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Abstract 

In an incremental formulation suitable to numerical implementation, the use of rate-independent 

theory of crystal plasticity essentially leads to four fundamental problems. The first is to determine the 

set of potentially active slip systems over a time increment. The second is to select the active slip 

systems among the potentially active ones. The third is to compute the slip rates (or the slip 

increments) for the active slip systems. And the last problem is the possible non-uniqueness of slip 

rates. The purpose of this paper is to propose satisfactory responses to the above-mentioned first three 

issues by presenting and comparing two novel numerical algorithms. The first algorithm is based on 

the usual return-mapping integration scheme, while the second follows the so-called ultimate scheme. 

The latter is shown to be more relevant and efficient than the former. These comparative performances 

are illustrated through various numerical simulations of the mechanical behavior of single crystals and 

polycrystalline aggregates subjected to monotonic and complex loadings. Although these algorithms 

are applied in this paper to Body-Centered-Cubic (BCC) crystal structures, they are quite general and 

suitable for integrating the constitutive equations for other crystal structures (e.g., FCC and HCP). 

Keywords: integration algorithm; finite strain; crystal plasticity; rate-independent framework; 

Schmid’s law; multisurface plasticity 

1. Introduction 

Due to its ability to relate the inelastic behavior of crystalline materials to their microstructure, the 

modeling of the mechanical response of single crystals has remained an active research topic. The 

constitutive equations describing the single crystal behavior are now well understood and fairly well 

established (see, e.g., [14]). For a thorough look at various aspects of the constitutive modeling of 
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single crystals, the reader may refer to earlier contributions (see, e.g., [59]). In the majority of 

constitutive models dedicated to single crystals, the inelastic deformation is assumed to arise solely 

from the slip on the crystallographic slip systems. Accordingly, deformation by diffusion, phase 

transformation, twinning and grain boundary sliding is not considered herein. Two different modeling 

frameworks have been proposed in the literature for the evolution of the slip rates: the rate-dependent 

and rate-independent approach. From a theoretical point of view, it is more appropriate to formulate 

the problem as rate-independent, especially at low temperature over a substantial range of strain rates, 

since most metals exhibit weak strain-rate dependency [10]. This rate-independent modeling approach 

is therefore adopted and studied in this paper. However, several difficulties are related to its numerical 

integration as will be explained hereafter.  

Contrary to its theoretical modeling, the numerical integration of the single crystal behavior is still 

subject to debate and remains an active research topic, especially with the development of 

computational codes used to predict the mechanical response of metallic components and structures. 

These codes are generally based on the finite element (FE) method (e.g. [11], [12]), or some 

homogenization techniques (e.g. [1316]), or even a combination of the two strategies, such as the FE2 

method (e.g. [1719]). In many situations, the number of degrees of freedom of the problem (or the 

size of structure) is rather large, which leads to a computationally burdensome task, because it requires 

a great deal of CPU time and memory space. For this reason, it is still of substantial scientific and 

technical interest to develop robust, efficient and accurate numerical schemes and algorithms to 

integrate the constitutive equations of the rate-independent theory of crystal plasticity. The purpose of 

this paper is to propose, after a comparison and an extensive discussion of the different choices, such a 

scheme.  

The constitutive equations of the rate-independent theory of crystal plasticity are incrementally 

integrated over a typical time increment I[t0, t0t]. The main tedious task of the numerical 

integration is to split the increment of the total deformation into an elastic and plastic part. As the 

plastic deformation is solely due to the slip on the crystallographic systems, the problem of the 

decomposition of the total strain increment is reduced to the determination of the slip rates (or the slip 

increments) of the different slip systems. The set of governing equations used to compute the slip rates 

is known to be generally strongly non-linear, and this non-linearity has two distinct sources. The first 

comes from the material behavior and is related to the expression of the hardening law (when 

hardening is considered). Indeed, the hardening laws used in the literature generally assume a 

complex, non-linear evolution for the rates of the various critical shear stresses as a function of slip 

rates. The second source of non-linearity is geometrical and is related to the evolution of the crystal 

lattice rotation (within the finite strain modeling framework).  

In the literature, there exists two main classes of algorithms to integrate this set of non-linear 

equations: 
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 The first class, which is the most popular, includes the usual return-mapping algorithm for the 

integration of elastic–plastic constitutive equations, see, e.g., [11], [12], [20][22]. The idea 

behind this class of algorithms is borrowed from the numerical integration of single surface 

phenomenological plasticity models. It is based on the elastic predictor–plastic corrector 

scheme. In this case, an elastic trial stress is computed and the corresponding trial resolved 

shear stresses are determined by projecting the trial stress on the orientation tensor of the 

different slip systems. A system is said to be potentially active if its trial resolved shear stress is 

strictly superior to its initial critical shear stress (at t0). Thus, the set of potentially active slip 

systems is determined at t0+t. This set is assumed to be unchanged over the entire time step [t0, 

t0+t]. Accordingly, the return-mapping algorithm is not able to account for intermediate 

activation and deactivation of slip systems during the time increment. To compute the slip 

increments of the potentially active slip systems, the discrete Kuhn–Tucker loading condition, 

resulting from the Schmid criterion [23], is obviously used. This condition is defined for each 

potentially active slip system by two inequalities and an equality constraint as follows: the slip 

increment for each slip system is superior or equal to zero, the difference between the critical 

shear stress and the resolved shear stress is superior or equal to zero, and the product of these 

two positive quantities is equal to zero. This states that a slip system is active only if its slip 

increment is strictly positive and the difference between its resolved shear stress and its critical 

shear stress is equal to zero. Otherwise the system is inactive. Mathematically speaking, this 

Kuhn–Tucker condition may be considered as a non-smooth complementarity problem and its 

resolution requires careful attention. To determine the set of active slip systems among the 

potentially active ones, several search strategies have been employed in the literature. These 

search strategies are carried out iteratively and, at each iteration, a subset of the set of the 

potentially active slip systems is selected to be the set of active slip systems. The slip rate of 

each presumed active slip system is computed by enforcing the equality between its critical 

shear stress and its resolved shear stress. For the other slip systems, belonging to the set of the 

potentially active slip systems, their slip rates are assumed to be equal to zero. After this step, 

the Kuhn–Tucker condition is checked for all the potentially active slip systems. If at least one 

constraint of this condition is violated, then the assumed set is not an effective set of active slip 

systems and another set is chosen. Several techniques have been used in the literature to select 

the set of active slip systems for the next search iteration, such as the intuitive combinatorial 

strategy developed by Ben Bettaieb et al. [24] and other less intuitive strategies, see e.g., 

[1113]. When material and/or geometrical non-linearities are considered in the modeling of the 

single crystal behavior, the computation of the slip increments for a given set of active slip 

systems requires the solution of a system of non-linear differential equations. To solve this 

system, two main integration schemes can be used. The first is explicit and is generally based on 
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a forward Euler scheme. In this case, the critical shear stresses and the crystal lattice rotation are 

held fixed over the time increment and are equal to their values at t0. With this choice, the 

mathematical system becomes linear and can be solved directly, e.g., [11]. However, the 

solution is not necessarily unique. In case of non-uniqueness of the solution, some rules are used 

to determine an optimal solution, such as the pseudo-inversion technique, e.g. [11], or the 

perturbation technique [12]. Due to its relative simplicity, the use of this explicit scheme allows 

reducing the CPU time required for each time increment, on the one hand, but, on the other 

hand, requires the use of a large number of very small strain increments to avoid numerical 

instabilities and inaccuracies. The second integration scheme used to compute the slip 

increments is implicit and is based on the backward Euler scheme. In this case, the critical shear 

stresses and the crystal lattice rotation are evaluated at t0+t. The resulting system of non-linear 

differential equations is solved by traditional iterative methods, such as the Newton–Raphson 

technique [12], [21], [22] or the fixed point method [24]. Contrary to the explicit scheme, the 

implicit one permits the use of larger time increments in order to reduce the computation time. It 

must be noted that the non-uniqueness issue may also be encountered in the application of the 

implicit algorithm. When the rate-independent single crystal constitutive equations are 

formulated under the small strain assumption, namely without evolution of the crystal lattice 

rotation and without non-linear hardening (i.e., perfect plasticity or linear hardening), the 

explicit and the implicit schemes become obviously equivalent. Generally, the use of implicit 

return-mapping algorithms is rather time consuming. Indeed, such algorithms are based on two 

separate nested loops: the first loop is used to search the set of active slip systems and the 

second is employed to compute the slip increments of the active slip systems. Hence, this 

approach is quite computationally expensive; especially when the number of potentially active 

slip systems is much larger than the number of active slip systems and/or when complex loading 

paths are involved (abrupt change in the loading path, elastic unloading...). In order to decrease 

the CPU time and thus to have an efficient integration scheme, a novel implicit return-mapping 

algorithm is proposed in the current paper. It is based on the replacement of the two inequalities 

and equality constraint of the Kuhn–Tucker conditions by a system of equations involving the 

so-called Fischer–Burmeister complementarity function [25], [26]. In this latter case, the set of 

active slip systems and the corresponding slip increments are determined iteratively by solving 

this system, which only requires a single loop. This choice of semi-smooth form of Kuhn–

Tucker condition, defined by the Fischer–Burmeister complementarity functions, leads to an 

alternative method that is more efficient and robust for determining the active slip systems and 

their slip rates. Although this strategy is very popular in the field of mathematical optimization 

[27-29], and is also applied to some problems of solid mechanics, such as contact mechanics, it 

is unfortunately not sufficiently used to solve the Kuhn–Tucker condition of single crystals. In 

fact, only few works formulated in the small strain framework can be found in this context [21], 
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[30]. Consequently, the development of this novel algorithm is one of the major contributions of 

this paper. 

 The second class of integration schemes may be built following the so-called ultimate algorithm 

initially introduced by Borja and Wren [31] and subsequently followed by [13], [24], [32], [33]. 

In this class, a slip system is considered to be potentially active if its resolved shear stress is 

equal to its critical shear stress at t0. Accordingly, the set of potentially active slip systems is 

evaluated at t0 and the trial phase is no longer required. Another important difference is that, in 

this case, the time increment may be divided into several sub-increments with the end of each 

sub-increment determined by the change in the set of potentially active slip systems (through 

addition or suppression of slip systems). Contrary to the return-mapping class, the ultimate 

algorithm provides not only the set of active slip systems at t0+t, but also their sequence of 

activation and deactivation over the time increment. This choice allows then accounting for 

possible changes in the slip activity over [t0, t0+t]. For the determination of the set of active 

slip systems, the iterative search strategies used in the return-mapping algorithms can also be 

applied to the ultimate algorithms. For example, Knockaert et al. [13] adopted a strategy very 

similar to that used in [11], [24], [33]. As will be demonstrated later, and unlike the return-

mapping class of algorithms, the development of a fully implicit ultimate scheme is 

conceptually difficult. Only explicit ultimate algorithms have been developed in the literature, 

see e.g., [13], [31]. In the same way as before, the problem of non-uniqueness of the slip rates 

for a given set of active slip systems may also be encountered in the case of an ultimate 

algorithm, and it can be circumvented by using, for example, the pseudo-inversion technique as 

in [13], or the perturbation technique as in [24], [33]. The development of an explicit/implicit 

version of the ultimate algorithm class is the second major contribution of this paper. This 

algorithm is optimal in the determination of the active slip systems and in the computation of 

the corresponding slip increments.  

Moreover, to the authors’ best knowledge, the comparison between the two classes of algorithms has 

not been attempted in the literature. Therefore, the third important objective of this paper is to 

compare, through several numerical simulations, the accuracy and the efficiency of the two novel 

algorithms (the return-mapping algorithm and the ultimate one). As will be shown in the sequel, it 

turns out that the ultimate algorithm is substantially more accurate and more efficient than the return-

mapping one. It is also noteworthy that, in contrast to previous literature works, which have mostly 

dealt with the numerical integration of FCC single crystal constitutive equations, the present work 

specifically focuses on BCC crystal structures. From a fundamental perspective, the difference in the 

numerical treatment of the two crystal structures is not significant. However, in practice, the higher 

number of slip systems in BCC single crystals, as compared to FCC single crystals, introduces 

additional difficulties, which thus leads to a more challenging problem.  
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The paper content is structured in the following way: 

- Section 2 outlines the constitutive equations of single crystal plasticity in the framework of 

finite strain rate-independent theory, by adopting both Eulerian and Lagrangian formulations.  

- Section 3 details the algorithmic developments both for the return-mapping and the ultimate 

algorithm in an incremental formulation. The derivation of a tangent modulus, consistent with the 

ultimate integration scheme, is given in the end of Section 3. 

- The accuracy of the numerical predictions as well as the efficiency of the developed algorithms, 

in terms of computational cost, are discussed and compared in Section 4 on the basis of 

simulation results at the single crystal scale. 

- The superiority of the ultimate algorithm compared to the return-mapping one, in terms of 

required computational time, is further highlighted in Section 5, where several numerical tests are 

carried out on polycrystalline aggregates. 

- The consistent tangent modulus derived in Section 3.3 is validated in Section 6 through two 

numerical tests.  

Notations, conventions and abbreviations 

The derivations presented in this paper are carried out using classical conventions. Note that the 

assorted notations can be combined, while additional notations will be clarified as needed following 

related equations. 

 

 

Vector and tensor variables are designated by bold letters and symbols. 

Scalar variables and parameters are referred to by thin letters and symbols. 

Einstein’s convention of summation over repeated indices is adopted. The range of the free (resp. dummy) 

index is indicated before (resp. after) the corresponding equation.  

   time derivative of   

1   inverse of   

    inner product 

   cross product 

    double contraction product 

    tensor product  

T   transpose of tensor 
 

tr ( )   trace of tensor   

R-M and UL will be used, as needed, to specify the return-mapping and ultimate algorithm, respectively. 

In some figures of Sections 4, 5 and 6, for the sake of clarity and to avoid clutter, the dots associated with 

dotted curves are not represented for all time increments (typically only one dot is reproduced at each 5 x 

103 s). 
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2. Constitutive equations 

2.1. Decomposition of the elastic–plastic deformation 

The classical treatment of finite deformation plasticity may be traced back to several earlier works, 

e.g., [1], [3], [6], [7]. It is based on the assumption of the existence of an infinite number of 

intermediate configurations, also called elastically relaxed configurations, obtained by elastic 

unloading to a stress free state. Here, only the main theoretical lines are recalled, except in some cases 

where equations that are essential to subsequent analyses are provided for completeness.  

As a starting point, the total deformation gradient f is taken to be multiplicatively decomposed into an 

elastic part 
e

f  and a plastic part 
p

f  

 
e p
.f f f . (1)  

The elastic part 
e

f  can itself be multiplicatively decomposed into a stretching tensor 
e

v  and a rotation 

tensor r  

 
e e

f v r  . (2) 

Rotation r  defines the orientation of the coordinate system related to the intermediate configuration 

relative to the current one. It can be expressed in terms of the Euler angles 
1 2 3

    as 

1 2 3 1 3 2 3 1 1 3 3 2

3 1 1 2 3 1 3 2 1 3 2 3

1 2 1 2 2

cosφ cosφ cosφ sinφ sinφ cosφ cosφ sinφ cosφ sinφ cosφ sinφ

cosφ sinφ cosφ cosφ sinφ cosφ cosφ cosφ sinφ sinφ sinφ sinφ

cosφ sinφ sinφ sinφ cosφ

r

 

  

 
 
 
  

. (3) 

The Eulerian velocity gradient g , expressed in the current configuration, is given by the following 

formula: 

 

1 1 1 1

e e e p p e

1 T 1 1 T 1

e e e e e p p e

. . . . .

. . . . . . . . .

g f f f f f f f f

v v v r r v v r f f r v

   

   

  

  
 (4) 

As is the case for most metallic materials, the elastic deformation is often assumed to be very small 

compared to unity. Accordingly, the stretching tensor 
e

v  is very close to the second-order identity 

tensor 

 
e

v 1 . (5) 

Combining Eqs. (4) and (5), we obtain 

 
T 1 T

e p p
. . . .g v r r r f f r

   . (6) 

The symmetric and anti-symmetric parts of g , denoted as d  and w , respectively, are defined by  

 
T T

e p e p

1 1
( ) ( )

2 2
d g g d d w g g w w          (7) 
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where the elastic and plastic parts, 
e

d  and 
p

d , of the strain rate tensor d , as well as the elastic and 

plastic parts, 
e

w  and 
p

w , of the rotation rate tensor w  are given by 

 

1 1 T T

e e p p p p p

T 1 1 T T

e p p p p p

1
. . . .

2

1
. . . . .

2

d v d r f f f f r

w r r w r f f f f r

 

 

       

       

 (8) 

2.2. Discrete kinematics of single crystal 

We recall that the single crystal plastic strain is assumed here to be solely due to the slip on the 

crystallographic slip systems. Each slip system α is defined, in the deformed configuration, by two 

orthogonal vectors 
α

m  and 
α

n  representing the slip direction and the normal to the slip plane, 

respectively. Although this paper specifically focuses on BCC single crystals, we shall assume that 

each crystal has in general a total of sN  slip systems. sN  is equal to 24 for BCC crystallographic 

structures. Therefore, the integer α ranges then from 1 to sN . The symmetric (resp. anti-symmetric) 

part of the tensor product 
α α α

M m n   is denoted by 
α

R  (resp. 
α

S ) and is called the Schmid tensor 

associated with the slip system α. The rotation r  between the current configuration and the 

intermediate one is chosen such that the tensor product 
α α

m n  of each slip system α is equal to 

0 0

α α
m n  when expressed in the intermediate configuration. With this choice, the slip direction 

α
m  

and the normal to the slip plane 
α

n  in the deformed configuration are given by the following relations 

(Figure 1): 

 
0 0 1

α e α α α e
. ; .m f m n n f

  . (9) 

Using assumption (5) and the kinematic relations (9), the tensor 
0

α
M , which is equal to 

0 0

α α
m n , can 

be related to 
α

M  by the following relation: 

  
0 T

α α
. .M r M r . (10) 

The detailed numbering of 
0

α
m

 
and

 
0

α
n  for BCC single crystals is given in Appendix A. 
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Figure 1. Schematic representation of the multiplicative decomposition of the deformation gradient: plastic slip 

and rigid rotation along with elastic distortion of the crystallographic lattice. 

As the plastic deformation is solely due to the slip on the crystallographic systems, the plastic part

1 T

p p. . .r f f r


 of the velocity gradient (see Eq. (6)) can be written as 

 
1 T *

p p β β s. . . γ ; β 1,...,Nr f f r M
   , (11) 

where 
*

βγ  is the algebraic value of the slip rate of system β. For practical reasons, and for handling 

only positive values of slip rates, it is more convenient to split each slip system into two opposite 

oriented slip systems ( βm , βn ) and ( βm , βn ). With this new definition, Eq. (11) becomes 

 
1 T

p p β β β s. . . γ with γ 0 ; β 1,...,2Nr f f r M
    . (12) 

From Eq. (12), the plastic strain rate pd  and plastic spin pw  can be written in terms of the Schmid 

tensors βR  and βS  as follows: 

 p β β p β β sγ ; γ ; β 1,...,2Nd R w S   . (13) 

The rotation tensor r , which describes the crystallographic orientation of the single crystal and its 

evolution, is defined by the following relation: 

 
T

p. r r w w  . (14) 
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As in several earlier works, e.g. [24], [33], [34], Eqs. (6), (8), (11) and (13) are expressed in the crystal 

lattice frame defined by the rotation r  in order to satisfy the objectivity principle [35]. For the sake of 

clarity, the tensors and vectors evaluated in this frame are denoted by an underbar notation. In this 

frame, the velocity gradient is expressed as follows: 

 T . .g r g r d w   , (15) 

where d  and w  are defined by the following relations: 

 
T

e p p p p β β s, . , γ ; β 1,...,2Nd d d w r r w d w M       . (16) 

The tensor βM  can be determined from βM  by: 

 
T

β β. .M r M r . (17) 

By comparing Eqs. (10) and (17), we can easily conclude that the tensor product βM  is constant and 

equal to 
0

βM . 

2.3. Elastic behavior law 

Recognizing that the deformations considered in the present paper are dominated by plastic slip, and 

that the elastic deformations are small in comparison to those induced by plastic slip, we consider the 

elasticity as being linear and isotropic in the constitutive equations for simplicity. In a rate form based 

on Eulerian tensors, the elastic part of the behavior law is classically written as 

 e e e e: 2μ λ tr( )σ d d d 1   . (18) 

Here, e  is the fourth-order elasticity tensor, σ  is the Cauchy stress rate tensor, and λ  and μ  are the 

Lamé coefficients. 

In total form based on Lagrangian tensors, Eq. (18) can be rewritten in the following form: 

 e eT e  , (19) 

where T  and ee  are the symmetric second Piola–Kirchhoff stress tensor relative to the intermediate 

configuration and the elastic Green–Lagrange deformation tensor, respectively, see e.g., [11]. They are 

defined by the following relations: 

 1 T

e e e e e[det( )] . . ; (1/2)( )T f f σ f e c 1
    , (20) 

with ec  being the elastic right Cauchy–Green deformation tensor given by 

 T

e e e.c f f . (21) 
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2.4. Plastic behavior law  

The plastic part of the behavior law is defined by the Schmid law [23]. This relation states that slip 

may occur only when the resolved shear stress ατ  on a slip system α becomes equal to a critical value 

c

ατ  

 

c

α α α

s c

α α α

τ τ γ 0
α 1,...,2 N :

τ τ γ 0


 



  


  
 (22) 

where the resolved shear stress ατ , acting on a given slip system α, is defined as the projection of the 

Cauchy stress on the Schmid tensor αM  associated with that slip system 

 α α α ατ : ( . ).σ M σ n m  , (23) 

and the evolution of the critical shear stress c

ατ  is given by the hardening law defined in Section 2.5.  

By using Eqs. (9), (20)(1), (21) and (23), ατ  can be expressed as follows: 

 , (24) 

where e .c T  is the inner product between ec  and T .  

For infinitesimal elastic stretches ( edet( ) 1f   and ec 1 ), the resolved shear stress ατ  can be 

approximated by 

 0 0 0 0 0 0

α α α α α α ατ . ). : withT n m T M M m n    . (25) 

Considering Eq. (22), the yield function c

α α α(τ τ ) f  corresponding to slip system α then reads 

 c

s α α α α α αα 1,...,2 N : (τ τ ) 0 ; γ 0 ; γ 0 f f     . (26) 

Eq. (26) may be viewed as a non-smooth complementarity problem and can therefore be replaced by 

an equivalent system involving the semi-smooth Fischer–Burmeister function [25], [26] 

 
2 2

s α α α α αα 1,...,2 N : φ ( ) (γ ) γ 0f f         . (27) 

2.5. Hardening description 

The hardening law describes the evolution of the critical shear stress c

ατ  during the loading history. 

The literature provides numerous models with various expressions for the hardening law, which are 

generally motivated by the crystal physical microstructure and are dependent, via a hardening modulus 

h , on the slip rates of the different slip systems. These hardening laws have traditionally a rate form 

and can be expressed as 

 
s s

c c

s α+N α αβ β β+N sα 1,...,N : τ τ h (γ γ ) ; β 1,...,N      . (28) 

 0 0

α e α α

e

τ . ). .
det( )

 
1

c T n m
f



 

 12  
 

The hardening modulus h  has been defined in the literature by various forms: diagonal, isotropic, 

anisotropic, symmetric or asymmetric. An overview of the different hardening laws adopted in the 

literature is given in [7], [36]. In the present paper, the integration scheme is general enough to be 

independent of the choice of the hardening law. 

3. Numerical integration 

We now elaborate on the algorithmic treatment of the above-described constitutive equations. In this 

aim, two new algorithms are developed. The first is based on the return-mapping class of algorithms, 

while the second relies on the so-called ultimate algorithm. For convenience, the return-mapping 

algorithm is formulated within a Lagrangian hyperelastic approach, whereas the ultimate algorithm is 

developed within an Eulerian hypoelastic framework. 

The time integration of the constitutive equations, described by Eqs. (1)–(28), proceeds by discretizing 

the deformation history in time and numerically integrating these equations over each time increment 

I[t0, t0+t]. For this purpose, we assume that the mechanical quantities: ef , pf , σ , r , αγ  and c

ατ  

(for sα 1,...,2N ) are known at t0. The Eulerian velocity gradient g  is assumed to be constant and 

known over the time increment I. The aim of both incremental algorithms is to compute σ , r , αγ  

and c

ατ  (for α 1,...,2 Ns ) at t0+t. In what follows, a variable x  evaluated at t0 (resp. t0+t) is 

denoted by x(t0) (resp. x(t0+t)). 

3.1. Return-mapping algorithm 

This algorithm is defined by three main steps, which will be detailed in Sections 3.1.1, 3.1.2 and 3.1.3. 

3.1.1. Determination of the set of potentially active slip systems 

A direct time integration of Eq. (4) over I gives the following update equation: 

 Δt

0 0(t Δt) e . (t )g
f f  . (29) 

When Δtg  is very small ( Δt g ), Eq. (29) can be approximated by 

 0 0(t Δt) ( Δt ). (t )f 1 g f   . (30) 

Despite the accuracy of the kinematic approximation (30) (especially for small time increments), the 

exact expression (29) is used in this algorithm. Note that approximation (30) is widely used in the 

literature (see. e.g. [11]). 

The trial elastic deformation gradient tr

e 0(t Δt)f   is computed as 

 
tr 1

e 0 0 p 0(t Δt) (t Δt). (t )f f f
   , (31) 

in terms of which we express the trial elastic Green–Lagrange strain tensor by 

 tr tr tr tr T tr

e 0 e 0 e 0 e 0 e 0(t Δt) (1/2)( (t Δt) ) ; (t Δt) (t Δt). (t Δt)e c 1 c f f        . (32) 
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The trial second Piola–Kirchhoff stress tensor associated with the trial elastic strain tr

ee  is defined by 

the following relation: 

 
tr tr

0 e e 0(t Δt) (t Δt)T e    . (33) 

And the trial resolved shear stresses are given by (see Eq. (25)) 

 tr tr 0

s α 0 0 αα 1,...,2N : τ (t Δt) (t Δt)T M      . (34) 

A slip system α  is potentially active if it satisfies the following inequality: 

 tr c

α 0 α 0τ (t Δt) τ (t ) 0   . (35) 

Accordingly, the set of potentially active slip systems  is given by 

  tr c

s α 0 α 0α 1,...,2 N ; τ (t +Δt) τ (t ) 0    . (36) 

At this stage, two possibilities may occur [37]: 

 If  , then the mechanical behavior is purely elastic over I (i.e., there is no plastic flow) 

and the slip rates of all the slip systems are equal to 0. The algorithm described in Section 3.1.2 

is then skipped.  

 If  , then the mechanical behavior is elastic–plastic over I and there is at least one system 

that is active among the set of potentially active slip systems. To compute the slip rates of the 

potentially active slip systems, the algorithm detailed in Section 3.1.2 is followed. 

3.1.2. Determination of the slip increments of the potentially active slip systems 

Eq. (12) can be written in the frame of the crystal lattice 

 
1 0

p p β β β β s. γ γ ; β 1,...,2Nf f M M
    . (37) 

If a slip system α  is not potentially active, then its slip rate αγ  is obviously equal to 0. Hence, Eq. 

(37) can be reduced to the following form: 

 
1 0

p p β β. γ ; βf f M
   . (38) 

A backward integration of Eq. (38) yields 

 
0

p 0 p 0 β β p 0(t Δt) (t ) Δγ . (t Δt) ; β    f f M f , (39) 

which can be written equivalently as 

 
1 0

p 0 p 0 β β(t ). (t Δt) ( Δγ ) ; β    f f 1 M . (40) 

On the other hand, the elastic Green–Lagrange strain tensor can be written as 

  e 0 e 0(t Δt) (1/2)( (t Δt) )e c 1    . (41) 

The deformation gradient 0(t Δt)f   can be written in the following two equivalent forms:  
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tr

0 e 0 p 0 e 0 p 0(t Δt) (t Δt). (t Δt) (t Δt). (t )f f f f f      , (42) 

which implies that 

 
tr 1

e 0 e 0 p 0 p 0(t Δt) (t Δt). (t ). (t Δt)f f f f
    . (43) 

By using Eq. (43), expression (41) of the elastic Green–Lagrange strain tensor becomes 

     

     

 

T
1 tr T tr 1

e 0 p p e e p p

T
1 tr T tr 1

p p e e p p

T
1 1

p p p p

(t Δt) (1/2) (t ). (t Δt) . (t Δt). (t Δt) . (t ). (t Δt)

(1/2) (t ). (t Δt) . (t Δt). (t Δt) . (t ). (t Δt)

(1/2) (t ). (t Δt) . (t ).

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

e f f f f f f 1

f f f f 1 f f

f f f f

 
  

 
  

 

 

 

      

     

   (t Δt) .0 1 
  

 

(44) 

By substituting Eq. (40) in Eq. (44), e 0(t Δt)e  can be rewritten after some lengthy but 

straightforward algebraic manipulations as 

  tr tr 0

e 0 e 0 β e 0 β(t Δt) (t Δt) Δγ sym (t Δt). ; β     e e c M , (45) 

where sym(x) is the symmetric part of tensor x. Note that the slip increments βΔγ  are assumed to be 

small so that, in the expression (45) above, their second-order terms have been disregarded. 

The resolved shear stress ατ  is determined on the basis of Eqs. (19), (25) and (45) 

 
 

 

0 tr tr 0

α 0 α e e 0 β e 0 β

0 tr 0 tr 0

α e e 0 β α e e 0 β

τ (t Δt) (t Δt) Δγ sym (t Δt).

(t Δt) Δγ sym (t Δt). ; β

      

        

M e c M

M e M c M

 
 

. (46) 

Finally, ατ  can be rearranged in the following simpler form: 

  tr 0 tr 0

α 0 α 0 β α e e 0 βτ (t Δt) τ (t Δt) Δγ sym (t Δt). ; β      M c M , (47) 

where the trial resolved shear stresses have already been expressed through Eqs. (33) and (34). 

On the other hand, via backward integration of the evolution equation (28) for the critical shear 

stresses, the following relations are derived: 

 
c c

s α 0 α 0 αβ 0 βα 1,...,2N τ (t Δt) τ (t ) h (t Δt) Δγ ; β        . (48) 

By combining Eqs. (47) and (48), we can obtain the following expression for the yield function αf  

(see Eq. (26)): 

 
c

α α 0 α 0 αβ β αα τ (t Δt) τ (t Δt) A Δγ b ; β        f , (49) 

where 

 
 0 tr 0

αβ αβ 0 α e e 0 β

c tr

α α 0 α 0

A h (t Δt) sym (t Δt).
α,β

b τ (t ) τ (t Δt)

M c M



     
  

  
. (50) 
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The semi-smooth form (27) of the Schmid law can therefore be written as 

 2 2

α αβ β α α αβ β α αα (A Δγ b ) (Δγ ) A Δγ b Δγ 0 ; β             . (51) 

The slip increments βΔγ  (and then the set of active slip systems ) can be determined by solving the 

system of non-linear equations (51) using a global Newton–Raphson method. The development of this 

global Newton–Raphson method is extensively detailed in Appendix B. It must be noted that, during 

the global Newton–Raphson iterations, no ad hoc assumptions concerning the determination of the 

active set are necessary, as the indices α  and β  in Eq. (B.3) cover all (active and inactive) slip 

systems. Indeed, the use of the semi-smooth function (51) permits to avoid the typical problems 

related to the definition and use of iterative search procedures for the set of active slip systems. 

3.1.3. Update of the other variables 

After convergence of the Newton–Raphson procedure, the slip increments βΔγ  as well as the set of 

active slip systems are known and all other variables can be updated using the constitutive equations:  

 The plastic and elastic parts of the deformation gradient are computed as follows: 

 
0 1

p 0 β β p 0 e 0 0 p 0(t Δt) ( Δγ ) . (t ) ; (t Δt) (t Δt). (t Δt) ; β        f 1 M f f f f . (52) 

 Then, the second Piola–Kirchhoff and Cauchy stress tensors are determined by 

 
 

 

tr tr 0

0 0 β e e 0 β

β

1 T

0 e 0 e 0 0 e 0

(t Δt) (t Δt) Δγ sym (t Δt).

(t Δt) det( (t Δt)) (t Δt). (t Δt). (t Δt)





     

     

T T c M

σ f f T f


. (53) 

 The resolved shear stresses are computed by 

 0

s α 0 0 αα 1,...,2 N τ (t Δt) (t Δt) :T M      . (54) 

 The critical shear stresses are then updated 

 
c c

s α 0 α 0 αβ 0 βα 1,...,2N τ (t Δt) τ (t ) h (t Δt) Δγ ; β        . (55) 

The Schmid law is checked for the different slip systems sα 1,...,2N , i.e.  

 c

α 0 α 0τ (t Δt) τ (t Δt)   , (56) 

if the slip system is active, or 

 c

α 0 α 0τ (t Δt) τ (t Δt)   , (57) 

if it is inactive. 

In fact, Eqs. (56) and (57) are obviously satisfied for the potentially active slip systems. But 

occasionally, one or several non-potential slip systems may violate inequality (57). In such a case, 
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these slip systems must be added to the set of potentially active slip systems, and the procedure 

detailed in Sections 3.1.2 and 3.1.3 is repeated until complete satisfaction of Eqs. (56) and (57). 

Finally, the lattice rotation r  is derived by polar decomposition of the elastic part of the deformation 

gradient 

 1

0 e 0 e 0(t Δt) (t Δt). (t Δt)r v f
    . (58) 

3.1.4. Some remarks on the return-mapping algorithm 

 Although the stretching tensor ev  is assumed to be very small, Eq. (53)(2) is used to update the 

Cauchy stress tensor σ  without any approximation (i.e., e 0(t Δt)f   is not replaced by 0(t Δt)r   

in Eq. (53)(2)).  

 The return-mapping algorithm detailed above is not able to accurately satisfy the incremental 

incompressibility. Indeed, an isochoric loading (det(f)=1) does not necessarily lead to a 

deviatoric form for the stress tensors T  and σ . This point will be further discussed in Section 

4.3. 

 The return-mapping algorithm developed in the previous section is based on a Lagrangian 

hyperelastic formulation. Accordingly, one of its advantages is that one does not have to check 

its incremental objectivity. Indeed, the time integration scheme naturally satisfies this important 

requirement.  

3.2. Ultimate algorithm 

For convenience, the Eulerian formulation is used in the development of the following version of the 

so-called ultimate algorithm. In this case, the time increment I is divided into several discrete sub-

increments I, over which the Schmid criterion is fulfilled at each time t. The end of each sub-

increment I corresponds to a change in the set of potentially active slip systems (through addition of 

new systems or suppression of existing systems).  

The ultimate algorithm is defined by the following main steps: 

3.2.1. Determination of the set of potentially active slip systems 

The set of potentially active slip systems  is identified at t0 as 

 0 c

s 0 α 0 α 0 α α 0{α 1,...,2 N (t ) : (t ) (t ) τ (t )}σ M σ M σ M      ; , (59) 

where 0(t )σ  is equal to T

0 0 0(t ). (t ). (t )r σ r . 

At this stage, two possibilities may occur: 
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 If (a)   or (b)   and 
0

α e 0: (t ) 0M d   for all α , then the mechanical behavior 

is purely elastic over I (with 0(t )d  being equal to T

0 0(t ). . (t )r d r ). In this case, the algorithm 

detailed in Section 3.2.2 is followed. 

 If   and 
0

α e 0: (t ) 0M d   for at least one system α , then the mechanical behavior is 

elastic–plastic over I. In this case, the algorithm detailed in Section 3.2.3 is followed. 

In spite of multiple similarities between the algorithmic treatments of the two possibilities, the two 

cases are studied separately (Sections 3.2.2 and 3.2.3) for the sake of clarity and consistency of the 

presentation. 

3.2.2. Purely elastic phase 

The first aim of this elastic algorithm is to compute the length δt  of the sub-increment δI  over which 

the behavior remains purely elastic. The second aim is to update the different mechanical variables at 

0
t + δt . 

δt  corresponds to the time required to reach the first facet of the yield surface. It must be comprised 

between 0 and Δt ( 0 δt Δt  ). δt  can then be computed as follows: 

 
s

c 0 c 0

α 0 0 α α 0 0 α
α=1,...,2N 0

α 0 α e 0

τ (t ) (t ) τ (t ) (t )
δt min Δt,

τ (t ) (t )

σ M σ M

M d

   
 

 

  
 
  

. (60) 

Generally, the length δt  of the elastic phase is very small. Therefore, the different mechanical 

variables can be updated by a forward scheme 

 
0

0 0 0 0 e

δt (t ) T

0 0 0 0 0 0

(t δt) (t ) δt (t ) (t ) δt (t )

(t +δt) (t ). (t δt) (t δt). (t δt). (t δt)

0

w

σ σ σ σ d

r r e σ r σ r

     

      
. (61) 

As this phase is purely elastic, the accumulated slips αγ  and the critical shear stresses c

ατ  of the 

different slip systems remain constant over δI  and equal to their values at 
0

t . 

After application of this update stage, the computation must be restarted from Section 3.2.1, with a 

new sub-increment I.  

3.2.3. Elastic–plastic phase 

3.2.3.1. Determination of the slip rates of the potentially active slip systems 

For each slip system belonging to , the Schmid criterion should be verified at t0 and at each instant t 

over I.  

 δ c c

α α α α α αα , t I : γ (t) 0 ; (τ (t) τ (t)) 0 ; γ (t)(τ (t) τ (t)) 0         . (62) 

The resolved shear stress ατ (t)  and the critical shear stress c

ατ (t)  can be approximated over δI  by the 

following expression (which can be obtained, e.g., by backward integration): 
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α α 0 0 αδ

s c c c

α α 0 0 α

τ (t) τ (t ) t t τ (t)
α 1,...,2 N , t I :

τ (t) τ (t ) t t τ (t)





   
   

   =
. (63) 

As all the slip systems α  are potentially active, α 0τ (t )  is equal to c

α 0τ (t ) . Using this, in 

conjunction with Eq. (63), the Schmid criterion (62) becomes equivalent to the following consistency 

condition: 

 δ c c

α α α α α αα , t I : γ (t) 0 ; (τ (t) τ (t)) 0 ; γ (t)(τ (t) τ (t)) 0         . (64) 

Knowing that only the slip systems belonging to  may be active, ατ (t)  and c

ατ (t)  can be recast in the 

following form: 

c

α αβ βδ

s 0 0 0 0

α α α e β α e β

τ (t) h (t) γ (t)
α 1,...,2 N , t I ; β

τ (t) (t) γ (t)( )σ M M d M M


    

       


 



. (65) 

After straightforward algebraic manipulations, the insertion of (65) into (64) yields 

δ

α α αβ β α α αα , t I γ (t) 0 (t) A (t)γ (t) b (t) 0 ; γ (t) (t) 0 ; βf f            .(66) 

The components of A  and b  are given by 

 
δ 0 0 0

αβ α e β αβ α α eα,β t I : A (t) h (t) b (t) (t)M M M d              . (67) 

The non-smooth formulation of the consistency condition given by Eq. (66) is a Non-Linear 

Complementarity Problem (NLCP). Unlike the return-mapping algorithm, this NLCP cannot be solved 

by an implicit scheme over I, because at the initial time t0 of I, its length t is not a priori known. To 

compute the slip rates of the potentially active slip systems, a new algorithm is developed. This 

algorithm requires one or two phases, depending on the situation: an explicit phase (automatically 

achieved), followed or not by an implicit correction (performed if t is equal to t). This algorithm is 

described by the following three steps: 

 Step 1: In this step, the NLCP given by Eq. (66) is evaluated at t0 as 

α 0 α 0 αβ 0 β 0 α 0 α 0 α 0α γ (t ) 0 (t ) A (t )γ (t ) b (t ) 0 γ (t ) (t ) 0 ; βf f          . (68) 

With this choice, the NLCP is transformed into a Linear Complementarity Problem (LCP), since 

0(t )b  and 
0(t )A  are known and do not depend on the value of 0(t )γ . This LCP can be solved 

by using a semi-smooth formulation similar to that given by Eq. (51). However, it turns out that 

this semi-smooth form is not the most optimal approach to solve Eq. (68). Consequently, as 

alternative, a robust and efficient iterative search strategy is proposed to detect the set of active 

slip systems and thus to solve this LCP. This strategy, developed in the spirit of the algorithm 

proposed in [11], is based on the following three sub-steps: 
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 Sub-step 1.1: We start this sub-step by assuming that the active set at 0t  coincides with 

the set of potentially active slip systems . The slip rates of the slip systems belonging to 

 are determined by solving the following linear algebraic equation system: 

 
0 0 0 0 0 0(t ). (t ) (t ) (t ). (t ) (t )A γ b 0 A γ b   . (69) 

If for all slip systems α  belonging to the set (=) the corresponding components 

α 0γ (t ) , solution of (69), are strictly positive, then 0(t )γ  is a solution of the LCP (68). In 

this case, we go to Step 2; otherwise, we go to Sub-step 1.2. If the matrix 
0(t )A  is 

singular, the pseudo-inversion method is used to compute its inverse and then to solve Eq. 

(69). Further details about the pseudo-inversion method are given in Appendix C. 

 Sub-step 1.2: If some components α 0γ (t ) , solution of (69), are negative or equal to zero, 

then the corresponding slip systems are inactive and, accordingly, we remove them from 

the set of active slip systems  and we resolve the algebraic system (69) for this new set 

. Sub-step 1.2 is repeated until a solution for (69) is found, with all slip rates α 0γ (t ) , 

α , being strictly positive. The slip rates of the slip systems belonging to  are 

set to 0. 

 Sub-step 1.3: In this sub-step, the consistency condition (68) is checked for all slip 

systems belonging to . The first inequality is naturally fulfilled, as a result of Sub-step 

1.2. The second inequality of (68) is obviously satisfied for the slip systems belonging to 

the set . If some slip systems belonging to  violate this inequality, then these 

slip systems are added to the set of active slip systems  and one returns to Sub-step 1.2. 

Otherwise, the vector 0(t )γ  computed through Sub-step 1.2 is a solution to the LCP (68). 

The combinatorial search procedure, defined by Sub-steps 1.2 and 1.3, always allows 

identifying the set of active slip systems after a few iterations, as will be demonstrated in 

Figure 18. Moreover, it is known that the set of active slip systems  is included in the 

set of potentially active slip systems . Hence, if the set  contains n slip systems, the 

set  is at least one of the 2n sub-sets of . Consequently, the application of a trivial 

combinatorial search procedure necessarily allows finding at least one set of active slip 

systems , as a solution of the consistency condition (68), among the 2n sub-sets of . 

However, this trivial search procedure seems to be computationally expensive (for 

instance, for a set of 8 potentially active slip systems, 256 sub-sets must be checked). In 

order to quickly identify the set of active slip systems, the search procedure consisting of 
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Sub-steps 1.2 and 1.3 is followed. The same procedure has been successfully used in 

several previous works in the literature (see, e.g., [11] and [13]). In the numerical code 

developed on the basis of this algorithm, the trivial search procedure has been 

incorporated in case the combinatorial algorithm presented in Sub-steps 1.2 and 1.3 fails 

to converge after 10 iterations. From personal experience, and on the basis of the various 

simulations carried out at the single crystal and polycrystal scales, it is found that the set 

of active slip systems is generally determined after 3 or 4 iterations. Therefore, from a 

practical point of view, the recourse to a trivial search procedure has never been required 

so far, although the latter has been implemented in the code. 

 Step 2: The aim of this step is to compute the length t of the time sub-increment I=[t0, t0+t] 

over which the Schmid criterion is satisfied. In view of the previous steps, it can be shown that 

this criterion is fulfilled for the potentially active slip systems. For the other systems ( ), the 

following condition must be checked: 

 c

α 0 α 0α τ (t δt) τ (t δt)      . (70) 

By using a Taylor expansion combined with Eq. (65), one obtains 

 

0 0

α 0 α 0 α 0

c c

α 0 α 0 αβ 0 β 0

τ (t δt) (t ) δt (t )
α ; β

τ (t δt) τ (t ) δt h (t ) γ (t )

M σ M σ    
   

  





, (71) 

where the stress rate 0(t )σ  is computed by the following relation: 

  0

0 e 0 β 0 β(t ) (t ) γ (t ) ; β   σ d M . (72) 

The combination of Eqs. (70) and (71) gives the following condition on δt , which must, of 

course, be greater than 0 and inferior or equal to Δt : 

 
 

c 0

α 0 0 α

α 0 0

α e 0 β 0 β αβ 0 β 0

τ (t ) (t )
δt min Δt, ; β

(t ) γ (t ) h (t ) γ (t )


 
 

   

σ M

M d M

 
 
 
  

. (73) 

If δt Δt , then an implicit evaluation of the slip rates turns out to be very complicated. Indeed, 

in this case, an iterative loop is required to update the length of the time sub-increment δt , in 

addition to the iterative loop used to implicitly evaluate the slip rates for a given value of δt  

[24]. Furthermore, the value of δt  is generally small (most often below Δt ). For these reasons, 

the explicit evaluation 0(t )γ  of the slip rates obtained through Step 1 is considered here to be 

reasonable, and the implicit correction is not required. In case δt Δt , the iterative loop to 

update δt  is not required. Therefore, a straightforward implicit correction can be achieved to 

accurately compute the slip rates at 0t δt  ( 0t Δt  ). This implicit correction is detailed in the 

next step. 
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 Step 3: In this step, the slip rates of the potentially active slip systems are implicitly corrected in 

order to ensure the overall accuracy and stability of the solution. This implicit correction allows 

the use of large time increments. The set of active slip systems at 0t +δt  is assumed to be the 

same as that explicitly obtained in Step 1 at t0. In order to compute the slip rates of these active 

slip systems, the linear system (69) is replaced by the following system of non-linear equations:  

 αβ 0 β 0 α 0α A (t δt)γ (t δt) b (t δt) ; β         (74) 

where the components of A  and b  are given by 

 
0 0 0

αβ 0 α e β αβ 0 α 0 α eα,β : A (t δt) h (t +δt) b (t δt) (t δt)0M M M d             . (75) 

The set of non-linear equations (74) can be solved by at least two iterative techniques: the 

Newton–Raphson method and the fixed point method. On the basis of various numerical tests 

and simulations, the latter method has been preferred. Indeed, this method does not require the 

analytical or numerical computation of some Jacobian matrix, which is needed in the application 

of the Newton–Raphson method. The detailed procedure of the fixed point method is given in 

Appendix D.  

If some slip rates β 0γ (t δt) , computed by the fixed point procedure, violate at least one 

constraint of the NLCP (66), then the set of active slip systems at 0t δt  is different from that 

determined at 0t . In this particular case, the basic iterative search strategy developed in [24], 

[33] can be used to choose another set of active slip systems, and Step 3 is repeated until 

fulfillment of the different constraints of (66). Note that, fortunately, thanks to the slow 

evolution of matrix A  and vector b  over I, this particular case is seldom encountered.  

3.2.3.2. Update of the other variables 

 If the slip rates are computed explicitly (i.e., without the use of the implicit correction), the 

different mechanical variables are updated as follows: 

 
e 0

0

0 0 0 0 e β 0 β

δt (t +δt) T

0 0 0 0 0 0

α 0 α 0 α 0

c c

s α 0 α 0 αβ 0 β 0

(t δt) (t ) δt (t ) (t ) δt ( (t ) γ (t ) ) ; β

(t +δt) (t ). (t δt) (t δt). (t δt). (t δt)

α : γ (t δt) γ (t ) δt γ (t )

α 1,...,2 N : τ (t +δt) τ (t ) δt h (t ) γ (t )

0

w

σ σ σ σ d M

r r e σ r σ r

       

      

    

    ; β

. (76) 

The time increment Δt  and the initial time 0t  are also updated 

 0 0Δt Δt δt ; t t δt    . (77) 

After this update stage, the computation must be restarted from Section 3.2.1, with a new sub-

increment I. 
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 If the implicit correction is used, then the different mechanical variables are updated as follows: 

 

0

0 0 0 0 e β 0 β

T

0 0 0 0

α 0 α 0 α 0

c c

s α 0 α 0 αβ 0 β 0

(t δt) (t ) δt (t δt) (t ) δt ( (t +δt) γ (t δt) ) ; β

(t δt) (t δt). (t δt). (t δt)

α : γ (t δt) γ (t ) δt γ (t +δt)

α 1,...,2 N : τ (t +δt) τ (t ) δt h (t +δt) γ (t +δt) ; β

0σ σ σ σ d M

σ r σ r

         

    

    

    

, (78) 

where 0(t δt)r   and αβ 0h (t +δt)  are taken equal to their respective last converged values, 

computed in the application of the fixed point procedure (see Eqs. (D.1) and (D.5), respectively, 

in Appendix D).  

After application of this update stage, the computation must be restarted from Section 3.2.1, 

with a new sub-increment I. 

3.2.4. Incremental objectivity of the ultimate algorithm 

Several works have been developed in the literature to demonstrate the incremental objectivity of 

numerical integration schemes (see, e.g., [3840]). To demonstrate that the developed ultimate 

algorithm is incrementally objective, let us apply a pure rotation , as an increment of the 

deformation gradient f over a typical time increment [t0, t0+t] 

 0 0(t Δt) . (t )f f  . (79) 

The algorithm is incrementally objective if the stress tensor 0(t Δt)σ   computed by the ultimate 

integration algorithm can be deduced from 0(t )σ  and  by the following relation ([38]): 

 T

0 0(t Δt) . (t ).σ σ  . (80) 

In order to check whether relation (79) implies (80), let us consider unit base vectors ie  (i=1,2,3) 

related to the deformed configuration of the single crystal at t0. Without loss of generality, let us 

choose 1e  and 2e  equal to 
1 1

/m m  and 
1 1

/n n , respectively. Here, 
1

m  and 
1

n  are the slip direction 

and the normal to the slip plane of the slip system number 1 in the deformed configuration at t0. 3e  can 

be determined automatically from 1e  and 2e  by the following cross product: 

 3 1 2e e e  . (81) 

Due to rotation , the unit base vectors ie  (i=1,2,3) are transformed into unit base vectors ig  

(i=1,2,3) at t0+t 

 i ii = 1,2,3: .g e  . (82) 
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The rotation tensors between the deformed configuration and the intermediate configuration of the 

single crystal (see Figure 1) at t0 and t0+t are denoted, respectively, r(t0) and r(t0+t). Using Eqs. (78)

(2) and (78)(1) (for t=t), the following relation is obtained: 

T

0 0 0 0

T

0 0 0 0

T T

0 0 0 0 0 0

T T T T

0 0 0 0 0 0 0 0

(t Δt) (t Δt). (t Δt). (t Δt)

(t Δt).( (t ) Δt (t Δt)). (t Δt)

(t Δt).( (t ). (t ). (t ) Δt (t Δt)). (t Δt)

(t Δt). (t )]. (t ).[ (t Δt). (t )] Δt (t Δt). (t Δt)). (t Δ

σ r σ r

r σ σ r

r r σ r σ r

r r σ r r r σ r



 

 

  

+ + + +

+ + +

+ + +

+ + + + + t)

.(83) 

Let us also introduce the unit base vectors it  (i=1,2,3) related to the intermediate configuration and 

defined as follows:  

 
0 0

1 1 2 1 3 1 2; ;t m t n t t t    . (84) 

Then, ig  can be related to it  by the following relation (as long as the elastic deformation is assumed 

to be very small):  

 i 0 ii = 1,2,3: (t Δt).g r t  + . (85) 

On the other hand, it  and ie  are related by  

 
T

i 0 ii = 1,2,3 : (t ).t r e  . (86) 

Replacing it  in Eq. (85) by its expression from Eq. (86), one obtains 

 
T

i 0 0 ii = 1,2,3: (t Δt). (t ).g r r e  + . (87) 

By comparing (82) and (87), one can easily deduce that 

 
T

0 0(t Δt). (t )r r + . (88) 

The deformation between t0 and t0+t is a pure rotation as defined in (79) and, accordingly, the strain 

rate d  is equal to 0 . Hence, d  is also equal to 0  and the slip rates of all slip systems are equal to 

zero. This conclusion is easy to understand by analyzing the relation between the slip rates and the 

strain rate d  (see for example Eqs. (67) and (69)). Then, the plastic strain pd , defined by Eq. (16)(3), 

is equal to 0  and, using Eq. (16)(1), we can deduce easily that ed  is also equal to 0 . Consequently, the 

stress rate 0(t Δt)σ +  is equal to 0  and, hence, Eq. (83) reduces to 

 T T T

0 0 0 0 0 0(t Δt) (t Δt). (t )]. (t ).[ (t Δt). (t )]σ r r σ r r + + + . (89) 

By replacing 
T

0 0(t Δt). (t )r r+  by , as stated in (88), Eq. (89) is transformed to  

 T

0 0(t Δt) . (t ).σ σ+ , (90) 

which is exactly the same relation as (80). This shows that the ultimate algorithm is incrementally 

objective.  
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3.2.5. Some remarks on the ultimate algorithm 

The remarks below rely on the fictitious yield surface introduced in Figure 2. 

 Remark 1: The first sub-increment of computation is elastic, as the single crystal is generally 

assumed to be initially stress-free (i.e. (t = 0) =σ 0 ), and this sub-increment permits to catch the 

first facet of the yield surface, which corresponds to the activation of system 1'. As the crystal is 

loaded further, the stress state rides along the system 1', until it activates system 2'. In this 

manner, other facets are progressively reached in the following sub-increments until arriving at 

a vertex of the yield surface (the intersection of at least 5 facets). Note that, during this process, 

some systems may be activated simultaneously. Generally, at this stage, only one sub-increment 

(for typical values of strain increments, which are about 0.1–1% in FE simulations) is required 

in order to reach the next facet. Therefore, for these first sub-increments (when the stress state is 

not yet located at a vertex of the yield surface), the explicit algorithm is used without implicit 

correction, as δt  is generally smaller than Δt . 

 Remark 2: When the stress state at 0t  is laid on a vertex, and unless changes in the loading 

path or unloading occur, e 0(t )d  is an outward vector with respect to the yield surface. As the 

yield surface is convex, the stress remains constrained to this vertex, and it is impossible to 

reach a novel facet of the yield surface during the remainder of the time increment ΔI . 

Accordingly, there is no change in the set of potentially active slip systems in this case. This 

implies that δt  is equal to Δt  (see Eq. (73)), which means that the implicit correction is 

possible in this case. 

In order to geometrically illustrate the previous two remarks, a simplified 2D schematic representation 

of the single crystal yield surface is introduced in Figure 2. The idea behind the progression shown in 

Figure 2 can be easily extended to the general case of the single crystal yield surface (which is 

represented in the linear five-dimensional deviatoric space). 

  

 (a) (b) 
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(c) 

Figure 2. Evolution of the stress state on a 2D schematic representation of the single crystal yield surface: (a) 

First sub-increment [0, t1], which corresponds to a purely elastic phase, (b) Second sub-increment [t1, t2], which 

corresponds to the phase where the first facet (system 1') is reached, (c) Third sub-increment [t2, t3], which 

corresponds to the phase where the second facet (system 2') is reached. 

3.3. Derivation of an analytical expression for the consistent tangent modulus 

For the sake of brevity, only the tangent modulus, consistent with the ultimate integration scheme, is 

derived in this section. For the return-mapping integration scheme, several versions of the consistent 

tangent modulus have been given (in a Lagrangian formulation) in [41] and [42]. 

In order to simplify the following developments, the time increment [t0, t0+t] is assumed to consist of 

a single sub-increment. Accordingly, I (resp. t) is equal to I (resp. t). From a practical point of 

view, this assumption is generally valid after few time increments (usually starting from the third or 

the fourth time increment). When the time increment is composed of more than one sub-increment, the 

following development remains valid, provided it is applied to the last sub-increment of [t0, t0+t]. In 

order to simplify notations, the argument t0+t is dropped in the following developments, with the 

implied understanding that the corresponding variable is evaluated at t0+t. 

In order to take the finite strain aspects into account (finite deformation as well as finite rotation), the 

consistent tangent modulus is computed in the co-rotational frame, where it is defined by the following 

expression (see, e.g., [4344]): 

 ep

ˆΔˆ
ˆΔ

σ

ε





, (91) 

in which σ̂  and ε̂  represent, respectively, the Cauchy stress increment and the corresponding 

strain increment (equal to t d̂ , as d̂  is assumed to be constant over the time increment), both being 

expressed in the co-rotational frame. This co-rotational frame is determined by the anti-symmetric part 

w  of the velocity gradient g . Then, the rotation tensor r̂  is defined as the orientation of the co-

rotational frame relative to the fixed frame. This rotation has the following evolution law: 
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 Δt

0
ˆ ˆe . (t )w
r r . (92) 

Any tensor X  used in the current section will be denoted X̂  when expressed in the co-rotational 

frame. 

To compute ep
ˆ , the so-called secant modulus 

s
ˆ , which relates the increment of the Cauchy stress 

tensor σ̂  to the increment of the strain tensor ε̂ , is first determined 

 
s

ˆˆ ˆΔ : Δσ ε . (93) 

Indeed, the stress increment ˆΔσ  can be expressed as follows: 

 
T

0 0
ˆ ˆ ˆ ˆΔ (t ) . . (t )σ σ σ r σ r σ    , (94) 

where r  is the rotation of the intermediate configuration relative to the co-rotational frame. Its 

evolution is defined by the following equation: 

 p α α
ˆˆΔt Δt γ

0 0e . (t ) e . (t ) ; α
w S

r r r
 

   . (95) 

Using the update equation (78)(1), ˆΔσ  can be rewritten as 

 

T

0 0 0

T T T T

0 0 0 0

ˆ ˆ ˆ ˆΔ (t ) .( (t ) Δt ). (t )

ˆ ˆ. (t )]. (t ).[ . (t )] Δt . . (t ).

    

   

σ σ σ r σ σ r σ

r r σ r r r σ r σ
 (96) 

By using Eq. (95), 
T

0. (t )r r  and 
T T

0[ . (t )]r r  can be expressed as 

 α α α α
ˆ ˆΔt γ Δt γT T T

0 0. (t ) e , [ . (t )] e ; α
S S

r r r r


   . (97) 

For small time increments, tensor α α
ˆΔt γ

e
S

 (resp. α α
ˆΔt γ

e
S

) can be approximated by 
α α

ˆΔt γ1 S  (resp. 

α α
ˆΔt γ1 S ), since the higher-order terms in Δt  are negligible. 

Hence, Eq. (96) can be transformed into 

 

T

0 0 0

T

α α 0 α α 0

ˆ ˆ ˆ ˆΔ (t ) .( (t ) Δt ). (t )

ˆ ˆˆ ˆΔt γ ]. (t ).[ Δt γ ] Δt . . (t )

    

     

σ σ σ r σ σ r σ

1 S σ 1 S r σ r σ
   ; α . (98) 

By neglecting the second-order terms in Δt , the expression of ˆΔσ  can be reduced to 

 

T

0 α α 0 α 0 α 0

T

α α 0 α 0 α

ˆ ˆˆ ˆ ˆ ˆ ˆΔ (t ) Δt γ . (t ) Δt γ (t ). Δt . . (t )

ˆ ˆˆ ˆΔt γ . (t ) Δt γ (t ). Δt . . .

    

   

σ σ S σ σ S r σ r σ

S σ σ S r σ r
   ; α . (99) 

By using Eq. (78)(1), 
T. .r σ r  can be determined in the following form: 

 T

e α α e α α
ˆ ˆ ˆ ˆ. . ( γ ) ( γ ) ; α     r σ r d M d R . (100) 

The combination of Eqs. (65)(67) gives the following expression for the slip rates of the active slip 

systems: 
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 α αβ β e
ˆ ˆα : γ Λ : ; βR d     , (101) 

where the square matrix Λ  is the inverse of A  defined in Eq. (67). 

Taking into account expression (101) for αγ , Eq. (100) can be rewritten as 

 
T

e αβ e α β e
ˆ ˆ ˆ. . Λ ( : ) ( : ) ; α,βr σ r R R d       . (102) 

By inserting Eq. (102) into Eq. (99), and using expression (101), one obtains 

 
e αβ e α α 0 0 α β e

e αβ e α α 0 0 α β e

ˆ ˆˆ ˆ ˆˆ ˆ ˆΔ Δt Λ ( : . (t ) (t ). ) ( : )

ˆ ˆˆ ˆˆ ˆ ˆΛ ( : . (t ) (t ). ) ( : ) Δ

      

     

σ R S σ σ S R d

R S σ σ S R ε
; α,β . (103) 

The secant modulus 
s

ˆ  can then be identified by comparing Eqs. (93) and (103) 

 
s e αβ e α α 0 0 α β e

ˆ ˆ ˆˆ ˆˆ ˆΛ ( : . (t ) (t ). ) ( : ) ; α,β      R S σ σ S R . (104) 

Finally, Eq. (93) is differentiated in order to derive the expression of the consistent tangent modulus 

ep
ˆ  

 *

s s s s s
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆΔ ( : Δ ) : Δ : Δ + ) : Δσ ε ε ε ε         , (105) 

where *

s
ˆ  is a fourth-order tensor, which is determined by the following relation: 

 *

s s
ˆ ˆˆ ˆ: Δ : Δε ε   . (106) 

The analytical expression of *

s
ˆ  is derived in Appendix E. 

Once *

s
ˆ  has been determined, the consistent tangent modulus ep

ˆ  is obtained as follows: 

 *

ep s s
ˆ ˆ ˆ+ . (107) 

Thereafter, 
ep

 can be determined by rotating ep
ˆ  from the co-rotational frame to the fixed frame. 

It is worth noting that, in addition to the analytical determination of the consistent tangent operator, the 

latter can also be determined numerically by combining the perturbation technique with the finite 

difference method [45]. For this numerical evaluation of the consistent tangent modulus, the 

integration scheme of Section 3.2 has to be applied seven times: six times for building the consistent 

tangent modulus, column by column, by perturbing the six components of ˆΔε  one at a time, and once 

for updating the different mechanical variables. Hence, the use of this numerical version of the 

consistent tangent modulus appears to be very expensive in terms of computational time. In Section 6, 

a comparison between these two techniques will be presented, both in terms of numerical values for 

the consistent tangent matrix components and also in terms of the quadratic convergence of the 

Newton–Raphson method associated with an initial boundary value problem.  
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4. Single crystal scale: Numerical results and discussions 

The objective of this section is to compare the accuracy, efficiency and robustness of the two 

developed integration algorithms at the single crystal scale. To this end, both algorithms, namely the 

return-mapping and the ultimate algorithm, with their different versions and formulations, have been 

implemented using the multi-paradigm numerical computing environment Matlab (R2014). This 

choice is motivated by the fact that this software offers efficient and powerful tools and functionalities 

in order to optimize the numerical implementation. The simulations in this paper are all performed on 

a personal computer with 2.00 GHz of CPU frequency and 6.00 Go of RAM memory. To extensively 

compare the respective performances of these algorithms, the simulations are carried out in the current 

section on single crystals subjected to both constant and non-constant loadings with various initial 

orientations.  

4.1. Initial state, hardening law and material parameters 

The initial state for each single crystal, in terms of stress and plastic slip, is characterized by 

 α(t 0) ; (α 1,...,2 N ) : γ (t 0) 0sσ 0     . (108) 

The hardening law considered here was initially introduced by Chang and Asaro [46], and recently 

employed by Miehe and Schröder [12] for FCC single crystals. This hardening law is adapted here to 

the case of BCC single crystals. With this law, the components of the hardening modulus h  are 

defined by the following expressions: 

 0
αβ αβ 0

sat 0

h Aˆ ˆα,β h = h(A) q+(1 q)δ ; h(A)=h sech
τ τ

2  
    

 
   


, (109) 

where αβδ  is the Krönecker symbol and A  is the sum of the accumulated plastic slip on all slip 

systems (
48

α

α=1

= γ ). As to sat 0τ ,τ ,q  and 0h , they represent material parameters. The values of both 

elasticity and hardening parameters are reported in Table 1, see also [12]. 

Elasticity Hardening 

λ  μ  
satτ  0τ  q  

0h  

42.03 GPa 28.3 GPa 0.108 GPa 0.06 GPa 1.4 0.534 GPa 

Table 1. Material parameters. 

The numerical results of Section 4 are obtained by considering four different initial orientations of 

single crystals (as reported in Table 2). 
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Orientation 1φ  2φ  3φ  

1 0 0 0 

2 15 0 0 

3 30 0 0 

4 15 30 0 

Table 2. Initial crystal orientations in degrees. 

4.2. Constant loading 1: Combined shearingstretching test 

This section presents the simulations of the mechanical behavior of a single crystal subjected to 

constant loading. This loading corresponds to a combined shearing–stretching test characterized by the 

following Eulerian velocity gradient: 

 1

1 1 0

0 0.5 0 (s )

0 0 0.5

g

 
 
 
  

 



. (110) 

4.2.1. Limitations of the non-smooth formulation coupled with the return-mapping algorithm 

As shown in Eq. (26), the return-mapping algorithm is classically used with the non-smooth 

formulation of the Schmid law. With such a formulation, and for an implicit integration scheme, two 

nested loops are required: an external loop to determine the set of active slip systems among the 

potentially active ones, and an internal loop to iteratively compute (with the Newton–Raphson 

method) the slip increments of the active slip systems. This formulation has been adopted in the 

majority of previous works devoted to the numerical integration of the constitutive equations of FCC 

single crystals, see e.g., [11], [12], [14]. Unfortunately, this return-mapping algorithm associated with 

the non-smooth formulation fails sometimes, especially for relatively large time increments. To 

illustrate this failure, three simulations are carried out to predict the mechanical response of the single 

crystal with the initial orientation # 2 given in Table 2. From one simulation to another, only the size 

of the time increment t is changed (3 x 104, 4 x 104 and 5 x 104 s). The simulations are planned to 

be performed until the tenth time increment is reached (independently of its size). The evolution of 

both sets of slip systems, potentially active and active, during the simulations is detailed in Table 3. As 

revealed by this table, the set of potentially active slip systems  seems to be dependent on the value 

of Δtg . When the product Δtg  increases, the cardinal of  also increases. This cardinal may, in 

some cases, reach sN  (but it is never greater than sN ). This latter point will be further discussed in 

Section 4.2.3. 

When the time increment t is equal to 3 x 104 s, the computation is successfully carried out up to the 

last time increment. At the first four increments, the predicted behavior is purely elastic. For this 

reason, the set  (and hence the set ) are empty. At the fifth increment, four slip systems seem to be 
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potentially active. Using the iterative search strategy for the determination of active slip systems (the 

same as that used by Anand and Kothari [11]), we find that only two slip systems belonging to  are 

active. The same iterative search strategy is applied successfully to the remainder of the time 

increments. 

When the time increment t is equal to 4 x 104 s, the mechanical response at the first three increments 

is found to be purely elastic, and becomes elastic–plastic at the fourth increment. At this fourth 

increment, the iterative search procedure is applied with success to integrate the constitutive equations. 

At the fifth increment, the set  consists of 6 slip systems. Following Anand and Kothari [11], the set 

of active slip systems is assumed to be identical to  at the first iteration of the iterative search 

strategy. To determine the slip increments for this combination, we seek to iteratively solve the 

following set of non-linear equations: 

 c

0 0 αβ β α(t Δt) (t Δt) A Δγ b ; β            , (111) 

where A  and b  are, respectively, the matrix and the vector introduced in Eq. (50).  

After several attempts to iteratively solve system (111), it seems that it has no solution. This is due to 

the fact that the facets corresponding to the six slip systems of ( )  cannot be intersected to define 

a vertex of the yield surface. Therefore, the slip systems belonging to  cannot be activated all 

together. This implies that there is at least one slip system  that is inactive and, for this slip system, 

the critical shear stress c

0(t Δt)   is strictly superior to the resolved shear stress 0(t Δt)  . More 

specifically, the number of inactive slip systems is found to be equal to 4 (systems 4, 22, 24, 30). For 

this reason, the convergence of Eq. (111) cannot be reached. Accordingly, the computation is stopped 

at this level, because the iterative search strategy applied to this non-smooth form of the return-

mapping algorithm cannot be continued any further. Indeed, to proceed further, the slip increments of 

the slip systems belonging to  need to be determined because they would be used to update the set of 

active slip systems (see the iterative search procedure introduced in).  

The problem above may be geometrically illustrated, by considering a different fictitious situation of 

three potentially active slip systems denoted by 1', 2', 3' (see Figure 3). In this figure, we have 

  
Tr Tr 0 c Tr Tr 0 c

1' 0 0 1' 1' 0 2' 0 0 2' 2' 0

Tr Tr 0 c

3' 0 0 3' 3' 0

(t Δt) = T (t Δt) : (t ) ; (t Δt) = T (t Δt) : (t )

(t Δt) = T (t Δt) : (t )

R R

R

           

     
. (112) 

Therefore, the set  is equal to {1', 2', 3'}. At the first iteration of the iterative search procedure, the set 

of active slip systems  is assumed to be equal to . However, the facets corresponding to the slip 

systems 1', 2', 3' are unable to form together a vertex of the yield surface. Indeed, only couples {1', 2'} 
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and {2', 3'} are vertices of the yield surface. Accordingly, the following mathematical system has no 

solution:  

  c c c

1' 0 1' 0 2' 0 2' 0 3' 0 3' 0(t Δt) = (t Δt) ; (t Δt) = (t Δt) ; (t Δt) = (t Δt)            . (113) 

Incr. Num. system set t3x s t4x s t5x s

1 
 {} {} {} 

 {} {} {} 

2 
 {} {} {} 

 {} {} {} 

3 
 {} {} {2, 4, 20, 22} 

 {} {} {2, 20} 

4 
 {} {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} 

 {} {2, 20} No convergence 

5 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30}   

 {2, 20} No convergence   

6 
 {2, 4, 20, 22}     

 {2, 20}     

7 
 {2, 4, 20, 22}     

 {2, 20}     

8 
 {2, 4, 20, 22}     

 {2, 20}     

9 
 {2, 4, 20, 22}     

 {2, 20}     

10 
 {2, 4, 20, 22}     

 {2, 20}     

Table 3. Convergence of the return-mapping algorithm, associated with the non-smooth formulation, when 

applied to the single crystal with initial orientation # 2. 
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Figure 3. Illustration of the prediction of the set of potentially active slip systems by the return-mapping 

algorithm. 

When the time increment t is equal to 5 x 104 s, the computations are no longer consistent at the 

fourth time increment for the same reasons explained in the previous case.  

The simulations with the other initial crystallographic orientations exhibit similar behavior, and the 

same problems encountered for orientation # 2 are observed once again. Therefore, they are not 

presented for conciseness. 

Unfortunately, the critical size of the time increment, which should not be exceeded in order to 

successfully apply the iterative search procedure, is not a priori known. Therefore, to overcome the 

previous problem, and thus ensure the numerical convergence of the return-mapping algorithm, three 

solutions may be followed: 

 The use of very small time increments. This choice permits to reduce the cardinal of the set of 

potentially active slip systems, and thus to minimize the risk of non-convergence of Eq. (111). 

However, it generally leads to a significant increase in the CPU time, which represents major 

restrictions and shortcomings of the non-smooth formulation of the return-mapping algorithm 

(especially for the computation of polycrystalline structures). 

 The use of an adaptive time step strategy. This strategy consists in dividing the time step by 

two, in case of non-convergence of the computation after 50 combinations of the set of 

potentially active slip systems have been tested. In such a case, the computation is restarted 

from the latest converged configuration.  

 The use of another iterative search procedure, as alternative to that developed in [11] and 

followed here. Such an alternative procedure would be effective if the assumed set of active slip 

systems can form a valid intersection of the facets of the yield surface. This alternative seems to 

be also time consuming, considering the large number of combinations that would be involved.  
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 The application of a different approach, alternative to the non-smooth formulation, where this 

kind of problems is inherently avoided. This is possible by taking advantage of the semi-smooth 

formulation. 

4.2.2. Comparison between the semi-smooth and non-smooth formulations of the return-

mapping algorithm 

In this section, the semi-smooth formulation of the return-mapping algorithm is adopted to integrate 

the constitutive equations. With this formulation, the iterative search procedure intended to the 

determination of the set of active slip systems is not required. Thanks to the mathematical form of this 

semi-smooth formulation, the problem encountered in Section 4.2.1 is inherently avoided here. In fact, 

with this semi-smooth formulation, the stress state at the end of the time increment necessarily lies on 

a vertex of the yield surface. Therefore, unlike the non-smooth formulation, the computation always 

converges regardless of the size of the time increment. In practice, the integration of the semi-smooth 

formulation is based on the global Newton–Raphson method, which always converges in this case (see 

Table 4). These results emphasize the efficiency of the semi-smooth formulation as compared to its 

non-smooth counterpart in the context of the numerical integration of crystal plasticity constitutive 

equations. To confirm these conclusions, the simulations are performed once again with the other 

initial orientations of Table 2 (orientations # 1, 3 and 4) showing that the computations always 

converge.  

 

 

 

 

 

 

 

 

 

 

 



 

 34  
 

Incr. Num. system set tx s tx s t5x s

1 
 {} {} {} 

 {} {} {} 

2 
 {} {} {} 

 {} {} {} 

3 
 {} {} {2, 4, 20, 22} 

 {} {} {2, 20} 

4 
 {} {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} 

 {} {2, 20} {2, 20} 

5 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} {2, 4, 20, 22, 24, 30} 

 {2, 20} {2, 20} {2, 20} 

6 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} {2, 4, 20, 22, 24, 30} 

 {2, 20} {2, 20} {2, 20} 

7 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} {2, 4, 20, 22, 24, 30} 

 {2, 20} {2, 20} {2, 20} 

8 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} 

{2, 4,15, 20, 22, 24, 

30, 33} 

 {2, 20} {2, 20} {2, 15, 20, 33} 

9 
 {2, 4, 20, 22} {2, 4, 20, 22, 24, 30} 

{2, 4,15, 20, 22, 24, 

30, 33} 

 {2, 20} {2, 20} {2, 15, 20, 33} 

10 
 {2, 4, 20, 22} 

{2, 4,15, 20, 22, 24, 

30, 33} 

{2, 4,15, 20, 22, 24, 

30, 33} 

 {2, 20} {2, 15, 20, 33} {2, 4, 15, 20, 22, 33} 

Table 4. Convergence of the semi-smooth formulation of the return-mapping algorithm when applied to the 

single crystal with initial orientation # 2. 

The results predicted by the use of both formulations (the non-smooth and the semi-smooth) are 

further compared in Figure 4. To this end, and in order to ensure the convergence of the non-smooth 

formulation of the return-mapping algorithm, the time increment t is taken to be equal to 2 x 104 s. 

The computations are stopped at t0.05 s. The solid lines represent the predictions of the non-smooth 

formulation, while the dotted graphs correspond to the results obtained with the semi-smooth 

formulation. In Figure 4a, the evolution of the accumulated slip  of the active slip systems is plotted 

versus time t. The number of activated slip systems is shown in this figure. It appears that the two 

distinct formulations predict the same set of active slip systems and the same accumulated slips. This 

equivalence in terms of numerical predictions is also observed for the evolution of the components 11 

and 12 of the stress tensor, as demonstrated in Figure 4b. This perfect agreement between the results 
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predicted by the semi-smooth formulation and those yielded by the non-smooth formulation is 

confirmed by additional simulations corresponding to the other initial orientations of Table 2. 

  

 (a) (b) 

Figure 4. Evolution of the accumulated slip  of the active slip systems and the stress components 11, 12 as 

functions of time t for the combined shearingstretching test applied to single crystal with orientation #1; 

comparison between the results predicted by the non-smooth and semi-smooth formulations of the return-

mapping algorithm: (a) the accumulated slip  of the active slip systems; (b) the stress components 11, 12.  

From various numerical simulations, it is concluded that, in contrast to the non-smooth formulation, 

the algorithm based on the semi-smooth formulation always converges (independently of the value of 

the time increment). However, the convergence rate of this algorithm depends on several numerical 

parameters and choices, such as the parameters used in the line search strategy (see Appendix B), the 

size of the time increment and especially the initial guess for the slip increments, which is required at 

each increment in the global Newton–Raphson procedure. In fact, the choice of the initial guess for the 

slip increments plays a crucial role in the convergence rate of the global Newton–Raphson procedure. 

An illustration of its impact on the CPU time is provided in Figure 5. In Figure 5a, the simulations are 

performed over a single time increment with a size t of 5 x 104 s. The results are presented for the 

different single crystal initial orientations of Table 2. The initial guess for the slip increments is 

assumed to be the same for the different potentially active slip systems. For each initial orientation, 

three simulations are performed: the first with an initial guess (0)101, the second with an initial 

guess (0)102 and the third with an initial guess (0)103. It is clear that the CPU time depends on 

the value of the initial guess. However, at this stage, it is not obvious to know which initial guess 

should be selected to minimize the CPU time and therefore to optimize the numerical integration. To 

the best of our knowledge, there is no universal method for choosing an initial guess that minimizes 
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the CPU time for this problem. As the evolution of the slip increments from one increment to another 

is very slow, a more optimal choice for the initial guess of the slip increments would be the converged 

values of the slip increments at the previous time step (denoted in the following by ‘LCS’ for ‘last 

converged solution’). However, this choice is possible only if the set of potentially active slip systems 

remains the same from one time step to another. This is not always possible, especially in case of 

complex loading, when the loading direction evolves continuously during the loading history (see 

Section 5). On the other hand, there is no guarantee that a potentially active slip system will continue 

to be potential, even for a constant loading. The impact of the choice of the initial guess on a multi-

step computation is illustrated in Figure 5b. In this case, the computations are carried out over 10 time 

increments and the size of each increment is equal to 5 x 104 s. For each initial orientation, three types 

of initial guess for the slip increments are compared: two predefined guesses ((0)101 and (0)102 

for the potentially active slip systems), as well as the more optimal choice detailed previously. For the 

different orientations, the more optimal choice seems to be a "good" initial guess because it allows 

minimizing the CPU time.  

  

  (a) (b) 

Figure 5. Impact of the initial guess of the slip increments (0) on the CPU time required for the simulation of 

the combined shearingstretching test: (a) The first time increment, (b) The first ten time increments. 

Analyzing the results of Figure 5a, one can observe that the CPU time required for the execution of 

one time increment for one single crystal always exceeds 0.05 s, regardless of the initial orientation or 

the initial guess. This trend shows that the CPU time will be very high if a multiscale simulation is 

performed over a large number of time steps. This drawback is likely to considerably limit the 

performance of the return-mapping algorithm based on the semi-smooth formulation. As will be 

demonstrated later, this limitation can be easily overcome by using the ultimate algorithm. 

0.00

0.15

0.30

0.45

0.60
CPU (s)

 

 

10

1

 

10

2

 

10

3

Orien # 

 

Orien 
 

Orien 

 

Orien 

0

5

10

15

20













LCS

Orien # 4Orien # 3Orien # 2
    

CPU (s)

Orien # 1



 

 37  
 

4.2.3. Comparison between the ultimate and return-mapping algorithms 

Before comparing the respective efficiency of the ultimate and return-mapping algorithms, a 

prerequisite would be to verify that the two algorithms allow predicting the same mechanical response 

at the single crystal scale. In Figure 6, the accumulated slips of the active slip systems predicted by the 

ultimate algorithm (explicit/implicit algorithm) are compared with their counterparts predicted by the 

return-mapping algorithm (semi-smooth formulation). For all the simulations presented in this section, 

the time increment t is fixed to 5 x 104 s. For both algorithms used, the computations are stopped at 

t0.2 s. The solid lines represent the predictions of the ultimate algorithm, while the dotted graphs 

correspond to the results obtained with the return-mapping algorithm. One can observe that the 

simulations by the two algorithms result in identical sets of active slip systems and exactly the same 

accumulated slips for these systems for all of the initial crystallographic orientations considered. This 

obviously leads to the same evolution for the stress components as well as for the crystallographic 

texture. 
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 (c) (d) 

Figure 6. Evolution of the accumulated slip  of the active slip systems as function of time t for the combined 

shearingstretching test; comparison between the results predicted by the ultimate algorithm (explicit/implicit 

algorithm) and the return-mapping algorithm (semi-smooth formulation); (a) orientation # 1, (b) orientation # 2, 

(c) orientation # 3, (d) orientation # 4. 

A comparative study of the efficiency, in terms of CPU time, for the two algorithms is given in Figure 

7. In this figure, "R-M" (resp. "UL") stands for "return-mapping" (resp. "ultimate") algorithm. In these 

simulations, two different sizes for the time increment are used: t5 x 104 s, in Figure 7a, and t 

103 s, in Figure 7b. For both cases, the computations are stopped at t0.2 s. Two types of initial guess 

are used when the return-mapping algorithm is applied: a predefined constant guess ((0)102), and 

the "LCS" guess strategy (i.e., (0)102, whenever a different set of potentially active slip systems is 

involved, and the converged value at the previous time increment, when the set of potentially active 

slip systems is the same as that at the previous time increment). The dependence of the CPU time on 
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confirmed here once again. In this case, the application of the "LCS" initial guess allows considerably 
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applied to the single crystal is constant throughout the deformation. Indeed, the set of potentially 
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 The number of potentially active slip systems, and consequently the size of the mathematical 

system to be solved at each increment, increases with the size of the time increment. This trend 

can be clearly observed through the results of Figure 8 (which are also conformal with the 

results of Table 4). It is also observed in Figure 8 that the number of potentially active slip 

systems may be 1.5 to 3 times larger than the number of active slip systems.  

 The number of iterations also generally increases with the size of the time increment as 

demonstrated in Figure 9. In this figure, the total number of Newton–Raphson iterations is 

averaged by the total number of time increments (and will be denoted by ‘AIN’, for ‘average 

iteration number’ in Figure 9). 

To avoid the two problems mentioned above, an adaptive time step strategy can be used when the 

number of iterations required to solve the Fischer–Burmeister complementarity functions of Eq. (51) 

reaches a user-defined threshold value (here this value is fixed to 50). This strategy obviously 

increases the number of time increments for the whole simulation; nevertheless, due to its efficiency, 

the total CPU time would decrease. The return-mapping algorithm, enhanced with this adaptive time 

step strategy, will be systematically used in Section 5, corresponding to the polycrystalline 

simulations.  

On the other hand, the ultimate explicit/implicit algorithm seems to be largely more efficient than the 

return-mapping algorithm. This is due to the following facts:  

 The search strategy detailed in Step 1 of Section 3.2.3, for the determination of active slip 

systems and their rates in the explicit phase, turns out to be a safe scheme to handle the complex 

structural changes in the slip activity, with sufficient accuracy and reasonable CPU time, as 

compared to alternative search strategies (such as that adopted in [12]). Indeed, this search 

procedure, applied in this constant loading case, converges very often at the first or the second 

search iteration. This result is clearly demonstrated in Figure 8. One can see from this figure 

that, for the ultimate algorithm, the number of potentially active slip systems is always equal to 

the number of active slip systems. Therefore, the iterative search procedure converges at the 

first iteration. By following this search procedure, the set of active slip systems is most often the 

same as the set of potentially active slip systems (contrary to the return-mapping algorithm).  

 The solution 0(t )γ  of the LCP (68) is a good initial guess for the non-linear system (74), and 

may obviously be considered as a reasonable initial guess for the implicit phase (whenever this 

phase is considered). Indeed, the slip rates evolve rather slowly over I and, accordingly, the 

fixed point method most often requires less than four iterations, regardless of the length of I. 

This result is confirmed by Figure 9, in which the total number of iterations for the fixed point 

method is averaged by the total number of time increments (when the implicit phase is used). 

For this reason, the CPU time needed for each increment is almost independent of the increment 
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size. This results in a linear proportionality between the CPU time and the number of 

increments, as clearly observed in Figure 7. 

Unlike the return-mapping algorithm (with both formulations), the ultimate algorithm is relevant 

without any restriction on the length of the time increment. Therefore, the adaptive time step strategy 

is not required in this latter case. This point is an additional advantage of the ultimate algorithm, as 

compared to the return-mapping one. 

It should be noted that, despite its high cost in general, the convergence rate of the global Newton–

Raphson procedure applied to the return-mapping algorithm remains relatively high, thanks to the 

analytical computation of the Jacobian matrix. In some cases, such as [11], [15], it is impossible to 

analytically derive this matrix, and the finite difference method may be used to numerically compute 

the Jacobian matrix. Such situations obviously lead to an increase in the CPU time. It is worth noting 

that the derivation of some analytical or numerical Jacobian matrix is not required when the fixed 

point method is used in the ultimate algorithm.  

For all the above-mentioned reasons, the application of the ultimate algorithm, instead of the return-

mapping one (with the "LCS" initial guess), allows an interesting reduction in the CPU time. For 

instance, this CPU time is reduced by a factor ranging between 1.3 and 2.6, when the time increment is 

equal to 5 x 104 s, and a factor ranging between 2.2 and 4.7, when the time increment is equal to 103 

s. These results clearly show that the ultimate algorithm is much more efficient than the return-

mapping one.  

  

 (a) (b) 

Figure 7. CPU time required in the simulation of the combined shearingstretching test for different initial 

crystallographic orientations; comparison between the ultimate and return-mapping algorithms; (a) t=5 x 104 s, 

(b) t= 103 s. 
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 (a) (b) 

  

 (c) (d) 

Figure 8. Evolution of the number of potentially active slip systems (denoted by card()) and the number of 

active slip systems (denoted by card()) as functions of time t for the combined shearingstretching test; 

comparison between the ultimate and return-mapping algorithms; (a) orientation # 1, (b) orientation # 2, (c) 

orientation # 3, (d) orientation # 4. 
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 (a) (b) 

Figure 9. Average number of local iterations (AIN) in the simulation of the combined shearingstretching test, 

for different initial crystallographic orientations; comparison between the ultimate and the return-mapping 

algorithms; (a) t=5 x 104 s, (b) t= 103 s. 

The evolution of the independent components of the plastic spin p 12w , p 23w  and p 13w , corresponding 

to the loading path described by Eq. (110), is displayed in Figure 10. This evolution can be related to 

the evolution of the accumulated slip of the active slip systems, reported in Figure 6, through Eq. (13)

2. The different curves show that the ultimate algorithm predicts exactly the same evolution of the 

plastic spin as the return-mapping algorithm. This result is obvious considering the perfect similarity 

between the predictions in Figure 6. Due to the crystallographic symmetries, inherent to BCC single 

crystals, the components p 23w  and p 13w  are always equal to zero for the first three initial 

crystallographic orientations (orientations # 1, 2 and 3). The abrupt change in the evolution of the 

components of the plastic spin tensor, observed especially in Figure 10a and Figure 10d, corresponds 

to the activation of new crystallographic slip systems (systems 10, 16 for the case of orientation #1, 

and system 2 for orientation #4). These results are confirmed when compared to the evolution of 

accumulated slip given in Figure 6. 
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 (a) (b) 

  

 (c) (d) 

Figure 10. Evolution of the independent components of the plastic spin p12w , p 23w  and p13w  for the combined 

shearingstretching test; comparison between the ultimate and return-mapping algorithms; (a) orientation # 1, 

(b) orientation # 2, (c) orientation # 3, (d) orientation # 4. 
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formulation is used when the return-mapping algorithm is applied, with a predefined constant guess 

set to (0)102. In the various simulations that have been carried out, the velocity gradient given by 

Eq. (110) is used as loading path, and the final time is fixed to 0.2 s. The value of t is fixed to 5 x 

104 s for the simulations with constant size for the time step. Thus, the number of time steps is equal 

to 400. The number of time increments for the simulations with variable time steps is also fixed to 

400. In order to obtain a random variation for the size t in these latter simulations, the following 

procedure is applied: 

 Select randomly 400 values in the interval [0,1]. 

 Compute the sum of these 400 values. This sum is denoted "sum". 

 Multiply each of the 400 values by 0.2/sum. This operation gives, in a straightforward way, the 

size of each time increment t.  

This procedure allows generating 400 random values for t. Each of them corresponds to a given time 

increment. In the end, the final time will be equal to 0.2 s, the same as for the simulations with a 

constant size for the time increment. The evolution of t as a function of time t is given in Figure 11. 

 

Figure 11. Evolution of the size t of the time increment as a function of time t for the simulations with variable 

size for the time increments.  

Figure 12 analyzes the effect of variation of the size of the time increment on the evolution of the 

diagonal components of the stress tensor . In this figure, only the results corresponding to the single 

crystal with initial orientation #2 (see Table 2) are presented. The other single crystals, associated with 

different initial orientations, follow the same trend. Figure 12a shows the evolution of the diagonal 

components of the Cauchy stress predicted on the basis of the ultimate algorithm. In Figure 12b, the 
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12b, we can easily confirm the perfect similarity between the predictions based on the ultimate 

algorithm and those based on the return-mapping algorithm for both evolutions of the size of the time 

increment. Figure 12 also shows that the evolution of 11, 22 and 33 is not much influenced by the 

variation of the size of the time increment, especially in the time interval [0, 0.15]. However, in the 

second part of time interval, namely [0.15,0.2], the components 22 and 33 are more noticeably 

affected by variation of t. Considering the extreme variation of the value of t over the loading 

history (see Figure 11), this result may be considered as quite acceptable, and does not question the 

robustness of the two numerical algorithms. Indeed, the variation shown in Figure 11 should be 

viewed as an extreme case, while in usual applications (based on the CPFEM, for example), t may 

evolve from one increment to another, but much more smoothly than the evolution displayed in Figure 

11. As to the CPU time required in these simulations, it is almost independent of the variation of t: it 

is equal to 13 s and 60 s for the simulations with the ultimate algorithm, respectively, the return-

mapping algorithm. 

  

 (a) (b) 

Figure 12. Evolution of the components 11, 22 and 33 as functions of time t for the combined 

shearingstretching test applied to single crystal with orientation #2; comparison between the predictions based 

on constant and variable size for the time step; (a) Ultimate algorithm, (b) Return-mapping algorithm. 

4.3. Constant loading 2: Simple shear test 

To further assess the robustness of the developed numerical algorithms, a simple shear test is 

simulated. This simple shear test is defined by the following Eulerian velocity gradient, which is 
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The different simulations of the current section are carried out up to t=0.2 s. The time step t is fixed 

to 5 x 104 s. The explicit/implicit version of the ultimate algorithm is used. For the return-mapping 

algorithm, the semi-smooth formulation with a predefined constant guess option (with (0)102) is 

employed. The evolution of the components 11, 22 and 12 of the stress tensor as a function of time is 

given in Figure 13 (the other components of  are small as compared to 11, 22 and 12). On the 

whole, the predictions of the two algorithms are very close. However, a very slight difference is 

observed at the end of the deformation (in the large strain range) for single crystals of orientation #1 

and orientation #2. In what follows, we will try to understand the origin of this difference. In this aim, 

the evolution of the mean stress m (equal to (1/3)tr()) as function of time is plotted in Figure 14. To 

evaluate objectively this evolution, the mean stress is normalized (divided) by the von Mises 

equivalent stress eq in Figure 14. The ratio m/eq is always equal to 0 for the simulations carried out 

with the ultimate algorithm. This result is obvious considering the fact that the loading is isochoric, on 

the one hand, and that the constitutive equations, on which the ultimate algorithm is based, satisfy the 

incremental incompressibility, on the other hand. However, this ratio is different from zero for the 

simulations with the return-mapping algorithm, although it remains very small during the deformation 

(it does not exceed 0.005 for all simulations). This result reveals that the incremental incompressibility 

is not fully satisfied by the return-mapping algorithm. This violation is attributable to the formulation 

of the constitutive equations (32), (33), (45) and (53). Indeed, the trace of the trial elastic Green–

Lagrange strain tr

ee  in Eq. (32) is in general different from zero, even when the deformation is 

isochoric (det(f)1). As a result, the trace of tr
T  in Eq. (33) is also different from zero. Consequently, 

the trace of T  and σ  are also different from zero (see Eqs. (45) and (53)). This fact shows that the 

incremental incompressibility is violated by the return-mapping algorithm. Nevertheless, since the 

elastic strain is assumed to be sufficiently small for metallic materials as compared to the plastic 

strain, this violation remains very small and does not affect the robustness and the overall accuracy of 

this algorithm. This difference in the formulation of the constitutive equations, between the ultimate 

and return-mapping algorithms, may justify the slight differences observed in Figure 13a and Figure 

13b. 

On the other hand, the different curves in Figure 13 are smooth showing that the numerical 

oscillations, observed with other integration schemes, do not appear here, which confirms once again 

the robustness of both algorithms.  
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 (a) (b) 

  

 (c) (d) 

Figure 13. Evolution of the stress components 11, 22 and 12 as function of time t for the simple shear test; 

comparison between the results predicted by the ultimate and return-mapping algorithms; (a) orientation # 1, (b) 

orientation # 2, (c) orientation # 3, (d) orientation # 4. 
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 (a) (b) 

  

 (c) (d) 

Figure 14. Evolution of the of mean stress normalized by the von Mises equivalent stress as function of time t for 

the simple shear test; comparison between the results predicted by the ultimate and return-mapping algorithms; 

(a) orientation # 1, (b) orientation # 2, (c) orientation # 3, (d) orientation # 4. 
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This loading is defined, with an increasing value of time, up to t=0.666 s. The evolution of the strain 

rate components ijd  over the time interval [0,0.666]  is plotted in Figure 15. The size of the time 

increment Δt  is taken equal to 0.00333 s in the following simulations so that the total number of 

increments is equal to 200. 

 

Figure 15. Evolution of the strain rate components for the non-constant loading. 

Figure 16 depicts the evolution of the accumulated slips of the active slip systems for the four different 

initial crystallographic orientations. The solid lines represent the predictions of the ultimate algorithm, 

while the dotted graphs correspond to the results obtained with the return-mapping algorithm. It can be 

observed that both numerical algorithms predict the same activated systems as well as the same 

evolution of their accumulated slip. Contrary to the case of constant loading, the change of the set of 

active slip systems is more frequent when the single crystal is subjected to non-constant loading. For 

example, systems 4, 10, 16, 22 are earlier activated for the orientation # 1, and are then rapidly 

deactivated for t0.15 s. Conversely, systems 18 and 36 are inactive at the beginning of the simulation 

(until ts), and become active after this instant.  
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 (a) (b) 

  

 (c) (d) 

Figure 16. Evolution of the accumulated slip  of the active slip systems as function of time t for the non-

constant loading; comparison between the results predicted by the ultimate and return-mapping algorithms; (a) 

orientation # 1, (b) orientation # 2, (c) orientation # 3, (d) orientation # 4. 

The change in slip activity of the slip systems is obviously the result of the regular change of the set of 
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velocity gradient. Thus, compared to the case of constant loading, the beneficial impact of the "LCS" 

strategy is reduced in the present case. Because in practical applications, such as the FE simulation of 
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generally complex and non-constant, the "LCS" strategy for the initial guess is likely to lose some of 
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algorithm exhibits higher performance when compared to the return-mapping algorithm. More 

specifically, the CPU time decreases by a factor comprised between 2 and 3 when the ultimate 

algorithm is applied instead of the return-mapping algorithm combined with the "LCS" initial guess. 

Also, for the above two algorithms, the evolution of card() and card() during the loading are 

depicted in Figure 17b, 17c and 17d. These figures clearly reveal the continuous evolution of these 

sets (in contrast to the results of Figure 8), which may be correlated with the results of Figure 16.  
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 (c) (d) 

Figure 17. Evolution of the CPU time and of card(, ) as function of time for the non-constant loading; 

comparison between the ultimate and return-mapping algorithms; (a) evolution of the CPU time, (b) evolution of 

card(, ), orientation # 1, (c) evolution of card(, ), orientation # 2, (d) evolution of card(, ), orientation 

# 4.  

As expected, the number of active slip systems is not always equal to the number of potentially active 

slip systems when the ultimate algorithm is used (as demonstrated in Figure 17b, 17c and 17d). This 

implies that several iterations (at least two) for the iterative search procedure are sometimes required. 

Figure 18 depicts the evolution of the number of iterations during the loading for the different initial 

orientations. It comes that, over the 200 time increments performed, the iterative search procedure is 

required for 4% of these time increments. Thus, for most of the time increments, the set of active slip 

systems is equal to the set of potentially active slip systems and only a single iteration is required. 

Also, in all cases, the number of iterations per time increment does not exceed 3 iterations, as 

demonstrated in Figure 18. Note however that, more generally, the number of iterations per time 

increment may be higher, when the loading path is more abrupt than that applied in Eq. (115), which 

evolves rather slowly. 
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 (a) (b) 

  

 (c) (d) 

Figure 18. Evolution of the number of iterations for the iterative search procedure applied to the ultimate 

algorithm: (a) orientation # 1, (b) orientation # 2, (c) orientation # 3, (d) orientation # 4. 

5. Polycrystalline aggregate scale: Numerical results and discussions  

To further compare the ultimate and return-mapping algorithms in terms of accuracy and efficiency, 

three representative tests will be simulated in this section for a polycrystalline aggregate. For these 

different tests, the Taylor model is used to derive the constitutive equations of the polycrystalline 

aggregate from the constitutive equations of its microscopic constituents (the single crystals). As for 

the single crystal simulations, the numerical tools developed to simulate the three tests are 

implemented in the numerical computing environment Matlab. However, the novelty here compared 
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to the single crystal simulations, is the use of the Parallel Computing ToolboxTM of Matlab in order to 

decrease the CPU time. For each simulation performed at the polycrystalline scale, 4 workers (cores) 

are simultaneously used. The time increment is fixed to 5 x 104 s. In all of the figures that are 

included in this section, the solid lines represent the predictions corresponding to the use of the 

ultimate algorithm, while the dotted graphs correspond to the results obtained with the return-mapping 

algorithm. 

The three different representative tests are sorted in an increasing order of complexity: 

 For the first one, the macroscopic velocity gradient is assumed to be known and constant during 

the deformation. 

 In the second test, the polycrystalline aggregate is deformed under plane-stress condition [47]. 

This condition implies that the component 33 of the macroscopic velocity gradient becomes 

variable throughout the deformation, whereas the other components are held constant. 

 The third test deals with material instability prediction under in-plane biaxial stretching. More 

specifically, the prediction of localized necking in the polycrystalline aggregate, subjected to 

some particular proportional strain paths, is carried out using the plastic flow localization 

criterion based on the initial imperfection approach. The aim of this third test is to illustrate a 

typical case where more than one component of the macroscopic velocity gradient is variable all 

along the deformation.  

For the simulation of the above-mentioned tests, the following numerical choices are made when the 

return-mapping algorithm is used:  

 Only the semi-smooth formulation, based on the Fischer–Burmeister complementarity 

functions, is used. 

 The adaptive time increment explained in Section 4.2.3 is employed.  

 At the beginning of the application of the Newton–Raphson method, corresponding to the 

resolution of the equations based on Fischer–Burmeister complementarity functions, the trial 

value of the slip increment is fixed to 103 for all of the potentially active slip systems. 

5.1. Initial texture of the polycrystalline aggregate 

The polycrystalline aggregate, which has been introduced above for the simulation of the three 

representative tests, is made of 100 single crystals. Its initial crystallographic texture is assumed to be 

orthotropic and is represented by the pole figures of Figure 19. For each single crystal contained in the 

polycrystalline aggregate, the material parameters as well as the initial values for the Cauchy stress 

and plastic slip are the same as those used in Section 4.1. 
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 (a) (b) 

Figure 19. Initial texture of the polycrystalline aggregate (100 single crystals): (a) {111} pole figure, (b) {100} 

pole figure. 

5.2. First test: Constant macroscopic loading 

In this first test, the macroscopic velocity gradient is held constant and is defined by the following 

expression: 

 1

1 0 0

0 /2 0 (s )

0 0 1/2

 



G

 
 
 
  

. (116) 

To assess the efficiency of each numerical algorithm at the polycrystalline scale, two simulations are 

carried out up to a value of 0.2 for the component e11 of the logarithmic strain. The first simulation is 

based on the ultimate algorithm, while the second is based on the return-mapping algorithm. Figure 

20a depicts the evolution of the diagonal components of the Cauchy stress tensor (11, 22 and 33) for 

one of the single crystals (single crystal #1), comprised in the set of single crystals that make up the 

polycrystalline aggregate, as function of e11. The other stress components (12, 23 and 13) are 

negligible as compared to the diagonal terms. This first result shows that the application of both 

numerical algorithms at the single crystal scale leads to the same results. Note that the same 

observation is made for all the other single crystals composing the aggregate; for conciseness, the 

associated numerical results are not reported here. Consequently, the components of the macroscopic 

stress tensor predicted by the two numerical integration algorithms are exactly the same as shown in 

Figure 20b. We recall that, as the Taylor scheme is used in these simulations, the microscopic 

component e11 is equal to its macroscopic counterpart E11, which in turns is equal to t G11. Figure 20c 

and Figure 20d depict the {111} pole figures determined at the end of the computations and which are 
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associated with the ultimate algorithm and the return-mapping algorithm, respectively. These pole 

figures seem to be perfectly similar. This confirms the idea that the two integration algorithms predict 

exactly the same mechanical responses. These observations are consistent with the results reported in 

Section 4.2.3. On the other hand, although the predictions are very similar, the CPU time required for 

running the return-mapping algorithm turns out to be significantly larger than that needed for the 

application of the ultimate algorithm: 672 s versus 149 s. This result confirms the higher performance 

of the latter algorithm compared to the former.  
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 (c) (d) 

Figure 20. Comparison between the results obtained by the ultimate and return-mapping algorithms for the first 

test with constant macroscopic loading: (a) Evolution of the microscopic stress components 11, 22 and 33 for 

single crystal #1 as function of e11, (b) Evolution of the macroscopic stress components 11, 22 and 11 as 

function of E11 (= t G11), (c) Final {111} pole figure obtained by the ultimate algorithm, (d) Final {111} pole 

figure obtained by the return-mapping algorithm.  

5.3. Second test: Macroscopic loading under plane-stress state 

In this second test, the polycrystalline aggregate is deformed under plane-stress condition in direction 

3 (i3=0, i=1,2,3). This loading is defined by the following mixed boundary conditions: 

 1

1 0 0 ? ? 0

0 /2 0 (s ) ; ? ? 0 (MPa)

0 0 ? 0 0 0

  G Σ

   
   
   
      

, (117) 

where symbol ‘?’ designates the unknown components, which need to be determined at each time step 

of the simulation. As the crystallographic texture is initially orthotropic (and remains orthotropic 

during the deformation), the plane-stress conditions imply that the components G13, G31, G23 and G32 

are also equal to zero. This well-known property (see, e.g., [13], [47], [48]) has been successfully 

checked from our numerical results. In this test, the component G33 is neither constant nor a priori 

known during the deformation, thus illustrating the complexity of the loading. Indeed, this component 

is determined iteratively (at each time increment) by imposing the plane-stress condition (33=0). The 

numerical details related to the determination of G33 can be found in [47].  

The evolution of the component G33, as a function of E11, predicted by both integration algorithms is 

plotted in Figure 21a. It is worth noting that the two algorithms predict the same evolution of G33. In 

the range of small strains (E11<0.05), the component G33 varies between 0.21 (which correspond to 
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the value of G33 for a purely elastic loading) and 0.5. In the range of large strains (E11>0.05), the 

elastic strain becomes very small compared to the plastic one and, accordingly, G33 is almost equal to 

0.5. This result is obvious considering the fact that the elastic deformation is very small and that the 

plastic deformation is incompressible. It must be noted that this plane-stress condition leads to a non-

isochoric loading, especially in the range of small strains (tr(G)0). To further evaluate the difference 

between the two predictions, the evolution of the ratio G33 (UL)/ G33 (R-M) in terms of E11 is plotted in 

Figure 21b. Here, G33 (UL) (resp. G33 (R-M)) refers to the component G33 predicted by the ultimate 

algorithm (resp. the return-mapping algorithm). This figure confirms the result of Figure 21a: the two 

algorithms predict the same evolution of G33 (in spite of very slight oscillations at the beginning of the 

deformation, which are related to the activation of slip systems). The evolution of the diagonal 

components of the microscopic stress tensor (11, 22 and 33) for single crystal #1 is plotted in Figure 

21c. It can be seen that, contrary to the component 33 of the macroscopic Cauchy stress, the 

microscopic counterpart does not necessarily satisfy the zero-stress condition. On the whole, several 

conclusions can be drawn from this figure: 

 The two algorithms predict the same stress tensor . This result is consistent with all the above 

results. 

 Although the macroscopic stress component 33 is equal to zero (as a result of the plane-stress 

condition), the microscopic stress component 33 is different from zero. In other words, the 

plane-stress condition is satisfied at the macroscopic scale (the scale of the polycrystalline 

aggregate) and not at the microscopic scale. 

 The evolution of the macroscopic components 11 and 22 (the component 33 being equal to 

zero) as function of E11 is plotted in Figure 21d. The results yielded by the two numerical 

algorithms are almost indistinguishable. 

 Unlike the previous tests, the loading is non-isochoric at the scale of both the single crystal and 

the polycrystalline aggregate. Indeed, the trace of the macroscopic and microscopic stress 

tensors is different from zero, as clearly shown in Figure 21c and Figure 21d. Hence, the 

volume variation due to elasticity is apparent. 

 Figure 21c and 21d also demonstrate that both numerical schemes (namely, the ultimate and the 

return-mapping) do not exhibit pressure oscillations, which are observed in similar situations 

when other integration schemes are applied. This result illustrates the robustness of both 

numerical algorithms. 

Similar to the case of constant loading, investigated in the first test of Section 5.2, the ultimate 

algorithm appears to be significantly more efficient, in terms of CPU time, than the return-mapping 

algorithm, in the context of macroscopic loading. Indeed, 318 s are required to run the simulation of 

the macroscopic loading under plane-stress state with the ultimate algorithm as compared to 2610 s 

needed with the return-mapping algorithm. 
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 (a) (b) 

  

 (c) (d) 

Figure 21. Comparison between the results obtained by the ultimate and return-mapping algorithms for the 

second test under plane-stress state: (a) Evolution of the macroscopic velocity gradient component G33 as a 

function of E11, (b) Evolution of the ratio of G33, determined by the ultimate algorithm, to that determined by the 

return-mapping algorithm, as a function of E11, (c) Evolution of the microscopic stress components 11, 22 and 

33 for single crystal #1 as function of e11, (d) Evolution of the macroscopic stress components 11, 22 as 

function of E11. 
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5.4. Third test: Initial imperfection approach 

In this section, four simulations are carried out for the prediction of localized necking in the 

polycrystalline aggregate subjected to some particular proportional strain paths. The parameters 

corresponding to these simulations are listed in Table 5.  

Simulation number Mechanical state Strain path ratio  Initial inclination I 

Simulation #1 Uniaxial tensile state 1/2 0° 

Simulation #2 Uniaxial tensile state 1/2 10° 

Simulation #3 Uniaxial tensile state 1/2 20° 

Simulation #4 Plane-strain tensile state 0 0° 

Table 5. Parameters and definition of the numerical simulations corresponding to the prediction of localized 

necking at the polycrystalline aggregate scale. 

For all the simulations performed in this section, the initial imperfection ratio I (see Eq. (F.1)) is fixed 

to 103 (which is a typical value for usual applications of the initial imperfection approach).  

The main details on the governing equations relating to the initial imperfection approach as well as the 

corresponding terminology are given in Appendix F. Additional details regarding the numerical 

implementation of the initial imperfection approach can be found in the literature (see, e.g., [4749]). 

The non-zero components of the macroscopic velocity gradient applied to the safe zone are: 

 S

11
G , which is constant and equal to 1. 

 S

22
G , which is constant and equal to . 

 S

33
G , which evolves rapidly in the range of small strains and becomes almost constant and equal 

to (1) in the range of large strains, as illustrated in Section 5.3 (for 1/2). 

Accordingly, except for the beginning of the deformation, the loading in the safe zone becomes almost 

monotonic and constant. Therefore, it is more interesting to analyze and to follow the evolution of the 

non-zero components of 
B

G  during the deformation. This task is carried out, for the different 

simulations of Table 5, in Figure 22. From the curves of Figure 22, the following observations can be 

made: 

 For the case of Simulation #1, the components B

12
G  and B

21
G  remain equal to 0 all along the 

deformation. This is a natural outcome of the value for the initial band orientation I, taken 

equal to zero, and of the component 
2

C  of the jump vector. Indeed, Eq. (F.5) reveals that the 

current orientation  remains equal to 0 and, therefore, the band remains normal to the X1 

direction. Because the component 
2

C  is equal to zero, the component B

22
G  remains constant 

and equal to S

22
G  (which is equal to ). The other components of 

B
G  ( B

11
G  and 

B

33
G ) exhibit a 
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non-linear evolution during the deformation. Localized necking is detected when the ratio 

B S

33 33
G G/  increases abruptly (which means that significant localized thinning takes place rapidly 

in the band as compared to the safe zone). In the present case, localized necking was predicted 

at a critical strain of S

11
E = 0.282.  

 In contrast to Simulation #1, the components B

12
G  and B

21
G  computed in Simulation #2 are 

different from zero. In this latter case, the components 
1

C  and 
2

C  of the jump vector, which are 

initially equal to zero, increase in absolute value during the deformation. The orientation  of 

the band evolves also, as its initial value is different from zero. These evolutions for the jump 

vector and localization band orientation explain the evolution of the components B

12
G  and B

21
G . 

As to the components B

11
G  and 

B

33
G , they evolve in a manner very similar to Simulation #1. 

Localized necking is observed when 
S

11
E  reaches a value of 0.23. 

 The evolution of the components of 
B

G  in Simulation #3 follows the same trend as in 

Simulation #2, but with different magnitudes (the initial band orientation is equal here to 20° 

instead of 10°). In this case, localized necking is detected a little earlier, namely for a critical 

limit strain S

11
E  equal to 0.142. 

 In Simulation #4, the initial orientation of the band is equal to 0°, as in the case of Simulation 

#1. Therefore, the orientation of the band remains equal to zero (in virtue of Eq. (F.5)). On the 

other hand, the component 
2

C  of the jump vector remains equal to zero during the deformation. 

As a consequence, both B

12
G  and B

21
G  are equal to zero, and B

22
G  is equal to S

22
G , which is equal 

to =0 (plane-strain tensile state). The critical limit strain S

11
E  corresponding to the occurrence 

of localized necking is found equal to 0.052. 

The results obtained from the above-mentioned four simulations reveal that the application of the 

initial imperfection approach for the prediction of material instability is a good numerical example for 

evaluating the efficiency and accuracy of the two numerical algorithms. Indeed, with the initial 

imperfection approach, the loading is complex and a priori unknown (especially in the localization 

band). Figure 22 confirms the main conclusions drawn from the numerical results of the tests 

conducted in Sections 5.2 and 5.3: the ultimate and return-mapping algorithms lead to the same 

simulation results. Indeed, the evolution of the unknown components of 
B

G  predicted by the ultimate 

algorithm is very close to that predicted by the return-mapping algorithm. Consequently, both 

algorithms predict also the same value of the critical limit strain S

11
E  corresponding to the occurrence 

of localized necking. It must be noted that the curves in Figure 22 are not very smooth, due to the 

relatively small number of single crystals taken to represent the polycrystalline aggregate (100 single 

crystals).  
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 (a) (b) 

  

 (c) (d) 

Figure 22. Evolution of the unknown components of the macroscopic velocity gradient tensor 
B

G  in the band, as 

function of 
S

11
E , for the third test relating to the prediction of localized necking using the imperfection approach: 

(a) Simulation #1, (b) Simulation #2, (c) Simulation #3, (d) Simulation #4. 

 

To assess the efficiency of each numerical algorithm, a comparative study in terms of the CPU time 

required for each simulation is reported in Table 6. In accordance with the previous tests, the ultimate 

algorithm appears to be significantly more efficient than the return-mapping algorithm.  
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Simulation number Ultimate algorithm Return-mapping algorithm 

Simulation #1 1276 s 8548 s 

Simulation #2 1208 s 9402 s 

Simulation #3 768 s 5596 s 

Simulation #4 374 s 3108 s 

Table 6. CPU time corresponding to the different simulations for the third test relating to the prediction of 

localized necking using the imperfection approach. 

6. Validation of the expression of the consistent tangent operator 

In this section, the reliability and relevance of the analytical consistent tangent modulus (denoted A

ep
 

hereafter, for brevity) derived in Section 3.3 are assessed. In this aim, the numerical results obtained 

by applying A

ep
 are compared with those obtained by using the consistent tangent modulus 

numerically approximated (denoted N

ep
 hereafter, for brevity). This N

ep
 is considered as reference 

modulus.  

6.1. First test: Deviation between the analytical and the numerical tangent modulus 

In this first test, two different velocity gradients are applied as boundary conditions on a BCC single 

crystal. The time interval on which the integration of the single crystal constitutive relations is carried 

out is [0, 0.2 s]: 

  1 1

1 2

1 0 0 1 1 0

0 /2 0 (s ) ; 0 /2 0 (s )

0 0 /2 0 0 /2

g g
    

 

   
   
   
      

. (118) 

In both cases, the time increment t is fixed to 103 s. 

The material parameters of the studied single crystal are the same as those given in Table 1, while its 

initial crystallographic orientation (1, 2, 3) is randomly chosen. The latter is equal to (103.56°, 

87.03°, 1.04°). To evaluate the deviation between A

ep
 and N

ep
, we introduce the relative deviation 

ratio (RD) defined by the following expression: 

  

3
N A 2

ep mnpq ep mnpq

m,n,p,q 1

3
N 2

ep mnpq

m,n,p,q 1

( )

RD

( )













. (119)  

The evolution of RD as a function of time t is plotted in Figure 23. This figure demonstrates that RD  

never exceeds 6.104 for both simulations. This result gives a first validation of the reliability of the 

expression of the analytical consistent tangent modulus. 
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 (a) (b) 

Figure 23. Evolution of RD as function of time t for the simulations with: (a) loading 1g , (b) loading 2g . 

6.2. Second test: Simulation of a uniaxial tensile state 

The aim of this second test is to assess whether the slight differences between A

ep
 and N

ep
, which 

have been observed in Figure 23, would have any effect on the convergence of a more complex 

simulation. In this aim, the polycrystalline aggregate defined in Section 5.1 is subjected to a uniaxial 

tensile test. From a practical point of view, applying this uniaxial tensile test is equivalent to solving 

the following equation: 

  0Σ Σ   . (120) 

This uniaxial tensile test is defined by the following mixed boundary conditions: 

  

12 13

1 1

0 12 22 23

13 23 33

α 0 0 1 D D 0 0 0

0 0 0 (MPa) ; D D D (s ) ; 0 0 0 (s )

0 0 0 D D D 0 0 0

Σ D W
 

     
       
     
          

. (121) 

As W , the co-rotational frame coincides with the fixed frame throughout the loading.  

The macroscopic behavior of the polycrystalline aggregate is determined from the behavior of its 

microscopic constituents (the single crystals) by using the Taylor model. 

To solve Eq. (120), an incremental approach may be adopted. Accordingly, at each time increment [t0, 

t0t], this equation is equivalent to 

 0Δ ΔtΣ Σ   . (122) 

The unknowns of this incremental problem are: α , 22D , 33D , 12D , 13D , 23D , which can be stored in 

an unknown matrix X  
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α D D

D D D

D D D

X

 
 
 
  

. (123) 

Therefore, Eq. (122) can be rewritten as 

 0( ) Δ ΔR X Σ Σ    . (124) 

where R  is the residual tensor. Eq. (124) may be iteratively solved by using the NewtonRaphson 

method. The standard update relation for the unknown matrix X  at iteration (k) results in 

 (k 1) (k) (k 1)δ  X X X . (125) 

where 

 
1(k 1) (k) (k)δ : ( )X J R X
   . (126) 

The fourth-order Jacobian matrix J  is equal to /R X   and is defined by the following components: 

 

11 mn
1111 mn11

11 11

*mn mn mn
mnpq ep mnpq

pq pq pq

R R
J Δt ; (m,n) (1,1) : J 0

X X

R ΔΣ ΔΣ
m,n and (p,q) (1,1) : J Δt Δt

X D ΔE

 
      
 

  
      

  

. (127) 

where the macroscopic consistent tangent modulus *

ep
 is related to its microscopic counterpart 

ep
 

by the following classic averaging relation: 

  *

ep ep

V

1
dV

V
  , (128) 

where V  is the volume of the polycrystalline aggregate. 

Therefore, in order to solve with the Newton–Raphson method the non-linear system induced by the 

uniaxial tensile state, the microscopic consistent tangent modulus 
ep

 should be calculated. For 

comparison purposes, both the analytical and numerical versions of the consistent tangent modulus are 

used to perform the simulation of the uniaxial tensile test. The number of iterations of the Newton–

Raphson method, averaged by the number of increments required in the simulation performed with the 

analytical (resp. numerical) consistent tangent modulus, is equal to 2.21 (resp. 2.135). It is noteworthy 

that, in terms of CPU time, the computations carried out by using the numerical consistent tangent 

modulus take 1870.75s, whereas those performed with the analytical consistent tangent modulus 

require 276.85s only. Considering that the constitutive equations for the single crystal are integrated 

seven times (resp. once) at each Newton–Raphson iteration when the numerical (resp. analytical) 

tangent modulus is used, this result is quite expectable. It confirms the efficiency of the analytical 

approach for the consistent tangent modulus.  
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The comparison between the simulation results obtained by using the analytical and numerical 

consistent tangent moduli is given in Figure 24. This figure shows that the use of one form or the other 

for the consistent tangent modulus leads to the same numerical predictions. 

   

 (a) (b) 

Figure 24. Comparison between the simulation results obtained by using the analytical and numerical consistent 

tangent moduli: (a) Evolution of the stress component 11Σ  as a function of time t, (b) Evolution of the strain rate 

components 22D  and 33D  as functions of time t. 

7. Conclusions 

In this paper, two novel integration algorithms for predicting the mechanical response of BCC single 

crystals, within the framework of large strain rate-independent plasticity, have been developed and 

compared. The first algorithm is implicit and based on the well-known return-mapping scheme. In this 

algorithm, the non-smooth Kuhn–Tucker inequalities and constraints are replaced by a set of non-

linear equations involving the so-called Fischer–Burmeister complementarity functions. This new 

semi-smooth formulation allows combining both tasks, namely the identification of the set of active 

slip systems and the determination of the slip increments of the resulting active slip systems. To solve 

the associated non-linear system, a global Newton–Raphson procedure based on the line search 

technique has been developed and used. The second approach is based on the ultimate algorithm. The 

latter is defined by one or two stages (depending on the situation): an explicit phase (automatically 

achieved), followed by an implicit correction (performed under a condition on the size of the time 

increment). This algorithm can be easily transformed into an explicit scheme, by avoiding the 

application of the implicit correction. In this second algorithm, the determination of the set of active 
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slip systems is based on an iterative search procedure, while the computation of the corresponding slip 

rates is based on the fixed point method. 

The analysis of the simulation results for single crystals with various initial crystallographic 

orientations and subjected to monotonic and complex loadings allows the following conclusions to be 

drawn:  

 The use of the semi-smooth formulation of the return-mapping algorithm, instead of the 

classical formulation, permits to avoid several problems, especially those related to the 

identification of the active slip systems. Indeed, no iterative search procedure, for the 

determination of the active slip systems, is required when the semi-smooth formulation is 

applied. Accordingly, all discussions on the choice and the development of such search 

procedures are obviously avoided here. 

 The use of the semi-smooth formulation of the return-mapping algorithm involves too much 

iteration for reaching the solution; therefore, significant computational resources are required, 

especially when the number of potentially active slip systems is much larger than that of active 

slip systems. Additionally, the non-linear treatment of this algorithm is based on an elaborate 

line search procedure, which improves the global Newton–Raphson iterative method. 

 In the case of the ultimate algorithm, the iterative search procedure, for the determination of the 

set of active slip systems, turns out to be a reliable and efficient procedure because it converges 

in little iteration. Moreover, the fixed point method used to compute the slip rates of the active 

slip systems appears to be very efficient.  

 The various simulations for the single crystal response, performed by using the ultimate 

algorithm, clearly demonstrate the decrease in computational cost by a factor of 1.5–5 as 

compared to the integration scheme based on the return-mapping algorithm. This factor depends 

on the initial crystallographic orientation and, especially, on the size of the adopted time 

increment. 

 The proposed ultimate algorithm provides a computationally efficient and robust semi-implicit 

integration scheme for the time integration of crystal plasticity constitutive models. This new 

algorithm shows more benefits for potential applications in materials science, and the associated 

large-scale simulations of forming processes, as compared to the return-mapping algorithm.  

To further assess the respective efficiency of the ultimate and return-mapping algorithms, three typical 

mechanical tests have been simulated for a polycrystalline aggregate. These mechanical tests range 

from constant and a priori known loading, in the first test, to complex unknown loading in the third 

test. For the different tests, the Taylor model is used to derive the mechanical behavior of the 

polycrystalline aggregate from the constitutive equations of its microscopic constituents. The above 

conclusions, drawn at the single crystal scale, are confirmed through the simulation results obtained at 

the polycrystalline scale. Indeed, the numerical results given by the polycrystalline simulations, and 
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corresponding to the two algorithms used to integrate the constitutive equations at the single crystal 

scale, turn out to be indistinguishable. Despite the perfect similarity of the numerical results, the 

simulations based on the return-mapping algorithm are significantly more expensive than those based 

on the ultimate algorithm. Indeed, the ratio of the CPU time required for the simulations with the 

return-mapping algorithm to that associated with the ultimate algorithm ranges between 4.5 and 8.3 in 

the case of these polycrystalline simulations. 

On the basis of these different observations and results, the ultimate algorithm may be considered as a 

relevant numerical scheme for the integration of the constitutive equations of rate-independent single 

crystal models, thanks to its performance in terms of robustness, accuracy and efficiency. It can then 

be successfully used in "large scale" simulation codes, based on the finite element method or other 

discretization methods (e.g., multiscale transition schemes), to simulate the behavior of metallic 

components and structures.  
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Appendix A. Slip systems for BCC single crystals 

 

For BCC single crystals, the number of crystallographic slip systems sN  is equal to 24. Each slip 

system is characterized by two orthogonal vectors α α( , )m n  in the deformed configuration. αm  is the 

vector parallel to the slip line and αn  is the vector normal to the slip plane. In the intermediate 

configuration, both vectors are assumed to be constant and of unit length. Therefore, the following 

relations hold: 

 
0 0 0 0

s α α α αα 1,...,N : 1 , . 0m n m n    . (A.1) 

Let us introduce the vectors 0

αw  and 0

αv  enumerated in Table A.1. 

α 1 2 3 4 5 6 7 8 
0

αv         
0

αw         

 

α 9 10 11 12 13 14 15 16 
0

αv  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0

αw  0 1 1 1 1 2 1 2 1 2 1 1 1 1 0 1 0 1 0 1 1 1 1 2 

 

α 17 18 19 20 21 22 23 24 
0

αv  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
0

αw  1 2 1 2 1 1 1 1 0 1 0 1 0 1 1 1 1 2 1 2 1 2 1 1 

Table A.1. The numbering of the slip systems of a BCC single crystal according to [50]. 

Then, 0

αm  and 0

αn  are defined in terms of 0

αw  and 0

αv  by the following relations: 

 
0 0

0 0α α
s α α0 0

α α

α 1,...,N : ;
w v

m n
w v

   . (A.2)   
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Appendix B. The global Newton–Raphson method  

 

The classical Newton–Raphson method is adopted to solve Eq. (51). The standard update relation of 

the slip increment at iteration (k) results in 

 (k 1) (k) (k)Δ Δ δΔγ γ γ  , (B.1) 

where 

 
1(k) (k) (k)δΔγ 


  . (B.2) 

Here, (k)  is the kth iteration of the Jacobian matrix defined as ( / Δ )γ  . The αβth component of  

is obtained as 

α α α
αβ αβ

2 2 2 2
βαδ δ α α αδ δ α α

Δγ
: δ 1 1 ; δ

Δγ(A Δγ b ) (Δγ ) (A Δγ b ) (Δγ )


     

   

   
   
   
   

f f

 (B.3) 

in which α β/ Δγ f  is defined by the following relation: 

 0 tr 0α αδ

αβ 0 0 δ α e e 0 β

β β

h
: h (t Δt) (t Δt)Δγ sym (t Δt). ; δ

Δγ Δγ

f 
        

 
M c M+ . (B.4) 

The algorithm corresponding to the classical Newton–Raphson method is defined by the following 

three steps: 

 Step 1: 

- Initialize the iteration index to 0: k 0  

- Choose the initial guess (0)Δγ  

For ( k 1 ) 

 Step 2: 

- Compute (k)  and (k)  

- If (k) (k) 2

α

α

( ) tol  


  , then stop; else, go to Step 3 

 Step 3: 

- Compute 
1(k) (k) (k)δΔγ


    

- Compute (k 1) (k) (k)Δ Δ δΔγ γ γ
   , set k k+1  and go to Step 2 

Note that the problem of non-uniqueness of the slip increments is still present with this semi-smooth 

formulation. Indeed, the Jacobian matrix  of Eq. (B.3) may be singular, in which case it has to be 
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inverted using the pseudo-inversion technique as in [11], or the perturbation technique as in [12], for 

example. In the current work, the pseudo-inversion technique is used. 

Unfortunately, the classical Newton–Raphson algorithm, defined by the previous three steps, is 

sometimes confronted to some numerical difficulties, such as the choice of the initial guess (0)Δγ  in 

order to guarantee a fast and correct convergence. Indeed, when the initial guess is relatively far from 

the solution, the method might not converge or may converge very slowly. To avoid this shortcoming, 

a line search strategy leading to a global Newton–Raphson method can be applied. This strategy is 

based on the limitation of the iteration length, by multiplying (k)δΔγ  in Eq. (B.1) by a scalar α 

comprised between 0 and 1. The aim of the line search strategy is to find α such that 

(k+1) (k+1) (k) (k)= (Δ ) = (Δ αδΔ )γ γ γ     has sufficiently decreased. Several algorithms are available 

in the literature to compute α, such as the Armijo algorithm [51] or the algorithm developed in [52]. 

After several comparative tests, a relatively simple algorithm is followed. This algorithm is iteratively 

applied at each iteration of the global Newton–Raphson procedure. It is summarized by the following 

steps: 

 Step 1:  

- Choose λ[0, 0.5] and [0, 1] 

- Set the iteration counter j to 0 and the first iteration α(0)of αto1 

 Step 2:  

- Compute (k+1) (k) (0) (k)Δ Δ α δΔγ γ γ   

 Step 3:  

- While 
2

(k+1) (k) j (k)(Δ ) λ α (Δ )γ γ      do: 

 α(j1)  α(j) 

 (k+1) (k) (j+1) (k)Δ Δ α δΔγ γ γ   

 jj1 

In the current paper, the numerical parameters λ and  are assumed to be equal to 104 and 0.5, 

respectively. 

The algorithm for the determination of α is embedded in the Newton–Raphson algorithm explained in 

the beginning of this Appendix. 

For the simulations performed in this paper, the partial derivatives αδ βh / Δγ   (where αδh  are the 

hardening components of the hardening law (109)) need to be computed in order to determine the 

components of the Jacobian matrix  (see Eq. (B.3)) 

 αδ

αδ

β β

ˆh h(A)
α,β,δ q+(1 q)δ

Δγ Δγ

 
    

 
   , (B.5) 
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where βĥ / Δγ   is given by the following relation: 

 0 0

β sat 0 sat 0

ˆˆ 2h h(A) h Ah(A)
β tanh

Δγ τ τ τ τ


    

  

 
 
 

. (B.6) 
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Appendix C. The pseudo-inversion method 

 

A general square matrix A  can be decomposed, by using the singular value decomposition [53], into 

the following form: 

 T. .A U S V , (C.1) 

where U  and V  are orthogonal matrices. In the above decomposition, S  is a diagonal matrix 

containing the singular values of A . The pseudo-inverse of A  is given by  

 T. .A V S U
  , (C.2) 

in which S


 is also a diagonal matrix defined by 

 ii ii+

ii

1/ S if S 0
S

0 otherwise







. (C.3) 

When A  is invertible, its pseudo-inverse simply reduces to its classical regular inverse. 

 

  



 

 74  
 

Appendix D. The fixed point method 

 

The system of Eq. (74) is strongly non-linear and its resolution is based on the iterative fixed point 

method. The application of this method involves the following sub-steps: 

 Sub-step 3.1: 

- Initialize the iteration index k to 0: k=0. 

- Initialize the first iteration 
(0)

β 0(t δt)γ   for the slip rates at 0t δt  to the explicit solution 

computed by Step 1. 

- Initialize the first iteration for the rotation (0)

0(t δt)r   and for the hardening modulus 

(0)

0(t δt)h   to their respective values at 0t . 

- Set k=1. 

For ( k 1 ), do the following sub-steps: 

 Sub-step 3.2:  

- Compute (k)

0(t δt)r   as follows:  

 
(k 1)
eδt(k)

0 0(t δt) (t ).e
w

r r


  , (D.1) 

with 

 (k 1) (k 1) (k 1) (k 1)T (k 1) (k 1) 0

e p 0 0 β 0 β

β

(t δt). . (t δt) γ (t δt)w w w r w r S
           



 . (D.2) 

The above equations are the result of the implicit integration of Eq. (16) over I. 

- Compute the hardening modulus 
(k)

αβ 0h (t δt)  (α, β )  on the basis of 
(k-1)

β 0γ (t δt) , 

which is computed by the following relation: 

 (k 1) (k 1)

β 0 β 0 βγ (t δt) γ (t )+δt γ  . (D.3) 

- Compute (k)
d  by 

 (k) (k) T (k). .d r d r . (D.4) 

- Compute 
(k)

αβ 0A (t δt)  and 
(k)

α 0b (t δt)  by 

 

(k) 0 0 (k)

αβ 0 α e β αβ 0

(k) 0 (k)

α 0 α e

A (t δt) h (t +δt)
α,β :

b (t δt) (t δt)0

M M

M d

   
 

    

 



. (D.5) 

- Compute 
(k)

β 0γ (t δt)  ( β ) by 

 (k) (k) 1 (k)

0 0 0(t δt)= (t δt). (t δt)γ A b
   . (D.6) 
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 Sub-step 3.3:  

If 
(k) (k 1)

0 0(t δt) (t δt) εγ γ
    , then (k)

0(t δt)γ   is the solution of (74); otherwise, set 

k k+1  and go to Sub-step 3.2. Here, ε  is typically chosen to be equal to 105 s1. 

If the matrix (k)

0(t δt)A   is singular, then the pseudo-inversion method is used to compute its 

inverse and then to solve Eq. (74). 
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Appendix E. Computation of matrix 
*

s
ˆ   

 

As discussed in Section 3.3, this part is devoted to the derivation of the fourth-order modulus *

s
ˆ , 

which has been introduced in the above-mentioned section. It is noteworthy that all of the notations 

previously defined in that section are adopted here again. We recall that *

s
ˆ  satisfies the following 

relation: 

 *

s s
ˆ ˆˆ ˆ: Δ : Δε ε   , (E.1) 

where 
s

ˆ  is given by the following relation: 

 s e αβ e α α 0 0 α β e
ˆ ˆ ˆˆ ˆˆ ˆΛ ( : . (t ) (t ). ) ( : ) ; α,β      R S σ σ S R . (E.2) 

By differentiating Eq. (E.2), one obtains 

 

s β e e α α 0 0 α αβ

αβ β e e α α 0 0 α

αβ e α α 0 0 α e β

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ: Δ Δt ( : : ) ( : . (t ) (t ). ) Λ

ˆ ˆˆ ˆ ˆ ˆ ˆΛ ( : : )( : . (t ) (t ). ) ; α,β

ˆ ˆˆ ˆ ˆˆ ˆΛ ( : . (t ) (t ). ) (( : ) : )

     

      

    

ε R d R S σ σ S

R d R S σ σ S

R S σ σ S d R

. (E.3) 

In order to determine the analytical expression of *

s
ˆ , the differential terms 

αβΛ , 
αR̂  and 

αŜ  

should be expressed as functions of the differential of the strain increment ˆΔε . This is the purpose of 

the following developments. 

In order to compute Λ , the following relation is used: 

 α λ λ e β λ β αβ
ˆ ˆα, β : Λ ( h ) δ ; λR R       . (E.4) 

The differentiation of Eq. (E.4) leads to 

 α λ λ e β λ β α λ λ β
ˆ ˆα, β : Λ h Λ h 0 ; λR R            . (E.5) 

It is worth noting that the term λ e β
ˆ ˆR R   is a scalar invariant, and hence Eq. (E.5) is equivalent to 

 
αβ αλ λζ ζβα, β : Λ Λ h Λ ; λ, ζ      . (E.6) 

Besides, the components of the hardening matrix are functions of the cumulated slip 

  
λζ

λζ α

α

h
λ, ζ : h Δt γ ; α ,

γ


     


 (E.7) 

where αγ  is the cumulated slip on slip system α . 

Thereafter, the differentials of the symmetric parts of the Schmid orientation tensors are derived 

through the following relations: 
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0 T

s α α

0 T 0 T

α α

ˆα 1,...,2 N : ( . . )

. . . .( )

R r R r

r R r r R r

   

  
 (E.8) 

Let us introduce two fourth-order tensor operators denoted 1
A  and 2

A , respectively, such that for all 

second-order tensors a  and b , 

  
1

T 2

. ( )

. ( )

b a A a b

a b A a b

 

 





. (E.9) 

The analytical expressions of 
1( )A a  and 

2 ( )A a  are given by the following relations: 

 

1

ijkl lj ik

2

ijkl il jk

A ( ) a δ
i, j, k, l 1,2,3:

A ( ) a δ

a

a


 







. (E.10) 

Using these tensor operators, Eq. (E.8) can then be expressed in the following form: 

  

1 0 T 2 0

α α α

1 0 T 2 0

α α

0

α

ˆα : ( . ) ( . )

( . ) ( . )

( )

R A R r r A r R r

A R r A r R r

B R r

        

   

  

, (E.11) 

where B  is a fourth-order tensor operator, such that for any second-order tensor a , 

 1 T 2( ) ( . ) ( . )B a A a r A r a  . (E.12) 

Similarly, the differentials of the anti-symmetric parts of the Schmid orientation tensors read 

  0

α α
ˆα : ( )S B S r     . (E.13) 

Next comes the determination of the differential of the rotation r . We recall the evolution law for the 

rotation r  

 pˆΔt

0 α α 0
ˆe . (t ) Δt γ ]. (t )   ; α


   

w
r r 1 S r . (E.14) 

The differentiation of Eq. (E.14) leads to 

 α α α α 0

1

0 α α α α

ˆ ˆΔt γ γ ]. (t )

ˆ ˆΔt ( (t )) ( γ γ )

r S S r

A r S S

     

     
   ; α . (E.15) 

By inserting Eq. (E.13) into Eq. (E.15), one obtains 

 

1 1 0

α 0 α α 0 α

1 0 1 1

β 0 β 0 α α

α α

ˆΔt γ ( (t )) Δt γ ( (t )) ( )

ˆΔt γ ( (t )) ( )] ( (t )) ]Δt γ

Δt γ

r A r S A r B S r

I A r B S A r S

D

       

      

  

    ; α,β , (E.16) 

where I  is the fourth-order unit tensor, and αD  the second-order tensor associated with slip system α  

and defined by the following relation: 

 1 0 1 1

α β 0 β 0 α
ˆα : Δt γ ( (t )) ( )] ( (t )) ]D I A r B S A r S          ; β . (E.17) 
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Using Eqs. (E.7), (E.11) and (E.16), the differentials of the slip rates can be expressed in terms of the 

differential of the strain increment. 

Indeed, Eq. (101) shows that the slip rates satisfy the following relation: 

 α e β αβ β α e
ˆ ˆ ˆ ˆα : ( h )γ ; βR R R d         . (E.18) 

The differentiation of Eq. (E.18) leads to 

 αβ β α e β αβ β α e α e
ˆ ˆ ˆ ˆ ˆ ˆα : h γ ( h ) γ ; βR R R d R d                . (E.19) 

By inserting Eqs. (E.7) and (E.11) into Eq. (E.19), one obtains 

 
α λ 0

α e β αβ λ β e α α e

β

h
ˆ ˆ ˆ ˆ ˆα : ( h Δt γ ) γ ) ( ) ; β,λ

γ
R R d B R r R d


                


.(E.20) 

Using Eq. (E.16), Eq. (E.20) becomes 

 
α λ 0

α e β αβ λ e α β β α e

β

h
ˆ ˆ ˆ ˆ ˆα : h Δt γ Δt ) ( ) ] γ ; β,λ

γ
R R d B R D R d


                 


.(E.21) 

Let us introduce the tensor M , which is the inverse of the secondorder tensor Z , whose components 

are given by the following expression: 

 
α λ 0

αβ α e β αβ λ e α β

β

h
ˆ ˆ ˆα, β : Z h Δt γ Δt ) ( ) ; λ

γ
R R d B R D


            


. (E.22) 

The differentials of the slip rates finally read 

 α αβ β e
ˆ ˆα : γ M ; βR d        . (E.23) 

By inserting Eq. (E.23) into (E.6), (E.11) and (E.13), we finally obtain the following relations: 

 

λ ζ

αβ α λ ζ β χ ρ ρ e αβ

χ

0

α βγ α β γ e α

0

α βγ α β γ e α

h
ˆ ˆ ˆα, β : Λ Δt Λ Λ M ( : )]: Δt : ; λ, ζ, ρ,χ

γ

ˆ ˆ ˆ ˆα : Δt M ( ) ) ( : )]: Δt : ; β,γ

ˆ ˆ ˆ ˆα : Δt M ( ) ) ( : )]: Δt : ; β,γ

R d Ω d

R B R D R d P d

S B S D R d Q d


          



             

             

.(E.24) 

In order to determine the expression of *

s
ˆ , let us introduce a fourth-order operator denoted U , such 

that for all two second-order tensors a and b ,  

 . . ( ) :b a a b U a b  . (E.25) 

One can easily check that the analytical expression of ( )U a  reads 

 
ijkl lj ik ik lji, j, k, l 1,2,3: U( ) a δ a δa    . (E.26)  

Using Eqs. (E.24) and (E.25), Eq. (E.3) becomes 
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s β e e α 0 α αβ

αβ β e e α 0 α

αβ e α 0 α e β

*

s

ˆ ˆˆ ˆˆ ˆ ˆ: Δ ( : : Δ )( : ( (t )) : )

ˆ ˆ ˆΛ ( : : Δ )( : ( (t )) : )                      ; α ,β

ˆˆ ˆ ˆ ˆΛ ( : ( (t )) : ) ( : Δ ) : : Δ

ˆ ˆ: Δ

ε R ε R U σ S Ω

R ε P U σ Q

R U σ S ε P ε

ε

   

  

     

 

. (E.27)  
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 Appendix F. The initial imperfection approach 

 

The initial imperfection approach is widely used in the literature for the prediction of localized 

necking in sheet metals. This procedure was initially developed by Marciniak and Kuczynski [54], and 

subsequently extended by Hutchinson and Neale [55]. In this approach, an initial geometric 

imperfection, in the form of a band weaker than the rest of the sheet, is assumed to preexist in the 

studied sheet metal. Figure F.1 depicts the initial geometry of the sheet including the postulated 

groove. 

 

Figure F.1. Illustration of the initial imperfection approach. 

In the sequel, the following notations will be employed: 

 B

IH : the initial thickness of the band B.  

 S

IH : the initial thickness of the safe zone S (referred to also as the homogeneous zone). 

 
I
: the initial unit normal to the band. 

 I: the initial orientation of the band. 

According to the notations above, the initial imperfection factor I , defined as 

 
B

I
I S

I

H
ξ 1

H
  , (F.1) 

can be introduced. 

The initial imperfection approach, formulated under the plane-stress assumption, is defined by the 

following relations: 

 The kinematic compatibility condition between the band and the safe zone. This condition 

expresses the jump in the velocity gradient across the discontinuity surface 

 
B S

αβ αβ α βα,β 1,2 : G G C   , (F.2) 

where C  and  are the jump vector and the current normal to the band, respectively. 
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 The equilibrium condition, involving the normal and shear forces across the interface between 

the band and the safe zone, has also to be satisfied throughout the deformation. This relation can 

be expressed in terms of Cauchy stress tensor (in index form) as follows: 

 
S S B B

αβ β αβ βα 1,2 : H Σ H Σ ; β 1,2   . (F.3) 

The rate form of (F.3) reads 

 
S S B B

αβ β αβ βα 1,2 : (H Σ (H Σ ; β 1,2

. .
     . (F.4) 

The final expression (F.4) of the equilibrium condition is that used in the implementation of the 

initial imperfection approach. 

 The evolution of the band orientation, determined by the current inclination θ  of its normal unit 

vector with respect to the 1X  direction 

 
S S
11 22(E E )

ITan(θ) e Tan(θ ) , (F.5) 

where 

 
t t

S S S S

11 11 22 22

0 0

E G dt ; E G dt   . (F.6) 

 The evolution equation for the current imperfection factor  , defined as 

 
B

S

H

H
  . (F.7) 

Taking into account the following relations: 

 
S B
33 33E ES S B B

I IH H e ; H H e  , (F.8) 

the current imperfection factor   can be expressed as  

 
B S
33 33(E E )

I )e  


. (F.9) 

The strain components S

33E  and B

33E  in Eqs. (F.8) and (F.9) are determined by 
t

S

33

0

G dt  and 

t

B

33

0

G dt , respectively. 

 The plane-stress condition in both the safe zone and the band, written as 

 S S S B B B

13 23 33 13 23 33Σ Σ Σ 0 ; Σ Σ Σ 0      . (F.10) 

As the crystallographic texture of the polycrystalline aggregate studied in this paper is assumed 

to be orthotropic, (F.10) is equivalent to 

 S S S S B B B B

13 31 23 32 13 31 23 32G G G G G G G G           . (F.11) 

 The in-plane biaxial loading applied to the safe zone 

 
S

S S22
12 21S

11

G
ρ ; G G

G
    , (F.12) 
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where the strain-path ratio  is assumed to be constant during the deformation. 

 The constitutive equations of the polycrystal, which are derived from the constitutive equations 

of the single crystals via the Taylor scale-transition scheme.  

The component S

11G  is fixed to 1 and, accordingly, the component S

22G  is equal to  (see Eq. (F.12)(1)). 

As to the component S

33G , it is determined iteratively by imposing the plane-stress condition given by 

Eq. (F.10)(1). The other components of S
G  are equal to zero, as detailed in Eqs. (F.11)(1) and (F.12)(2).  

The in-plane components 
B

αβG  (α,β=1,2) are determined from the components 
S

αβG  by using Eq. (F.2), 

while the component B

33G  is derived from the plane-stress condition in the same way as for S

33G .  

Let us now summarize the set of the known and unknown components of 
S

G  and 
B

G , corresponding 

to the initial imperfection approach: 

Known components: 

 S

11G   (in fact, the value of S

11G  can be chosen quite freely; for convenience, it has been fixed 

here to 1). 

 S S

22 11G ρG ρ   (this value is a priori known, because  is fixed to a constant value throughout 

the deformation). 

 S S

12 21G G 0   (this is the result of the in-plane biaxial loading applied in the safe zone). 

 S S S S

13 31 23 32G G G G 0     (this is the combined result of the plane-stress condition in the safe 

zone and the orthotropic crystallographic texture used). 

 B B B B

13 31 23 32G G G G 0     (this is the combined result of the plane-stress condition in the band 

and the orthotropic crystallographic texture used).  

Unknown components: 

 S

33G , which should be determined by the plane-stress condition in the safe zone. 

 B

33G , which should be determined by the plane-stress condition in the band. 

 B B B

11 12 21G G G   and B

22G , which are functions of the jump vector C  and the normal to the band 

. It must be noted that the unit vector  is entirely determined by θ  ( cosθ, sinθ   ), 

which in turn is a function of the known components S

11E  ( t ), S

22E  ( tρ ) and the initial band 

orientation I  (see Eq. (F.5)). Therefore, this quantity is known and B B B

11 12 21G G G   and B

22G  are 

functions only of the components 
1C  and 

2C  of the jump vector C . 

To solve the governing equations of the initial imperfection approach, and then determine the 

unknown components of 
S

G  and 
B

G  as well as other mechanical variables both in the safe zone and 

the band, the incremental algorithm developed in [49] is followed.  
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