
Title Inferring waypoints in the absence of knowledge of driving style

Author(s) Desmond, Daniel A.; Brown, Kenneth N.

Publication date 2017

Original citation Desmond, D. A. and Brown, K. N. (2017) 'Inferring waypoints in the
absence of knowledge of driving style', Proceedings of the 25th Irish
Conference on Artificial Intelligence and Cognitive Science, Dublin
Institute of Technology, 7 - 8 December, pp. 166-178

Type of publication Conference item

Link to publisher's
version

http://ceur-ws.org/Vol-2086/AICS2017_paper_26.pdf
Access to the full text of the published version may require a
subscription.

Rights © 2017, the Authors. Copying permitted for private and academic
purposes.

Item downloaded
from

http://hdl.handle.net/10468/6890

Downloaded on 2018-09-30T19:27:18Z

http://ceur-ws.org/Vol-2086/AICS2017_paper_26.pdf
http://hdl.handle.net/10468/6890

Inferring Waypoints in the Absence of
Knowledge of Driving Style

Daniel A. Desmond, Kenneth N. Brown

Insight Centre for Data Analytics, Department of Computer Science, University
College Cork, Cork, Ireland

{daniel.desmond, ken.brown}@insight-centre.org

Abstract. We present an algorithm for predicting intervals which con-
tain waypoints from a GPS trace of a multi-part trip without having
access to historical data about the driver or any other aggregated data
sets. We assume the driver’s driving style is not known, but that it can be
approximated by one of a set of cost preferences. The method uses a set
of repeated forward and backward searches along the trace, where each
of the searches represents one of the driving costs. We evaluate the algo-
rithm empirically on multi-part trips on real route maps. The algorithm
selects the results of the search with the fewest number of intervals and
we achieve over 95% recall on estimating waypoints while the intervals
cover less than 9% of the trace.

1 Introduction

Recreating intent from activity traces is an important aspect of security, missing
persons search, assisted living, and retail analysis. In the retail analysis case the
inference would require the analysis of large sets of activity traces from many
people, while in assisted living there will be many traces from one person. In
the security and missing persons case the inferences may have to be determined
from a single trace for an individual. In such cases the activity traces may be
trajectories through space with intermediate waypoints intepreted as intent.

In previous work [1] we showed it was possible to predict intervals which
contain up to 97% of waypoints from a driver’s GPS trace when a driver’s route
choice is based on shortest paths. We now we relax this assumption and consider
the case where the driver’s route choice may be based on different criteria. We
assume that we have a model which is an abstraction of road network, which
contains details of travel times and distances, tolls and road types but no other
information. We present an algorithm which compares the results of a series of
repeated forward and backward searches for shortest paths based on different
cost functions which approximate different route choices. We evaluate the al-
gorithm empirically using randomly generated locations from which multi-trip
routes are generated by an online route planner. We demonstrate that the algo-
rithm generates intervals in the traces which cover over 95% of the waypoints,
and where the intervals cover less than 9% of the trace.

The remainder of the paper is organised as follows: Section 2 discusses related
work. Our proposed approach to the problem is introduced in section 3. Section
4 describes the form of the experiments. The results of the experiments are
reported in section 5 and section 6 concludes the paper.

2 Related Work

Wardrop [2] proposed that the minimization of travel time was the most im-
portant criterion in route selection and his first principle of route choice states
“the journey times on all routes actually used are equal, and less than those
which would be experienced by a single vehicle on any unused route”. Studies
by Duffel and Kalombatis [3] and Huchingson et al. [4] also found that travel
time was considered to be the most important factor when deciding on which
route to take. However in a more recent review of multiple studies Chen et al. [5]
showed that route choice was based on more than travel time, with the driver’s
preferences, familiarity with the areas being travelled and other judgements also
accounting for how routes were chosen. Zhu and Levinson [6] also carried out
an empirical test of Wardrops’s first principle and found that the majority of
people did not choose the shortest path by time.

Currently the majority of research based on prediction or inference using
GPS traces revolves around destination prediction and establishing if patterns
exist such as popular or heavily travelled routes in the traces being examined.
These require the use of a number of different types of machine learning methods
such as pattern recognition [7] and Hidden Markov Models [8] among others. All
of these methods require the use of large amounts of historical data to build
up their models and do not use a graph of the geographical area being studied.
Where the inference of waypoints via creating sub-traces from the trace is used,
the ultimate aim is still to predict the destination [9]. The most similar problem
to the one we are tackling here is one studied by Kafsi et al [10], where the aim
is to infer a set of waypoints from a GPS trace. They ignore the time component
when segmenting the trace but use historical data to estimate the waypoints
computing the entropy of conditional Markov trajectories. To the best of our
knowledge, we are the first to present a method for inferring waypoints where
historical data is not required and we only assume that the driver is consistent
in their driving style for the whole trip.

There exist a multitude of trip planners both on-line and off-line such as
Google maps [11], and those built using openstreetmap data(OSM)[12] data
[13,14]. Openrouteservice [15] is an open source route planner in which it is
possible to create multi-point trips with different travel profiles or cost functions
and download the trace data for the trip.

In previous work [1], we demonstrated a method for inferring waypoints using
only a GPS trace and no other historical or aggregated data, where the assump-
tion was made that the creator of the trace used shortest paths by time. The
method is based on repeated forward and backwards searches using Dijkstra’s
algorithm [16]. The method is discussed in section 3.

3 Approach

Our hypotheses are

– Given a multipart trajectory constructed from point-to-point trips, in an un-
known driving style, the individual destinations (waypoints) can be inferred
from the results of multiple simulations of different driving styles.

– The simulated driving style which produces the fewest waypoint estimates
generates a reliable estimate of the true waypoints.

Let G = (V,E, t, d, c,H, h) be a strongly connected, multi-weighted, directed
graph embedded in a two-dimensional (2D) space. V is the set of vertices where
each vertex is a location in the space. E is the set of directed edges (vi, vj)
where vi, vj ∈ V and so each edge represents a road segment. t is a function
t : E −→ N+ representing the cost of traversing an edge in seconds. d is a
function d : E −→ N+ representing the cost of traversing an edge in miles. c is
a function c : E −→ N+ representing the cost of using a toll in US dollars. h is
a function h : E −→ H representing the type of road of the edge. H is set of
different road types.

A trip s is a sequence of vertices and s̄ is the last vertex in s. A multitrip
M is a sequence of trips 〈s1, s2, ..., sj〉 such that s̄i is the first vertex in si+1. A
flattened multitrip is a sequence of vertices created by flattening the multitrip.
A trace T = 〈v1, v2, ..., vk〉 is a sequence of vertices sampled in order from the
flattened multitrip. Given a trace our aim is to reconstruct the individual trips
i.e. the endpoints 〈s̄1, s̄2, ..., ¯sj−1〉 from the multitrip. We allow a relaxation in
which our aim is to output a list of intervals 〈[a1, b1], [a2, b2], ..., [aj , bj]〉 where
s̄i is contained within [ai, bi].

For this work we define a driving style to be a route choice preference function
using an appropriate cost function χ. A shortest χ-path is the path with the
smallest χ cost. If χ is based on travel time then the χ least cost path will be
the path that takes the least time. To accommodate inaccuracies in travel costs
in our abstraction of the road network and the driver’s bounded knowledge of
the route taken we introduce an ε-shortest χ-path.

Definition 1. ε-shortest χ-path: Path P from A to B is an ε-shortest χ-path
from A to B if there is no other A, B path Q with χ(Q) ≤ χ(P) - ε.

Definition 2. ε-shortest χ-path(percentage): Path P from A to B is an ε-shortest
χ-path from A to B if there is no other A, B path Q with χ(Q) ≤ (100−ε

100) ∗
χ(P), where ε is a percentage.

In our previous work [1] we presented an algorithm and demonstrated its
success at inferring intervals containing waypoints when the driver was following
the shortest path by time. In the current work we do not know the driving
style. Instead we simulate different driving styles (approximated by different cost
functions χ) and infer the intervals which contain waypoints from the results of
the computations. The new algorithm modified for a specific cost function χ is

Algorithm 1: Waypoint Estimation With Cost Function

input : Allowable Tolerance ε
input : Heading Tolerance α
input : cost function χ
input : Trace T
output: List K of intervals

1 List K
2 List ST // will hold the calculated sub-traces

3 subTraceStart ←− T [0]
4 for i← 2 to last point in T do
5 previous ←− T [i− 2]
6 current ←− T [i− 1]
7 next ←− T [i]
8 heading1 ←− heading traveled from previous to current
9 heading2 ←− heading traveled from current to next

10 if difference between heading1 and heading2 is an α-heading change then
11 add interval [previous, next] to K
12 add sub-trace from subTraceStart to previous to ST
13 subTraceStart ←− next

14 end

15 end
16 for st ∈ ST do
17 source ←− st[0]
18 while not at end of st do
19 Searching from source find first point B on st which is not a χ-cost

ε-shortest path
20 Searching back from B find first point A on reverse search of st which

is not a χ-cost ε-shortest path
21 add interval [A,B] to K
22 source ←− B

23 end

24 end
25 return K

shown in Algorithm 1. The algorithm infers waypoints using two methods which
are carried out sequentially. In the first method (lines 4-15) we identify abrupt
reversals of direction which would be caused by driving in to an area and leaving
by the reverse route and add these to the intervals. As each point is a location
in 2D space, each successive pair of points in trace T has a direction between
them. Therefore we define a α-heading change as follows

Definition 3. α-heading change: Difference between heading of travel from ti−1

to ti and heading of travel from ti to ti+1 is 180◦±α◦.

We then split the trace into subtraces, separated by the intervals for abrupt
reversals, where each subtrace is made up of contiguous points of the trace. The
second method (lines 16-24) for inferring waypoints involves searching forward
through a subtrace until we find a point B which is the first point not on a
ε-shortest χ-path, then search backwards from B until we find point A which is
the first point not on a ε-shortest χ-path from B. Interval [A,B] is added to the
list of intervals, and the forward search resumes from point B. When we have
reached the end of the subtraces we return the list of intervals found.

Based on the results of [1] a search that uses the correct cost function should
produce approximately the correct number of intervals (or fewer if one waypoint
is on the shortest path between its predecessor and successor waypoints). A
simulation using an incorrect cost function χ should introduce extra intervals
to account for deviations from its shortest χ-path, although it is possible that
it could miss a waypoint between the intervals for the same reason as above.
Therefore we suspect that the cost function that returns the fewest intervals is
a good estimate for the true driving style. If more than one function produces
the fewest intervals we need a tiebreaker. Given a list of intervals, we assume
each interval will need to be examined for places of interest, therefore we could
choose wide intervals where we are more likely to find waypoints, which we call
maximum spread, or we could choose narrow intervals where the search time
would be smaller at the cost of missing a waypoint, which we call minimum
spread, where spread is defined as total width of the intervals in seconds. We
define the spread in terms of seconds since the GPS points are timestamped and
we cannot compute distance travelled between GPS points. The results from
both of these options will be compared in section 5. If there is still more than
one function remaining then random choice will be used to select one. Other
options such as selecting by the maximum spread or minimum spread initially
and then using the number of estimates as a tiebreaker were implemented but
gave poor results and so are not discussed further.

The pseudocode for the Waypoint Estimation Assuming No Driving Style
Information is shown in Algorithm 2. The inputs are the trace T , ε, α, and a
set of cost functions representing different driving styles. Initialize two lists, AK
which will hold the list of each the intervals returned from each of the waypoint
estimation algorithms we are interested in and K to hold the intervals which will
be returned(lines 1-2). A counter C to keep track of the minimum number of
intervals returned by any cost function is initialized to∞ (line 3). For each of the

cost functions we return a list L of intervals (line 5). If the number of intervals
is equal to C then L is added to AK (lines 6-8). If the number of intervals is
less than C then AK is cleared, L added to the now empty list and C set to the
number of intervals in L (lines 9-13). If AK contains only one list of intervals
then set K equal to this list of intervals (line 16). If AK contains more than
one list, we select the one with minimum or maximum spread. If there are still
ties, we randomly select a list with minimum or maximum spread (lines 17-24).
Return the list K of the intervals found (line 25).

Algorithm 2: Waypoint Estimation Assuming No Driving Style Infor-
mation
input : Allowable Tolerance ε
input : Heading Tolerance α
input : Set of Cost functions X
input : Trace T
output: List K of intervals

1 List AK
2 List K
3 Integer C ←− ∞
4 for χ ∈ X do
5 List L = Waypoint Estimation with Cost Function (T , ε, α, χ)
6 if L.size = C then
7 add L to AK
8 end
9 if L.size <C then

10 clear AK
11 add L to AK
12 C ←− L.size

13 end

14 end
15 if size of AK = 1 then
16 K ←− the only list of estimates in AK
17 else
18 List S = Select From AK based on either the minimum or maximum

spread of the intervals in each list
19 if size of S = 1 then
20 K ←− the only list of intervals in S
21 else
22 K ←− list of intervals selected randomly from S
23 end

24 end
25 return K

4 Experiments

To evaluate the algorithms we simulate routes in the city of New York. The
algorithms were implemented in Java 1.8 and run on a machine using Windows
10, an i7 CPU at 2.1 GHz and 7GB of RAM dedicated to the JVM. The graph
of the road network was created from OSM data. The only modifications made
were that extra nodes were added to ensure that nodes were not separated by
more than 20m, and insuring that all toll information was correctly captured.
The cost of each toll was obtained from the MTA [17] and the value used was
the undiscounted cost for a car.

(a) Quickest route (b) Shortest route with no tolls

(c) Shortest route (d) Shortest route with no highways

Fig. 1: Different routes for the same multi-trip depending upon the driving style

104 test trips were created, each of which contained between 0 and 10 way-
points, with an average of 4.413 waypoints per trip. The waypoints were ran-
domly selected from the original graph data. Openrouteservice was chosen to
create the test routes because of its ability to create routes with different combi-
nations of route choice including avoiding tolls, avoiding highways or no restric-
tions along with minimizing the travel time or travel distance, and because the
latitude, longitude and timestamp of points along the route could be exported
via the api. The routes range in length from 2.8 to 172.9 miles with an aver-
age of 59.8 miles and had a duration ranging from 269 to 18505 seconds, with
an average of 5984 seconds. These routes were then sampled so that the points
occurred at a regular interval of 15 seconds so as to simulate a GPS trace. A
byproduct of the sampling was that except for a few cases the actual waypoint
would not appear on the trace. Figure 1 shows a map of New York with the
different routes taken for a multi-trip beginning at the location marked A and
ending at B travelling via the waypoints 1 to 6 for each of 4 different driving
styles. Table 1 details the cost functions used to generate the test routes.

The parameters for Algorithms 1 and 2 were set as follows: the heading
tolerance α was set to 5◦, while the allowable tolerance ε was set to 5 seconds \
2% where the driving style algorithm incorporates shortest route by time and set
to 0.03 miles \ 2% where the driving style algorithm incorporates shortest route
by distance. These values were chosen based on the rectangular street layout in
the majority of New York and the approximate size of a city block. The cost
functions χ were instantiated as follows: The penalties for passing through a toll
booth when the driving style indicates that the driver avoids tolls is 10 minutes
\ 3 miles for each dollar of the toll cost, and the penalty for traversing an edge
tagged as highway is the cost of traversing the edge multiplied by 30 regardless
of cost measure. It should be noted that these are not the same as the functions
used by openroutesource. For example our cost functions allow, but penalise, the
use of tolls and highways while openrouteservice avoid tolls and highways. The
corresponding approximate functions are shown in Table 1.

openrouteservice

Cost Function
How Calculated

Approximate

Cost Function

Q Quickest route Q’

S Shortest route S’

QNH Quickest route avoiding highways QNH’

SNH Shortest route avoiding highways SNH’

QNT Quickest route avoiding tolls QNT’

SNT Shortest Route avoiding tolls SNT’

Table 1: Descriptions of cost functions

5 Results

Driving Style Algorithm

Q’ S’ QNH’ SNH’ QNT’ SNT’

T
ru

e
D

ri
v
in

g
S
ty

le

Q

% Intervals 102.17 167.77 514.81 534.64 115.90 176.91

Fewest Int. 95.2 8.7 3.8 2.9 61.5 7.7

Precision 0.945 0.536 0.163 0.145 0.829 0.498

Accuracy 0.960 0.753 0.576 0.561 0.907 0.732

Recall 0.965 0.893 0.841 0.776 0.961 0.880

Vagueness 129.32 218.86 91.81 88.72 128.35 202.35

S

% Intervals 313.9 99.6 362.8 224.2 327.2 114.2

Fewest Int. 4.8 95.2 3.8 12.5 4.8 61.5

Precision 0.285 0.958 0.246 0.403 0.272 0.821

Accuracy 0.638 0.961 0.620 0.696 0.632 0.893

Recall 0.893 0.954 0.893 0.904 0.891 0.937

Vagueness 166.86 161.37 119.43 118.83 166.19 142.99

QNH

% Intervals 257.7 154.5 106.3 130.0 261.7 157.1

Fewest Int. 7.7 12.5 85.6 30.8 6.7 11.5

Precision 0.368 0.604 0.921 0.740 0.360 0.581

Accuracy 0.687 0.795 0.947 0.856 0.682 0.779

Recall 0.948 0.933 0.970 0.933 0.941 0.913

Vagueness 258.93 235.71 85.68 194.71 249.44 210.45

SNH

% Intervals 394.1 135.1 295.0 102.0 400.0 139.0

Fewest Int. 2.9 26.0 5.8 97.1 26.9 2.9

Precision 0.229 0.705 0.312 0.940 0.226 0.672

Accuracy 0.614 0.847 0.655 0.955 0.612 0.857

Recall 0.904 0.952 0.919 0.959 0.904 0.935

Vagueness 179.20 235.89 126.81 128.99 177.57 207.93

QNT

% Intervals 114.8 177.6 525.3 544.7 104.6 169.3

Fewest Int. 70.2 8.7 3.8 2.9 98.1 9.6

Precision 0.839 0.501 0.161 0.145 0.923 0.524

Accuracy 0.912 0.736 0.575 0.562 0.950 0.745

Recall 0.963 0.889 0.848 0.789 0.965 0.887

Vagueness 176.01 232.77 91.89 87.50 119.57 208.45

SNT

% Intervals 324.8 111.6 372.6 232.0 320.9 98.7

Fewest Int. 4.8 62.5 3.8 11.5 4.8 98.1

Precision 0.280 0.863 0.241 0.393 0.284 0.974

Accuracy 0.638 0.923 0.618 0.693 0.641 0.970

Recall 0.909 0.961 0.898 0.913 0.911 0.962

Vagueness 173.34 227.76 120.45 275.42 164.07 123.27

Table 2: Efficiency of Driving Style Algorithms

First we measure the performance of each driving style cost function in estimat-
ing waypoints for each of the true driving styles by running Algorithm 1 on each
combination of driving style algorithm and true driving styles. The results are
shown in Table 2. From this table it can be seen that the driving style algo-
rithm that most closely resembles the true driving style consistently produces
the smallest number of intervals as a percentage of the number of actual way-
points and that it produced the fewest (or equal fewest) intervals in at least 85%
of cases. The vagueness measure is defined as the average width of the intervals
returned in seconds. We note that in some some cases a different driving style
returns a lower value for vagueness but this is outweighed by the number of
intervals returned. Other measures of performance are the precision, accuracy
and recall of each driving style algorithm against the true driving style of the
route. A trace contains n waypoints. A search returns m explicit intervals as
predicted waypoints which gives m + 1 additional implicit intervals which pre-
dict no waypoint. We measure the number of waypoints we correctly estimate
(tp), the number of waypoints we falsely estimate (fp) and the number of way-
points we miss (fn). The standard measure of accuracy does not work because
the algorithm output is an arbitrary number of intervals, therefore we calculate
accuracy as the number of explicit and implicit intervals which are correct (i.e.
explicit intervals that contain a true waypoint, and implicit intervals that do not
contain a true waypoint). The formula for precision, accuracy and recall are as
follows.

Precision =
tp

m

Accuracy =
2m+ 1− fp− fn

2m+ 1

Recall =
tp

n

It can be seen that the precision, accuracy and recall are at their highest
when the driving style algorithm most closely resembles the true driving style.

True Driving Style

Q S QNH SNH QNT SNT

% Intervals 102.0 99.6 105.4 102.0 104.4 98.7

Precision 0.940 0.958 0.901 0.940 0.914 0.971

Accuracy 0.950 0.956 0.927 0.950 0.935 0.965

Recall 0.959 0.954 0.950 0.959 0.954 0.959

Vagueness 134.36 162.61 108.25 131.85 129.21 129.93

Table 3: Efficiency of Waypoint Estimation Algorithm Assuming No Driving
Style Information when we use the maximum width of intervals as tie-breaker

True Driving Style

Q S QNH SNH QNT SNT

% Intervals 102.0 99.6 105.4 102.0 104.4 98.7

Precision 0.938 0.950 0.909 0.936 0.921 0.971

Accuracy 0.948 0.948 0.935 0.946 0.942 0.965

Recall 0.957 0.946 0.959 0.954 0.961 0.959

Vagueness 127.02 149.77 84.55 125.19 120.53 121.75

Table 4: Efficiency of Waypoint Estimation Algorithm Assuming No Driving
Style Information when we use the minimum width of intervals as tie-breaker

We now consider Algorithm 2 which considers all simulated driving styles and
returns the predictions from the style that produced fewest intervals, with the
results shown in Tables 3 and 4. Minimum spread shows an average reduction of
9% in vagueness for a loss of less than 1% in precision, accuracy and recall when
compared to maximum spread. The average cover of minimum spread intervals
represent less than 9% of the actual trace. Therefore minimum spread is the
better option. Examining the results in Table 4 show that when we do not know
the driving style, we can still achieve a precision greater than 93% on average and
a recall greater than 95%. Thus our method can infer intermediate waypoints in
a single multi-trace without knowledge of true driving style.

6 Conclusion

In this paper we have identified a method to infer intervals which contain way-
points from a multi-trip GPS trace without knowing the driving style of the
person creating the trace, using only a graph of the area. We show the simu-
lated driving style which is closest to the true driving style produces the highest
precision, accuracy and recall for each of the true driving styles. Our algorithm
is based on multiple searches, using one for each possible driving style. It then
selects which to return, selecting the list with the fewest estimated intervals and
breaking ties by selecting the list with the minimum spread. In empirical testing
the algorithm had a recall of over 95% with a precision of over 93% on average,
while the intervals on average cover less than 9% of the trace.

Future work will involve investigating an approach for inferring waypoints
on a GPS trace where the driver does not follow a single driving style, but
may use a combination of driving styles over the duration of their trip, and
also to investigate the possibility of integrating the algorithm into data analytic
methods for improving destination prediction.

Acknowledgement. This project has been funded by Science Foundation Ire-
land under Grant Number SFI/12/RC/2289.

References

1. D. A. Desmond, K. N. Brown.: Inferring Waypoints Using Shortest Paths. In: Proc.
of the 24th Irish Conference on Artificial Intelligence and Cognitive Science (AICS
2016): 45-56 (2016)

2. J. G. Wardrop.: Some theoretical aspects of road traffic research. In: Proceedings of
Institute of Civil Engineers, Part II: 325-378 (1952)

3. J. R. Duffel, A. Kalombatis.: Empirical studies of car driver route choice in Her-
fordshire. In: Traffic Engineering and Control 29 (7/8), 398-408 (1988)

4. R. Huchingson, R. McNees, C. Dudek.: Survey of motorist route-selection criteria.
In: Transportation Research Record 643, 45-48 (1977)

5. Chen, T.Y., Chang, H.L. and Tzeng, G.H.: Using a weight-assessing model to iden-
tify route choice criteria and information effects. In: Transportation Research Part
A: Policy and Practice, 35(3): 197-224. (2001)

6. S. Zhu, D. Levinson.: Do People Use the Shortest Path? An Empirical Test of
Wardrop’s First Principle. In: Proc. of the 91st Annual Meeting of the Transporta-
tion Research Board, Washington, DC. (2012)

7. Tanaka, K., Kishino, Y., Terada, T., Nishio, S.: A destination prediction method
using driving contexts and trajectory for car navigation systems. In: Proceedings of
ACM Symposium on Applied Computing (2009)

8. Alvarez-Garcia, J.A., Ortega, J.A., Gonzalez-Abril, L., Velasco, F.: Trip destination
prediction based on past GPS log using a hidden markov model. In: Expert Systems
with Applications: An International Journal, vol. 37 (2010)

9. Xue, A.Y., Zhang, R., Zheng, Y., Xie, X., Huang, J., Xu, Z.: Destination prediction
by sub-trajectory synthesis and privacy protection against such prediction In: Pro-
ceedings of the 2013 IEEE International Conference on Data Engineering (ICDE
2013) (2013)

10. Kafsi, M., Grossglauser, M., Thiran, P.: Traveling Salesman in Reverse: Conditional
Markov Entropy for Trajectory Segmentation In: ICDM 2015: 201-210 (2015)

11. https://www.google.com/maps/
12. https://www.openstreetmap.org/
13. http://map.project-osrm.org/
14. https://graphhopper.com/maps/
15. https://go.openrouteservice.org/
16. Dijkstra, E.W.: A note on two problems in connexion with Graphs. In: Numerische

Mathematic, 1:269-271 (1959)
17. http://web.mta.info/bandt/traffic/btmain.html/

	Inferring Waypoints in the Absence of Knowledge of Driving Style

