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Collisional parton energy loss in a finite size QCD medium reexamined: Off-mass-shell effects
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We study the collisional energy loss mechanism for particles produced off mass shell in a finite size QCD
medium. The off-mass-shell effects introduced consider particles produced in wave packets instead of plane
waves and a length scale associated with an in-medium particle lifetime. We show that these effects reduce the
energy loss as compared to the case when the particles are described as freely propagating from the source.
The reduction in energy loss is stronger as the scale becomes of the order of or smaller than the medium size.
We discuss possible consequences of the result on the description of the energy loss process in the parton

recombination scenario.
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I. INTRODUCTION

The problem of collisional parton energy loss in a QCD
medium has been revived by recent RHIC data on nonphotonic
single electrons [1] that are not well described within radiative
energy loss calculations. Collisional energy loss has been a
subject of research for a long time [2—4]. During the pioneering
years, an important question was to understand how to handle
the infrared singularities in perturbative calculations at finite
temperature. The advent of resummation techniques clarified
this point and allowed the reliable computation of the energy
loss of a heavy parton traversing an infinite medium to lowest
order in perturbation theory [5,6]. Shortly thereafter, it was
estimated that radiative energy loss in a finite size medium
was a more important mechanism to account for energy
losses of energetic partons [7-9]. Nonetheless, even more
recent studies [10,11] suggested that for a range of parameters
relevant to RHIC energies, radiative and collisional energy
losses for heavy quarks are of the same order of magnitude.
These last calculations where done for infinite QCD media.
The outstanding question was whether collisional energy loss
for finite size media was also significant.

In this context there were two results seemingly in
contradiction [12,13]. In Ref. [12] a semiclassical approach
based on linear response theory was used to compute the
collisional energy loss by means of the work done by the
response chromoelectric field on the color-charged heavy
parton traversing the medium. The infinite medium limit
of this description agrees with the collisional energy loss
result at high temperature—up to color factors—obtained from
a perturbative approach using Hard Thermal Loop (HTL)
effective propagators [5]. The original claim that the finite size
medium induced energy loss is strongly suppressed compared
to the infinite medium case was later revised by properly
subtracting the kinetic energy associated with producing the
particle within the medium [14].

However, in Ref. [13] a lowest order perturbative calcu-
lation using HTL propagators finds that finite size effects on
the collisional energy loss are not significantly suppressed as
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compared to the infinite medium case. The formulation of the
problem is based on the assumption that the scattered particle
originates within the medium but otherwise is produced on
mass shell.

However, when particles are emitted by sources lasting a
finite amount of time they are not necessarily produced on
their mass shell since the source emits over a (wide) range
of energies. A physical consequence is the possibility that
the particle loses its identity within the medium. In the midst
of a high-energy heavy-ion collision, such a possibility can
be realized in the recombination of a jet parton with the
partons from the surrounding medium. Recall that during the
propagation inside a deconfined QCD plasma, a fast parton
can have not only induced gluon radiation but also induced
absorption from thermal gluons. This process can be fairly
well considered as parton recombination, which is one of the
accepted mechanisms used to describe the distinct features of
meson and baryon spectra that include a baryon to meson ratio
larger than one for p, > 2 GeV in central Au+Au collisions
at RHIC [15] and their different azimuthal anisotropies [16].
This point is addressed in the context of the modification of
parton fragmentation functions induced by medium effects
in Ref. [17]. When a parton recombines it certainly losses its
original identity and the energy loss can no longer be described
in terms of parton degrees of freedom. Parton recombination
from a jet with thermal partons to form intermediate p, hadrons
is a viable scenario in the case of light flavors, given the
features of the proton to pion ratio, and even for s quarks, given
the features of the A to kaon ratio [18]. Other off-mass-shell
effects can be of relevance as well when studying if and how
the virtuality of the propagating parton affects the in-medium
splitting functions [19].

In this work we study one such off-mass-shell effect,
namely a possible finite /ifetime of the scattered partons
originating within and traversing the finite size medium—in
the description of the collisional energy loss mechanism.
We introduce the possibility that the scattered parton can be
described in terms of a propagator containing a parameter
associated to the parton’s lifetime. We argue that, for recombin-
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ing partons, this picture could be used to consider collisional
energy losses only up to times when these recombine with
thermal partons from the medium from where the energy loss
process should be described in terms of hadronic degrees of
freedom.

The work is organized as follows: In Sec. II we rewrite
the expression for the collisional energy loss in a finite size
QCD medium based on the formalism used in Ref. [13],
allowing for particles being emitted off mass shell and having
a finite lifetime. In Sec. III we give the numerical estimates
for the collisional energy losses of heavy and light quarks
using parameters relevant for RHIC energies. We use the cases
studied in Ref. [13] as a base to compare our results. We finally
conclude and give an outlook of the consequences of the result
in Sec. IV.

II. ENERGY LOSS

We start by describing the elemental interaction of a fermion
with momentum P* = (po, p) (not necessarily on its mass
shell), magnitude of its velocity v = |v| = p/E, mass M,
and spin s with a massless fermion in the nonexpanding
medium, with momentum K* = (k, k) and spin A, through the
exchange of a gauge boson with momentum ¢* = (w, q) and
by means of a coupling constant g. For elastic collisions, these
particles retain their identities and after the scattering they
have momenta P'* = (E’,p’) and K'* = (k’,K’) and spins
s" and )/, respectively, and E’ =/ p”? + M?. The scattering
diagram associated with the process is depicted in Fig. 1.
When the incoming massive fermion is on its mass shell, (i.e.,
po = E =/ p? + M?), the expression for the matrix element
describing this process is given by (see Eq. (6) in Ref. [13])

iM = _ngd“xj(t,x)e”’*/d“xl /d4xz

d*p d*q
Q2n)RE J Q2m)*
xi(p', sHe'" My u(p, s)e
x a(k', A)e' K 2y Pu(k, e K
x0(t —)0[L/v— (1 —1)], ()
where D,g will become the effective HTL gluon propagator,

j(t,x)e'’* is the amplitude associated with the source to
produce an incoming particle with momentum P, and
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The step functions in Eq. (1) represent the conditions that the
produced fermion interacts within the plasma at #; after being
produced at ¢ and before it leaves the plasma at L /v + ¢, under
the approximation that its velocity remains constant.

When the source produces particles off their mass shell, the
matrix element describing the process can be written as

2
iM= _Zg_M d4xj(t,x)/d4x1 /d4x2

d4p d4q

Da ig-(x;—x2)
2ny | Gy D @e
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FIG. 1. Scattering diagram describing the lowest order contribu-
tion to the energy loss from the collision of fermions with incoming
and outgoing momenta P and P’ with medium fermions with
initial and final momenta K and K’, respectively. The blob in the
intermediate gluon line represents the effective HTL propagator.
Incoming fermions are produced by the source in wave packets and
not necessarily on their mass shell.

x I/_t(p/, s/)eiP’-xl yaS(P)eiP'(x_xl)u(p, S)
x k', M )e' K 2y Puck, pye K
x 0@t —1)0[L/v— (1 — 1), 3)

where S(P)e!P"*=y(p, s) represents the amplitude to prop-
agate a fermion mode with momentum P from x to x;.
Notice that Eq. (3) reduces to Eq. (1) when S(P) — So(P) =
Qm)2M)A ((P)S(P? — M*)8(py), where

Ay(P) =" u(p,s)ia(p, s)

_P+M
M

“

is the projector for positive-energy solutions.

Let us however consider the situation where S(P) does
not describe free, on-mass-shell propagation, but instead the
propagation of a wave packet with a finite width 7. To explore
a simple scenario, let us recall that

N

lim —— = 2E,m)8(P* — M*0(py), (5
n—0+ (pO_Ep)2+772 ( P )3( )0(po), (5)

where E, = +,/p? + M?. To consider a finite width, we take
n finite and write

()t

£, ) gt ©

Upon the change of variable y = x| — x and after integration
over d*x,, d*y, d*p, d*q, and d*x in Eq. (3) we get

T % dpo —i(po—E'—w)L/2v

iM=2i (Ep) [m _(271)6
sin[(pg — E' — w)L /2v]

(po — E' — o)[(po — Ep)* + n?]

x i Mo(po)j(P), (N
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where ] is the Fourier transform of (¢, x) and
iMo(po) = ig” Dap(K' — K)
x a(p', sy u(p, )ak', M yyPulk, ») (8)

and where we used A (P)u(p,s) = u(p,s). Mo(pg) is the
matrix element describing the scattering process in an infinite
volume and for the following discussion, we have emphasized
its dependence on py.

To perform the integral in Eq. (7), we write

1 1
(po—E?2+n?  [(po—E,) +inll(po— Ep) —inl’
©)]

and for convergence, we close the contour of integration on
the lower py complex half-plane, which selects the pole at
po = E, — in. This results in the following expression for the
matrix element:

iM=i (%) e—r;L/Zve—i(Ep—E’—w)L/Zv
p
sin[(E, — E' —w —in)L/2v]
X
(E, —E' —w—in)

x iMo(E, — in)j(P). (10)

Notice that for a consistent description we require the condition
n < E,, meaning that the central energy of the wave packet
is much larger than its width. Therefore in Eq. (10) we can
approximate

Mo(E, —in) = Mo(E)). an

This approximation cannot be made for the rest of the factors
in Eq. (10) since the term E, — E’ — w is of order of the
transferred momentum, which in turn is of order of the
medium’s temperature, which may not be much larger than
the wave packet’s width.

The square of the matrix element given in Eq. (10), averaged
over the initial spin s and summed over all other spins, is
therefore

1 Y -
> Y IMP = (ﬁ> 7Py
$,8" A P

sinf(w — v - q+inL/2v] |

w—v-q+in

X

1
x5 D IMoE)P, (12)

$,8" A

where we have used E,, — E’ ~ v - q for an energetic incoming
fermion. It is worth mentioning that, if instead of using the
propagator in Eq. (6), one uses the free Feynman propagator,
the result for the square of the matrix element, averaged over
the initial spin and summed over all other spins, yields the
result found in Ref. [13].
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Hereafter, we specialize to the description of the scat-
tering of the fermion (quark) in the QCD plasma. The
differential energy loss dE is related to the differential
collisional interaction rate dI" by dE = wdI" [5]. dT is
given by

By Pk P
(27)32E’ (2m)*2k 27 )32k'

1
ANl == 3 |MP

8,8 A\
x> ng (R £ nf (k)]
§=q.q.8
1 dPp Pk K
= E Z |M|2 27)32E’ 3 39/
Y Q) 2E' Qm)32k 2m)32k
X Neq(k), (13)
where
d3p/
37T — .o/ 2 I oIN=g o IN12
d°N = dr|j(P)I"[u(p’, sHu(p', s)] GayaE
d3p/
= dlj(P >~ 14
rIJ(P)] O p2E (14)

represents the number of (nonscattered) particles into the phase
space volume in the interval p’ and p’ + d3p’ with dg = 3 for
the SU(3) fundamental representation. Also, in Eq. (13), when
describing the collisional energy loss, we have used ngq(k)[l +
ngq(k’)] = ngq(k) since the term proportional to nﬁq(k)nﬁq(k’)
is odd under the exchange of k and k" and integrates to zero [5],
and we have defined

negk) =Y ni k). (15)

§=4.9.8

For a source producing energetic particles with a large
spread in momentum, we can take the approximation
|j(P")|?> 2 | j(P)|?. Therefore, by considering the finite width
of the scattered wave packet, the collisional energy loss can be
written as

e [ Bk &K
AE ~C o | =S
"B / ST )/ oy ®

 |sinl@ = v - q+inL/2v] 2
w—v-q+in
1
— E,)|. 16
XZY;NWO( o)l (16)

Notice that Eq. (16) is modified with respect to the correspond-
ing expression in Ref. [13] by the n-dependent exponential
factor and the 1 dependence in the arguments of the sine
function and in the energy denominator. When n — 0, the
corresponding expression for the energy loss in Ref. [13] is
recovered. To find the explicit expression for Eq. (16), recall
that the effective gluon propagator can be written as

D"’ = —P"' Ay — QP" Ay, (17)
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FIG. 2. (Color online) Fractional energy loss for (a) light, (b) charm, and (c) bottom quarks as a function of their momenta for a fixed
medium’s length L = 5 fm. The uppermost curve in each case corresponds to the description without off-mass-shell effects. This is compared
to the case with off-mass-shell effects for two values of n : 40 and 80 MeV. In each case, the fractional energy loss decreases as the value of n

increases.

where, in the HTL approximation, the effective transverse and
longitudinal gluon propagators are given by [20]

2 2 2y,,2

m (0" —q°)m

1 2 2 _ D D
A7 o’ —q _—2

<1+—1 ‘w—i—q) (18)

Azlqu_,_m%)( ‘a)+q)

where sz =g’T?*(1 + N /6) is the square of the Debye mass

and, if we work in Coulomb gauge, the only nonvanishing

components of the transverse and longitudinal projectors are

pU:yﬁ_Z?’
q

00 19)

0" =1

By using Eqgs. (17)—(19), the matrix element squared de-
scribing the underlying scattering process in vacuum, averaged
over the initial spin and summed over all other spins, is

given by
1

s,8" A A

0.4
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FIG. 3. (Color online) Fractional energy loss for (a) light, (b) charm, and (c) bottom quarks as a function of the medium’s length for a
fixed quark momentum p = 10 GeV. The uppermost curve in each case corresponds to the description without off-mass-shell effects. This is
compared to the case with off-mass-shell effects for two values of 1 : 40 and 80 MeV. In each case, the fractional energy loss decreases as the

value of n increases.
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For a nonexpanding medium, the energy loss does not depend
on the direction of v, so we can simplify Eq. (16) by averaging
over the direction of v [5]. This is most conveniently performed
by introducing the auxiliary functions

a2
7= [0

i=1,2,3,

sin[(w — v - q+in)L/2v] |

w—v-q+in (@=v-a,

2

in terms of which the average over the different powers of
v appearing in Eq. (20) can be expressed. The functions in
Eq. (21) are explicitly given in the Appendix. After averaging
over the directions of v, the expression for the energy loss can
be written as

CRg4 L /OO
AE = ——2_¢ ML/ k)dk
24 e A neq( )

k q Gmax q
X (/ qdq/ wdw—i—f qdq/ a)da))
0 —q k q—2k

|2 2k + w)* — q2
2

q* — 0?12k + 0)> + ¢°]

4g4

x (IAL(CI) Jo

[
+|Arf?

x [(1%g* — ) To + 20T — Jz]>, (22)

where the limits of integration over @ and ¢ take into account
that, for the considered scattering amplitude, the transferred
four-momentum is spacelike and

2k(1 + k/E,)

=—— 23
qmax 1—v+2k/Ep ( )

is obtained from the approximation that the maximum energy
transferred occurs for backward scattering [21].

III. NUMERICAL RESULTS

To present the quantitative behavior for the energy loss,
we take standard values for the parameters involved. We give
examples of the effect for light as well as for heavy flavors,
both to study the mass effect and to directly compare to the
findings of Ref. [13]. The plasma temperature is taken as T =
0.225 GeV, the effective number of flavors as Ny = 2.5, the
strength of the coupling constant as a = g?/4m = 0.3, and
the Debye mass as mp = 0.5 GeV. The bottom quark mass is
taken as 4.5 GeV whereas the charm quark mass is taken as
1.2 GeV. We take the mass of the light quarks as 0.2 GeV.

Figure 2 shows the fractional energy loss AE/E for light,
charm, and bottom quarks in a finite size medium with L =
5 fm, for the cases with and without off-mass-shell effects. For
the curves describing the off-mass-shell effects, we consider
two values, n = 40 MeV and n = 80 MeV. Notice that in all
cases a finite value of 1 produces less of an energy loss than the
case = 0. The decrease is more important for larger values
of n.
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FIG. 4. (Color online) Fractional collisional energy loss for light,
charm, and bottom quarks as a function of n for a fixed quark
momentum p = 10 GeV and a fixed medium’s size L = 5 fm. The
fractional energy loss decreases with increasing n and the decrease is
similar in shape, independent of the quark mass.

Figure 3 shows the fractional energy loss for light, charm,
and bottom quarks as a function of the medium’s length L
for a fixed quark momentum p = 10 GeV, comparing also
the cases with and without off-mass-shell effects. For the
curves describing the off-mass-shell effects, we consider once
more the two values n = 40 MeV and n = 80 MeV. Notice
that a finite value of 5 causes the fractional energy loss to
asymptotically reach a maximum value as the medium’s size
increases. This is in sharp contrast with the case where no
off-mass-shell effects are considered, where for large L the
energy loss increases linearly.

Figure 4 shows the behavior of the fractional energy loss as
a function of n also for light, charm, and bottom quarks for a
fixed value of the quark momentum p = 10 GeV and a fixed
value of the medium’s size L = 5 fm. The fractional energy
loss decreases with increasing 1 and the decrease is similar in
shape, regardless of the quark mass.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied the off-mass-shell effects
on the collisional energy loss of particles, produced and
scattered within a finite size QCD medium, associated with the
introduction of a finite width wave packet and therefore a finite
particle lifetime. We have shown that this effect decreases the
energy loss as compared to the case when these particles are
produced on mass shell and therefore these particles live longer
than the medium, fragmenting outside it. We have argued that
this picture should be applied in particular to energetic partons
that recombine with thermal partons and thus hadronize within
the medium.

Recall that the length scales playing a role for the energy
loss mechanisms in a finite size, thermal, nonexpanding
medium are the medium’s size L, the average distance between
collisions, d ~ 1/T, the Debye radius rp, the mean free
path 8 ~ 1/¢>T, and the particle’s formation time tr~1/E,.
When considering the in-medium particle lifetime, one also
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introduces the length scale n~!. For the description of the

scattering process in terms of a perturbative picture, it is
required that the hierarchy of scales

1/T <rp K8 24)

be satisfied. The requirement that the scattering particle can
be described in terms of an oscillating mode means that this
mode is not damped too fast, which in turn translates into the
condition

1/E, < 1/n, (25)

which can be thought of as the condition that the time the
medium takes to produce the particle is much shorter than the
in-medium particle lifetime. For very energetic partons, it is
safe to assume that t; ~ 1/E, is the smallest of all length
scales. Moreover, for media sizes of the order expected to be
produced in relativistic heavy-ion collisions, it is also safe to
assume that L is larger than the mean free path and therefore
the hierarchy of scales

1/E, < 1/T <rp<K38<L (26)

follows. In fact, the results in Refs. [13,14] can be viewed
as meaning that as long as the medium size is larger than
the Debye radius, the collisional energy loss for on-mass-shell
particles in a finite size medium is not suppressed as compared
to the infinite medium case.

The situation changes when introducing the in-medium
particle lifetime. The results of this work show that when
n~! < L the effects are strong. They cease to matter for n — 0.

It should be emphasized that, in the context of this work, the
term loss of identity does not refer to a parton change of color
or phase, which are accounted for already in the description
of the underlying QCD scattering process, neither to a change
of flavor, which would be mediated by the weak interaction
and is thus irrelevant for the time scales involved during the
QCD plasma phase. This term is rather related to the onset of a
hadronization mechanism that happens during the interaction
of a fast (hard) parton with soft ones from the medium in such
a way as to produce a hadron by means of recombination. This
process has been referred to as shower and thermal parton
recombination in Ref. [22]. In this way, the loss of identity is
related to the fact that when this kind of parton forms a hadron,
the energy loss can no longer be described in terms of parton
degrees of freedom and must be described in terms of hadron
degrees of freedom, thereby effectively causing the parton to
disappear from the description.

Typical time scales involved in hard-soft parton recombina-
tion are of order Trecomp ~ 1.5 fm, despite the low momentum
transfers involved, since, as argued for instance in Ref. [23],
this recombination need not be local and it can be mediated by
a QCD string. Such a time scale is well within the lifetime of
the QCD medium for central collisions and the largest nuclei,
where it is estimated to be of order 5 fm.

When the medium length shortens and falls below Trecomb,
hadronization is more likely to happen outside the medium.
This means in particular that, for peripheral collisions or
collisions of smaller systems, the energy loss description in
terms of partonic degrees of freedom is appropriate. This
is accounted for in our description when we take n~! > L,
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for which the energy losses with and without the use of the
parameter n coincide. Indeed, a change in the energy loss of
intermediate momentum hadrons should exist as a function
of centrality and system size. To quantify such a change it is
necessary to quantitatively estimate the energy loss of a hadron
within a QCD medium. This calculation is for the moment
outside the scope of the present work.

In the context of recombination, the use of the parameter
n should be introduced into a statistical scenario that also
incorporates the evolution of the colliding system with energy
density. In addition, a realistic geometry, including adequate
probability profiles to produce jets [24] and the effects of an
expanding medium, should be used. All this work is for the
future.
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APPENDIX
The functions defined in Eq. (21) are explicitly given by

a2
a= [

= — ! |:ic0sh(nL/v)

sin[(w — v-q+in)L/2v] |*
w—VvV-q+in

[=)

8qun

x ( > sgn(hysgn(l")Cil(w — lqv — 'in)L/v]

1I'==%1
w) + arctan (qv — a)>:| )
n

+2i |:arctan <qv +
n

+sinh(nL/v)( Z sgn(l)Si[(a)—lqv—l/in)L/v]):|,

INESS
dQ2
a=[%

= 8q%|:cosh(nL/v)< Z sgn()Cil(w — Iqv

1 I'=%£1

2

sin[(w —v-q+in)L/2v]
(w—=v-q)

w—=VvV-q+in

(@+qv)* +n?

—l'in)L/v] 4+ In |:—(a) 0+

i| ) — i sinh(nL/v)

x ( > sgn(Dysgn(l)Sil(w — Iqv — l’in)L/v]) }

LI'=%+1
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a2
T /E

= Sq%[" cosh(nL/v)(i > sgn(lysgn(l)Ci

II'=%1

2

sinf[(w —v-q+in)L/2v] 2
(w—Vv-q)

w—v-q+in

n

- 4
+ arctan (qvn w) i| + %) + nsinh(nL/v)

x [(@ — lqu — l'in)L Jv] — 2|:arctan (qv + a)>
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x ( > sgn()Sif(w — Iqv —l’in)L/v]>

[ lI'==%1

4v .
— (f) cos(Lw/v) s1n(Lq)], (A1)

where sgn is the sign function and Ci and Si are the cosine
and sine integrals, respectively. Despite their appearance,
these functions are all real for real values of w,q,v, L,
and 7.
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