A FINITE-DIMENSIONAL LIE ALGEBRA ARISING FROM A NICHOLS ALGEBRA OF DIAGONAL TYPE (RANK 2)

NICOLÁS ANDRUSKIEWITSCH, IVÁN ANGIONO, FIORELA ROSSI BERTONE

ABSTRACT. Let $\mathcal{B}_{\mathfrak{q}}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix $\mathfrak{q} \in \mathbf{k}^{\theta \times \theta}$. Let $\mathcal{L}_{\mathfrak{q}}$ be the Lusztig algebra associated to $\mathcal{B}_{\mathfrak{q}}$ [AAR]. We present $\mathcal{L}_{\mathfrak{q}}$ as an extension (as braided Hopf algebras) of $\mathcal{B}_{\mathfrak{q}}$ by $\mathfrak{Z}_{\mathfrak{q}}$ where $\mathfrak{Z}_{\mathfrak{q}}$ is isomorphic to the universal enveloping algebra of a Lie algebra $\mathfrak{n}_{\mathfrak{q}}$. We compute the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ when $\theta = 2$.

1. INTRODUCTION

1.1. Let **k** be a field, algebraically closed and of characteristic zero. Let $\theta \in \mathbb{N}$, $\mathbb{I} = \mathbb{I}_{\theta} := \{1, 2, ..., \theta\}$. Let $\mathfrak{q} = (q_{ij})_{i,j \in \mathbb{I}}$ be a matrix with entries in \mathbf{k}^{\times} , V a vector space with a basis $(x_i)_{i \in \mathbb{I}}$ and $c^{\mathfrak{q}} \in GL(V \otimes V)$ be given by

$$c^{\mathsf{q}}(x_i \otimes x_j) = q_{ij} x_j \otimes x_i, \qquad i, j \in \mathbb{I}.$$

Then $(c^{\mathfrak{q}} \otimes \mathrm{id})(\mathrm{id} \otimes c^{\mathfrak{q}})(c^{\mathfrak{q}} \otimes \mathrm{id}) = (\mathrm{id} \otimes c^{\mathfrak{q}})(c^{\mathfrak{q}} \otimes \mathrm{id})(\mathrm{id} \otimes c^{\mathfrak{q}})$, i.e. $(V, c^{\mathfrak{q}})$ is a braided vector space and the corresponding Nichols algebra $\mathcal{B}_{\mathfrak{q}} := \mathcal{B}(V)$ is called of diagonal type. Recall that $\mathcal{B}_{\mathfrak{q}}$ is the image of the unique map of braided Hopf algebras $\Omega : T(V) \to T^{c}(V)$ from the free associative algebra of V to the free associative coalgebra of V, such that $\Omega_{|V} = \mathrm{id}_{V}$. For unexplained terminology and notation, we refer to [AS].

Remarkably, the explicit classification of all \mathfrak{q} such that dim $\mathcal{B}_{\mathfrak{q}} < \infty$ is known [H2] (we recall the list when $\theta = 2$ in Table 1). Also, for every \mathfrak{q} in the list of [H2], the defining relations are described in [A2, A3].

1.2. Assume that dim $\mathcal{B}_{\mathfrak{q}} < \infty$. Two infinite dimensional graded braided Hopf algebras $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}}$ (the Lusztig algebra of V) were introduced and studied in [A3, A5], respectively [AAR]. Indeed, $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ is a pre-Nichols, and $\mathcal{L}_{\mathfrak{q}}$ a post-Nichols, algebra of V, meaning that $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ is intermediate between T(V)and $\mathcal{B}_{\mathfrak{q}}$, while $\mathcal{L}_{\mathfrak{q}}$ is intermediate between $\mathcal{B}_{\mathfrak{q}}$ and $T^{c}(V)$. This is summarized

²⁰⁰⁰ Mathematics Subject Classification. 16W30.

The work was partially supported by CONICET, FONCyT-ANPCyT, Secyt (UNC).

in the following commutative diagram:

The algebras $\mathcal{B}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}}$ are generalizations of the positive parts of the De Concini-Kac-Procesi quantum group, respectively the Lusztig quantum divided powers algebra. The distinguished pre-Nichols algebra $\mathcal{B}_{\mathfrak{q}}$ is defined discarding some of the relations in [A3], while $\mathcal{L}_{\mathfrak{q}}$ is the graded dual of $\mathcal{B}_{\mathfrak{q}}$.

1.3. The following notions are discussed in Section 2. Let $\Delta_{+}^{\mathfrak{q}}$ be the generalized positive root system of $\mathcal{B}_{\mathfrak{q}}$ and let $\mathfrak{O}_{\mathfrak{q}} \subset \Delta_{+}^{\mathfrak{q}}$ be the set of Cartan roots of \mathfrak{q} . Let x_{β} be the root vector associated to $\beta \in \Delta_{+}^{\mathfrak{q}}$, let $N_{\beta} = \operatorname{ord} q_{\beta\beta}$ and let $Z_{\mathfrak{q}}$ be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$. By [A5, Theorems 4.10, 4.13], $Z_{\mathfrak{q}}$ is a braided normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ and $Z_{\mathfrak{q}} = {}^{\operatorname{co}\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Actually, $Z_{\mathfrak{q}}$ is a true commutative Hopf algebra provided that

(1)
$$q_{\alpha\beta}^{N_{\beta}} = 1, \qquad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{g}}.$$

Let $\mathfrak{Z}_{\mathfrak{q}}$ be the graded dual of $Z_{\mathfrak{q}}$; under the assumption (1) $\mathfrak{Z}_{\mathfrak{q}}$ is a cocommutative Hopf algebra, hence it is isomorphic to the enveloping algebra $\mathcal{U}(\mathfrak{n}_{\mathfrak{q}})$ of the Lie algebra $\mathfrak{n}_{\mathfrak{q}} := \mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$. We show in Section 3 that $\mathcal{L}_{\mathfrak{q}}$ is an extension (as braided Hopf algebras) of $\mathcal{B}_{\mathfrak{q}}$ by $\mathfrak{Z}_{\mathfrak{q}}$:

(2)
$$\mathcal{B}_{\mathfrak{q}} \stackrel{\pi^*}{\hookrightarrow} \mathcal{L}_{\mathfrak{q}} \stackrel{\iota^*}{\twoheadrightarrow} \mathfrak{Z}_{\mathfrak{q}}$$

The main result of this paper is the determination of the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ when $\theta = 2$ and the generalized Dynkin diagram of \mathfrak{q} is connected.

Theorem 1.1. Assume that dim $\mathcal{B}_{\mathfrak{q}} < \infty$ and $\theta = 2$. Then $\mathfrak{n}_{\mathfrak{q}}$ is either 0 or isomorphic to \mathfrak{g}^+ , where \mathfrak{g} is a finite-dimensional semisimple Lie algebra listed in the last column of Table 1.

Assume that there exists a Cartan matrix $\mathbf{a} = (a_{ij})$ of finite type, that becomes symmetric after multiplying with a diagonal (d_i) , and a root of unit q of odd order (and relatively prime to 3 if \mathbf{a} is of type G_2) such that $q_{ij} = q^{d_i a_{ij}}$ for all $i, j \in \mathbb{I}$. Then (2) encodes the quantum Frobenius homomorphism defined by Lusztig and Theorem 1.1 is a result from [L].

The penultimate column of Table 1 indicates the type of \mathfrak{q} as established in [AA]. Thus, we associate Lie algebras in characteristic zero to some contragredient Lie (super)algebras in positive characteristic. In a forthcoming paper we shall compute the Lie algebra $\mathfrak{n}_{\mathfrak{q}}$ for $\theta > 2$.

Row	Generalized Dynkin diagrams	parameters	Type of $\mathcal{B}_{\mathfrak{q}}$	$\mathfrak{n}_\mathfrak{q}\simeq\mathfrak{g}^+$
1	$ \overset{q}{\bigcirc} \overset{q^{-1}}{\longrightarrow} \overset{q}{\bigcirc} $	$q \neq 1$	Cartan A	A_2
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$q \neq \pm 1$	Super A	A_1
3	$ \bigcirc \begin{array}{c} q q^{-2} q^2 \\ \bigcirc \begin{array}{c} & & \bigcirc \\ & \bigcirc \end{array} \\ \bigcirc \end{array} $	$q \neq \pm 1$	Cartan B	B_2
4	$ \bigcirc \begin{array}{cccc} q & q^{-2} & -1 & -q^{-1} & q^2 & -1 \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \end{array} $	$q \notin \mathbb{G}_4$	Super B	$A_1 \oplus A_1$
5	$ \bigcirc \begin{array}{c} \zeta & q^{-1} & q & \zeta & \zeta^{-1}q\zeta q^{-1} \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \hline & \bigcirc & \bigcirc \\ \end{array} $	$\zeta \in \mathbb{G}_3 \not\ni q$	$\mathfrak{br}(2,a)$	$A_1 \oplus A_1$
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta\in \mathbb{G}_3'$	Standard B	0
7	$\bigcirc -\zeta^{-2} - \zeta^3 - \zeta^2 - \zeta^{-2} \zeta^{-1} - 1 - \zeta^2 - \zeta - 1$	$\zeta\in \mathbb{G}_{12}'$	$\mathfrak{ufo}(7)$	0
	$ \overset{-\zeta^3}{\bigcirc} \overset{\zeta}{\frown} \overset{-1}{\bigcirc} \overset{-\zeta^3}{\bigcirc} \overset{-1}{\bigcirc} \overset{-1}{\odot} \overset{-1}{\circ} \overset{-1}{\odot} \overset{-1}{\odot} \overset{-1}{\odot} \overset{-1}{\odot} \overset{-1}{\odot} \overset{-1}{\circ} \overset{-1}{$			
8	$ \bigcirc \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\zeta\in \mathbb{G}_{12}'$	$\mathfrak{ufo}(8)$	A_1
9	$ \bigcirc \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\zeta\in \mathbb{G}_9'$	$\mathfrak{brj}(2;3)$	$A_1 \oplus A_1$
10	$ \overset{q}{\bigcirc} \overset{q^{-3}}{\longrightarrow} \overset{q^{3}}{\bigcirc} $	$q \notin \mathbb{G}_2 \cup \mathbb{G}_3$	Cartan G_2	G_2
11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta\in \mathbb{G}_8'$	Standard G_2	$A_1 \oplus A_1$
12	$ \underbrace{ \begin{array}{cccc} \zeta^6 & -\zeta^{-1-}\zeta^{-4} & \zeta^6 & \zeta & \zeta^{-1} \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \end{array} } $	$\zeta\in \mathbb{G}_{24}'$	$\mathfrak{ufo}(9)$	$A_1 \oplus A_1$
	$ \overset{-\zeta^{-4}}{\bigcirc} \overset{\zeta^5}{\smile} \overset{-1}{\bigcirc} \overset{\zeta}{\smile} \overset{\zeta^{-5}}{\bigcirc} \overset{-1}{\bigcirc} \overset{-1}{\odot} \overset{-1}{\bigcirc} \overset{-1}{\odot} \overset{-1}{\circ} \overset{-1}{\odot} \overset{-1}{\circ} $			
13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta\in \mathbb{G}_5'$	$\mathfrak{brj}(2;5)$	B_2
14	$ \underbrace{ \begin{array}{cccc} \zeta & \zeta^{-3} & -1 & -\zeta & -\zeta^{-3} & -1 \\ \bigcirc & \bigcirc \\ \end{array} } $	$\zeta\in \mathbb{G}_{20}'$	$\mathfrak{ufo}(10)$	$A_1 \oplus A_1$
	$ \overset{-\zeta^{-2}}{\smile} \overset{3}{\varsigma} \overset{-1}{\sim} \overset{-\zeta^{-2}}{\smile} \overset{-1}{\smile} $			
15	$ \underbrace{ \begin{array}{ccc} -\zeta & -\zeta^{-3} & \zeta^5 & \zeta^3 & -\zeta^{4-} \zeta^{-4} \\ \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \end{array} } $	$\zeta\in \mathbb{G}_{15}'$	$\mathfrak{ufo}(11)$	$A_1 \oplus A_1$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
16	$ \bigcirc \begin{array}{c} -\zeta_{-\zeta^{-3}-1} & -\zeta^{-2}-\zeta^{3} & -1 \\ \bigcirc & \bigcirc & \bigcirc \\ & \bigcirc & \bigcirc \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ &$	$\zeta\in \mathbb{G}_7'$	$\mathfrak{ufo}(12)$	G_2

TABLE 1. Lie algebras arising from Dynkin diagrams of rank 2.

1.4. The paper is organized as follows. We collect the needed preliminary material in Section 2. Section 3 is devoted to the exactness of (2). The computations of the various $\mathfrak{n}_{\mathfrak{q}}$ is the matter of Section 4. We denote by \mathbb{G}_N the group of N-th roots of 1, and by \mathbb{G}'_N its subset of primitive roots.

2. Preliminaries

2.1. The Nichols algebra, the distinguished-pre-Nichols algebra and the Lusztig algebra. Let \mathfrak{q} be as in the Introduction and let $(V, c^{\mathfrak{q}})$ be the corresponding braided vector space of diagonal type. We assume from now on that $\mathcal{B}_{\mathfrak{q}}$ is finite-dimensional. Let $(\alpha_j)_{j\in\mathbb{I}}$ be the canonical basis of \mathbb{Z}^{θ} . Let $\mathbf{q}: \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathbf{k}^{\times}$ be the \mathbb{Z} -bilinear form associated to the matrix \mathfrak{q} , i.e. $\mathbf{q}(\alpha_j, \alpha_k) = q_{jk}$ for all $j, k \in \mathbb{I}$. If $\alpha, \beta \in \mathbb{Z}^{\theta}$, we set $q_{\alpha\beta} = \mathbf{q}(\alpha, \beta)$. Consider the matrix $(c_{ij}^{\mathfrak{q}})_{i,j\in\mathbb{I}}, c_{ij} \in \mathbb{Z}$ defined by $c_{ii}^{\mathfrak{q}} = 2$,

(3)
$$c_{ij}^{\mathfrak{q}} := -\min\left\{n \in \mathbb{N}_0 : (n+1)_{q_{ii}}(1-q_{ii}^n q_{ij} q_{ji}) = 0\right\}, \qquad i \neq j.$$

This is well-defined by [R]. Let $i \in \mathbb{I}$. We recall the following definitions: \diamond The reflection $s_i^{\mathfrak{q}} \in GL(\mathbb{Z}^{\theta})$, given by $s_i^{\mathfrak{q}}(\alpha_j) = \alpha_j - c_{ij}^{\mathfrak{q}}\alpha_i, j \in \mathbb{I}$.

♦ The matrix $\rho_i(\mathfrak{q})$, given by $\rho_i(\mathfrak{q})_{jk} = \mathbf{q}(s_i^{\mathfrak{q}}(\alpha_j), s_i^{\mathfrak{q}}(\alpha_k)), j, k \in \mathbb{I}.$

 \diamond The braided vector space $\rho_i(V)$ of diagonal type with matrix $\rho_i(\mathfrak{q})$.

A basic result is that $\mathcal{B}_{\mathfrak{q}} \simeq \mathcal{B}_{\rho_i(\mathfrak{q})}$, at least as graded vector spaces.

The algebras T(V) and $\mathcal{B}_{\mathfrak{q}}$ are \mathbb{Z}^{θ} -graded by deg $x_i = \alpha_i$, $i \in \mathbb{I}$. Let $\Delta^{\mathfrak{q}}_+$ be the set of \mathbb{Z}^{θ} -degrees of the generators of a PBW-basis of $\mathcal{B}_{\mathfrak{q}}$, counted with multiplicities [H1]. The elements of $\Delta^{\mathfrak{q}}_+$ are called (positive) roots. Let $\Delta^{\mathfrak{q}} = \Delta^{\mathfrak{q}}_+ \cup -\Delta^{\mathfrak{q}}_+$. Let

$$\mathcal{X} := \{ \rho_{j_1} \dots \rho_{j_N}(\mathfrak{q}) : j_1, \dots, j_N \in \mathbb{I}, N \in \mathbb{N} \}.$$

Then the generalized root system of \mathfrak{q} is the fibration $\Delta \to \mathcal{X}$, where the fiber of $\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})$ is $\Delta^{\rho_{j_1} \dots \rho_{j_N}(\mathfrak{q})}$. The Weyl groupoid of $\mathcal{B}_{\mathfrak{q}}$ is a groupoid, denoted $\mathcal{W}_{\mathfrak{q}}$, that acts on this fibration, generalizing the classical Weyl group, see [H1]. We know from *loc. cit.* that $\mathcal{W}_{\mathfrak{q}}$ is finite (and this characterizes finite-dimensional Nichols algebras of diagonal type).

Here is a useful description of $\Delta_+^{\mathfrak{q}}$. Let $w \in \mathcal{W}_{\mathfrak{q}}$ be an element of maximal length. We fix a reduced expression $w = \sigma_{i_1}^{\mathfrak{q}} \sigma_{i_2} \cdots \sigma_{i_M}$. For $1 \leq k \leq M$ set

(4)
$$\beta_k = s_{i_1}^{\mathfrak{q}} \cdots s_{i_{k-1}}(\alpha_{i_k}),$$

Then $\Delta^{\mathfrak{q}}_{+} = \{\beta_k | 1 \le k \le M\}$ [CH, Prop. 2.12]; in particular $|\Delta^{\mathfrak{q}}_{+}| = M$.

The notion of Cartan root is instrumental for the definitions of $\mathcal{B}_{\mathfrak{q}}$ and $\mathcal{L}_{\mathfrak{q}}$. First, following [A5] we say that $i \in \mathbb{I}$ is a *Cartan vertex* of \mathfrak{q} if

(5)
$$q_{ij}q_{ji} = q_{ii}^{c_{ij}^q}, \qquad \text{for all } j \neq i,$$

Then the set of *Cartan roots* of q is

$$\mathfrak{O}_{\mathfrak{q}} = \{s_{i_1}^{\mathfrak{q}} s_{i_2} \dots s_{i_k}(\alpha_i) \in \Delta_+^{\mathfrak{q}} : i \in \mathbb{I} \text{ is a Cartan vertex of } \rho_{i_k} \dots \rho_{i_2} \rho_{i_1}(\mathfrak{q})\}.$$

Given a positive root $\beta \in \Delta_+^{\mathfrak{q}}$, there is an associated root vector $x_\beta \in \mathcal{B}_{\mathfrak{q}}$ defined via the so-called Lusztig isomorphisms [H3]. Set $N_\beta = \operatorname{ord} q_{\beta\beta} \in \mathbb{N}$, $\beta \in \Delta_+^{\mathfrak{q}}$. Also, for $\mathbf{h} = (h_1, \ldots, h_M) \in \mathbb{N}_0^M$ we write

$$x^{\mathbf{h}} = x^{h_M}_{\beta_M} x^{h_{M-1}}_{\beta_{M-1}} \cdots x^{h_1}_{\beta_1}.$$

Let
$$\widetilde{N}_k = \begin{cases} N_{\beta_k} & \text{if } \beta_k \notin \mathcal{O}_{\mathfrak{q}}, \\ \infty & \text{if } \beta_k \in \mathcal{O}_{\mathfrak{q}}. \end{cases}$$
 For simplicity, we introduce

(6)
$$\mathbb{H} = \{ \mathbf{h} \in \mathbb{N}_0^M : 0 \le h_k < \widetilde{N}_k, \text{ for all } k \in \mathbb{I}_M \}.$$

By [A5, Theorem 3.6] the set $\{x^{\mathbf{h}} | \mathbf{h} \in \mathbb{H}\}$ is a basis of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$.

As said in the Introduction, the Lusztig algebra associated to $\mathcal{B}_{\mathfrak{q}}$ is the braided Hopf algebra $\mathcal{L}_{\mathfrak{q}}$ which is the graded dual of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, it comes equipped with a bilinear form $\langle , \rangle : \widetilde{\mathcal{B}}_{\mathfrak{q}} \times \mathcal{L}_{\mathfrak{q}} \to \mathbf{k}$, which satisfies for all $x, x' \in \widetilde{\mathcal{B}}_{\mathfrak{q}}, y, y' \in \mathcal{L}_{\mathfrak{q}}$

$$\langle y, xx' \rangle = \langle y^{(2)}, x \rangle \langle y^{(1)}, x' \rangle$$
 and $\langle yy', x \rangle = \langle y, x^{(2)} \rangle \langle y', x^{(1)} \rangle.$

If $\mathbf{h} \in \mathbb{H}$, then define $\mathbf{y}_{\mathbf{h}} \in \mathcal{L}_{\mathfrak{q}}$ by $\langle \mathbf{y}_{\mathbf{h}}, x^{\mathbf{j}} \rangle = \delta_{\mathbf{h},\mathbf{j}}, \mathbf{j} \in \mathbb{H}$. Let $(\mathbf{h}_k)_{k \in \mathbb{I}_M}$ denote the canonical basis of \mathbb{Z}^M . If $k \in \mathbb{I}_M$ and $\beta = \beta_k \in \Delta^{\mathfrak{q}}_+$, then we denote the element $\mathbf{y}_{n\mathbf{h}_k}$ by $y_{\beta}^{(n)}$. Then the algebra $\mathcal{L}_{\mathfrak{q}}$ is generated by

$$\{y_{\alpha}: \alpha \in \Pi_{\mathfrak{q}}\} \cup \{y_{\alpha}^{(N_{\alpha})}: \alpha \in \mathfrak{O}_{\mathfrak{q}}, \, x_{\alpha}^{N_{\alpha}} \in \mathcal{P}(\widetilde{\mathcal{B}}_{\mathfrak{q}})\},\$$

by [AAR]. Moreover, by [AAR, 4.6], the following set is a basis of $\mathcal{L}_{\mathfrak{q}}$:

$$\{y_{\beta_1}^{(h_1)}\cdots y_{\beta_M}^{(h_M)}|(h_1,\ldots,h_M)\in \mathbf{H}\}.$$

2.2. Lyndon words, convex order and PBW-basis. For the computations in Section 4 we need some preliminaries on Kharchenko's PBWbasis. Let (V, \mathfrak{q}) be as above and let \mathbb{X} be the set of words with letters in $X = \{x_1, \ldots, x_{\theta}\}$ (our fixed basis of V); the empty word is 1 and for $u \in \mathbb{X}$ we write $\ell(u)$ the length of u. We can identify $\mathbf{k}\mathbb{X}$ with T(V).

Definition 2.1. Consider the lexicographic order in X. We say that $u \in \mathbb{X} - \{1\}$ is a Lyndon word if for every decomposition $u = vw, v, w \in \mathbb{X} - \{1\}$, then u < w. We denote by L the set of all Lyndon words.

A well-known theorem, due to Lyndon, established that any word $u \in \mathbb{X}$ admits a unique decomposition, named Lyndon decomposition, as a non-increasing product of Lyndon words:

(7)
$$u = l_1 l_2 \dots l_r, \qquad l_i \in L, l_r \le \dots \le l_1.$$

Also, each $l_i \in L$ in (7) is called a Lyndon letter of u.

Now each $u \in L - X$ admits at least one decomposition $u = v_1 v_2$ with $v_1, v_2 \in L$. Then the *Shirshov decomposition* of u is the decomposition $u = u_1 u_2, u_1, u_2 \in L$, such that u_2 is the smallest end of u between all possible decompositions of this form.

For any braided vector space V, the braided bracket of $x, y \in T(V)$ is

(8)
$$[x, y]_c := \text{multiplication } \circ (\text{id} - c) (x \otimes y)$$

Using the identification $T(V) = \mathbf{k} \mathbb{X}$ and the decompositions described above, we can define a **k**-linear endomorphism $[-]_c$ of T(V) as follows:

$$[u]_c := \begin{cases} u, & \text{if } u = 1 \text{ or } u \in X; \\ [[v]_c, [w]_c]_c, & \text{if } u \in L - X, \ u = vw \text{ its Shirshov decomposition;} \\ [u_1]_c \dots [u_t]_c, & \text{if } u \in \mathbb{X} - L, u = u_1 \dots u_t \text{ its Lyndon decomposition.} \end{cases}$$

We will describe PBW-bases using this endomorphism.

Definition 2.2. For $l \in L$, the element $[l]_c$ is the corresponding hyperletter. A word written in hyperletters is an hyperword; a monotone hyperword is an hyperword $W = [u_1]_c^{k_1} \dots [u_m]_c^{k_m}$ such that $u_1 > \dots > u_m$.

Consider now a different order on X, called *deg-lex order* [K]: For each pair $u, v \in X$, we have that $u \succ v$ if $\ell(u) < \ell(v)$, or $\ell(u) = \ell(v)$ and u > v for the lexicographical order. This order is total, the empty word 1 is the maximal element and it is invariant by left and right multiplication.

Let I be a Hopf ideal of T(V) and R = T(V)/I. Let $\pi : T(V) \to R$ be the canonical projection. We set:

$$G_I := \{ u \in \mathbb{X} : u \notin \mathbf{k} \mathbb{X}_{\succ u} + I \}$$

Thus, if $u \in G_I$ and u = vw, then $v, w \in G_I$. So, each $u \in G_I$ is a non-increasing product of Lyndon words of G_I .

Let $S_I := G_I \cap L$ and let $h_I : S_I \to \{2, 3, \dots\} \cup \{\infty\}$ be defined by:

(9)
$$h_I(u) := \min\left\{t \in \mathbb{N} : u^t \in \mathbf{k} \mathbb{X}_{\succ u^t} + I\right\}$$

Theorem 2.3. [K] The following set is a PBW-basis of R = T(V)/I:

$$\{ [u_1]_c^{k_1} \dots [u_m]_c^{k_m} : m \in \mathbb{N}_0, u_1 > \dots > u_m, u_i \in S_I, 0 < k_i < h_I(u_i) \}. \square$$

We refer to this base as *Kharchenko's PBW-basis* of T(V)/I (it depends on the order of X).

Definition 2.4. [A2, 2.6] Let $\Delta_{\mathfrak{q}}^+$ be as above and let < be a total order on $\Delta_{\mathfrak{q}}^+$. We say that the order is *convex* if for each $\alpha, \beta \in \Delta_{\mathfrak{q}}^+$ such that $\alpha < \beta$ and $\alpha + \beta \in \Delta_{\mathfrak{q}}^+$, then $\alpha < \alpha + \beta < \beta$. The order is called *strongly convex* if for each ordered subset $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$ of elements of $\Delta_{\mathfrak{q}}^+$ such that $\alpha = \sum_i \alpha_i \in \Delta_{\mathfrak{q}}^+$, then $\alpha_1 < \alpha < \alpha_k$.

Theorem 2.5. [A2, 2.11] The following statements are equivalent:

- The order is convex.
- The order is strongly convex.
- The order arises from a reduced expression of a longest element $w \in W_q$, cf. (4).

Now, we have two PBW-basis of \mathcal{B}_q (and correspondingly of \mathcal{B}_q), namely Kharchenko's PBW-basis and the PBW-basis defined from a reduced expression of a longest element of the Weyl groupoid. But both basis are reconciled by [AY, Theorem 4.12], thanks to [A2, 2.14]. Indeed, each generator of Kharchenko's PBW-basis is a multiple scalar of a generator of the secondly mentioned PBW-basis. So, for ease of calculations, in the rest of this work we shall use the Kharchenko generators.

The following proposition is used to compute the hyperword $[l_{\beta}]_c$ associated to a root $\beta \in \Delta_{\mathfrak{a}}^+$:

Proposition 2.6. [A2, 2.17] For $\beta \in \Delta^+_{\mathfrak{q}}$,

$$l_{\beta} = \begin{cases} x_{\alpha_{i}}, & \text{if } \beta = \alpha_{i}, i \in \mathbb{I}; \\ \max\{l_{\delta_{1}}l_{\delta_{2}} : \delta_{1}, \delta_{2} \in \Delta_{\mathfrak{q}}^{+}, \delta_{1} + \delta_{2} = \beta, l_{\delta_{1}} < l_{\delta_{2}}\}, & \text{if } \beta \neq \alpha_{i}, i \in \mathbb{I}. \end{cases}$$

We give a list of the hyperwords appearing in the next section:

Root	Hyperword	Notation
α_i	x_i	x_i
$n\alpha_1 + \alpha_2$	$(\operatorname{ad}_c x_1)^n x_2$	x_{112}
$\alpha_1 + 2\alpha_2$	$[x_{\alpha_1+\alpha_2}, x_2]_c$	$[x_{12}, x_2]_c$
$3\alpha_1 + 2\alpha_2$	$[x_{2\alpha_1+\alpha_2}, x_{\alpha_1+\alpha_2}]_c$	$[x_{112}, x_{12}]_c$
$4\alpha_1 + 3\alpha_2$	$[x_{3\alpha_1+2\alpha_2}, x_{\alpha_1+\alpha_2}]_c$	$[[x_{112}, x_{12}]_c, x_{12}]_c$
$5\alpha_1 + 3\alpha_2$	$[x_{2\alpha_1+\alpha_2}, x_{3\alpha_1+2\alpha_2}]_c$	$[x_{112}, [x_{112}, x_{12}]_c]_c$

We use an analogous notation for the elements of $\mathcal{L}_{\mathfrak{q}}$: for example we write $y_{112,12}$ when we refer to the element of $\mathcal{L}_{\mathfrak{q}}$ which corresponds to $[x_{112}, x_{12}]_c$.

3. EXTENSIONS OF BRAIDED HOPF ALGEBRAS

We recall the definition of braided Hopf algebra extensions given in [AN]; we refer to [BD, GG] for more general definitions. Below we denote by $\underline{\Delta}$ the coproduct of a braided Hopf algebra A and by A^+ the kernel of the counit.

First, if $\pi: C \to B$ is a morphism of Hopf algebras in ${}^{H}_{H}\mathcal{YD}$, then we set

$$C^{\operatorname{co}\pi} = \{ c \in C \mid (\operatorname{id} \otimes \pi)\underline{\Delta}(c) = c \otimes 1 \},\$$

$$^{\operatorname{co}\pi}C = \{ c \in C \mid (\pi \otimes \operatorname{id})\underline{\Delta}(c) = 1 \otimes c \}.$$

Definition 3.1. [AN, §2.5] Let H be a Hopf algebra. A sequence of morphisms of Hopf algebras in ${}^{H}_{H}\mathcal{YD}$

(10)
$$\mathbf{k} \to A \xrightarrow{\iota} C \xrightarrow{\pi} B \to \mathbf{k}$$

is an extension of braided Hopf algebras if

- (i) ι is injective,
- (ii) π is surjective,
- (iii) ker $\pi = C\iota(A^+)$ and
- (iv) $A = C^{\cos \pi}$, or equivalently $A = {}^{\cos \pi}C$.

For simplicity, we shall write $A \stackrel{\iota}{\hookrightarrow} C \stackrel{\pi}{\twoheadrightarrow} B$ instead of (10).

This Definition applies in our context: recall that $\mathcal{B}_{\mathfrak{q}} \simeq \widetilde{\mathcal{B}}_{\mathfrak{q}}/\langle x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}} \rangle$. Let $Z_{\mathfrak{q}}$ be the subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ generated by $x_{\beta}^{N_{\beta}}, \beta \in \mathfrak{O}_{\mathfrak{q}}$. Then

- The inclusion $\iota: Z_{\mathfrak{q}} \to \widetilde{\mathcal{B}}_{\mathfrak{q}}$ is injective and the projection $\pi: \widetilde{\mathcal{B}}_{\mathfrak{q}} \to \mathcal{B}_{\mathfrak{q}}$ is surjective.
- [A5, Theorem 4.10] $Z_{\mathfrak{q}}$ is a normal Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$; since ker π is the two-sided ideal generated by $\iota(Z_{\mathfrak{q}}^+)$, ker $\pi = \widetilde{\mathcal{B}}_{\mathfrak{q}}\iota(Z_{\mathfrak{q}}^+)$.
- [A5, Theorem 4.13] $Z_{\mathfrak{q}} = {}^{\operatorname{co}\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}}.$

Hence we have an extension of braided Hopf algebras

(11)
$$Z_{\mathfrak{q}} \stackrel{\iota}{\hookrightarrow} \widetilde{\mathcal{B}}_{\mathfrak{q}} \stackrel{\pi}{\twoheadrightarrow} \mathcal{B}_{\mathfrak{q}}$$

The morphisms ι and π are graded. Thus, taking graded duals, we obtain a new sequence of morphisms of braided Hopf algebras

(2)
$$\mathcal{B}_{\mathfrak{q}} \stackrel{\pi^*}{\hookrightarrow} \mathcal{L}_{\mathfrak{q}} \stackrel{\iota^*}{\twoheadrightarrow} \mathfrak{Z}_{\mathfrak{q}}$$

Proposition 3.2. The sequence (2) is an extension of braided Hopf algebras.

Proof. The argument of [A, 3.3.1] can be adapted to the present situation, or more generally to extensions of braided Hopf algebras that are graded with finite-dimensional homogeneous components. The map $\pi^* : \mathcal{B}_{\mathfrak{q}} \to \mathcal{L}_{\mathfrak{q}}$ is injective because $\mathcal{B}_{\mathfrak{q}} \simeq \mathcal{B}_{\mathfrak{q}}^*$; $\iota^* : \mathcal{L}_{\mathfrak{q}} \xrightarrow{\iota^*} \mathfrak{Z}_{\mathfrak{q}}$ is surjective being the transpose of a graded monomorphism between two locally finite graded vector spaces. Now, since $Z_{\mathfrak{q}} = {}^{\mathrm{co}\,\pi}\widetilde{\mathcal{B}}_{\mathfrak{q}} = \widetilde{\mathcal{B}}_{\mathfrak{q}}^{\mathrm{co}\,\pi}$, we have

(12)
$$\ker \iota^* = \mathcal{L}_{\mathfrak{q}} \mathcal{B}_{\mathfrak{q}}^+ = \mathcal{B}_{\mathfrak{q}}^+ \mathcal{L}_{\mathfrak{q}}.$$

Similarly $\mathcal{L}_{\mathfrak{q}}^{\operatorname{co}\iota^*} = \mathcal{B}_{\mathfrak{q}}^*$ because ker $\pi^{\perp} = \mathcal{B}_{\mathfrak{q}}$.

. .

From now on, we assume the condition (1) on the matrix \mathfrak{q} mentioned in the Introduction, that is

$$q_{\alpha\beta}^{N_{\beta}} = 1, \qquad \qquad \forall \alpha, \beta \in \mathfrak{O}_{\mathfrak{q}}.$$

The following result is our basic tool to compute the Lie algebra $\mathfrak{n}_{\mathfrak{a}}$.

Theorem 3.3. The braided Hopf algebra $\mathfrak{Z}_{\mathfrak{q}}$ is an usual Hopf algebra, isomorphic to the universal enveloping algebra of the Lie algebra $\mathfrak{n}_{\mathfrak{q}} = \mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$. The elements $\xi_{\beta} := \iota^*(y_{\beta}^{(N_{\beta})}), \ \beta \in \mathfrak{O}_{\mathfrak{q}}$, form a basis of $\mathfrak{n}_{\mathfrak{q}}$.

Proof. Let $A_{\mathfrak{q}}$ be the subspace of $\mathcal{L}_{\mathfrak{q}}$ generated by the ordered monomials $y_{\beta_{i_1}}^{(r_1N_{\beta_{i_1}})} \dots y_{\beta_{i_k}}^{(r_kN_{\beta_{i_k}})}$ where $\beta_{i_1} < \dots < \beta_{i_k}$ are all the Cartan roots of $\mathcal{B}_{\mathfrak{q}}$ and $r_1, \dots, r_k \in \mathbb{N}_0$. We claim that the restriction of the multiplication $\mu : \mathcal{B}_{\mathfrak{q}} \otimes A_{\mathfrak{q}} \to \mathcal{L}_{\mathfrak{q}}$ is an isomorphism of vector spaces. Indeed, μ is surjective

by the commuting relations in $\mathcal{L}_{\mathfrak{q}}$. Also, the Hilbert series of $\mathcal{L}_{\mathfrak{q}}$, $\mathcal{B}_{\mathfrak{q}}$ and $A_{\mathfrak{q}}$ are respectively:

$$\begin{aligned} \mathcal{H}_{\mathcal{L}_{\mathfrak{q}}} &= \prod_{\beta_k \in \mathfrak{O}_{\mathfrak{q}}} \frac{1}{1 - T^{\deg \beta}} \cdot \prod_{\beta_k \notin \mathfrak{O}_{\mathfrak{q}}} \frac{1 - T^{N_{\beta} \deg \beta}}{1 - T^{\deg \beta}}; \\ \mathcal{H}_{\mathcal{B}_{\mathfrak{q}}} &= \prod_{\beta_k \in \Delta_{\mathfrak{q}}^+} \frac{1 - T^{N_{\beta} \deg \beta}}{1 - T^{\deg \beta}}; \\ \mathcal{H}_{A_{\mathfrak{q}}} &= \prod_{\beta_k \in \mathfrak{O}_{\mathfrak{q}}} \frac{1}{1 - T^{N_{\beta} \deg \beta}}. \end{aligned}$$

Since the multiplication is graded and $\mathcal{H}_{\mathcal{L}_{\mathfrak{q}}} = \mathcal{H}_{\mathcal{B}_{\mathfrak{q}}}\mathcal{H}_{A_{\mathfrak{q}}}$, μ is injective. The claim follows and we have

(13)
$$\mathcal{L}_{\mathfrak{q}} = A_{\mathfrak{q}} \oplus \mathcal{B}_{\mathfrak{q}}^+ A_{\mathfrak{q}}.$$

We next claim that $\iota^* : A_{\mathfrak{q}} \to \mathfrak{Z}_{\mathfrak{q}}$ is an isomorphism of vector spaces. Indeed, by (12), ker $\iota^* = \mathcal{B}_{\mathfrak{q}}^+ \mathcal{L}_{\mathfrak{q}} = \mathcal{B}_{\mathfrak{q}}^+ (\mathcal{B}_{\mathfrak{q}} A_{\mathfrak{q}}) = \mathcal{B}_{\mathfrak{q}}^+ A_{\mathfrak{q}}$. By (13), the claim follows.

By (1), $Z_{\mathfrak{q}}$ is a commutative Hopf algebra, see [A5]; hence $\mathfrak{Z}_{\mathfrak{q}}$ is a cocommutative Hopf algebra. Now the elements $\xi_{\beta} := \iota^*(y_{\beta}^{(N_{\beta})})$, $\beta \in \mathfrak{O}_{\mathfrak{q}}$, are primitive, i.e. belong to $\mathfrak{n}_{\mathfrak{q}} = \mathcal{P}(\mathfrak{Z}_{\mathfrak{q}})$. The monomials $\xi_{\beta_{i_1}}^{r_1} \dots \xi_{\beta_{i_k}}^{r_k}$, $\beta_{i_1} < \dots < \beta_{i_k} \in \mathfrak{O}_{\mathfrak{q}}, r_1, \dots, r_k \in \mathbb{N}_0$ form a basis of $\mathfrak{Z}_{\mathfrak{q}}$, hence

$$\mathfrak{Z}_{\mathfrak{q}} = \mathbf{k} \langle \xi_{\beta} : \beta \in \mathfrak{O}_{\mathfrak{q}} \rangle \subseteq \mathcal{U}(\mathfrak{n}_{\mathfrak{q}}) \subseteq \mathfrak{Z}_{\mathfrak{q}}.$$

We conclude that $(\xi_{\beta})_{\beta \in \mathfrak{O}_{\mathfrak{q}}}$ is a basis of $\mathfrak{n}_{\mathfrak{q}}$ and that $\mathfrak{Z}_{\mathfrak{q}} = \mathcal{U}(\mathfrak{n}_{\mathfrak{q}})$.

4. Proof of Theorem 1.1

In this section we consider all indecomposable matrices \mathfrak{q} of rank 2 whose associated Nichols algebra $\mathcal{B}_{\mathfrak{q}}$ is finite-dimensional; these are classified in [H2] and we recall their diagrams in Table 1. For each \mathfrak{q} we obtain an isomorphism between $\mathfrak{Z}_{\mathfrak{q}}$ and $\mathcal{U}(\mathfrak{g}^+)$, the universal enveloping algebra of the positive part of \mathfrak{g} . Here \mathfrak{g} is the semisimple Lie algebra of the last column of Table 1, with Cartan matrix $A = (a_{ij})_{1 \leq i,j \leq 2}$. By simplicity we denote \mathfrak{g} by its type, e.g. $\mathfrak{g} = A_2$.

We recall that we assume (1) and that $\xi_{\beta} = \iota^*(y_{\beta}^{(N_{\beta})}) \in \mathfrak{Z}_{\mathfrak{q}}$. Thus,

$$[\xi_{\alpha},\xi_{\beta}]_{c} = \xi_{\alpha}\xi_{\beta} - \xi_{\beta}\xi_{\alpha} = [\xi_{\alpha},\xi_{\beta}], \quad \text{for all } \alpha,\beta \in \mathfrak{O}_{\mathfrak{q}}.$$

The strategy to prove the isomorphism $\mathfrak{F}:\mathcal{U}(\mathfrak{g}^+)\to\mathfrak{Z}_\mathfrak{q}$ is the following:

- (1) If $\mathfrak{O}_{\mathfrak{q}} = \emptyset$, then $\mathfrak{g}^+ = 0$. If $|\mathfrak{O}_{\mathfrak{q}}| = 1$, then $\mathfrak{g} = \mathfrak{sl}_2$, i.e. of type A_1 .
- (2) If $|\mathfrak{O}_{\mathfrak{q}}| = 2$, then \mathfrak{g} is of type $A_1 \oplus A_1$. Indeed, let $\mathfrak{O}_{\mathfrak{q}} = \{\alpha, \beta\}$. As $\mathfrak{Z}_{\mathfrak{q}}$ is \mathbb{N}_0^{θ} -graded, $[\xi_{\alpha}, \xi_{\beta}] \in \mathfrak{n}_{\mathfrak{q}}$ has degree $N_{\alpha}\alpha + N_{\beta}\beta$. Thus $[\xi_{\alpha}, \xi_{\beta}] = 0$.
- (3) Now assume that $|\mathfrak{O}_{\mathfrak{q}}| > 2$. We recall that $\mathfrak{Z}_{\mathfrak{q}}$ is generated by

$$\{\xi_{\beta}|x_{\beta}^{N_{\beta}} \text{ is a primitive element of } \widetilde{\mathcal{B}}_{\mathfrak{q}}\}$$

We compute the coproduct of all $x_{\beta}^{N_{\beta}}$ in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$, $\beta \in \mathfrak{O}_{\mathfrak{q}}$, using that $\underline{\Delta}$ is a graded map and $Z_{\mathfrak{q}}$ is a Hopf subalgebra of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. In all cases we get two primitive elements $x_{\beta_1}^{N_{\beta_1}}$ and $x_{\beta_2}^{N_{\beta_2}}$, thus $\mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_{β_1} and ξ_{β_2} . (4) Using the coproduct again, we check that

(14)
$$(\operatorname{ad} \xi_{\beta_i})^{1-a_{ij}} \xi_{\beta_j} = 0, \qquad 1 \le i \ne j \le 2.$$

To prove (14), it is enough to observe that $\mathfrak{n}_{\mathfrak{q}}$ has a trivial component of degree $N_{\beta_i}(1-a_{ij})\beta_i + N_{\beta_j}\beta_j$. Now (14) implies that there exists a surjective map of Hopf algebras $\mathfrak{F}: \mathcal{U}(\mathfrak{g}^+) \twoheadrightarrow \mathfrak{Z}_{\mathfrak{q}}$ such that $e_i \mapsto \xi_{\beta_i}$.

(5) To prove that \mathfrak{F} is an isomorphism, it suffices to see that the restriction $\mathfrak{g}^+ \xrightarrow{*} \mathfrak{n}_{\mathfrak{q}}$ is an isomorphism; but in each case we see that * is surjective, and dim $\mathfrak{g}^+ = \dim \mathfrak{n}_{\mathfrak{q}} = |\mathfrak{O}_{\mathfrak{q}}|$.

We refer to [A1, AAY, A4] for the presentation, root system and Cartan roots of braidings of standard, super and unidentified type respectively.

Row 1. Let $q \in \mathbb{G}'_N$, $N \geq 2$. The diagram $\overset{q q^{-1} q}{\bigcirc}$ corresponds to a braiding of Cartan type A_2 whose set of positive roots is $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}$. In this case $\mathfrak{O}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+$ and $N_{\beta} = N$ for all $\beta \in \mathfrak{O}_{\mathfrak{q}}$. By hypothesis, $q_{12}^N = q_{21}^N = 1$. The elements $x_1, x_2 \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive and

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-1})x_1 \otimes x_2.$$

Then the coproducts of the elements $x_1^N, x_{12}^N, x_2^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$\underline{\Delta}(x_1^N) = x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^N) = x_2^N \otimes 1 + 1 \otimes x_2^N; \\ \underline{\Delta}(x_{12}^N) = x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-1})^N q_{21}^{\frac{N(N-1)}{2}} x_1^N \otimes x_2^N.$$

As $[\xi_2, \xi_{12}]$, $[\xi_1, \xi_{12}] \in \mathfrak{n}_{\mathfrak{q}}$ have degree $N\alpha_1 + 2N\alpha_2$, respectively $2N\alpha_1 + N\alpha_2$, and the components of these degrees of $\mathfrak{n}_{\mathfrak{q}}$ are trivial, we have

$$[\xi_2,\xi_{12}] = [\xi_1,\xi_{12}] = 0.$$

Again by degree considerations, there exists $c \in \mathbf{k}$ such that $[\xi_2, \xi_1] = c\xi_{12}$. By the duality between $\mathfrak{Z}_{\mathfrak{q}}$ and $Z_{\mathfrak{q}}$ we have that

$$[\xi_2,\xi_1] = (1-q^{-1})^N q_{21}^{\frac{N(N-1)}{2}} \xi_{12}$$

Then there exists a morphism of algebras $\mathfrak{F}: \mathcal{U}(A_2^+) \to \mathfrak{Z}_\mathfrak{q}$ given by

$$e_1 \mapsto \xi_1, \qquad e_2 \mapsto \xi_2.$$

This morphism takes a basis of A_2^+ to a basis of $\mathfrak{n}_{\mathfrak{q}}$, so $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_2^+)$.

Row 2. Let $q \in \mathbb{G}'_N$, $N \geq 3$. These diagrams correspond to braidings of super type A with positive roots $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, \alpha_2\}.$

The first diagram is $\overset{q q^{-1} - 1}{\bigcirc}$. In this case the unique Cartan root is α_1 with $N_{\alpha_1} = N$. The element $x_1^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ is primitive and $\mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_1 . Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_1^+)$.

The second diagram gives a similar situation, since $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1 + \alpha_2\}.$

Row 3. Let $q \in \mathbb{G}'_N$, $N \geq 3$. The diagram $\overset{q}{\bigcirc} \overset{q^{-2}}{\bigcirc} \overset{q^2}{\bigcirc}$ corresponds to a braiding of Cartan type B_2 with $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. In this case $\mathfrak{D}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+$. The coproducts of the generators of $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$\underline{\Delta}(x_1) = x_1 \otimes 1 + 1 \otimes x_1; \qquad \underline{\Delta}(x_2) = x_2 \otimes 1 + 1 \otimes x_2;$$

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-2}) x_1 \otimes x_2;$$

$$\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 - q^{-1})(1 - q^{-2}) x_1^2 \otimes x_2$$

$$+ q(1 - q^{-2}) x_1 \otimes x_{12}.$$

We have two different cases depending on the parity of N.

(1) If N is odd, then $N_{\beta} = N$ for all $\beta \in \Delta_{\mathfrak{q}}^+$. In this case,

$$\begin{split} \underline{\Delta}(x_1^N) &= x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^N) = x_2^N \otimes 1 + 1 \otimes x_2^N; \\ \underline{\Delta}(x_{12}^N) &= x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-2})^N x_1^N \otimes x_2^N; \\ \underline{\Delta}(x_{112}^N) &= x_{112}^N \otimes 1 + 1 \otimes x_{112}^N + (1 - q^{-1})^N (1 - q^{-2})^N x_1^{2N} \otimes x_2^N \\ &+ C x_1^N \otimes x_{12}^N, \end{split}$$

for some $C \in \mathbf{k}$. Hence, in $\mathfrak{Z}_{\mathfrak{q}}$ we have the relations

$$\begin{split} [\xi_1, \xi_2] &= (1 - q^{-2})^N \xi_{12}; \\ [\xi_{12}, \xi_1] &= C \, \xi_{112}; \\ [\xi_1, \xi_2]_c &= (1 - q^{-1})^N (1 - q^{-2})^N \xi_{112} + (1 - q^{-2})^N \xi_1 \xi_{12}; \\ [\xi_1, \xi_{112}] &= [\xi_2, \xi_{12}] = 0. \end{split}$$

Thus there exists an algebra map $\mathfrak{F}: \mathcal{U}(B_2^+) \to \mathfrak{Z}_\mathfrak{q}$ given by $e_1 \mapsto \xi_1, e_2 \mapsto \xi_2$. Moreover, \mathfrak{F} is an isomorphism, and so $\mathfrak{Z}_\mathfrak{q} \simeq \mathcal{U}(B_2^+)$. Using the relations of $\mathcal{U}(B_2^+)$ we check that $C = 2(1-q^{-1})^N(1-q^{-2})^N$.

(2) If N = 2M > 2, then $N_{\alpha_1} = N_{\alpha_1 + \alpha_2} = N$ and $N_{2\alpha_1 + \alpha_2} = N_{\alpha_2} = M$. In this case we have

$$\begin{split} \underline{\Delta}(x_1^N) &= x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^M) = x_2^M \otimes 1 + 1 \otimes x_2^M; \\ \underline{\Delta}(x_{12}^N) &= x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-2})^N q_{21}^{M(N-1)} x_1^N \otimes x_2^{2M} \\ &+ (1 - q^{-2})^M q_{21}^{M^2} x_{112}^M \otimes x_2^M; \\ \underline{\Delta}(x_{112}^M) &= x_{112}^M \otimes 1 + 1 \otimes x_{112}^M + (1 - q^{-1})^M (1 - q^{-2})^M q_{21}^{M(M-1)} x_1^N \otimes x_2^M \end{split}$$

Hence, the following relations hold in $\mathfrak{Z}_{\mathfrak{q}}$:

$$\begin{aligned} [\xi_2,\xi_1] &= (1-q^{-1})^M (1-q^{-2})^M q_{21}^{M(M-1)} \xi_{112}; \\ [\xi_{112},\xi_2] &= (1-q^{-2})^M q_{21}^{M^2} \xi_{12}; \\ [\xi_1,\xi_{112}] &= [\xi_2,\xi_{12}] = 0. \end{aligned}$$

Thus $\mathfrak{F}: \mathcal{U}(C_2^+) \to \mathfrak{Z}_{\mathfrak{q}}, e_1 \mapsto \xi_1, e_2 \mapsto \xi_2$, is an isomorphism of algebras. (Of course $C_2 \simeq B_2$ but in higher rank we will get different root systems depending on the parity of N).

Row 4. Let $q \in \mathbb{G}'_N$, $N \neq 2, 4$. These diagrams correspond to braidings of super type B with $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}.$

If the diagram is $q q^{-2} q^{-1}$, then the Cartan roots are α_1 and $\alpha_1 + \alpha_2$, with $N_{\alpha_1} = N$, $N_{\alpha_1+\alpha_2} = M$; here, M = N if N is odd and $M = \frac{N}{2}$ if N is even. The elements $x_1^N, x_{12}^M \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, in $\mathfrak{Z}_{\mathfrak{q}}$, $[\xi_{12}, \xi_1] = 0$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

If we consider the diagram $\overset{-q^{-1}}{\bigcirc} \overset{q^2}{\frown} \overset{-1}{\bigcirc}$, then $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, \alpha_1 + \alpha_2\}, N_{\alpha_1} = M$ and $N_{\alpha_1+\alpha_2} = N$. The elements $x_1^M, x_{12}^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive, so $[\xi_{12}, \xi_1] = 0$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

Row 5. Let $q \in \mathbb{G}'_N$, $N \neq 3$, $\zeta \in \mathbb{G}'_3$. The diagram $\bigcirc q^{-1} \bigcirc q$ corresponds to a braiding of standard type B_2 , so $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. The other diagram $\bigcirc q \leftarrow q^{\zeta^{-1} \zeta q^{-1}}$ is obtained by changing the parameter $q \leftrightarrow \zeta q^{-1}$.

The Cartan roots are $2\alpha_1 + \alpha_2$ and α_2 , with $N_{2\alpha_1+\alpha_2} = M := \operatorname{ord}(\zeta q^{-1})$ and $N_{\alpha_2} = N$. The elements $x_{112}^M, x_2^N \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive. Thus, in $\mathfrak{Z}_{\mathfrak{q}}$, we have $[\xi_{112}, \xi_2] = 0$. Hence, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

Row 6. Let $\zeta \in \mathbb{G}'_3$. The diagrams $\begin{array}{c} \zeta & -\zeta & -1 \\ & & \bigcirc \end{array}$ and $\begin{array}{c} \zeta^{-1} - \zeta^{-1} - 1 \\ & & \bigcirc \end{array}$ correspond to braidings of standard type *B*, thus $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. In both cases $\mathfrak{O}_{\mathfrak{q}}$ is empty so the corresponding Lie algebras are trivial.

Row 7. Let $\zeta \in \mathbb{G}'_{12}$. The diagrams of this row correspond to braidings of type $\mathfrak{ufo}(7)$. In all cases $\mathfrak{D}_{\mathfrak{q}} = \emptyset$ and the associated Lie algebras are trivial. **Row 8.** Let $\zeta \in \mathbb{G}'_{12}$. The diagrams of this row correspond to braidings of type $\mathfrak{ufo}(8)$. For $\begin{array}{c} -\zeta^2 & \zeta & -\zeta^2 \\ \bigcirc & - \end{array}$, $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}$. In this case $\mathfrak{D}_{\mathfrak{q}} = \{\alpha_1 + \alpha_2\}$, $N_{\alpha_1 + \alpha_2} = 12$. Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(A_1^+)$. The same result holds for the other braidings in this row.

Row 9. Let $\zeta \in \mathbb{G}'_9$. The diagrams of this row correspond to braidings of type $\mathfrak{brj}(2;3)$. If \mathfrak{q} has diagram $\overset{-\zeta}{\bigcirc} \zeta^7 \overset{\zeta^3}{\bigcirc}$, then

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_1, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}.$$

In this case $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, \alpha_1 + \alpha_2\}$ and $N_{\alpha_1} = N_{\alpha_1 + \alpha_2} = 18$. Thus $[\xi_{12}, \xi_1] = 0$, so $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

If **q** has diagram $\begin{pmatrix} \zeta^3 & \zeta^8 & -1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} -\zeta^2 & \zeta & -1 \\ 0 & 0 \end{pmatrix}$ the set of positive roots are, respectively,

$$\{\alpha_1, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2, \alpha_2\}, \\\{\alpha_1, 4\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2, \alpha_2\};$$

the Cartan roots are, respectively, $\alpha_1 + \alpha_2$, $2\alpha_1 + \alpha_2$ and α_1 , $2\alpha_1 + \alpha_2$. Hence, in both cases, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

Row 10. Let $q \in \mathbb{G}'_N$, $N \geq 4$. The diagram $\bigcirc q^{-3} q^3 \bigcirc Q^{-3} Q^3$ corresponds to a braiding of Cartan type G_2 , so $\mathfrak{O}_{\mathfrak{q}} = \Delta_{\mathfrak{q}}^+ = \{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2,$

$$\begin{split} \underline{\Delta}(x_1) &= x_1 \otimes 1 + 1 \otimes x_1; \qquad \underline{\Delta}(x_2) = x_2 \otimes 1 + 1 \otimes x_2; \\ \underline{\Delta}(x_{12}) &= x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - q^{-3}) x_1 \otimes x_2; \\ \underline{\Delta}(x_{112}) &= x_{112} \otimes 1 + 1 \otimes x_{112} + (1 + q)(1 - q^{-2}) x_1 \otimes x_{12} \\ &+ (1 - q^{-2})(1 - q^{-3}) x_1^2 \otimes x_2; \\ \underline{\Delta}(x_{1112}) &= x_{1112} \otimes 1 + 1 \otimes x_{1112} + q^2(1 - q^{-3}) x_1 \otimes x_{112} \\ &+ (q^2 - 1)(1 - q^{-3}) x_1^2 \otimes x_{12} + (1 - q^{-3})(1 - q^{-2})(1 - q^{-1}) x_1^3 \otimes x_2; \\ \underline{\Delta}([x_{112}, x_{12}]_c) &= [x_{112}, x_{12}]_c \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c + (q - q^{-1}) x_{112} \otimes x_{12} \\ &+ (1 - q^{-3})(1 + q)(1 - q^{-1} + q) x_{112} x_1 \otimes x_2 \\ &- qq_{21}(1 - q^{-3})(1 + q - q^2) x_{1112} \otimes x_2 + q^2 q_{21}(1 - q^{-3}) x_1 \otimes [x_{112}, x_2]_c \\ &+ (1 - q^{-3})^2(q^2 - 1) x_1^2 \otimes x_2 x_{12} \\ &+ q_{21}(1 - q^{-3})^2(1 - q^{-2})(1 - q^{-1}) x_1^3 \otimes x_2^2. \end{split}$$

We have two cases.

(1) If 3 does not divide N, then $N_{\beta} = N$ for all $\beta \in \Delta_{\mathfrak{q}}^+$. Thus, in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$,

$$\begin{split} \underline{\Delta}(x_1^N) &= x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^N) = x_2^N \otimes 1 + 1 \otimes x_2^N; \\ \underline{\Delta}(x_{12}^N) &= x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + a_1 x_1^N \otimes x_2^N; \\ \underline{\Delta}(x_{112}^N) &= x_{112}^N \otimes 1 + 1 \otimes x_{112}^N + a_2 x_1^N \otimes x_{12}^N + a_3 x_1^{2N} \otimes x_2^N; \\ \underline{\Delta}(x_{1112}^N) &= x_{1112}^N \otimes 1 + 1 \otimes x_{1112}^N + a_4 x_1^N \otimes x_{112}^N + a_5 x_1^{2N} \otimes x_{12}^N \\ &+ a_6 x_1^{3N} \otimes x_2^N; \\ \underline{\Delta}([x_{112}, x_{12}]_c^N) &= [x_{112}, x_{12}]_c^N \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c^N + a_7 x_{112}^N \otimes x_{12}^N \\ &+ a_8 x_{1112}^N \otimes x_2^N + a_9 x_1^N \otimes x_{12}^{2N} + a_{10} x_1^{2N} \otimes x_2^N x_{12}^N \\ &+ a_{11} x_{112}^N x_1^N \otimes x_2^N + a_{12} x_1^{3N} \otimes x_2^{2N}; \end{split}$$

for some $a_i \in \mathbf{k}$. Since

$$a_{1} = (1 - q^{-3})^{N} q_{21}^{\frac{N(N-1)}{2}} \neq 0,$$

$$a_{3} = (1 - q^{-2})^{N} (1 - q^{-3})^{N} \neq 0,$$

$$a_{6} = (1 - q^{-1})^{N} (1 - q^{-2})^{N} (1 - q^{-3})^{N} q_{21}^{\frac{3N(N-1)}{2}} \neq 0,$$

$$a_{12} = (1 - q^{-1})^{N} (1 - q^{-2})^{N} (1 - q^{-3})^{2N} \neq 0,$$

the elements x_{12}^N , x_{112}^N , x_{1112}^N and $[x_{112}, x_{12}]_c^N$ are not primitive. Hence $\mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_1 and ξ_2 ; also

$$[\xi_2, \xi_1] = a_1 \,\xi_{12}; \qquad [\xi_{12}, \xi_1] = a_2 \,\xi_{112}; \\ [\xi_{112}, \xi_1] = a_4 \,\xi_{1112}; \qquad [\xi_1, \xi_{112}] = [\xi_2, \xi_{12}] = 0$$

Thus, we have $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$.

(2) If
$$N = 3M$$
, then $N_{\alpha_1} = N_{\alpha_1 + \alpha_2} = N_{2\alpha_1 + \alpha_2} = N$ and $N_{3\alpha_1 + \alpha_2} = N_{3\alpha_1 + 2\alpha_2} = N_{\alpha_2} = M$. In this case we have

$$\begin{split} \underline{\Delta}(x_1^N) &= x_1^N \otimes 1 + 1 \otimes x_1^N; \qquad \underline{\Delta}(x_2^M) = x_2^M \otimes 1 + 1 \otimes x_2^M; \\ \underline{\Delta}(x_{12}^N) &= x_{12}^N \otimes 1 + 1 \otimes x_{12}^N + (1 - q^{-3})^M q_{21}^{\frac{N(M-1)}{2}} [x_{112}, x_{12}]_c^M \otimes x_2^M \\ &+ (1 - q^{-3})^{2M} x_{1112}^M \otimes x_2^{2M} + (1 - q^{-3})^N q_{21}^{\frac{N(N-1)}{2}} x_1^N \otimes x_2^{3M}; \\ \underline{\Delta}(x_{112}^N) &= x_{112}^M \otimes 1 + 1 \otimes x_{112}^M + b_1 x_1^N \otimes x_{12}^N + b_2 x_{1112}^M \otimes [x_{112}, x_{12}]_c^M \\ &+ b_3 x_1^{2N} \otimes x_2^{3M} + b_4 x_{1112}^{2M} \otimes x_2^M \\ &+ b_5 x_{1112}^M x_1^N \otimes x_2^{2M} + b_6 x_1^N \otimes x_2^M; \\ \underline{\Delta}(x_{112}^M) &= x_{112}^M \otimes 1 + 1 \otimes x_{112}^M + b_7 x_1^N \otimes x_2^M [x_{112}, x_{12}]_c^M; \end{split}$$

 $\underline{\Delta}([x_{112}, x_{12}]_c^M) = x_{112}^M \otimes 1 + 1 \otimes x_{112}^M + b_8 x_1^N \otimes x_2^{2M} + b_9 x_{1112}^M \otimes x_2^M;$

for some $b_i \in \mathbf{k}$. We compute some of them explicitly:

$$b_{2} = (1+q)^{M} (1-q^{-2})^{M} q^{2M} q_{21}^{\frac{N(M-1)}{2}},$$

$$b_{7} = (1-q^{-3})^{M} (1-q^{-2})^{M} (1-q^{-1})^{M} q_{21}^{\frac{N(M-1)}{2}},$$

$$b_{8} = (1-q^{-3})^{2M} (1-q^{-2})^{M} (1-q^{-1})^{M} q_{21}^{M}.$$

As these scalars are not zero, the elements x_{12}^N , x_{112}^N , x_{1112}^M and $[x_{112}, x_{12}]_c^M$ are not primitive. Thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$.

Row 11. Let $\zeta \in \mathbb{G}'_8$. The diagrams of this row correspond to braidings of standard type G_2 , so $\Delta^+_{\mathfrak{q}} = \{\alpha_1, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. If \mathfrak{q} has diagram $\overset{\zeta^2}{\bigcirc} \overset{\zeta^{-1}}{\bigcirc}$, then the Cartan roots are $2\alpha_1 + \alpha_2$ and α_2 with $N_{2\alpha_1+\alpha_2} = N_{\alpha_2} = 8$. The elements $x^8_{112}, x^8_2 \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive and $[\xi_2, \xi_{112}] = 0$ in $\mathfrak{Z}_{\mathfrak{q}}$. Hence $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$. An analogous result holds for the other diagrams of the row. **Row 12.** Let $\zeta \in \mathbb{G}'_{24}$. This row corresponds to type $\mathfrak{ufo}(9)$. If \mathfrak{q} has diagram $\overset{\zeta^6}{\bigcirc} \zeta^{11} \overset{\zeta^8}{\bigcirc}$, then

 $\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, 4\alpha_{1} + 3\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{1} + 2\alpha_{2}, \alpha_{2}\}$ and $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}\}$. Here, $N_{\alpha_{1}+\alpha_{2}} = N_{3\alpha_{1}+\alpha_{2}} = 24$, and $x_{12}^{24}, x_{1112}^{24} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive. In $\mathfrak{Z}_{\mathfrak{q}}$ we have the relation $[\xi_{12}, \xi_{1112}] = 0$; thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_{1} \oplus A_{1})^{+}).$

For the other diagrams, $\overset{\zeta^6}{\bigcirc} \overset{\zeta^{-1}}{\bigcirc}$, $\overset{\zeta^8}{\bigcirc} \overset{\zeta^5}{\bigcirc} \overset{-1}{\bigcirc}$ and $\overset{\zeta}{\bigcirc} \overset{\zeta^{19}}{\bigcirc} \overset{-1}{\bigcirc}$, the sets of positive roots are, respectively,

- $\{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 5\alpha_1 + 2\alpha_2, 5\alpha_1 + 3\alpha_2, \alpha_2\},\$
- $\{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, 5\alpha_1 + 3\alpha_2, 5\alpha_1 + 4\alpha_2, \alpha_2\},\$
- $\{\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 4\alpha_1 + \alpha_2, 5\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, \alpha_2\}.$

The Cartan roots are, respectively, $2\alpha_1 + \alpha_2, \alpha_2; \alpha_1 + \alpha_2, 5\alpha_1 + 3\alpha_2; \alpha_1, 5\alpha_1 + 2\alpha_2$. Hence, in all cases, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

Row 13. Let $\zeta \in \mathbb{G}'_5$. The braidings in this row are associated to the Lie superalgebra $\mathfrak{brj}(2;5)$ [A5, §5.2]. If \mathfrak{q} has diagram $\overset{\zeta \quad \zeta^2 \quad -1}{\bigcirc}$, then $\Delta^+_{\mathfrak{q}} = \{\alpha_1, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 5\alpha_1 + 3\alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. In this case the Cartan roots are $\alpha_1, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2$ and $3\alpha_1 + \alpha_2$, with $N_{\alpha_1} = N_{3\alpha_1+2\alpha_2} = 5$ and $N_{\alpha_1+\alpha_2} = N_{2\alpha_1+\alpha_2} = 10$. In $\widetilde{\mathcal{B}}_{\mathfrak{q}}$,

$$\begin{split} \underline{\Delta}(x_1) &= x_1 \otimes 1 + 1 \otimes x_1; \\ \underline{\Delta}(x_{12}) &= x_{12} \otimes 1 + 1 \otimes x_{12} + (1 - \zeta^2) \, x_1 \otimes x_2; \\ \underline{\Delta}(x_{112}) &= x_{112} \otimes 1 + 1 \otimes x_{112} + (1 + \zeta)(1 - \zeta^3) \, x_1 \otimes x_{12} \\ &+ (1 - \zeta^2)(1 - \zeta^3) \, x_1^2 \otimes x_2; \\ \underline{\Delta}([x_{112}, x_{12}]_c) &= [x_{112}, x_{12}]_c \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c \\ &- \zeta^3(1 - \zeta^3)(1 + \zeta)^2 \, x_1 \otimes x_{12}^2 - \zeta \, q_{21} \, x_1 x_{112} \otimes x_2 \\ &+ (1 + q_{21} + \zeta^3 q_{21}) \, x_{112} x_1 \otimes x_2 + \zeta (1 - \zeta^2) \, x_1 x_{12} x_1 \otimes x_2 \\ &+ (1 - \zeta^2)(1 - \zeta^3)^2 \, x_1^2 \otimes x_2 x_{12}. \end{split}$$

Hence the coproducts of $x_1^5, x_{12}^{10}, x_{112}^{10}, [x_{112}, x_{12}]_c^5 \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are:

$$\underline{\Delta}(x_1^5) = x_1^5 \otimes 1 + 1 \otimes x_1^5; \qquad \underline{\Delta}(x_{12}^{10}) = x_{12}^{10} \otimes 1 + 1 \otimes x_{12}^{10}; \\ \underline{\Delta}(x_{112}^{10}) = x_{112}^{10} \otimes 1 + 1 \otimes x_{112}^{10} + a_1 x_1^{10} \otimes x_{12}^{10} + a_2 x_1^5 \otimes [x_{112}, x_{12}]_c^5; \\ \underline{\Delta}([x_{112}, x_{12}]_c^5) = [x_{112}, x_{12}]_c^5 \otimes 1 + 1 \otimes [x_{112}, x_{12}]_c^5 + a_3 x_1^5 \otimes x_{12}^{10}.$$

for some $a_i \in \mathbf{k}$. Thus, the following relations hold in $\mathfrak{Z}_{\mathfrak{q}}$

$$[\xi_{12},\xi_1] = a_3 \xi_{112,12}; \quad [\xi_{112,12},\xi_1] = a_2 \xi_{112}; \quad [\xi_1,\xi_{112,12}] = [\xi_{12},\xi_{112}] = 0$$

Since

$$a_1 = -(1-\zeta^3)^5(1+\zeta)^5(1+62\zeta-15\zeta^2-87\zeta^3+70\zeta^4) \neq 0;$$

$$a_3 = -(1-\zeta^3)^5(1+\zeta)^8(4-8\zeta-19\zeta^2-3\zeta^3-50\zeta^4) \neq 0,$$

the elements x_{112}^{10} , $[x_{112}, x_{12}]_c^5$ are not primitive, so ξ_1, ξ_{12} generate $\mathfrak{Z}_{\mathfrak{q}}$. Hence, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(B_2^+)$.

If \mathfrak{q} has diagram $\overset{-\zeta^3}{\bigcirc} \overset{\zeta^3}{\bigcirc} \overset{-1}{\bigcirc}$, then

$$\begin{aligned} \Delta_{\mathfrak{q}}^{+} &= \{\alpha_{1}, 4\alpha_{1} + \alpha_{2}, 3\alpha_{1} + \alpha_{2}, 5\alpha_{1} + 2\alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\},\\ \mathfrak{O}_{\mathfrak{q}} &= \{\alpha_{1}, 3\alpha_{1} + \alpha_{2}, 2\alpha_{1} + \alpha_{2}, \alpha_{1} + \alpha_{2}\}, \end{aligned}$$

with $N_{\alpha_1} = N_{\alpha_1+\alpha_2} = 10$, $N_{3\alpha_1+\alpha_2} = N_{\alpha_1+\alpha_2} = 5$. The generators of $\mathfrak{Z}_\mathfrak{q}$ are ξ_1 and ξ_{12} and they satisfy the following relations

 $[\xi_{12},\xi_1] = b_1 \,\xi_{1112}, \quad [\xi_{1112},\xi_{12}] = b_2 \,\xi_{112}, \quad [\xi_1,\xi_{1112}] = [\xi_{12},\xi_{112}] = 0,$

for some $b_1, b_2 \in \mathbf{k}^{\times}$. Hence $\mathfrak{Z}_{\mathfrak{g}} \simeq \mathcal{U}(C_2^+)$.

Row 14. Let $\zeta \in \mathbb{G}'_{20}$. This row corresponds to type $\mathfrak{ufo}(10)$. If \mathfrak{q} has diagram $\bigcirc \zeta = \zeta^{17} = 0$, then $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 3\alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 5\alpha_1 + 3\alpha_2, 3\alpha_1 + 2\alpha_2, 4\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2, \alpha_2\}$. The Cartan roots are α_1 and $3\alpha_1 + 2\alpha_2$ with $N_{\alpha_1} = N_{3\alpha_1+2\alpha_2} = 20$. The elements $x_1^{20}, [x_{112}, x_{12}]_c^{20} \in \widetilde{\mathcal{B}}_{\mathfrak{q}}$ are primitive; thus $[\xi_{12}, \xi_{112, 12}] = 0$ in $\mathfrak{Z}_{\mathfrak{q}}$ and $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$. The same holds when the diagram of \mathfrak{q} is another one in this row: $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$.

Row 15. Let $\zeta \in \mathbb{G}'_{15}$. This row corresponds to type $\mathfrak{ufo}(11)$. If \mathfrak{q} has diagram $\overset{-\zeta}{\bigcirc} -\zeta^{12} \overset{\zeta^5}{\bigcirc}$, then $\Delta_{\mathfrak{q}}^+ = \{\alpha_1, 3\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}$. The Cartan roots are α_1 and $3\alpha_1 + 2\alpha_2$ with $N_{\alpha_1} = N_{3\alpha_1+2\alpha_2} = 30$. In $\mathfrak{Z}_{\mathfrak{q}}$ we have $[\xi_{12}, \xi_{112,12}] = 0$, thus $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}((A_1 \oplus A_1)^+)$. The same result holds if we consider the other diagrams of this row.

Row 16. Let $\zeta \in \mathbb{G}'_7$. This row corresponds to type $\mathfrak{ufo}(12)$. If \mathfrak{q} has diagram $\overset{-\zeta^5}{\bigcirc} -\zeta^3 \overset{-1}{\bigcirc}$, then

$$\Delta_{\mathfrak{q}}^{+} = \{\alpha_{1}, 5\alpha_{1} + \alpha_{2}, 4\alpha_{1} + \alpha_{2}, 7\alpha_{1} + 2\alpha_{2}, 3\alpha_{1} + \alpha_{2}, 8\alpha_{1} + 3\alpha_{2}, 5\alpha_{1} + 2\alpha_{2}, 7\alpha_{1} + 3\alpha_{2}, 2\alpha_{1} + \alpha_{2}, 3\alpha_{1} + 2\alpha_{2}, \alpha_{1} + \alpha_{2}, \alpha_{2}\}.$$

Also, $\mathfrak{O}_{\mathfrak{q}} = \{\alpha_1, 4\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 5\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2, \alpha_1 + \alpha_2\}$ with $N_{\beta} = 14$ for all $\beta \in \mathfrak{O}_{\mathfrak{q}}$. In $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ we have

$$\underline{\Delta}(x_1) = x_1 \otimes 1 + 1 \otimes x_1;$$

$$\underline{\Delta}(x_{12}) = x_{12} \otimes 1 + 1 \otimes x_{12} + (1 + \zeta^3) x_1 \otimes x_2;$$

$$\underline{\Delta}(x_{112}) = x_{112} \otimes 1 + 1 \otimes x_{112} + (1 - \zeta)(1 - \zeta^5) x_1 \otimes x_{12} + (1 - \zeta)(1 + \zeta^3) x_1^2 \otimes x_2;$$

16

$$\begin{split} &\underline{\Delta}(x_{1112}) = x_{1112} \otimes 1 + 1 \otimes x_{1112} + (1 + \zeta^3 - \zeta^5)(1 + \zeta^6) x_1 \otimes x_{112} \\ &+ \zeta(\zeta^3 - 1) x_1^2 \otimes x_{12} + \zeta^6(1 - \zeta^2)(1 + \zeta^3) x_1^3 \otimes x_2; \\ &\underline{\Delta}(x_{11112}) = x_{11112} \otimes 1 + 1 \otimes x_{11112} - \zeta(1 - \zeta)(1 - \zeta^2) x_1 \otimes x_{1112} \\ &+ (1 - \zeta^4) x_1^2 \otimes x_{112} - (1 - \zeta)(1 - \zeta^2)^2 x_1^3 \otimes x_{12} \\ &+ \zeta^2(1 - \zeta)(1 - \zeta^2) x_1^4 \otimes x_2; \\ &\underline{\Delta}([x_{1112}, x_{112}]_c) = [x_{1112}, x_{112}]_c \otimes 1 + 1 \otimes [x_{1112}, x_{112}]_c \\ &- \frac{(1 - \zeta^5)}{(1 + \zeta)}(1 - \zeta^3 + 2\zeta^4) x_1 \otimes x_{112}^2 \\ &- q_{21}(1 - \zeta)(1 - \zeta^3) x_1^2 \otimes [x_{112}, x_{12}]_c \\ &- (1 - \zeta)^2(4 + 4\zeta + \zeta^2 - 2\zeta^3 - 3\zeta^4) x_1^2 \otimes x_{12}x_{112} \\ &+ q_{21}(1 - \zeta^2)^2\zeta^4(1 - 2\zeta - 3\zeta^4 - 2\zeta^5 + \zeta^6) x_1^3 \otimes x_{12}^2 \\ &+ (1 - \zeta)^2(1 + \zeta^3)^2(1 + \zeta^6) x_1^3 \otimes x_2x_{112} - \zeta(1 - \zeta)(1 - \zeta^2) x_{1112} \otimes x_{112} \\ &- q_{21}\zeta^6(1 - \zeta)^2(1 - \zeta^2)(1 + 2\zeta) x_1^4 \otimes x_2x_{12} \\ &+ q_{21}^2\zeta^2(1 - \zeta)^2(1 - \zeta^2)(1 + \zeta^3) x_1^5 \otimes x_2^2 \\ &- q_{12}^2(1 + \zeta^3)(1 - \zeta)(1 - \zeta^4 + \zeta^6) x_{111112} \otimes x_2 \\ &+ \zeta q_{21}(1 + \zeta^3)(1 - \zeta)(1 - \zeta^2 - \zeta^2 - \zeta^3) x_{1112}x_1 \otimes x_2 \\ &+ \zeta q_{21}(1 + \zeta^3)(1 - \zeta)(1 - \zeta^2 - \zeta^5) x_{1112}x_1 \otimes x_{12} \\ &+ (1 - \zeta)(1 + \zeta^2 + \zeta^3 - \zeta^4 - \zeta^5) x_{1112}x_1 \otimes x_{12} \\ &+ \zeta q_{21}(1 - \zeta)^2(2 + \zeta - \zeta^3) x_{1112} \otimes x_{12}. \end{split}$$

Hence

$$\begin{split} \underline{\Delta}(x_1^{14}) &= x_1^{14} \otimes 1 + 1 \otimes x_1^{14}; \qquad \underline{\Delta}(x_{12}^{14}) = x_{12}^{14} \otimes 1 + 1 \otimes x_{12}^{14}; \\ \underline{\Delta}(x_{112}^{14}) &= x_{112}^{14} \otimes 1 + 1 \otimes x_{112}^{14} + a_1 x_1^{14} \otimes x_{12}^{14}; \\ \underline{\Delta}(x_{112}^{14}) &= x_{1112}^{14} \otimes 1 + 1 \otimes x_{1112}^{14} + a_2 x_1^{14} \otimes x_{112}^{14} + a_3 x_1^{28} \otimes x_{12}^{14}; \\ \underline{\Delta}(x_{1112}^{14}) &= x_{11112}^{14} \otimes 1 + 1 \otimes x_{11112}^{14} + a_4 x_1^{14} \otimes x_{1112}^{14} \\ &+ a_5 x_1^{28} \otimes x_{112}^{14} + a_6 x_1^{42} \otimes x_{12}^{14}; \\ \underline{\Delta}([x_{1112}, x_{112}]_c^{14}) &= [x_{1112}, x_{112}]_c^{14} \otimes 1 + 1 \otimes [x_{1112}, x_{112}]_c^{14} + a_7 x_{1112}^{14} \otimes x_{12}^{14} \\ &+ a_8 x_{11112}^{14} \otimes x_{12}^{14} + a_9 x_{12}^{42} \otimes x_{12}^{28} + a_{10} x_{11}^{14} \otimes x_{212}^{28} \\ &+ a_{11} x_1^{28} \otimes x_{12}^{14} x_{112}^{14} + a_{12} x_{1112}^{14} \otimes x_{12}^{14}; \end{split}$$

with $a_i \in \mathbf{k}$. For instance,

$$a_{1} = q_{21}^{7} (1-\zeta)^{7} (1-\zeta^{5})^{7} (4059 - 7124\zeta + 35105\zeta^{2} + 31472\zeta^{3} - 17431\zeta^{4} + 19299\zeta^{5} + 40124\zeta^{6}) \neq 0,$$

because $\zeta \in \mathbb{G}_7'$. Also,

$$a_3 = 26686268 + 39070423\zeta - 42643895\zeta^2 - 19103336\zeta^3 + 52678504\zeta^4 - 4378676\zeta^5 - 51111858\zeta^6 \neq 0.$$

Since $a_1, a_3, a_6, a_{12} \neq 0$ then $x_{112}^{14}, x_{1112}^{14}, x_{11112}^{14}$ and $[x_{1112}, x_{112}]_c^{14}$ are not primitive elements in $\widetilde{\mathcal{B}}_{\mathfrak{q}}$. Thus, ξ_1 and ξ_{12} generates $\mathfrak{Z}_{\mathfrak{q}}$.

Also, in $\mathfrak{Z}_{\mathfrak{q}}$ we have

$$\begin{split} [\xi_{12},\xi_1] &= a_1 \, \xi_{112}; \\ [\xi_1,\xi_{1112}] &= a_4 \, \xi_{11112}; \\ [\xi_1,\xi_{1112}] &= a_4 \, \xi_{11112}; \\ \end{split} \qquad \begin{bmatrix} \xi_1,\xi_{1112} \end{bmatrix} = \begin{bmatrix} \xi_{12},\xi_{112} \end{bmatrix} = 0. \end{split}$$

So, $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$.

In the case of the diagram $\bigcirc -\zeta -\zeta^4 -1 \\ \bigcirc \ \mathfrak{Z}_{\mathfrak{q}}$ is generated by ξ_1, ξ_{12} and

$[\xi_{12},\xi_1] = b_1\xi_{112};$	$[\xi_{12},\xi_{112}] = b_2 \xi_{112,12};$
$[\xi_{12},\xi_{112,12}] = b_3 \xi_{(112,12),12};$	$[\xi_1,\xi_{112}] = [\xi_{12},\xi_{(112,12),12}] = 0,$

where $b_1, b_2, b_3 \in \mathbf{k}^{\times}$. Hence, we also have $\mathfrak{Z}_{\mathfrak{q}} \simeq \mathcal{U}(G_2^+)$.

Remark 4.1. The results of this paper are part of the thesis of one of the authors [RB], where missing details of the computations can be found.

References

- [A] N. Andruskiewitsch, Notes on extensions of Hopf algebras. Canad. J. Math. 48 (1996), 3–42.
- [AA] Andruskiewitsch, N; Angiono, I., Generalized root systems, contragredient Lie superalgebras and Nichols algebras, in preparation.
- [AAR] Andruskiewitsch, N., Angiono, I., Rossi Bertone, F. The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type, Math. Res. Lett., to appear.
- [AAY] N. Andruskiewitsch, I. Angiono, H. Yamane. On pointed Hopf superalgebras, Contemp. Math. 544 (2011), 123–140.
- [AN] N. Andruskiewitsch, S. Natale. Braided Hopf algebras arising from matched pairs of groups, J. Pure Appl. Alg. 182 (2003), 119–149.
- [AS] N. Andruskiewitsch, H.-J. Schneider. Pointed Hopf algebras, New directions in Hopf algebras, MSRI series, Cambridge Univ. Press; 1–68 (2002).
- [A1] I. Angiono. On Nichols algebras with standard braiding. Algebra and Number Theory, Vol. 3 (2009), 35–106.
- [A2] I. Angiono. A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems. J. Eur. Math. Soc. 17 (2015), 2643–2671.
- [A3] On Nichols algebras of diagonal type. J. Reine Angew. Math. 683 (2013), 189–251.
- [A4] _____ Nichols algebras of unidentified diagonal type, Comm. Alg **41** (2013), 4667–4693.
- [A5] _____ Distinguished pre-Nichols algebras, Transform. Groups 21 (2016), 1–33.
- [AY] I. Angiono, H. Yamane. The R-matrix of quantum doubles of Nichols algebras of diagonal type. J. Math. Phys. 56, 021702 (2015) 1-19.
- [BD] Y. Bespalov, B. Drabant. Cross Product Bialgebras Part II, J. Algebra 240 (2001), 445–504.

- [CH] M. Cuntz, I. Heckenberger. Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213 (2009), 1112–1128.
- [GG] J. Guccione, J. Guccione. Theory of braided Hopf crossed products, J. Algebra 261 (2003), 54–101.
- [H1] I. Heckenberger. The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164 (2006), 175–188.
- [H2] _____Classification of arithmetic root systems. Adv. Math. 220 (2009), 59-124.
- [H3] Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type. J. Alg. 323 (2010), 2130–2180.
- [K] V. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem. Algebra and Logic 38 (1999), 259–276.
- [L] G. Lusztig. Quantum groups at roots of 1. Geom. Dedicata 35 (1990), 89–113.
- [RB] F. Rossi Bertone. Álgebras cuánticas de potencias divididas. Tesis doctoral FaMAF, Universidad Nacional de Córdoba, available at www.famaf.unc.edu.ar/~rossib/.
- [R] M. Rosso. Quantum groups and quantum shuffles. Inv. Math. 133 (1998), 399–416.

FAMAF-CIEM (CONICET), UNIVERSIDAD NACIONAL DE CÓRDOBA, MEDINA A-LLENDE S/N, CIUDAD UNIVERSITARIA, 5000 CÓRDOBA, REPÚBLICA ARGENTINA. *E-mail address*: (andrus|angiono|rossib)@mate.uncor.edu