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Laplacian flow of homogeneous G2-structures and its solitons

Jorge Lauret

Abstract

We use the bracket flow/algebraic soliton approach to study the Laplacian flow of G2-structures
and its solitons in the homogeneous case. We prove that any homogeneous Laplacian soliton
is equivalent to a semi-algebraic soliton (that is, a G-invariant G2-structure on a homogeneous
space G/K that flows by pull-back of automorphisms of G up to scaling). Algebraic solitons are
geometrically characterized among Laplacian solitons as those with a ‘diagonal’ evolution. Unlike
the Ricci flow case, where any homogeneous Ricci soliton is isometric to an algebraic soliton, we
have found, as an application of the above characterization, an example of a left-invariant closed
semi-algebraic soliton on a nilpotent Lie group which is not equivalent to any algebraic soliton.
The (normalized) bracket flow evolution of such a soliton is periodic. In the context of solvable
Lie groups with a codimension-one abelian normal subgroup, we obtain long-time existence for
any closed Laplacian flow solution; furthermore, the norm of the torsion is strictly decreasing
and converges to zero. We also classify algebraic solitons in this class and exhibit several explicit
examples of closed expanding Laplacian solitons.
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1. Introduction

The Laplacian flow for a family ϕ(t) of G2-structures on a fixed seven-dimensional differentiable
manifold M is the evolution equation

∂

∂t
ϕ(t) = Δϕ(t)ϕ(t),

where Δϕ(t) is the Hodge Laplacian operator on 3-forms determined by the Riemannian metric
gϕ(t) and orientation defined by each ϕ(t). It was introduced back in 1992 by Bryant (see [4])
as a tool to try to deform a closed G2-structure to a torsion-free structure. It is well known that
torsion-free (or parallel) G2-structures produce Ricci flat Riemannian metrics with holonomy
contained in G2. Foundational results for this flow in the case when M is compact and ϕ
closed have recently been developed by Lotay-Wei in [28] (see also [5, 12, 19, 29, 30]). The
long-time behavior of the flow, including long-time existence and convergence to a torsion-free
G2-structure, is the main natural problem. In this respect, self-similar solutions play a crucial
role in the study of the singularities of the flow.
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It follows from the invariance by diffeomorphisms of the flow that a solution ϕ(t) starting
at a G2-structure ϕ will be self-similar, in the sense that ϕ(t) = c(t)f(t)∗ϕ, for some c(t) ∈ R∗

and f(t) ∈ Diff(M), if and only if

Δϕϕ = cϕ + LXϕ, for some c ∈ R, X ∈ X(M) (complete).

In that case, c(t) = (2
3ct + 1)3/2 (see [24, Section 4.4]), and in analogy to the terminology used

in Ricci flow theory, ϕ is called a Laplacian soliton and one says it is expanding, steady or
shrinking, if c > 0, c = 0 or c < 0, respectively. In the compact case, it was proved in [27]
that there are no shrinking Laplacian solitons and that the only steady ones are the torsion-
free G2-structures (that is, Δϕϕ = 0). There are some examples of compact and non-compact
expanding Laplacian solitons in the coclosed case (that is, d ∗ ϕ = 0) which are all eigenforms:
Δϕϕ = cϕ for some c ∈ R (see [20, 35]) and examples of solitons for the modified Laplacian
coflow in [13]. However, the only compact and closed Laplacian solitons which are eigenforms
are the torsion-free G2-structures (see [28]). A closed expanding Laplacian soliton which is
not an eigenform was found on a nilpotent Lie group in [24] (see also [32]). The existence of
compact and closed expanding Laplacian solitons is an open problem, as it is so the existence
of non-compact and closed shrinking (or non-torsion-free steady) Laplacian solitons.

In this paper, we study the Laplacian flow and its solitons in the homogeneous case. Our
work was motivated by the article [7] by Fernández–Fino–Manero on nilpotent Lie groups.
They study the existence of left-invariant closed G2-structures yielding a Ricci soliton metric,
as well as the Laplacian flow evolution of such structures.

A 7-manifold endowed with a G2-structure (M,ϕ) is said to be homogeneous if the Lie group
of all its symmetries or automorphisms,

Aut(M,ϕ) := {f ∈ Diff(M) : f∗ϕ = ϕ} ⊂ Iso(M, gϕ),

acts transitively on M . Each Lie subgroup G ⊂ Aut(M,ϕ) which is transitive on M gives rise
to a presentation of M as a homogeneous space G/K, where K is the isotropy subgroup of G
at some point o ∈ M , and ϕ becomes a G-invariant G2-structure on the homogeneous space
M = G/K. In the presence of a reductive decomposition g = k⊕ p (that is, Ad(K)p ⊂ p) for the
homogeneous space G/K, every G-invariant G2-structure on G/K is determined by a positive
3-form ϕ on p ≡ ToG/K which is Ad(K)-invariant. By requiring G-invariance, the Laplacian
flow on G/K becomes equivalent to an ordinary differential equation (ODE) on the vector
space (Λ3p∗)K and thus short-time existence (forward and backward) and uniqueness (among
G-invariant ones) of solutions are guaranteed. We note that if (M,ϕ) is homogeneous, then
all these G-invariant Laplacian flow solutions ϕ(t) on M starting at ϕ for different transitive
groups G must coincide; indeed, such groups are all contained in the full automorphism group
Aut(M,ϕ). Since at the moment the uniqueness of Laplacian flow solutions has only been
established in the compact case, we do not know a priori if there are homogeneous solutions
other than ϕ(t) starting at a non-compact homogeneous (M,ϕ). Such possibility is, however,
considered to be highly unlikely since it is reasonable to expect existence and uniqueness within
the class of G2-structures having complete and with bounded curvature associated metrics, as
it holds in the Ricci flow case (see [6, 34]).

Given a homogeneous space endowed with a G-invariant G2-structure (G/K,ϕ), the
viewpoint developed in [24] proposes to evolve the homogeneous space rather than the
3-form ϕ. More precisely, each (G/K,ϕ(t)), where ϕ(t) is the G-invariant Laplacian flow
solution starting at ϕ, is replaced by an equivariantly equivalent homogeneous space endowed
with an invariant G2-structure (

Gμ(t)/Kμ(t), ϕ
)
,

where μ(t) ∈ Λ2g∗ ⊗ g is the solution to a certain ODE for Lie brackets starting at the Lie
bracket [·, ·] of g, called the bracket flow. Here, for each Lie bracket μ on g, Gμ denotes the
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simply connected Lie group with Lie algebra (g, μ) and Kμ the connected Lie subgroup of Gμ

with Lie algebra (k, μ|k×k). The bracket flow has been a useful tool in the study of the Ricci flow
and some other curvature flows in the homogeneous case (see, for example, [24, Sections 5.3
and 5.5] for an account of applications by different authors). The approach strongly uses the
following objects determined by the fixed positive 3-form ϕ: the G2-invariant decompositions

gl(p) = g2 ⊕ q, q := q7 ⊕ sym(p), so(p) = g2 ⊕ q7,

and the unique operator Qϕ ∈ q such that θ(Qϕ)ϕ = Δϕϕ, where θ : gl(p) −→ End(Λ3p∗) is
the usual representation (see Remark 2.1 for the relationship between Qϕ and the operators
iϕ and jϕ defined in [4]). It is proved in [28, Section 2.2] that Qϕ ∈ sym(p) if ϕ is closed. The
Laplacian flow solution ϕ(t) and the bracket flow solution μ(t) have the same maximal interval
of time existence, say (T−, T+) with T− < 0 < T+.

After some preliminaries on G2 geometry in Section 2, we adapt in Section 3 the machinery
developed in [24] to the Laplacian flow case; the results so obtained include (see Sections 3.3
and 3.4 for more precise statements):

(i) The norm |Δϕ(t)ϕ(t)|ϕ(t) of the velocity of the flow must blow up at any finite-time
singularity (compare with [28, Theorem 1.6]).

(ii) If μ(t) converges to a Lie bracket λ, as t → T±, and there is a positive lower bound
for the (Lie) injectivity radii of the G-invariant metrics gϕ(t) on G/K, then (Gλ/Kλ, ϕ) is
a Laplacian soliton (possibly non-homeomorphic to G/K) and (G/K,ϕ(t)) converges in the
pointed (or Cheeger–Gromov) sense to (Gλ/Kλ, ϕ), as t → T±.

(iii) The following conditions on a simply connected (G/K,ϕ) are equivalent.
(a) The operator Qϕ such that θ(Qϕ)ϕ = Δϕϕ satisfies

Qϕ = cI + Dp, for some c ∈ R, D =
[
0 0
0 Dp

]
∈ Der(g),

that is, (G/K,ϕ) is an algebraic soliton.
(b) Δϕϕ = −3cϕ− LXD

ϕ, where XD denotes the vector field on G/K defined by
the one-parameter subgroup of automorphisms of G attached to the derivation D (in
particular, (G/K,ϕ) is a Laplacian soliton).

The concept of algebraic soliton has a long and fruitful history in the Ricci flow case, due
perhaps to its neat definition as a combination of geometric and algebraic aspects of (G/K,ϕ).
It has also been a useful tool to address the existence problem of soliton structures for general
curvature flows in almost-Hermitian geometry (see [23]), the symplectic curvature flow (see
[9, 26]) and the Chern–Ricci flow (see [25]). As in any of these cases, a natural question is
how special are algebraic solitons among homogeneous Laplacian solitons. Unlike the Ricci flow
case, where any homogeneous Ricci soliton is isometric to an algebraic soliton (see [2, 17]), we
have found a left-invariant closed Laplacian soliton on a nilpotent Lie group which cannot be
equivalent to any algebraic soliton (see Example 5.28).

General properties of homogeneous Laplacian solitons are studied in Section 4. Let G/K be
a homogeneous space with G simply connected, K connected and compact, and consider the
reductive decomposition g = k⊕ p such that B(k, p) = 0, where B is the Killing form of g. We
prove that if ϕ is a closed G-invariant G2-structure, then the following conditions on (G/K,ϕ)
are equivalent.

(i) The G-invariant Laplacian flow solution starting at ϕ is given by

ϕ(t) = c(t)f(t)∗ϕ,

for some family f(t) of equivariant diffeomorphisms of G/K (that is, automorphisms of G
taking K onto K) and c(t) ∈ R∗, in which case (G/K,ϕ) is called a semi-algebraic soliton.
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(ii) The operator Qϕ such that θ(Qϕ)ϕ = Δϕϕ satisfies

Qϕ = cI +
1
2
(Dp + Dt

p), for some c ∈ R, D =
[
0 0
0 Dp

]
∈ Der(g).

(iii) The bracket flow solution μ(t) starting at [·, ·] is given by

μ(t)
|μ(t)| =

[
I 0
0 es(t)A

]
· [·, ·], A :=

1
2
(Dp −Dt

p), s(t) := − 1
2c

log(−2ct + 1).

In that case, (G/K,ϕ) is indeed a Laplacian soliton with Δϕϕ = −3cϕ− LXD
ϕ. Note that if

in addition in part (ii), one has that Dt ∈ Der(g), then (G/K,ϕ) is an algebraic soliton and
μ(t)/|μ(t)| ≡ [·, ·]. The following results were also obtained in Section 4.

(a) Let (M,ϕ) be a homogeneous Laplacian soliton and consider G = Aut(M,ϕ). If the G-
invariant Laplacian flow solution ϕ(t) on M = G/K starting at ϕ is self-similar, then (G/K,ϕ)
is a semi-algebraic soliton.

(b) A closed semi-algebraic soliton (G/K,ϕ) with K compact is Laplacian flow diagonal
(that is, the family of operators {Qϕ(t) : t ∈ (T−, T+)} simultaneously diagonalizes) if and only
if it is an algebraic soliton. Since the condition is an equivalence invariant, this geometrically
characterizes algebraic solitons among homogeneous Laplacian solitons.

It is worth pointing out that the concepts of semi-algebraic and algebraic solitons are applied
to homogeneous spaces, not to homogeneous manifolds. In this regard, we give an example
of a solvable Lie group endowed with a left-invariant closed G2-structure (G,ϕ) which is not
a semi-algebraic soliton but is nevertheless equivalent to an algebraic soliton on a different
Lie group (see Example 5.30). As an application of the result in part (b) above, we found a
left-invariant closed semi-algebraic soliton on a nilpotent Lie group which is not Laplacian flow
diagonal, and therefore it is not equivalent to any algebraic soliton (see Example 5.28).

It follows from part (iii) above that if the set of non-zero eigenvalues of A is linearly dependent
over Q, then μ(t)/|μ(t)| is periodic and thus for any expanding (shrinking) semi-algebraic
soliton, μ(t) converges to zero (to infinity) by rounding in a cone as t → ∞ (t → 1/2c). If
on the contrary, such set is linearly independent over Q, then μ(t)/|μ(t)| is not periodic and
develops the following chaotic behavior: each point of the solution is contained in the ω-limit.

In Section 5, we work in a more explicit way on the class of almost-abelian (that is, with
a codimension-one abelian normal subgroup) solvable Lie groups. Left-invariant coclosed and
closed G2-structures on these Lie groups have been studied by Freibert in [10, 11]. One attaches
to each matrix A ∈ sl(3,C) ⊂ gl6(R) a left-invariant closed G2-structure on a simply connected
solvable Lie group denoted by GA. The Lie algebra of GA has an orthonormal basis {e1, . . . , e7}
such that h := span{e1, . . . , e6} is an abelian ideal, ad e7|h = A, and the fixed positive 3-form
is given by

ϕ := e127 + e347 + e567 + e135 − e146 − e236 − e245.

The construction covers, up to equivalence, all left-invariant closed G2-structures on almost
abelian Lie groups. The G2-structure (GA, ϕ) is torsion-free if and only if A ∈ su(3). After
giving some criteria for the equivalence between these structures, we compute their torsion,
Ricci curvature and the symmetric operator QA ∈ sym(7) satisfying θ(QA)ϕ = ΔAϕ all in
terms of A, which is actually the only datum that is varying here. We summarize the main
results obtained on this class as follows, after noting that the non-abelian Lie groups of the
form GA which are nilpotent are exactly two and their Lie algebras have been denoted by n2

(A2 = 0) and n6 (A3 = 0 and A2 
= 0) in [7, 32].



LAPLACIAN FLOW OF HOMOGENEOUS G2-STRUCTURES AND ITS SOLITONS 5

• The Laplacian flow is equivalent to the ODE for A = A(t) ∈ sl(3,C) given by

d

dt
A = −1

3
tr (A + A∗)2A +

1
2
[A, [A,A∗]] − 1

2
[A, (A + A∗)2].

• Any left-invariant closed Laplacian flow solution ϕ(t) on a Lie group GA is immortal (that
is, T+ = ∞). Moreover, the scalar curvature of gϕ(t) is strictly increasing and converges to zero,
as t → ∞.
• The Lie group GA admits a semi-algebraic soliton if and only if A is either semisimple or

nilpotent. They are all expanding.
• For A semisimple, such a soliton is algebraic and it is the unique semi-algebraic soliton up

to equivalence and scaling among all left-invariant closed G2-structures on GA.
• n2 admits only one closed G2-structure up to equivalence and scaling, which is an algebraic

soliton.
• n6 does not have any closed algebraic soliton. The matrices

At :=

⎡
⎣0 t 0

0 1
0

⎤
⎦ ∈ sl(3,C), t > 0,

provide a continuous family of G2-structures (GAt
, ϕ) on n6, and (GAt

, ϕ) is a semi-algebraic
soliton if and only if t =

√
2.

2. On G2 geometry

Roughly speaking, a G2-structure on a seven-dimensional differentiable manifold is a smooth
identification of each of the tangent spaces with Im O, the imaginary part of the octonions,
just as an almost-Hermitian structure identifies with Cn (endowed with its canonical Hermitian
inner product) each of the tangent spaces. In this section, we give a quick overview on G2-
structures and refer the reader to [4, 19, 28] for more detailed treatments.

2.1. The octonions

Recall that the octonion algebra O is an eight-dimensional real division algebra which is
normed, that is, it admits an inner product 〈·, ·〉 such that |uv| = |u||v| for all u, v ∈ O.
Analogously to the quaternion numbers H, the octonion product defines a skew-symmetric
bilinear map × : Im O × Im O −→ Im O by u× v := Imuv, which turns to be a cross product,
in the sense that

u× v ⊥ u, v, and |u× v|2 = |u|2|v|2 − 〈u, v〉2, ∀u, v ∈ Im O.

Curiously enough, all this information can be captured in the 3-form φ defined by

φ(u, v, w) := 〈u× v, w〉, ∀u, v, w ∈ Im O.

Indeed, the inner product can be recovered from φ in the following highly non-linear way:

〈u, v〉 vol = 1
6 iu(φ) ∧ iv(φ) ∧ φ, (1)

where iu(φ) is the 2-form given by iu(φ)(v, w) := φ(u, v, w) and vol is a non-zero 7-form, so an
orientation is also determined by φ. The cross product is therefore determined by φ and the
product on O is given by uv = −〈u, v〉1 + u× v.

With respect to a suitable oriented and orthonormal basis {e1, . . . , e7} of Im O, the 3-form
φ is written as

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356, (2)
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where eijk := ei ∧ ej ∧ ek and {ei} is the dual basis of {ei}. We identify R7 ≡ Im O from now
on by using the basis {ei}. Another remarkable feature is that the whole process still works
under small perturbations of φ: the orbit GL7(R) · φ is open in Λ3(R7)∗ and so any 3-form
sufficiently close to φ is of the form h · φ for some h ∈ GL7(R), from which one constructs an
algebra isomorphic to O via h.

The automorphism group of O is isomorphic to the automorphism group of the cross product
×. This, in turn, coincides with the subgroup of GL7(R) stabilizing the 3-form φ, which is
actually contained in SO(7). They are all isomorphic to the simply connected and compact 14-
dimensional exceptional simple Lie group G2. In particular, the openness of the orbit GL7(R) · φ
in Λ3(R7)∗ follows from dimension count: 49 − 14 = 35.

Using the ε-notation introduced in [4, Section 2.4], we rewrite formula (2) as

φ =
1
6

∑
i,j,k

εijke
ijk, or equivalently, ei × ej =

∑
k

εijkek.

The symbol εijk is skew-symmetric in the three indices and satisfies many useful identities.
The Lie algebra g2 of G2 can be described as a subalgebra of so(7) as follows:

g2 =

⎧⎨
⎩A = [aij ] ∈ so(7) :

∑
j,k

aijεijk = 0, ∀i
⎫⎬
⎭ .

On the other hand, cross-product left-multiplication defines a seven-dimensional subspace of
so(7),

q7 =

{
[vij ] : v ∈ R7, vij :=

∑
k

εijk〈v, ek〉
}
, (3)

such that so(7) = g2 ⊕ q7. This is a reductive decomposition for the (symmetric) homogeneous
space RP 7 = SO(7)/G2.

2.2. Positive 3-forms

Let p be a real vector space of dimension 7. A 3-form ϕ ∈ Λ3p∗ is called positive if it can
be written as in (2) in terms of some basis, or equivalently, if it belongs to the open orbit
GL(p) · φ ⊂ Λ3p∗. It follows that the set of all positive 3-forms is parameterized by the 35-
dimensional homogeneous space GL7(R)/G2. Each positive 3-form ϕ defines a unique inner
product 〈·, ·〉ϕ and an orientation via

〈u, v〉ϕ volϕ = 1
6 iu(ϕ) ∧ iv(ϕ) ∧ ϕ,

where volϕ := (deth)−1 vol if ϕ = h · φ for h ∈ GL(p) (see (1) and (2)). Note that this gives
an alternative definition of positivity since the assignment is equivariant in the sense that
〈·, ·〉h·ϕ = h · 〈·, ·〉ϕ for any h ∈ GL(p). Thus, a Hodge star operator ∗ϕ : Λkp∗ −→ Λ7−kp∗ is
also determined by ϕ as usual:

α ∧ ∗ϕβ = 〈α, β〉ϕ volϕ, ∀α, β ∈ Λkp∗,

where 〈·, ·〉ϕ also denotes the natural inner product defined on Λp∗ by 〈·, ·〉ϕ. Alternatively,

∗ϕei1 ∧ · · · ∧ eik := ±ej1 ∧ · · · ∧ ej7−k , (4)

where {e1, . . . , e7} is an oriented orthonormal basis of (p∗, 〈·, ·〉ϕ) with dual basis {ei},
{i1, . . . , ik, j1, . . . , j7−k} = {1, . . . , 7} and ei1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ej7−k = ±e1 ∧ · · · ∧ e7. In
particular, ∗2

ϕ = id.
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The GL(p)-orbit of the 4-form ∗ϕϕ is also open in Λ4p∗ and its stabilizer subgroup is
isomorphic to ±G2. Note that

∗φφ = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247.

Let us fix a positive 3-form ϕ on p. Since the orbit GL(p) · ϕ is open in Λ3p∗, we have that
its tangent space at ϕ satisfies

θ(gl(p))ϕ = Λ3p∗, (5)

where θ : gl(p) −→ End(Λ3p∗) is the representation obtained as the derivative of the natural
left GL(p)-action on 3-forms h · ψ = ψ(h−1·, h−1·, h−1·), that is,

θ(A)ψ = −ψ(A·, ·, ·) − ψ(·, A·, ·) − ψ(·, ·, A·), ∀A ∈ gl(p), ψ ∈ Λ3p∗.

The Lie algebra of the stabilizer subgroup G2(ϕ) := GL(p)ϕ � G2 is given by

g2(ϕ) := {A ∈ gl(p) : θ(A)ϕ = 0} � g2.

We consider the orthogonal complement subspace q(ϕ) ⊂ gl(p) of g2(ϕ) relative to the inner
product on gl(p) determined by 〈·, ·〉ϕ (that is, trABt). The irreducible G2(ϕ)-components
of q(ϕ) are q1(ϕ) = RI, the one-dimensional trivial representation, the (seven-dimensional)
standard representation q7(ϕ) (see (3)) and q27(ϕ), the other fundamental representation,
which has dimension 27. Summarizing, each positive 3-form ϕ determines the following G2(ϕ)-
invariant decompositions:

gl(p) = g2(ϕ) ⊕ q(ϕ), q(ϕ) = q1(ϕ) ⊕ q7(ϕ) ⊕ q27(ϕ),

so(p) = g2(ϕ) ⊕ q7(ϕ), sym(p) = q1(ϕ) ⊕ q27(ϕ), q27(ϕ) = sym0(p),
(6)

where so(p) and sym(p) are the spaces of skew-symmetric and symmetric linear maps with
respect to 〈·, ·〉ϕ, respectively, and sym0(p) := {A ∈ sym(p) : trA = 0}.

It follows from (5) that θ(q(ϕ))ϕ = Λ3p∗; moreover, for every 3-form ψ ∈ Λ3p∗, there exists
a unique operator Qψ ∈ q(ϕ) such that

ψ = θ(Qψ)ϕ. (7)

Remark 2.1. If we identify sym(p) with the space S2p∗ of symmetric bilinear forms by using
〈·, ·〉, then the linear isomorphism i : S2p∗ ≡ sym(p) −→ Λ3

1p
∗ ⊕ Λ3

27p
∗, defined in [4, (2.17)]

(and in [28, (2.6)] with a factor of 1/2) is given by

i(A) = −2θ(A)ϕ; in particular, i(Qψ) = −2ψ. (8)

On the other hand, the linear map j : Λ3p∗ −→ sym(p) defined in [4, (2.18)] (and in [28])
satisfies that j(i(h)) = 8h + 4 tr(h)〈·, ·〉 for any h ∈ S2p∗. It follows from (8) that, in terms of
the Q-operators, j is defined by

j(ψ) = −2 tr(Qψ)I − 4Qψ, ∀ψ ∈ Λ3
1p

∗ ⊕ Λ3
27p

∗. (9)

Recall that j vanishes on Λ3
7p

∗ and it is an isomorphism when restricted to Λ3
1p

∗ ⊕ Λ3
27p

∗.

2.3. G2-structures

A G2-structure on a seven-dimensional differentiable manifold M is a differential 3-form ϕ ∈
Ω3M such that ϕp is positive on TpM for any p ∈ M , or in other words, ϕp can be written
as in (2) with respect to some basis {e1, . . . , e7} of TpM . Recall from Section 2.1 that this
suffices to define an octonion product on each vector space R1 ⊕ TpM with TpM = Im O. We
denote by gϕ the Riemannian metric on M , that is, gϕ(p) := 〈·, ·〉ϕp

for all p ∈ M , and by
∗ϕ : ΩM −→ ΩM the Hodge star operator defined by ϕ.
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The presence of a G2-structure on M is equivalent to have a sub-bundle with structure group
G2 of the GL7(R)-frame bundle over M , that is, the existence of local frames of TM such that
all the transition functions are in G2. It is well known that a seven-dimensional manifold M
admits a G2-structure if and only if M is orientable and spin. Two manifolds endowed with
G2-structures (M,ϕ) and (M ′, ϕ′) are called equivalent if ϕ′ = f∗ϕ for some diffeomorphism
f : M ′ −→ M .

The torsion forms of a G2-structure ϕ on M are the components of the intrinsic torsion ∇ϕϕ,
where ∇ϕ is the Levi–Civita connection of gϕ. They can be defined as the unique differential
forms τi ∈ ΩiM , i = 0, 1, 2, 3, such that

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗ϕτ3, dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ, (10)

where we set from now on ψ := ∗ϕϕ ∈ Ω4M . Let Ω2M = Ω2
7M ⊕ Ω2

14M and Ω3M = Ω3
1M ⊕

Ω3
7M ⊕ Ω3

27M be the decompositions defined by the splitting of the bundles ΛkM into the
irreducible G2(ϕ)-representations given in (6), where we identify TpM ≡ p via an oriented
orthonormal basis. We have that τ2 ∈ Ω2

14M , the space of smooth sections of the subbundle
g2(ϕ) ⊂ so(TM) ≡ Λ2M , and τ3 ∈ Ω3

27M , which corresponds to θ(q27(ϕ))ϕ ⊂ Λ3M .
Some special classes of G2-structures are defined as follows (see [8]):

• closed (or calibrated): dϕ = 0;
• coclosed (or cocalibrated): dψ = 0;
• harmonic: Δϕϕ = 0, where Δϕ = ∗ϕd ∗ϕ d− d ∗ϕ d∗ϕ is the Hodge Laplacian operator on

3-forms;
• torsion-free: τi = 0, for all i = 0, 1, 2, 3 (or equivalently, parallel: ∇ϕϕ = 0);
• nearly parallel: dϕ = cψ for some non-zero c ∈ R, or equivalently, τi = 0 for all i = 1, 2, 3

and dτ0 = 0. In particular, dψ = 0 and Δϕϕ = c2ϕ.

It was proved in [8] that the following conditions on a G2-structure ϕ are equivalent:

• ϕ closed and coclosed;
• ϕ torsion-free.

In that case, the holonomy group of (M, gϕ) is contained in G2, gϕ is Ricci flat and (M,ϕ) is
called a G2 manifold. In the compact case, ϕ harmonic can be added in the list of equivalent
conditions above.

2.4. Laplacian flow

Any oriented seven-dimensional Riemannian manifold (M, g) determines a Hodge star operator
∗ : ΩkM −→ Ω7−kM as in (4), and also the so-called Hodge Laplacian operator given by

Δ: ΩkM −→ ΩkM, Δ := d∗d + dd∗,

where d∗ : Ωk+1M −→ ΩkM , d∗ = (−1)k+1 ∗ d∗, is the adjoint of d (see, for example, [33, 7.2]).
Given a G2-structure ϕ on M , we denote by Δϕ the Hodge Laplacian operator determined by
the Riemannian metric gϕ and orientation defined by ϕ. In particular, Δϕ : Ω3M −→ Ω3M is
given by Δϕ = ∗ϕd ∗ϕ d− d ∗ϕ d∗ϕ.

The following natural geometric flow for G2-structures was introduced by Bryant in [4], and
is called the Laplacian flow:

∂

∂t
ϕ(t) = Δϕ(t)ϕ(t), (11)

where ϕ(t) is a one-parameter family of G2-structures on a given seven-dimensional differen-
tiable manifold M . We refer the reader to the recent article by Lotay and Wei [28] and the
references therein for further information on this flow.
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Let (T−, T+) denote the maximal interval of time existence for a Laplacian flow solution ϕ(t).
We aim to understand the behavior of (M,ϕ(t)), as t is approaching a singularity T±, in the
same spirit as in [31, Section 3], where the long-time behavior of homogeneous type-III Ricci
flow solutions is studied. In order to prevent collapsing, the question is whether we can find a
manifold endowed with a G2-structure (M±, ϕ±), imbeddings f(t) : M± −→ M and a scaling
function a(t) > 0 so that a(t)f(t)∗ϕ(t) converges smoothly to ϕ±, as t → T±. Sometimes, it is
only possible to obtain that along a subsequence tk → T± and the diffeomorphisms, f(tk) may
be only defined on open subsets Ωk exhausting M±. Thus, M± might be non-homeomorphic to
M . This is called pointed or Cheeger–Gromov convergence of (M,a(t)ϕ(t)) toward (M±, ϕ±)
(see [28, Section 7]).

The following natural questions arise.

• What is the simplest quantity that, as long as it remains bounded, it prevents the formation
of a singularity? (see [28, Theorem 1.3]).
• Does the scalar curvature of gϕ(t) converge to −∞, as t → T+ < ∞, for any closed

Laplacian flow solution ϕ(t)? This is equivalent to the blowing up of the torsion at a finite-time
singularity.

2.5. Laplacian solitons

A Laplacian flow solution ϕ(t) on a differentiable manifold M is called self-similar if ϕ(t) =
c(t)f(t)∗ϕ(0) for some c(t) ∈ R∗ and f(t) ∈ Diff(M). It is well known that the existence of a
self-similar solution starting at a G2-structure ϕ is equivalent to the following condition:

Δϕϕ = cϕ + LXϕ, for some c ∈ R, X ∈ X(M) (complete),

where LX denotes Lie derivative. In that case, c(t) = (2
3ct + 1)3/2. In analogy to the termi-

nology used in Ricci flow theory, ϕ is called a Laplacian soliton and one says it is expanding,
steady or shrinking, if c > 0, c = 0 or c < 0, respectively. Note that the maximal interval of
existence (T−, T+) for these self-similar solutions equals (− 3

2c ,∞), (−∞,∞) and (−∞,− 3
2c ),

respectively.
Results on Laplacian solitons in the literature include.

• [27, Corollary 1] There are no compact shrinking Laplacian solitons, and the only compact
steady Laplacian solitons are the torsion-free G2-structures (see also [28, Proposition 9.4] for
a shorter proof in the closed case).
• Any nearly parallel G2-structure ϕ satisfies Δϕϕ = c2ϕ and so is a coclosed expanding

Laplacian soliton. Examples are given by the round and squashed spheres (see [35, Section 4.1]).
• [20, Section 6] Examples of non-compact expanding coclosed Laplacian solitons which are

not nearly parallel. However, they still are all eigenforms (that is, Δϕϕ = cϕ for some c ∈ R).
• [28, Proposition 9.1] The only compact and closed Laplacian solitons which are eigenforms

are the torsion-free G2-structures.
• [24, Section 7] There is a left-invariant closed G2-structure on a nilpotent Lie group

which is an expanding Laplacian soliton and is not an eigenform (see also [32], where a
closed expanding Laplacian soliton has been found on seven of the twelve nilpotent Lie groups
admitting a closed G2-structure).

The following are natural questions:

• Are there compact and closed expanding Laplacian solitons?
• Are there compact expanding Laplacian solitons other than nearly parallel G2-structures?
• Is any compact Laplacian soliton gradient (that is, X = ∇f for some f ∈ C∞(M))?
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• Given a Laplacian flow solution (M,ϕ(t)), does (M,a(t)ϕ(t)) converge in the pointed sense
to some Laplacian soliton (M±, ϕ±), as t → T±, for some scaling function a(t) > 0?

2.6. Closed G2-structures

A G2-structure on a 7-manifold M is closed if and only if the torsion forms τ0, τ1 and τ3 all
vanish (see (10)). Thus, only the torsion form τ2 survives for a closed G2-structure ϕ. In that
case, the 2-form τ2 will be denoted by τϕ, and it holds that

τϕ = − ∗ϕ d ∗ϕ ϕ, dτϕ = Δϕϕ. (12)

According to (7), there exists a unique operator Qϕ ∈ q(ϕ) ⊂ End(TM) such that

θ(Qϕ)ϕ = Δϕϕ. (13)

It is proved in [28, Section 2.2] that Qϕ ∈ sym(TM) for any closed ϕ (that is, Δϕϕ ∈ Ω3
1M ⊕

Ω3
27M , or equivalently, its Ω3

7M -component vanishes); moreover, the following formula can be
easily deduced from [28, Proposition 2.2] and also from [4, 4.37].

Proposition 2.2. For any closed G2-structure ϕ,

Qϕ = Ricϕ − 1
12 tr

(
τ2
ϕ

)
I + 1

2τ
2
ϕ,

where Ricϕ is the Ricci operator of (M, gϕ) and τϕ ∈ so(TM) also denotes the skew-symmetric
operator determined by the 2-form τϕ (that is, τϕ = 〈τϕ·, ·〉ϕ). In particular,

(i) |τϕ|2 = − 1
2 tr τ2

ϕ,
(ii) the scalar curvature of (M, gϕ) is given by

R(gϕ) = − 1
2 |τϕ|2 = 1

4 tr τ2
ϕ = 3

2 trQϕ,

(iii) R(gϕ) � 0 and it vanishes if and only if ϕ is torsion-free.

Proof. The formula for Qϕ, which coincides with −h in the notation of [28] (see Remark 2.1),
follows from (2.24) and Proposition 2.2 (see also formula (3.4)) in that paper (also note that
T = − 1

2τϕ). The remaining items follow from [28, Corollary 2.4]. �

3. Laplacian flow on homogeneous spaces

In this section, we describe an approach developed in [24] to study geometric flows and their
solitons on homogeneous spaces. We need to state the two main theorems in [24] in the case
of the Laplacian flow.

3.1. Homogeneous G2-structures and the Laplacian flow

A 7-manifold endowed with a G2-structure (M,ϕ) is said to be homogeneous if its
automorphism group

Aut(M,ϕ) := {f ∈ Diff(M) : f∗ϕ = ϕ},
acts transitively on M . It is known that Aut(M,ϕ) is a Lie group, it is indeed a closed
subgroup of the Lie group Iso(M, gϕ) of all isometries of the Riemannian manifold (M, gϕ).
Each Lie subgroup G ⊂ Aut(M,ϕ) which is transitive on M gives rise to a presentation of M
as a homogeneous space G/K, where K is the isotropy subgroup of G at some point o ∈ M ,
and ϕ becomes a G-invariant G2-structure on the homogeneous space M = G/K. As in the
Riemannian case, G is closed in Aut(M,ϕ) if and only if K is compact. In the presence of
a reductive decomposition g = k⊕ p (that is, Ad(K)p ⊂ p) for the homogeneous space G/K,
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where g and k, respectively, denote the Lie algebras of G and K, every G-invariant G2-structure
on G/K is determined by a positive 3-form ϕ on p ≡ ToM (the tangent space at the origin
o of G/K) which is Ad(K)-invariant. This means that (Ad(k)|p) · ϕ = ϕ for any k ∈ K, or
equivalently if K is connected, θ(adZ|p)ϕ = 0 for all Z ∈ k. Note that the corresponding
metric gϕ is precisely the G-invariant metric on G/K whose value at the origin o is 〈·, ·〉ϕ.
The existence of a reductive decomposition for G/K is therefore guaranteed, even if G/K is
only almost-effective rather than effective as above. Anyway, one can just work with p = g/k
if a reductive decomposition is preferred not to be chosen.

On a homogeneous space M = G/K with a reductive decomposition g = k⊕ p, if we require
G-invariance of ϕ(t) for all t, then the Laplacian flow equation (11) becomes equivalent to the
ODE for a one-parameter family ϕ(t) of Ad(K)-invariant 3-forms on the single vector space p
given by

d

dt
ϕ(t) = Δϕ(t)ϕ(t), (14)

where Δϕ(t) : (Λ3p∗)K −→ (Λ3p∗)K is the Hodge Laplacian operator defined by ϕ(t) on the
space Λ3p∗)K of all Ad(K)-invariant 3-forms of p (that is, G-invariant differential 3-forms
of G/K). Indeed, the solutions to (14) are the integral curves of the vector field X on
the subspace (Λ3p∗)K ⊂ Λ3p∗ defined by Xψ := Δψψ for any ψ ∈ (Λ3p∗)K . The Ad(K)-
invariance of the 3-form Δψψ of p follows from the G-invariance of the differential 3-form Δψψ
of M .

Thus, short-time existence (forward and backward) and uniqueness (among G-invariant ones)
of solutions follow. Moreover, if (M,ϕ) is homogeneous, then all these G-invariant Laplacian
flow solutions ϕ(t) on M starting at ϕ for different transitive groups G must coincide as
such groups are all contained in the full automorphism group Aut(M,ϕ). This implies that
given t0, since Aut(M,ϕ) ⊂ Aut(M,ϕ(t)) for all t, we have that ϕ(t + t0) is the Aut(M,ϕ)-
invariant solution starting at ϕ(t0). Thus, ϕ(t + t0) is also Aut(M,ϕ(t0))-invariant and so
Aut(M,ϕ(t0)) ⊂ Aut(M,ϕ) by evaluating at t = −t0.

To sum up,

Proposition 3.1. Given a homogeneous G2-structure (M,ϕ), there exists a unique
Laplacian flow solution ϕ(t) on M starting at ϕ which is Aut(M,ϕ)-invariant. Furthermore:

(i) ϕ(t) is defined in a maximal interval of time (T−, T+), with T− < 0 < T+;
(ii) Aut(M,ϕ(t)) = Aut(M,ϕ) for all t ∈ (T−, T+);
(iii) for any transitive Lie group of automorphisms G of (M,ϕ), ϕ(t) is the unique

G-invariant solution on the homogeneous space M = G/K.

Since the uniqueness of Laplacian flow solutions has only been established in the compact
case, we do not know a priori if there are homogeneous solutions other than ϕ(t) starting at a
non-compact homogeneous (M,ϕ). This seems to be very unlikely though.

Two homogeneous spaces endowed with invariant G2-structures (G/K,ϕ) and (G′/K ′, ϕ′)
are called equivariantly equivalent if there exists an equivariant diffeomorphism f : G/K −→
G′/K ′ (that is, f is determined by a Lie group isomorphism G −→ G′ taking K onto K ′) such
that ϕ = f∗ϕ′.

3.2. The space of homogeneous spaces

Let us fix a (q + 7)-dimensional real vector space g together with a direct sum
decomposition

g = k⊕ p, dim k = q, dim p = 7. (15)
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In order to study invariant G2-structures on homogeneous spaces, we fix in addition a positive 3-
form ϕ on p and consider the subset Hq := H(g = k⊕ p, ϕ) ⊂ Λ2g∗ ⊗ g of those skew-symmetric
bilinear forms μ : g× g −→ g such that:

(h1) μ satisfies the Jacobi condition, μ(k, k) ⊂ k and μ(k, p) ⊂ p;
(h2) if Gμ denotes the simply connected Lie group with Lie algebra (g, μ) and Kμ is the

connected Lie subgroup of Gμ with Lie algebra k, then Kμ is closed in Gμ;
(h3) {Z ∈ k : μ(Z, p) = 0} = 0;
(h4) θ(adμ Z|p)ϕ = 0 for all Z ∈ k, or equivalently, adμ k|p ⊂ g2(ϕ).

It follows that each μ ∈ Hq defines a unique (almost effective and simply connected)
homogeneous space endowed with an invariant G2-structure,

μ ∈ Hq � (Gμ/Kμ, ϕ) , (16)

with reductive decomposition g = k⊕ p. Conversely, any homogeneous G2-structure is equiv-
ariantly equivalent to some μ ∈ Hq, for some q, up to covering.

For q = 0, conditions (h2)–(h4) trivially hold and so H0 is simply the variety L of seven-
dimensional Lie algebras. We are therefore identifying each μ ∈ L with (Gμ, ϕ), the simply
connected Lie group Gμ endowed with the left-invariant G2-structure determined by the fixed
positive 3-form ϕ we have on the Lie algebra (g, μ) of Gμ.

3.3. Bracket flow

For each μ ∈ Hq, the Hodge Laplacian of (Gμ/Kμ, ϕ) is given by

Δμ : (Λ3p∗)Kμ −→ (Λ3p∗)Kμ , Δμ := ∗dμ ∗ dμ − dμ ∗ dμ∗,
where dμ is the differential operator on the manifold Gμ/Kμ and ∗ denotes the fixed Hodge
star operator defined by ϕ on Λ3p∗.

Example 3.2. For each a, b, c, d ∈ R, consider the seven-dimensional nilpotent Lie algebra
g with basis {e1, . . . , e7} and Lie bracket μ = μa,b,c,d ∈ H0 = L defined by{

μ(e1, e2) = −ae5 − be6,
μ(e1, e3) = −ce5 − de6;

or equivalently,
{
dμe

5 = ae12 + ce13,
dμe

6 = be12 + de13.

The 3-form

ϕ = e147 + e267 + e357 + e123 + e156 + e245 − e346

is positive and so it determines a left-invariant G2-structure ϕ on the simply connected Lie
group Gμ with Lie algebra (g, μ). It is easy to check that dμϕ = (d− a)e1237 − (b + c)e1234,
which implies that ϕ is closed if and only if d = a and c = −b. Thus, for a closed G2-structure
(Gμ, ϕ), we have that

∗ϕ = e2356 − e1345 − e1246 + e4567 + e2347 − e1367 + e1257,

dμ ∗ ϕ = −ae12 467 + be13 467 + be12 457 + ae13 457,

∗dμ ∗ ϕ = ae35 + be25 + be36 − ae26, (17)

dμ ∗ dμ ∗ ϕ = −2(a2 + b2)e123,

and so Δμϕ = 2(a2 + b2)e123.

We denote by Qμ the operator QΔμϕ ∈ q(ϕ) ⊂ gl(p) defined by (7), that is,

θ(Qμ)ϕ = Δμϕ.
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Example 3.3. It follows from (17) that the torsion 2-form of the closed G2-structures
(Gμ, ϕ) in the above example is given by τμ = −ae35 − be25 − be36 + ae26, and as a matrix by

τμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 b −a

0 a b
0

−b −a 0
a −b 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, τ2
μ = (a2 + b2)Diag(0,−1,−1, 0,−1,−1, 0), and since the Ricci operator of (Gμ, 〈·, ·〉ϕ)

equals

Ricμ = (a2 + b2)Diag
(−1,− 1

2 ,− 1
2 , 0,

1
2 ,

1
2 , 0
)
,

we obtain from Proposition 2.2 that the operator Qμ = Ricμ − 1
12 tr(τ2

μ)I + 1
2τ

2
μ is given by

Qμ = (a2 + b2)Diag
(− 2

3 ,− 2
3 ,− 2

3 ,
1
3 ,

1
3 ,

1
3 ,

1
3

)
.

Consider the following evolution equation for a family μ(t) ∈ Λ2g∗ ⊗ g of brackets, called the
bracket flow:

d

dt
μ(t) = δμ(t)

([
0 0
0 Qμ(t)

])
, μ(0) = [·, ·], (18)

where δμ : gl(g) −→ Λ2g∗ ⊗ g is defined in terms of the derivative of the GL(g)-action h · μ :=
hμ(h−1·, h−1·) by

δμ(E) := μ(E·, ·) + μ(·, E·) − Eμ(·, ·), ∀E ∈ gl(g). (19)

The set Hq is invariant under the bracket flow and only μ(t)|p×p is actually evolving (see [24,
Lemma 1]).

Example 3.4. For (Gμ, ϕ) in Examples 3.2 and 3.3, it is straightforward to check that
δμ(Qμ) = − 5

3 (a2 + b2)μ, so the bracket flow equation is given by d
dtμ(t) = − 5

12 |μ(t)|2μ(t) and
the bracket flow solution by μ(t) = c(t)μ(0), for some positive strictly decreasing function c(t)
defined on (T−,∞), −∞ < T−, such that c(t) → 0, as t → ∞.

We are now ready to state the first main result from [24] applied to G2-structures.
Let (G/K,ϕ) be a simply connected homogeneous space (assume G simply connected and
K connected) endowed with a G-invariant G2-structure ϕ and a reductive decomposition
g = k⊕ p. We consider the one-parameter families

(G/K,ϕ(t)),
(
Gμ(t)/Kμ(t), ϕ

)
,

where ϕ(t) is the solution to the Laplacian flow (14) starting at ϕ and μ(t) is the solution
to the bracket flow (18) starting at the Lie bracket [·, ·] of g, the Lie algebra of G. Note that
g = k⊕ p is a reductive decomposition for each of the homogeneous spaces involved.

Theorem 3.5 [24, Theorem 5]. There exist equivariant diffeomorphisms f(t) : G/K −→
Gμ(t)/Kμ(t) such that

ϕ(t) = f(t)∗ϕ, ∀t ∈ (T−, T+),
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that is, (G/K,ϕ(t)) and (Gμ(t)/Kμ(t), ϕ) are equivariantly equivalent. Moreover, each f(t)
can be chosen to be the equivariant diffeomorphism defined by the Lie group isomorphism
G −→ Gμ(t) with derivative

h̃(t) :=
[
I 0
0 h(t)

]
: g −→ g,

where h(t) := df(t)|o : p −→ p is the solution to any of the following ODEs.

(i) d
dth(t) = −h(t)Qϕ(t), h(0) = I, where Qϕ(t) ∈ qϕ(t) satisfies θ(Qϕ(t))ϕ(t) = Δϕ(t)ϕ(t).

(ii) d
dth(t) = −Qμ(t)h(t), h(0) = I, where Qμ ∈ qϕ satisfies θ(Qμ)ϕ = Δμϕ.

The following conditions also hold:

ϕ(t) = h(t)∗ϕ = h(t)−1 · ϕ, μ(t) = h̃(t) · [·, ·].

A direct consequence of the theorem is that the maximal interval of time (T−, T+) where a
solution exists is the same for both flows, so the bracket flow can be used as a tool to study
regularity questions on the Laplacian flow (see Section 5.1). It is proved, for example, in [24,
Proposition 4] that the norm |Δϕ(t)ϕ(t)|ϕ(t) of the velocity of the flow must blow up at a finite-
time singularity. This has been proved in [28, Theorem 1.6] in the case when M is compact
and ϕ is closed.

The scaling (Gμ/Kμ, c
−3ϕ) is equivariantly equivalent to the element c · μ ∈ Hq,n, defined

by

c · μ|k×k = μ, c · μ|k×p = μ, c · μ|p×p = c2μk + cμp, (20)

where the subscripts denote the k- and p-components of μ|p×p given by

μ(X,Y ) = μk(X,Y ) + μp(X,Y ), μk(X,Y ) ∈ k, μp(X,Y ) ∈ p, ∀X,Y ∈ p. (21)

Note that 〈·, ·〉c−3ϕ = c−2〈·, ·〉ϕ. The R∗-action on Hq,n, μ �→ c · μ, may therefore be considered
as a geometric scaling of (Gμ/Kμ, ϕ) (see [24, (23)]).

The previous theorem has the following application on convergence, which follows from [24,
Corollary 4; 28, Theorem 7.1].

Corollary 3.6. Assume that ck · μ(tk) → λ ∈ Hq,n for some subsequence of times tk → T±
and numbers ck 
= 0.

(i) If there is a positive lower bound for the Lie injectivity radii (see [24, Definition 3])
of the G-invariant metrics c−2

k gϕ(tk) on G/K, then, after possibly passing to a subse-

quence, (G/K, c−3
k ϕ(tk)) converges in the pointed (or Cheeger–Gromov) sense to (Gλ/Kλ, ϕ),

as k → ∞.
(ii) In the case of a Lie group G (that is, K trivial), the hypothesis on the Lie injectivity radii

in part (i) can be removed. Moreover, if either Gλ is compact or G is completely solvable, then
(G, c−3

k ϕ(tk)) smoothly converges up to pull-back by diffeomorphisms to (Gλ, ϕ), as k → ∞.

We note that the limiting Lie group Gλ in the above corollary might be non-isomorphic
to G, and consequently in part (i), the limiting homogeneous space Gλ/Kλ might be non-
homeomorphic to G/K. If we strength the hypothesis in the above corollary to c(t) · μ(t) →
λ, as t → T±, for some smooth function c(t) ∈ R∗, then the limit (Gλ/Kλ, ϕ) is, in fact, a
Laplacian soliton (see [21, Proposition 4.1]).

Example 3.7. It follows from Corollary 3.6(ii) that for the bracket flow solution given
in Example 3.4 and μ0 := μ1,0,0,1, one obtains that the Laplacian flow solution (Gμ0 , ϕ(t))
smoothly converges up to pull-back by diffeomorphisms to the flat (R7, ϕ), as t → ∞.
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The bracket flow has been a useful tool in the study of the Ricci flow and some other
curvature flows in the homogeneous case, see [24, Sections 5.3 and 5.5] for a quick overview.

3.4. Algebraic solitons

On homogeneous spaces, it is natural to study the existence of the following Laplacian solitons
of an ‘algebraic’ nature.

Theorem 3.8 [24, Theorem 6]. For a homogeneous space (G/K,ϕ) endowed with a G-
invariant G2-structure ϕ, with G simply connected and K connected, the following conditions
are equivalent.

• The bracket flow solution starting at [·, ·] is given by

μ(t) = c(t) · [·, ·], for some c(t) > 0, c(0) = 1.

• The operator Qϕ ∈ qϕ such that θ(Qϕ)ϕ = Δϕϕ satisfies

Qϕ = cI + Dp, for some c ∈ R, D =
[
0 0
0 Dp

]
∈ Der(g). (22)

In that case, (G/K,ϕ) is a Laplacian soliton with

Δϕϕ = −3cϕ− LXD
ϕ,

where XD denotes the vector field on G/K defined by the one-parameter subgroup of Aut(G)
attached to the derivation D, the scaling function in (i) is

c(t) = (−2ct + 1)−1/2,

and the G-invariant Laplacian flow solution starting at ϕ is given by

ϕ(t) = b(t)es(t)Dp · ϕ, b(t) := (−2ct + 1)3/2, s(t) := − 1
2c

log(−2ct + 1). (23)

(For c = 0, set s(t) = t.)

Definition 3.9. A homogeneous space (G/K,ϕ) endowed with a G-invariant G2-structure
and a reductive decomposition g = k⊕ p is called an algebraic soliton if condition (22) holds.

It follows from the above theorem that any simply connected algebraic soliton is indeed
a Laplacian soliton. The concept of algebraic soliton has been very fruitful in the study of
homogeneous Ricci solitons since its introduction in [22], we refer to [24, Sections 5.2 and
5.4] for a quick overview (see also [9, 23, 25, 26] for other curvature flows). Nothing changes

by allowing a derivation of the form D = [∗ 0
0 Dp

] ∈ Der(g) in the definition of algebraic soliton

since Dk = 0 must necessarily hold (see [24, Remark 7]). It is proved in [21, Section 4] (see
also [2]) that algebraic solitons are precisely the fixed points, and hence the possible limits of
any normalized bracket flow. Furthermore, given a starting point, one can obtain at most one
non-flat algebraic soliton as a limit by running all possible normalized bracket flow solutions
(see Corollary 3.6).

Example 3.10. According to Theorem 3.8, the closed G2-structures (Gμ, ϕ), μ = μa,b,a,−b,
studied in Example 3.3, are all expanding algebraic solitons. Indeed,

Qμ = (a2 + b2)Diag
(− 2

3 ,− 2
3 ,− 2

3 ,
1
3 ,

1
3 ,

1
3 ,

1
3

)
= (a2 + b2)

(− 5
3I + D

)
,
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where D = Diag(1, 1, 1, 2, 2, 2, 2) ∈ Der(μ). It is easy to see that they are all pairwise equivalent
up to scaling and that (Gμ, 〈·, ·〉ϕ) is a Ricci soliton for any a, b with Ricci operator

Ricμ = (a2 + b2)
(−2I + Diag(1, 3

2 ,
3
2 , 2,

5
2 ,

5
2 , 2)

) ∈ RI + Der(μ).

4. Homogeneous Laplacian solitons

Due to the lack of a general uniqueness result, given a Laplacian soliton (M,ϕ) which is
homogeneous, one cannot assert that the corresponding self-similar Laplacian flow solution
starting at ϕ (see Section 2.5) coincides with the Aut(M,ϕ)-invariant solution ϕ(t) given in
Proposition 3.1. In particular, we do not know if ϕ(t) is self-similar.

A diffeomorphism f of a homogeneous space G/K is said to be equivariant if

f(hK) = f̃(h)K, ∀h ∈ G, for some f̃ ∈ Aut(G), f̃(K) = K.

Let Aut(G/K) denote the subgroup of Diff(G/K) of all equivariant diffeomorphisms of G/K.

4.1. Semi-algebraic solitons

Given a simply connected algebraic soliton (G/K,ϕ), so a Laplacian soliton, it follows from
(23) that the diffeomorphisms f(t) defining the corresponding self-similar solution starting at
ϕ can be taken as the equivariant diffeomorphisms defined by the automorphisms of G with
derivatives e−s(t)D ∈ Aut(g). This motivates the following more general way to consider a
Laplacian soliton to be ‘algebraic’ (see [18, Section 2; 21, Section 3] for the Ricci flow case).

Definition 4.1. A homogeneous space endowed with a G-invariant G2-structure (G/K,ϕ)
is called a semi-algebraic soliton if there exists a one-parameter family f(t) ∈ Aut(G/K) such
that the G-invariant Laplacian flow solution starting at ϕ is given by ϕ(t) = c(t)f(t)∗ϕ, for
some c(t) ∈ R∗.

In other words, a semi-algebraic soliton (G/K,ϕ) is a Laplacian soliton for which the solution
ϕ(t) stays equivariantly equivalent to ϕ for all t rather that only equivalent. The following result
was proved in [18, Theorem 3.1] for Ricci solitons; we essentially follow the lines of that proof.

Proposition 4.2. Let (M,ϕ) be a homogeneous Laplacian soliton and consider

G = Aut(M,ϕ).

If the G-invariant Laplacian flow solution ϕ(t) on M = G/K starting at ϕ is self-similar, then
(G/K,ϕ) is a semi-algebraic soliton. Moreover, there exist f(t) ∈ Aut(G/K), f(0) = id, such
that,

• ϕ(t) = c(t)f(t)∗ϕ, for some c(t) ∈ R∗;
• f(t)|K = id for all t.

Proof. Consider the presentation M = G/K, where K is the isotropy subgroup of G at some
p ∈ M . If ϕ(t) = c(t)g(t)∗ϕ, for c(t) ∈ R∗, g(t) ∈ Diff(M), then we can assume that g(0) = id,
and also that g(t)(p) = p for all t by composing with h(t) ∈ G such that h(t)−1(p) = g(t)(p).
Since G = Aut(M,ϕ(t)) = g(t)−1Gg(t) for all t (see Proposition 3.1(ii)), we can define an
isomorphism f̃(t) : G −→ G by f̃(t)(h) := g(t)hg(t)−1 for all h ∈ G, which, in turn, determines
f(t) ∈ Aut(G/K) as f̃(t)(K) ⊂ K. But f(t) = g(t) on G/K for all t:

f(t)(hK) = g(t)hg(t)−1K = g(t)hg(t)−1(p) = g(t)(h(p)) = g(t)(hK), ∀h ∈ G,

and so part (i) follows.
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To prove that part (ii) can also be assumed to hold, we first note that K is compact and
so the identity component Aut(K)0 of Aut(K) consists of inner automorphisms. Since f̃(t)|K
is continuous and f̃(0) = id, we have that f̃(t)|K ∈ Aut(K)0 for all t, so there exist k(t) ∈ K,
k(0) = e, such that f̃(t)|K = Ik(t), where Ik denotes conjugation by k. Now the equivariant
diffeomorphism τ(k(t)) of G/K determined by Ik(t) ∈ Aut(G) belongs to Aut(M,ϕ) (recall that
dIk|o = Ad(k) for any k ∈ K), so parts (i) and (ii) both hold for the equivariant diffeomorphisms
τ(k(t))−1f(t), concluding the proof of the proposition. �

Remark 4.3. The following properties can be deduced from the proof of the above
proposition.

• If ϕ(t) = c(t)f(t)∗ϕ, for some c(t) ∈ R∗ and f(t) ∈ Diff(M) such that f(0) = id, f(t)(o) =
o, then f(t) ∈ Aut(G/K) for all t for G = Aut(M,ϕ).
• The fact that f(t)|K = id for all t can be assumed for any semi-algebraic soliton (G/K,ϕ)

with K compact.

Corollary 4.4. Assume that for each homogeneous G2-structure (M,ϕ), there exists a
unique Laplacian flow solution (M,ϕ(t)) starting at ϕ such that (M,ϕ(t)) is homogeneous
for all t. Then any homogeneous Laplacian soliton (M,ϕ) is a semi-algebraic soliton when
presented as a homogeneous space (G/K,ϕ) with G = Aut(M,ϕ).

We now give a characterization of semi-algebraic solitons based on a formula for the operator
Qϕ in terms of derivations, as we have for algebraic solitons (see (22)), which provides a useful
tool to study the existence, uniqueness and structure of homogeneous Laplacian solitons.

Proposition 4.5. If (G/K,ϕ) is a semi-algebraic soliton, then for any reductive decompo-
sition g = k⊕ p for G/K,

Qϕ = cI + prϕ(Dp), for some c ∈ R, D =
[∗ ∗
0 Dp

]
∈ Der(g), (24)

where prϕ : gl(p) = g2(ϕ) ⊕ q(ϕ) −→ q(ϕ) is the usual linear projection. The converse holds
for G simply connected and K connected, and in that case, Δϕϕ = −3cϕ− LXD

ϕ and the
Laplacian flow solution starting at ϕ is given by ϕ(t) = b(t)es(t)Dp · ϕ as in (23).

Remark 4.6. In the case when ϕ is closed, one has that Qϕ ∈ sym(p) = q1(ϕ) ⊕ q27(ϕ) (see
Lemma 2.2) and so condition (24) becomes

Qϕ = cI + 1
2

(
Dp + Dt

p

)
.

Proof. If (G/K,ϕ) is a semi-algebraic soliton, then ϕ(t) = a(t)f(t)∗ϕ, for some a(t) ∈ R∗,
a(0) = 1, f(t) ∈ Aut(G/K), f(0) = id. By taking the derivative at t = 0, one obtains that
Δϕϕ = aϕ + LXϕ for a = a′(0) and X the vector field on G/K defined by Xp := d

dt |0f(t)(p).
Now consider

D =
[∗ ∗
0 Dp

]
= − d

dt

∣∣∣∣
0

df̃(t)|e ∈ Der(g),

where for each t, f̃(t) ∈ Aut(G) is the automorphism defining f(t). It follows that

LXϕ(o) =
d

dt

∣∣∣∣
0

(f(t)∗ϕ)(o) =
d

dt

∣∣∣∣
0

df(t)|∗oϕ = −θ

(
d

dt

∣∣∣
0
df(t)|o

)
ϕ = θ(Dp)ϕ. (25)

The formula Δϕϕ = aϕ + LXϕ therefore becomes θ(Qϕ)ϕ = θ(− 1
3aI + Dp)ϕ when evaluated

at the origin o, from which condition (24) follows for c = − 1
3a.
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Conversely, assume that condition (24) holds for some reductive decomposition g = k⊕ p
for G/K. Since D ∈ Der(g), etD ∈ Aut(g) for all t ∈ R and since G is simply connected, there
exists f̃(t) ∈ Aut(G) such that df̃(t)|e = etD. By using that K is connected and Dk = k, we
obtain for each t that f̃(t)(K) = K, so f̃(t) defines f(t) ∈ Aut(G/K), for which df(t)|o = etDp .
Let XD denote the vector field on G/K defined by XD(p) = d

dt |0f(t)(p). It follows as in (25)
that LXD

ϕ(o) = −θ(Dp)ϕ, so from (24), we obtain that

Δϕϕ = θ(Qϕ)ϕ = cθ(I)ϕ + θ(Dp)ϕ = −3cϕ− LXD
ϕ,

by using that every tensor in this formula is G-invariant (recall that the flow of XD is given
by automorphisms of G). It is easy to see that this implies that the Laplacian flow solution
is given by ϕ(t) = b(t)f(−s(t))∗ϕ for b(t) and s(t) as in (23), concluding the proof of the
proposition. �

Remark 4.7. One can obtain a derivation D with a simpler structure in the above
proposition as follows.

(i) If the reductive decomposition g = k⊕ p for G/K with B(k, p) = 0 is considered, where
B is the Killing form of g, then Dp ⊂ p (see [21, Lemma 3.10]).

(ii) It follows from Remark 4.3(ii) that if K is compact, then Dk = 0.

4.2. Bracket flow evolution of semi-algebraic solitons

In Theorem 3.8, algebraic solitons have been characterized as the G2-structures that evolve
as simply as possible along the bracket flow. It is then natural to ask about the bracket flow
evolution of semi-algebraic solitons. Let (G/K,ϕ) be a closed semi-algebraic soliton with K
compact and consider the reductive decomposition g = k⊕ p with B(k, p) = 0. From the above
proposition and Remarks 4.6 and 4.7, we obtain that

Qϕ = cI +
1
2
(
Dp + Dt

p

)
, for some c ∈ R, D =

[
0 0
0 Dp

]
∈ Der(g). (26)

In that case, the formula for the bracket flow solution starting at the Lie bracket [·, ·] of g has
been computed in [21, Proposition 4.2 and Remark 4.3] and is given by

μ(t) = (−2ct + 1)−1/2 ·
([

I 0
0 es(t)A

]
· [·, ·]

)
, A :=

1
2
(
Dp −Dt

p

)
, (27)

where s(t) is as in (23). Note that if in addition, Dt ∈ Der(g), then we recover the formula for
μ(t) in the case of an algebraic soliton given in Theorem 3.8(i).

We note that for expanding solitons, that is, c < 0, the function s is defined on (T−, T+) =
( 1
2c ,∞), s(0) = 0 and it is strictly increasing. On the other hand, for shrinking solitons,

that is, c > 0, s is defined on (T−, T+) = (−∞, 1
2c ), s(0) = 0 and it is strictly decreasing.

Since A is skew-symmetric, its eigenvalues are either purely imaginary numbers or zero, say
±ia1, . . . ,±iam, 0, . . . , 0 (aj > 0). If the set {a1, . . . , am} is linearly dependent over Q, then
there exists a sequence tk, with tk → ±∞ (depending on the sign of c), such that es(tk)A = I
for all k, and thus the bracket flow solution projected on the sphere,

μ(t)
|μ(t)| =

[
I 0
0 es(t)A

]
· [·, ·],

is periodic (see Example 5.28 below). Thus, for any expanding (shrinking) semi-algebraic
soliton, μ(t) converges to zero (to infinity) by rounding in a cone as t → ∞ (t → 1

2c ). If, on
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the contrary, the set {a1, . . . , am} is linearly independent over Q, then μ(t)
|μ(t)| is not periodic

and by Kronecker’s theorem, for each t0 ∈ (T−, T+), there exists a sequence tk, with tk → ±∞
(depending on the sign of c), such that es(tk)A → es(t0)A. This implies that

μ(tk)
|μ(tk)| −→

k→∞
μ(t0)
|μ(t0)| ,

which reveals the following chaotic behavior: the solution projected on the sphere is not
periodic, but nevertheless each point of the solution is contained in the ω-limit. The existence
of a semi-algebraic soliton of this kind is an open problem.

4.3. Laplacian flow diagonal property

In this section, we aim to characterize algebraic solitons among homogeneous Laplacian solitons
in a geometric way. The concept of Laplacian soliton is a geometric invariant, that is, invariant
under equivalence of G2-structures (or pull-back by diffeomorphisms). However, the concept
of semi-algebraic soliton is not, as it may depend on the presentation of the homogeneous
G2-structure (M,ϕ) as a homogeneous space (G/K,ϕ). Moreover, being an algebraic soliton
may a priori not only depend on such presentation, but also on the reductive decomposition
g = k⊕ p one is choosing for the homogeneous space.

Definition 4.8. A homogeneous G2-structure (M,ϕ) is said to be Laplacian flow diagonal
if the Aut(M,ϕ)-invariant Laplacian flow solution ϕ(t) starting at ϕ satisfies the following
property: at some point p ∈ M , there exists a basis β of TpM , orthonormal with respect to
〈·, ·〉ϕ, such that the matrix [Qϕ(t)(p)]β is diagonal for all t.

Recall from (13) that Qϕ(t) ∈ qϕ(t) ⊂ End(TM) is the operator satisfying θ(Qϕ(t))ϕ(t) =
Δϕ(t)ϕ(t). Therefore, if (M,ϕ) is Laplacian flow diagonal, then the primitive 3-forms ei ∧
ej ∧ ek that appear in the formulas for the 3-forms ϕ(t) and Δϕ(t)ϕ(t) in terms of the basis
β = {e1, . . . , e7} are the same for all time t. Such a property is very convenient in the study of
any aspect of the Laplacian flow ODE (14), including its qualitative behavior and the search
for exact solutions. This dichotomy neatly arose in the study of Laplacian flow solutions on
nilpotent Lie groups worked out in [7, Section 4]: cases N2 and N12 are Laplacian flow diagonal,
whereas N4 and N6 are not.

The following observations on the above definition are also in order.

• The point p can be replaced by any other point by homogeneity.
• The property of being Laplacian flow diagonal is invariant under equivalence since

given f ∈ Diff(M), the operators corresponding to (M,f∗ϕ) are simultaneously conjugate via
df |f−1(p) to those of (M,ϕ).
• For ϕ closed, the simultaneous diagonalization in the above definition is equivalent to the

family of operators {Qϕ(t) : t ∈ (T−, T+)} being commutative, as they are all symmetric by
Proposition 2.2.

Once we consider a presentation (M,ϕ) = (G/K,ϕ) and a reductive decomposition g = k⊕ p,
Theorem 3.5 tells us that ϕ(t) = h(t)∗ϕ for the solution h(t) ∈ GL(p) to the ODE d

dth(t) =
−h(t)Qϕ(t), h(0) = I. It follows that the following conditions are equivalent.

• (G/K,ϕ) is Laplacian flow diagonal.
• The family of operators {h(t) : t ∈ (T−, T+)} is simultaneously diagonalizable with respect

to an orthonormal basis of p.
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Example 4.9. It follows from Theorem 3.8 that if (G/K,ϕ) is a simply connected algebraic
soliton, then [Qϕ, Dp] = 0 and so by (23),

Qϕ(t) = (−2ct + 1)−1es(t)DpQϕe
−s(t)Dp = (−2ct + 1)−1Qϕ, ∀t.

This shows that ϕ is Laplacian flow diagonal as soon as Qϕ is symmetric (or equivalently,
diagonalizable with respect to an orthonormal basis), for example, if ϕ is closed.

We now prove that the Laplacian flow diagonal condition actually characterizes algebraic
solitons among homogeneous Laplacian solitons.

Theorem 4.10. A closed semi-algebraic soliton (G/K,ϕ) with K compact is Laplacian flow
diagonal if and only if it is an algebraic soliton.

Remark 4.11. In particular, any closed semi-algebraic soliton which is equivalent to an
algebraic soliton must be an algebraic soliton itself.

Proof. We can assume that condition (26) holds for (G/K,ϕ). By using that Qϕ(t) =
(−2ct + 1)−1es(t)DpQϕe

−s(t)Dp , we obtain from the Laplacian flow diagonal condition that

[esDpQϕe
−sDp , Qϕ] = 0, ∀s ∈ (−ε, ε).

Now this implies that [[Dp, Qϕ], Qϕ] = 0, and so

0 = trDp[[Dp, Qϕ], Qϕ] = − tr [Dp, Qϕ]2.

It follows that [Dp, Qϕ] = 1
2 [Dp, D

t
p] = 0 as it is symmetric, and thus Dp is normal. Hence, D is

normal as well relative to any extension of the inner product 〈·, ·〉ϕ to g, from which we obtain
that Dt ∈ Der(g) since it is well known that the transpose of a normal derivation of a metric Lie
algebra is again a derivation. Thus, Qϕ = cI + 1

2 (D + Dt)p, with 1
2 (D + Dt) ∈ Der(g), showing

that (G/K,ϕ) is an algebraic soliton and concluding the proof. �

5. Almost abelian solvmanifolds

We study in this section the Laplacian flow and its solitons in a class of solvable Lie groups
which is relatively simple from the algebraic point of view but yet geometrically rich and exotic.

Let (G,ϕ) be a Lie group endowed with a left-invariant G2-structure ϕ. Assume that the
Lie algebra g of G has a codimension-one abelian ideal h. These Lie algebras are often called
almost abelian in the literature. It was proved in [10, 11] that there exists an orthonormal
basis {e1, . . . , e7} of g with respect to 〈·, ·〉ϕ such that h = span{e1, . . . , e6} and

ϕ = ω ∧ e7 + ρ+ = e127 + e347 + e567 + e135 − e146 − e236 − e245, (28)

where

ω := e12 + e34 + e56, ρ+ := e135 − e146 − e236 − e245.

We note that each of these Lie algebras is completely determined by the real 6 × 6 matrix

A := ad e7|h,
and so its Lie bracket will be denoted by μA and the corresponding simply connected Lie group
by GA.

Note 5.1. Identification of linear maps with matrices will always be done via the ordered
basis {e1, e3, e5, e2, e4, e6, e7}, unless otherwise stated.
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Thus, μA is solvable, GA is diffeomorphic to R7, h is always an abelian ideal (which is the
nilradical of μA if and only if A is not nilpotent) and μA is nilpotent if and only if A is a
nilpotent matrix. It is not hard to see that μA is isomorphic to μB if and only if the matrices
A and B are conjugate up to a non-zero scaling.

The non-degenerate 2-form ω ∈ Λ2h∗ can be written as ω = 〈J ·, ·〉ϕ, where

J =
[

0 −I
I 0

]
.

Given A ∈ gl6(R), let (GA, ϕ) denote the Lie group GA endowed with the left-invariant
G2-structure defined by the fixed positive 3-form ϕ given in (28).

Proposition 5.2.

• [11] (GA, ϕ) is closed if and only if the matrix A belongs to

sl(3,C) := {A ∈ gl6(R) : AJ = JA, trA = trAJ = 0}

=
{[

B −C
C B

]
: B,C ∈ sl3(R)

}
.

• [10] (GA, ϕ) is coclosed if and only if A is in

sp(3,R) :=
{
A ∈ gl6(R) : AtJ + JA = 0

}
=
{[

B C
D −Bt

]
: C,D ∈ sym(3)

}
.

Remark 5.3. Part (ii) is proved in [10] for the 3-form ω ∧ e7 − ρ−, but it is easily seen to
be valid for ϕ as well (see Lemma 5.11(iv) for the definition of ρ−).

We note that SU(3) := {h ∈ SO(6) : hJ = Jh} = SL(3,C) ∩ Sp(3,R) can be homomorphi-
cally imbedded in G2 = G2(ϕ) as [

SU(3) 0
0 1

]
⊂ G2.

According to Proposition 5.2, (GA, ϕ) is torsion-free if and only if A ∈ su(3) = sl(3,C) ∩
sp(3,R).

Recall from Section 3.1 that (GA, ϕ) and (GB , ϕ) are said to be equivariantly equivalent if
they are equivalent as G2-structures via a Lie group isomorphism, that is, if and only if there
exists a Lie algebra isomorphism h : (g, μA) −→ (g, μB) such that h∗ϕ = ϕ (that is, h ∈ G2).

Proposition 5.4. If either B = hAh−1 for some h ∈ SU(3) ⊂ G2, or B = −hAh−1 for some
h ∈ O(6) such that deth = −1 and hJh−1 = −J , then (GA, ϕ) and (GB , ϕ) are equivariantly
equivalent. The converse holds if neither A nor B are nilpotent.

Remark 5.5. In the closed case, that is, A,B ∈ sl(3,C), if we view all these matrices as
complex 3 × 3 matrices, then what the proposition is asserting is that (GA, ϕ) and (GB , ϕ) are
equivariantly equivalent as soon as B is SU(3)-conjugate to A or A.

Proof. Note that (GA, ϕ) and (GB , ϕ) are equivariantly equivalent if and only if μB =
h · μA for some h ∈ G2 ⊂ SO(7). We first prove the converse assertion. If they are equivariantly
equivalent, then it is easy to see by using that h must leave h invariant (notice that h is the
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nilradical of both Lie algebras since A and B are both non-nilpotent) that such an h must have
the form

h =

⎡
⎢⎢⎣ h1 0

0 h0

⎤
⎥⎥⎦ , for some h1 ∈ O(6), h0 = deth1 = ±1.

Now condition h∗ϕ = ϕ implies that h∗
1ω = h0ω, which is equivalent to h1Jh

−1
1 = h0J . Since

condition μB = h · μA is equivalent to B = h0h1Ah
−1
1 , the two alternatives in the proposition

correspond to h0 = 1 and h0 = −1, respectively.
It is now clear that conversely, if we construct h as above by setting h1 as the map h in the

proposition, then h defines an equivariant equivalence between (GA, ϕ) and (GB , ϕ), without
any assumption on A,B, concluding the proof. �

The following result shows that two left-invariant G2-structures on non-isomorphic Lie groups
can indeed be equivalent (in particular, without being equivariantly equivalent). Our proof is
strongly based on the proof by Heber of [15, Proposition 2.5] in his Habilitationsschrift (see
[14, Proposition 2.5]).

Proposition 5.6. Assume that A = A1 + A2, A2 ∈ su(3) and [A1, A2] = 0. Then the G2-
structures (GA, ϕ) and (GA1 , ϕ) are equivalent.

Proof. We denote by gA := (g, μA), the Lie algebra of GA. Consider the Lie group

F := Aut(GA) ∩ Aut(GA, ϕ) � Aut(gA) ∩G2,

with Lie algebra f := Der(gA) ∩ g2, the homomorphism α : gA −→ f defined by

α(e7) =

⎡
⎢⎢⎣ −A2 0

0 0

⎤
⎥⎥⎦ , α|h ≡ 0,

and denote also by α the corresponding Lie group homomorphism GA −→ F . By using that
GA = exp Re7 � exp h, it is easy to see that

G1 := {Ls ◦ α(s) : s ∈ GA} ⊂ L(GA)F ⊂ Aut(GA, ϕ)

is a subgroup, where L : GA −→ Aut(GA, ϕ) is the left-multiplication morphism. Thus, G1

is a connected and closed Lie subgroup of Aut(GA, ϕ) since s �→ Ls ◦ α(s) is continuous and
proper. But G1 acts simply and transitively on GA by automorphisms of ϕ, so as usual, the
diffeomorphism f : G1 −→ GA, Ls ◦ α(s) �→ (Ls ◦ α(s))(e) = s, defines an equivalence between
the left-invariant G2-structures (G1, f

∗ϕ) and (GA, ϕ). On the other hand, the Lie algebra of
G1 is given by

g1 := {dL|eX + α(X) : X ∈ gA} ⊂ gA � f,

and if X = Xh + ae7, Y = Yh + be7 belong to gA, then

[dL|eX + α(X), dL|eY + α(Y )] = μA(X,Y ) + α(X)Y − α(Y )X + α([X,Y ])

= aA1Yh + aA2Yh − bA1Xh − bA2Xh − aA2Yh + bA2Xh + 0

= μA1(X,Y ) = (dL|e + α)μA1(X,Y ).

This shows that g1 is isomorphic to gA1 and that (G1, f
∗ϕ) is equivariantly equivalent to

(GA1 , ϕ), which implies that (GA, ϕ) and (GA1 , ϕ) are equivalent. �



LAPLACIAN FLOW OF HOMOGENEOUS G2-STRUCTURES AND ITS SOLITONS 23

Remark 5.7. If we replace ϕ by an inner product 〈·, ·〉 on g, Aut(GA, ϕ) by Iso(GA, 〈·, ·〉)
and G2 by O(g, 〈·, ·〉), then the following result can be proved in exactly the same way as above
for any dimension: (GA, 〈·, ·〉) is isometric to (GA1 , 〈·, ·〉) for any A = A1 + A2 in gl(h) such
that [A1, A2] = 0 and A2 ∈ so(h, 〈·, ·〉).

If trA = 0, then the Ricci operator and scalar curvature of (GA, 〈·, ·〉ϕ) are, respectively,
given by (see, for example, [1, (8)])

RicA =

⎡
⎢⎢⎣

1
2 [A,At] 0

0 − 1
4 tr (A + At)2

⎤
⎥⎥⎦ , RA = −1

4
tr (A + At)2. (29)

The following conditions are therefore equivalent for a closed (or coclosed) (GA, ϕ).

• (GA, ϕ) is torsion-free.
• At = −A (that is, A ∈ so(6)).
• RA = 0.
• RicA = 0.
• (GA, 〈·, ·〉ϕ) is flat.
• (GA, ϕ) is equivalent (but not equivariantly equivalent unless A = 0) to the G2 Euclidean

space (R7, ϕ) (see Proposition 5.6).

Example 5.8. The non-abelian nilpotent Lie groups GA admitting a closed G2-structure
(that is, with A conjugated to an element in sl(3,C)) are exactly two and their Lie algebras
have been denoted by n2 (A2 = 0) and n6 (A3 = 0 and A2 
= 0) in [7, 32] (see [10]). Since any
non-zero A ∈ sl(3,C) such that A2 = 0 is SU(3)-conjugate up to scaling to

A0 :=

⎡
⎣0 0 1

0 0
0

⎤
⎦ ,

it follows from Proposition 5.4 and Remark 5.5 that the Lie group GA0 with Lie algebra n2

admits only one closed G2-structure up to equivalence and scaling. On the other hand, the
matrices

At :=

⎡
⎣0 t 0

0 1
0

⎤
⎦ ∈ sl(3,C), t > 0,

provide a continuous family of G2-structures (GAt
, ϕ), or equivalently a family (GA1 , ϕt), where

the Lie algebra of GA1 is n6, such that there is no any pair which is equivalent up to scaling.
Indeed, by (29), the Ricci operator of (GAt

, 〈·, ·〉ϕ) is given by

Rict = 1
2 Diag(t2, 1 − t2,−1, t2, 1 − t2,−1,−2(1 + t2)),

so the ratio between its extreme eigenvalues equals −t2/2(1 + t2), an injective function on
(0,∞), which implies that two of these Riemannian manifolds can never be isometric up to
scaling.

Example 5.9. Given a diagonal matrix with three different real eigenvalues,

A :=

⎡
⎣a b

c

⎤
⎦ ∈ sl(3,C),
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we know that the set of all closed G2-structures on GA is parameterized by its GL(3,C)-
conjugacy class, which has dimension 12 = 18 − 6. By Proposition 5.4, the equivalence classes
are given by SU(3)-conjugacy classes, so up to equivalence and scaling, the set of all closed
G2-structures on GA depends on 5 = 12 − 8 + 2 − 1 parameters.

Example 5.10. In the coclosed case, for a diagonal matrix A ∈ sp(3,R) with six different
real eigenvalues, we obtain from Proposition 5.4 that up to equivalence and scaling, the set of
all coclosed G2-structures on GA depends on 9 = 21 − 3 − 8 + 0 − 1 parameters.

The following technical lemma contains some basic though very useful information on the
linear algebra involved in subsequent computations. Recall from (28) the definition of ω
and ρ+.

Lemma 5.11. Let ∗ : Λkg∗ −→ Λ7−kg∗ and ∗h : Λkh∗ −→ Λ6−kh∗ be the Hodge star
operators determined by ϕ, that is, by the ordered bases {e1, . . . , e7} and {e1, . . . , e6},
respectively.

(i) ∗γ = ∗hγ ∧ e7, for any γ ∈ Λkh∗.
(ii) ∗(γ ∧ e7) = (−1)k ∗h γ, for any γ ∈ Λkh∗.
(iii) ∗hω = 1

2ω ∧ ω and ∗h(ω ∧ ω) = 2ω.
(iv) ∗hρ+ = ρ− and ∗hρ− = −ρ+, where ρ− := −e246 + e235 + e145 + e136.
(v) ∗2 = id and ∗2

h = (−1)kid on Λkh∗.

Before computing the Hodge Laplacian operator, we give in the following lemma some
properties of the differential of forms on the Lie group GA. Denote by θ : gl(h) −→ End(Λkh∗)
the representation obtained as the derivative of the natural GL(h)-action on each Λkh∗, that
is,

θ(A)γ = −γ(A·, . . . , ·) − · · · − γ(·, . . . , A·), ∀γ ∈ Λkh∗.

Lemma 5.12. Let dA denote the differential of left-invariant forms on the Lie group GA.

(i) dAe
7 = 0 and

dAe
i =

6∑
j=1

aije
j7, i = 1, . . . , 6,

where A = [aij ] is written in terms of the basis {e1, . . . , e7}.
(ii) dAγ = (−1)kθ(A)γ ∧ e7, for any γ ∈ Λkh∗.
(iii) dA(γ ∧ e7) = 0, for all γ ∈ Λkh∗.
(iv) θ(A)ρ+ = 0 if and only if θ(A)ρ− = 0, if and only if A ∈ sl(3,C).
(v) θ(A)ω = 0 if and only if A ∈ sp(3,R).
(vi) θ(A)∗h = − ∗h θ(At) on Λh∗, if trA = 0.

Proof. Part (iv) follows from the fact that the complex volume form of C6,

α = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6),

can be written as α = ρ+ + iρ−. To prove part (vi), we first recall that

α ∧ ∗hβ = 〈α, β〉ν, ν := e1 ∧ · · · ∧ e6, ∀α, β ∈ Λkh∗.
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Thus, if α ∈ Λph∗ and β ∈ Λ6−ph∗, then

〈α, θ(A) ∗h β〉ν = 〈θ(At)α, ∗hβ〉ν = θ(At)α ∧ ∗2
hβ

= (−1)pθ(At)α ∧ β = (−1)p+1α ∧ θ(At)β

= −α ∧ ∗h ∗h θ(At)β = 〈α,− ∗h θ(At)β〉ν.
We have used in the second line above that θ(A)ν = 0 (recall that trA = 0) and so θ(At)(α ∧
β) = 0. The other parts of the lemma easily follow. �

Proposition 5.13. Let ΔA denote the Hodge Laplacian operator of (GA, ϕ). If trA = 0,
then

ΔAϕ = θ(A)θ(At)ω ∧ e7 − θ(At)θ(A)ρ+.

Proof. In the following computations, we are using many of the properties and identities
given in Lemmas 5.11 and 5.12 without any further mention. One has that,

ϕ = ω ∧ e7 + ρ+,

dAϕ = dAρ
+ = −θ(A)ρ+ ∧ e7,

∗dAϕ = ∗hθ(A)ρ+ = −θ(At) ∗h ρ+ = −θ(At)ρ−,

dA ∗ dAϕ = θ(A)θ(At)ρ− ∧ e7,

∗dA ∗ dAϕ = − ∗h θ(A)θ(At)ρ− = −θ(At)θ(A) ∗h ρ− = θ(At)θ(A)ρ+.

On the other hand,

∗ϕ = ∗h ω + ∗hρ+ ∧ e7 = 1
2ω ∧ ω + ρ− ∧ e7,

dA ∗ ϕ = 1
2θ(A)(ω ∧ ω) ∧ e7 = θ(A) ∗h ω ∧ e7 = − ∗h θ(At)ω ∧ e7,

∗dA ∗ ϕ = − ∗2
hθ(A

t)ω = −θ(At)ω,

dA ∗ dA ∗ ϕ = − θ(A)θ(At)ω ∧ e7,

which concludes the proof. �

Remark 5.14. Second lines in the two computations above provide a proof for
Proposition 5.2.

Proposition 5.15. If (GA, ϕ) is closed, then the symmetric operator QA ∈ sym(7)
satisfying θ(QA)ϕ = ΔAϕ is given by

QA =

⎡
⎢⎢⎣ Q1 0

0 q

⎤
⎥⎥⎦ , (30)

where

Q1 = 1
2 [A,At] + 1

12 tr (A + At)2I − 1
2 (A + At)2, q = − 1

6 tr (A + At)2.
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Proof. It follows from Proposition 5.13 that

ΔAϕ = θ(A)θ(At)ω ∧ e7

=
(
ω(AtA·, ·) + ω(At·, A·) + ω(A·, At·) + ω(·, AtA·)) ∧ e7.

Now by using that ω(A·, ·) = ω(·, At·) (recall that AJ = JA), we obtain

ΔAϕ = ω
(
(AtA + (At)2 + A2 + AtA)·, ·) ∧ e7

= ω
(
(−[A,At] + (A + At)2)·, ·) ∧ e7

= ω (B·, ·) ∧ e7 + 1
6 tr (A + At)2ω ∧ e7,

where B := −[A,At] − 1
6 tr (A + At)2I + (A + At)2 ∈ sl(3,C) (that is, θ(B)ρ+ = 0) and Bt =

B. This implies that

ΔAϕ = θ

⎛
⎜⎜⎝
⎡
⎢⎢⎣−

1
2B 0

0 − 1
6 tr (A + At)2

⎤
⎥⎥⎦
⎞
⎟⎟⎠ (ω ∧ e7 + ρ+),

as was to be shown.
Alternative proof. We have seen in the proof of Proposition 5.13 that the torsion 2-form

τA = − ∗ dA ∗ ϕ ∈ Λ2g∗ of (GA, ϕ) is given by τA = θ(At)ω; thus, τA(e7, ·) ≡ 0 and

τA|h×h = θ(At)ω = −〈JAt·, ·〉ϕ − 〈J ·, At·〉ϕ = −〈J(A + At)·, ·〉ϕ.
Therefore, as matrices, τA ∈ so(7) ≡ Λ2g∗ and its square are, respectively, given by

τA =

⎡
⎢⎢⎣−J(A + At) 0

0 0

⎤
⎥⎥⎦ , τ2

A =

⎡
⎢⎢⎣−(A + At)2 0

0 0

⎤
⎥⎥⎦ . (31)

Formula (30) now follows from Proposition 2.2, (29) and (31), concluding the proof. �

5.1. Bracket flow

We study in this section the bracket flow evolution of closed G2-structures (GA, ϕ) (see
Section 3.3). Recall from Section 3.2 the variety L of seven-dimensional Lie algebras.

Proposition 5.16. The family {μA : A ∈ sl(3,C)} ⊂ L of closed G2-structures is invariant
under the bracket flow, which becomes equivalent to the following ODE for a one-parameter
family of matrices A = A(t) ∈ sl(3,C):

d
dtA = − 1

6 tr (A + At)2A + 1
2 [A, [A,At]] − 1

2 [A, (A + At)2]. (32)

Proof. We first note that the family

{μA : A ∈ gl6(R)} ⊂ L
is invariant under the bracket flow d

dtμ = δμ(Qμ) if and only if the velocity δμA
(QA) equals

μB for some B ∈ gl6(R), for any A. Using (30), it is easy to see that this, indeed, holds for
B = qA + [A,Q1]. Note that if A is in sl(3,C), then B is so, since Q1 is symmetric and traceless
and thus Q1 ∈ sl(3,C). Thus, the subset of closed G2-structures is invariant under the bracket
flow, which takes the form d

dtA = B, as was to be shown. �
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Remark 5.17. Equation (32) is substantially different from the bracket flow used by Arroyo
(see [1, (7)]) to study the Ricci flow for Riemannian manifolds (GA, 〈·, ·〉ϕ), which is given in
that case by d

dtA = − 1
4 tr (A + At)2A + 1

2 [A, [A,At]] if trA = 0.

Since for each t, the Lie algebra μA(t) is isomorphic to the starting point μA0 , we have that

A(t) = a(t)h(t)A0h(t)−1, for some a(t) > 0, h(t) ∈ SL(3,C),

where h and c are smooth functions with a(0) = 1 and h(0) = I. The corresponding spectra
(that is, the unordered set of complex eigenvalues) therefore satisfy

Spec(A(t)) = a(t) Spec(A0), ∀t ∈ (T−, T+). (33)

This implies that if ckA(tk) → B for some subsequence tk → T± as in the hypothesis of
Corollary 3.6, then either the limit Lie group GB is isomorphic to GA0 or B is nilpotent.

Lemma 5.18. Along the bracket flow (32), the norm of A(t) ∈ sl(3,C) evolves by

d

dt
|A|2 = −1

3
|A|2|A + At|2 − |[A,At]|2.

Proof. From Proposition 5.16, we obtain that

d

dt
|A|2 = 2

〈
d

dt
A,A

〉
= 2 tr

(
d

dt
A

)
At

= −1
3
|A|2|A + At|2 − |[A,At]|2 + tr (A + At)2[A,At],

and since

tr (A + At)2[A,At] = tr (AAt + AtA)(AAt −AtA) = 0, (34)

the lemma follows.
For an alternative proof, one can use [24, Proposition 3], asserting that the norm of the

bracket evolves under the bracket flow by d
dt |μ|2 = −8 trQμMμ, where Mμ is the moment map

of (GA, 〈·, ·〉ϕ). In this case, |μA|2 = 2|A|2 and a straightforward computation gives

MA := MμA
=

⎡
⎢⎢⎣

1
2 [A,At] 0

0 − 1
2 |A|2

⎤
⎥⎥⎦ ,

so the lemma follows from 30. �

From the above lemma, one has that |A(t)|2 is non-increasing and so long-time existence for
the bracket flow follows. Actually, |A(t)|2 is strictly decreasing unless (GA, ϕ) is torsion-free
(that is, At = −A), in which case A(t) ≡ A0. In view of the equivalence between the bracket
flow and the Laplacian flow given in Theorem 3.5, we obtain that Laplacian flow solutions
among this class are all immortal.

Corollary 5.19. The left-invariant Laplacian flow solution starting at any closed
G2-structure (GA, ϕ) is defined for all t ∈ (T−,∞) for some T− < 0.

Next example shows that A(t) does not necessarily converge to zero.
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Example 5.20. The family

A =
[
B 0
0 B

]
∈ sl(3,C), B =

⎡
⎣0 a 0
b 0 0
0 0 0

⎤
⎦ , a, b ∈ R,

is invariant under the bracket flow (32) and it is easily seen to evolve by{
a′ = 2

3a(−2a2 − ab + b2),

b′ = 2
3b(−2b2 − ab + a2).

A standard qualitative analysis gives the following behaviors for the solutions.

• Any point in the line b = −a is a torsion-free G2-structure which is therefore a fixed point
for the flow.
• The lines a = 0, b = 0 and b = a are all invariant and each one contains two trajec-

tories converging to zero. These are precisely the algebraic solitons among the family (see
Theorem 3.8).
• The solutions in the second and fourth quadrant all converge to some fixed point in the

line b = −a.
• Any solution in the first or third quadrant converges to zero and asymptotically approaches

the soliton line b = a.

Proposition 5.21. The scalar curvature R(t) = R(gϕ(t)) of the left-invariant Laplacian flow
solution ϕ(t) starting at a non-flat closed G2-structure (GA0 , ϕ) strictly increases and satisfies
that

1
−2t + 1

R(0)

� R(t) < 0, ∀t ∈ (T−,∞).

In particular, |τϕ(t)|2 = −2R(t) is strictly decreasing and converges to zero, as t → ∞.

Proof. It follows from Proposition 5.16 that

d

dt
tr (A + At)2 = 2 tr (A + At)

d

dt
(A + At)

= −1
3
(
tr (A + At)2

)2
+ tr (A + At)[A−At, [A,At]]

− tr (A + At)[A−At, (A + At)2]

= −1
3
(
tr (A + At)2

)2 − tr [A−At, A + At][A,At]

= −1
3
(
tr (A + At)2

)2 − 2 tr [A,At]2

� −1
3
(
tr (A + At)2

)2
.

This implies that

tr (A + At)2 � 1
1
2 t + 1

tr (A0+At
0)

2

, ∀t ∈ (T−,∞),

and so the proposition follows from the formula RA = − 1
4 tr (A + At)2 in (29). �



LAPLACIAN FLOW OF HOMOGENEOUS G2-STRUCTURES AND ITS SOLITONS 29

5.2. Solitons

We now give necessary and sufficient conditions on the matrix A ∈ sl(3,C) to obtain an
algebraic soliton.

Proposition 5.22. A closed G2-structure (GA, ϕ) is an algebraic soliton if and only if either
A is normal (that is, [A,At] = 0) or A is nilpotent and

[A, [A,At] − (A + At)2] = −|[A,At]|2
|A|2 A. (35)

In any case, one has that D = QA − cI ∈ Der(μA) and ΔAϕ = −3cϕ− LXD
ϕ for

c = −1
6

tr (A + At)2 − |[A,At]|2
2|A|2 .

In particular, they are all expanding Laplacian solitons, unless they are torsion-free (that is,
At = −A).

Proof. Assume that (GA, ϕ) is an algebraic soliton, that is, QA = cI + D for some c ∈ R

and D ∈ Der(g, μA). Thus, De7 = de7 for some d ∈ R and [Q1, A] = [D|h, A] = dA. It follows
from (30) that

1
2 [A, [A,At] − 1

2 [A, (A + At)2] = −dA,

and thus −d trAk = 0 for any k ∈ N. On the other hand, from (34), we obtain that d =
|[A,At]|2/(2|A|2), so either A is normal or A is nilpotent and satisfies the matrix equation
in the proposition. The converse can be easily checked and the formula for c follows from the
fact that c = q − d. �

Corollary 5.23. Any closed algebraic soliton of the form (GA, ϕ) is equivariantly
equivalent up to scaling to one of the following:

• A =
[
x

y
z

]
, x, y, z ∈ C, x + y + z = 0,

• A =
[
0 0 1

0 0
0

]
.

Two G2-structures in part (i) are equivariantly equivalent if and only if either {x2, y2, z2} =
{x1, y1, z1} or {x2, y2, z2} = {x1, y1, z1}.

Remark 5.24. In relation to the question studied in [7], we observe that the metrics
attached to all the above closed Laplacian solitons are well known to be Ricci solitons (see, for
example, [1]).

Proof. Let (GA, ϕ) be an algebraic soliton which is closed, so A ∈ sl(3,C). If A is normal,
then on its SU(3)-conjugation class, there is a diagonal matrix, so (GA, ϕ) is equivalent to
one of the structures in part (i) by Proposition 5.4 and Remark 5.5. The last statement on
equivalence among these structures follows in much the same way.

Assume now that A is nilpotent and non-zero. It follows that A is SU(3)-conjugate to a
matrix of the form, ⎡

⎣0 a b
0 0 c
0 0 0

⎤
⎦ , a, b, c ∈ C.
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It is straightforward to check that condition (35) holds for such a matrix if and only if a = 0
or c = 0 (recall that the transpose At must be replaced by A∗ = At in condition (35) when
working with complex matrices). The resulting matrix is easily seen to be SU(3)-conjugate up
to scaling to the one given in part (ii), concluding the proof. �

We note that the closed Laplacian solitons provided by part (i) in the above corollary are
given as real matrices by

A =
[
B −C
C B

]
, B =

⎡
⎣a b

c

⎤
⎦ , C =

⎡
⎣d e

f

⎤
⎦ ∈ sl3(R).

Corollary 5.25. Let GA be an almost abelian Lie group such that the matrix A ∈ gl6(R)
is conjugate to an element in sl(3,C). Then GA admits a left-invariant closed algebraic soliton
if and only if either A is semisimple or A2 = 0. Such a soliton is the unique algebraic soliton
up to equivariant equivalence and scaling among all left-invariant closed G2-structures on GA.

Proof. The existence assertion follows from the above corollary. For the uniqueness, we use
that on each SL(3,C)-conjugation class of semisimple matrices in sl(3,C), there is a unique
SU(3)-conjugacy class of normal matrices and Proposition 5.4. �

Remark 5.26. Concerning the nilpotent case described in Example 5.8, it follows from the
above corollaries that n2 admits a unique closed algebraic soliton and that there is no any
closed algebraic soliton on n6.

In what follows, we explore the existence of semi-algebraic solitons of the form (GA, ϕ).

Proposition 5.27. A closed G2-structure (GA, ϕ) is a semi-algebraic soliton if and only if
either A is normal and it is an algebraic soliton, or A is nilpotent and

[A,At] − (A + At)2 = −
(

2d +
1
2

tr (A + At)2
)
I + D1 + Dt

1, d :=
|[A,At]|2

2|A|2 , (36)

for some D1 ∈ gl(h) such that [D1, A] = dA. This is an algebraic soliton if and only if also
[Dt

1, A] = dA. In any case, one has that QA = cI + 1
2 (D + Dt) for D ∈ Der(μA) given by D|h =

D1, De7 = de7 and ΔAϕ = −3cϕ− LXD
ϕ for

c = −1
6

tr (A + At)2 − |[A,At]|2
2|A|2 .

In particular, they are all expanding Laplacian solitons, unless they are torsion-free (that is,
At = −A).

Proof. Assume that (GA, ϕ) is a semi-algebraic soliton, that is, QA = cI + 1
2 (D + Dt) for

some c ∈ R and D ∈ Der(μA). It follows from (30) that De7 = de7 for some d ∈ R, so [D1, A] =
dA for D1 := D|h. This is actually D|h composed with the projection on h since it may happen
that Dh is not contained in h. Note that in any case,⎡

⎢⎢⎣ D1 0

0 d

⎤
⎥⎥⎦
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is also a derivation of μA. Furthermore, one has that q = c + d and thus condition (36) holds
since q + 2c = 3q − 2d. Finally, the formula for d can be obtained as follows using (34):

d|A|2 = trAt[D1, A] = tr [A,At]D1 = 1
2 tr [A,At]2.

In particular, if A is normal, then d = 0 and [Dt
1, A] = 0, so Dt is also a derivation and (GA, ϕ)

is an algebraic soliton. The converse can be easily checked and the formula for c follows from
the fact that c = q − d. �

Recall from Remark 5.26 that n6 (that is, A3 = 0 and A2 
= 0) does not admit any algebraic
soliton. However, we now show that n6 does admit a semi-algebraic soliton, which was first
found in [32] by different methods.

Example 5.28. With the same notation as in the above proposition, consider the nilpotent
matrix

A =
[
B 0
0 B

]
∈ sl(3,C), B =

⎡
⎣0 1 0

0 0
√

2
0 0 0

⎤
⎦ ,

and

D1 =
[
D2 0
0 D2

]
, D2 =

⎡
⎣4 0 −√

2
0 3 0
0 0 2

⎤
⎦ , d = 1.

Thus μA is isomorphic to n6. A straightforward computation gives that condition (36) holds
and [D2, B] = B, so the closed G2-structure (GA, ϕ) is an expanding semi-algebraic soliton
with

QA = −3I + 1
2 (D + Dt), D ∈ Der(μA).

Since [Dt
2, B] 
= B, Dt is not a derivation of μA and thus (GA, ϕ) is not an algebraic soliton. We

note that (GA, 〈·, ·〉ϕ) is not a Ricci soliton (see, for example, [1]) and the closed G2-structure
on n6 inducing a Ricci soliton obtained in [7] corresponds to

A′ =
[
B′ 0
0 B′

]
∈ sl(3,C), B′ =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ .

From Proposition 4.5, we know that the genuine Laplacian flow solution starting at (GA, ϕ) is
given by ϕ(t) = b(t)es(t)D · ϕ, where b(t) = (6t + 1)3/2, so it has the form

ϕ(t) = e127 + e2s(t)e347 + f(t)e567 + e135 − e146 − e236 − e245 + g(t)(e167 − e257),

for some smooth functions f(t) and g(t) (compare with the solution ϕ6(t) in the proof of [7,
Theorem 4.8]). The appearance of the last two new primitive 3-forms e167 and e257 reveals the
fact that (GA, ϕ) is not Laplacian flow diagonal (see Theorem 4.10).

According to (27), the bracket flow solution starting at μA is given by

μ(t) = (6t + 1)−1/2es(t)E · μA, s(t) = 1
6 log(6t + 1), t ∈ (− 1

6 ,∞),

where

E :=
1
2
(D2 −Dt

2) =

⎡
⎣E2 0

0 E2

0

⎤
⎦ , E2 :=

1√
2

⎡
⎣0 0 −1

0 0 0
1 0 0

⎤
⎦ .
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This implies that the matrix bracket flow solution to (32) starting at A equals

A(t) = (6t + 1)−1/2es(t)EAe−s(t)E = (6t + 1)−1/2

(
cos

s(t)√
2
A + sin

s(t)√
2
A⊥
)
,

where

A⊥ :=

[
B⊥ 0
0 B⊥

]
∈ sl(3,C), B⊥ =

⎡
⎣ 0 0 0
−√

2 0 0
0 1 0

⎤
⎦ .

We therefore obtain that A(t)/|A(t)| runs on a circle and A(t) converges to zero rounding in a
cone.

Example 5.29. It is straightforward to see that the four-dimensional subspace of sl(3,C)
given by

A =
[
B 0
0 B

]
∈ sl(3,C), B =

⎡
⎣0 a 0
c 0 b
0 d 0

⎤
⎦ , a, b, c, d ∈ R,

is invariant under the bracket flow (32), and that the evolution is equivalent to the following
dynamical system on R4:

a′ = − 5
3a

3 − 11
6 abd− 4

3a
2c + dcb + 1

3ac
2 − 2

3ab
2 − 5

3ad
2 + 1

2cd
2,

b′ = − 5
3b

3 + 1
3ba

2 + 1
3bd

2 − 5
6acb− 5

3c
2b− 1

2dc
2 − 4

3db
2,

c′ = − 5
3c

3 + 1
3a

2c− 5
6dcb− 4

3ac
2 − 1

2ab
2 − 5

3cb
2 + 1

3cd
2,

d′ = − 5
3d

3 − 11
6 dca + 1

2ba
2 − 4

3bd
2 + acb− 2

3dc
2 + 1

3db
2 − 5

3da
2.

The hypersurface ac + bd = 0 of nilpotent matrices is invariant under this ODE system, as
well as the subset of 2-step nilpotent ones (that is, a = d = 0 or b = c = 0). According to
Corollary 5.23, such a subset is formed by all algebraic solitons isomorphic to n2 and so
they evolve on a straight line converging to zero (see Theorem 3.8). On the other hand, each
point in the complement of 3-step nilpotent matrices is isomorphic to n6. We know from
Example 5.28 that the 2-subspace generated by (1,

√
2, 0, 0) and (0, 0,−√

2, 1) consists of semi-
algebraic solitons on n6 which are not algebraic and that they flow by rounding on a cone while
they converge to zero. It would be really interesting to understand the qualitative behavior
of the solutions outside the three two-dimensional subspaces above, especially in relation with
possible chaotic behaviors.

We now exhibit an example of a homogeneous Laplacian soliton which is not semi-algebraic
when presented as a left-invariant G2-structure on a Lie group.

Example 5.30. Consider A = A1 + A2 ∈ sl(3,R), where

A1 :=

⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦ ∈ sl(3,R), A2 :=

⎡
⎣i 0 0

0 −2i 0
0 0 i

⎤
⎦ ∈ su(3).

According to Proposition 5.27, (GA, ϕ) is not a semi-algebraic soliton as A is neither normal
nor nilpotent. Moreover, GA does not admit any left-invariant semi-algebraic soliton since A
is neither semisimple nor nilpotent. However, it follows from Proposition 5.6 that the closed
G2-structure (GA, ϕ) is equivalent to the algebraic soliton (GA1 , ϕ) (see Corollary 5.23(ii)), so
(GA, ϕ) is indeed a Laplacian soliton.
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5.3. Compact quotients

It is well known that the Lie group GA admits a lattice (that is, a cocompact discrete subgroup)
if and only if

σeαAσ−1 ∈ SL6(Z),

for some non-zero α ∈ R and σ ∈ GL6(R) (see, for example, [3, Section 4] or [16]). In that
case, an example of a lattice is given by

Γ = exp
(
σ−1Z6 � Zαe7

)
.

Thus, GA always admits a lattice when A is nilpotent and if A is semisimple, then GA has a
lattice if and only if the set {eαx, eαy, eαz}, where {x, y, z} are the eigenvalues of A, is for some
non-zero α ∈ C a set of conjugate algebraic units, that is, the set of zeroes of a polynomial of
the form t3 + at2 + bt− 1, for some a, b ∈ Z.

In particular, many of the closed Laplacian solitons of the form (GA, ϕ) given in this section
(see Corollary 5.23 and Example 5.28) do admit compact quotients. However, the corresponding
closed G2-structure on the compact manifold M = GA/Γ is not necessarily a Laplacian soliton
since the vector field XD does not descend to M . The Laplacian flow solution ϕ(t) on M
starting at ϕ remains locally equivalent to ϕ, is immortal and has apparently no chances to
converge in any reasonable sense, though the norm of the intrinsic torsion of ϕ(t) converges to
zero, as t → ∞ (see Proposition 5.21).

Acknowledgements. The author is grateful to the referee for very helpful comments.

References

1. R. Arroyo, ‘The Ricci flow in a class of solvmanifolds’, Differential Geom. Appl. 31 (2013) 472–485.
2. R. Arroyo and R. Lafuente, ‘The Alekseevskii conjecture in low dimensions’, Math. Ann. (2016),

doi:10.1007/s00208-016-1386-1.
3. C. Bock, ‘On low-dimensional solvmanifolds’, Asian J. Math. 20 (2016) 199–262.
4. R. Bryant, ‘Some remarks on G2-structures’, Proceedings of Gökova Geometry-Topology Conference

(2005) 75–109.
5. R. Bryant and F. Xu, ‘Laplacian flow for closed G2-structures: short time behavior’, Preprint, 2011,

arXiv.
6. B.-L. Chen and X.-P. Zhu, ‘Uniqueness of the Ricci flow on complete noncompact Riemannian manifolds’,

J. Differential Geom. 74 (2006) 119–154.
7. M. Fernández, A. Fino and V. Manero, ‘Laplacian flow of closed G2-structures inducing nilsolitons’,

J. Geom. Anal. 26 (2016) 1808–1837.
8. M. Fernández and A. Gray, ‘Riemannian manifolds with structural group G2’, Ann. Mat. Pura Appl.

(4) 32 (1982) 19–45.
9. E. Fernández-Culma, ‘Soliton almost Kähler structures on 6-dimensional nilmanifolds for the symplectic

curvature flow’, J. Geom. Anal. 25 (2015) 2736–2758.
10. M. Freibert, ‘Cocalibrated structures on Lie algebras with a codimension one abelian ideal’, Ann. Global

Anal. Geom. 42 (2012) 537–563.
11. M. Freibert, ‘Calibrated and parallel structures on almost abelian Lie algebras’, Preprint, 2013, arXiv.
12. S. Grigorian, ‘Short-time behaviour of a modified Laplacian coflow of G2-structures, Adv. Math. 248

(2013) 378–415.
13. S. Grigorian, ‘Modified Laplacian coflow of G2-structures on manifolds with symmetry’, Differential

Geom. Appl. 46 (2016) 33–78.
14. J. Heber, Geometric and algebraic structure of noncompact homogeneous Einstein spaces (University of

Augsburg, Augsburg, Germany, 1997).
15. J. Heber, ‘Noncompact homogeneous Einstein spaces’, Invent. Math. 133 (1998) 279–352.
16. H. Huang, ‘Lattices and harmonic analysis on some 2-step solvable Lie groups’, J. Lie Theory 13 (2003)

77–89.
17. M. Jablonski, ‘Homogeneous Ricci solitons are algebraic’, Geom. Topol. 18 (2014) 2477–2486.
18. M. Jablonski, ‘Homogeneous Ricci solitons’, J. reine angew. Math. 699 (2015) 159–182.
19. S. Karigiannis, ‘Flows of G2-structures I’, Quart. J. Math. 60 (2009), 487–522.
20. S. Karigiannis, B. McKay and M.-P. Tsui, ‘Soliton solutions for the Laplacian co-flow of some

G2-structures with symmetry’, Differential Geom. Appl. 30 (2012) 318–333.
21. R. Lafuente and J. Lauret, ‘On homogeneous Ricci solitons’, Q. J. Math. 65 (2014) 399–419.
22. J. Lauret, ‘Ricci soliton homogeneous nilmanifolds’, Math. Ann. 319 (2001) 715–733.

https://doi.org/10.1007/s00208-016-1386-1


34 JORGE LAURET

23. J. Lauret, ‘Curvature flows for almost-Hermitian Lie groups’, Trans. Amer. Math. Soc. 367 (2015) 7453–
7480.

24. J. Lauret, ‘Geometric flows and their solitons on homogeneous spaces’, Preprint, 2015, arXiv:1507.08163.
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