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Negative parity pentaquarks in large Nc QCD and quark model
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Recently, the 1=Nc expansion has been applied to the study of exotic baryons containing both quarks
and antiquarks. We extend this approach to exotic states with mixed-symmetric spin-flavor symmetry,
which correspond in the quark model to negative parity pentaquarks, and discuss the large Nc predictions
for their mass spectrum. The heavy exotics �Qq4 transform as 3; 6; 15 and 150 under SU(3), while the light
states �qq4 include the exotic multiplets 10; 27; 35. We give mass relations among these multiplets in the
1=Nc expansion. In the quark model, the mass splittings between these states are given by color-spin
interactions. Using the observation of an anticharmed exotic by the H1 Collaboration, we give predictions
for the masses of other expected heavy pentaquarks.
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I. INTRODUCTION

The 1=Nc expansion of QCD [1,2] constrains the spin-
flavor properties of baryons and their couplings to mesons.
In the Nc ! 1 limit, baryons have an exact contracted
spin-flavor symmetry SU�2F�c [3,4], which can be used to
classify states and organize the operator expansion in
1=Nc. This spin-flavor symmetry is broken at subleading
orders in 1=Nc. The 1=Nc expansion has been applied to
the ground-state �56; 0�� baryons [4–7], and to their orbital
and radial excitations [8–15].

Recently, this analysis was extended in Refs. [16–18] to
a new class of exotic states, some of which are identified
for Nc 	 3 with the pentaquark states q4 �q (the large Nc
expansion has been applied in [19] to another class of
exotic hadrons, the so-called ‘‘hybrid’’ states). More gen-
erally, these states are labeled by their exoticness E, which
has a very simple interpretation in the quark model,
wherein such an exotic state contains Nc � E quarks and
E antiquarks. Assuming a symmetric spin-flavor wave
function, the E 	 1 sector contains the exotic representa-
tions 10; 27 and 35 with positive parity. The mass spec-
trum, axial couplings and strong widths of these states were
investigated in the 1=Nc expansion in [17]. They were
alternatively studied using the chiral soliton model [20–
22], the diquark model [23–25], the uncorrelated quark
model [26,27] and lattice QCD [28].

Experimentally, several exotic candidates exist. They
include the isosinglet 	��1540� [29] and two cascades
with I 	 3=2 �



3=2 �1860� and I 	 1=2 �
�1855� [30].

The 	��1540� is usually assigned to the 10 representation
of SU(3). Recently the H1 Collaboration reported evidence
for a narrow charmed state with a mass of about 3099 MeV
[31]. The parity of these states is still undetermined, and
several methods have been proposed for their determina-
tion [32]. However, later searches [33] could not confirm
the H1 signal, which leaves the existence of these states as
an open issue for further experimental work.
05=71(3)=036004(15)$23.00 036004
In this paper we extend the results of Ref. [17] by
constructing a new class of exotic states which correspond
to different irreducible representations of the contracted
SU�6�c spin-flavor symmetry. The E 	 1 sector of these
new states contains the same exotic representations 10; 27
and 35, but with negative parity. If the antiquark is heavy,
the SU(3) representations are 3, 6; 15 and 150. We discuss
the large Nc predictions for the masses of these states.

The existence of these new states offers an alternative
interpretation of the observed pentaquark candidates,
which can be identified with the negative parity states.
Although a negative parity 	��1540� would decay to
NK in an S-wave, which would make the narrow width
of this state difficult to explain, such an interpretation
cannot be ruled out [32]. Another attractive application
of our results is to pentaquarks with a heavy antiquark, for
which negative parity states appear in a natural way [34].

The paper is organized as follows. In Sec. II we con-
struct the negative parity exotic states for arbitrary Nc and
discuss the qualitative predictions of the large Nc limit
following from the SU�4�c contracted symmetry. In
Sec. III the 1=Nc expansion is put on a quantitative basis,
by deriving mass operators for these states to subleading
order in 1=Nc (for heavy exotics) and to leading order in
1=Nc (for light exotics). This is used to derive model-
independent mass relations among these states. In
Sec. IV we present quantitative predictions for the masses
of the heavy states using the quark model with spin-
color interactions. Finally, Sec. V discusses the phenome-
nology of this model for the charmed pentaquarks with
negative parity, and presents predictions for other exotic
states.

II. EXOTIC STATES IN THE LARGE Nc LIMIT

We describe in this section the construction of the exotic
states in the large Nc limit using the language of the
constituent quark model. The quark model is used simply
-1  2005 The American Physical Society



DAN PIRJOL AND CARLOS SCHAT PHYSICAL REVIEW D 71, 036004 (2005)
as a bookkeeping device in order to enumerate the states,
and we do not make use of its usual dynamical assump-
tions. Certain qualitative predictions of the large Nc limit
can be obtained by counting the irreducible representations
(towers) of the contracted spin-isospin symmetry SU�4�c
containing the states generated from the quark model
construction. Such a tower is labeled by K 	
0; 1=2; 1; . . . and contains all states with spin and isospin
satisfying jI 
 Jj � K � I � J. A more quantitative
method for extracting the predictions of the 1=Nc expan-
sion is presented in the next section, in terms of quark
operators. We stress that the existence of these states in the
largeNc limit is an open question. However, assuming their
existence, these methods give predictions for their mass
spectrum and couplings.
1This is only true in the constituent quark model; these states hav
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Baryons of exoticness E contain Nc � E quarks, and
E antiquarks. The wave function of the Nc � E (E)
quarks (antiquarks) must be completely antisymmetric.
Consider for simplicity the case E 	 1. The color
wave function of the Nc � 1 quarks must transform in
a representation of SU�Nc� with two columns containing
Nc boxes and one box, respectively, since this is the
only possibility which can give a color singlet after com-
bining it with the antiquark �. This implies that the spin-
flavor-orbital wave function of the Nc � 1 quarks must
transform in the mixed symmetry representation of
SU�6�q 
 O�3�. This constrains the spin-flavor and orbital
wave functions, which can transform in several ways,
corresponding to different representations of SU�6�q 

O�3�
The first term corresponds to a completely symmetric excitations in the orbital wave function means that these

SU�6�q spin-flavor wave function, and describes the exotic
baryons constructed in [17]. Similar states are obtained in
the Skyrme model. The orbital wave function of these
states must have one quark in an excited state, with the
lowest states corresponding to a p-wave orbital excitation
‘ 	 1. This means that the system of Nc � 1 quarks has
negative parity, which yields positive parity exotics after
adding in the antiquark.

In this paper we focus on the states corresponding to the
second term in Eq. (1). They have a completely symmetric
orbital wave function, with all Nc � 1 quarks in an s-wave
orbital. Note that there is only one term in the sum on the
right-hand side with this property. The absence of orbital
states are expected to lie below1 those obtained from the
first term in Eq. (1). The orbital wave function of the Nc �
1 quarks has positive parity, such that after adding the
antiquark, they correspond to negative parity exotics.
Such states were constructed in the uncorrelated quark
model [26] with light quarks (for reviews, see [35]), and
in the diquark model with one heavy antiquark [34].

We start by first reviewing the spin-flavor structure of the
exotic states constructed in [17] which correspond to the
first term in Eq. (1). This can be obtained from the SU�6� �
SU�2�spin 
 SU�3�flavor decomposition of the completely
symmetric state of the qNc�E system. In the E 	 1 sector
this is given by
with the last line corresponding to Nc 	 3. We denote the SU(3) representations as usual by ��;��, with � the number of
columns containing one box, and � the number of columns containing two boxes. We show in Fig. 1 the weight diagrams
of the SU(3) representations appearing in this decomposition. Adding the antiquark and the orbital angular momentum
L 	 1 and keeping only representations which cannot annihilate into 8; 10 gives the following exotic states with E 	 1:

10 1=2;3=2�60�; 271=2;3=2;1=2;3=2;5=2�151�; 353=2;5=2;1=2;3=2;5=2;7=2�1502�: (3)

We show in brackets the spin-flavor quantum numbers of the q4 system. In the large Nc limit, these states form two towers
of degenerate exotic baryons. This can be most easily seen by considering the states at the top of the weight diagrams with
quark content �sqNc�1. Their spin is given by J 	 Jq � J �q �L 	 I�K where K 	 J �q �L 	 1=2; 3=2. This gives two
towers with K 	 1=2; 3=2, containing the �sqNc�1 members of the SU(3) representations
e no analogs in the Skyrme model.

-2



FIG. 1. Weight diagrams for heavy pentaquarks with quark content �Qq4.
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K 	 1=2: 101=2; 271=2 273=2 353=2 355=2 ; � � �

K 	 3=2: 103=2; 271=2 273=2 275=2 351=2 353=2 355=2 357=2
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The multiplets contained in each tower are degenerate in
the large Nc limit. The first tower (with K 	 1=2) was
constructed in [17] and contains all states degenerate with
the	��1540� (assumed to be in the spin 1=2 antidecuplet).

If the antiquark is heavy �Q, its spin decouples from the
rest of the hadron, and the spin of the light degrees of
freedom s‘ becomes a good quantum number. For each
value of s‘ � 0 there is one heavy quark spin doublet with
hadron spins J 	 s‘ � 1=2 (for s‘ � 0), split by 1=mQ

effects. The states considered here �Qq4 have the spin of
light degrees of freedom s‘ 	 Jq �L 	 I�K with K 	

1. This corresponds to a K 	 1 large Nc tower, containing
the SU(3) representations

K 	 1 : 61; 150;1;2; 1501;2;3; (5)
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where the subscript denotes the spin of the light degrees of
freedom s‘ of the respective multiplet. This is different
from the heavy states considered in Ref. [17], which were
chosen to belong to a K 	 0 tower.

We discuss next the spin-flavor structure of the states
in the mixed-symmetric SU�6�q representation, corre-
sponding to the second term in Eq. (1). The spin-
flavor structure for this case is considerably richer, and
is very similar to that of the L 	 1 orbitally excited
baryons. The decomposition of the SU(6) spin-flavor
wave function into representations of SU�2�spin 

SU�3�flavor can be obtained, e.g., by using the method
presented in [8]. In the E 	 1 sector this decomposition
contains the representations (we assume here that Nc is
odd)
where the Young diagram on the left-hand side hasNc � 1 boxes. The ellipses correspond to unphysical representations for
Nc 	 3. Taking Nc 	 3 and keeping only the physical representations on the right-hand side gives the possible states for
the q4 system

The weight diagrams of these representations are shown in Fig. 1. The spin-flavor structure of these states is richer than that
of the symmetric spin-flavor states in Eq. (2).
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In the diquark model [23], the q4 system is built from include the 	�1540� pentaquark [38] (see Ref. [35] for a

two �qq� diquarks. Each of the diquarks transforms as 3
under color, and can be either ‘‘good’’ (3S	0) or ‘‘bad’’
(6S	1) according to their transformation under SU�3� 

SU�2� flavor-spin. Because of their Bose statistics, the spin
and flavor quantum numbers of systems containing two
identical diquarks are constrained in a specific way.
However, all states in Eq. (7) are reproduced in the diquark
model as well, with diquark content as shown below

good-good: �Jq 	 0� � 3 (8)

good-bad: �Jq 	 1� � �3 � 15� (9)

bad-bad: �Jq 	 0� � 15; �Jq 	 1� � �6 � 150�;

�Jq 	 2� � 15: (10)

We consider first the negative parity light pentaquarks,
with quark content �qq4. These states were first constructed
by Strottman in Ref. [36], where their mass spectrum was
studied using a quark model with spin-color interactions
following the approach in Ref. [37]. Recent work has been
mainly focused on the antidecuplet 10 states, which
036004
recent review of the literature).
We review the construction of the complete set of states

in the next section, and restrict ourselves here to the exotic
representations obtained from this construction. Keeping
only the states which cannot annihilate into ordinary L 	 1
negative parity states (1; 8; 10) one finds the following E 	
1 exotic states with negative parity

10 1=2;3=2�61�; f271=2�150�; 271=2�151�g;

f273=2�151�; 273=2�152�g; 275=2�152�;

351=2;3=2�1501�:

(11)

Somewhat surprisingly, there are fewer light exotic states
with negative parity than with positive parity [compare
with Eq. (3)]. The reason for this is that, although the q4

system has more states, most of them produce nonexotic
states (1; 8; 10) after adding in the light antiquark.

In the combined large Nc and SU(3) limit, these states
form again two towers of degenerate exotic baryons. This
can be seen by examining the exotics with strangeness �1
(quark content �sqNc�1) which contain the following states
(denoted by the SU(3) multiplets to which they belong)
K 	 1=2: 101=2 271=2 273=2 ? ? ; � � �
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This argument appears to indicate that the light penta-
quarks with negative parity form two sets of degenerate
states in the large Nc limit, corresponding to the two
irreducible representations of SU�4�c with K 	 1=2; 3=2.
In the next section we will show using the quark operator
method, that there is an accidental degeneracy between
these two irreps, which is broken only by O�1=Nc� effects.
This mass pattern is again different from that obtained for
the spin-flavor symmetric states in Ref. [17] [see Eq. (4)],
for which the two towers are split by a O�1� mass differ-
ence. In addition, there is another difference at Nc 	 3
coming from the fact that in the real world the tower
structure is not complete in the I 	 2 sector. More pre-
cisely, four of the I 	 2 states (belonging to a 35) expected
to exist for Nc � 5 do not exist in the physical world with
Nc 	 3. The missing states are shown above as stars.

This situation is somewhat analogous to that of the
negative parity �1=2;3=2 states in the 70 of SU(6). These
states cannot be unambiguously assigned to a SU�4�c tower
for the physical Nc 	 3 case [9,15]. Therefore, assuming
that the 	��1540� belongs to a negative parity 101=2
multiplet, large Nc QCD predicts only the existence of
two 27 multiplets degenerate with it, but not of 35 as in
the positive parity case [see Eq. (4)]. This prediction might
be difficult to test, since all these states can decay to KN in
S
 wave and the 35 states will likely be too broad to
resolve from the continuum.

The negative parity exotics with one heavy antiquark
�QqNc�1 have a simpler spin-flavor structure, which can be

read off directly from that of the qNc�1 system in Eq. (7).
They contain heavy quark spin doublets with the spin of the
light degrees of freedom s‘ 	 Jq and total hadron spin J 	

s‘ � 1=2. In the nonstrange sector, the resulting states form
one K 	 1 large Nc tower containing the following degen-
erate states: an isosinglet with s‘ 	 1 (belonging to a 6),
three isovectors with s‘ 	 0; 1; 2 (belonging to a 15) and
one isotensor with s‘ 	 1 (belonging to a 150)

K 	 1: 6Jq	1; 15Jq	0;1;2; 15
0
Jq	1: (13)

The states in the triplet 3Jq	0;1 contain at least one strange
quark, and do not appear in this tower.

The heavy pentaquarks containing one strange quark
�QsqNc contain three towers of states: two towers with K 	
1=2 and one tower with K 	 3=2, as shown below
-4
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To explain this equation, consider first the SU(3) symmetry
limit. Then the states along a horizontal line belong to the
large Nc K towers shown and are therefore degenerate in
the large Nc limit. When SU(3) is broken, the physical
states are mixtures of the SU(3) representations in each
bracket. However, the eigenvalues still belong to three
large Nc towers. Some of these states are unphysical for
Nc 	 3 and are absent (represented by a star).

Inspection of Eq. (14) gives the following general re-
sults:
(i) I
n the unbroken SU(3) limit, the two towers K0 	
1=2 and K 	 3=2 become degenerate, since they
both contain states in the 150. This argument does
not constrain the mass of the K 	 1=2 tower, which
does not contain any states in common SU(3) mul-
tiplets with the other two towers. In particular, this
means that in the large Nc limit the 3 states can
have a mass different from that of the other SU(3)
representations in Fig. 1.
(ii) T
he two isospin multiplets with �I; Jq� 	 �1=2; 2�
and �3=2; 0� (the S 	 
1 members of the 15Jq	0
and 15Jq	2) are split only at O�1=Nc� to all orders
in SU(3) breaking.
(iii) T
he tower content constrains the pattern of SU(3)
breaking in a very specific way. For example, the
three �I; Jq� 	 �12 ; 1� states mix as an effect of
SU(3) breaking. However, the eigenvalues of the
mass matrix are constrained to coincide in the large
Nc limit with the masses of the corresponding
tower states.
To summarize this discussion, we showed that in the
large Nc limit the heavy pentaquarks with negative parity
fall into two groups of degenerate states. The first group
includes the five SU(3) multiplets containing the non-
strange states (61; 150;1;2; 1501), and the second group con-
tains the two 30;1 multiplets. This is different from the
prediction of the quark model with SU(6) symmetry, ac-
cording to which all these states are degenerate into a 210
of SU(6). The reason for this difference is that in large Nc
QCD SU(6) is broken down to SU(6)c already at leading
order. The multiplets of SU(6) break down into irreducible
representations of the contracted symmetry (towers),
which may or may not be degenerate at leading order in
1=Nc.

Although this phenomenon does not occur for ground-
state baryons, where SU(6) spin-flavor symmetry is mani-
fest in the mass spectrum in the large Nc limit, a similar
036004
situation is encountered for the orbitally excited L 	 1
baryons. For this case the 70 of SU(6) breaks down in
the large Nc limit into three towers of nonstrange states
plus two additional towers containing the  1=2;3=2 states
[8,9,11,12,14,15].

In the next section we will formulate the large Nc
predictions in a more quantitative way by writing down
the mass operator of the negative parity states.

III. MASS RELATIONS FROM THE 1=Nc

EXPANSION

The properties of exotics with mixed symmetry spin-
flavor wave functions can be studied quantitatively in the
1=Nc expansion using the quark operators method [4,6].
The spin-flavor algebra is realized in terms of operators
acting on the SU�2f� quark � and antiquark � degrees of
freedom. The hadron states are constructed by combining
quark and antiquark one-body states, with the proper quan-
tum numbers. Finally, the large Nc expansion of any op-
erator is given by the most general combination of quark
operators acting on these states, to any given order in 1=Nc.

We turn now to the construction of the exotic states with
mixed symmetry spin-flavor. This can be done in close
analogy to that of the orbitally excited baryons discussed in
detail in [8,9,11], so we will only give here the relevant
steps. The spin-flavor wave function of the qNc�1 states
transforms under SU�2f� in the MSNc�1 representation
Eq. (1). Under SU�2f� ! SU�2� 
 SU�f�, this representa-
tion contains all states with spin and isospin S; I satisfying
jS
 Ij � 1 [except S 	 I 	 0 and 1

2 �Nc � 1�].
These states can be constructed explicitly as the combi-

nation of a system of Nc quarks with symmetric spin-flavor
symmetry (core) with spin and isospin Sc 	 Ic, plus an
additional quark (excited)

jSIi 	 c�

								Sc 	 Ic 	 I �
1

2



�

								12



� c


								Sc 	 Ic 	 I 

1

2



�

								12


: (15)

One distinguishes two situations: (a) if S � I, only one
term appears in this sum, according to S
 I 	 1 (c� 	
1; c
 	 0) or I 
 S 	 1 (c� 	 0; c
 	 1); (b) if S 	 I
then both terms appear, and the coefficients c� are deter-
mined by requiring that the state jSIi transforms according
to the MSNc�1 representation of SU�4�. One finds for both
SU(2) and SU(3) flavor symmetry [11]
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c��I 	 S� 	

���������������
S

2S� 1

s ���������������������������
Nc � 2S� 3

Nc � 1

s
;

c
�I 	 S� 	 


���������������
S� 1

2S� 1

s ���������������������������
Nc 
 2S� 1

Nc � 1

s
:

(16)

We took into account the fact that for this case the core
contains Nc quarks, instead of Nc 
 1 as for the orbitally
excited baryons. Finally, the exotic state is obtained by
combining the state (15) with the antiquark �q with appro-
priate total quantum numbers. We will consider here the
negative parity exotics with one heavy antiquark, for which
the nontrivial spin-flavor structure is carried by the qNc�1

system alone

j	; JIS;m�i 	
X
m1m2

jSI;m1�ij �Q;m2i
�
Jm

								S 12 ;m1m2


:

(17)

In the heavy quark limit, both the total spin J and the spin
of the light degrees of freedom S are good quantum num-
bers and the exotic states form heavy quark spin doublets
with J 	 S� 1

2 [39].
Physical operators such as the Hamiltonian, axial cur-

rents, etc., can be represented in the 1=Nc expansion by
operators acting on the quark basis states constructed as
above. We will consider here in some detail the 1=Nc
expansion of the mass operator M. Keeping terms up to
O�1=Nc�, this has the general form

M 	 Ncc01�
X
i

O�0�
i �

X
i

O�1�
i � � � � ; (18)

where O�j� are the most general isoscalar and Lorentz
scalar operators whose matrix elements scale like 1=Nj

c.
The rules for constructing quark operators for states

containing both quarks and antiquarks have been formu-
lated in Ref. [17]. We will consider here only exotics
containing one antiquark (exoticness E 	 1). The building
blocks for constructing the most general operator are the
following: (a) antiquark operators  �q:T

a
�q ; S

i
�q; �G

ia
�q , acting

on the antiquark degrees of freedom and (b) operators  q

acting on the states of the Nc � 1 quarks constructed above
in Eq. (15).

The quark building blocks include operators acting on
both the excited quark and on the core

DAN PIRJOL AND CARLOS SCHAT
(i) ‘
‘excited quark’’ operators si; ta; gia
(ii) ‘
‘core’’ operators Sic; Ta
c ; G

ia
c .
We denote with Ta the generators of the flavor group
SU�f�, which is left at this stage unspecified.

At leading order O�N0c� in the 1=Nc expansion there is
only one operator contributing to the mass operator in
Eq. (18), describing interactions between the antiquark
and the Nc � 1 quarks

O�N0c�: O0 	
1

Nc
Ta
�qS

i
�qG

ia: (19)
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The only such operator containing only quark operators
1
Nc
giaGia

c can be rewritten in terms of the unit operator and
the O�1=Nc� operators taTa

c and siSic using the operator
rules given in Ref. [11].

At subleading order in 1=Nc there are more operators. A
complete basis containing only quark operators can be
chosen as

O�N
1
c �: O1 	

1

Nc
S2c; O2 	

1

Nc
S2;

O3 	
1

Nc
T2; O4 	

1

N2c
tafSic; G

ia
c g;

O5 	
1

N2c
giaTa

c S
i
c:

(20)

There are other two-body operators which can be written,
such as siSic and taTa

c . They can be eliminated using the
identities S2 	 S2c � s2 � 2siSic and TaTa 	 T2c � t2 �
2taTa

c . The operator T2c can be related to the core spin
operator S2c. For two light flavors they are equal T2c 	 S2c,
while for f 	 3 they are related as T2c 	 S2c � Nc�Nc �
6�=12 (see Ref. [12]).

The three-body operators are linearly independent only
for f � 3. For two light flavors the operator O4 can be
reduced to two-body operators by using the identities [4,6]
(this assumes a core containing Nc quarks)

2fSic; G
ia
c g 	 �Nc � 2�I

a
c ;

which gives

O4 	
1

N2c
iafSic; Gia

c g 	
Nc � 2

2N2c
iaIac

	
Nc � 2

4N2c

�
I2 
 S2c 


3

4

�
: (21)

The three-body operator O5 is subleading for f 	 2

1

N2c
giaTa

c Siac 	
1

4N2c

�
S2 


3

4

 S2c

��
I2 


3

4

 S2c

�

	 O�1=N2c�: (22)

In the general case of f � 3 light flavors, O4 can be
rewritten using an SU�2f� operator identity for the core
operators given in Ref. [4] as

tafSic; G
ia
c g 	

1

2
dabctafTb

c ; T
c
cg 


1

2f
�f
 4��Nc � f�taTa

c :

(23)

In this form, the spin-independence of this operator be-
comes apparent: although it formally depends on the core
spin degrees of freedom, its matrix elements depend in fact
only on the flavor of the state [unless such dependence is
introduced indirectly through the spin-flavor wave function
Eq. (15)]. Finally, the operator O5 can be written as
-6
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O5 	
1

4N2c

�
S2 
 S2c 


3

4

��
T2 


f2 
 1
2f


 T2c

�
!

1

4N2c

�
S2 
 S2c 


3

4

��
T2 


N2c � 6Nc � 16

12

 S2c

�
�f 	 3�: (24)
One can consider also SU(3) breaking effects. Keeping
only O�N0c� operators in the 1=Nc counting, there are three
possible operators, given by

O�ms�: t8; T8c ;
1

Nc
d8abgiaGib

c : (25)

We will discuss in the following the predictions following
from these mass operators for negative parity exotics.

A. Heavy pentaquarks mass relations

We start by discussing first the simpler case of the
exotics with one heavy quark �QqNc�1. In the heavy quark
limit the interactions of the heavy quark are suppressed by
1=mQ, so that only quark operators need to be included in
the Hamiltonian. Working in the limit of SU(3) flavor
symmetry and to subleading order in 1=Nc, the most
general Hamiltonian reads

M 	 Ncc01�
1

Nc

�
c1S

2
c � c2S

2 � c3T
2

� c4
1

Nc
tafSic; G

ia
c g � c5

1

Nc
giaSicT

a
c

�
�O�1=N2c�:

(26)

We list in Table I the matrix elements of these operators on
the heavy exotic states.

The qualitative structure of the mass spectrum can be
understood from this operator as follows. Although for-
mally of O�1=Nc�, the SU�f� Casimir TaTa=Nc operator
contains pieces of O�Nc�; O�1� and O�1=Nc� for f > 2.
The O�1� piece is universal and can be absorbed into a
redefinition of c0, but the O�1� term takes different values
on the nonstrange and the 3 states. This introduces an O�1�
mass splitting between these two types of states, as re-
TABLE I. Matrix elements f

State S2c S2 I2SU�2� T2SU�3�

30 3
4 0 � � � 1

12 �Nc � 1�

150 3
4 0 2 1

12 �N
2
c � 8Nc �

31 3
4 2 � � � 1

12 �Nc � 1�

61 3
4 2 0 1

12 �N
2
c � 8Nc

151
7Nc�23
4�Nc�1�

2 2 1
12 �N

2
c � 8Nc �

1501 15
4 2 6 1

12 �N
2
c � 8Nc �

152 15
4 6 2 1

12 �N
2
c � 8Nc �

036004
quired by the tower structure shown in Eq. (14). The
remaining operators have matrix elements of O�1=Nc�.

The mass operator in Eq. (26) leads to mass relations
among the heavy exotics, valid up to 1=N2c corrections.
When restricted to the subspace of the nonstrange states
(containing 5 states), this operator contains 4 independent
parameters. This gives one model-independent mass rela-
tion

�I�
1

2
�152 
 1501� 	 61 
 150 �O�1=N2c�: (27)

One additional mass relation can be written provided that
the matrix elements of the operator S2c are evaluated at
Nc ! 1. This connects the masses of the 15 states as

�II�
2

3
150 �

1

3
152 	 151 �O�1=N2c�: (28)

Both these relations assume only isospin symmetry. A
more complete discussion of the mass spectrum including
SU(3) breaking effects will be given elsewhere.

B. Light negative parity pentaquarks

We consider here the complete set of the E 	 1 light
exotics with negative parity, and study their mass spectrum
at leading order in 1=Nc. The spin-flavor wave function of
the qNc�1 system transforms in the MSNc�1 representation
of SU(6) and its decomposition into representations of
SU�2� 
 SU�3� spin-flavor has been given in Eq. (6).

Adding in the antiquark transforming as 6 	 �J �q 	
1
2� �

3, generates many states. They can be easily enumerated at
Nc 	 3 using the representation content of the q4 system in
Eq. (7). We will divide them into nonexotic �1; 8; 10� and
exotic states �10; 27; 35�. We use a notation which makes
or the heavy exotic states.

tafSic; G
ia
c g giaSicT

a
c

2 
 1
4

1
8 �Nc � 6�

31� Nc�3
8 
 1

16 �Nc � 3�

2 
 1
4 
 1

24 �Nc � 6�

� 7� 
 3Nc�5
8

1
48 �Nc 
 9�

31� 
 3N2c�26Nc�31
24�Nc�1�


 �N2c
2Nc
27��Nc�9�
48�Nc�1�

2

79� 3Nc�11
8 
 5

48 �Nc � 9�

31� 
 5�Nc�1�
8 
 1

16 �Nc 
 15�

-7
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explicit the spin-flavor transformation properties of the
qNc�1 system: RJ�R

q
Jq
�.

The nonexotic states are

J 	
1

2
: f11=2�30�; 11=2�31�g

f81=2�30�; 81=2�150�; 81=2�61�; 81=2�31�; 81=2�151�g

f101=2�150�; 101=2�1501�; 101=2�151�g

J 	
3

2
: 13=2�31�;

f83=2�61�; 83=2�31�; 83=2�151�; 83=2�152�g

f103=2�1501�; 103=2�151�; 103=2�152�g

J 	
5

2
: 85=2�152�; 105=2�152�: (29)

The exotic states have been enumerated in Eq. (11), and
the large Nc predictions for their masses are described in
terms of the two tower structure in Eq. (12). We include
them here again for completeness, making explicit also the
quantum numbers of the q4 system for each state

J 	
1

2
: 101=2�61�;

f271=2�150�; 271=2�151�g; 351=2�1501�

J 	
3

2
: 103=2�61�;

f273=2�151�; 273=2�152�g; 353=2�1501�

J 	
5

2
: 275=2�152�: (30)

In general, states with the same quantum numbers written
within braces f� � �g will mix.

The transformation properties of these states under the
diagonal SU(6) can be obtained by combining the repre-
sentation of the qNc�1 system with that of the antiquark.
This produces three representations

MSNc�1 � 6 	 SNc
�MSNc

� ExNc
(31)

with ExNc
the representation of SU(6) with the Young

diagram �Nc � 1; 2; 1; 1; 1� (�n1; n2; n3; n4; n5� denote the
number of boxes on each row). The nonexotic representa-
tions are the symmetric representation SNc

with Young
diagram �Nc; 0; 0; 0; 0; 0�, and the mixed-symmetric repre-
sentation MSNc

with Young diagram �Nc 
 1; 1; 0; 0; 0; 0�.
For Nc 	 3 the exotic representation Ex3 is the 1134. The
spin-flavor content of the first two SU(6) representations
on the right-hand side is well known

SNc
	 81=2; 103=2; � � � (32)

MSNc
	 11=2; 81=2; 83=2; 101=2; � � � : (33)
036004
The corresponding decomposition of ExNc
can be obtained

by subtracting these states from the complete set in
Eqs. (29) and (30). In particular, the exotic states are all
contained in ExNc

. For later reference, we give here the
values of the quadratic Casimirs for each of these SU(6)
representations

C6�SNc
� 	

5

12
Nc�Nc � 6�

C6�MSNc
� 	

1

12
Nc�5Nc � 18�

C6�ExNc
� 	

5

12
�N2c � 6Nc � 12�:

(34)

We would like to compute the mass spectrum of these
states at leading order in Nc. There are two operators which
can appear in their mass operators at O�N0c�. They are the
two-body �q
 q interaction introduced in Eq. (19), and
1
Nc
TaTa, which was seen to contain an enhanced O�1� piece

M 	 Ncc01� c1
1

Nc
Si�qT

a
�qG

ia
q � c2

1

Nc
TaTa �O

�
1

Nc

�
:

(35)

The first operator is related to the generator of the diagonal
SU(6) group Gia 	 Gia

�q �Gia
q as

2Gia
�q G

ia
q 	 GiaGia 
Gia

q G
ia
q 
Gia

�q G
ia
�q : (36)

The matrix element of GiaGia can be off-diagonal on the
space of the qNc�1 states, and in general it introduces
mixing among states with the same quantum numbers RJ
but different qNc�1 quantum numbers. We will demonstrate
this explicitly below on the example of the 11=2�30;1� states.
This mixing is constrained by theU�6�q 
 U�6� �q symmetry
of QCD in sectors with both quarks and antiquarks in the
large Nc limit [17]. Since the correct spin-flavor symmetry
of large Nc QCD is the contracted SU�2F�c, this symmetry
is in fact U�1�Nq


 SU�6�cq 
 U�1�N �q

 SU�6�c �q.

We showed at the end of Sec. II that the SU(6) irrep
MSNc�1 breaks down into two irreps of the contracted
symmetry SU�6�c, containing 61; 150;1;2; 1501 and 30;1, re-
spectively. This means, for example, that the two sets of
states in Eq. (29) f81=2�30�; 81=2�31�g and f81=2�150�;
81=2�61�; 81=2�151�g do not mix in the large Nc limit.

In certain special cases such as those considered in
Ref. [17] the O�1� operator 1

Nc
Gia
�q G

ia
q can be reduced to

the O�1=Nc� subleading operators 1
Nc
J2 and 1

Nc
J2q. This

happens for states which can be assigned to unique
SU�6� � SU�3� 
 SU�2� and SU�6�q � SU�3�q 
 SU�2�q
spin-flavor representations for the qNc�1 and total system,
respectively. In particular, this is true for the exotic states
R 	 10; 35, which are obtained from Rq 	 6; 150 after
-8
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adding in the antiquark, including also the states constructed in [17]. [It turns out to be true also for the 271=2 and 273=2,
which are admixtures ofRq

Jq
	 150; 151; 152.] For these cases the matrix elements of 1

Nc
Gia
�q G

ia
q can be computed in terms of

the quadratic Casimirs of SU(6) (denoted C6) and SU(3) (denoted as C3) representations for the total and qNc�1 states

hRJ�R
q
J0q
�j4Gia

�q G
ia
q jRJ�R

q
Jq
�i 	

�
C6�RJ� 


1

3
J�J� 1� 


1

2
C3�RJ�

�



�
C6�R

q
Jq
� 


1

3
Jq�Jq � 1� 


1

2
C3�R

q
Jq
�

�
: (37)
The negative parity exotic states in Eq. (30) transform
under SU(6) as R� ExNc

, Rq �MSNc�1 and under
SU(3) as R� 10; 27; 35, Rq � 6; 15; 150. Using the results
Eqs. (34) for the Casimirs of these representations for
arbitrary Nc we find the operator identity, valid on the
space of the exotic states with mixed-symmetric spin-
flavor wave function

4Gia
�q G

ia
q jEx�MS� 	

1

4


1

3
J2 �

1

3
Jq2: (38)

For completeness, we give also the corresponding iden-
tity for the symmetric spin-flavor states (considered in
Ref. [17]). For this case, the qNc�1 states transform under
SU�6�q in the SNc�1, which after adding in the antiquark as
an 6 of SU�6�, gives the following representations of the
diagonal SU(6)

SNc�1 � 6 	 SNc
� Ex0Nc

; (39)

where Ex0Nc
corresponds to the Young diagram �Nc �

2; 1; 1; 1; 1� and contains the exotic states. Its quadratic
SU(6) Casimir has the value C6�Ex

0
Nc
� 	 1

12 


�5N2c � 42Nc � 72�. Using Eq. (37) one finds for this
case the same reduction rule

4Gia
�q G

ia
q jEx0�S� 	

1

4


1

3
J2 �

1

3
Jq2: (40)

We conclude that for both cases of mixed symmetry (38)
and symmetric (40) spin-flavor exotics, the operator
1
Nc
Gia
�q G

ia
q can be reduced to O�1=Nc� operators.

We consider next a case where such a simplification does
not hold. Consider the two nonexotic SU(3) singlet states
with spin J 	 1

2 in Eq. (29). Under SU(6) they can trans-
form as the MSNc

and ExNc
, with the two sets of states

connected by a unitary transformation. The quadratic
Casimir of the diagonal spin-flavor SU(6) group reads in
the basis of these two states

X35
A	1

TATA 	
1

3
J2 �

1

2

X8
a	1

TaTa � 2GiaGia

	
1

3
J�J� 1� �

1

2
C3�R� � 2G

ia
q G

ia
q � 2

� 4Gia
�q G

ia
q (41)

and is diagonal in the basis �1MS
1=2; 1

Ex
1=2�, with eigenvalues

given by the Casimirs of the respective SU(6)
representations.
036004
Using these results, it is straightforward to compute the
matrix elements of the operator O0 	

1
Nc
Gia
�q G

ia
q taken

between the states �11=2�30�; 11=2�31�� (up to a two-fold
ambiguity). The results are given in the appendix. Taking
the large Nc limit, the eigenvalues and eigenfunctions of
the mass operator on the subspace of the 11=2 states are

1MS
1=2�3� 	 �

1

2
11=2�30� �

���
3

p

2
11=2�31�;

M1 	 Ncc0 

3

16
c1;

(42)

1Ex1=2�3� 	 �

���
3

p

2
11=2�30� �

1

2
11
2
�31�;

M2 	 Ncc0 �
1

16
c1:

(43)

Note that the large Nc eigenstates do not have well defined
transformation properties under diagonal SU(6) for any
finite Nc [although we labeled them with the corresponding
irreps of SU(6) into which they go for finite Nc].

A similar computation gives for the mass of the remain-
ing SU(3) singlet state

1 Ex
3
2
�31�: M 	 Ncc0 �

1

16
c1 (44)

which turns out to be degenerate in the large Nc limit with
the spin 1=2 exotic singlet Eq. (43).

These considerations are possibly of more than aca-
demic interest. The singlet states 11=2;3=2 are expected to
be the lowest-lying negative parity pentaquark states (as-
suming that such states exist at all). These states have the
q4 system in the 3 of flavor SU(3), which is constructed in
the diquark model from two good diquarks [see Eq. (8)]. A
similar result was also found in the quark model compu-
tation of Strottman [36], who estimated their masses to lie
around 1400 MeV. Two negative states are seen in this
region  1=2�1406� and  3=2�1519�, both of which are
usually identified with the L 	 1 orbitally excited states.
As shown above, if the negative parity q4 �q states are stable,
three additional SU(3) singlet states are expected, two with
spins 1=2 and one with spin 3=2. In the large Nc limit, two
of them are degenerate in a pair with J 	 1=2; 3=2.

We turn next to the light pentaquarks in exotic SU(3)
representations. Using the matrix elements in the appendix
[or alternatively the operator reduction rule Eq. (38)], all
negative parity exotic states in the 10; 27 and 35 turn out to
-9
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be degenerate at leading order in 1=Nc, with a mass given
by

MEx 	 Ncc0 � c2 �O�1=Nc�: (45)

These states are split only by O�1=Nc� terms in the
Hamiltonian which were not considered here. In particular,
the two antidecuplet states 101=2 and 103=2 are predicted to
be degenerate in the large Nc limit (and all states in the two
towers K 	 1=2; 3=2 in Eq. (12) along with them). This
follows from the absence of a O�1� operator which can
distinguish between these states, and stands in contrast to
the situation in the symmetric spin-flavor states considered
in Ref. [17]. The latter states have nonzero orbital momen-
tum, and a spin-orbit interaction term Jiq‘

i can introduce a
O�1� mass splitting between the J 	 1=2 and J 	 3=2
antidecuplet states. We note however that O�1=Nc� effects
can easily produce a mass splitting of �200 MeV, similar
to the N 
 � mass splitting, such that the two cases of
positive and negative parity could in fact have very similar
mass spectra.

IV. QUARK MODEL PREDICTIONS

In the remainder of this paper we will study the negative
parity exotic states in some detail using the constituent
quark model with arbitrary number of colors Nc, restricting
ourselves to the E 	 1 states. The color part of the wave
function of the Nc � 1 quarks must transform in the fun-
damental representation and can be written as
036004
)a
i 	

1��������
Nc!

p "a1a2����ai����aNc�1 jq
a1
1 q

a2
2 � � � qai � � � q

aNc�1
Nc�1

i;

i 	 1; � � � ; Nc

(46)

where the index in brackets �ai� is to be omitted. They are
normalized as

h)b
j j)

a
i i 	

�
+ab; i 	 j

1
Nc
pij+ab; i � j �pij 	 �
�i
j
1�: (47)

The spin-flavor wave function of the Nc � 1 quarks trans-
forms in the mixed symmetry representation. The corre-
sponding spin-flavor wave functions are identical to those
for orbitally excited baryons, and can be found in [8] for
the case of arbitrary Nc. They are constructed by adding
one quark qi to a symmetric state of Nc quarks with spin
and isospin Ic 	 Sc

jS; I;m�i 	
X
m3;i3

jIc; m1�1i 

								12 ; m2�2



i




�
Sm

								Ic 12 ;m1m2

�

I�
								Ic 12 ;�1�2



:

(48)

Finally, the orbital wave function is completely symmetric
and can be written using a Hartree representation as the
product of one-body wave functions (�~r1; � � � ; ~rNc�1� 	

.S�~r1� � � �.S� ~rNc�1�. Putting together all factors, the com-
plete wave function of an E 	 1 exotic baryon with mixed
symmetry spin-flavor structure (negative parity) can be
written as
j	MS; JI;m�i 	
1������������������������

Nc�Nc � 1�
p XNc�1

i	1

)a
i j
�Qa;m3ijSI;m
m3; �ii

�
Jm

								S 12 ;m
m3; m3



(� ~r1; � � � ; ~rNc�1�: (49)
For simplicity, we took the antiquark to be an infinitely
heavy quark �Q, which does not introduce an additional
orbital motion. A similar construction gives also the wave
function of an exotic with strangeness �1 qNc �s.

The relevant Hamiltonian for the heavy exotic states	 �Q

describes the interactions of the nonrelativistic quarks with
the gluon field, plus the pure glue term

H 	 H kin �H glue �H q
q: (50)

The Coulomb quark-quark interaction, together with the
kinetic term

P
nH

n
kin 	

P
n
1
2mn

� ~p
 g ~A�xn��2 and the
pure glue term, give the dominant contributions in the large
Nc limit

H q
q 	
g2

4/

X
m<n

Tx
mT

x
n

j ~rn 
 ~rmj
�

g2

4/

X
n

Tx
n
�Tx

j ~rnj
: (51)
The Hamiltonian H q
q in Eq. (51) is spin-flavor blind,
such that the heavy exotics with mixed-symmetric spin-
flavor 	MS constructed above fall into irreducible repre-
sentations of the SU(6) group. The lowest-lying states are
in the 210 of SU(6), which contains all the representations
of SU�3� 
 SU�2� shown in Eq. (7). The degeneracy of
these states is broken in the presence of the color-spin-spin
hyperfine interaction [38]

H hyp 	 
V
X
i<j

��ai �
a
j �� ~2i � ~2j�: (52)

The eigenvalues of the hyperfine interaction can be
computed using SU(6) spin-color methods as explained
in Ref. [37]. The basic idea is to decompose the color-
spin-flavor wave function of the q4 system into irreducible
representations of SU�6�sc 
 SU�3�fl. The generators of the
color-spin group SU�6�sc can be written in a quark basis as
-10



TABLE II. The representation of SU�6� spin-color Rsc corre-
sponding to each representation Rfl of SU�3� flavor in Eq. (7) and
its quadratic Casimir C2�Rsc�. For each representation of SU�6�
spin-color we show also the values of the quark spin Jq allowed
under the decomposition Rsc ! RSU�2�sp 
 RSU�3�c (correspond-
ing to a color triplet Rcol 	 3).
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Si 	
1���
3

p
XNc�1

n	1

2i
n

2
; Ta 	

1���
2

p
XNc�1

n	1

�an
2
;

Fia 	
���
2

p XNc�1

n	1

2i
n

2
�
�an
2
:

(53)

With this definition, the generators are normalized as
Tr� A B� 	 1

2+
AB. The generator Fia is simply related

to the hyperfine Hamiltonian Eq. (52), which is therefore
diagonalized in terms of the quadratic Casimir of the
SU�6�sc

C2�Rsc� 	
1

3
S2 �

1

2
TaTa � 2FiaFia

	
1

3
S�S� 1� �

1

2
C2�Rc� �

3

2
CF�Nc � 1�

�
1

4

X
i<j

��ai �
a
j �� ~2i � ~2j�: (54)

The exotics with symmetric orbital wave functions con-
sidered here have a completely antisymmetric total color-
spin-flavor wave function of the q4 system, which trans-
forms as the 3060 (for f 	 3) or 495 (for f 	 2) of SU(6f).
Decomposing it into representations of SU�6�sc 
 SU�3�fl
and keeping only those SU�6�sc representations which
contain a 3 of color gives the spin-color representations
shown in Table II, corresponding to each allowed SU(3)
flavor representation. Using the relation Eq. (54) for the
quadratic Casimir of SU�6�sc one finds the eigenvalues of
the color-spin hyperfine interaction [37]

H hyp 	 V
�
4

3
J�J� 1� � 6�Nc � 1�CF 
 4C2�Rsc�

�
:

(55)

Here C2�Rsc� is the quadratic Casimir of the SU(6) spin-
color representation Rsc corresponding to a given repre-
sentation of flavor SU(3). The corresponding representa-
tions and their Casimirs are given in Table II.

The mass formula predicts that the lowest eigenvalue is
the 3Jq	0, which has the largest value for the spin-color
SU(6) Casimir. This result is in agreement with the diquark
model [34], according to which this state is composed of
two good scalar diquarks .iA [with i a SU(3) flavor index
and A a SU(3) color index] in a relative S-wave

j3iJq	0i 	
1�����
6!

p "ABC"ijk �QA.jB.kC: (56)

The remaining heavy exotics with negative parity lie above
the triplet with spin Jq 	 0, and their mass splittings are
given by one free parameter, the coupling V in Eq. (52)

3 Jq	1 
 3Jq	0 	
8

3
V �51� 3 MeV� (57)
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6 Jq	1 
 3Jq	0 	
32

3
V �203� 11 MeV� (58)

15 Jq	0 
 3Jq	0 	 16V �304� 16 MeV� (59)

15 Jq	1 
 3Jq	0 	
56

3
V �355� 19 MeV� (60)

15 Jq	2 
 3Jq	0 	 24V �456� 24 MeV� (61)

150 Jq	1 
 3Jq	0 	
104

3
V �659� 35 MeV�: (62)

These results agree with Ref. [40]. The strength of the spin-
spin coupling V can be extracted from the N 
 � mass
splitting

V 	
1

16
��
 N� 	 18:3 MeV: (63)

An alternative determination of V from the /c 
 c mass
splitting gives a somewhat larger value
-11
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V 	
3

32

�
1

3
�/c � 2/

�
c� 
 c

�
	 19:8 MeV: (64)

The numerical values for the mass splittings shown in
parentheses in Eqs. (57)–(62) used V 	 19� 1 MeV,
which covers both these determinations.

These mass splittings are formally of O��s� �O�1=Nc�.
They agree with the model-independent predictions from
the 1=Nc expansion Eq. (26) with a special relation among
the O�1=Nc� coefficients

c1 	 0; c2 	
4

3
V; c3 	 4V; c4;5 	 0: (65)

The corresponding relation for two light flavors can be
obtained by noting that the Casimir C2�Rsc� in Table II can
be written as C2�Rsc� 	 32=3
 I�I � 1� for the non-
strange states in the 6; 15; 150. This summarizes the quark
model mass formula on the subspace of the nonstrange
states as a two-parameter relation

M�Jq; I� 	 �� V
�
4

3
Jq�Jq � 1� � 4I�I � 1�

�
: (66)

We will use in the next section experimental information
on one of these states to extract � and give predictions for
all other states.

V. PHENOMENOLOGY

The H1 Collaboration reported recently the observation
of a narrow resonance in the D�
p and D�� �p channels
with mass and width

M 	 3099� 3�stat� � 5�stat� MeV;

1 	 12� 3�stat� MeV:
(67)

This resonance has been identified with an exotic state with
quark content udud �c. Neither the spin or the parity of this
state have been measured. The phenomenology of this state
has been studied using the large Nc expansion in Ref. [17]
assuming that its parity is positive.

We will assume in this section that the state observed by
the H1 Collaboration has negative parity and explore the

DAN PIRJOL AND CARLOS SCHAT
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phenomenological implications of this assumption follow-
ing from the results of this paper.

We examine first predictions following solely from
heavy quark symmetry. The lowest-lying pentaquarks
with one charm antiquark �cq4 with negative parity have
mixed symmetry spin-flavor wave functions and contain
the SU(3) representations shown in Eq. (7). We will denote
the nonstrange states as	�R�

�cs‘�J� with s‘ the spin of the light
degrees of the freedom, J 	 s‘ � 1=2 is the total spin and
R is the SU(3) representation of the state.

With this notation, the nonstrange states include

I 	 0: 	�6�
�c1

�
1

2
;
3

2

�
(68)

I 	 1: 	�15�
�c0

�
1

2

�
; 	�15�

�c1

�
1

2
;
3

2

�
; 	�15�

�c2

�
3

2
;
5

2

�
(69)

I 	 2: 	�150�
�c1

�
1

2
;
3

2

�
: (70)

In addition, there are also two SU(3) triplets with s‘ 	 0
and 1, containing at least one strange quark. They
each contain one isodoublet (with quark content
f �cusud; �cuddsg)

T �c0

�
1

2

�
; T �c1

�
1

2
;
3

2

�
(71)

and one isosinglet (with quark content �cusds).
Assuming that these states can decay strongly into D���N

channels, heavy quark symmetry predicts ratios among the
individual widths. These predictions can be read off from
Ref. [41], where they were computed for the corresponding
strong decays of orbitally excited charmed baryons with
negative parity. For states above the �D
p� (2808 MeV)
and �D�
p� (2948 MeV) thresholds (such as the resonance
at 3099 MeV observed by H1), the decay ratios for the
S-wave partial rates are (we denote here f�g 	 1=j ~pj the
decay rate with the phase space factor removed)
�
	�15�
�c0

�
1

2

�
! �N �D�S

�
:
�
	�15�
�c0

�
1

2

�
! �N �D��S

�
	 1:3 (72)

�
	�6;15�
�c1

�
1

2

�
! �N �D�S

�
:
�
	�6;15�
�c1

�
1

2

�
! �N �D��S

�
:
�
	�6;15�
�c1

�
3

2

�
! �N �D�S

�
:
�
	�6;15�
�c1

�
3

2

�
! �N �D��S

�
	
3

4
:
1

4
:0:1: (73)
Heavy quark symmetry predicts also the suppression of the
S-wave amplitude in the decay of the s‘ 	 2 state

1
�

	�15�
�c2

�
3

2

�
! �N �D��S

�

�O� 2=m2c�: (74)

The corresponding predictions for the D-wave amplitudes
can be found in Ref. [41], and we do not reproduce them
here. Some of the exotic states in Eqs. (68)–(70) might lie
above the � �D (3101 MeV) and � �D� (3242 MeV) thresh-
olds. These channels are also important for the decays of
the 150, which cannot decay to N �D��� by isospin symmetry.
We give therefore also the corresponding heavy quark
-12
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symmetry predictions for the ratios of S-wave partial widths into � �D��� channels

�
	�6;15�
�c1

�
1

2

�
! �� �D�S

�
:
�
	�6;15�
�c1

�
1

2

�
! �� �D��S

�
:
�
	�6;15�
�c1

�
3

2

�
! �� �D�S

�
:
�
	�6;15�
�c1

�
3

2

�
! �� �D��S

�
	 0:1:

3

8
:
5

8
(75)

�
	�15�
�c2

�
3

2

�
! �� �D�S

�
:
�
	�15�
�c2

�
3

2

�
! �� �D��S

�
:
�
	�15�
�c2

�
5

2

�
! �� �D�S

�
:
�
	�15�
�c2

�
5

2

�
! �� �D��S

�
	
5

8
:
3

8
:0:1: (76)
The resonance observed by H1 is seen in the D�p
channel. Assuming that future experiments see no signal
in the DN channel, the heavy quark predictions in Eq. (72)
would suggest identifying this resonance with a J 	 3

2 state
in the 6; 15. Since no other nearby states are observed, the
simplest assignment is the isosinglet	�6�

�c1 �
3
2�, decaying with

equal widths to �D�
p and �D�0n (scenario 1).
An attractive possibility which naturally explains the

small width of the state (67) is to identify it with the
	�15�
�c2 �32�, whose S-wave decay width is suppressed by

heavy quark symmetry [see Eq. (74)]. This state can only
decay to D���N in D-wave. This is the I3 	 0member of an
isotriplet, and one expects to see two similar nearby states,
decaying to �D�0p (for the I3 	 �1 state) and to D�
n (for
the I3 	 
1 state). We will refer to this as to the scenario 2.

Finally, we consider also the possibility that the state
(67) is the isotriplet 	�15�

�c1 �32� (scenario 3).
We present in Table III predictions for the masses of all

other charmed pentaquarks following from each of the
three assignments described above. We present our predic-
tions in terms of spin-averaged masses for heavy quark
TABLE III. Predictions for the mass spectrum of the charmed
pentaquarks (in MeV) using the quark model with spin-color
hyperfine interaction. The three scenarios correspond to the
possible assignments of the 3099 MeV state seen by the H1 as
described in the text. The thresholds for strong two-body decays
are shown as �DN�: 
 
 
 
 , �D�N�: 	 	 	 	 ,
�D��: � 
 
 � , �D���: � 	 	 � .

Sstate Scenario one Scenario two Scenario three

T�3�
�c0 �

1
2� 2896� 13� +1=mc

2643� 25� +1=mc
2744� 20� +1=mc

hT�3�
�c1 i 2947 2694 2795

	 	 	 	 
 
 
 
 
 
 
 


h	�6�
�c1 i 3099 2846 2947

� 
 
 � 	 	 	 	

	�15�
�c0 �12� 3200 2947 3048

� 	 	 � 	 	 	 	

h	�15�
�c1 i 3251 2998 3099

� 
 
 �

h	�15�
�c2 i 3352 3099 3200

� 	 	 � � 	 	 �

h	�150 �
�c1 i 3555 3302 3403
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doublets, defined as

h	�R�
�c1 isp
av 	

1

3
	�R�
�c1

�
1

2

�
�
2

3
	�R�
�c1

�
3

2

�
;

h	�R�
�c2 isp
av �

2

5
	�R�
�c2

�
3

2

�
�
3

5
	�R�
�c2

�
5

2

�
:

(77)

We turn now to a discussion of these predictions. First,
we comment on the theoretical uncertainty in these esti-
mates, which were added in Table III only for the triplet
states. These errors include the experimental error in the
H1 mass measurement (67) and the error in the strength of
the hyperfine splitting V 	 19� 1 MeV. To this one
should add also the uncertainty +1=mc

� 2=mc ’

180 MeV coming from the hyperfine interaction with the
heavy quark spin in the state (67).

The lowest-lying states T�3�
�c0 �

1
2� in the 3 of SU(3) are

stable in all three scenarios against strong decays into
� �Dsp� and � �D � (with thresholds at 2907 and 2985 MeV,
respectively). Their masses are somewhat higher than the
previous estimate in Ref. [34] of 2580 MeV. We note that
the predictions in Table III assume SU(3) symmetry. As a
rough estimate of the SU(3) breaking, one could add to
these numbers an additional �s 	 m�c


m c
	

180 MeV. If this is done, the T�3�
�c0 �

1
2� states remain stable

against strong decays in scenario 2, but rise above the
threshold for � �Dsp� in the other two scenarios. A search
for a signal in this mass region could help distinguish
between the three scenarios.

Going to the higher mass states, in scenario 1 all non-
strange states in the 6 and 15 can decay strongly into
� �D���p�S, and the 150 decay into � �D�����S, with decay
widths of a typical size for a S-wave channel. The scenario
3 is very similar.

Scenario 2 is more interesting. It contains three non-
strange states stable under strong decays into � �D�p�S,

which can only decay into � �Dp�S. These are the 	�6�
�c1 �

1
2 ;
3
2�

and the 	�15�
�c0 �12�. The heavy quark symmetry relations in

Eq. (72) imply that two of them should be narrow: the

	�6�
�c1 �

3
2� whose width is suppressed by  2=m2c, and the

	�15�
�c0 �12� whose width is reduced by a factor of 4 due to

the absence of the �D�p channel. Thus, together with the
narrow 	�15�

�c2 �32� identified with the H1 state (67), this
scenario contains two other narrow states well separated
-13



DAN PIRJOL AND CARLOS SCHAT PHYSICAL REVIEW D 71, 036004 (2005)
at 2850 MeV �	�6�
�c1 �

3
2��, and at 2950 MeV �	�15�

�c0 �12��. This is
a distinctive experimental signature which should help
distinguish this assignment of the H1 state from the other
two proposed scenarios.
VI. CONCLUSIONS

If exotic baryon states exist in nature, they add a new
layer of complexity to the hadronic spectrum, with a rich
phenomenology. The properties of these states can be
studied in a model-independent way using the large Nc
expansion. We extend the recent analysis of the positive
parity exotics performed in Ref. [17] to the negative parity
states. In the quark model these states correspond to the
ground-state with all quarks in s-wave orbitals, and are
thus expected to be lighter that their positive parity
counterparts.

Their spin-flavor structure is more complicated, corre-
sponding to a wave function transforming in the mixed
symmetry representation. In this respect, these states are
closely related to orbitally excited baryons, well studied in
the large Nc expansion [8,9,11,12], and we make use of
techniques developed to deal with these states. We derive
properties of the mass spectrum of the exotic states in an
expansion in 1=Nc. Similar methods can be applied to
study other properties of the states, such as their magnetic
moments and strong decays.

We study both heavy (quark content q4 �Q) and light q4 �q
pentaquarks, constructing the complete set of states for
both SU(2) and SU(3) flavor symmetry. In the heavy sector
there are more states than for the positive parity case,
transforming as 3; 6; 15 and 150 under SU(3). We derive
two model-independent mass relations Eqs. (27) and (28)
to O�1=N2c� connecting the masses of these states.

The mass spectrum of the negative parity light penta-
quarks is richer, and includes both exotic (10; 27; 35) and
nonexotic SU(3) representations (1; 8; 10). Even though
mixing with the orbitally excited regular baryons will
likely affect the mass spectrum of the nonexotic states,
we study in some detail the mass spectrum of the 1 states,
which are expected to be the lightest pentaquarks. We show
that their mass spectrum and mixing are constrained in a
very specific way at leading order in 1=Nc.

In contrast to the symmetric spin-flavor (positive parity)
exotic states studied in Ref. [17], for this case the large Nc
expansion is somewhat less predictive, and does not con-
nect their properties to those of the ground-state baryons.
More predictive power is obtained in the constituent quark
model with color-spin interactions, which is used to com-
pute the mass spectrum of heavy exotic states. We show
that this approach is equivalent to the large Nc expansion,
with a particular relation among the coefficients of the
O�1=Nc� operators. Using the recent observation by H1
of an anticharmed pentaquark state, we make predictions
036004
for all other charmed pentaquarks, and point out experi-
mental signatures for the remaining states. We suggest one
natural explanation for the narrow width of the H1 state.
Assuming that it is identified with the 153=2 with the spin of
the light degrees of freedom s/‘

‘ 	 2
, its strong decay
width to �D���N is suppressed by  2=m2c from heavy quark
symmetry. We present heavy quark symmetry predictions
for the strong decay width ratios in �D���N and �D����, which
should be useful in constraining the quantum numbers of
these states.
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APPENDIX: MATRIX ELEMENTS ON EXOTIC
STATES

We list here the matrix elements of the O�1� operators
Gia
�q G

ia
q and T2 appearing in the Hamiltonian of the light

negative parity exotic states.
State
-14
1
Nc
Gia
�q G

ia
q

1
Nc
TaTa
11=2�30�
 0
 N2c
9
12Nc
11=2�31�
 
 3Nc�11
24Nc��p
N2c
9
12Nc
11=2�30� 
 11=2�31�
 � 3�Nc�5�
16Nc
0

101=2�61�
 1
6Nc
�Nc�3��Nc�9�
12Nc
103=2�61�
 
 1
12Nc
�Nc�3��Nc�9�
12Nc
271=2�150�
 0
 N2c�12Nc�51
12Nc
271=2�151�
 1
6Nc
N2c�12Nc�51
12Nc
271=2�150� 
 271=2�151�
 0
 0
273=2�151�
 
 1
12Nc
N2c�12Nc�51
12Nc
273=2�152�
 1
4Nc
N2c�12Nc�51
12Nc
273=2�151� 
 273=2�152�
 0
 0
275=2�152�
 
 1
6Nc
N2c�12Nc�51
12Nc
351=2�1501�

1
6Nc
N2c�12Nc�99
12Nc
353=2�1501�
 
 1
12Nc
N2c�12Nc�99
12Nc
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