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changes emerge for global Mediterranean ecosystems and 
the Amazon region, which are identified as possible hot-
spots for future water security issues. Taken together, pro-
jections of dH changes point towards two dilemmas: (1) in 
the near-term, stake-holders are left worrying about pro-
jected increasing dH over large regions, but lack of action-
able model agreement to take effective decisions related 
to local prevention and adaptation initiatives; (2) in the 
long-term, models demonstrate remarkable agreement, but 
stake-holders lack actionable knowledge to manage poten-
tial impacts far distant from actual human-dominated envi-
ronments. We conclude that the major challenge for risk 
management is not to adapt human populations or their 
activities to dH changes, but to progress on global initia-
tives that mitigate their impacts in the whole carbon cycle 
by late-century.

Keywords Drought hazard · Risk management · Global 
warming · CMIP5 models · ISI-MIP project · RCP 
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1 Introduction

Drought is a recurring and extreme climate event that is 
originated by a temporary water deficit and may be related 
to a lack of precipitation, soil moisture, streamflow, or any 
combination of the three taking place at the same time 
(Wilhite and Glantz 1985). Drought differs from other 
hazard types in several ways. First, unlike earthquakes, 
floods or tsunamis that occur along generally well-defined 
fault lines, river valleys or coastlines, drought can occur 
anywhere (with the exception of desert regions where it 
does not have meaning) (Goddard et  al. 2003). Secondly, 
drought develops slowly, resulting from a prolonged period 
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(from months to years) of water supply conditions that are 
below the average, or expected value, at a particular loca-
tion (Dracup et al. 1980).

The immediate consequences of short-term droughts (i.e. 
a few weeks duration) are, for example, a fall in crop pro-
duction, poor pasture growth and a decline in fodder sup-
plies from crop residues, whereas prolonged water short-
ages (e.g. of several months or years duration) may, among 
others, lead to a reduction on hydro-electrical production 
and an increase of forest fire occurrences (Mishra and 
Singh 2009). Because of their long-lasting socioeconomic 
impacts, droughts are by far considered the most damaging 
of all natural disasters (Sivakumar et  al. 2014). Over the 
United States, droughts cause $6–8 billion per year dam-
ages on average, but as much as 22 events between 1980 
and 2014 resulted in over $200 billion costs (NCDC 2015). 
Current estimates by the European Commission (CEC 
2007) indicate that the damages of droughts in Europe over 
the last 30 years are at least €100 billion. On top of that, the 
European Environmental Agency (EEA 2010) reported that 
the annual average economic impact from droughts doubled 
between 1976–1990 and 1991–2006, rising to €6.2 billion 
per year in the most recent period. In India a drought has 
been reported at least once in every 3 years in the last five 
decades (Mishra et  al. 2009; UNISDR 2009a). Moreover, 
the country has suffered a financial loss of about $149 bil-
lion and 350 million people got affected due to droughts in 
the past 10 years (Gupta et al. 2011).

In order to reduce the global threat of drought, an 
increasing number of international initiatives, such as the 
“Hyogo Framework for Action 2005–2015: building resil-
ience of Nations and Communities to Disaster” (UNISDR 
2009a, b) and the “High-level Meeting on National Drought 
Policy” (WMO 2013), have begun to encourage all the 
governments around the world to move towards a drought-
resilient society. Although providing a safety net for those 
people or sectors most vulnerable to drought is always a 
high priority, the challenge now is to do it in a manner that 
engenders cooperation and coordination between different 
levels of governance in order to reinforce the tenets of pro-
active drought risk reduction strategies (Kampragou et al. 
2011; Sivakumar et al. 2014; Wilhite et al. 2014). This new 
paradigm emphasizes greater understanding of the natural 
features of drought, amount of exposed elements and the 
factors that influence environmental, social and economic 
vulnerability. In this context, progress on global drought 
risk management is particularly important (Carrão et  al. 
2016).

Definitions of risk are commonly probabilistic in nature, 
referring to the potential impacts from a particular hazard 
in a future time period (Blaikie et al. 1994; Brooks et al. 
2005). Drought risk is the probability of harmful conse-
quences or likelihood of losses resulting from interactions 

between drought hazard (i.e. the possible future occur-
rence of drought events), drought exposure (i.e. the total 
population, its livelihoods and assets in an area in which 
drought events may occur), and drought vulnerability (i.e. 
the propensity of exposed elements to suffer adverse effects 
when impacted by a drought event) (Cardona et al. 2012). 
Expressed in another way, risk is determined not only by 
the physical intensity of the natural hazard and the amount 
of exposed entities, but also by the vulnerability of a soci-
ety at a given moment in time. Vulnerability depends criti-
cally on the economic, social, and infrastructural character-
istics of the locale or region and is dynamic in response to 
changes in the hazard and exposure (Wilhite et al. 2007).

Although there are three determinants of drought risk, 
any wise management of land and the environment, as well 
as improved preparedness to severe drought events, depend 
primarily on estimations of drought hazard magnitude 
and its distribution for the future (Dao and Peduzzi 2003; 
Hayes et al. 2004; Peduzzi et al. 2009; Cardona et al. 2012). 
Indeed, an assessment of simulated dH conditions is rec-
ommended before any drought management plan is imple-
mented and periodically revised thereafter (Wilhite et  al. 
2014). For example, several of the regions that have expe-
rienced recent droughts are important agricultural areas 
[e.g. Central Europe, parts of the US or India; see Raman-
kutty et al. (2008)], on which global food production may 
critically depend in the future (Foley et  al. 2011). If dH 
is confirmed to increase for these regions, then mitigation 
plans must be revised and updated to keep them produc-
tive and responsive to the needs of the citizens. Similarly, 
future drought in the Amazon region has been highlighted 
as a possible tipping element of the climate system (Lenton 
et al. 2008), involving potential large feedback to the global 
carbon cycle (Phillips et al. 2009; Lewis et al. 2011). Eval-
uating the uncertainty and likely range of dH projections 
over that region is of key importance to raise awareness 
for long-term water supply issues that are not taken into 
account by governance for contemporary “non-drought” 
regions (Orlowsky and Seneviratne 2013). If regional dH 
changes, then adequate prevention measures and adaptation 
strategies must be adopted by governments today to man-
age drought risk tomorrow, and mitigate the impacts of cli-
mate change on human populations and the environment.

In this study, we concentrate on the assessment of cli-
mate change effects on global patterns of drought hazard 
(dH) around the middle and end of the twenty-first century. 
We aim at providing a benchmark for the development and 
implementation of pre-impact governmental programs that 
are intended to reduce future drought risk, and to comple-
ment recent studies on increasing drought conditions under 
global warming in observations and models e.g. (Dai 2013; 
Orlowsky and Seneviratne 2013; Penalba and Rivera 2013). 
While previous studies have focused on raw models at 
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lower resolution, here we performed an analysis from five 
high resolution bias-corrected climate models participat-
ing to the Coupled Model Intercomparison Project Phase 5 
(CMIP5; Taylor et al. 2012), as provided by the Inter-Secto-
ral Impact Model Intercomparison Project (ISI-MIP; War-
szawski et al. 2014). To achieve our goal, we analyzed the 
global patterns of dH for contemporary climate and their 
projected changes over the twenty-first century by means 
of the Weighted Anomaly of Standardized Precipitation 
(WASP) index (Lyon and Barnston 2005) The WASP-index 
has the advantage over the Standardized Precipitation Index 
(SPI) and the Palmer Drought Severity Index (PDSI) used 
in previous studies e.g. (Dai 2013; Orlowsky and Senevi-
ratne 2013; Penalba and Rivera 2013) because it takes into 
account the dry and wet season(s) along the hydrological 
cycle, and calibrates the severity of drought events that 
occur at different times in the year. Moreover, and to the 
best of our knowledge, this is the first study in the litera-
ture that considers together the frequency and severity of 
drought events to compute dH. By focusing on dH after 
identifying specific drought events, and not on projections 
of intensity for fixed timescales (e.g. months, seasons or 
years), we avoid splitting and smoothing the magnitude of 
extreme drought cases that spread over several fixed time 
periods.

This paper is organized as follows. Section 2 describes 
the methods and data used in this study. In Sect. 3, we per-
form an analysis of contemporary drought from observa-
tions and climate models, followed by a discussion about 
future changes in dH and expected impacts. We conclude 
the paper with a summary of main achievements and their 
implications on Sect. 4.

2  Datasets and statistical methods

2.1  Drought hazard estimation: the Weighted Anomaly 
of Standardized Precipitation (WASP) index

Hazard refers to the natural or human induced events that 
potentially damage different places singly or in combina-
tion (Blaikie et al. 1994) In technical settings, hazards are 
described quantitatively by the probability that an event of 
a certain magnitude will occur at a certain place and time, 
as determined from historical data or scientific analysis 
(Reed 1997; UNISDR 2009b) Since precipitation is a proxy 
indicator of the water available to the coupled human-envi-
ronment system (Svoboda et al. 2012) then the frequency 
of abnormal precipitation deficits at some level of intensity 
can be used to represent drought hazard for drought-prone 
nations and regions, as similar as proposed by Shahid and 
Behrawan (2008), He et al. (2012), Shiau and Hsiao (2012), 
and Kim et al. (2015).

The most widely known index of drought intensity is the 
Standardized Precipitation Index (SPI) proposed by McKee 
et al. (1993). The SPI is based on precipitation data alone and 
is a normalized measure relative to the expected precipitation 
accumulated at a specific time and location. Since its values 
are climatologically consistent across locations and accumu-
lation periods, the SPI has been widely applied in the opera-
tional setting, namely in the United States (Svoboda et  al. 
2002) and Europe (Sepulcre-Canto et  al. 2012), to cite but 
a few. Although the SPI provides a consistent classification 
for comparing precipitation deficits for multiple timescales 
of accumulation across space and time, it does not take into 
account the annual precipitation variability in estimating 
drought intensity. Therefore, intensity values computed from 
the cumulative sum of normalized precipitation deficits dur-
ing a dry season can be as extreme as during a rainy season.

Since the timing of consecutive precipitation deficits rela-
tive to the local hydrologic cycle has more impact on the 
natural ecosystem and human activities than the seasonal or 
annual precipitation totals (Sharma 1996; Usman and Reason 
2004; Lyon et al. 2012), then the contribution of months from 
rainy and dry periods to drought intensity should be propor-
tional to the “weight” of monthly precipitation to the respec-
tive annual cycle (Byun and Wilhite 1999; Keyantash and 
Dracup 2002; Kallis 2008). For example, for crop cultivation, 
the consistency with which minimally required precipitation 
is received is more important than the total received over time 
(Sharma 1996; Usman and Reason 2004). A lack of water is 
more critical in the main season of occurrence, i.e. during the 
start of the rainy season and in the principal growth stages of 
rain-fed crops (Smakhtin and Schipper 2008). Therefore, the 
estimation of drought intensity without accounting for precip-
itation seasonality may mislead or delay mitigation actions, 
and result in significant impacts on people, the economy and 
the environment (Kampragou et al. 2011).

To enable for the effects of pronounced precipitation sea-
sonality in the estimation of drought intensity, in this study 
we compute the magnitude of precipitation deficits by means 
of the Weighted Anomaly of Standardized Precipitation 
(WASP) index (Lyon and Barnston 2005). The reasons for 
selecting the WASP-index are threefold: (1) it is standard-
ized in time and space, as similar as for the SPI; (2) allows 
to damp large standardized anomalies that result from small 
precipitation amounts occurring near the beginning or end of 
dry seasons; and (3) emphasizes anomalies during the core of 
rainy seasons (Andrade and Belo-Pereira 2015). The WASP-
index is computed for each drought event j by summing the 
weighted standardized monthly precipitation deficits, as fol-
lows (Lyon and Barnston 2005):

(1)WASPj =

Pm,n≥!m∑

Pm,n<!m

(
Pm,n − !m

!m

)
!m

!A

,
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where Pm,n is the total precipitation for month 
m = 1,… , 12, and year n; !m defines the monthly thresh-
old of meteorological drought onset; and !A =

∑12

m=1
!m is 

the maximum annual precipitation deficit due to drought 
conditions. A drought event j starts when Pm,n < !m, and 
ends when Pm,n ≥ !m. !m is computed from a time-series of 
precipitation totals, Pm,1,… ,Pm,N , collected for month m 
over a reference period of N years (we focus on the period 
1971–2000). The thresholds of drought onset are derived 
by means of the “Fisher–Jenks” classification algorithm, 
which estimates the precipitation totals that optimize 
the partition of the time-series into “drought” and “non-
drought” months along the reference period N, as described 
in Carrão et al. (2014).

In this study, drought hazard (dH) for grid point i and 
30-year period t (1971–2000, 2021–2050, and 2071–2099) 
is estimated as the probability of exceeding the median of 
the WASP-index values computed for all grid points across 
the globe in the reference period of N years:

where WASPi,t represents the sorted set of WASP-index 
values for all drought events j occurring at grid point i in 
the 30-year period t, and med (WASPg,N) denotes the 50th 
percentile of the WASP-index values computed for all grid 
points across the globe in the reference period N.

2.2  Climate model simulations

To estimate potential dH changes in the future, we use 
high-resolution climate model simulations derived from 
state-of-the-art general circulation models (GCMs) col-
lected through the Coupled Model Intercomparison Pro-
ject Phase 5 (CMIP5; Taylor et  al. 2012 and exploited in 
the framework of ISI-MIP, the first Inter-Sectoral Impact 
Model Intercomparison Project (Warszawski et  al. 2014). 
ISI-MIP is designed to provide a consistent set of global 
impact projections in the agriculture, water, biome, health, 
and infrastructure sectors at different levels of global 
warming (Hempel et  al. 2014). To provide the associated 
climate information for ISI-MIP, five CMIP5 simulations 
were selected, namely: HadGEM2-ES, IPSL-CM5A-LR, 
MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M 

(2)dHi,t = 1 − Pr{WASPi,t ≤ med (WASPg,N)},

(Table  1). These five models were selected based on the 
availability of data for the required variables covering the 
period from 1 January 1950 to 31 December 2099, i.e. 
historical and all Representative Concentration Pathway 
(RCP) scenarios in the CMIP5 archive at the beginning of 
the ISI-MIP project (Hempel et al. 2014).

The CMIP5 model simulations selected for the ISI-MIP 
climate dataset were bi-linearly interpolated in space to a 
0.5◦ latitude/longitude spatial resolution grid, as described 
by (Hempel et  al. 2014). Moreover, the time-series were 
linearly interpolated to the standard Gregorian calendar 
(365 days per year plus leap days) wherever necessary. 
The data were also bias-corrected to ensure long-term sta-
tistical agreement with the observation-based GPCCv4-
WATCH forcing data (Weedon et al. 2011) over the period 
1960–1999. The need for bias-correcting model projec-
tions is well known, as impact models may be significantly 
dependent on the occurrence and frequency of extreme 
events (Christensen et  al. 2008). Precipitation, and espe-
cially convective precipitation, is strongly dependent on 
details of climate models parametrization, and the use of 
a bias-corrected ensemble gives more robust results in 
the projection of climate change (Russo et  al. 2013). For 
instance, Rojas et  al. (2011) showed that bias-corrected 
data significantly improve the simulation of river flood for 
the present climate. Bias-correction of ISI-MIP daily series 
of precipitation was performed by Hempel et  al. (2014), 
following the method described in Piani et al. (2010). This 
approach was previously used by Dosio and Paruolo (2011) 
and Dosio et  al. (2012) to perform the bias-correction of 
ENSEMBLES daily series of temperature and precipita-
tion. Dosio and Paruolo (2011) showed that bias-correction 
improved the present climate mean statistics and the time-
dependent properties, such as the number of consecutive 
dry days and the cumulative amount of rainfall for consecu-
tive heavy precipitation days.

In this study, we concentrate in three emissions sce-
narios, termed Representative Concentration Pathways 
(RCP) by the Intergovernmental Panel on Climate Change 
(IPCC) and explained in detail in Moss et  al. (2010). All 
scenarios specify radiative forcing relative to pre-industrial 
conditions, with the 20th century increasing from 1.04 to 
2.08 W/m2 during the period 1971–2005. The emissions 

Table 1  CMIP5 climate model 
simulations used in this study Model name Modeling group Country

HadGEM2-ES UK Met Office Hadley Centre UK
IPSL-CM5A-LR Institute Pierre Simon Laplace France
MIROC-ESM-CHEM University of Tokyo, National Institute for Environmental Studies, 

and Japan Agency for Marine-Earth Science and Technology
Japan

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (GFDL) USA
NorESM1-M Norwegian Climate Centre Norway
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scenarios deviate at 2005 and are named based on their 
radiative forcing values in 2100. The RCP8.5 scenario 
is the most severe, with greenhouse gases continuing to 
increase through the next century, resulting in radiative 
forcings of 8.5 W/m2, CO2 concentrations of 1370 pppm 
and a temperature anomaly of 4.9 ◦C by 2100. The RCP4.5 
scenario represents a medium future scenario, where green-
house gases and therefore radiation stabilize by the end of 
the century with an overshoot at 4.5 W/m2, 650 ppm CO2, 
and a temperature anomaly of 2.4 ◦C. The least severe 
future scenario is the RCP2.6, which includes a mid-cen-
tury peak at 3 W/m2 before declining to 2.6 W/m2, 490 ppm 
CO2, and a temperature anomaly of 1.5◦C.

Calculation of the WASP-index (Sect. 2.1) for contem-
porary and future climates relies on daily precipitation (kg 
m−2 s−1) accumulated at monthly resolution.

2.3  Statistical methods

In this study, projections of drought hazard (dH), as well 
as the magnitude of their changes in a warming future, are 
estimated by means of the WASP-index values (Sect. 2.1, 
Eq. 1) calculated for all consecutive monthly precipitation 
deficits within three 30-year periods t: (1) 1971–2000, (2) 
2021–2050, and (3) 2071–2099, which we denote as con-
temporary climate, near future, and future, respectively. 
Note that previous studies addressed both the frequency 
and intensity of projected drought changes e.g. (Sheffield 
and Wood 2008; Orlowsky and Seneviratne 2013; Spinoni 
et al. 2015a). Here we focus on dH only, which values sum-
marize both statistics: a projected positive change of dH 
results in a larger proportion of severe drought events and 
an increase of their median magnitude. Projected changes 
in dH at each grid point are defined with respect to a ref-
erence period N, in our case 1971–2000 (present climate). 
In transient climate simulations, when the greenhouse forc-
ing gradually changes, the assumption of stationarity is not 
necessarily valid, since, over a period of 50 years or more, 
the climate change signal can be significant (Nikulin et al. 
2011). In our case, however, since we use only 30-year 
time-series of model—simulated monthly precipitation 
totals, the climate change signal is expected to be small. 
Hence, with good approximation, we can treat 30 years as 
stationary (Russo and Sterl 2012).

2.3.1  Ensemble consistency

The climate models that we are using in this study are tools 
that have been developed to understand and to represent 
specific features of the real climate system of the Earth. In 
order to be useful for this purpose, it is necessary to evalu-
ate the capability of such models to realistically represent 
these features (Notz 2015; Pascale et al. 2015). Therefore, 

before entering into the analysis of future changes in dH, 
we first evaluate its representation in the climate models 
for the reference period 1971–2000. Model evaluation is 
commonly based on the direct comparison between simu-
lation results and measurements of individual observables 
e.g. (Dai 2013; Russo et  al. 2013; Gulizia and Camilloni 
2015). Here we compare the simulated dH from individual 
models, as well as the mean (CMIP5-EMean) and median 
(CMIP5-EMed) of their ensemble, to the dH computed with 
monthly precipitation totals from the GPCCv4-WATCH 
forcing data. Differences at each grid point were quanti-
fied by means of the Pearson product–moment correlation 
coefficient, r, a widely used measure of the degree of linear 
dependence between two datasets (Duveiller et  al. 2016). 
The single model or ensemble statistic (mean or median) 
with the highest agreement is selected for projecting future 
changes in the geographic patterns and magnitudes of dH 
globally. It should be noted that although the GPCCv4-
WATCH forcing data was used to perform the bias correc-
tion of individual monthly precipitation totals for the five 
models under contemporary climate, here we are looking 
at the correlation between a new random variable (i.e. dH) 
that is independent from individual monthly precipitation 
totals and has a different probability distribution.

As some climate models project a significant wetter cli-
mate, while others project a drier one, there is an uncer-
tainty in future changes that may have a large impact when 
the whole ensemble of data is used for deriving joint sta-
tistics, i.e. CMIP5-EMean and CMIP5-EMed (Russo et al. 
2013). To give the same weight to the five models, we com-
pute CMIP5-EMed as the median of the expected drought 
hazard for each model, as emphasized by, e.g. Reichler 
and Kim (2008), Pierce et al. (2009), Feng and Fu (2013), 
Russo et al. (2013), and Huang et al. (2015). To perform a 
statistical sound comparison, we compute CMIP5-EMean 
as the average of expected drought hazard for each model.

We also investigate the regional consistency between 
simulations and observations for contemporary climate 
under the paradigm of a statistically indistinguishable 
ensemble. Despite the fact that the link between models’ 
performance for contemporary climate and the perfor-
mance for a future climate is often not clear, the assessment 
of the ensemble consistency provides a necessary proxy for 
the evaluation of the ensemble accuracy in the future under 
large uncertainties and due to the lack of an observed cli-
mate (Bothe et al. 2013; Notz 2015; Pascale et al. 2015). 
In this type of analysis, the null hypothesis is that observa-
tions and simulations are statistically indistinguishable and, 
therefore, are exchangeable with each other (Wilks 2005). 
The concept of indistinguishability or exchangeability 
bases on the assumption that the observed climate system is 
sampled from the ensemble of climate models (Bothe et al. 
2013). To assess whether the ensemble of simulated dH can 
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be considered to be consistent with the observed dH, we 
use a robust and non-parametric location test based on the 
median absolute deviation (MAD) of simulated dH, which 
is computed as (Huber et al. 1981):

where dHmod(k) is the expected dH from climate model k, 
and b is a constant needed to make the estimator consist-
ent for the distribution of interest (Rousseeuw and Croux 
1993). We empirically estimate b = 1∕Q(0.75), as sug-
gested by Leys et al. (2013), where Q stands for quantile. 
The consistence of the ensemble is assessed by testing the 
null hypothesis that the median dH across all models is the 
same as the observed dH under contemporary climate. As 
proposed by, e.g. Iglewicz and Hoaglin (1993), Rousseeuw 
and Croux (1993), and Leys et al. (2013), the null hypoth-
esis can be rejected for test values > 2.5, which are com-
puted as follows:

where dHobs is the observed dH computed from the 
GPCCv4-WATCH forcing data. For rejected points, we 
conclude that the climate ensemble is not consistent with 
contemporary climate and exclude these grid points from 
the analysis of changes in future dH.

2.3.2  Robustness and significance of climate projections

To assess whether dH in a future time period t is distinct 
from that in the reference period N, we used a method 
adapted from previous works, namely Tebaldi et al. (2011), 
Knutti and Sedlek (2013) and Jacob et  al. (2014). This 
method identifies regions with relatively robust and signifi-
cant climate changes from an ensemble of model simula-
tions, and can be applied to projections on regular model 
grids or to data aggregated onto larger regions. As pointed 
out by Tebaldi et  al. (2011), there is a fundamental dif-
ference between lack of signal (i.e. lack of detection of a 
significant response to anthropogenic forcing) versus lack 
of agreement in the signal (i.e. when different models pro-
duce changes of opposite sign). We use two statistical tests 
to analyze the significance and robustness of future dH 
changes given by the ensemble of climate projections. Only 
regions that pass both tests are identified as regions with 
robust and significant dH changes.

The first test regards the agreement of individual 
simulations in terms of the direction of the changes, i.e 
robustness. We use the consensus between the five mod-
els to measure the uncertainties associated with natural 
variations and model errors, and defined robust changes 
in grid points where more than 80% of the models agree 

(3)MAD = b med
|
|
|
dHmod(k) − CMIP5 − EMed

|
|
|
,

(4)
|
|dHobs − CMIP5 − EMed||

MAD
,

(i.e. 4 out of 5), as similar as Jacob et  al. (2014) and 
Alfieri et al. (2015). The idea is that if multiple models, 
based on different but plausible assumptions, simplifica-
tions and parameterizations, agree on a result, we have 
higher confidence than if the result is based on a single 
model, or if models disagree on the result (Knutti and 
Sedlek 2013).

In the second test, the changes are assessed by means 
of the p values of the Mann–Whitney–Wilcoxon test 
(Storch and Zwiers 2003; Wilks 2005; Swain and Hay-
hoe 2015) for the ensemble of simulations. This statisti-
cal test, which is non-parametric and has the advantage 
of making no assumptions about the distribution of the 
data, is used to determine whether CMIP5-EMean com-
puted for the reference period N (dHN) and future period t 
(dHt) are significantly different, precisely, whether or not 
are drawn from the same distribution at a chosen level of 
significance. As similar as for Sheffield and Wood (2008) 
and Swain and Hayhoe (2015), we only quantify the mag-
nitude of changes for those grid points where the null 
hypothesis that dHN and dHt are drawn from the same 
population is rejected at the 5% significance level.

On account of the fact that dealing with drought 
concepts in contemporary hyperarid and cold regions 
is physically meaningless (Lyon and Barnston 2005; 
Carrão et  al. 2014; Spinoni et  al. 2015b), we used the 
global aridity index dataset from Spinoni et  al. (2015b) 
to exclude these areas from drought change analysis, 
as similar as Russo and Sterl (2012) and Carrão et  al. 
(2016). Moreover, since GCMs have difficulty in simulat-
ing very dry conditions (Sterl et al. 2008), the exclusion 
of the hyperarid regions from our analysis is also impor-
tant because future precipitation changes are difficult 
to interpret there. As many authors have discussed, e.g. 
Giannini (2010), Biasutti and Giannini (2006), Cook and 
Vizy (2006), and Douville et al. (2006) to cite but a few, 
projections of precipitation changes for the twenty-first 
century are very uncertain in those regions, with equal 
numbers of models predicting a significantly wetter or 
drier future, or no significant change with respect to pre-
sent conditions at all.

3  Results and discussion

First, we determine whether climate models are capa-
ble of reproducing contemporary drought hazard (dH) 
at the global level by comparing the hazard computed 
from single models, and their ensemble, to observation-
based data. Afterwards, we look into the identification 
and quantification of changes in dH at the near future and 
future.
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3.1  Analysis of contemporary dH from observations 
and climate models

In Fig. 2, we present the global maps of dH under contem-
porary climate, as computed with the monthly precipitation 
totals from GPCCv4-WATCH forcing data (i.e. dHobs), and 
the ensemble mean dH from individual CMIP5 models (i.e. 
CMIP5-EMean). Looking at Fig.  2(a), it is noticeable a 
match between the geographic distribution of global dHobs 
and the wide range of global dry regions, as depicted by the 
global map of aridity computed by Spinoni et al. (2015b). 
Our experiments are consistent with previous results pre-
sented by Seager et  al. (2007), Dai (2011), Spinoni et  al. 
(2014), and Güneralp et al. (2015): dH is generally high for 
semiarid areas, such as Northeastern and Southern South 
America, Northern, Southwestern and Horn of Africa, 
Central Asia, Australia, West US and the Iberian Penin-
sula; and low for tropical regions, such as the Amazon, 
Central Africa and Southern Asia. Let us also look in detail 
at the regional pattern of dHobs for Latin America (LA). In 
1936, the Semi-Arid Region of Northeast Brazil (SARNB, 
black polygon in Fig. 2a) was officially recognized by the 
federal government as having a common recurrence of 
drought episodes and it was delimited under the name of 
Drought Polygon to augment the governmental support to 
the resident populations living there (Brasil-MMA 2004; 
Brasil-MI/MMA/MCT 2005). The results shown in Fig. 2a 
confirm that the geographic distribution of dH for North-
east Brazil is overall consistent with the geometric shape of 
the Drought Polygon (Brasil-MI/MMA/MCT 2005). These 
results seem to emphasize the validity of the WASP-index 
at estimating dH and lend additional support to its use over 
the globe, for multiple geographic scales and different pre-
cipitation regimes. Moreover, it supports the use of the 
GPCCv4-WATCH for evaluating the consistency of the dH 
simulations in contemporary climate.

In Table  2, we present the Pearson product–moment 
correlation coefficient, r, between the hazard computed 
with the GPCCv4-WATCH and the models for contempo-
rary climate. The results suggest that the ensemble mean 
dH (CMIP5-EMean) outperforms the respective median 
(CMIP5-EMed), as well as the hazard computed with indi-
vidual simulations. Moreover, our outcomes confirm and 
strengthen the results of previous studies, such as Pierce 
et al. (2009), Feng and Fu (2013), and Huang et al. (2015), 
in that the mean of individual simulations correlates bet-
ter to the climate variable being projected into the future. 
As the mean can filter uncertainty from inter-model 
variability, it is generally the best representation of the 
response to imposed anthropogenic forcing, and it is bet-
ter than any individual member (Reichler and Kim 2008; 
Pierce et al. 2009; Feng and Fu 2013; Huang et al. 2015). 
Indeed, most of the observed patterns of dH computed with 

the GPCCv4-WATCH are consistently simulated by the 
CMIP5-EMean computed from the average of individual 
CMIP5 models (Fig.  2b). The geographic distribution of 
dH is matching for most of north America, Europe and 
the Mediterranean region, south Australia, central Africa, 
south and east Asia, and southwest of South America.

Notwithstanding the CMIP5-EMean shows the best 
global correlation with the dHobs, it is also very important 
to evaluate the consistency of the ensemble, i.e. if the dHobs 
behaves like a random draw from the probability distribu-
tion describing the ensemble of climate models (Wilks 
2005). In Fig.  3, we present the geographic distribution 
of the test statistic values assessing the ensemble consist-
ency, as defined in Eq. (4). Overall, the results suggest that 
the CMIP5-EMean is less consistent with dHobs for those 
regions placed in the subtropical subsidence zones around 
10◦ and 30◦ N/S, such as subtropical south Africa, north 
Australia, western India, Sub-Saharan Africa, and the 
region between middle-east and the Hindu Kush-Karako-
ram mountain ranges. It is noticeable a match between the 
geographic distribution of statistical disagreements among 
observed and simulated dH, and the arid regions with 
highly marked precipitation seasonality, as measured by the 
relative entropy indicator proposed by (Pascale et al. 2015). 
They found that the models participating to the CMIP5 
project, systematically overestimate the distribution of 
monthly precipitation throughout the year in arid and semi-
arid regions with intermittent precipitation regimes—like 
the sub-Saharan Sahel—due to, in most cases, an excess of 
rainfall during the premonsoonal months. Interestingly, this 
pattern is not verified east of the Andes in South America. 
A plausible explanation is the southward flowing low-level 
jet (LLJ) that develops along the eastern Andean flanks and 
constantly transports moisture from the tropics to the sub-
tropics (Campetella and Vera 2002; Soares and Marengo 
2009; Insel et al. 2010). Nevertheless, to avoid contradic-
tory analyses regarding the magnitude of future dH for 
some of the so-called monsoon regions (Wang and Ding 
2008), we add inconsistent grid points to the mask defined 
in Fig. 1 and do not account for changes at these regions.

In Fig. 4, we present a scatterplot of dHobs and CMIP5-
EMean (as depicted, respectively in Fig.  2a, b). Plotted 
on the horizontal axis are the dHobs values. The CMIP5-
EMean for corresponding grid points are plotted on the 
vertical axis: (a) all grid points; (b) after removing not con-
sistent grid points identified in Fig. 3. The r value between 
dHobs and CMIP5-EMean is of 0.59 for Fig. 4a (Table 2) 
and of 0.75 for Fig. 4b. These results show that by remov-
ing the inconsistent grid points of intermittent precipitation 
regimes located in the subtropical subsidence zones from 
the analysis (orange cloud dressing the center right area in 
Fig.  4a), the CMIP5-EMean approximates the geographic 
pattern of contemporary global dH conditions. Recently, 
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Fig. 1  Hyperarid and cold 
regions not included in global 
drought change analysis
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Fig. 2  Global maps of dH for the period 1971–2000: a computed 
with monthly precipitation totals from GPCCv4-WATCH forcing 
data; b computed as the multi-model ensemble mean dH (CMIP5-

EMean). The Semi-Arid Region of Northeast Brazil (SARNB) is 
delimited in black (left panel)

Table 2  Pearson product–moment correlation coefficient (r) between 
the dH computed with monthly precipitation totals from GPCCv4-
WATCH forcing data for the period 1971–2000 and the dH computed 

with monthly precipitation totals from CMIP5 models (ensemble 
median (CMIP5-EMed) and mean (CMIP5-EMean), and individual 
models) for the same time period

CMIP5-EMed CMIP5-EMean HadGEM2-ES IPSL-CM5A-LR MIROC-ESM-CHEM GFDL-ESM2M NorESM1-M

GPCCv4-WATCH 0.58 0.59 0.47 0.56 0.51 0.50 0.51
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Orlowsky and Seneviratne (2013) have shown that con-
temporary drought conditions computed with SPI-12 from 
three independent observation-based datasets have an aver-
age r value of 0.8. Therefore, we can conclude that the 
CMIP5-EMean simulated with the WASP-index for the 
non-masked areas correlates well and is coherent with that 
estimated from the forcing data.

To conclude the assessment of dH computed with the 
CMIP5 ensemble under contemporary climate, we present 
an evaluation of the coefficient of variation (CV) for simu-
lated dH at each grid point (Fig. 5). The CV is calculated 
as the ratio between the standard deviation of the ensemble 
and its mean, as presented in Fig. 2b. According to Alfieri 
et al. (2015), larger CVs suggest more uncertain statistics, 

with values above 1 being indicative of an exacerbated 
disagreement between models. In our case, all grid points 
present small to medium CVs, indicating a good agreement 
between the five climate models for the period 1971–2000. 
Nevertheless, and to complement the results presented in 
Fig.  3, we are of the opinion that future drought changes 
should also be evaluated prudently for central Africa, mari-
time Southeast Asia, northwest of South America, as the 
CVs are the highest for those regions. In fact, and given 
the high uncertainty in the simulations, it can be reason-
ably assumed that decisions related to the establishment 
or reinforcement of preparedness plans for adaptation and 
mitigation in those regions can be devious for stakehold-
ers. This is increasingly relevant for those food-insecure 

Fig. 3  Geographic agreement 
between CMIP5-EMean and 
dHobs. The hatched areas corre-
spond to subtropical subsidence 
zones, as defined in Pascale 
et al. (2015)
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Fig. 4  Smoothed color density 
representation of dHobs and 
CMIP5-EMean. a All grid 
points; b after removing not 
consistent grid points identified 
in Fig. 3
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African regions with high dependence on subsistence agri-
culture and primary sector activities that have been subject 
to severe impacts in the 1980’s: drought events combined 
with poor governance and poorly functioning market sys-
tems, oppressive policies, and intermittent or insufficient 
food aid, had historically lead to food insecurity, famine, 
human conflicts and widespread mortality there (Hulme 
1996; Reed 1997; Below et al. 2007; Gráda 2007; Traore 
et al. 2014).

3.2  Future changes in drought hazard

Figures 6 and 7 show, respectively, near future (2021–2050) 
and future (2071–2099) percentage changes of dH, as 
measured by means of the CMIP5-EMean. The period 
1971–2000 is used as the reference (N) to measure future 
percentage changes of dH. The changes are calculated for 
three Representative Concentration Pathways (RCPs): 2.6, 
4.5 and 8.5, respectively at the top, middle and bottom 
of Figs. 6a and 7a. In Figs. 6b and 7b, regions where dH 
changes are robust according to the first test are colored in 
light green, whereas regions that are robust and show sig-
nificant changes at the chosen 95% confidence level are 
colored in dark green. Note that significant changes are 
always robust in our analysis. Non-robust and non-signifi-
cant regions are colored in pink, whereas cold and hyper-
arid areas, as well as grid points of inconsistent dH across 
climate models for contemporary climate (as defined in 
Fig. 3) are colored in grey.

In general, dH increases globally between the twentieth 
century and both future time periods (Figs. 6a, 7a). More 
interestingly though, is the fact that the geographic patterns 

of increasing and decreasing dH look very similar for mid-
dle and late twenty-first century, as well as for the three 
RCPs. In the one hand, the extend of positive dH changes 
is projected to cover nearly all of the continental areas of 
North and South America, Europe, West and South Africa, 
East Asia and Australia. The projected positive changes 
in dH are consistent with the CMIP3 drought analysis in 
Sheffield and Wood (2008), CMIP5 drought analysis in 
Prudhomme et  al. (2014), and follow the tendencies of 
regional precipitation decreases projected with simulations 
from CMIP5 by Dai (2013), Feng et al. (2014), Knutti and 
Sedlek (2013), and Orlowsky and Seneviratne (2013). On 
the other hand, and as similar as for Feng et al. (2014) and 
Orlowsky and Seneviratne (2013), models agree that dH 
will decrease in some drought hot spot regions of the last 
decades, such as Central Asia, South and Southeast Asian 
monsoon regions, and East Africa.

3.2.1  Projections for the period 2021–2050

Let us look in detail at the magnitude, robustness and sig-
nificance of dH changes at the near-future. Although deci-
sion makers are usually more interested in the 10–30 year 
time horizon (Pulwarty 2003), we did not find substantial 
differences between the magnitude of dH changes for the 
three RCPs in the middle of the century: with a few excep-
tions, dH is varying spatially by at most ±25% (Fig.  6a), 
and the geographic consensus (more than 80%) of the pro-
jected dH among the five models is restricted to a few and 
sparse areas in central of South America, southeast US, the 
Iberian Peninsula, east China and south Australia (Fig. 6b). 
Drying scenarios are about as likely as reduced drought 

Fig. 5  Geographic distribution 
of the coefficient of variation 
(CV), calculated as the ratio 
between the standard deviation 
and the mean of the ensemble 
drought hazard
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conditions in most regions and, not surprisingly, statistical 
significant changes, as defined by the Mann–Whitney–Wil-
coxon test (see Sect.  2.3), are difficult to pinpoint around 
the world (Fig. 6b). Arguably, mild changes in dH should 
not be mistaken for low drought risk in the near future, 
since projections for most regions are neither significant 
nor consensual, and still include the possibility of increas-
ing magnitude, even in the cases where the average projec-
tions point towards wetter conditions.

These results might leave stake-holders worrying 
about a near future that projects increasing dH condi-
tions over large regions, but lacking consensus among 
models, thus feeling paralyzed by the lack of actionable 
information to take decisions related to prevention and 
adaptation to future dH. Note, however, that these results 
do not contradict the patterns from previous studies and 
are not missing part of the phenomenon, but highlight 
the inherent ambiguity in decadal dH predictions from 
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Fig. 6  a Percentage change in CMIP5-EMean between the reference 
period (1971–2000) and near future (2021–2050) under the RCP2.6 
(top), RCP4.5 (middle) and RCP8.5 (bottom) scenarios. b Robust-

ness and significance of dH changes under the RCP2.6 (top), RCP4.5 
(middle) and RCP8.5 (bottom) scenarios; significant changes (dark 
green) are always robust
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a forced climate change signal that is weaker than the 
magnitude of internally generated climate variations, as 
pointed out by Meehl et  al. (2009). Indeed, dH changes 
are not significant and the spatial patterns are similar for 
the three different concentration pathways in the period 
2021–2050, because the climate system response is com-
parable over the next few decades no matter which RCP 
is followed (Meehl et  al. 2007). This situation becomes 
more evident for indicators based on precipitation only 
(than for, e.g. temperature), where even contemporary 

large-scale forced changes are only marginally separa-
ble from internal climate (Zhang et al. 2007; Deser et al. 
2012). Indeed, previous studies e.g. Sheffield and Wood 
(2008), Dai (2011), Orlowsky and Seneviratne (2013) 
and Spinoni et  al. (2015a) have shown that increases in 
drought impacts during the recent past were not driven 
by decreased precipitation only, but also by increased 
evapotranspiration, highlighting that trends in precipita-
tion emerge slowly and their effects on extreme climate 
events, such as drought, only establish in the longer-term.

−4
0

−2
0

0
20

40
60

80
(a)

La
tit
ud

e
−4

0
−2

0
0

20
40

60
80

La
tit
ud

e

−150 −100 −50 0 50 100 150

−4
0

−2
0

0
20

40
60

80

Longitude

La
tit
ud

e

<−100% −75 −50 −25 0 25 50 75 >100%

(b)

−150 −100 −50 0 50 100 150

Longitude

robust changes significant changes
non−robust/significant masked territories

Fig. 7  As in Fig. 6 but for the percentage change in CMIP5-EMean between the reference period (1971–2000) and future (2071–2099)
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3.2.2  Projection for the period 2071–2099

At the end of the century, the magnitude of dH remarka-
bly increases under RCPs 4.5 and 8.5, as compared to the 
respective values for the period 2021–2050, and increases 
at almost all regions from RCP2.6 to RCP8.5 (from top 
to bottom of Fig.  7a). For example, the estimated magni-
tude of dH changes for Southern Europe and the Mediter-
ranean region is positive and around 25% under RCP2.6, 
increases by 50% under RCP4.5 and grows by more than 
75% under RCP8.5. Similarly, while dH is expected to 
decrease by 25% under RCP2.6 in almost all central Asia, 
under RCP4.5 this condition is limited to a minor geo-
graphic enclave in the centre of that region, and finally it is 
expected to wholly increase by at least 25% under RCP8.5. 
These results are in line with that of Meehl et  al. (2009) 
and further support the idea that only in the second half of 
the twenty-first century does the climatological response of 
precipitation depend significantly on which concentration 
pathway is followed. Indeed, under RCP2.6, the magnitude 
of changes is similar to the values registered for the period 
2021–2050 at almost all regions, and the spatial patterns 
of robustness and significance also maintain alike (top of 
Figs.  6b, 7b). This result was somewhat expected, as the 
radiative forcing for this RCP reaches its maximum around 
the middle of the twenty-first century and the occurrence 
of climate extremes beyond that time should not be signifi-
cantly aggravated (Taylor et al. 2012).

On the other hand, significant signals of dH changes 
emerge in a few regions by the end of the century, as aver-
aged over all models under RCPs 4.5 and 8.5 (middle and 
bottom of Fig. 7b). The analysis of Fig. 7a, b, reveals that 
differences are statistical significant only for dH increases 
above 50% and for the regions where all models agree in 
the direction of the changes. Indeed, although dH computed 
with CMIP5-EMean under RCP8.5 climate simulations 
(bottom of Fig.  7a) is expected to increase by more than 
100% in West African region, these changes are neither 
robust nor significant. Naturally there is little agreement 
in the direction of changes from individual models in that 
region (bottom of Fig. 7b). Despite the reduced number of 
models used in this study, similar results have been attained 
by Feng et al. (2014) with simulations from 20 global cli-
mate models participating to the CMIP5. They found that 
mean annual precipitation totals are expected to decrease 
by more than 30% in West African region, but there is no 
majority of models agreeing in the direction of the change. 
These results suggest that the CMIP5 models collected 
by the ISI-MIP project are representative of the mean and 
spread of a larger set of CMIP5 precipitation simulations.

Let us now look in detail at robust and significant dH 
changes under RCP8.5 for the end of the century. The 
whole Mediterranean ecosystem, including the areas 

bordering the Mediterranean Sea, central Chile, the Cape 
region of South Africa, southwestern and southern Aus-
tralia, and northern Baja California, display the clearest dH 
increases, trends which are also found in the CMIP5 anal-
yses of annual precipitation totals in Feng and Fu (2013) 
and Feng et al. (2014), SPI12 in Orlowsky and Seneviratne 
(2013), and the occurrence of days under drought condi-
tions in Prudhomme et al. (2014). Although meteorological 
droughts are relatively frequent in the Mediterranean eco-
system, as a consequence of the large inter-annual variabil-
ity of precipitation Lionello (2012) and long periods with 
low precipitation Lloyd-Hughes and Saunders (2002), sev-
eral studies have emphasized that significant drying trends 
under RCP8.5 might lead to an expansion of semiarid and 
arid conditions along the Mediterranean Sea, Southern 
Africa and Australia e.g. (Feng and Fu 2013; Huang et al. 
2015). Consequently, the expanse of severe drought events 
and increasing aridity, along with the rising temperatures 
and more wildfires, might prompt and exacerbate land deg-
radation processes (Pickup 1998; Reynolds et  al. 2007), 
reduce carbon sequestration and enhance more regional 
warming by the end of century (Huang et al. 2015). Given 
that Mediterranean regions have been highly favored and 
exploited by humans for habitation, agriculture and recrea-
tion (Gouveia et al. 2016), and dH changes could result in 
fundamental shifts in natural ecosystems and human set-
tlements, then there is aggravated risk for food security, 
and potential for civil conflict and economic decline in the 
future. For example, Fraser et al. (2013) found that wheat 
and maize production in the northeastern Mediterranean 
Sea area is extremely vulnerable to increasing dH in the 
future, because those regional societies have been reduc-
ing socioeconomic efforts to adapt to climate change. Our 
experiments accentuate the urgent need to develop proac-
tive planning and adaptation strategies for global Mediter-
ranean areas, including the mitigation of climate change 
impacts on the human populations, but also for maintain-
ing the natural functioning of endemic flora and fauna 
(Lionello 2012; Vicente-Serrano et al. 2012).

Not surprisingly, we also find robust and significant 
increases of dH over the entire Amazon by the end of the 
century, thus reconfirming results from CMIP3 drought 
analysis in Sheffield and Wood (2008), and corroborat-
ing the CMIP5 experiments under RCP8.5 in Dai (2013), 
Orlowsky and Seneviratne (2013) and Feng et  al. (2014), 
to cite but a few. Several studies agree that the approximate 
causes are twofold (e.g. Aragão et al. 2007; Marengo et al. 
2008): increasing Pacific Sea surface temperatures (SSTs), 
which intensify El Niño Southern Oscillation and the asso-
ciated periodic Amazon droughts, and an increase of the 
Atlantic SST that displaces the inter-tropical convergence 
zone towards northwest and increases the frequency of his-
torically random droughts.
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As the Amazon basin is less disturbed by antropogenic 
actions in comparison to the world’s large river basins 
(Tomasella et  al. 2011), the series of extreme droughts 
in recent years provides a unique opportunity to improve 
our understanding on how pristine environments might 
function during dH increases by the end of the century. 
For example, Laurance and Williamson (2001) and Hofer 
et al. (2012) have reported that long-term drought-induced 
water stress on intact forests suppresses tree growth, 
increases tree mortality, and generates leaf litter drying 
due to increasing canopy openness and understory insola-
tion. Indeed, although the Amazon rainforest has adapted 
to seasonal and short-term dry spells by strategies such as 
water uptake by deep roots, the severe drought events of 
2005 and 2010 had profound environmental and socioeco-
nomic impacts, and highlighted the sensitivity of its hydrol-
ogy and ecosystem to prolonged drought conditions (Zeng 
et al. 2008; Lewis et al. 2011). During the drought event of 
2005, (Phillips et al. 2009) evaluated net biomass changes, 
growth, and mortality of old rainforest, and confirmed that 
the affected areas lost biomass and reversed a large long-
term carbon sink. Consequently, the extremely extended 
dry seasons in 2005 and 2010, associated with intense natu-
ral forest degradation, human induced deforestation and 
logging, broke out severe wildfires and affected the natural 
sustainability of the rainforest (Marengo et al. 2008, 2011). 
As rivers and lakes had the lowest water levels in years, the 
drought events also provoked large impacts on transporta-
tion, fishery, agriculture, generation of hydroelectricity, 
and affected the health of human populations in the region 
(Aragão et al. 2007; Marengo et al. 2008; Zeng et al. 2008; 
Marengo et  al. 2011). Therefore, the increase of periodic 
and random severe drought events by the end of the cen-
tury might dry the rainforest ecosystem, impact on human 
activities and change the whole global carbon cycle (Cox 
et al. 2000; Scholze et al. 2006; Phillips et al. 2009; Lewis 
et al. 2011). Since the Amazon rainforest process more than 
twice the rate of anthropogenic fossil fuel emissions (Phil-
lips et al. 2009), then future dH might substantially affect 
the concentration of atmospheric CO2 and exert a higher 
feedback on climate change.

Finally, taking the three RCPs together, the clearest 
signals of wetting are found for the East African region, 
in agreement with Shongwe et  al. (2011), Feng and Fu 
(2013) and Orlowsky and Seneviratne (2013), and for the 
core monsoon zone in south Asia–east India and northern 
region, as previously noted by Feng and Fu (2013), Feng 
et  al. (2014) and Sharmila et  al. (2015). However, since 
GCM simulations are neither robust nor significant for 
those regions (Fig.  7b), and the percentage changes are 
always inferior to −25% (Fig.  7a), then apparent changes 
must be interpreted as indicative rather than a future reali-
zation of physical reality.

4  Conclusions

Recent disasters in developing and developed countries, 
and the concomitant impacts and personal hardships that 
resulted have underscored the exposure and vulnerability 
of all societies to drought. The damages of drought are a 
product of both the physical magnitude of the hazard and 
the ability to manage the potential disaster losses, includ-
ing the systematic efforts to reduce exposure (prevention) 
and lessen vulnerability (mitigation) of people, livelihoods, 
and services. Here we focus in the assessment of drought 
hazard (dH), as characterized by the likelihood of severe 
precipitation deficits in contemporary and future climates. 
We followed a rigorous analysis to determine where local 
assessments should be carried out to improve future adap-
tation plans and prevention activities, and strengthen multi-
scale drought risk management policies.

We have analyzed high-resolution monthly precipita-
tion data provided by the ISI-MIP project for three RCPs 
from five models participating to the CMIP5 project. In 
particular, we have estimated historical dH and its future 
changes for middle and end of the twenty-first century 
from independent drought events computed by means of 
the WASP-index. With a few exceptions, climate models 
show increasing global dH between contemporary and both 
future time periods under all RCPs. On the one hand, the 
extend of positive dH changes is projected to cover nearly 
all of the continental areas of North and South America, 
Europe, West and South Africa, East Asia and Australia. 
On the other hand, models agree that dH will decrease in 
some drought hot spot regions of the last decades, such as 
Central Asia, South and Southeast Asian monsoon regions, 
and East Africa.

Although the predicted future changes in dH are mono-
tonically increasing and robust across many regions for all 
RCPs and both future time periods, they are generally not 
statistically significant. Significance of changes is depend-
ent on many factors, including the magnitude of the change, 
and the chosen level of significance in the statistical testing 
used in detecting the impacts of climate change. As this is 
generally an arbitrary choice, we have used a 95% confi-
dence level that is ubiquitous in the scientific literature—
a 90 or 99% confidence level could easily be used with 
important changes in the results. As regards the magnitude 
of dH changes, our results suggest that significant increases 
are detectable only after multiple decades, thus confirm-
ing that significant changes in intra-annual precipitation 
regimes only emerge by the end of the century.

Apart from the methodological issues, there are also 
some uncertainties in dH projections arising from the simu-
lations themselves. Firstly, we have used only five models 
to represent the uncertainty of the ensemble. Although the 
uncertainty due to model selection and ensemble member 
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size is difficult to quantify, our projections for the future are 
consistent with the outputs from previous studies based on 
a different set of models. Secondly, the models themselves 
may be biased because of inadequacies in the modeled 
physical processes, parameterizations, downscaling and 
because of processes that are not included in the modeling. 
Such biases can generally be evaluated by comparison with 
observed conditions and this is critical for confidence to be 
instilled in future projections.

We have shown that models do reasonably well in rep-
licating estimates of twentieth century dH statistics at 
regional scales, yet with a general under-estimation of 
dH for subtropical subsidence zones with highly marked 
precipitation seasonality. The reasons for the differences 
between the climate models and the GPCCv4-WATCH 
dataset are unclear at present, but may include model 
biases in the characteristics of precipitation, especially in 
the frequency and intensity of individual monthly totals, 
which impact on the persistence of precipitation anomalies 
and intensity of dH as computed by the WASP-index. Our 
experiments are in line with previous results that suggest an 
overestimation of monthly precipitation totals in arid and 
semiarid regions by the models participating to the CMIP5 
project.

Notwithstanding the uncertainties in future dH changes 
and some regional inconsistencies between climate mod-
els and observations, we can make some general observa-
tions regarding the results. The consensus among this set of 
GCM projections of future climates is that dH will increase 
relative to the contemporary climate, but will not show sta-
tistically significant changes for several decades, indicating 
that the impacts of climate change will not be felt immedi-
ately at regional scales. In general, there is a greater pro-
pensity to severe droughts in the Mediterranean ecosystems 
by the end of the century, which may be especially perti-
nent when specific impacts on human activities are taken 
into consideration, such as livestock farming, agricultural 
yields and household subsistence. This is troublesome, 
but since water and society are intertwined, then there is a 
range of drought risk reduction initiatives already available 
for mitigating its impacts in urban and agricultural regions. 
Indeed, drought risk management has focused on reducing 
the impacts of severe droughts in human-dominated envi-
ronments, where water supply depends on artificial stor-
age in reservoirs and groundwater abstractions that provide 
water during dry periods.

More worrisome is the fact that dH is shown to increase 
under all emission scenarios, including the RCP2.6 that 
projects an increase of 1.5 ◦C by the end of the twenty-first 
century relative to the present day. The implication is that 
dH will increase, despite future emission reductions, which 
in turn will increase the time to stabilize atmospheric con-
centrations of greenhouse gases. Indeed, under higher 

RCPs (4.5 and 8.5), the magnitude of the dH changes are 
expected to be even higher and impact very important 
natural ecosystems, such has the Amazon, thus exerting 
higher feedback in the whole carbon cycle. Taken together, 
our findings point towards the idea that the challenge of 
drought risk management is not only to establish organiza-
tional frameworks and operational arrangements that pre-
pare local populations to dH and its changes, but to pro-
gress on global initiatives that prevent drought impacts in 
natural ecosystems with high biodiversity and capacity to 
process anthropogenic fossil fuel emissions.

Open Access This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References
Alfieri L, Burek P, Feyen L, Forzieri G (2015) Global warming 

increases the frequency of river floods in Europe. Hydrol Earth 
Syst Sci 19:2247–2260. doi:10.5194/hess-19-2247-2015

Andrade C, Belo-Pereira M (2015) Assessment of droughts in the 
Iberian Peninsula using the WASP-index. Atmos Sci Lett 
16:208–218

Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson 
LO, Shimabukuro YE (2007) Spatial patterns and fire response 
of recent Amazonian droughts. Geophys Res Lett 34:5

Below R, Grover-Kopec E, Dilley M (2007) Documenting drought-
related disasters: a global reassessment. J Environ Dev 
16:328–344

Biasutti M, Giannini A (2006) Robust sahel drying in response to late 
20th century forcings. Geophys Res Lett 33. doi:10.1029/200
6GL026067

Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: natural haz-
ards, people’s vulnerability and disasters. Taylor & Francis, 
Boca Raton

Bothe O, Jungclaus JH, Zanchettin D, Zorita E (2013) Climate of 
the last millennium: ensemble consistency of simulations 
and reconstructions. Clim Past 9:1089–1110. doi:10.5194/
cp-9-1089-2013

Brasil-MI MMA, MCT (2005) Relatório Final do Grupo de Trabalho 
Interministerial para Redelimitação do Semiárido Nordes-
tino e do Polígono das Secas. Technical Report. Presidência da 
República, Brasília, Brasil

Brasil-MMA (2004) National action program to combat desertifica-
tion and mitigate the effects of drought: PAN-Brazil. MMA 
Editions ISBN 85-87166-66-2. Environment Ministry, Water 
Resources Secretariat. Brasília, Brasil

Brooks N, Adger WN, Kelly PM (2005) The determinants of vulner-
ability and adaptive capacity at the national level and the impli-
cations for adaptation. Glob Environ Change 15:151–163

Byun HR, Wilhite DA (1999) Objective quantification of drought 
severity and duration. J Clim 12:27472756

Campetella CM, Vera CS (2002) The influence of the andes moun-
tains on the south American low-level flow. Geophys Res Lett 
29:7-1–7-4. doi:10.1029/2002GL015451

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5194/hess-19-2247-2015
http://dx.doi.org/10.1029/2006GL026067
http://dx.doi.org/10.1029/2006GL026067
http://dx.doi.org/10.5194/cp-9-1089-2013
http://dx.doi.org/10.5194/cp-9-1089-2013
http://dx.doi.org/10.1029/2002GL015451


 H. Carrão et al.

1 3

Cardona O, van Aalst M, Birkmann J, Fordham M, McGregor G, 
Perez R, Pulwarty R, Schipper E, Sinh B (2012) Determinants 
of risk: exposure and vulnerability. In: Field C, Barros V, 
Stocker T, Qin D, Dokken D, Ebi K, Mastrandrea M, Mach K, 
Plattner GK, Allen S, Tignor M, Midgley P (eds) Managing 
the risks of extreme events and disasters to advance climate 
change adaptation. Cambridge University Press, Cambridge, 
pp 65–108

Carrão H, Naumann G, Barbosa P (2016) Mapping global patterns 
of drought risk: an empirical framework based on sub-national 
estimates of hazard, exposure and vulnerability. Glob Environ 
Change 39:108–124

Carrão H, Singleton A, Naumann G, Barbosa P, Vogt J (2014) An 
optimized system for the classification of meteorological 
drought intensity with applications in frequency analysis. J 
Appl Meteorol Climatol 53:1943–1960

CEC (2007) Impact assessment. Accompanying document from the 
Commission to the European Parliament and the Council COM 
(207). Coordinating European Council, Brussels, Belgium

Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) 
On the need for bias correction of regional climate change pro-
jections of temperature and precipitation. Geophys Res Lett. 
doi:10.1029/2008GL035694. l20709

Cook KH, Vizy EK (2006) Coupled model simulations of the west 
african monsoon system: twentieth- and twenty-first-century 
simulations. J Clim 19:36813703

Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) 
Acceleration of global warming due to carbon-cycle feed-
backs in a coupled climate model. Nature 408:184–187. 
doi:10.1038/35041539

Dai A (2011) Drought under global warming: a review. Wiley Inter-
discip Rev Clim Change 2:45–65

Dai A (2013) Increasing drought under global warming in observa-
tions and models. Nat Clim Change 3:52–58. doi:10.1038/
nclimate1633

Dao H, Peduzzi P (2003) Global risk and vulnerability index trends 
per year (GRAVITY). Technical annex and multiple risk inte-
gration Phase IV. UNDP/BCPR, Geneva

Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in cli-
mate change projections: the role of internal variability. Clim 
Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

Dosio A, Paruolo P (2011) Bias correction of the ensembles high-
resolution climate change projections for use by impact models: 
evaluation on the present climate. J Geophys Res 116:D16106+. 
doi:10.1029/2011JD015934

Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ensembles 
high resolution climate change projections for use by impact 
models: analysis of the climate change signal. J Geophys Res 
117:D17110+. doi:10.1029/2012jd017968

Douville H, Salas-Melia D, Tyteca S (2006) On the tropical origin of 
uncertainties in the global land precipitation response to global 
warming. Clim Dyn 26:367385

Dracup JA, Lee KS Jr, Paulson EG (1980) On the definition of 
droughts. Water Resour Res 16:297–302

Duveiller G, Fasbender D, Meroni M (2016) Revisiting the concept 
of a symmetric index of agreement for continuous datasets. Sci 
Rep 6:19401

EEA (2010) Mapping the impacts of natural hazards and techno-
logical accidents in Europe. An overview of the last decade. 
Technical Report 13/2010. European Environmental Agency, 
Copenhagen

Feng S, Fu Q (2013) Expansion of global drylands under a warm-
ing climate. Atmos Chem Phys 13:10081–10094. doi:10.5194/
acp-13-10081-2013

Feng S, Hu Q, Huang W, Ho CH, Li R, Tang Z (2014) Projected 
climate regime shift under future global warming from 

multi-model, multi-scenario CMIP5 simulations. Glob Planet 
Change 112:41–52. doi:10.1016/j.gloplacha.2013.11.002

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, John-
ston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer 
C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky 
S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM 
(2011) Solutions for a cultivated planet. Nature 478:337–342. 
doi:10.1038/nature10452

Fraser ED, Simelton E, Termansen M, Gosling SN, South A (2013) 
vulnerability hotspots: integrating socio-economic and hydro-
logical models to identify where cereal production may decline 
in the future due to climate change induced drought. Agric For 
Meteorol 170:195–205. doi:10.1016/j.agrformet.2012.04.008

Giannini A (2010) Mechanisms of climate change in the semiarid 
African sahel: the local view. J Clim 23:743756

Goddard S, Harms SK, Reichenbach SE, Tadesse T, Waltman WJ 
(2003) Geospatial decision support for drought risk manage-
ment. Commun ACM 46:35–37

Gouveia C, Trigo R, Beguera S, Vicente-Serrano S (2016) Drought 
impacts on vegetation activity in the mediterranean region: 
an assessment using remote sensing data and multi-scale 
drought indicators. Planet Chang Glob. doi:10.1016/j.
gloplacha.2016.06.011

Gráda CÓ (2007) Making famine history. J Econ Lit 45:5–38
Gulizia C, Camilloni I (2015) Comparative analysis of the ability of 

a set of CMIP3 and CMIP5 global climate models to repre-
sent precipitation in south america. Int J Climatol 35:583–595. 
doi:10.1002/joc.4005

Güneralp B, Güneralp İ, Liu Y (2015) Changing global patterns of 
urban exposure to flood and drought hazards. Glob Environ 
Change 31:217–225

Gupta AK, Tyagi P, Sehgal VK (2011) Drought disaster chal-
lenges and mitigation in India: strategic appraisal. Curr Sci 
100:1795–1806

Hayes M, Wilhelmi O, Knutson C (2004) Reducing drought risk: 
bridging theory and practice. Nat Hazards Rev 5:106–113

He B, Wu J, Lü A, Cui X, Zhou L, Liu M, Zhao L (2012) Quantitative 
assessment and spatial characteristic analysis of agricultural 
drought risk in China. Nat Hazards 66:155–166

Hempel S, Frieler K, Warszawski L, Piontek F (2014) A trend-pre-
serving bias correction the ISI-MIP approach. Earth Syst Dyn 
4:219–236. doi:10.5194/esd-4-219-2013

Hofer B, Carrão H, Mcinerney D (2012) Multi-disciplinary forest fire 
danger assessment in Europe: the potential to integrate long-
term drought information. IJSDIR 7:300–322

Huang J, Yu H, Guan X, Wang G, Guo R (2015) Accelerated dryland 
expansion under climate change. Nat Clim Change 6:166171. 
doi:10.1038/nclimate2837

Huber P, Wiley J, InterScience W (1981) Robust statistics. Wiley, 
New York

Hulme M (1996) Recent climatic change in the world’s drylands. 
Geophys Res Lett 23:61–64

Iglewicz B, Hoaglin D (1993) How to detect and handle outliers. In: 
Mykytka EF (ed) The ASQC basic references in quality control: 
statistical techniques. ASQC Quality Press, Milwaukee, p 78

Insel N, Poulsen CJ, Ehlers TA (2010) Influence of the andes moun-
tains on south American moisture transport, convection, 
and precipitation. Clim Dyn 35:1477–1492. doi:10.1007/
s00382-009-0637-1

Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer 
LM, Braun A, Colette A, Déqué M, Georgievski G, Georgo-
poulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hemp-
elmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlar-
ski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley 
C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, 
Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana 

http://dx.doi.org/10.1029/2008GL035694.%20l20709
http://dx.doi.org/10.1038/35041539
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.1007/s00382-010-0977-x
http://dx.doi.org/10.1029/2011JD015934
http://dx.doi.org/10.1029/2012jd017968
http://dx.doi.org/10.5194/acp-13-10081-2013
http://dx.doi.org/10.5194/acp-13-10081-2013
http://dx.doi.org/10.1016/j.gloplacha.2013.11.002
http://dx.doi.org/10.1038/nature10452
http://dx.doi.org/10.1016/j.agrformet.2012.04.008
http://dx.doi.org/10.1016/j.gloplacha.2016.06.011
http://dx.doi.org/10.1016/j.gloplacha.2016.06.011
http://dx.doi.org/10.1002/joc.4005
http://dx.doi.org/10.5194/esd-4-219-2013
http://dx.doi.org/10.1038/nclimate2837
http://dx.doi.org/10.1007/s00382-009-0637-1
http://dx.doi.org/10.1007/s00382-009-0637-1


Global projections of drought hazard in a warming climate: a prime for disaster risk management  

1 3

JR, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P 
(2014) Euro-cordex: new high-resolution climate change pro-
jections for European impact research. Reg Environ Change 
14:563–578. doi:10.1007/s10113-013-0499-2

Kallis G (2008) Droughts. Annu Rev Environ Resour 33:85–118
Kampragou E, Apostolaki S, Manoli E, Froebrich J, Assimacopou-

los D (2011) Towards the harmonization of water-related pol-
icies for managing drought risks across the EU. Environ Sci 
Policy 14:815–824

Keyantash J, Dracup JA (2002) The quantification of drought: 
an evaluation of drought indices. Bull Am Meteorol Soc 
83:1167–1180

Kim H, Park J, Yoo J, Kim TW (2015) Assessment of drought hazard, 
vulnerability, and risk: a case study for administrative districts 
in south Korea. J Hydro Environ Res 9:28–35

Knutti R, Sedlek J (2013) Robustness and uncertainties in the new 
CMIP5 climate model projections. Nat Clim Change 3:369–
373. doi:10.1038/nclimate1716

Laurance WF, Williamson GB (2001) Positive feedbacks among for-
est fragmentation, drought, and climate change in the Amazon. 
Conserv Biol 15:1529–1535

Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, 
Schellnhuber HJ (2008) Tipping elements in the earth’s cli-
mate system. Proc Natl Acad Sci 105:1786–1793. doi:10.1073/
pnas.0705414105

Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D 
(2011) The 2010 Amazon drought. Science 331:554

Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outli-
ers: do not use standard deviation around the mean, use absolute 
deviation around the median. J Exp Soc Psychol 49:764–766

Lionello P (2012) The climate of the mediterranean region: from the 
past to the future. Elsevier Science, Oxford

Lloyd-Hughes B, Saunders MA (2002) A drought climatology for 
Europe. Int J Climatol 22:1571–1592. doi:10.1002/joc.846

Lyon B, Barnston AG (2005) Enso and the spatial extent of inter-
annual precipitation extremes in tropical land areas. J Clim 
18:5095–5109

Lyon B, Bell MA, Tippett MK, Kumar A, Hoerling MP, Quan XW, 
Wang H (2012) Baseline probabilities for the seasonal pre-
diction of meteorological drought. J Appl Meteorol Climatol 
51:12221237

Marengo JA, Nobre CA, Tomasella J, Oyama MD, de Oliveira GS, 
de Oliveira R, Camargo H, Alves LM, Brown IF (2008) The 
drought of Amazonia in 2005. J Clim 21:495–516

Marengo JA, Tomasella J, Alves LM, Soares WR, Rodriguez 
DA (2011) The drought of 2010 in the context of his-
torical droughts in the Amazon region. Geophys Res Lett. 
doi:10.1029/2011GL047436. l12703

McKee TB, Doeskin NJ, Kleist J (1993) The relationship of drought 
frequency and duration to time scales. In: 8th conference on 
applied climatology, American Meteor Society, Anaheim, Can-
ada, pp 179–184

Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory 
J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson 
I, Weaver A, Zhao ZC (2007) Global climate projections. In: 
Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt 
K, Tignor M, Miller H (eds) Climate change 2007: the physical 
science basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate 
Change. Cambridge University Press, Cambridge, pp 747–845

Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabaso-
glu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl 
G, Karoly D, Keenlyside N, Kimoto M, Kirtman B, Navarra A, 
Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal 
prediction. Bull Am Meteorol Soc 90:1467–1485. doi:10.1175/
2009BAMS2778.1

Mishra AK, Singh VP (2009) A review of drought concepts. J Hydrol 
391:202–216

Mishra AK, Singh VP, Desai VR (2009) Drought characteriza-
tion: a probabilistic approach. Stoch Environ Res Risk Assess 
23:41–45

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van 
Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl 
GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer 
RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next 
generation of scenarios for climate change research and assess-
ment. Nature 463:747–756. doi:10.1038/nature08823

NCDC (2015) Billion-dollar weather and climate disasters: overview. 
http://www.ncdc.noaa.gov/billions/overview. Accessed 1 Sept 
2016

Nikulin G, Kjellstrm E, Hansson U, Strandberg G, Ullerstig A 
(2011) Evaluation and future projections of temperature, 
precipitation and wind extremes over Europe in an ensem-
ble of regional climate simulations. Tellus Ser A 63:41–55. 
doi:10.1111/j.1600-0870.2010.00466.x

Notz D (2015) How well must climate models agree with observa-
tions? Philos Trans R Soc A 373:20140164. doi:10.1098/
rsta.2014.0164

Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty 
in observed trends and short- and long-term CMIP5 projec-
tions. Hydrol Earth Syst Sci 17:1765–1781. doi:10.5194/
hess-17-1765-2013

Pascale S, Lucarini V, Feng X, Porporato A, Hasson US (2015) Anal-
ysis of rainfall seasonality from observations and climate mod-
els. Clim Dyn 44:3281–3301. doi:10.1007/s00382-014-2278-2

Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global expo-
sure and vulnerability towards natural hazards: the disaster risk 
index. Nat Hazards Earth Syst Sci 9:1149–1159

Penalba OC, Rivera JA (2013) Future changes in drought characteris-
tics over southern south America projected by a CMIP5 multi-
model ensemble. AJCC 2:173–182

Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-
González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, 
van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, 
Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de 
Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR, Frei-
tas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Men-
doza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, 
Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas 
AS, Steege H, Stropp J, Vásquez R, Zelazowski P, Dávila EA, 
Andelman S, Andrade A, Chao KJ, Erwin T, Fiore AD, Hono-
rio E, Keeling H, Killeen T, Laurance WF, Peña Cruz A, Pit-
man NCA, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Sala-
mão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought 
sensitivity of the Amazon rainforest. Science 323:1344–1347

Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, 
Haerter J (2010) Statistical bias correction of global simu-
lated daily precipitation and temperature for the application 
of hydrological models. J Hydrol 395:199–215. doi:10.1016/j.
jhydrol.2010.10.024

Pickup G (1998) Desertification and climate change the Australian 
perspective. Clim Res 11:51–63

Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting 
global climate models for regional climate change studies. Proc 
Natl Acad Sci USA 106:84418446

Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, 
Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, 
Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke 
T, Wada Y, Wisser D (2014) Hydrological droughts in the 21st 
century, hotspots and uncertainties from a global multimodel 
ensemble experiment. Proc Natl Acad Sci 111:3262–3267. 
doi:10.1073/pnas.1222473110

http://dx.doi.org/10.1007/s10113-013-0499-2
http://dx.doi.org/10.1038/nclimate1716
http://dx.doi.org/10.1073/pnas.0705414105
http://dx.doi.org/10.1073/pnas.0705414105
http://dx.doi.org/10.1002/joc.846
http://dx.doi.org/10.1029/2011GL047436.%20l12703
http://dx.doi.org/10.1175/2009BAMS2778.1
http://dx.doi.org/10.1175/2009BAMS2778.1
http://dx.doi.org/10.1038/nature08823
http://www.ncdc.noaa.gov/billions/overview
http://dx.doi.org/10.1111/j.1600-0870.20
http://dx.doi.org/10.1098/rsta.2014.0164
http://dx.doi.org/10.1098/rsta.2014.0164
http://dx.doi.org/10.5194/hess-17-1765-2013
http://dx.doi.org/10.5194/hess-17-1765-2013
http://dx.doi.org/10.1007/s00382-014-2278-2
http://dx.doi.org/10.1016/j.jhydrol.20
http://dx.doi.org/10.1016/j.jhydrol.20
http://dx.doi.org/10.1073/pnas.1222473110


 H. Carrão et al.

1 3

Pulwarty RS (2003) Climate and water in the west: science, informa-
tion and decision making. Water Resour 124:4–12

Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the 
planet: 1. Geographic distribution of global agricultural lands in 
the year 2000. Glob Biogeochem Cycles 22(GB1003). doi:10.1
029/2007GB002952

Reed S (1997) Crop adaptation to climate change, 3rd ed. UNDP/
UNDRO Disaster Management Training Programme

Reichler T, Kim J (2008) How well do coupled models simulate 
todays climate? Bull Am Meteorol Soc 89:303311

Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, 
Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, 
Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, 
Maestre FT, Ayarza M, Walker B (2007) Global desertification: 
building a science for dryland development. Science 316:847–
851. doi:10.1126/science.1131634

Rojas R, Feyen L, Dosio A, Bavera D (2011) Improving pan-Euro-
pean hydrological simulation of extreme events through statis-
tical bias correction of rcm-driven climate simulations. Hydrol 
Earth Syst Sci 15:2599–2620. doi:10.5194/hess-15-2599-2011

Rousseeuw PJ, Croux C (1993) Alternatives to the median absolute 
deviation. J Am Stat Assoc. doi:10.2307/2291267

Russo S, Dosio A, Sterl A, Barbosa P, Vogt J (2013) Projection of 
occurrence of extreme dry–wet years and seasons in Europe 
with stationary and nonstationary standardized precipitation 
indices. J Geophys Res Atmos 118:7628–7639. doi:10.1002/
jgrd.50571

Russo S, Sterl A (2012) Global changes in seasonal means and 
extremes of precipitation from daily climate model data. J Geo-
phys Res Atmos. doi:10.1029/2011JD016260

Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-
change risk analysis for world ecosystems. Proc Natl Acad Sci 
103:13116–13120. doi:10.1073/pnas.0601816103

Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, 
Harnik N, Leetmaa A, Lau NC, Li C, Velez J, Naik N (2007) 
Model projections of an imminent transition to a more arid cli-
mate in southwestern north America. Science 316:1181–1184

Sepulcre-Canto G, Horion S, Singleton A, Carraõ H, Vogt J (2012) 
Development of a combined drought indicator to detect agricul-
tural drought in Europe. Earth Syst Sci 12:3519–3531

Shahid S, Behrawan H (2008) Drought risk assessment in the western 
part of Bangladesh. Nat Hazards 46:391–413

Sharma TC (1996) Simulation of the Kenyan longest dry and wet 
spells and the largest rain-sums using a Markov model. J Hydrol 
178:55–67

Sharmila S, Joseph S, Sahai A, Abhilash S, Chattopadhyay R (2015) 
Future projection of Indian summer monsoon variability under 
climate change scenario: an assessment from CMIP5 cli-
mate models. Glob Planet Change 124:62–78. doi:10.1016/j.
gloplacha.2014.11.004

Sheffield J, Wood EF (2008) Projected changes in drought occurrence 
under future global warming from multi-model, multi-scenario, 
IPCC AR4 simulations. Clim Dyn 31:79–105. doi:10.1007/
s00382-007-0340-z

Shiau JT, Hsiao YY (2012) Water-deficit-based drought risk assess-
ments in Taiwan. Nat Hazards 64:237–257

Shongwe ME, van Oldenborgh GJ, van den Hurk B, van Aalst M 
(2011) Projected changes in mean and extreme precipitation 
in Africa under global warming. Part II: East Africa. J Clim 
24:3718–3733. doi:10.1175/2010JCLI2883.1

Sivakumar MV, Stefanski R, Bazza M, Zelaya S, Wilhite D, Magal-
haes AR (2014) High level meeting on national drought pol-
icy: summary and major outcomes. Weather Clim Extremes 
3:126–132

Smakhtin VU, Schipper ELF (2008) Droughts: the impact of seman-
tics and perceptions. Water Pol 10:131–143

Soares WR, Marengo JA (2009) Assessments of moisture fluxes east 
of the Andes in south America in a global warming scenario. 
Int J Climatol 29:1395–1414. doi:10.1002/joc.1800

Spinoni J, Naumann G, Carrão H, Barbosa P, Vogt J (2014) World 
drought frequency, duration, and severity for 1951–2010. Int J 
Climatol 34:2792–2804

Spinoni J, Naumann G, Vogt J (2015a) Spatial patterns of European 
droughts under a moderate emission scenario. Adv Sci Res 
12:179–186. doi:10.5194/asr-12-179-2015. http://www.adv-sci-
res.net/12/179/2015/

Spinoni J, Vogt J, Naumann G, Carrão H, Barbosa P (2015b) Towards 
identifying areas at climatological risk of desertification using 
the Köppengeiger classification and Fao aridity index. Int J Cli-
matol 35:2210–2222

Sterl A, Severijns C, Dijkstra H, Hazeleger W, Jan van Oldenborgh G, 
van den Broeke M, Burgers G, van den Hurk B, Jan van Leeu-
wen P, van Velthoven P (2008) When can we expect extremely 
high surface temperatures? Geophys Res Lett. doi:10.1029/200
8GL034071

Storch HV, Zwiers FW (2003) Statistical analysis in climate research, 
Virtual Publishing edn. Cambridge University Press, Cambridge

Svoboda M, Hayes M, Wood D (2012) Standardized precipitation 
index user guide. Technical Report WMO-No. 1090. World 
Meteorological Organization (WMO), Geneva

Svoboda M, LeComte D, Hayes M, Heim R, Gleason K, Angel J, 
Rippey B, Tinker R, Palecki M, Stooksbury D, Miskus D, Ste-
phens S (2002) The drought monitor. Bull Am Meteorol Soc 
83:1181–1190

Swain S, Hayhoe K (2015) CMIP5 projected changes in spring and 
summer drought and wet conditions over north America. Clim 
Dyn 44:2737–2750. doi:10.1007/s00382-014-2255-9

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 
and the experiment design. Bull Am Meteorol Soc 93:485–498. 
doi:10.1175/BAMS-D-11-00094.1

Tebaldi C, Arblaster JM, Knutti R (2011) Mapping model agree-
ment on future climate projections. Geophys Res Lett. 
doi:10.1029/2011GL049863. (l23701)

Tomasella J, Borma LS, Marengo JA, Rodriguez DA, Cuartas LA, 
Nobre CA, Prado MCR (2011) The droughts of 1996–1997 and 
2004–2005 in Amazonia: hydrological response in the river 
main-stem. Hydrol Process 25:1228–1242

Traore SB, Ali A, Tinni SH, Samake M, Garba I, Maigari I, Alhassane 
A, Samba A, Diao MB, Atta S, Dieye PO, Nacro HB, Bouafou 
KG (2014) Agrhymet: a drought monitoring and capacity build-
ing center in the west Africa region. Weather Clim Extremes 
3:22–30

UNISDR (2009a) Drought risk reduction framework and practices: 
contributing to the implementation of the hyogo framework for 
action. Technical Report. United Nations International Strategy 
for Disaster Reduction, Geneva, Switzerland

UNISDR (2009b) Global assessment report on disaster risk reduction. 
Technical Report. United Nations International Strategy for 
Disaster Reduction, Geneva, Switzerland

Usman MT, Reason CJC (2004) Dry spell frequencies and their vari-
ability over southern Africa. Clim Res 26:199–211

Vicente-Serrano SM, Zouber A, Lasanta T, Pueyo Y (2012) Dryness 
is accelerating degradation of vulnerable shrublands in semi-
arid mediterranean environments. Ecol Monogr 82:407–428. 
doi:10.1890/11-2164.1

Wang B, Ding Q (2008) Global monsoon: dominant mode of annual 
variation in the tropics. Dyn Atmos Oceans 44:165–183. 
doi:10.1016/j.dynatmoce.2007.05.002

Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J 
(2014) The inter-sectoral impact model intercomparison project 
(ISIMIP): project framework. Proc Natl Acad Sci 111:3228–
3232. doi:10.1073/pnas.1312330110

http://dx.doi.org/10.1029/2007GB002952
http://dx.doi.org/10.1029/2007GB002952
http://dx.doi.org/10.1126/science.1131634
http://dx.doi.org/10.5194/hess-15-2599-2011
http://dx.doi.org/10.2307/2291267
http://dx.doi.org/10.1002/jgrd.50571
http://dx.doi.org/10.1002/jgrd.50571
http://dx.doi.org/10.1029/2011JD016260
http://dx.doi.org/10.1073/pnas.0601816103
http://dx.doi.org/10.1016/j.gloplacha.2014.11.004
http://dx.doi.org/10.1016/j.gloplacha.2014.11.004
http://dx.doi.org/10.1007/s00382-007-0340-z
http://dx.doi.org/10.1007/s00382-007-0340-z
http://dx.doi.org/10.1175/2010JCLI2883.1
http://dx.doi.org/10.1002/joc.1800
http://dx.doi.org/10.5194/asr-12-179-2015
http://www.adv-sci-res.net/12/179/2015/
http://www.adv-sci-res.net/12/179/2015/
http://dx.doi.org/10.1029/2008GL034071
http://dx.doi.org/10.1029/2008GL034071
http://dx.doi.org/10.1007/s00382-014-2255-9
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1029/2011GL049863
http://dx.doi.org/10.1890/11-2164.1
http://dx.doi.org/10.1016/j.dynatmoce.2007.05.002
http://dx.doi.org/10.1073/pnas.1312330110


Global projections of drought hazard in a warming climate: a prime for disaster risk management  

1 3

Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Sterle 
H, Adam JC, Bellouin N, Boucher O, Best M (2011) Crea-
tion of the watch forcing data and its use to assess global and 
regional reference crop evaporation over land during the twen-
tieth century. J Hydrometeorol 12:823–848. doi:10.1175/2011
JHM1369.1

Wilhite DA, Glantz MH (1985) Understanding the drought phenom-
enon: the role of definitions. Water Int 10:111–120

Wilhite DA, Sivakumar MV, Pulwarty R (2014) Managing drought 
risk in a changing climate: the role of national drought policy. 
Weather Clim Extremes 3:4–13

Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the com-
plex impacts of drought: a key to enhancing drought mitigation 
and preparedness. Water Resour Manag 21:763–774

Wilks DS (2005) Statistical methods in the atmospheric sciences, 2nd 
edn. Academic Press, London

WMO (2013) High-level Meeting on national drought policy. Meeting 
minutes. World Meteorological Organization, Geneva

Zeng NJHY, Marengo JA, Subramaniam A, Nobre CA, Mariotti A, 
Neelin JD (2008) Causes and impacts of the 2005 Amazon 
drought. Environ Res Lett 3:9

Zhang X, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon 
S, Stott PA, Nozawa T (2007) Detection of human influence on 
twentieth-century precipitation trends. Nature 448:461–465. 
doi:10.1038/nature06025

http://dx.doi.org/10.1175/2011JHM1369.1
http://dx.doi.org/10.1175/2011JHM1369.1
http://dx.doi.org/10.1038/nature06025

	Global projections of drought hazard in a warming climate: a prime for disaster risk management
	Abstract 
	1 Introduction
	2 Datasets and statistical methods
	2.1 Drought hazard estimation: the Weighted Anomaly of Standardized Precipitation (WASP) index
	2.2 Climate model simulations
	2.3 Statistical methods
	2.3.1 Ensemble consistency
	2.3.2 Robustness and significance of climate projections


	3 Results and discussion
	3.1 Analysis of contemporary dH from observations and climate models
	3.2 Future changes in drought hazard
	3.2.1 Projections for the period 2021–2050
	3.2.2 Projection for the period 2071–2099


	4 Conclusions
	References


