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A FINITE-DIMENSIONAL LIE ALGEBRA ARISING FROM
A NICHOLS ALGEBRA OF DIAGONAL TYPE (RANK 2)

NICOLAS ANDRUSKIEWITSCH, IVAN ANGIONO, FIORELA ROSSI BERTONE

ABSTRACT. Let By be a finite-dimensional Nichols algebra of diagonal
type corresponding to a matrix q € k%Y. Let L4 be the Lusztig algebra
associated to Bq [AAR]. We present £, as an extension (as braided Hopf
algebras) of By by 34 where 3 is isomorphic to the universal enveloping
algebra of a Lie algebra ny. We compute the Lie algebra nq when 6 = 2.

1. INTRODUCTION

1.1. Let k be a field, algebraically closed and of characteristic zero. Let
0 eN, I=1Ip:={1,2,..,0} Let q = (gij)ijer be a matrix with entries in
k*, V a vector space with a basis (x;);cr and ¢ € GL(V ® V') be given by

AN @ ) = gijzj @ x4, i,j €L

Then (¢ ® id)(id @c?)(c? ® id) = (id ®@c?)(c? @ id)(id ®cT), i.e. (V) is a
braided vector space and the corresponding Nichols algebra By := B(V) is
called of diagonal type. Recall that By is the image of the unique map of
braided Hopf algebras Q : T'(V) — T¢(V) from the free associative algebra
of V' to the free associative coalgebra of V', such that Q = idy. For
unexplained terminology and notation, we refer to [AS].

Remarkably, the explicit classification of all q such that dimB; < oo is
known (we recall the list when # = 2 in Table [I]). Also, for every ¢ in
the list of [H2], the defining relations are described in [A2] [A3].

1.2.  Assume that dim By < co. Two infinite dimensional graded braided
Hopf algebras By and L, (the Lusztig algebra of V') were introduced and
studied in [A3] [A5], respectively [AAR]. Indeed, By is a pre-Nichols, and £,

a post-Nichols, algebra of V', meaning that B, is intermediate between T'(V)
and By, while £, is intermediate between By and T¢(V'). This is summarized
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in the following commutative diagram:

Q

(W) B, (V)

>~ 4 S

B, Ly

The algebras gq and L, are generalizations of the positive parts of the De
Concini-Kac-Procesi quantum group, respectively the Lusztig quantum di-
vided powers algebra. The distinguished pre-Nichols algebra gq is defined
discarding some of the relations in [A3], while £, is the graded dual of gq.

1.3.  The following notions are discussed in Section 2l Let Ai be the gener-
alized positive root system of B, and let O4 C Ai be the set of Cartan roots
of g. Let x3 be the root vector associated to 3 € Ai, let N3 = ord ggg and

let Z; be the subalgebra of Eq generated by :L"]BVB , B € Oq. By [AD, Theorems

4.10, 4.13], Z4 is a braided normal Hopf subalgebra of gq and Z; = C‘”gq.
Actually, Z; is a true commutative Hopf algebra provided that

(1) Qo =1, Vo, 3 € Oy,

Let 34 be the graded dual of Z;; under the assumption () 34 is a co-
commutative Hopf algebra, hence it is isomorphic to the enveloping algebra
U(ng) of the Lie algebra ng := P(34). We show in Section [] that £, is an
extension (as braided Hopf algebras) of By by 34:

2) By & Lq = 34

The main result of this paper is the determination of the Lie algebra ny
when 6 = 2 and the generalized Dynkin diagram of g is connected.

Theorem 1.1. Assume that dimB; < oo and 6 = 2. Then ng is either 0
or isomorphic to g*, where g is a finite-dimensional semisimple Lie algebra
listed in the last column of Table [

Assume that there exists a Cartan matrix a = (a;;) of finite type, that
becomes symmetric after multiplying with a diagonal (d;), and a root of
unit ¢ of odd order (and relatively prime to 3 if a is of type G3) such
that ¢;; = q%%i for all i,j € I. Then @) encodes the quantum Frobenius
homomorphism defined by Lusztig and Theorem [[.1lis a result from [L].

The penultimate column of Table [l indicates the type of q as established
in [AA]. Thus, we associate Lie algebras in characteristic zero to some con-
tragredient Lie (super)algebras in positive characteristic. In a forthcoming
paper we shall compute the Lie algebra ng for 6 > 2.
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Row| Generalized Dynkin diagrams | parameters | Type of B, | ng ~ gt
1 ¢ gt 1 q#1 Cartan A As
2 (‘1) g ! Z)l E)l q Z)l q# +1 Super A Ay
3 [ 1q27 q# £l Cartan B | By
o———oO
4 ¢ g2 -1 -l -l q ¢ Gy Super B AT ® A
) C: g q: C: Cilch;l (eGsFq br(2,a) A1 d A
6 ¢ —¢ 7t ¢l ¢ € Gy Standard B | 0
—C72_43 —¢? —C72471 -1 =¢? —¢ 1 /
7 5 3 6 o o o ¢ € Gy ufo(7) 0
_CB C -1 _43_471_1
@, O O O
—¢? ¢ —¢? —¢? 3 1 —C71_43 -1 /
—C 472 CB <3 471 —1 —CQ C —1 / . .
9 o o5 6 o o o ¢ € Gy bvj(2;3) AL DA
10 | ¢ ¢33 ¢ q ¢ Go UGs | Cartan Gy Go
¢ ¢ ¢! ¢ e e e /
11 5 o 6 o o o ¢ € Gg Standard Gy | A1 ® Ay
6 o, ,—4 6 1
12 | & < ¢ € Gl ufo(9) A @A
—474 45 -1 ¢ 475 -1
O O O O
135 ¢ ‘gQC” o ¢ € Gl bt (2; 5) By
-3 -1 —C_r-3-1
O N S ¢ € Gl ufo(10) AL @ A
—¢2 ¢ —1 —<*2_<3 -1
o—=O o———O
_ 3 ¢b 3 44
15 | St o T ¢ € Gy ufo(11) A @A
¢ —¢—2-1 ¢3 2 -1
O O O O
. —2 .
16 | ST e ¢ eGL ufo(12) Gy

TABLE 1. Lie algebras arising from Dynkin diagrams of rank 2.
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1.4. The paper is organized as follows. We collect the needed preliminary
material in Section 2. Section 3 is devoted to the exactness of (2)). The
computations of the various ng is the matter of Sectiondl We denote by Gy
the group of N-th roots of 1, and by G'y its subset of primitive roots.

2. PRELIMINARIES

2.1. The Nichols algebra, the distinguished-pre-Nichols algebra and
the Lusztig algebra. Let q be as in the Introduction and let (V) be the
corresponding braided vector space of diagonal type. We assume from now
on that By is finite-dimensional. Let (o;)jer be the canonical basis of Z°.
Let q: Z% x Z% — k* be the Z-bilinear form associated to the matrix g, i.e.
q(oj,ar) =g forall jk el If o, 8 € 79, we set dap = d(a, 3). Consider
the matrix (cgj)meﬂ, cij € Z defined by ¢}, = 2,

(3) cgj =—min{n € Ny : (n+ 1)y, (1 — ¢j;9ij4;:) = 0}, 1% ]
This is well-defined by [R]. Let i € I. We recall the following definitions:
o The reflection s € GL(Z?), given by siaj) = aj — cgjai, jel

o The matrix p;(q), given by pi(a);x = a(s?(ay), s3ax), jik € L

o The braided vector space p;(V') of diagonal type with matrix p;(q).
A basic result is that By >~ B, (q), at least as graded vector spaces.

The algebras T'(V') and B, are 7Z8-graded by degz; = o, i € I. Let Al
be the set of Z%-degrees of the generators of a PBW-basis of By, counted

with multiplicities [HI]. The elements of A} are called (positive) roots. Let
A=A U—-AYL. Let
X :={pj,--.pjn@) : j1,...,jv € LN € N},

Then the generalized root system of q is the fibration A — X', where the fiber
of pj, ... pjx(q) is APiPin @) The Weyl groupoid of By is a groupoid, de-
noted Wj, that acts on this fibration, generalizing the classical Weyl group,
see [HI]. We know from loc. cit. that W; is finite (and this characterizes
finite-dimensional Nichols algebras of diagonal type).

Here is a useful description of Ai. Let w € W, be an element of maximal
length. We fix a reduced expression w = 0’?1 Oiy =+ 04y, For 1 <k < M set

(4) B = Sgl T Sikﬂ(aik),
Then AL = {f]1 <k < M} [CH, Prop. 2.12]; in particular |A%| = M.

The notion of Cartan root is instrumental for the definitions of gq and
L. First, following [A5] we say that ¢ € I is a Cartan vertex of q if
cl .,
(5) 2ij%5i = ;" » for all j # 1,
Then the set of Cartan roots of q is
Oq = {s] 55 ... 53, () € AL 1 € Tis a Cartan vertex of pj, ... pi,pi, (4)}-
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Given a positive root 5 € Ai, there is an associated root vector zg € By
defined via the so-called Lusztig isomorphisms [H3]. Set Nz = ordggs € N,
B € AL, Also, for h = (hy,..., har) € N} we write

h__ _hym thl‘” h1
T =TTy La -

o

) . For simplicity, we introduce
00 if 65, € Oq.

(6) H={heN):0<hy <Ny, forall k€ly}.

By [A5, Theorem 3.6] the set {z"|h € H} is a basis of gq.

As said in the Introduction, the Lusztig algebra associated to By is the
braided Hopf algebra £, which is the graded dual of Eq_ Thus, it comes
equipped with a bilinear form (, ) : l§q x Lq — k, which satisfies for all
z, 7 € gq, v,y € Ly

(y,zz’) = (Y, 2)yM,2/)  and  (yy,z) = (y,2P) @y, =W).

If h € H, then define yy € L4 by (yn, ) = Onj, j € H. Let (hy)ger,, denote
the canonical basis of ZM. If k € Ij; and 8 = B, € A%, then we denote the

(n)

element y,n, by y5 . Then the algebra L, is generated by

{Yo ra eIl U {yg{Na) ta€ Oy, aNe ¢ P(gq)},
by [AAR]. Moreover, by [AAR] 4.6], the following set is a basis of Lg:

{y(ﬁflll) o yff;ﬁ’)l (h1,...,hyr) € H.

2.2. Lyndon words, convex order and PBW-basis. For the compu-
tations in Section @ we need some preliminaries on Kharchenko’s PBW-
basis. Let (V,q) be as above and let X be the set of words with letters in
X ={x1,...,2¢} (our fixed basis of V'); the empty word is 1 and for u € X
we write £(u) the length of u. We can identify kX with T'(V).

Definition 2.1. Consider the lexicographic order in X. We say that u €
X—{1} is a Lyndon word if for every decomposition u = vw, v,w € X—{1},
then u < w. We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word v € X
admits a unique decomposition, named Lyndon decomposition, as a non-
increasing product of Lyndon words:

(7) u=1lly...1l, el l.<---<l.

Also, each [; € L in (7)) is called a Lyndon letter of w.

Now each © € L — X admits at least one decomposition u = v1v9 with
v1,v9 € L. Then the Shirshov decomposition of u is the decomposition
u = ujuo, Ui,uz € L, such that us is the smallest end of u between all
possible decompositions of this form.
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For any braided vector space V', the braided bracket of z,y € T(V) is
(8) [z, y]. ;= multiplication o (id —¢) (z @ y) .

Using the identification T'(V) = kX and the decompositions described
above, we can define a k-linear endomorphism [—], of T'(V') as follows:

u, ifu=1oruelX,
[u], == 4 [[v],.,[w] e, ifué€L—X, u=ow its Shirshov decomposition;

[u], ... [we., fuweX—Lu=u...u its Lyndon decomposition.
We will describe PBW-bases using this endomorphism.

Definition 2.2. For [ € L, the element [{], is the corresponding hyperletter.
A word written in hyperletters is an hyperword; a monotone hyperword is
an hyperword W = [ul]lzl ] such that g > -+ > uy,.

C

Consider now a different order on X, called deg-lex order [K]: For each
pair u,v € X, we have that u > v if ¢(u) < £(v), or ¢(u) = ¢(v) and u > v
for the lexicographical order. This order is total, the empty word 1 is the
maximal element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of T(V) and R = T(V')/I. Let w : T(V) — R be
the canonical projection. We set:

Gr={uveX:u¢ kX, ,+1}.

Thus, if v € G; and uv = vw, then v,w € Gy. So, each u € Gy is a
non-increasing product of Lyndon words of G .
Let S;:=GrNLandlet hy: St — {2,3,...} U{oo} be defined by:

9) hi(u) :==min{t e N:u' € kX_,« +1}.
Theorem 2.3. The following set is a PBW-basis of R=T(V)/I:

{[ul]kl ... [um]km :m € Ng,up > ... > up,u; € S1,0 < k; < hr(u)}. O

c Cc

We refer to this base as Kharchenko’s PBW-basis of T(V')/I (it depends
on the order of X).

Definition 2.4. [A2] 2.6] Let A; be as above and let < be a total order on
A;’. We say that the order is convex if for each a, 5 € A‘T such that o < 8
and o+ € A;{, then a < o+ B < B. The order is called strongly convex
if for each ordered subset a1 < g < --- < @, of elements of A;’ such that
a=3y ;€ Af, then a1 < a < ag.

Theorem 2.5. [A2] 2.11] The following statements are equivalent:
o The order is convex.

e The order is strongly convex.
o The order arises from a reduced expression of a longest element w € Wy,

cf. {@). O
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Now, we have two PBW-basis of B, (and correspondingly of gq), namely
Kharchenko’s PBW-basis and the PBW-basis defined from a reduced ex-
pression of a longest element of the Weyl groupoid. But both basis are
reconciled by [AY] Theorem 4.12], thanks to [A2) 2.14]. Indeed, each gen-
erator of Kharchenko’s PBW-basis is a multiple scalar of a generator of the
secondly mentioned PBW-basis. So, for ease of calculations, in the rest of
this work we shall use the Kharchenko generators.

The following proposition is used to compute the hyperword [Ig]. associ-
ated to a root § € A

Proposition 2.6. [A2] 2.17] For 8 € A[,
Lo — ) Taus if 6=q, i€l
O \max{ls,ls, : 61,00 € AL, 61+ 00 = B,15, <ls,}, iffF i€l O

We give a list of the hyperwords appearing in the next section:

Root Hyperword Notation
6%} Xy Ty
nog + oo (ade 1) 22 T1..12
a1 + 20z [Ty +azs T2]e [712, Z2)c
3a1 4+ 202 [T20;+ass Tartas)e (7112, T12]c

4oy + 3ap [$3a1+2a2,$a1+a2]c [[$112,$12]c#1712]c
S5a1 + 302 [T +ass T3ar4+2a0)e  [T112, [T112, T12]c)e

We use an analogous notation for the elements of L4: for example we write
y112,12 when we refer to the element of £, which corresponds to [z112, Z12]e.

3. EXTENSIONS OF BRAIDED HOPF ALGEBRAS

We recall the definition of braided Hopf algebra extensions given in [AN];
we refer to [BDLIGG] for more general definitions. Below we denote by A the
coproduct of a braided Hopf algebra A and by AT the kernel of the counit.

First, if 7 : C — B is a morphism of Hopf algebras in gyD, then we set
C°T ={ceC|(idem)A(c) = c® 1},
CTC ={ce C|(r®id)A(c) =1®c}.
Definition 3.1. [AN| §2.5] Let H be a Hopf algebra. A sequence of mor-
phisms of Hopf algebras in ZJ}D
(10) k—-AS5CSB—k
is an extension of braided Hopf algebras if
(1) ¢ is injective,
(ii) 7 is surjective,
(iii) kerm = C1(A™) and
(iv) A=CT, or equivalently A = “°7C.

For simplicity, we shall write A s ¢ 5 B instead of (@.
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This Definition applies in our context: recall that By ~ gq / <xgﬁ , B €9Dy).
Let Zg be the subalgebra of gq generated by :L"]BVB , B €9y Then

o The inclusion ¢ : Z; — gq is injective and the projection 7 : gq — By is
surjective.

o [A5l Theorem 4.10] Z, is a normal Hopf subalgebra of gq; since ker 7 is
the two-sided ideal generated by «(Z"), ker m = Bq(Z,").

o [A5, Theorem 4.13] Z; = Cowgq.

Hence we have an extension of braided Hopf algebras
(11) Zy < By - By

The morphisms ¢ and 7 are graded. Thus, taking graded duals, we obtain
a new sequence of morphisms of braided Hopf algebras

@ By & Lq = 3.
Proposition 3.2. The sequence (2)) is an extension of braided Hopf algebras.

Proof. The argument of [Al 3.3.1] can be adapted to the present situation,
or more generally to extensions of braided Hopf algebras that are graded
with finite-dimensional homogeneous components. The map 7* : By — L

is injective because Bg ~ By; v* @ Lq % 34 is surjective being the transpose
of a graded monomorphism between two locally finite graded vector spaces.
Now, since Zq = “"Bq = By°™, we have

(12) ker " = LB = BF L,.
Similarly Eq"‘”* = B; because ker k= By. O

From now on, we assume the condition (Il) on the matrix q mentioned in
the Introduction, that is

Ao =1, Va, B € Oy.
The following result is our basic tool to compute the Lie algebra n,.

Theorem 3.3. The braided Hopf algebra 3 is an usual Hopf algebra, iso-
morphic to the universal enveloping algebra of the Lie algebra ng = P(3q).

The elements &g := L*(yéNﬁ)), B € O, form a basis of nyg.

Proof. Let Ay be the subspace of £y generated by the ordered monomials

(riNg, ) (reNg; )

Y, - Yg, where 3;, < --- < 3;, are all the Cartan roots of By
1 1k

and r1,...,7, € Ng. We claim that the restriction of the multiplication

p: By ® Ag — Ly is an isomorphism of vector spaces. Indeed, p is surjective
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by the commuting relations in £;. Also, the Hilbert series of £, By and A
are respectively:

1— TNB deg 8
/H['q - H 1— dogﬁ H 1_Tdogﬁ ;
ﬁkqu BréOq
o TNB deg 8
HBq: H 1 _ TdegB ;
6k€Aq+
1
HAq = H N, '
_ g deg 3
e, 1-T

Since the multiplication is graded and H,, = Hg, Ha,, p is injective. The
claim follows and we have
(13) Ly=A;® B;Aq.

We next claim that * : A; — 34 is an isomorphism of vector spaces.
Indeed, by [I2), kert* = By Lq = B (ByAq) = B Aq. By ([@3), the claim
follows.

By ), Z, is a commutative Hopf algebra, see [A5]; hence 34 is a co-
commutative Hopf algebra. Now the elements {3 := L*(yéNﬂ )), , B € 9Oy,
are primitive, i.e. belong to ng = P(3q). The monomials fgl_ 56

1 lk
Biy <+ < By €9Oq, 71,-..,7% € Ny form a basis of 34, hence

3¢ =k(&s: B € Oq) CU(nq) C 3.
We conclude that (£5)seo, is a basis of nq and that 34 = U(ny). O

4. PROOF OF THEOREM [I.1]

In this section we consider all indecomposable matrices q of rank 2 whose
associated Nichols algebra B is finite-dimensional; these are classified in
and we recall their diagrams in Table [l For each q we obtain an
isomorphism between 34 and U (g"), the universal enveloping algebra of the
positive part of g. Here g is the semisimple Lie algebra of the last column
of Table [l with Cartan matrix A = (a;;)1<i j<2. By simplicity we denote g
by its type, e.g. g = As.

We recall that we assume () and that {5 = t*(y é o) ) € 3q. Thus,

[gaaéﬁ]c = gafﬁ - fﬁga = [fa,fﬁ], for all Oé,ﬁ S Dq-

The strategy to prove the isomorphism § : U(g") — 3 is the following:
(1) If O4 =0, then g™ = 0. If |Oy| = 1, then g = sly, i.e. of type A;.
(2) If |Oq| = 2, then g is of type A; @ A;. Indeed, let Oy = {a, 8}. As 3
is NY-graded, (€, &p] € ng has degree Ny + Ngf3. Thus [£,,&5] = 0.
(3) Now assume that [O4| > 2. We recall that 3 is generated by

{fﬁ\xgﬁ is a primitive element of gq}
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We compute the coproduct of all xgﬁ in gq, B € g, using that A is a

graded map and Z; is a Hopf subalgebra of gq. In all cases we get two
N N
primitive elements x 515 Yand x ﬁf ?, thus 3 is generated by {3, and &g,.

(4) Using the coproduct again, we check that

(14) (ad &5,) g5, =0, 1<i#j<2
To prove (Id)), it is enough to observe that ng has a trivial component
of degree Ng,(1 — a;;)B; + Ng;3;. Now ([4]) implies that there exists a
surjective map of Hopf algebras § : U(g") — 34 such that e; — &g,

(5) To prove that § is an isomorphism, it suffices to see that the restriction
gt 5 ng is an isomorphism; but in each case we see that * is surjective,
and dim g™ = dimng = [Oy].

We refer to [ATl, [AAY] [A4] for the presentation, root system and Cartan
roots of braidings of standard, super and unidentified type respectively.

Row 1. Let ¢ € Gy, N > 2. The diagram ¢ g7t 9 corresponds to a

braiding of Cartan type As whose set of positive roots is A;’ = {a1, 01 +
ag,az}. In this case Oy = A‘T and Ng = N for all 8 € O,. By hypothesis,

q{\é = q% = 1. The elements x1,x9 € Eq are primitive and
Alzp) =201 +1@z10+ (1 — ¢ Yz ® 2o
Then the coproducts of the elements z¥, 2%, 2V € gq are:
AEY) =z @l+1ez); A@))=20l+1ez);

N(N-—1)

é(azfg):xf;®l+l®xf§+(l—q_l)Nq21 2 a:{v@xév

As &2, &12], [€1,&12) € ng have degree Ny +2N ap, respectively 2N oy +Nag,
and the components of these degrees of ng are trivial, we have

(€2, &12] = [&1,&12] = 0.

Again by degree considerations, there exists ¢ € k such that [£2,&1] = 2.
By the duality between 34 and Z; we have that

N(N—1)

[52751] = (1 - q_l)NQm > &

Then there exists a morphism of algebras § : U(A5) — 34 given by

e1 =&,  exr> &
This morphism takes a basis of A to a basis of ng, so 34 ~ U(A7).

Row 2. Let ¢ € Gy, N > 3. These diagrams correspond to braidings of
super type A with positive roots A;’ ={ay, 01 + ag,as}.
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The first diagram is ¢ ¢ ~! In this case the unique Cartan root is oy

with N,, = N. The element m]lv € gq is primitive and 34 is generated by
&1. Hence 34 ~ U(A]).
The second diagram gives a similar situation, since Oq = {oq + aa}.

Row 3. Let ¢ € Gy, N > 3. The diagram @ g2 @ corresponds to a
braiding of Cartan type By with A;’ = {a1,2a1 + ag, a1 + a9, az}. In this
case Oq = A;r. The coproducts of the generators of B, are:
A(r) =21 @14+ 1® zq; A(zg) =221+ 1® x9;
Az12) =212 @ 1+ 1@ 212+ (1 — ¢ 2) 21 ® 395
Alzng) =212 @1+ 1@ @12+ (1—¢ (1 —¢ ) 2] @y
+q(1—g¢ %)z @ a1
We have two different cases depending on the parity of N.
(1) If N is odd, then N3 = N for all g € A‘T. In this case,
AV =z @1+102); AN =ze1+102);
Azyy) =z @ 1+ 1@z + (1 —¢ )2 @ 2);
Azly) =212 @ 1+ 1@ 2, + (1 —¢ )V - ¢ )Mt @ 2
+CzN @,

for some C' € k. Hence, in 3; we have the relations

[€1,6]) = (1— ¢ ?)Nép;

(€12, 61] = C &2

(€1, 8)c= 10— "HNA - ¢ ) Ve + (1 — ¢ HV & &y
€1, &112] = [€2,&12] =

Thus there exists an algebra map § : U(By ) — 34 given by e1 — &1, eg — &.
Moreover, § is an isomorphism, and so 34 ~ U (B;r ). Using the relations of
U(BY) we check that C = 2(1 — ¢ )N (1 — ¢~ 2N,

(2) If N =2M > 2, then Ny, = Noy+a, = N and Nog, ta, = Na, = M.
In this case we have

AV =V @1+102); A =2Mo01+1e 2,

A =2N@ol+10ad+ (1 — ¢ )Nl VD N g 2M

—o\M M2 M
+ (1 - g )M 2, @ 23

2)M M(M~—1)

Aatly) =2 @1+1@at, +(1—¢ HM (1 —q 421 7 @ x)l.
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Hence, the following relations hold in 3:
[€2,6) = (1 — ¢ )M (1 — ¢ )My M Vep;
(€112, €] = (1 — ¢~ )M gl ¢1;
[€1,E112] = [€2,€12] = 0.
Thus § : U(CF) — 34, €1 > &1, ea > &, is an isomorphism of algebras.

(Of course Cy ~ Bs but in higher rank we will get different root systems
depending on the parity of N).

Row 4. Let ¢ € Gy, N # 2,4. These diagrams correspond to braidings of
super type B with A+ {ozl, 2@1 + a9, a1 + g, an}.

q g2
O—O’
with Ny, = N, Noy+a, = M; here, M = N if N is odd and M = 7 if
N is even. The elements x{v ,:17{\/2[ € gq are primitive in gq. Thus, in 3,
[12,&1] = 0 and 34 ~ U((A1 © Ap)™).

—1
If we consider the diagram ~ ¢ ¢° -! , then Og = {aq, a1 + o}, Noy = M

If the diagram is ! then the Cartan roots are aq and a1 + ao,

and N, ta, = N. The elements 2}/, 2y, € Bq are primitive, so [£12,£1] =0
and 34 ~U((A1 & Ay)™).

/ / : ¢ o1 ¢
Row 5. Let ¢ € Gy, N # 3, ¢ € G5. The diagram q corresponds
to a braiding of standard type Bs, so A;’ = {1,201 + a9, a1 + ag, a0}, The

¢ g¢16a

1
other diagram is obtained by changing the parameter ¢ < (¢~*

The Cartan roots are 2a; + ag and g, with Nog, 4o, = M = ord(Cq™1)

and N,, = N. The elements x{\/{z, xév € By are primitive. Thus, in 34, we
have [£112,&2] = 0. Hence, 34 > U((A1 ® A)T).

. ¢ _ -1 ¢lp1-1
Row 6. Let ¢ € Gf. The diagrams < and correspond
to braidings of standard type B, thus A;’ ={a1,201 + a9, a1 + a9, az}. In
both cases g is empty so the corresponding Lie algebras are trivial.

Row 7. Let ¢ € G},. The diagrams of this row correspond to braidings of
type ufo(7). In all cases Oq = () and the associated Lie algebras are trivial.

Row 8. Let ¢ € G},. The diagrams of this row correspond to braidings of
—¢? ¢ —¢?
o——=O
In this case Oq = {a1 + @2}, Nayta, = 12. Hence 34 ~ U(AT]). The same
result holds for the other braidings in this row.

type ufo(8). For , A;F = {a1,201 + a9, a1 + a9, a1 + 20, an}.

Row 9. Let ¢ € Gj. The diagrams of this row correspond to braidings of
. . . —C C7 CB
type btj(2;3). If g has diagram , then

A;— = {041,2011 + a9, 301 + 2000, 1 + o, 1 + 20&2,0&2}.
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In this case Oq = {1, a1 + s} and Ny, = Nu,4a, = 18. Thus [£12,&1] =0,
SO 3q ~ U((Al D A1)+).
¢ s -1 ¢ ¢ -1

If q has diagram )

the set of positive roots are,
respectively,

{a1,20q + a9, 301 + 209,401 + 3ae, a1 + ag, as},

{a1,40q + a9, 301 + ag,20q + ag, a1 + ag, an};
the Cartan roots are, respectively, a; +as, 2c1 + a9 and aq, 2aq + 2. Hence,

in both cases, 34 ~U((4 ® A;)T).

/ : q 43 ¢
Row 10. Let ¢ € Gy, N > 4. The diagram corresponds to a

braiding of Cartan type G2, so Oq = A;r = {a, a1 + ag,2a1 + a9,30q +
a9, 3a1 + 209, as}. The coproducts of the PBW-generators are:

Alz) =211+ 1®z; A(zg) =22 @1+ 1® x9;
Az1g) =210 1+ 1@ x12 + (1 — ¢ %) 21 ® 295
Az112) = 2112 @ 1+ 1@ 2119 + (1+¢)(1 — ¢ 2) 21 @ w19
+(1-¢HA-q 2! @y,
(z1112) = 21112 @ L + 1 @ 21112 + 2 (1 — ¢2) 21 ® 2112
(-1 —-g )2t @r+ 1 —¢ )1 —¢ (1 —qg ") a2l @
A([z112, 212]e) = [T112, 212]e ® 1+ 1 @ [2112, 12]e + (0 — ¢ ) 2112 @ 212
+(1=q )1+l —q "+ q) z11271 @ 22
—qgn(1 = ¢ )1+ q—¢*) z1112 @ 22 + P (1 — ¢ %) 21 ® [7112, 22)
+ (1= ¢ %¢? — 1) 23 @ o112
+an(l—q )1 —¢ (1 —qg ")z} @a
We have two cases.
(1) If 3 does not divide N, then Ng = N for all 3 € AJ. Thus, in gq,

>

AN =z @1 +1@2); A )=zl @1 +104);
A = ol+1@z 4+ a2 @2,

ANy =Ny @1+ 102, +age) @ 2 + az 23N @ 2¥;
AlzNin) =212 @1+ 1@ 2y +asz) @2y + a5 271" © 1)

—i—a@xi’N@xéV;

P>

N N N N N
([x112, x12].") = [T112, T12], @141 ® [112, 212, + a7 112 @ X715
+ asg xﬁm (9 mév + ag :L"{V & :E%év + aig ZE%N (9 xévle\;

N N N 3N 2N,
+a11 x112x1 ®f1?2 +a12 f]}'l ®f1}'2 N
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for some a; € k. Since

sy N(N-1)
ar=(1-q7")"qy > #0,
ag=(1—q)N(1—q¢ )N #£0,

1I\N 2\N gy NEED
ag=1-q¢ )" (1—=q¢ )" (1—-q¢ ") qy > #0,
ap=1—¢ HV1 - ¢ HN(1 - ¢3)*N £0,

the elements z0, ¥4, 2015 and [z112, 712]2 are not primitive. Hence 3 is
generated by &; and &o; also

[€2,&1] = a1 &12; (€12, &1] = a2 &112;
(€112, &1] = aq &1112; [€1,&1112] = [€2,&12] = 0.
Thus, we have 34 ~ U(GS).
(2) If N = 3M, then No, = Noyta, = Noay+a, = N and N340, =
N3o, 4205 = No, = M. In this case we have

AV =2V o1+122); A=z o1+122);
N(M—1)
Alzpy) =afy @ L+1@aty + (1 - ¢ )y * [onz, 2l @)
N(N-1)
+ (=g )My @™ + (17" Vay 2 @23

Ar1lz) = 212 ® 1+ 1@ 211y + by 2] ® 21) + by 27112 ® [T112, T12]
+ b3 23N @ 23M 4 by 2, @ 2
+ bs x%mx]lv ® x%M + bg a:{v ® xé‘/[;

A(zlg) = 21, ® 1+ 1@ 2y + br 2y @ 23 [2112, 212) 25

Az, z2)M) =2ty @ 1+ 1@ 2y + bg 2l @ 23M 4 by 2] 15 @ 2

for some b; € k. We compute some of them explicitly:
N(M-1)

by = (1 + Q)M(l - q_2)Mq2MQQ1 S

3\M 2\M I\NM N(M-1)
br=(1-q¢7)"1-q¢ )" (1-q ) gy *>
bs = (1 —q 3)*M(1— ¢ M1 - ¢ Mgl

N N M M
As these scalars are not zero, the elements z7, x1}s, 1712 and [z112, T12];
are not primitive. Thus 34 ~ U(G3).

Row 11. Let ¢ € G§. The diagrams of this row correspond to braidings of
standard type Ga, so A;’ = {a1,3a1 + a9, 201 + a2, 307 + 202, 1 + g, g }.

2 —1
If q has diagram < ¢ ¢ , then the Cartan roots are 2a7 + a9 and

ag with Nog, 10, = Na, = 8. The elements xﬁgm,x% € gq are primitive and
[£2,&112] = 0 in 34. Hence 34 ~ U((A1 & A1)T). An analogous result holds
for the other diagrams of the row.
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Row 12. Let ¢ € G),. This row corresponds to type ufo(9). If q has

6 8
diagram & ¢" ¢ | then

A;_ = {1,301 + ag, 201 + a2, 301 + 209, 4oy + 3ag, aq + ag, a1 + 200, an}

and Oq = {1 + a2,30q0 + a2} Here, Nojta, = N3aj4a, = 24, and

23, 231, € By are primitive. In 3, we have the relation [£12,&1112] = 0;
thus 3q o~ U((Al D A1)+).
: ¢t ¢ s -1 ¢ 9 -1

For the other diagrams, , and , the
sets of positive roots are, respectively,

{011, o1 + (o, 2001 + a9, 3aq + a9, 3aq + 20&2, Saq + 20&2, Saq + 30[2, 012},

{011, o1 + (o, 2001 + a9, 3aq + 20&2, 4o + 30&2, daq + 30[2, daq + 40[2, 012},

{a1, a1 + ag,2a1 + ag,3a; + az,4a; + az, 501 + az, 5oy + 20, s}

The Cartan roots are, respectively, 2a; + s, ag; ay + s, bag +3as; a1, bag +
2ai5. Hence, in all cases, 34 ~ U((A1 & A1)T).

Row 13. Let ( € Gf. The braidings in this row are associated to the
Lie superalgebra bvj(2;5) [ABl §5.2]. If q has diagram , then
A;_ = {041, 3aq + g, 2a + aig, b + 3ag, 3a + 2, 4y + 3ag, ap + @i, 012}.
In this case the Cartan roots are aq, a1 + a9, 2aq + ozgvand 3aq + o, with
Na1 = N3a1+2a2 = 5 and Na1+a2 = N2a1+a2 = 10 IH Bq,

Alz) =211+ 1® z7;
A(r12) =212 @01+ 1@ a12 + (1 — () 71 ® 293
Alzrz) =2112®@ 1+ 1@ 2112+ (1+ () (1 = ) 21 ®@ 212
+ (1 =1 =) 2t @
A([r112, T12]e) = [112, T12]e ® 1 + 1 ® [2112, 712
— =)+ 0?21 @ aty — Cgar 117112 @ T2
+ (14 go1 + Cgo1) 11271 @ 22 + (1 — (?) 2171271 @ T2
+(1=¢H(1 =322 @ zoxpo.
Hence the coproducts of a3, z19, 215, [#112, 712]3, € gq are:
A =aiol+ler); Al =fol+1lo;
A(1]y) = 211 @ 1+ 1@ 21y + a1 21° © 213 + a2 2] @ [112, 2125
A([z112, 212]°) = [#112, 2122 © 1 + 1 @ [2112, 212]2 + az 25 @ z19.

for some a; € k. Thus, the following relations hold in 3

12, &1] = az&ii12; [C112,12,&1) = a2 &1 (€1, &nz,12] = [&12,&112] = 0.
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Since

ar =— (1= ¢35+ Q)51+ 62¢ — 15¢% — 87¢3 + 70¢*) # 0;

az =~ (1= (1 +¢)(4 — 8¢ — 19¢* — 3¢ — 50¢") # 0,
the elements a:ﬂ)z, [z112, 3312]2 are not primitive, so £1, {12 generate 34. Hence,
34 ~U(BY).

. —C3 CB —1
If g has diagram , then

A;_ = {1,401 + ag, 301 + a2, bay + 200, 201 + ag, 3aq + 20, a1 + @z, a0},
Dq = {041,3621 + a, 201 + o, a1 + ag},
with Noy = Najy4as = 10, N34, 40, = Nay+a, = 5. The generators of 3, are
&1 and &9 and they satisfy the following relations

€i2,&1] = b1 &z, G2, &) = b2&i2,  [&1, &niz) = [€12,&112] = 0,
for some by, by € k*. Hence 34 ~U(Cy).

Row 14. Let ¢ € G%,. This row corresponds to type ufo(10). If q has
¢ 7 -1
o——=O0
209,401 + 3ag, a1 + ag,as}. The Cartan roots are a; and 3y + 2 with
Nuy = N3ay+2a; = 20. The elements 29, [x112, 712]% € gq are primitive;
thus (€12, &112,12) = 0 in 34 and 3¢ ~ U((A1 & A1)T). The same holds when
the diagram of q is another one in this row: 3 ~ U((A; ® A;)T).

diagram , then A;’ = {a1, 301 + as, 201 + ag, bag + 3ae, 3oy +

Row 15. Let ¢ € G)5. This row corresponds to type ufo(11). If q has

diagram 2 ¢ , then A;{ = {a1, 301 + ag,ba1 + 2a9, 201 + ag, 3a1 +

209, 1 + g, 1 + 29, g} The Cartan roots are ap and 3oy + 2a9 with
]\70(1 = N3a1+2a2 = 30. In 3q we have [512,5112712] = 0, thus 3q ~ Z/[((Al b
A1)T). The same result holds if we consider the other diagrams of this row.

Row 16. Let ( € G%. This row corresponds to type ufo(12). If g has

diagram ¢ 71 then

A‘T ={aq,5a1 + a9, 4aq + ag, Tag + 209, 301 + a9, 8y + 3ag,

S5aq + 2ag, Tag + 3ae, 2aq + ag, 31 + 200, a + g, e}

Also, Oq = {a1, 40+, 31 +ag, bog +2a9, 200+, a1 +az } with Ng = 14
for all B € O4. In By we have

Alr) =21 @1+ 1@ x1;

A1) =212 @1+ 1@a12 + (1 + ) 21 ® 295

A(zi2) =112 ®@ 1+ 1@ z112 + (1 = (1 = °) 21 ® 712
+ (1= +¢%) af @ as;
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Alr12) = 21112 @ L+ 1@ 21112 + (1 + ¢ = )1 + (%) 21 @ 2119
+¢(E D at@rn+ 81— )+ %) 2d @ o
A(z11112) = 211112 ® L + 1 @ 211112 — ((1 — O)(1 = () 21 ®@ 21112
+(1-¢Maf @z — (1- 0 -3 af @
+C1 =001 =) at @ ao;
A([z1112, 2112]e) = [T1112, T112]e ® 1+ 1 @ [T1112, Z112]C
(1-¢°)
(1+¢)
—g21(1 = Q)1 = ¢*) 27 @ [112, T12]c
— (1= (A +4¢+ ¢ —2¢° = 3¢ 2t @ wppanny
a2 (1= ¢PCH 1 =20 = 3¢" = 2¢° + (%) af @ aty
+ (1= + 3?1+ )2l @ zozniz — (1= (1 — ) 21112 @ 7112
= q21¢°(1 = (1 = ¢*)(1 + 20) ] ® w2212
+¢5 (1= 01 - )1+ )2} @ a3
— g (1+ )1 =01 = ¢+ () 2111112 © 22
+Cgn(1+ )1 =1 =) A+ ¢ = ) z1111271 @ 39
— (1= ¢+ (1= ¢ —2¢ = ) z11127] ® 22
+(1=0A+ 4+ = =) rom @ 312
+ ¢ (1= 0?2+ ¢ — ) 211112 ® 712

Hence

(1-C 42Nz @iy,

At =ri*@1+1®at? A(x}%)_:c12®1+1®a;12,
Alzily) =2l @ 1+ 1@ 21y + ay 21t @ 213;
A(zitn) = 21112 ® 1+ 1@ 21115 + ag 71" @ 21y + a3 27> ® z13;
A(ziiine) = 211112 ©® 1+ 1© x11112 +agat! @z

+ as a;l & aznz + ag x1 ® x12§

([r1112, T112]2Y) = [#1112, T112)2 @ 14+ 1 ® [21112, 112) 3% + a7 271, ®@ 213

>

+ag 1110 @ Tl + ag 21 ® 15 + a0 7" © 23t
+ a1 27 © 215711 + @12 111021 © 215;
with a; € k. For instance,
a1 = qa; (1 — ¢)7(1 — ¢°)7(4059 — 7124¢ + 35105¢* + 31472¢* — 17431¢*
+19299¢° + 40124¢%) # 0,
because ¢ € G4 . Also,
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a3 = 26686268 + 39070423¢ — 42643895¢% — 19103336¢3 + 52678504¢*
—4378676¢% — 51111858¢% £ 0.
Since a1, as,ag, a12 # 0 then xi}y, x11),, i}, and [z11192, 112]1* are not

primitive elements in By. Thus, £ and &2 generates 3.
Also, in 34 we have

(12, &1] = a1 & (€1, &112) = a2 &ine;
(€1, &1112) = aa &1n112; (€1, &11112) = [€12,€112] = 0.
So, 34 ~U(GF).
In the case of the diagram ¢ ¢t 1 34 is generated by &;, §12 and
(€12, &1] = b1 &rio; (€12, 112] = b2 &112,12;
(€12, &112,12] = b3 &(112,12),12; [€1,&112] = [€12,€(112,12),12] = O,

where by, by, b3 € k™. Hence, we also have 3, ~ UGy).

Remark 4.1. The results of this paper are part of the thesis of one of the
authors [RB|, where missing details of the computations can be found.
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