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Abstract

In this paper, we study the discounted renewal aggregate claims with a full dependence
structure. Based on a mixing exponential model, the dependence among the inter-claim times,
among the claim sizes as well as the dependence between the inter-claim times and the claim sizes
are included. The main contribution of this paper is the derivation of the closed-form expressions
for the higher moments of the discounted aggregate renewal claims. Explicit expressions of these
moments are provided for specific copulas families and some numerical illustrations are given
to analyze the impact of dependency on the moments of the discounted aggregate amount of
claims.
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1 Introduction

Over the past few years, extensive studies on the risk aggregation problem for insurance portfolios
have appeared in the literature. Among these studies we find Albrecher and Boxma (2004), Al-
brecher and Teugels (2006) and Boudreault et al. (2006) for the analysis of ruin-related problems;
Léveillé et al. (2010), Léveillé and Adékambi (2011), Léveillé and Adékambi (2012) for the study
of risk aggregation; Léveillé and Garrido (2001a) and Léveillé and Garrido (2001b) for closed ex-
pressions for the first two moments using renewal theory; and Léveillé and Hamel (2013) for the
first two moments and the first joint moment of the aggregate discounted payment and expenses
process for medical malpractice insurance.

Most of the papers cited above assume that the inter-arrival times and the claim amounts are
independent. A such assumption is not supported by empirical observations which reduces the
practicality of these works. For example, in non-life insurance, the same catastrophic event such as
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a flood or an earthquake could lead to frequent and high losses. This means that in such context
a positive dependence between the claim sizes and the inter-claim times should be observed.

During the last decade, few papers in the actuarial literature considered incorporating this type
of dependence. For example, Barges et al. (2011) introduce the dependence between the claim sizes
and the inter-claim times using a Farlie-Gumbel-Morgenstern (FGM) copula and derive a close-
from expression for the moments of the discounted aggregate claims. Guo et al. (2013) incorporate
time dependence in a mixed Poisson process to study loss models. Landriault et al. (2014) consider
a non-homogeneous birth process for the claim counting process to study time dependent aggregate
claims.

For a given portfolio, we consider the renewal risk process suggested by Andersen (1957) and
described as follows. Let {N(t)};>0 be a renewal process that counts the number of claims. The
positive random variable (rv) Wj represents the time between the (k — 1)—th and k—th claims,
ke N* = {1,2,---}, and the amount of the k-th claim is given by the positive rv X;. We also

k
define {T}, k € N*} as a sequence of rvs such that T, = > W;, Tp = 0. The rv T} represents
i=1

1=
the occurrence time of the k—th received claim. The main variable of interest in this paper is the
discounted aggregate amount of claims up to a certain time Z(t) defined as follows

N(t)
Z(t)=Y e hX;, t=0,

i=1

with Z(t) = 0 if N(t) = 0, where ¢ is the force of net interest (See e.g. Léveillé and Garrido
(2001a)). In the rest of the paper, it is assumed that

o {Wi,keN-={1,2,---}} forms a sequence of continuous positive dependent and identically
distributed rvs with a common cumulative distribution function (cdf) Fy(.) and a survival
function (sf) Fy(.) =1 — Fw(.),

e The claim amounts { Xy, k € N*} are positive dependent and identically distributed rvs with
a common cdf Fx(.) and a common sf Fy(.) =1 — Fx(.), and

o {(Wg, X)),k € N} forms a sequence of i.i.d. random vectors distributed as the canonical
random vector (W, X) in which the components may be dependent.

In this paper, we specify three sources of dependence: among the claims X, among the subsequent
inter-claims time Wy, and a dependence between the subsequent inter-claims time W) and the
claims Xj. For the dependence between the inter-claim times {Wy, k € N* = {1,2,--- }}, we assume
the existence of a positive rv © such that given ©® = 6 the rvs W} are iid and exponentially
distributed with a mean %. Similarly, we introduce the dependence between the amounts of claims
{Xk,k € N*} through a positive rv A such that conditional on A = X the rvs X are iid and
exponentially distributed with a mean % In other words, the conditional distributions of the
components of W and X are only influenced by the rv ©® and A respectively. The rvs © and
A represent the factors that introduce the dependence between risks (e.g. climate conditions,

age,- - - ,etc.).



In what follows, let Fg o be the joint cdf of the positive random vector (6, A) and the marginal
cdfs are Fg and F)y. We also define the joint Laplace transform f§ , (s1, s2) fo f e (Os1+252) q Figy £ (0, \)
as well as the univariate Laplace transforms f§(s) = [° e*QSdF@( ) and fi(s fooo e MdEA(N).
Following the model’s specifications, the univariate distributions of W; and X are given as a mix-
ture of exponential distributions with survival functions given by

Fw(z) = /Oooe_exdFe(ﬁ):fé(w)a (11)
and
Fy(x) = /Oooe—“dmu):fx(x), (1.2)

for s,z > 0. This implies that the marginal distributions of W; and X; are completely monotone. We
refer to Albrecher et al. (2011) for more details on the mixed exponential model and the completely
monotone marginal distributions. The general mixed risk model that we consider in this paper is
an extension of the risk model described in Albrecher et al. (2011).

This paper is structured as follows: In Section (2), we describe the dependence structure of
our risk model. Moments of the aggregate discounted claims are derived in Section (3). Section
(4) provides few examples of risk models for which explicit expressions for the moment are given.
In Section (5), numerical examples are provided to illustrate the impact of dependency on the
moments of discounted aggregate claims. Section (6) concludes the paper.

2 The dependence structure

In this section, a description of the dependence between the different components of our model is
provided. For a given n and under our conditional exponential model, the joint conditional survival
function of Wy, Wo,--- Wy, X1, Xo -, X, is given by

792251' 7)\2181'
Pr(letl,'--,WRZtn,Xlzsl,--',XnZSn\@:&A:)\) = e =1 e =l |
forne {2,3,---}, t1,--- ,t, > 0and s1,---,s, > 0. it is immediate that the multivariate survival

function of Wy, Wy, -+ W, X1, Xo--- , X, could be expressed in terms of the bivariate Laplace
transform f§ , such that

— o0 x© —9 Z ti —A i Si
FWL"HWle,'“,Xn (t17"' stn, 81,0 ’Sn) - / / ¢ The ™ dF@vA(ev)‘)
0 0
n n
= foa (Ztiazsi> : (2.1)
i=1 i=1

On the other hand, according to Sklar’s theorem for survival functions, see e.g. Sklar (1959), the
joint distribution of the tail of Wy, --- W, X1, -+, X}, can be written as a function of the marginal



survival functions FWi, Fx,,i=1,---,n, and the copula C' describing the dependence structure
as follows

FW17“',Wn7X17“'7Xn (t17 oy tn, ST, 73”) = C (le(t1)7 T 7FWn(tn)7 FXI(Sl)? T 7FXn(Sn)) )
forn € {2,3,---}, t1,--- ,tn, > 0 and sy, -+, s, > 0. By combining (1.1), (1.2) and (2.1) with the
last expression, one deduces that for (ug,- -, up,v1, - ,vy,) € [0,1]2"

Clur, s vn, - yvn) = foa (Z 15 ), S fX‘l(w)> . (2.2)
=1 =1

Otherwise, it is clear from (2.1) that the multivariate survival function of (W7y,--- , W),) is given by

FW1,~~' 77 (tla e atn) = fé <Z tl) 3 (23)
=1

for t1,--- ,t, > 0. Consequently, an application of Sklar’s theorem shows that the joint distribution
of the tail of Wy, .-, W, can be written as a function of the marginal survival functions Fyy,, i =
1,---,n, and a copula C describing the dependence structure as follows

FW1,---,Wn (tr,tn) = C1 (le(tl)v"' 7FWn(t”))

An expression for C is identified and for (uy,--- ,u,) € [0,1]", we obtain

Ci(ur, - un) = f§ (Z f@l(ui)> : (2.4)
i=1

Similarly, the joint distribution of the tail of Xy,---, X,, is given by

FXl,"-,Xn (tl)' te 7tn) = fX (Z tl) ) (25)
=1

for t1,--- ,t, > 0, and using Sklar’s theorem yields the following survival copula for the X's

Colur, - yun) = fi (Z fx*(ui)) , (2.6)
=1

for (uy,--- ,uyn) € [0,1]". From the expressions for the copulas C; and C3 obtained above, one
can identify that these two copulas belong to the large class of Archimedean copulas (e.g. Nelsen
(1999)) with the corresponding generators ¢; and ¢s. It is straight forward to see that

d1(t) o< f&7 (1),

and

o (t) oc fXTH (D).
Note that although the dependence among the claim sizes and among the inter-claim times are
described by Archimedean copulas. The dependence between W and X is not restricted to this
family of copulas. Moreover, the mixture of exponentials model introduces a positive dependence
between the inter-claim times W's as well as a positive dependence between the amount Xs. First,
we recall the following definition



Definition 2.1. Let X and Y be random variables. X and Y are positively quadrant dependent
(PQD) if for all (z,y) in R2,

PriX<zY <y]|>Pr[X <z|Pr[Y <y,

or equivalently
PriX>zY >y >Pr[X >z|PrlY >yl.

Proposition 2.1. Consider the model described by (2.3) and (2.5). Then, W; and W; (X; and
X;) are PQD for alli,j=1,2,---.

Proof. Following (2.3), we have
Fo,w, (tite) = f&5(t+1t2).
The rvs e 1© and e 2 are two decreasing transformations of the rv ©. It implies that
Cov(e 19, e729) > 0,

for all t1,to > 0. Thus,
B(em(41219) > p(e~10) B(e=9),

or equivalently,
f& (i +1t2) > 16 (t1) 15 (t2).-
This implies that
Fwyws (ti,t2) = Fwy (1) Fi, (t2).-

We conclude that Wi and Wy are PQD. The proof for the claim amounts Xs is similar. O
On the other hand, according to (2.1), the bivariate survival function of (W;, X;), for i =

1,--- ,n, is given by
FWi,Xi (t’ 5) = fé,A (t’ S) ) (27)

for t > 0 and s > 0. Hence, according to Sklar’s theorem, the dependency relation between W; and
X; is generated by a copula Ci5 given by

Cra(u,v) = foA (F5 (W), A1), (2.8)
for (u,v) € [0,1]2. Combining (2.2), (2.4), (2.6) and (2.8), one gets
C(ulv"' y Up, V1, " 0t 7/Un) — Cl?(cl(ula”' ,Un),CQ(’Ul,"' avn))v
for (u1, -+ ,un,v1, -+ ,v,) € [0,1]%".

Throughout the paper, we suppose that the Laplace transform fé, A exists over a subset K x K C

R? including a neighborhood of the origin. In the following section, the moments of the rv Z(t)
are derived.



3 Moments of the discounted aggregate claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(¢) under the dependent model introduced in
the previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in
Section (2). Then, for anyt >0 and § > 0, the mgf of Z(t) is given by

)

&

o) = [ o)

Proof. Given © = 0 and A = )\, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the
megf of Z(t) given © = 6 and A = X can be written as

Mzgyjo=9,a=2(5) = E [esz(t) |©=0,A= A}
9
s Jg [ a0 _ (A —se\°
e P15 - (5= - (3.2)

Otherwise Mz (s) = [;° Jo° Mz)o=o,a=(s)dFo A (0, ). Substituting (3.2) into the last expres-
sion yields (3.1). O

The following theorem provides closed formulas for the higher moments of the discounted ag-
gregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in
Section (2). Then, for anyt > 0, n € N* and 6 > 0, the n—th moment of Z(t) is given by

n n! & OO —=¢)---(©=4§k-1))
E[Z"0)] = ) Filleal -1 o An ; (3.3)
where g5 = 1_%45 s the standard actuarial notation and the sum is over all nonnegative integer

solutions of the Diophantine equation ki + 2ko + -+ +nk, =n, k:=ki + ko + -+ k.

Proof. Conditional on the two rvs © and A, we have
B[2M()] = / / E[2"(t) | © = 6,A = \| dFo (8, \). (3.4)
o Jo

Taking the n—th order derivative of (3.2) with respect to s and using Faa di Bruno’s rule (see
Faa di Bruno (1855)) yield
kj
) 9

n (4)
(n) _ n! k g (s)
Mz (pio=0.a=1(8) = Z mh( ) (g(s)) H ( I

Jj=1



where the sum is over all nonnegative integer solutlons of the Dlophantme equation ki +2ky+-- -+

nk,=n, ki=ki+ka+t-+ky g(s)=2 /\568 and h(s) = s°. Otherwise, the k—th derivatives
of g and h are given respectively by

S = M=) (3.6)
and
*)(g) — L(§+1) G2k
h(s) = ke (3.7)

for k=1,--- ,n. By substituting (3.6) and (3.7) into (3.5) with s = 0, one concludes that

1 n! EoT(¢41)
E[Z™(t 0. A=)\ = — M ety ST
Zro1e=6a=N = 53 (") srg
. nl (1_6&)kﬁ(g—l)-“(?—(k—l))
klle! o An
! 60 —9)---(0—0(k—1))
— k
Finally, substitution of (3.8) into (3.4) yields the required result. O

The moments of Z(t) given in (3.3) could be simplified and expressed in terms of the expected

value of [%] First, we write

() en)- ),

where (), is the falling factorial. It is known that the falling factorial could be expanded as follows

(x)p = zk: m a!, (3.9)

=1

where the coefficients m are the Stirling numbers of the first order (see e.g. Ginsburg (1928)).

Using (3.9), we find )
l
0) o) -

k
LKL Te!
Zkluﬁ ™y 'am 5’“ IME [An} (3.10)

In the rest of the paper, it is assumed that there exist an integer n such that the expected value
of & AJ is finite for positive integers ¢ and j with ¢,j < n. Using the previous theorem, we give the
explicit expressions of the first two moments of Z(t).

Thus,



Corollary 3.1. For a given time t and a positive constant forces of interest §, we have

E[Z(t)] = apk [i} (3.11)
and
E[2%t)] = 2amsE [/(\92] +azsE {iz] : (3.12)

Proof. The results follow from Theorem (3.2). When n = 1, then k; = k£ = 1, which yields
(3.11). When n = 2, we find that the nonnegative integer solutions of the equation k; + 2ky = 2
are (ki,k2) = (2,0) or (0,1) with corresponding values of k being 2 or 1 respectively, we get the
required result. ]

In the following corollary, we derive expressions for the first two moments of Z(t) when © and
A are independent.

Corollary 3.2. If the dependency relation between © and A is generated by the independence copula
then

1
Blz(] = asBlolE 5],
and
E[22(1)] = 2amE[O)F || +a%E 0% E |-
[2°(0)] = 2amsE[O)E | 5| +auE [0°] E |51
Proof. The result follows easily from Corollary (3.1). O

Note that the moments of Z(t) are given in terms of the expected values of %, for I, n € N*xN*.
According to Cressie et al. (1981), the expression of F [%} can be derived from the Mg A (¢, s),
the joint mgf of (©,A). We have

o! 1 S 81M@’A(S,—$)
o] w7 e

where the joint mgf Mg A is given by
Mo (s, x) = fo a(—s, —x) = C12 (f5(—s), fA(—x)).-

It follows that

@l 1 o n—1 1- alf(f),/\(_sax)



Application of Faa di Bruno’s rule for the —th derivative of f§ ,(—t,s) gives

alMe,A(s,—x):Z i 0" Cra (f5(—5), f1(x r’[<aﬂf@ 5) 1 )m-f
ml'mg ’

Osl Loy oum osi j!

where the sum is over all nonnegative integer solutions of the Diophantine equation my + 2mg +
+Ilmp=1, m:=my+ms+---+my. It follows that

o 1 " oo n_10"C12 (1, f1(2))
FE [A”] = T'(n) Z ml'mg mll H ( ) /0 r oum de.

4 Examples

In the previous section, a general formula for the moments of Z(t) is derived. In order to illustrate
our findings and to discuss further features of our risk model, we provide some examples when
additional assumptions on the marginal distributions and the copulas are added. For each example,
first the joint Laplace distribution of the mixing distribution Fg A is specified then the expressions
of the copulas Ci, Cy and Cy are identified. Applying our closed-form, the moments of Z(t) are
given for these specific models. Some numerical illustrations are provided in order to stress the
impact of dependence between different components of the risk models on the distribution of the
discounted aggregated amount of claims.

4.1 Clayton copula with Pareto claims and inter-claim times

Assume that the mixing random vector (©, A) has a bivariate Gamma distribution with a Laplace
transform f§ , defined by

foalsw) = [(1+as)™ + (1 +ba)™ —1] ", 520, @20, (4.1)

with o, a,b, a1, > 0 and &; = %, i = 1,2. Then, the random variables © and A are distributed
as gamma distributions, © ~ ga(al, ) and A ~ Ga(ag, 7). Also, from (1.1) and (1.2), the
claim amounts X; and the inter-claim times W;, for ¢ = 1,2, .- -, follow Pareto distributions X ~
Pa(as,3) and W ~ Pa(a, ). From (2. 4) and (2.6), we identify the copulas C; and C3 to be
Clayton copulas with parameters % and —- respectlvely We have

r =1 -1 71—

Cl(“la"'?”ﬂ): uf1++ugl_(n_l) ,

and
— -1 1—az

Co(ur, - ,up) = |uy? + -+ up® —(n—1) ,




for (u1, -+ ,u,) € [0,1]". The Clayton copula is first introduced by Clayton (1978). The depen-
dence between de Clayton copula parameter and Kendall’s tau rank measure, 7;, is given by (see
e.g. Joe (1997) and Nelsen (1999)):

1
14 2]

i=1,2. (4.2)

Ti

This suggests that the Clayton copula does not allow for negative dependence. If a; — 00, i =1, 2,
then the marginal distributions become independent, when «; = 0, ¢ = 1,2, the Clayton copula
approximates the Fréchet-Hoeffding upper bound.

From (2.8), the joint copula C13 is also a Clayton copula with a parameter % and we have
-1 -1 o
C’lz(u,v):[ua +ova —1] ,

for (u,v) € [0,1]%. Let 712 be the Kendall’s tau dependence measure for the copula Cy2. It follows

that
1

1420

The following corollary gives the expressions of the first two moments of Z(t) for this model.

T12 = (4.3)

Corollary 4.1. For a given horizon t and a positive constant forces of real interest &, we have for

G2 2 Tz
aq _
E[Z{t)] = —— gy,
b(ag(a +1) — 1)
and
2ac _
E[ZX(t)] = —r — agas
b2 (ozz(a 1) - 1) (az(a +1)— 2)
2 1-a (1
L& ai(l—ar) N arar(l+ o) a2

b (dz(oH— 1) - 1) (dg(a 1) - 2) (dg(a+ 2) — 1) (dg(a +2) - 2)

Proof. We have from (4.1)

Of& r(—s,x N
lir% fQ’Aa() = qay [1 + ba] 021+ (4.4)
S— S
and
O%f5 \(—s,x _ 5
lim f@g;) — a2 [al(l — @) (14 b)Y 4 4@ (14 ) (1+ bx)—a2<2+a>] . (4.5)

Let I(n,a,b) be defined as

I(n,a,b) = / s"H(1 4 bs) s, neN, a>0.
0

10



Set & = (1 + bs)™!, the integral becomes

1 - I'(n)l(a —n)
for &« > n. Combination of (3.13), (4.4) and (4.6) yields

S aoy aoy

E[A] - m[(l,dz(a—i—l),b):b<d2(a+1)_1).

Susbtitution of (4.4) into (3.13) and use of (4.6) gives

© aq - ax
E[A?] - ﬁl@’ag(aﬁ)’b) :bZ(dz(aH)—1)1<d2(a+1)—2)'

Similarly, susbtitution of (4.5) into (3.13) and use of (4.6) gives

g [@2} a’ai(1 — &)

2| = F(2)I(Q,dg(a+1),b>+WI(2@2(@+2),5)7

. aj 041(1—6&1) n 061551(1—|-Oé)

b (@2(a+1)—1)(d2(a+1)—2) (dz(a+2)—1><d2(a+2)—2>

Finally, we find the expressions for F [Z] and E [32(15)] by applying the Corollary (3.1). O

Corollary 4.2. For the special case oy = ao = «, we have

EIZ(0] = Jam. (47)

and

2a _ a’_
E [22(t):| = maﬂQ(s + bﬁa%(;. (48)

Proof. The result follows directly from Corollary (4.1). O

4.2 Lomax copula with Pareto marginal distributions

In the previous example and for the special case a1 = as = «, we have
foa(s,x) =1 +as+bx)"", s>0, x>0.

This specification of the joint Laplace transform leads to the Clayton copula model with the same
parameter for the copulas C7, Co and C'o. It is possible to modify this model in order to include
more flexibility in the model. In this example, it is assumed that the random vector (0, A) has a
bivariate Gamma distribution with the following Laplace transform

foa(s,2) = (1+as+br+csx)™™, s>0, x>0, (4.9)

11



with ¢ > 0. The extra parameter ¢ introduces more flexible dependence between the mixing
distributions and between the X's and Ws. For example, it is possible to obtain the independence
between © and A which implies that W and X are independent when ¢ = ab. The univariate
Laplace transforms are given by

f&(s) = (1 +as)™",

and
fi(2) = (14 ba) ™.

It follows that the copulas C; and C are Clayton copulas with dependence parameter .. The joint
survival copula of (W, X) is given by

Cr2(u,v) = fEa (a_l(u_?1 —1),b(va — ))

)_a : (4.10)

which is the Lomax copula defined in Fang et al. (2000), where (u,v) € [0,1]* and v = 1 — 5. Some
properties of the family of copulas in (4.10) are the following:

e when ¢ = ab, (7 = 0), C12(uv) = uv corresponds to the case of independence.

e as @ = 1, (2 in (4.10) becomes Cia(u,v) = %, which is the Ali-Mikhail-Haq
(AMH) copula.

—Q
e when ¢ =0, (y=1), Ci2(u,v) = (u_é fuTa — 1) is the Clayton’s copula.

Note that from (2.3) and (2.5), the joint survival function of (W1, Wa, - -+, W,,) and (X1, Xa, -+, X,,)
can then be written, for ; > 0,7=1,--- ,n, as

n —Q
e w (51, 1 8n) = <1+a23i> , (4.11)

and

Py x, (@1, o 2n) = <1+b2xi> , (4.12)

which are the joint survival function of a Pareto II distribution proposed by Arnold (1983) and
Arnold (2015).

The following corollary gives the expressions of the first two moments of Z(t) for this model.

12



Corollary 4.3. For a given time t > 0 and a positive constant forces of real interest §, we have

E[Z(t)] = (Z + bQ(ac_l)> s,

fora>1, and

B aba +2(c —ab) \ _ a? 4ac 6¢c? _
B[221)] = 2 <b3(a Do 2)) Gazs + <b2 T Ba—1) T ha-Da- 2)> s

for a > 2.

Proof. Use of (3.13) and (4.9), show that

91 — M Ooxn_1 a -+ cx) x_(O‘H) "
E[An] B F(n)F(a)/o (a4 cx)'(1+ bx) d
L+0) 5~ (D i pn o o

where I(n,o,b) = [ 2" 1(1 4 bx)~*dx. With the help of (4.6) and (4.13), one gets

o 2 °
EM = alal(La+1b)+el@a+ 1) =g+ 55,
o aba + 2(c — ab)
_AQ] alal(2,a+1,b) +cl(3,a+ 1,b)] b (a—1)(a—2)’
and
©?]
B|%e| = alatD[@r2at 2y + 2o+ 20 + Alda+2,0)
a2 4ac 6¢2

2 Ba-1) T ia-D@-2)

Applying corollary (3.1), we obtain expressions for the first two moments F [Z(t)] and E [Z%(¢)].
0

4.3 Lomax copulas and Mixed exponential-Negative Binomial marginal distri-
butions

The next model that we consider in our examples is the mixed exponential-Negative Binomial
marginal distributions with Lomax copulas. For this purpose it is assumed that (©,A) has a
bivariate shifted Negative Binomial distribution (see e.g. Marshall and Olkin (1988)), the Laplace
transform of (O, A) is defined by

« _ r \"
fonls,z) = (esﬂ*“—q> , s,x=>0, (4.14)



where a > 0,0 < p < 1 and ¢ = 1 — p. Then, the random variables ©® and A are distributed as
shifted Negative Binomial distributions © ~ N'B(p, «) and A ~ NB(p, «). With the help of (2.3),

the multivariate survival function of (Wi, Wy, --- | W,,) can be written, for s; > 0,i=1,--- ,n, as
«
7 _ p
FWl,"' W (Sl, cee ,Sn) = —n . (4.15)
> s
ei:l — q

Then, the marginal survival functions of W; is given, for s > 0, by

F,(s) = <68p_q> L i=1, .. (4.16)

The corresponding copula takes the form

Ci(ur, -+ un) = | 5" , (4.17)
I (puiT + q) —q
i=1
for (u1,--- ,up) € [0,1]". Similarly, the joint survival function of (X, Xo,---, X)) can be written,
forx; >0,i=1,---,n, as
(0%
Fypo (@1, an) = | = | - (4.18)
S
ei=1 —q

The marginal survival functions of X; is given by

Fy,(z) = ( P )a, i=1,,n, (4.19)

et —q
forx > 0and i =1,---,n. The corresponding dependence structure takes the form
«
_ p
Cz(ul, s ,un) = Py - . (4.20)
I1 (pUF + q) —q
i=1

Note that the marginal survival functions of W; and X;, 7 = 1,--- ,n,in (4.16) and (4.19) correspond
to the survival function of the univariate mixed exponential-geometric distribution introduced in
Adamidis and Loukas (1998). It is useful to note that the mixed exponential-geometric distribution
is completely monotone (see Marshall and Olkin (1988)). The copulas C; and Cs in (4.17) and
(4.20) are multivariate shifted negative binomial copulas presented in Joe (2014).

The joint survival function of the bivariate random vector (W;, X;) is given by

«
= p
FWi:Xi(‘S?x) = (esﬂc_q) o 8 a20,
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for ¢ =1,--- ,n. Then, the corresponding dependence structure is the copula C}5 given by

[0}

p
Cia(ui,u2) = 7 i

(q+puy *)(g+puy®) —gq
1 1 «
puy uy
- 1 1 1 1
(qui +p)(qus +p) — qui us
UuUju2

n L (4.21)
(1-a0-uha-uh)
which corresponds to the Lomax copula.
Corollary 4.4. For a positive constant forces of real interest §:
E[Z(t)] = ag, (4.22)
«
_ p _
E [ZQ(t)] = G5+ 2 (q> B(q; a, 1 — a)agps, (4.23)
where B(z; o, B) = [ u® (1 — u)?~Ydu is the incomplete Beta function.
Proof. From elementary calculus, one gets from (4.14)
Of5 A(—s, ) e’
lim ——— = TR 4.24
50 ds op (e® — q)ot! (424)

Substituting the last expression into (3.13) with (n =1 =1) yields F [%] = 1. Combining this with
Corollary (3.1), one gets (4.22). Otherwise, we get from (3.13) with (n =2 and [ = 1)

E|l=| = ozpa/ r———dr = pa/ ——dx
[AQ] o (e"—q)t! o (e"—q)

_ <Z)a /Oq w1 — w)"%du = <Z>a Blg;a,1— a), (4.25)

Qfé A(fsrx) .

where B(z; o, ) = f “utH(1—u) ﬂ Ldu is the incomplete Beta function. Otherwise, lim,_,( 55

a g€’ +ae

ap (—gyarz- Substituting the last expression into (3.13) with (n = 2 and [ = 2), one gets
@2 N o0 re’ 5 o 00 xe2x

Otherwise, integration by parts gives

/OO re® d 1 /°° 1 P
——dxr = x
0 (6:): _ q)a+2 a+1 0 (ex _ q)aJrl

1 1
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Similarly, integrating by parts

/oo xe2x J 1 /oo e® + re® J
— __dx = X
o (e"—q)t? a+ljy (8 —q)tt
1 1 11
= < + ——B(g;a,—a+ 1)> . (4.28)

a+1 \ap® «aq

Hence, through (4.26), (4.27) and (4.28), we obtain

e? o ap® . . B
E [1\2} = 1D T @r g B@atl-a)tBlgael-a)=1

Finally, we combine the last expression with (4.25) and Corollary (3.1) to obtain (4.23). O

Note that if @ = 1, the copula C3 in (4.21) reduces to the AMH copula with Kendall’s, 72,
given by (see e.g. Nelsen (1999))

3¢—2 2(1-¢)%n(1—q)
T12 = - D) .
3q 3q

For this special case, we obtain E [Z(t)] = ags, and E [2%(t)] = a2, — 2(§)log(p)&m§.

5 Numerical illustrations

In this section, we present numerical examples to illustrate how the expected values and the stan-
dard deviations of the discounted renewal aggregate claims behave when we change the dependency
parameters. The provided computations are related to the general case of Clayton copulas. The
force of interest is fixed at the value of § = 5% and we set a = 0.1 and b = 0.02. The Kendall’s
tau dependence measures 7;, ¢ = 1,2 and 712 are defined by (4.2) and (4.3) respectively. In order
to investigate the impact of the dependence structure on the distribution of Z(t), we compute the
mean and the standard deviation using different values for the Kendall tau’s of the copulas Cis,
C1 and (5. The results are analyzed using different time horizons where ¢t is set to be 1,10, 100
and oo.

Tables 1 and 2 display the obtained values for the expected value and the standard deviation
for Z(t). From these results we notice that both the expected cost of claims, E[Z(t)], and the
volatility of this cost, SD [Z(t)], decrease as 712 increases. A strong positive dependence between
the inter-claim times and the claim sizes means that the portfolio generates large and less frequent
losses or small and very frequent losses. Which leads to a small value of E [Z(t)] and less volatile
Z(T) compared to its level in the case of independence (112 = 0). For a fixed ¢, 71 and 712, increasing
the dependence between the claims X’s lead to higher level of risk, i.e. large values of E [Z(t)] and
SD[Z(t)]. On the other hand, increasing the dependence between the inter-claim times reduces
the level of risk for the whole portfolio.
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719 = 0.7 t=1 t=10 t =100 t =00
71 =0.8 T =04 0.1876 1.5133 3.8202 3.8462
71 =0.8 T =10.5 0.3325 2.6827 6.7722 6.8182
1 =0.9 ™ =04 0.0834 0.6726 1.6979 1.7094
71 =09 T =10.5 0.1478 1.1923 3.0099 3.0303
712 = 0.3
71 =04 ™ =0.1 0.4972 4.0111 10.1255 10.1942
71 =04 T2 = 0.2 1.3476 10.8722 27.4454 27.6316
71 =0.5 ™ =0.1 0.3315 2.6741 6.7503 6.7961
71 =0.5 T2 = 0.2 0.8984 7.2481 18.2969 18.4211
712 =0
71 =0.1 T = 0.05 2.5791 20.8075 52.5257 52.8820
71 =0.1 ™ =0.1 6.2624 50.5239 127.5411 128.4063
71 = 0.2 T = 0.05 1.1463 9.2478 23.3448 23.5031
71 =0.2 ™ =0.1 2.7833 22.4551 56.6849 57.0694
Table 1: E[Z(t)]
T2 = 0.7 =1 t=10 t =100 t =00
71 =0.8 ™ =04 0.7446 3.8340 9.0568 9.1154
71 =0.8 T2 =10.5 1.2283 7.7641 19.0654 19.1923
71 =0.9 ™ =04 0.5480 3.1683 7.6677 7.7182
71 =0.9 T2 =10.5 0.9689 6.6519 16.5164 16.6272
712 = 0.3
71 =04 T =0.1 1.0373 3.6525 7.3582 7.3988
71 =04 ™ = 0.2 1.9543 9.7417 22.8270 22.9737
71 =0.5 T =0.1 0.8824 3.5886 7.8413 7.88867
71 =0.5 ™ = 0.2 1.7702 10.0754 24.3126 24.4724
T12 = 0
71 =0.1 T = 0.05 2.7523 14.1045 33.2802 33.4953
71 =0.1 7 =0.1 6.3170 43.3954 107.7566 108.4796
71 =0.2 T2 = 0.05 1.7755 8.6296 20.0843 20.2126
71 =0.2 7 =0.1 3.7297 24.2490 59.7851 60.1842

Table 2: SD [Z(t)]
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Figure 1: Impact of changing 72 on E[Z(t)] and SD [Z(t)] for t = 1,§ = 0.05, 73 = 0.6 and
5 = 0.3

In line with the above analysis, the Figures 1 to 3 highlight the impact of the dependency on
E[Z(t)] and SD [Z(t)] for a fixed horizon t.

6 Conclusions

In this paper, we derived explicit expressions for the higher moments of the discounted aggregate
renewal claims with dependence. Closed expressions for the moments of the aggregate discounted
claims are obtained when the claims and the subsequent inter-claim are distributed as Pareto and
Mixed exponential-geometric distributions. Numerical examples are given to illustrate the impact
of dependency on the moments of the discounted aggregate renewal mixed process.

Since the assumption of constant force of interest is quite restrictive, studying the discounted
renewal aggregate claims with a stochastic force of interest and with a full dependence structure
would be interesting. Moreover, a more challenging and interesting question is to investigate the
mixed risk model with other general classes of other general classes of dependence structure.
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Figure 2: Impact of changing 7, on E [Z(t)] and SD [Z(t)] for t = 1,6 = 0.05, 712 = 0.5 and 75 = 0.5
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Figure 3: Impact of changing 712 on F[Z(t)] and SD[Z(t)] for t = 1,6 = 0.05, 712 = 0.5 and

T = 0.5
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