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A FINITE-DIMENSIONAL LIE ALGEBRA ARISING FROM

A NICHOLS ALGEBRA OF DIAGONAL TYPE (RANK 2)

NICOLÁS ANDRUSKIEWITSCH, IVÁN ANGIONO, FIORELA ROSSI BERTONE

Abstract. Let Bq be a finite-dimensional Nichols algebra of diagonal
type corresponding to a matrix q ∈ k

θ×θ. Let Lq be the Lusztig algebra
associated to Bq [AAR]. We present Lq as an extension (as braided Hopf
algebras) of Bq by Zq where Zq is isomorphic to the universal enveloping
algebra of a Lie algebra nq. We compute the Lie algebra nq when θ = 2.

1. Introduction

1.1. Let k be a field, algebraically closed and of characteristic zero. Let
θ ∈ N, I = Iθ := {1, 2, ..., θ}. Let q = (qij)i,j∈I be a matrix with entries in
k×, V a vector space with a basis (xi)i∈I and cq ∈ GL(V ⊗ V ) be given by

cq(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I.

Then (cq ⊗ id)(id⊗cq)(cq ⊗ id) = (id⊗cq)(cq ⊗ id)(id⊗cq), i.e. (V, cq) is a
braided vector space and the corresponding Nichols algebra Bq := B(V ) is
called of diagonal type. Recall that Bq is the image of the unique map of
braided Hopf algebras Ω : T (V ) → T c(V ) from the free associative algebra
of V to the free associative coalgebra of V , such that Ω|V = idV . For
unexplained terminology and notation, we refer to [AS].

Remarkably, the explicit classification of all q such that dimBq < ∞ is
known [H2] (we recall the list when θ = 2 in Table 1). Also, for every q in
the list of [H2], the defining relations are described in [A2, A3].

1.2. Assume that dimBq < ∞. Two infinite dimensional graded braided

Hopf algebras B̃q and Lq (the Lusztig algebra of V ) were introduced and

studied in [A3, A5], respectively [AAR]. Indeed, B̃q is a pre-Nichols, and Lq

a post-Nichols, algebra of V , meaning that B̃q is intermediate between T (V )
and Bq, while Lq is intermediate between Bq and T c(V ). This is summarized
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in the following commutative diagram:

T (V )

Ω

**
//

&&◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
Bq

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
// T c(V )

B̃q

π

??
�
�
�
�
�
�
�

Lq

<<③③③③③③③③③

The algebras B̃q and Lq are generalizations of the positive parts of the De
Concini-Kac-Procesi quantum group, respectively the Lusztig quantum di-

vided powers algebra. The distinguished pre-Nichols algebra B̃q is defined

discarding some of the relations in [A3], while Lq is the graded dual of B̃q.

1.3. The following notions are discussed in Section 2. Let ∆q
+ be the gener-

alized positive root system of Bq and let Oq ⊂ ∆q
+ be the set of Cartan roots

of q. Let xβ be the root vector associated to β ∈ ∆q
+, let Nβ = ord qββ and

let Zq be the subalgebra of B̃q generated by x
Nβ

β , β ∈ Oq. By [A5, Theorems

4.10, 4.13], Zq is a braided normal Hopf subalgebra of B̃q and Zq =
co πB̃q.

Actually, Zq is a true commutative Hopf algebra provided that

q
Nβ

αβ = 1, ∀α, β ∈ Oq.(1)

Let Zq be the graded dual of Zq; under the assumption (1) Zq is a co-
commutative Hopf algebra, hence it is isomorphic to the enveloping algebra
U(nq) of the Lie algebra nq := P(Zq). We show in Section 3 that Lq is an
extension (as braided Hopf algebras) of Bq by Zq:

Bq
π∗

→֒ Lq
ι∗

։ Zq.(2)

The main result of this paper is the determination of the Lie algebra nq
when θ = 2 and the generalized Dynkin diagram of q is connected.

Theorem 1.1. Assume that dimBq < ∞ and θ = 2. Then nq is either 0

or isomorphic to g+, where g is a finite-dimensional semisimple Lie algebra

listed in the last column of Table 1.

Assume that there exists a Cartan matrix a = (aij) of finite type, that
becomes symmetric after multiplying with a diagonal (di), and a root of
unit q of odd order (and relatively prime to 3 if a is of type G2) such
that qij = qdiaij for all i, j ∈ I. Then (2) encodes the quantum Frobenius
homomorphism defined by Lusztig and Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of q as established
in [AA]. Thus, we associate Lie algebras in characteristic zero to some con-
tragredient Lie (super)algebras in positive characteristic. In a forthcoming
paper we shall compute the Lie algebra nq for θ > 2.



LIE ALGEBRAS ARISING FROM NICHOLS ALGEBRAS 3

Row Generalized Dynkin diagrams parameters Type of Bq nq ≃ g+

1 ❡ ❡
q q−1 q

q 6= 1 Cartan A A2

2 ❡ ❡
q q−1 −1

❡ ❡
−1 q −1

q 6= ±1 Super A A1

3 ❡ ❡
q q−2 q2

q 6= ±1 Cartan B B2

4 ❡ ❡
q q−2 −1

❡ ❡
−q−1

q2 −1
q /∈ G4 Super B A1 ⊕A1

5 ❡ ❡
ζ q−1 q

❡ ❡
ζ ζ−1qζq

−1

ζ ∈ G3 6∋ q br(2, a) A1 ⊕A1

6 ❡ ❡
ζ −ζ −1

❡ ❡
ζ−1

−ζ−1−1
ζ ∈ G

′
3 Standard B 0

7 ❡ ❡
−ζ−2

−ζ3 −ζ2

❡ ❡
−ζ−2

ζ−1 −1
❡ ❡

−ζ2 −ζ −1
ζ ∈ G

′
12 ufo(7) 0

❡ ❡
−ζ3 ζ −1

❡ ❡
−ζ3−ζ−1−1

8 ❡ ❡
−ζ2 ζ −ζ2

❡ ❡
−ζ2 ζ3 −1

❡ ❡
−ζ−1

−ζ3 −1
ζ ∈ G

′
12 ufo(8) A1

9 ❡ ❡
−ζ ζ−2 ζ3

❡ ❡
ζ3 ζ−1 −1

❡ ❡
−ζ2 ζ −1

ζ ∈ G
′
9 brj(2; 3) A1 ⊕A1

10 ❡ ❡
q q−3 q3

q /∈ G2 ∪G3 Cartan G2 G2

11 ❡ ❡
ζ2 ζ ζ−1

❡ ❡
ζ2 −ζ−1−1

❡ ❡
ζ −ζ −1

ζ ∈ G
′
8 Standard G2 A1 ⊕A1

12 ❡ ❡
ζ6 −ζ−1−ζ−4

❡ ❡
ζ6 ζ ζ−1

ζ ∈ G
′
24 ufo(9) A1 ⊕A1

❡ ❡
−ζ−4

ζ5 −1
❡ ❡
ζ ζ−5 −1

13 ❡ ❡
ζ ζ2 −1

❡ ❡
−ζ−2

ζ−2 −1
ζ ∈ G

′
5 brj(2; 5) B2

14 ❡ ❡
ζ ζ−3 −1

❡ ❡
−ζ−ζ−3−1

ζ ∈ G
′
20 ufo(10) A1 ⊕A1

❡ ❡
−ζ−2

ζ3 −1
❡ ❡

−ζ−2
−ζ3 −1

15 ❡ ❡
−ζ−ζ−3 ζ5

❡ ❡
ζ3 −ζ4−ζ−4

ζ ∈ G
′
15 ufo(11) A1 ⊕A1

❡ ❡
ζ5 −ζ−2−1

❡ ❡
ζ3 −ζ2 −1

16 ❡ ❡
−ζ−ζ−3−1

❡ ❡
−ζ−2

−ζ3 −1
ζ ∈ G

′
7 ufo(12) G2

Table 1. Lie algebras arising from Dynkin diagrams of rank 2.
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1.4. The paper is organized as follows. We collect the needed preliminary
material in Section 2. Section 3 is devoted to the exactness of (2). The
computations of the various nq is the matter of Section 4. We denote by GN

the group of N -th roots of 1, and by G
′
N its subset of primitive roots.

2. Preliminaries

2.1. The Nichols algebra, the distinguished-pre-Nichols algebra and
the Lusztig algebra. Let q be as in the Introduction and let (V, cq) be the
corresponding braided vector space of diagonal type. We assume from now
on that Bq is finite-dimensional. Let (αj)j∈I be the canonical basis of Zθ.

Let q : Zθ ×Z
θ → k× be the Z-bilinear form associated to the matrix q, i.e.

q(αj , αk) = qjk for all j, k ∈ I. If α, β ∈ Z
θ, we set qαβ = q(α, β). Consider

the matrix (cqij)i,j∈I, cij ∈ Z defined by cqii = 2,

cqij := −min {n ∈ N0 : (n+ 1)qii(1− qniiqijqji) = 0} , i 6= j.(3)

This is well-defined by [R]. Let i ∈ I. We recall the following definitions:

⋄ The reflection sqi ∈ GL(Zθ), given by sqi (αj) = αj − cqijαi, j ∈ I.

⋄ The matrix ρi(q), given by ρi(q)jk = q(sqi (αj), s
q
i (αk)), j, k ∈ I.

⋄ The braided vector space ρi(V ) of diagonal type with matrix ρi(q).

A basic result is that Bq ≃ Bρi(q), at least as graded vector spaces.

The algebras T (V ) and Bq are Z
θ-graded by degxi = αi, i ∈ I. Let ∆q

+

be the set of Zθ-degrees of the generators of a PBW-basis of Bq, counted
with multiplicities [H1]. The elements of ∆q

+ are called (positive) roots. Let

∆q = ∆q
+ ∪ −∆q

+. Let

X := {ρj1 . . . ρjN (q) : j1, . . . , jN ∈ I, N ∈ N}.

Then the generalized root system of q is the fibration ∆ → X , where the fiber
of ρj1 . . . ρjN (q) is ∆

ρj1 ...ρjN (q). The Weyl groupoid of Bq is a groupoid, de-
noted Wq, that acts on this fibration, generalizing the classical Weyl group,
see [H1]. We know from loc. cit. that Wq is finite (and this characterizes
finite-dimensional Nichols algebras of diagonal type).

Here is a useful description of ∆q
+. Let w ∈ Wq be an element of maximal

length. We fix a reduced expression w = σq
i1
σi2 · · · σiM . For 1 ≤ k ≤ M set

βk = sqi1 · · · sik−1
(αik),(4)

Then ∆q
+ = {βk|1 ≤ k ≤ M} [CH, Prop. 2.12]; in particular |∆q

+| = M .

The notion of Cartan root is instrumental for the definitions of B̃q and
Lq. First, following [A5] we say that i ∈ I is a Cartan vertex of q if

qijqji = q
cqij
ii , for all j 6= i,(5)

Then the set of Cartan roots of q is

Oq = {sqi1si2 . . . sik(αi) ∈ ∆q
+ : i ∈ I is a Cartan vertex of ρik . . . ρi2ρi1(q)}.
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Given a positive root β ∈ ∆q
+, there is an associated root vector xβ ∈ Bq

defined via the so-called Lusztig isomorphisms [H3]. Set Nβ = ord qββ ∈ N,

β ∈ ∆q
+. Also, for h = (h1, . . . , hM ) ∈ N

M
0 we write

xh = xhM

βM
x
hM−1

βM−1
· · · xh1

β1
.

Let Ñk =

{
Nβk

if βk /∈ Oq,

∞ if βk ∈ Oq.
. For simplicity, we introduce

H = {h ∈ N
M
0 : 0 ≤ hk < Ñk, for all k ∈ IM}.(6)

By [A5, Theorem 3.6] the set {xh |h ∈ H} is a basis of B̃q.

As said in the Introduction, the Lusztig algebra associated to Bq is the

braided Hopf algebra Lq which is the graded dual of B̃q. Thus, it comes

equipped with a bilinear form 〈 , 〉 : B̃q × Lq → k, which satisfies for all

x, x′ ∈ B̃q, y, y
′ ∈ Lq

〈y, xx′〉 = 〈y(2), x〉〈y(1), x′〉 and 〈yy′, x〉 = 〈y, x(2)〉〈y′, x(1)〉.

If h ∈ H, then define yh ∈ Lq by 〈yh, x
j〉 = δh,j, j ∈ H. Let (hk)k∈IM denote

the canonical basis of ZM . If k ∈ IM and β = βk ∈ ∆q
+, then we denote the

element ynhk
by y

(n)
β . Then the algebra Lq is generated by

{yα : α ∈ Πq} ∪ {y(Nα)
α : α ∈ Oq, x

Nα
α ∈ P(B̃q)},

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of Lq:

{y
(h1)
β1

· · · y
(hM )
βM

| (h1, . . . , hM ) ∈ H}.

2.2. Lyndon words, convex order and PBW-basis. For the compu-
tations in Section 4 we need some preliminaries on Kharchenko’s PBW-
basis. Let (V, q) be as above and let X be the set of words with letters in
X = {x1, . . . , xθ} (our fixed basis of V ); the empty word is 1 and for u ∈ X

we write ℓ(u) the length of u. We can identify kX with T (V ).

Definition 2.1. Consider the lexicographic order in X. We say that u ∈
X−{1} is a Lyndon word if for every decomposition u = vw, v,w ∈ X−{1},
then u < w. We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word u ∈ X

admits a unique decomposition, named Lyndon decomposition, as a non-
increasing product of Lyndon words:

(7) u = l1l2 . . . lr, li ∈ L, lr ≤ · · · ≤ l1.

Also, each li ∈ L in (7) is called a Lyndon letter of u.
Now each u ∈ L − X admits at least one decomposition u = v1v2 with

v1, v2 ∈ L. Then the Shirshov decomposition of u is the decomposition
u = u1u2, u1, u2 ∈ L, such that u2 is the smallest end of u between all
possible decompositions of this form.



6 ANDRUSKIEWITSCH; ANGIONO; ROSSI BERTONE

For any braided vector space V , the braided bracket of x, y ∈ T (V ) is

(8) [x, y]c := multiplication ◦ (id−c) (x⊗ y) .

Using the identification T (V ) = kX and the decompositions described
above, we can define a k-linear endomorphism [−]c of T (V ) as follows:

[u]c :=





u, if u = 1 or u ∈ X;

[[v]c , [w]c]c, if u ∈ L−X, u = vw its Shirshov decomposition;

[u1]c . . . [ut]c , if u ∈ X− L, u = u1 . . . ut its Lyndon decomposition.

We will describe PBW-bases using this endomorphism.

Definition 2.2. For l ∈ L, the element [l]c is the corresponding hyperletter.
A word written in hyperletters is an hyperword ; a monotone hyperword is

an hyperword W = [u1]
k1
c . . . [um]kmc such that u1 > · · · > um.

Consider now a different order on X, called deg-lex order [K]: For each
pair u, v ∈ X, we have that u ≻ v if ℓ(u) < ℓ(v), or ℓ(u) = ℓ(v) and u > v
for the lexicographical order. This order is total, the empty word 1 is the
maximal element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of T (V ) and R = T (V )/I. Let π : T (V ) → R be
the canonical projection. We set:

GI := {u ∈ X : u /∈ kX≻u + I} .

Thus, if u ∈ GI and u = vw, then v,w ∈ GI . So, each u ∈ GI is a
non-increasing product of Lyndon words of GI .

Let SI := GI ∩ L and let hI : SI → {2, 3, . . . } ∪ {∞} be defined by:

(9) hI(u) := min
{
t ∈ N : ut ∈ kX≻ut + I

}
.

Theorem 2.3. [K] The following set is a PBW-basis of R = T (V )/I:

{[u1]
k1
c . . . [um]kmc : m ∈ N0, u1 > . . . > um, ui ∈ SI , 0 < ki < hI(ui)}. �

We refer to this base as Kharchenko’s PBW-basis of T (V )/I (it depends
on the order of X).

Definition 2.4. [A2, 2.6] Let ∆+
q be as above and let < be a total order on

∆+
q . We say that the order is convex if for each α, β ∈ ∆+

q such that α < β

and α + β ∈ ∆+
q , then α < α + β < β. The order is called strongly convex

if for each ordered subset α1 ≤ α2 ≤ · · · ≤ αk of elements of ∆+
q such that

α =
∑

i αi ∈ ∆+
q , then α1 < α < αk.

Theorem 2.5. [A2, 2.11] The following statements are equivalent:

• The order is convex.

• The order is strongly convex.

• The order arises from a reduced expression of a longest element w ∈ Wq,

cf. (4). �
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Now, we have two PBW-basis of Bq (and correspondingly of B̃q), namely
Kharchenko’s PBW-basis and the PBW-basis defined from a reduced ex-
pression of a longest element of the Weyl groupoid. But both basis are
reconciled by [AY, Theorem 4.12], thanks to [A2, 2.14]. Indeed, each gen-
erator of Kharchenko’s PBW-basis is a multiple scalar of a generator of the
secondly mentioned PBW-basis. So, for ease of calculations, in the rest of
this work we shall use the Kharchenko generators.

The following proposition is used to compute the hyperword [lβ ]c associ-
ated to a root β ∈ ∆+

q :

Proposition 2.6. [A2, 2.17] For β ∈ ∆+
q ,

lβ =

{
xαi

, if β = αi, i ∈ I;

max{lδ1 lδ2 : δ1, δ2 ∈ ∆+
q , δ1 + δ2 = β, lδ1 < lδ2}, if β 6= αi, i ∈ I. �

We give a list of the hyperwords appearing in the next section:

Root Hyperword Notation
αi xi xi

nα1 + α2 (adc x1)
nx2 x1...12

α1 + 2α2 [xα1+α2 , x2]c [x12, x2]c
3α1 + 2α2 [x2α1+α2 , xα1+α2 ]c [x112, x12]c
4α1 + 3α2 [x3α1+2α2 , xα1+α2 ]c [[x112, x12]c, x12]c
5α1 + 3α2 [x2α1+α2 , x3α1+2α2 ]c [x112, [x112, x12]c]c

We use an analogous notation for the elements of Lq: for example we write
y112,12 when we refer to the element of Lq which corresponds to [x112, x12]c.

3. Extensions of braided Hopf algebras

We recall the definition of braided Hopf algebra extensions given in [AN];
we refer to [BD, GG] for more general definitions. Below we denote by ∆ the
coproduct of a braided Hopf algebra A and by A+ the kernel of the counit.

First, if π : C → B is a morphism of Hopf algebras in H
HYD, then we set

C co π = {c ∈ C | (id⊗π)∆(c) = c⊗ 1},
coπC = {c ∈ C | (π ⊗ id)∆(c) = 1⊗ c}.

Definition 3.1. [AN, §2.5] Let H be a Hopf algebra. A sequence of mor-
phisms of Hopf algebras in H

HYD

k → A
ι
→ C

π
→ B → k(10)

is an extension of braided Hopf algebras if

(i) ι is injective,
(ii) π is surjective,
(iii) ker π = Cι(A+) and
(iv) A = C coπ, or equivalently A = coπC.

For simplicity, we shall write A
ι
→֒ C

π
։ B instead of (10).
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This Definition applies in our context: recall that Bq ≃ B̃q/〈x
Nβ

β , β ∈ Oq〉.

Let Zq be the subalgebra of B̃q generated by x
Nβ

β , β ∈ Oq. Then

◦ The inclusion ι : Zq → B̃q is injective and the projection π : B̃q → Bq is
surjective.

◦ [A5, Theorem 4.10] Zq is a normal Hopf subalgebra of B̃q; since kerπ is

the two-sided ideal generated by ι(Z+
q ), kerπ = B̃qι(Z

+
q ).

◦ [A5, Theorem 4.13] Zq =
co πB̃q.

Hence we have an extension of braided Hopf algebras

Zq
ι
→֒ B̃q

π
։ Bq.(11)

The morphisms ι and π are graded. Thus, taking graded duals, we obtain
a new sequence of morphisms of braided Hopf algebras

Bq
π∗

→֒ Lq
ι∗

։ Zq.(2)

Proposition 3.2. The sequence (2) is an extension of braided Hopf algebras.

Proof. The argument of [A, 3.3.1] can be adapted to the present situation,
or more generally to extensions of braided Hopf algebras that are graded
with finite-dimensional homogeneous components. The map π∗ : Bq → Lq

is injective because Bq ≃ B∗
q ; ι

∗ : Lq
ι∗
→ Zq is surjective being the transpose

of a graded monomorphism between two locally finite graded vector spaces.

Now, since Zq =
coπB̃q = B̃ coπ

q , we have

ker ι∗ = LqB
+
q = B+

q Lq.(12)

Similarly L co ι∗
q = B∗

q because ker π⊥ = Bq. �

From now on, we assume the condition (1) on the matrix q mentioned in
the Introduction, that is

q
Nβ

αβ = 1, ∀α, β ∈ Oq.

The following result is our basic tool to compute the Lie algebra nq.

Theorem 3.3. The braided Hopf algebra Zq is an usual Hopf algebra, iso-

morphic to the universal enveloping algebra of the Lie algebra nq = P(Zq).

The elements ξβ := ι∗(y
(Nβ)
β ), β ∈ Oq, form a basis of nq.

Proof. Let Aq be the subspace of Lq generated by the ordered monomials

y
(r1Nβi1

)

βi1
. . . y

(rkNβik
)

βik

where βi1 < · · · < βik are all the Cartan roots of Bq

and r1, . . . , rk ∈ N0. We claim that the restriction of the multiplication
µ : Bq⊗Aq → Lq is an isomorphism of vector spaces. Indeed, µ is surjective
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by the commuting relations in Lq. Also, the Hilbert series of Lq, Bq and Aq

are respectively:

HLq
=

∏

βk∈Oq

1

1− T deg β
.
∏

βk /∈Oq

1− TNβ deg β

1− T deg β
;

HBq
=

∏

βk∈∆
+
q

1− TNβ deg β

1− T deg β
;

HAq
=

∏

βk∈Oq

1

1− TNβ deg β
.

Since the multiplication is graded and HLq
= HBq

HAq
, µ is injective. The

claim follows and we have

Lq = Aq ⊕B+
q Aq.(13)

We next claim that ι∗ : Aq → Zq is an isomorphism of vector spaces.
Indeed, by (12), ker ι∗ = B+

q Lq = B+
q (BqAq) = B+

q Aq. By (13), the claim
follows.

By (1), Zq is a commutative Hopf algebra, see [A5]; hence Zq is a co-

commutative Hopf algebra. Now the elements ξβ := ι∗(y
(Nβ)
β ), , β ∈ Oq,

are primitive, i.e. belong to nq = P(Zq). The monomials ξr1βi1
. . . ξrkβik

,

βi1 < · · · < βik ∈ Oq, r1, . . . , rk ∈ N0 form a basis of Zq, hence

Zq = k〈ξβ : β ∈ Oq〉 ⊆ U(nq) ⊆ Zq.

We conclude that (ξβ)β∈Oq
is a basis of nq and that Zq = U(nq). �

4. Proof of Theorem 1.1

In this section we consider all indecomposable matrices q of rank 2 whose
associated Nichols algebra Bq is finite-dimensional; these are classified in
[H2] and we recall their diagrams in Table 1. For each q we obtain an
isomorphism between Zq and U(g+), the universal enveloping algebra of the
positive part of g. Here g is the semisimple Lie algebra of the last column
of Table 1, with Cartan matrix A = (aij)1≤i,j≤2. By simplicity we denote g
by its type, e.g. g = A2.

We recall that we assume (1) and that ξβ = ι∗(y
(Nβ )
β ) ∈ Zq. Thus,

[ξα, ξβ]c = ξαξβ − ξβξα = [ξα, ξβ], for all α, β ∈ Oq.

The strategy to prove the isomorphism F : U(g+) → Zq is the following:

(1) If Oq = ∅, then g+ = 0. If |Oq| = 1, then g = sl2, i.e. of type A1.
(2) If |Oq| = 2, then g is of type A1 ⊕ A1. Indeed, let Oq = {α, β}. As Zq

is Nθ
0-graded, [ξα, ξβ] ∈ nq has degree Nαα+Nββ. Thus [ξα, ξβ] = 0.

(3) Now assume that |Oq| > 2. We recall that Zq is generated by

{ξβ|x
Nβ

β is a primitive element of B̃q}.
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We compute the coproduct of all x
Nβ

β in B̃q, β ∈ Oq, using that ∆ is a

graded map and Zq is a Hopf subalgebra of B̃q. In all cases we get two

primitive elements x
Nβ1
β1

and x
Nβ2
β2

, thus Zq is generated by ξβ1 and ξβ2 .

(4) Using the coproduct again, we check that

(ad ξβi
)1−aijξβj

= 0, 1 ≤ i 6= j ≤ 2.(14)

To prove (14), it is enough to observe that nq has a trivial component
of degree Nβi

(1 − aij)βi +Nβj
βj . Now (14) implies that there exists a

surjective map of Hopf algebras F : U(g+) ։ Zq such that ei 7→ ξβi
.

(5) To prove that F is an isomorphism, it suffices to see that the restriction

g+
∗
→ nq is an isomorphism; but in each case we see that ∗ is surjective,

and dim g+ = dimnq = |Oq|.

We refer to [A1, AAY, A4] for the presentation, root system and Cartan
roots of braidings of standard, super and unidentified type respectively.

Row 1. Let q ∈ G
′
N , N ≥ 2. The diagram ❡ ❡

q q−1 q
corresponds to a

braiding of Cartan type A2 whose set of positive roots is ∆+
q = {α1, α1 +

α2, α2}. In this case Oq = ∆+
q and Nβ = N for all β ∈ Oq. By hypothesis,

qN12 = qN21 = 1. The elements x1, x2 ∈ B̃q are primitive and

∆(x12) = x12 ⊗ 1 + 1⊗ x12 + (1− q−1)x1 ⊗ x2.

Then the coproducts of the elements xN1 , xN12, x
N
2 ∈ B̃q are:

∆(xN1 ) = xN1 ⊗ 1 + 1⊗ xN1 ; ∆(xN2 ) = xN2 ⊗ 1 + 1⊗ xN2 ;

∆(xN12) = xN12 ⊗ 1 + 1⊗ xN12 + (1− q−1)Nq
N(N−1)

2
21 xN1 ⊗ xN2 .

As [ξ2, ξ12], [ξ1, ξ12] ∈ nq have degree Nα1+2Nα2, respectively 2Nα1+Nα2,
and the components of these degrees of nq are trivial, we have

[ξ2, ξ12] = [ξ1, ξ12] = 0.

Again by degree considerations, there exists c ∈ k such that [ξ2, ξ1] = cξ12.
By the duality between Zq and Zq we have that

[ξ2, ξ1] = (1− q−1)Nq
N(N−1)

2
21 ξ12.

Then there exists a morphism of algebras F : U(A+
2 ) → Zq given by

e1 7→ ξ1, e2 7→ ξ2.

This morphism takes a basis of A+
2 to a basis of nq, so Zq ≃ U(A+

2 ).

Row 2. Let q ∈ G
′
N , N ≥ 3. These diagrams correspond to braidings of

super type A with positive roots ∆+
q = {α1, α1 + α2, α2}.
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The first diagram is ❡ ❡
q q−1 −1

. In this case the unique Cartan root is α1

with Nα1 = N . The element xN1 ∈ B̃q is primitive and Zq is generated by
ξ1. Hence Zq ≃ U(A+

1 ).
The second diagram gives a similar situation, since Oq = {α1 + α2}.

Row 3. Let q ∈ G
′
N , N ≥ 3. The diagram ❡ ❡

q q−2 q2
corresponds to a

braiding of Cartan type B2 with ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}. In this

case Oq = ∆+
q . The coproducts of the generators of B̃q are:

∆(x1) =x1 ⊗ 1 + 1⊗ x1; ∆(x2) = x2 ⊗ 1 + 1⊗ x2;

∆(x12) =x12 ⊗ 1 + 1⊗ x12 + (1− q−2)x1 ⊗ x2;

∆(x112) =x112 ⊗ 1 + 1⊗ x112 + (1− q−1)(1− q−2)x21 ⊗ x2

+ q(1− q−2)x1 ⊗ x12.

We have two different cases depending on the parity of N .

(1) If N is odd, then Nβ = N for all β ∈ ∆+
q . In this case,

∆(xN1 ) =xN1 ⊗ 1 + 1⊗ xN1 ; ∆(xN2 ) = xN2 ⊗ 1 + 1⊗ xN2 ;

∆(xN12) =xN12 ⊗ 1 + 1⊗ xN12 + (1− q−2)NxN1 ⊗ xN2 ;

∆(xN112) =xN112 ⊗ 1 + 1⊗ xN112 + (1− q−1)N (1− q−2)Nx2N1 ⊗ xN2

+ C xN1 ⊗ xN12,

for some C ∈ k. Hence, in Zq we have the relations

[ξ1, ξ2] = (1− q−2)N ξ12;

[ξ12, ξ1] = C ξ112;

[ξ1, ξ2]c = (1− q−1)N (1− q−2)N ξ112 + (1− q−2)N ξ1ξ12;

[ξ1, ξ112] = [ξ2, ξ12] = 0.

Thus there exists an algebra map F : U(B+
2 ) → Zq given by e1 7→ ξ1, e2 7→ ξ2.

Moreover, F is an isomorphism, and so Zq ≃ U(B+
2 ). Using the relations of

U(B+
2 ) we check that C = 2(1− q−1)N (1− q−2)N .

(2) If N = 2M > 2, then Nα1 = Nα1+α2 = N and N2α1+α2 = Nα2 = M .
In this case we have

∆(xN1 ) =xN1 ⊗ 1 + 1⊗ xN1 ; ∆(xM2 ) = xM2 ⊗ 1 + 1⊗ xM2 ;

∆(xN12) =xN12 ⊗ 1 + 1⊗ xN12 + (1− q−2)Nq
M(N−1)
21 xN1 ⊗ x2M2

+ (1− q−2)MqM
2

21 xM112 ⊗ xM2 ;

∆(xM112) =xM112 ⊗ 1 + 1⊗ xM112 + (1− q−1)M (1− q−2)M q
M(M−1)
21 xN1 ⊗ xM2 .
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Hence, the following relations hold in Zq:

[ξ2, ξ1] = (1− q−1)M (1− q−2)M q
M(M−1)
21 ξ112;

[ξ112, ξ2] = (1− q−2)MqM
2

21 ξ12;

[ξ1, ξ112] = [ξ2, ξ12] = 0.

Thus F : U(C+
2 ) → Zq, e1 7→ ξ1, e2 7→ ξ2, is an isomorphism of algebras.

(Of course C2 ≃ B2 but in higher rank we will get different root systems
depending on the parity of N).

Row 4. Let q ∈ G
′
N , N 6= 2, 4. These diagrams correspond to braidings of

super type B with ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}.

If the diagram is ❡ ❡
q q−2 −1

, then the Cartan roots are α1 and α1 + α2,

with Nα1 = N , Nα1+α2 = M ; here, M = N if N is odd and M = N
2 if

N is even. The elements xN1 , xM12 ∈ B̃q are primitive in B̃q. Thus, in Zq,
[ξ12, ξ1] = 0 and Zq ≃ U((A1 ⊕A1)

+).

If we consider the diagram ❡ ❡
−q−1

q2 −1
, then Oq = {α1, α1+α2}, Nα1 = M

and Nα1+α2 = N . The elements xM1 , xN12 ∈ B̃q are primitive, so [ξ12, ξ1] = 0
and Zq ≃ U((A1 ⊕A1)

+).

Row 5. Let q ∈ G
′
N , N 6= 3, ζ ∈ G

′
3. The diagram ❡ ❡

ζ q−1 q
corresponds

to a braiding of standard type B2, so ∆+
q = {α1, 2α1+α2, α1+α2, α2}. The

other diagram ❢ ❢

ζ qζ−1 ζq−1

is obtained by changing the parameter q ↔ ζq−1.

The Cartan roots are 2α1 + α2 and α2, with N2α1+α2 = M := ord(ζq−1)

and Nα2 = N . The elements xM112, x
N
2 ∈ B̃q are primitive. Thus, in Zq, we

have [ξ112, ξ2] = 0. Hence, Zq ≃ U((A1 ⊕A1)
+).

Row 6. Let ζ ∈ G
′
3. The diagrams ❡ ❡

ζ −ζ −1
and ❡ ❡

ζ−1
−ζ−1−1

correspond

to braidings of standard type B, thus ∆+
q = {α1, 2α1 + α2, α1 + α2, α2}. In

both cases Oq is empty so the corresponding Lie algebras are trivial.

Row 7. Let ζ ∈ G
′
12. The diagrams of this row correspond to braidings of

type ufo(7). In all cases Oq = ∅ and the associated Lie algebras are trivial.

Row 8. Let ζ ∈ G
′
12. The diagrams of this row correspond to braidings of

type ufo(8). For ❡ ❡
−ζ2 ζ −ζ2

, ∆+
q = {α1, 2α1 + α2, α1 + α2, α1 + 2α2, α2}.

In this case Oq = {α1 + α2}, Nα1+α2 = 12. Hence Zq ≃ U(A+
1 ). The same

result holds for the other braidings in this row.

Row 9. Let ζ ∈ G
′
9. The diagrams of this row correspond to braidings of

type brj(2; 3). If q has diagram ❡ ❡
−ζ ζ7 ζ3

, then

∆+
q = {α1, 2α1 + α2, 3α1 + 2α2, α1 + α2, α1 + 2α2, α2}.
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In this case Oq = {α1, α1 +α2} and Nα1 = Nα1+α2 = 18. Thus [ξ12, ξ1] = 0,
so Zq ≃ U((A1 ⊕A1)

+).

If q has diagram ❡ ❡
ζ3 ζ8 −1

, ❡ ❡
−ζ2 ζ −1

the set of positive roots are,

respectively,

{α1, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, α1 + α2, α2},

{α1, 4α1 + α2, 3α1 + α2, 2α1 + α2, α1 + α2, α2};

the Cartan roots are, respectively, α1+α2, 2α1+α2 and α1, 2α1+α2. Hence,
in both cases, Zq ≃ U((A1 ⊕A1)

+).

Row 10. Let q ∈ G
′
N , N ≥ 4. The diagram ❡ ❡

q q−3 q3
corresponds to a

braiding of Cartan type G2, so Oq = ∆+
q = {α1, α1 + α2, 2α1 + α2, 3α1 +

α2, 3α1 + 2α2, α2}. The coproducts of the PBW-generators are:

∆(x1) = x1 ⊗ 1 + 1⊗ x1; ∆(x2) = x2 ⊗ 1 + 1⊗ x2;

∆(x12) = x12 ⊗ 1 + 1⊗ x12 + (1− q−3)x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1⊗ x112 + (1 + q)(1− q−2)x1 ⊗ x12

+ (1− q−2)(1 − q−3)x21 ⊗ x2;

∆(x1112) = x1112 ⊗ 1 + 1⊗ x1112 + q2(1− q−3)x1 ⊗ x112

+ (q2 − 1)(1 − q−3)x21 ⊗ x12 + (1− q−3)(1− q−2)(1− q−1)x31 ⊗ x2;

∆([x112, x12]c) = [x112, x12]c ⊗ 1 + 1⊗ [x112, x12]c + (q − q−1)x112 ⊗ x12

+ (1− q−3)(1 + q)(1 − q−1 + q)x112x1 ⊗ x2

− qq21(1− q−3)(1 + q − q2)x1112 ⊗ x2 + q2q21(1− q−3)x1 ⊗ [x112, x2]c

+ (1− q−3)2(q2 − 1)x21 ⊗ x2x12

+ q21(1− q−3)2(1− q−2)(1 − q−1)x31 ⊗ x22.

We have two cases.

(1) If 3 does not divide N , then Nβ = N for all β ∈ ∆+
q . Thus, in B̃q,

∆(xN1 ) = xN1 ⊗ 1 + 1⊗ xN1 ; ∆(xN2 ) = xN2 ⊗ 1 + 1⊗ xN2 ;

∆(xN12) = xN12 ⊗ 1 + 1⊗ xN12 + a1 x
N
1 ⊗ xN2 ;

∆(xN112) = xN112 ⊗ 1 + 1⊗ xN112 + a2 x
N
1 ⊗ xN12 + a3 x

2N
1 ⊗ xN2 ;

∆(xN1112) = xN1112 ⊗ 1 + 1⊗ xN1112 + a4 x
N
1 ⊗ xN112 + a5 x

2N
1 ⊗ xN12

+ a6 x
3N
1 ⊗ xN2 ;

∆([x112, x12]
N
c ) = [x112, x12]

N
c ⊗ 1 + 1⊗ [x112, x12]

N
c + a7 x

N
112 ⊗ xN12

+ a8 x
N
1112 ⊗ xN2 + a9 x

N
1 ⊗ x2N12 + a10 x

2N
1 ⊗ xN2 xN12

+ a11 x
N
112x

N
1 ⊗ xN2 + a12 x

3N
1 ⊗ x2N2 ;
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for some ai ∈ k. Since

a1 = (1− q−3)Nq
N(N−1)

2
21 6= 0,

a3 = (1− q−2)N (1− q−3)N 6= 0,

a6 = (1− q−1)N (1− q−2)N (1− q−3)Nq
3N(N−1)

2
21 6= 0,

a12 = (1− q−1)N (1− q−2)N (1− q−3)2N 6= 0,

the elements xN12, x
N
112, x

N
1112 and [x112, x12]

N
c are not primitive. Hence Zq is

generated by ξ1 and ξ2; also

[ξ2, ξ1] = a1 ξ12; [ξ12, ξ1] = a2 ξ112;

[ξ112, ξ1] = a4 ξ1112; [ξ1, ξ1112] = [ξ2, ξ12] = 0.

Thus, we have Zq ≃ U(G+
2 ).

(2) If N = 3M , then Nα1 = Nα1+α2 = N2α1+α2 = N and N3α1+α2 =
N3α1+2α2 = Nα2 = M . In this case we have

∆(xN1 ) = xN1 ⊗ 1 + 1⊗ xN1 ; ∆(xM2 ) = xM2 ⊗ 1 + 1⊗ xM2 ;

∆(xN12) = xN12 ⊗ 1 + 1⊗ xN12 + (1− q−3)Mq
N(M−1)

2
21 [x112, x12]

M
c ⊗ xM2

+ (1− q−3)2MxM1112 ⊗ x2M2 + (1− q−3)Nq
N(N−1)

2
21 xN1 ⊗ x3M2 ;

∆(xN112) = xM112 ⊗ 1 + 1⊗ xM112 + b1 x
N
1 ⊗ xN12 + b2 x

M
1112 ⊗ [x112, x12]

M
c

+ b3 x
2N
1 ⊗ x3M2 + b4 x

2M
1112 ⊗ xM2

+ b5 x
M
1112x

N
1 ⊗ x2M2 + b6 x

N
1 ⊗ xM2 ;

∆(xM1112) = xM112 ⊗ 1 + 1⊗ xM112 + b7 x
N
1 ⊗ xM2 [x112, x12]

M
c ;

∆([x112, x12]
M
c ) = xM112 ⊗ 1 + 1⊗ xM112 + b8 x

N
1 ⊗ x2M2 + b9 x

M
1112 ⊗ xM2 ;

for some bi ∈ k. We compute some of them explicitly:

b2 = (1 + q)M (1− q−2)M q2Mq
N(M−1)

2
21 ,

b7 = (1− q−3)M (1− q−2)M (1− q−1)Mq
N(M−1)

2
21 ,

b8 = (1− q−3)2M (1− q−2)M (1− q−1)M qM21 .

As these scalars are not zero, the elements xN12, x
N
112, x

M
1112 and [x112, x12]

M
c

are not primitive. Thus Zq ≃ U(G+
2 ).

Row 11. Let ζ ∈ G
′
8. The diagrams of this row correspond to braidings of

standard type G2, so ∆+
q = {α1, 3α1 +α2, 2α1 +α2, 3α1 +2α2, α1 +α2, α2}.

If q has diagram ❡ ❡
ζ2 ζ ζ−1

, then the Cartan roots are 2α1 + α2 and

α2 with N2α1+α2 = Nα2 = 8. The elements x8112, x
8
2 ∈ B̃q are primitive and

[ξ2, ξ112] = 0 in Zq. Hence Zq ≃ U((A1 ⊕ A1)
+). An analogous result holds

for the other diagrams of the row.
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Row 12. Let ζ ∈ G
′
24. This row corresponds to type ufo(9). If q has

diagram ❡ ❡
ζ6 ζ11 ζ8

, then

∆+
q = {α1, 3α1 + α2, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, α1 + α2, α1 + 2α2, α2}

and Oq = {α1 + α2, 3α1 + α2}. Here, Nα1+α2 = N3α1+α2 = 24, and

x2412, x
24
1112 ∈ B̃q are primitive. In Zq we have the relation [ξ12, ξ1112] = 0;

thus Zq ≃ U((A1 ⊕A1)
+).

For the other diagrams, ❡ ❡
ζ6 ζ ζ−1

, ❡ ❡
ζ8 ζ5 −1

and ❡ ❡
ζ ζ19 −1

, the

sets of positive roots are, respectively,

{α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2, 5α1 + 2α2, 5α1 + 3α2, α2},

{α1, α1 + α2, 2α1 + α2, 3α1 + 2α2, 4α1 + 3α2, 5α1 + 3α2, 5α1 + 4α2, α2},

{α1, α1 + α2, 2α1 + α2, 3α1 + α2, 4α1 + α2, 5α1 + α2, 5α1 + 2α2, α2}.

The Cartan roots are, respectively, 2α1+α2, α2; α1+α2, 5α1+3α2; α1, 5α1+
2α2. Hence, in all cases, Zq ≃ U((A1 ⊕A1)

+).

Row 13. Let ζ ∈ G
′
5. The braidings in this row are associated to the

Lie superalgebra brj(2; 5) [A5, §5.2]. If q has diagram ❡ ❡
ζ ζ2 −1

, then

∆+
q = {α1, 3α1 +α2, 2α1 +α2, 5α1 +3α2, 3α1 +2α2, 4α1 +3α2, α1 +α2, α2}.

In this case the Cartan roots are α1, α1 + α2, 2α1 + α2 and 3α1 + α2, with

Nα1 = N3α1+2α2 = 5 and Nα1+α2 = N2α1+α2 = 10. In B̃q,

∆(x1) = x1 ⊗ 1 + 1⊗ x1;

∆(x12) = x12 ⊗ 1 + 1⊗ x12 + (1− ζ2)x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1⊗ x112 + (1 + ζ)(1− ζ3)x1 ⊗ x12

+ (1− ζ2)(1 − ζ3)x21 ⊗ x2;

∆([x112, x12]c) = [x112, x12]c ⊗ 1 + 1⊗ [x112, x12]c

− ζ3(1− ζ3)(1 + ζ)2 x1 ⊗ x212 − ζq21 x1x112 ⊗ x2

+ (1 + q21 + ζ3q21)x112x1 ⊗ x2 + ζ(1− ζ2)x1x12x1 ⊗ x2

+ (1− ζ2)(1 − ζ3)2 x21 ⊗ x2x12.

Hence the coproducts of x51, x
10
12, x

10
112, [x112, x12]

5
c ,∈ B̃q are:

∆(x51) = x51 ⊗ 1 + 1⊗ x51; ∆(x1012) = x1012 ⊗ 1 + 1⊗ x1012;

∆(x10112) = x10112 ⊗ 1 + 1⊗ x10112 + a1 x
10
1 ⊗ x1012 + a2 x

5
1 ⊗ [x112, x12]

5
c ;

∆([x112, x12]
5
c) = [x112, x12]

5
c ⊗ 1 + 1⊗ [x112, x12]

5
c + a3 x

5
1 ⊗ x1012.

for some ai ∈ k. Thus, the following relations hold in Zq

[ξ12, ξ1] = a3 ξ112,12; [ξ112,12, ξ1] = a2 ξ112; [ξ1, ξ112,12] = [ξ12, ξ112] = 0.
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Since

a1 =− (1− ζ3)5(1 + ζ)5(1 + 62ζ − 15ζ2 − 87ζ3 + 70ζ4) 6= 0;

a3 =− (1− ζ3)5(1 + ζ)8(4− 8ζ − 19ζ2 − 3ζ3 − 50ζ4) 6= 0,

the elements x10112, [x112, x12]
5
c are not primitive, so ξ1, ξ12 generate Zq. Hence,

Zq ≃ U(B+
2 ).

If q has diagram ❡ ❡
−ζ3 ζ3 −1

, then

∆+
q = {α1, 4α1 + α2, 3α1 + α2, 5α1 + 2α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2},

Oq = {α1, 3α1 + α2, 2α1 + α2, α1 + α2},

with Nα1 = Nα1+α2 = 10, N3α1+α2 = Nα1+α2 = 5. The generators of Zq are
ξ1 and ξ12 and they satisfy the following relations

[ξ12, ξ1] = b1 ξ1112, [ξ1112, ξ12] = b2 ξ112, [ξ1, ξ1112] = [ξ12, ξ112] = 0,

for some b1, b2 ∈ k×. Hence Zq ≃ U(C+
2 ).

Row 14. Let ζ ∈ G
′
20. This row corresponds to type ufo(10). If q has

diagram ❡ ❡
ζ ζ17 −1

, then ∆+
q = {α1, 3α1 + α2, 2α1 + α2, 5α1 + 3α2, 3α1 +

2α2, 4α1 + 3α2, α1 + α2, α2}. The Cartan roots are α1 and 3α1 + 2α2 with

Nα1 = N3α1+2α2 = 20. The elements x201 , [x112, x12]
20
c ∈ B̃q are primitive;

thus [ξ12, ξ112,12] = 0 in Zq and Zq ≃ U((A1 ⊕A1)
+). The same holds when

the diagram of q is another one in this row: Zq ≃ U((A1 ⊕A1)
+).

Row 15. Let ζ ∈ G
′
15. This row corresponds to type ufo(11). If q has

diagram ❡ ❡
−ζ −ζ12 ζ5

, then ∆+
q = {α1, 3α1 + α2, 5α1 + 2α2, 2α1 + α2, 3α1 +

2α2, α1 + α2, α1 + 2α2, α2}. The Cartan roots are α1 and 3α1 + 2α2 with
Nα1 = N3α1+2α2 = 30. In Zq we have [ξ12, ξ112,12] = 0, thus Zq ≃ U((A1 ⊕
A1)

+). The same result holds if we consider the other diagrams of this row.

Row 16. Let ζ ∈ G
′
7. This row corresponds to type ufo(12). If q has

diagram ❡ ❡
−ζ5 −ζ3 −1

, then

∆+
q = {α1, 5α1 + α2, 4α1 + α2, 7α1 + 2α2, 3α1 + α2, 8α1 + 3α2,

5α1 + 2α2, 7α1 + 3α2, 2α1 + α2, 3α1 + 2α2, α1 + α2, α2}.

Also, Oq = {α1, 4α1+α2, 3α1+α2, 5α1+2α2, 2α1+α2, α1+α2} with Nβ = 14

for all β ∈ Oq. In B̃q we have

∆(x1) = x1 ⊗ 1 + 1⊗ x1;

∆(x12) = x12 ⊗ 1 + 1⊗ x12 + (1 + ζ3)x1 ⊗ x2;

∆(x112) = x112 ⊗ 1 + 1⊗ x112 + (1− ζ)(1− ζ5)x1 ⊗ x12

+ (1− ζ)(1 + ζ3)x21 ⊗ x2;



LIE ALGEBRAS ARISING FROM NICHOLS ALGEBRAS 17

∆(x1112) = x1112 ⊗ 1 + 1⊗ x1112 + (1 + ζ3 − ζ5)(1 + ζ6)x1 ⊗ x112

+ ζ(ζ3 − 1)x21 ⊗ x12 + ζ6(1− ζ2)(1 + ζ3)x31 ⊗ x2;

∆(x11112) = x11112 ⊗ 1 + 1⊗ x11112 − ζ(1− ζ)(1− ζ2)x1 ⊗ x1112

+ (1− ζ4)x21 ⊗ x112 − (1− ζ)(1− ζ2)2 x31 ⊗ x12

+ ζ2(1− ζ)(1− ζ2)x41 ⊗ x2;

∆([x1112, x112]c) = [x1112, x112]c ⊗ 1 + 1⊗ [x1112, x112]c

−
(1− ζ5)

(1 + ζ)
(1− ζ3 + 2ζ4)x1 ⊗ x2112

− q21(1− ζ)(1− ζ3)x21 ⊗ [x112, x12]c

− (1− ζ)2(4 + 4ζ + ζ2 − 2ζ3 − 3ζ4)x21 ⊗ x12x112

+ q21(1− ζ2)2ζ4(1− 2ζ − 3ζ4 − 2ζ5 + ζ6)x31 ⊗ x212

+ (1− ζ)2(1 + ζ3)2(1 + ζ6)x31 ⊗ x2x112 − ζ(1− ζ)(1− ζ2)x1112 ⊗ x112

− q21ζ
6(1− ζ)2(1− ζ2)(1 + 2ζ)x41 ⊗ x2x12

+ q221ζ
2(1− ζ)2(1− ζ2)(1 + ζ3)x51 ⊗ x22

− q212(1 + ζ3)(1− ζ)(1− ζ4 + ζ6)x111112 ⊗ x2

+ ζq21(1 + ζ3)(1− ζ)(1− ζ2)(1 + ζ − ζ2)x11112x1 ⊗ x2

− ζ(1− ζ)2(1 + ζ3)(1− ζ − 2ζ2 − ζ3)x1112x
2
1 ⊗ x2

+ (1− ζ)(1 + ζ2 + ζ3 − ζ4 − ζ5)x1112x1 ⊗ x12

+ ζq21(1− ζ)2(2 + ζ − ζ3)x11112 ⊗ x12.

Hence

∆(x141 ) = x141 ⊗ 1 + 1⊗ x141 ; ∆(x1412) = x1412 ⊗ 1 + 1⊗ x1412;

∆(x14112) = x14112 ⊗ 1 + 1⊗ x14112 + a1 x
14
1 ⊗ x1412;

∆(x141112) = x141112 ⊗ 1 + 1⊗ x141112 + a2 x
14
1 ⊗ x14112 + a3 x

28
1 ⊗ x1412;

∆(x1411112) = x1411112 ⊗ 1 + 1⊗ x1411112 + a4 x
14
1 ⊗ x141112

+ a5 x
28
1 ⊗ x14112 + a6 x

42
1 ⊗ x1412;

∆([x1112, x112]
14
c ) = [x1112, x112]

14
c ⊗ 1 + 1⊗ [x1112, x112]

14
c + a7 x

14
1112 ⊗ x1412

+ a8 x
14
11112 ⊗ x1412 + a9 x

42
1 ⊗ x2812 + a10 x

14
1 ⊗ x28112

+ a11 x
28
1 ⊗ x1412x

14
112 + a12 x

14
1112x

14
1 ⊗ x1412;

with ai ∈ k. For instance,

a1 = q721(1− ζ)7(1− ζ5)7
(
4059 − 7124ζ + 35105ζ2 + 31472ζ3 − 17431ζ4

+19299ζ5 + 40124ζ6
)
6= 0,

because ζ ∈ G
′
7 . Also,
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a3 = 26686268 + 39070423ζ − 42643895ζ2 − 19103336ζ3 + 52678504ζ4

−4378676ζ5 − 51111858ζ6 6= 0.

Since a1, a3, a6, a12 6= 0 then x14112, x
14
1112, x

14
11112 and [x1112, x112]

14
c are not

primitive elements in B̃q. Thus, ξ1 and ξ12 generates Zq.
Also, in Zq we have

[ξ12, ξ1] = a1 ξ112; [ξ1, ξ112] = a2 ξ1112;

[ξ1, ξ1112] = a4 ξ11112; [ξ1, ξ11112] = [ξ12, ξ112] = 0.

So, Zq ≃ U(G+
2 ).

In the case of the diagram ❡ ❡
−ζ −ζ4 −1

Zq is generated by ξ1, ξ12 and

[ξ12, ξ1] = b1 ξ112; [ξ12, ξ112] = b2 ξ112,12;

[ξ12, ξ112,12] = b3 ξ(112,12),12; [ξ1, ξ112] = [ξ12, ξ(112,12),12] = 0,

where b1, b2, b3 ∈ k×. Hence, we also have Zq ≃ U(G+
2 ).

Remark 4.1. The results of this paper are part of the thesis of one of the
authors [RB], where missing details of the computations can be found.
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