6d) show
very similar values for the features in both modalities. This
suggests that this model learns many cross-modality features,
which is consistent with the good performance of this model
observed in Section V-A.

The plots of the standard deviations in Fig. 6 also provide
a further insight into the interaction between the similarity
term and per-feature normalization. Because the similarity
term attempts to reduce the difference between feature values
for different modalities, it encourages the model to reduce
the absolute feature values. This is visible in the plots of the
standard deviation, which show that the similarity term reduces
the standard deviation of the features. This reduction does
not necessarily improve cross-modality correlation, but it does
decrease the similarity term of the learning objective. Applying

per-feature normalization prevents this problem: the improved
normalization brought the standard deviation reasonably close
to 1 for all features.

C. Classification accuracy for feature subsets

In the final part of our investigation, we look at the clas-
sification accuracy obtained using subsets of features, sorted
by decreasing normalized cross-modality correlation. Figure 7
shows the cross-modality correlation of individual features,
sorted in decreasing order, for the various models. Figure 8
shows the classification accuracy obtained using subsets of
features with the highest cross-modality correlation. We show
the results for the knee dataset only, but the results for the
brain tumor dataset show similar patterns.

From Fig. 7 it becomes clear how the three techniques
influence the cross-correlation of the features. For the basic
model without modality dropout, without per-feature normal-
ization and with a zero weight for the similarity term (Fig. 7a),
the feature representation contains a combination of features
with a reasonably high cross-modality correlation (0.9), as
well as features that are less correlated across modalities
(0.6). The optimal model that combines modality dropout, per-
feature normalization and a non-zero weight for the similarity
term (Fig. 7d), produces a feature representation in which all
features have a high cross-modality correlation (values close
to 1 for all features). The results for other models in Fig. 7
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(d) Modality dropout and per-feature
normalization.

Weight of similarity term: α = 0.0 α = 0.1 α = 0.2 α = 0.5

Fig. 7. Normalized cross-correlation (NCC) of features on the OAI knee
dataset, sorted from high to low correlation and averaged over five folds. The
correlation is computed between corresponding features from both modalities.
Combining modality dropout and per-feature normalization produced the most
similar features.

show that all three techniques individually can improve the
cross-modality correlation of the feature representation.

Figure 8 shows the same-modality and cross-modality clas-
sification accuracy for subsets of features with the highest
cross-modality correlation: from only the most correlated
feature on the left, to all features on the right. For same-
modality classification (Fig. 8a–d, left column), the accuracy
for most methods increases monotonically with the number of
features. Adding more features improves the results, although
the improvement becomes fairly small after a sufficient num-
ber of features have been added.

For cross-modality classification (Fig. 8a–d, right column),
the accuracy does not increase monotonically, but first in-
creases and then decreases again as features with a lower
correlation are added. The low cross-modality correlation
indicates that these features have a different meaning in
each modality, which will confuse a cross-modality classifier.
However, the proposed techniques can alleviate this problem.
For the combination of modality dropout and per-feature nor-
malization (Fig. 8d), the cross-modality classification accuracy
increases monotonically with the number of features. Including
the similarity term leads to an earlier peak in the classification
accuracy. This is consistent with the high cross-modality
correlations of all features (Fig. 7d), which indicates that this
combination of methods learns mostly cross-modality features.
For the other models, there is a larger range of cross-modality
correlations (e.g., Fig. 7a), which together with the decrease
in accuracy suggests that these models learn a mixture of
modality-specific and shared features.

VI. DISCUSSION

We evaluated three strategies to improve cross-modality
feature learning in an axial neural network: modality dropout,

per-feature normalization, and a similarity term. The best
results were obtained using a combination of all three methods
(Table I). For both of our datasets, the features learned using
this combination of techniques resulted in the best cross-
modality classification accuracy, without affecting the same-
modality classification accuracy too much. The cross-modality
classification accuracy obtained using this combination of
methods was higher than that obtained with the baseline
method, a similar feature-learning model that used the same
transformation for all modalities.

A. Comparing the three techniques
Modality dropout improved the accuracy of the axial neural

network in both same-modality and cross-modality classifi-
cation experiments (Table I), perhaps because it explicitly
trains the model to work well in both scenarios. Modality
dropout forces the model to reconstruct the target modality
from itself, which is useful for same-modality classification.
It also forces the model to reconstruct the target modality
from another modality, which helps the cross-modality case
because it forces the network to learn representations that
encode sufficient cross-modality information and prevents it
from depending too much on one modality.

The second important factor was per-feature normalization
(Table I). Forcing the features to have a similar mean and
standard deviation in all modalities turns out to be an effective
way of minimizing cross-modality representation differences
(Fig. 6). It prevents the network from learning features that
are used for one modality but not for another, and it simplifies
the optimization by removing part of the cross-modality dif-
ferences. The features learned with per-feature normalization
also had higher mutual information scores, suggesting that they
contained more discriminative information.

Adding a similarity term in the objective function had a
positive influence on the cross-modality classification accu-
racy, but the strength of this influence depended on whether
it was combined with the other techniques (Table I). For the
combination of modality dropout and per-feature normaliza-
tion, the additional effect of the similarity term was fairly
small: the results of this combination were only slightly better
if the similarity term was included. This was different for
all other combinations: there, increasing the weight of the
similarity term produced more similar features and a better
cross-modality classification accuracy. This suggests that the
combination of modality dropout and per-feature normaliza-
tion is powerful enough to remove most of the need for the
extra similarity term, but that the term can still have a positive
effect in other cases. It is important, however, to limit the
weight of the similarity term: setting it too close to 1 can
cause the model to learn trivial, non-informative and non-
discriminative features [2].

Because the similarity term tries to minimize the absolute
difference between feature representations, it also tends to
reduce the absolute feature values. This is visible in Fig. 6: the
features learned with the similarity term have lower standard
deviations than the features learned without the term. Per-
feature normalization counters this side-effect and stabilizes
the feature values, improving the accuracy in the process.
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(a) No modality dropout, no per-feature normalization.
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(d) Modality dropout and per-feature normalization.

Fig. 8. Classification accuracy on the knee dataset, for models trained with and without modality dropout and per-feature normalization. The horizontal axes
indicate the number of selected features, starting with the features with the highest cross-correlation. All plots use the same scale; vertical tick marks indicate
the minimum and maximum accuracy in each plot.

It is important to note that, while the three methods
greatly improved the cross-modality performance, they also
maintained most of the original same-modality performance
(Table I). This is a useful property if the same representation is
used for both same-modality and cross-modality classification.

B. Modality-specific vs. shared features

One of the hypotheses behind our experiments was that the
models might learn a combination of modality-specific and
shared features. Shared features are good for cross-modality
classification, but the models might still learn modality-
specific features to preserve crucial modality-specific infor-
mation. To investigate this further, we tried to separate shared
and modality-specific features by sorting the features based
on the cross-modality correlation (Fig. 7) and training on
subsets of highly correlated features. Our approach produced
different results for each of the methods (Fig. 8). For the best
combination of modality dropout, per-feature normalization
and the similarity term, we found that almost all features
had a very strong cross-modality correlation, and that the

classification performance improved monotonically with the
number of features. This suggests that this combination of
methods learned mostly cross-modality features. The other
methods produced both highly correlated features and features
that had a lower cross-modality correlation. In these cases,
although the same-modality accuracy increased as we added
more features, we obtained the best cross-modality accuracy
by training on a smaller subset of highly correlated features.
This suggests that these representations contained not only
shared but also modality-specific features, which help same-
modality classification but can harm the cross-modality case.

Although shared representations may be best for cross-
modality classification, preserving modality-specific informa-
tion is important for the same-modality performance. This is
somewhat reflected by the results of our baseline methods
(Table I), which show that features learned for one specific
modality give a slightly better same-modality accuracy. In
applications where the same-modality performance is as im-
portant as the cross-modality performance, it may be useful
to give the model a way to preserve modality-specific features
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without including them in the shared representation. One way
to do this could be to reserve a separate, modality-specific part
of the representation that is only used for a single modality.

C. Data requirements

The approach discussed in this paper makes some assump-
tions about the data and the problem to which the methods are
applied. Firstly, the approach assumes that data is available for
all modalities and that at least some of this (unlabeled) data is
registered with a voxelwise correspondence. The axial neural
network learns its feature representation from corresponding
patches, which represent the same physical area in each
modality. For models with more than two modalities, it is
not strictly necessary to have all modalities available for all
subjects: as the modality dropout method shows, it is possible
to train with patches for which only a subset of modalities is
available.

Secondly, learning a shared representation for multiple
modalities assumes that the modalities have something in com-
mon. Because our model learns a separate transformation for
each modality, it can handle large differences between modal-
ities. However, the shared representation can only preserve
and transfer information that is available in all modalities: if a
modality provides information that is not visible in the other
modalities, this information can not be used in cross-modality
classification. The performance of the proposed methods de-
pends therefore on the type of problem and on the differences
between the modalities. If the modalities are very different and
the modality-specific information has important discriminative
value, removing it from the shared representation may reduce
the same-modality classification performance.

In our experiments, the modalities in the knee dataset have
more in common than the modalities in the brain tumor
dataset. The knee images have a different resolution and have
different intensities for some of the structures, but the image
structures that are important for classification are recognizable
in both images. As a result, the cross-modality classification
performance on this dataset comes fairly close to that in the
same-modality case. This suggests that transfer learning could
be successful in this scenario. In the brain tumor dataset,
the four modalities have larger differences, and some tumor
structures are clearly visible in some images but not in others
(Fig. 4b). In our cross-modality classification experiments,
this meant that the cross-modality classification accuracy was
noticeably lower than the same-modality accuracy. The per-
formance differed per modality: in our classification task, T2
and FLAIR gave much better results than T1 and contrast-
enhanced T1. This preference for T2 and FLAIR is most likely
an artifact of how we grouped the tumor components into a
single class, and would be different when classifying other
components (for example, contrast-enhanced T1 would be
important for identifying the necrotic core, which we grouped
with the other tumor components in our experiments). While
our experiments clearly show the potential of our method as a
transfer learning method, accurate tumor classification in this
dataset will require the use of multiple modalities. However,
it might be possible to use transfer learning between pairs of

modalities that together contain sufficient information (e.g.,
T1/T2 and T1+c/FLAIR).

D. Remaining thoughts

In this paper, we used autoencoder-like models to learn
features without discriminative training. The advantage of this
approach is that the representation learning does not require
labels, only paired scans. Labels are required for training the
classifier, but they can also come from unpaired scans from
only one of the modalities. A disadvantage of this unlabeled
feature learning is that the representations may contain some
features that have no discriminative value, but are needed
to compute the reconstruction. An alternative network that
combines feature learning and classification might be able to
obtain a better performance by focusing only on discriminative
features. Although this is outside the scope of this paper,
the approaches discussed here could also be applied to such
classification networks.

The axial neural network discussed in this paper learns
a separate transformation for each modality, as opposed to
models that use a single tranformation for all modalities
(such as our baseline methods). Single-transformation models
essentially learn to extract modality-invariant features with
transformations that are insensitive to the source modality,
which limits them to features that can be extracted in the same
way from all modalities. In contrast, multi-transformation
models such as ours learn a shared feature representation
by learning modality-specific transformations. This is a more
flexible approach that can, in theory at least, extract any
information that is common to all modalities.

Since this paper is focused on analyzing cross-modality
classification, and not on finding the best knee cartilage or
brain tumor segmentation segmentation method per se, it is
difficult to compare our results with those of state-of-the-
art approaches. Many knee cartilage segmentation methods
use shape-based post-processing methods [25]. Brain tumor
segmentation methods, such as those for the BRATS challenge
[17], generally use multi-modal information to get good classi-
fication results. The results of these more specialized methods
are better than those presented in this paper.

VII. CONCLUSION

Differences in appearance make it difficult to apply a
classifier trained on data from one source to data from another.
The proposed representation learning method attacks this prob-
lem by transforming data from different sources to a shared
feature representation. We found that this yields both modality-
specific and cross-modality features. The basic axial neural
network architecture can be extended with three methods that
further improve cross-modality performance. Modality dropout
trains the network by randomly removing some modalities
during training, which forces the model to learn cross-
modality reconstructions. Per-feature normalization improves
cross-modality similarity by normalizing all features to zero
mean and unit standard deviation. A similarity term explicitly
adds cross-modality similarity to the learning objective of the
network. Based on our experiments on two different datasets,
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we found that modality dropout and per-feature normalization
are crucial to maximize the number of cross-modality features
and obtain the best cross-modality classification results. The
similarity term has a strong influence in models without either
modality dropout or per-feature normalization, but has only a
minor positive contribution if both other techniques are used.
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