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Abstract

In this thesis, we are concerned with multiobjective combinatorial optimization
(MOCO) problems. We attempt to fill the gap between theory and practice, which
comes from the lack of a deep complexity theory for MOCO problems. In a first part,
we consider a complexity notion for multiobjective optimization problems which derives
from output-sensitive complexity. The primary goal of such a complexity notion is
to classify problems into easy and hard problems. We show that the multiobjective
minimum cut problem as well as the multiobjective linear programming problem are
easy problems in this complexity theory. We also show that finding extreme points
of nondominated sets is an easy problem under certain assumptions. On the side of
hard problems, there are obvious ones like the multiobjective traveling salesperson
problem. Moreover, we show that the well-known multiobjective shortest path problem
is a hard problem. This is also the case for the multiobjective matching and integer
min-cost flow problem. We also identify a class of problems for which the biobjective
unconstraint combinatorial optimization problem is a barrier for efficient solvability.

In a second part, we are again concerned with the gap between theory and practice.
This time, we approach the multiobjective shortest path (MOSP) problem from the
practical side. For the application in the planning of power transmission lines, we
need to have implementations which can cope with large graphs and a larger number
of objectives. The results from the first part suggest that exact methods might be
incapable of achieving this goal which we also prove empirically. This is why we
decide to study the literature on approximation algorithms for the MOSP problem.
We conclude that they do not scale well with the number of objectives in general
and that there are no practical implementations available. Hence, we develop a novel
approximation algorithm in the second part which leans to the exact approaches
which are well tested in practice. In an extensive computational study, we show
that our implementation of this algorithm performs well even on a larger number
of objectives. We compare our implementation to implementations of the other
existing approximation algorithms and conclude that our implementation is superior
on instances with more than three objectives.
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Zusammenfassung

Diese Dissertation ist mit der Komplexität von mehrkriteriellen kombinatorischen
Optimierungsproblemen (MOCO) befasst. Hierbei wollen wir die Lücke schließen, die
sich aus dem Fehlen einer umfassenden Komplexitätstheorie dieser Probleme ergibt.
In einem ersten Teil beschreiben wir einen Komplexitätsbegriff für mehrkriterielle
Optimierungsprobleme, der sich von ausgabesensitiver Komplexität ableitet. Das
Ziel eines Komplexitätsbegriffes ist die Klassifikation von Problemen in einfache und
schwierige Probleme. Wir zeigen, dass die Probleme einen Pareto-optimalen Schnitt
in einem Graphen zu bestimmen, sowie mehrkriterielle lineare Optimierung einfache
Probleme nach dieser Komplexitätstheorie sind. Auch das Problem Extrempunkte von
Pareto-Fronten zu bestimmen ist unter bestimmten Bedingungen ein einfaches Problem.
Auf der Seite der schwierigen Probleme können wir über die offensichtlichen Probleme
wie das mehrkriterielle Handlungsreisendenproblem hinaus auch zeigen, dass das
bekannte mehrkriterielle Kürzeste-Wege-Problem ein schwieriges Problem darstellt.
Dies gilt ebenso auch für das mehrkriterielle Zuordnungsproblem in allgemeinen
Graphen und das mehrkriterielle Flussproblem mit ganzzahligen Flussvariablen. Wir
finden in dieser Arbeit außerdem eine Klasse von Problemen, deren effiziente Lösbarkeit
von der effizienten Lösbarkeit des bikriteriellen unrestringierten kombinatorischen
Optimierungsproblems abhängt.

In einem zweiten Teil beschäftigen wir uns wieder mit der Lücke zwischen Theorie
und Praxis. Diesmal nähern wir uns dem mehrkriteriellen Kürzeste-Wege-Problem von
der praktischen Seite. Für eine Anwendung in der Stromtrassenoptimierung ist es nötig
einen Algorithmus zu finden, der sowohl mit großen Graphen, als auch mit mehreren
Zielfunktionen umgehen kann. Aus dem ersten Teil können wir ableiten, dass exakte
Methoden dort an ihre Grenzen stoßen, was wir auch empirisch belegen. Wir studieren
daher Approximationsalgorithmen aus der Literatur und stellen fest, dass sie in der
Anzahl der Zielfunktionen nur schlecht skalieren und auch noch nicht praxiserprobt sind.
Daher entwickeln wir im zweiten Teil einen neuen Approximationsalgorithmus, der sich
stark an die Errungenschaften der praktischen Algorithmen orientiert. Wir zeigen in
einem groß angelegten Experiment, dass unsere Implementierung des Algorithmus auch
noch auf einer größeren Anzahl von Zielfunktionen praxistauglich ist. Der Vergleich
mit unseren Implementierungen der existierenden Approximationsalgorithmen zeigt
zudem, dass unsere Implementierung den anderen auf Instanzen mit mehr als drei
Zielfunktionen überlegen ist.
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1. Introduction

The output is exponential, end of discussion
—Jack Edmonds

If we follow the history of the theory of algorithms, we can observe several different
approaches to the question when an algorithm is called efficient. In the beginning of
the investigation of the efficiency of algorithms, an algorithm was regarded as being
efficient if its running time is finite. This rendered all combinatorial optimization
problems easy problems as the number of solutions of an instance is finite and a simple
search of all solutions always gives us an optimal solution.

But this notion was of no use for practitioners: If we really are interested in finding
an optimal solution for the given traveling salesperson problem instance at hand,
knowing that we can find an optimal solution by searching all feasible tours is of
no help for us. We do not only want to use a finite algorithm, we want to use a
fast algorithm for our problem. Following the seminal works by A. Cobham [33]
and J. Edmonds [53], a computational problem is regarded as efficiently solvable or
tractable if it can be solved in polynomial time today. This thesis is known as the
Cobham-Edmonds thesis.
This view made it potentially possible to classify problems by their complexity as

being easy or hard. While proofs of the polynomial complexity and thus “easiness” of
computational problems were already known at that time, a proof for a computable
problem not being polynomial-time solvable was not in sight.

This was especially disappointing to the community trying to solve traveling sales-
person (TSP) problem instances. The TSP problem seemed to be notoriously hard but
still could not be proven to be a hard problem in the sense of the Cobham-Edmonds
thesis. The work by Cook [35], Karp [82], and Levin [94] opened ways to circumvent
this issue. The observation that many decision problems related to interesting combi-
natorial optimization problems were easy to verify if a certificate was given culminated
in the definition of the complexity class NP. Moreover, the observation that many
of these decision problems were related in a polynomial way led to the definition
of NP-hardness and NP-completeness. Consequently, many problems and also the
decision version of the TSP were classified as NP-complete. This notion did not solve
the problem of not being able to show that the TSP is a hard problem in the sense of
the Cobham-Edmonds thesis. Nevertheless, more and more problems were proven to
be NP-complete and thus, a polynomial time algorithm for these problems got even
more unlikely. The question if there are polynomial time algorithms for NP-complete
problems is the now very famous question if P = NP and is one of the Millennium
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1. Introduction

Problems which were stated by the Clay Institute in 20001. So, the question whether
a problem is easy or hard boiled down to the question if it is polynomial-time solvable
or NP-hard. The hope was to guide practitioners in selecting efficient algorithms for
their problem at hand.
But in some cases, the theory could not satisfy the practitioners. One example

is the simplex algorithm [39] for linear programming (LP) which does not have a
polynomial running time in general and thus does not classify LP as a polynomial-time
solvable problem. In the language of the Cobham-Edmonds thesis, it is not a good
or efficient algorithm. After the works by Karmarkar [81] and Khachiyan [84], we
do know polynomial-time algorithms for LP. Nevertheless, the algorithms which are
mostly used in practical implementations for solving LP are based on the simplex
algorithm. Arguably, the Cobham-Edmonds thesis fails when we want to select an
algorithm for LP.

One attempt to conquer the realm of practical algorithms is algorithm engineering (cf.
also [32]). In this methodology which leans more to the engineering side of algorithms,
implementations of algorithms are considered first class citizens of our research. With
a specific problem at hand, we can tailor custom made algorithms (and subsequent
implementations) to exactly the real-world problem we have. Analysis of algorithms
still is a major concern but so is testing our implementations and benchmarking them
on thoughtfully chosen instance sets and case studies. Algorithm engineering can
be seen as a step back from purely theory driven design to a broader view where
theoretical running times are as important as the performance on real-world data.
And also the empirical results give feedback to the theory: In an attempt to close
the gap between the classical Cobham-Edmonds thesis and the observations made in
computational experiments, several new running time frameworks have been developed.
Examples for this are smoothed analysis (cf., e.g., Spielman and Teng [129]) and
external memory algorithms (cf., e.g., Aggarwal and Vitter [2]).

A new situation emerged from multiobjective optimization (MOO). The most basic
problems as the multiobjective shortest path, spanning tree, or assignment problem call
for output sizes which can be super-polynomial in the input size. Regarding complexity
theory in the sense of the Cobham-Edmonds thesis, in 1980, C. H. Papadimitriou
remembers J. Edmonds saying: “The output is exponential, end of discussion” [109].
And in that spirit, the research for efficient exact algorithms for MOO problems
was continued till today. Running time analyses are usually not conducted with the
reasoning that the problems are intractable. Instead, approximation algorithms are
developed which are not tested in practice and the best algorithms in practice are
inefficient ones in the sense of the Cobham-Edmonds thesis. Consequently, we have a
similar picture to the time before the Cobham-Edmonds thesis: Instead of all problems
being easy, now all problems are hard which is again a problem for practitioners.

We illustrate the consequences of this situation on an example: the multiobjective
shortest path problem (MOSP). Beginning in the end of the 1970s, researchers from
the field of operations research investigated algorithms and implementations for the

1http://www.claymath.org/millennium-problems, last accessed: Jan. 11th 2018.
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MOSP problem. The most successful implementations come from a labeling idea
similar to Dijkstra’s algorithm: We store a label for every path we already investigated
at the node this paths ends in. The label consists of this path’s cost. We can extend
these paths by creating new labels at the heads of all edges going out of the node,
setting the cost stored in the new label to the cost of the old label plus the cost of the
edge. A basic question is: Given a concrete labeling algorithm, how many labels do
we need to find a representative set of paths at the target node?

The classical answer is the following: Since the size of the nondominated set or
Pareto-front can be exponential in the input size, we need an exponential number
of labels in the worst-case. But what happens for instances with a small sized
nondominated set? Not every instance is a badly behaving worst-case instance, and
in fact, results from smoothed analysis [26] and from empirical studies suggest that
this is rarely the case. Are there examples on which we have small nondominated sets,
but still need a large number of labels? Or to put it in a more general perspective:
Can we have fast algorithms if the nondominated set is small and not to slow if the
nondominated set is large?
In the first part of this thesis, we give answers to this question and to other

questions concerned with the computational complexity of MOO problems, especially
multiobjective combinatorial optimization (MOCO) problems. Concerning the MOSP
problem, we see that in a labeling algorithm, if the nondominated set contains at least
two points then it can happen that we still need a super-polynomial number of labels,
independent of the size of the nondominated set and no matter how smart we are
in improving our algorithm (unless P = NP). This is possible by introducing a new
running-time analysis framework derived from output-sensitive complexity theory. We
give examples for easy problems, e.g., the multiobjective global minimum cut problem
or the multiobjective linear programming problem, and of hard problems, e.g., the
multiobjective shortest path problem and the multiobjective matching problem.
We are also concerned with finding extreme points of the nondominated set of

MOCO problems. In the biobjective case, it is often easy to find a certain subset of
the nondominated set, called the extreme points of the nondominated set. Though, a
general methodology for more than two objectives is missing. We show that using our
analysis framework and by showing that multiobjective linear programming is easy
under certain assumptions, we can find the extreme points for every MOCO problem
efficiently, as long as the MOCO problem fulfills certain requirements. This answers
an open problem by Ehrgott and Gandibleux [57] from 2000, addressing this as a “first
step to an application of the two phases method in three or more criteria MOCO”.

The second part of this thesis is concerned with solving the multiobjective shortest
path problem in practice. We introduce a problem from practice for which it is crucial
to be able to solve shortest path instances with more than four or five objectives.
As we learned from the first part, if the instances become larger we cannot expect
our labeling algorithms to work well so we need other methods. The literature on
algorithms for the multiobjective shortest path problem does provide approximation
algorithms for harder cases, but they are not tested in practice. In fact, the best-case
running times depend exponentially on the number of objectives. In the second part,

3



1. Introduction

we introduce an approximation algorithm to remedy this condition. Although the
worst-case running time is worse than the fastest known approximation algorithm,
we show in extensive empirical tests that it is the fastest approximation algorithm
available for practical purposes.

Organization

This thesis is divided into two parts: Part I introduces the complexity framework of
output-sensitive complexity to multiobjective optimization and we see examples of
easy and hard problems. In Part II, we present a novel approximation algorithm for
the MOSP problem and show that its running time is much less dependent on the
number of objectives than the known algorithms in the literature.
Before the first part, in Chapter 2 we introduce the necessary definitions and

notation necessary to read the rest of this thesis. Most of the definitions are standard,
but in some cases as the max and min operators, we change semantics a slight bit.
We also introduce the problems we investigate in this thesis for reference.

In Chapter 3, the first chapter of Part I, we introduce the complexity notions known
for multiobjective optimization. We show the results and limits of these theories and
also give an overview of the general findings regarding output-sensitive complexity in
this thesis.
A critical investigation of NP-hardness in multiobjective optimization is the first

part of Chapter 4. This is the main contribution of a paper that appeared at the
International Conference on Evolutionary Multi-Criterion Optimization in 2017 (cf.
Bökler [17]). We also give a formal definition of output-sensitive complexity there,
discuss the connection to smoothed analysis and give the first positive example of an
easy MOCO problem in the framework of output-sensitive complexity.
Chapter 5 is dedicated to multiobjective linear programming (MOLP). We prove

that under mild assumptions, MOLP is also an easy problem and investigate the
connection to multiobjective combinatorial optimization. An extended abstract of
the part regarding the Dual Benson algorithm and multiobjective combinatorial
optimization appeared at the European Symposium on Algorithms in 2015 (cf. Bökler
and Mutzel [19]).

Following the positive results in the last two sections, Chapter 6 is concerned with
hardness in the framework of output-sensitive complexity. More specifically, we prove
that the MOSP problem is a hard enumeration problem which is a main contribution
of the author in a paper that appeared in the Journal of Multi-Criteria Decision
Analysis in 2017 (Bökler et al. [18]). For some problems, we cannot determine the
complexity status as yet but we introduce a reduction among MOO problems and
show relationships between several well-known MOCO problems.
Chapter 7 concludes the first part with a summary of the main points and open

problems.
The second part commences with Chapter 8 in which we present a problem concerned

with power transmission line optimization. The problem is an example of a MOSP
problem in which more than just a few objectives are present and the instances are

4



fairly large.
In Chapter 9, we are concerned with preliminary observations regarding the MOSP

problem. We present results regarding common believes in computational studies on the
MOSP problem and introduce a new pruning heuristic for label-correcting algorithms.
These results are published at the Workshop on Algorithms and Computation in 2017
(cf. Bökler and Mutzel [20]).

The approximation algorithm is then introduced in Chapter 10. We introduce the
algorithm which in fact is a framework for approximate labeling algorithms and show
that it is an FPTAS when used with certain labeling strategies. We also present the
running times of two instantiations of the framework. In an extensive computational
study, we show the superiority above other FPTASes from the literature.
Chapter 11 finishes the second part. We summarize the findings and pose open

problems in the field.
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2. Definitions and Notation

In this section, we give necessary definitions and notation. Notation exclusive for the
main parts are given in the corresponding chapters.
As naming conventions, sets are denoted with upper-case letters (A), vectors as

boldface lower-case letters (v), scalars as lower-case Greek or Latin letters (α, a).
Algorithms are usually set in calligraphic font (A) and problems similar to sets (P );
derived problems are written with the variant description as superscript (PDec).

2.1. Sets, Functions, Relations and Orders

We first give definitions of the basic number sets in this thesis. With N we denote the
set of natural numbers not including 0, with Z we denote the set of integer numbers,
with Q we denote the set of rational numbers, and with R we denote the set of real
numbers. With [n] for n ∈ N, we denote the set {1, . . . , n}.

A partition of a set M is a set of pairwise disjoint subsets {A1, . . . , An} of M such
that

⋃n
i=1Ai = M . A k-partition of a set M is a partition of M with cardinality k.

For a function f : X → Y , we denote for S ⊆ X the image of S under f by
f(S) := {f(s) | s ∈ S}. The set Sn for n ∈ N denotes the set of all bijective functions,
or permutations, π : [n]→ [n].
The ith component of a vector a ∈ Rn is denoted as ai for i ∈ [n]. We use

the same notation also for the ith element of a tuple or sequence. By 0n ∈ Rn
we denote the vector of all 0 and by 1n ∈ Rn we denote the vector of all 1. If
the number of components is clear from the context, we simply write 1 or 0. For
vectors v,w ∈ Rn, we denote with ≤ the component-wise less-or-equal order, i.e.,
v ≤ w :⇐⇒ vi ≤ wi, for all i ∈ [n]. For M ⊆ Rn with M> we denote the subset of
M with vectors greater than 0, i.e., M> := {x ∈M | x > 0} and with M≥, we denote
the subset of M with vectors at least 0, i.e., M≥ := {x ∈M | x ≥ 0}.
In this work, we override the traditional meaning of max and min in the sense of

greatest and least element. Instead, we use these operators in the sense of maximal
and minimal elements in a set. Formally, we define maxS := {x ∈ S | ∀x′ ∈ S\{x} :
x′ � x} and minS := {x ∈ S | ∀x′ ∈ S\{x} : x′ � x}. If maxM is just a singleton
{m}, we abuse the notation a bit and write maxM = m, to be compatible with the
usual notation.
We denote the domination relation by v � w as a strict version of ≤, i.e., v �

w :⇐⇒ v ≤ w and v 6= w. As a characterization, it follows that v � w ⇐⇒ ∀i ∈
[n] : vi ≤ wi and ∃i ∈ [n] : vi < wi. The �-relation is defined analogously. We
say a vector v ∈ Rn is nondominated in a set M ⊆ Rn if there is no w ∈ M with

7



2. Definitions and Notation

w � v. Moreover, we say that v is weakly nondominated in M if there is no w ∈M
with w < v (component-wise). The subset of weakly nondominated elements in a set
M ⊆ Rn is denoted by wminM .

We denote by ≤lex the lexicographic less-or-equal order. The lexicographic minimum
of a set M ⊆ Rn is denoted by lexminM . A maximization version of all these terms
is defined analogously.
For a function f : Nn → N, we define the set O(f) := {g : Nn → N | ∃k′ ∈ Nn, c >

0 ∀k ≥ k′ : g(k) ≤ cf(k)}. After D. Knuth [88], we define f ∈ Ω(g) :⇐⇒ g ∈ O(f)
and f ∈ Θ(g) :⇐⇒ (f ∈ O(g)∧f ∈ Ω(g)). For x ∈ Rn, we denote the set of functions
asymptotically growing at most polynomially in x by poly(x) :=

⋃
k∈NO(xk1 +· · ·+xkn).

We denote the Minkowski sum of two sets A,B ⊆ Rn by A + B := {a + b | a ∈
A, b ∈ B}.

2.2. Linear Algebra, Topology, and Polyhedra

Since in multiobjective optimization the value of a solution is a vector, linear algebra
is a central building block. For a set of vectors v1, . . . ,vk ∈ Rn and a set of scalars
a1, . . . , ak ∈ R the vector

∑k
i=1 aivi is called a linear combination of v1, . . . ,vk ∈ Rn.

If for a linear combination of v1, . . . , vk it holds that
∑k
i=1 ai = 1 then the vector∑k

i=1 aivi is called an affine combination of v1, . . . , vk. A linear combination
∑k
i=1 aivi

of v1, . . . , vk is called a conical combination of v1, . . . , vk if ai ≥ 0 for all i ∈ [n]. An
affine combination of v1, . . . , vk which is also a conical combination of v1, . . . , vk is
called a convex combination.

For two vectors v,w ∈ Rn, the product v⊗c w denotes the component-wise vector
product

v⊗c w :=

v1w1
...

vnwn

 .
The standard inner product of v and w is written as a matrix product vTw. We define
for x ∈ Rn and y ∈ R the term xy as the vector of the component-wise exponential
function (xyi )i∈[n].
We denote the ith row vector of a matrix A ∈ Rm×n by ai and the ith column

vector by Ai. The element in the ith row and jth column is written as aij . The ith
unit vector in Rn for i ∈ [n] is the vector ei with (ei)j = 0 for j ∈ [n]\{i} and (ei)i = 1.
We denote the rank of a matrix A ∈ Rm×n by rank(A). Similar to the Minkowski sum,
for a set M ⊆ Rm and a matrix A ∈ Rm×n, we define AM := A ·M := {Ax | x ∈M}.
We also introduce a few definitions from topology to define terms such as interior

and boundary. For p ≥ 1, an `p-norm is a function ‖·‖p : Rn → R≥ with ‖x‖p :=
(
∑
i∈[n] x

p
i )

1
p . The term ‖x‖∞ for a vector x ∈ Rn denotes the maximum norm

or `∞-norm: ‖x‖∞ := maxi∈[n] |xi|. An (open) d-ball centered in x ∈ Rn is the
set Bd(x) := {y ∈ Rn | ‖x − y‖2 < d}. The norm ‖·‖ for topological terms is of
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2.3. Graphs

no special interest in this thesis, so we can just assume it is the Euclidean norm.
The complement of a subset M of Rn is M c := {x ∈ Rn | x /∈ M}. For a set
M ⊆ Rn we define the boundary of M , or ∂M , as the set of all points x such
that for every d the d-ball centered in x contains points in M and not in M or
∂M := {x ∈ Rn | ∀d ∈ R : Bd(x) ∩M 6= ∅ and Bd(x) ∩M c 6= ∅}. A vector x ∈ M
is in the interior of M , denoted by x ∈ intM if there exists a d > 0 such that
Bd(x) ⊆M .

The convex hull (conical hull, affine hull) convM (coneM , aff M) of a set M ⊆ Rn
is the set of all convex (conical, affine) combinations of vectors in M . The vector x
is said to be in the relative interior of M , or x ∈ riM if there is a d > 0 such that
Bd(x) ∩ aff M ⊆M .

For a ∈ Rn and α ∈ R, a half-space is the set {x ∈ Rn | aTx ≤ α}. An n-polyhedron
is the intersection of finitely many half-spaces in Rn. The dimension of an n-polyhedron
P is dimP = n−max{rank(A) | A ∈ Rn×n and for every x,y ∈ P : Ax = Ay}. For
a vector c ∈ Rn and α := min{cTx ∈ Rn | x ∈ P}, we call the set {x ∈ Rn | cTx = α}
a supporting hyperplane of P if α exists. A face of an n-polyhedron P is either P
itself or the intersection of P with a supporting hyperplane. Observe that faces are
polyhedra themselves. A facet is a face of dimension dimP − 1. Faces of dimension 0
are called extreme points of P . We denote the set of extreme points by vertP . For an
n-polyhedron P we call P I := {x ∈ Rn | x ∈ conv(P ∩ Zn)} the integer hull of P . A
polyhedron with one extreme point is called a cone. We call a face of dimension 1 of a
cone C an extreme ray of C.

A vector v ∈ Rn is called a recession direction of an n-polyhedron P if there exists
an x ∈ P such that x+αv ∈ P for every α ≥ 1. The recession cone of an n-polyhedron
P , denoted by recP , is the set of all its recession directions. An extreme ray of recP
is called an extreme recession direction of P .

We also need a few terms from convex analysis and take the definitions from Rockafel-
lar and Wets [116]. For an n-polyhedron P we denote the tangent cone of P in a vector
y ∈ P by TP (y) := {x ∈ Rd | there is λ > 0 with y+λx ∈ P}. The normal cone of an
n-polyhedron P in a vector x ∈ P is the set NP (x) := {a ∈ Rd | aTx′ ≤ aTx,x′ ∈ P}.
The polar dual of a cone C ⊆ Rn is the set C∗ = {y ∈ Rn | yTx ≤ 0,x ∈ P}.

2.3. Graphs

Now we turn to definitions from graph theory.

Definition 2.1 ((Undirected) Graph). An (undirected) graph is a pair (V,E) where
V is a finite set and E ⊆ {{u,w} | u,w ∈ V, u 6= w}. The elements of V are called
nodes and the elements of E are called edges.

Definition 2.2 (Directed Graph). A directed graph or digraph is a pair (V,A) where
V is a finite set and A ⊆ V × V . The elements of V are called nodes and the elements
of A are called arcs.

9



2. Definitions and Notation

We say for a graph G = (V,E) that two nodes v, w ∈ V are adjacent in G if there
is an edge {v, w} ∈ E. A node v ∈ V and an edge e ∈ E are incident in G if v ∈ e. In
a directed graph G = (V,A), a node v is a successor of w and w is the predecessor of
v if (w, v) ∈ A. An arc (v, w) ∈ A is called out-arc of v and in-arc of w.
A (directed) path in a graph (V,E) (directed graph (V,A)) is a sequence of nodes

from V : (v1, v2, . . . , vl−1, vl) where for each two consecutive nodes vi and vi+1 the
edge {vi, vi+1} ∈ E (the arc (vi, vi+1) ∈ A) for i ∈ [l − 1]. We say there is a (directed)
path from node v1 to node vl, which is symmetric in the undirected case. The edge
e = {vi, vi+1} ∈ E (arc a = (vi, vi+1) ∈ A) is said to be on the (directed) path p. The
length of a (directed) path is the number of edges (arcs) on the path, i.e., l − 1 in the
above cases. A simple (directed) path is a (directed) path for which every node on the
path is incident to at most two edges on the path (every node has at most one in- and
one out-arc). The set of all directed simple paths from node s to node t in G is denoted
by PGs,t. A (directed) cycle in a graph G is a (directed) path (v1, v2, . . . , vl−1, vl) in G
with v1 = vl. A Hamiltonian cycle in a graph is a simple cycle of size n.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.
A forest is a graph in which no cycle exists. We call a graph (directed graph) connected
(strongly connected) if there is a path (directed path) from every node to all other
nodes. A connected forest is called a tree. A subtree of a graph G is a subgraph of G
which is a tree. A subgraph G′ = (V ′, E′) of a graph G = (V,E) spans G if V ⊆ V ′
holds. A spanning subtree of a graph is also called spanning tree. The set of spanning
trees of a graph G is denoted as TG.
Let G = (V,E) be an undirected graph. A cut in G induced by a 2-partition
{S, S′} of V is the set of edges with one end in S and one in S′. The graph G
is said to be bipartite if there is a 2-partition (or bipartition) {S, S′} of V such
that E is exactly the cut induced by {S, S′}. A graph G is said to be complete if
E = {{v, w} | v, w ∈ V, v 6= w}.

2.4. Computational Complexity and Encoding

When considering the complexity of computational problems, the encoding of inputs
and outputs needs to be formalized. This is done by the use of alphabets, strings
and languages. An alphabet is a finite set. Throughout this thesis, we can assume
alphabets to be the set {0, 1}. A string (or word) over an alphabet Σ is a sequence of
elements from the alphabet, e.g., (0, 1, 0, 0, 0, 1, 1, 1). To make writing strings easier,
we often simply write 01000111 instead. For a string x, we denote by |x| the length of
the string which is the length of the sequence. Finally, a language is a set of strings
over a given alphabet, e.g., {0, 1, 01, 11, 100, 101, 110, . . . }.

To make defining languages easier, we make use of the star-operator (∗): For a given
alphabet Σ, the term Σ∗ is the language of all possible strings over the alphabet Σ.
As we discuss linear programming and thus continuous problems and deal with

encoding lengths of numbers, we follow Grötschel, Lovász, and Schrijver [70] in
defining these notions. A natural number n ∈ N can be encoded by a string over
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2.4. Computational Complexity and Encoding

{0, 1} in binary representation. Thus, an upper bound for representing n is logn
and we define 〈n〉 := dlog(n+ 1)e. For an integer number z ∈ Z\{0}, we add a
sign-bit and define 〈z〉 := 1 + dlog(|z|+ 1)e. To represent 0, a string of size 1 is
sufficient in both cases. Further, we define the encoding length of a rational number
r ∈ Q with r = p

q and p ∈ Z\{0}, q ∈ N such that |p| and q are co-prime, as
〈r〉 := 1 + dlog(|p|+ 1)e+ dlog(q+ 1)e. For a vector x ∈ Qn, 〈x〉 :=

∑
i∈[n]〈xi〉 and for

a matrix A ∈ Qm×n it is 〈A〉 :=
∑
i∈[n]

∑
j∈[m]〈aji〉. Observe that 〈A〉 ∈ Ω(mn) and

〈x〉 ∈ Ω(n).
For our study of the complexity of problems the following working definition of

computational problems suffice for this thesis: A computational problem is a problem
suitable to be solved by a computer. Before we define the problems with which we are
concerned in this thesis, we first define the formal meaning of solving by a computer.

Computational Models. The complexity of a computational problem is always
defined with respect to a certain computational (or machine) model. In classic
complexity theory, this is usually the Turing machine. Since we do not construct
Turing machines nor use special properties which require to define a notation, we refer
the reader to the book by Arora and Barak [8] for its formal definition.

It is tedious to implement algorithms on Turing machines to find polynomial upper
bounds on the running time. Thus, we usually implement algorithms on variants of
the random access machine (RAM). Since a Turing machine can simulate a RAM with
at most polynomial overhead, a polynomial bound on the running time of a RAM
implies the existence of a polynomial-time constrained Turing machine. A very concise
definition of RAMs and worst-case running time is given by Cormen et al. [36].
We stress here that in Cormen et al. [36] registers are allowed to store integer

numbers bounded by |x|k for some fixed k ∈ N on each input x. In other words: The
encoding length of a number is restricted by k log |x|. One can prove that in this case
the Turing machines can still simulate these RAMs with polynomial overhead (as
opposed to a 0/1-RAM).

The RAM also plays a crucial role in enumeration complexity which is investigated
in more depth in Chapter 3.

Decision Problems. Informally, a decision problem is a computational problem,
where the only possible answers are “yes” or “no”. Formally, a decision problem L is
a subset of a base set Ω. We call the elements of L the yes-instances of L and the
elements in Ω\L the no-instances of L. The complement of a decision problem L is
the set co-L := Ω\L.
In this thesis, the base set usually is the set {0, 1}∗. To make descriptions less

tedious, we implicitly use a binary encoding of the objects we work with. For example,
the problem to decide whether a graph G contains a Hamiltonian cycle can be stated
as the following set: {Graph G | G contains a Hamiltonian cycle}. Thus, the base set
is the set of all graphs in a binary encoding. The representation of graphs as strings
over {0, 1} can be crucial, but is not of special interest in this thesis.
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We say a decision problem L is decidable if there is a Turing machine which
terminates on every instance of L and returns “yes” on every yes-instance of L and
“no” on every no-instance of L.

Optimization Problems. Optimization problems are the main concern in this
thesis, especially multiobjective optimization problems. In this section, we introduce
the classic single-objective optimization notion. Because maximization is defined
analogously to minimization, we introduce all terms for minimization and assume the
maximization analogon to be defined accordingly.
Since this thesis lies between mathematics and theoretical computer science, it is

necessary to clarify the definitions used, since they often differ in subtle ways. In
mathematical optimization, optimization problems are usually defined in the following
way:

Definition 2.3 (Mathematical Optimization Problem). A mathematical optimization
problem consists of a set of instances. An instance of an optimization problem consists
of a set of solutions X and an objective function f : X → R. The goal is to find an
x ∈ X such that there is no y ∈ X with f(y) ≤ f(x).

But the above definition of optimization problems does not consider input encodings.
When we study the efficiency of algorithms and want to find the fastest algorithm
for a problem at hand, it is crucial to consider how the input to our algorithm is
given. This is less relevant if we are only interested in the fact if an algorithm runs
in polynomial time or not. In this case, we can assume that the conversion of input
formats can be performed in polynomial time and we can concentrate on solving
the problem itself. Moreover, we do not use real but rational numbers in our inputs
because our computational models do not handle real numbers. Hence, we deal with
a more algorithmically centered definition of optimization problems based on the
definition by Papadimitriou and Steiglitz [110] and by Korte and Vygen [89].

Definition 2.4 (Algorithmic Optimization Problem). An algorithmic optimization
problem (I, S, v) consists of

• a set of instances I ⊆ Σ∗,

• a mapping S : I → 2Σ∗ which maps an instance to its set of solutions, and

• a mapping v : I × S(I)→ Q which maps each solution of a given instance to its
value in this instance.

For every x ∈ I there must exist a polynomial p : N→ N such that for every s ∈ S(x)
we have |s| ∈ O(p(|x|)). We assume that S is computable, S(x) is polynomial-time
decidable for every x ∈ I, and v is polynomial-time computable. The goal is to
find for an instance x ∈ I a solution s ∈ S(x) such that there is no s′ ∈ S(x) with
v(x, s′) ≤ v(x, s).
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2.4. Computational Complexity and Encoding

In the following, we mainly use the definition of algorithmic optimization problems.
An optimization problem is a combinatorial optimization problem if there exists
a polynomial p : N → N such that for every instance x the set S(x) is a subset
of {0, 1}p(|x|) (X := {0, 1}n). Since we only deal with combinatorial optimization
problems with linear objective functions, we also assume that for every instance x ∈ I
there exists a vector cx ∈ Qp(|x|) such that we can write v(x, s) = cTx s.

Note also that we are defining the optimality notion in the sense of minimal elements
and not of a least element. This does not make a difference here but is easier to
generalize to multiobjective optimization. Further, we are not concerned with problems
with topologically open objective function images, hence we do not have to deal with
infimum notions.
For an optimization problem P , an instance x ∈ I and a solution s ∈ S(x), we

sometimes write v(s) instead of v(x, s) if the instance is clear from context.
For every (algorithmic) optimization problem, there is an associated decision problem

which is crucial for the study of the computational complexity of optimization problems:

Definition 2.5 (Canonical Decision Problem). For an algorithmic optimization prob-
lem O = (I, S, v), the corresponding canonical decision problem ODec is the following
set:

{(x, k) ∈ I ×Q | ∃s ∈ S(x) : v(x, s) ≤ k}

In other words, a pair (x, k) is a yes-instance of the canonical decision problem iff
x represents a valid instance and there exists a feasible solution s ∈ S(x) such that
its value v(x, s) is at most k. One of the essential observations by the work of Karp,
Cook and others in the 1970s was that if for any optimization problem O if ODec is
NP-hard, so is O (cf., e.g., Garey and Johnson [69]).

Complexity Classes. The study of the complexity of computational problems
usually involves assigning problems to a complexity class. The most important of
these classes is the class P, which is often regarded as being the class of efficiently
solvable problems.

Definition 2.6 (Polynomial Time Solvable Problems (P)). The set P denotes the set
of computational problems which can be solved by a Turing machine in polynomial
worst case running-time.

For an optimization problem (I, S, v), we say that an algorithm A runs in strongly
polynomial time if the running time of A on an instance x ∈ I is independent of the
objective function v.
For decision problems, it is often easy to verify that an instance is a yes-instance

when also a certificate for a yes-decision is given. This leads to the formal definition
of the class NP.

Definition 2.7 (Nondeterministic Polynomial Time Solvable Problems (NP)). The
set NP is the set of decision problems for which there exists a Turing machine A with
polynomial worst-case running-time and a polynomial p such that
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• for a yes-instance x, there exists a string y ∈ {0, 1}p(|x|) such that A returns
“yes” on input xy and

• for a no-instance x, A returns “no” on input xy for any y ∈ {0, 1}p(|x|).

Note that our definition of the class P is not restricted to decision problems which
implies that the term P = NP is always false. Nevertheless, the famous P-NP
question can still be stated as: Is NP ⊂ P? It makes our lives easier to work with a
class P which includes all polynomial-time solvable problems, including optimization
and enumeration problems.

Symmetrically to NP-problems to which it is easy to find yes-certificates, the class
co-NP is the set of decision problems on which it is easy to reach a no-decision if a
no-certificate is given.

Definition 2.8 (co-NP). The set co-NP is the set of decision problems for which
there exists a Turing machine A with polynomial worst-case running-time and a
polynomial p such that

• for a no-instance x, there exists a string y ∈ {0, 1}p(|x|) such that A returns “no”
on input xy and

• for a yes-instance x, A returns “yes” on input xy for any y ∈ {0, 1}p(|x|).

In other words, a decision problem L is in co-NP iff co-L is in NP.

Reducibility and Hardness. To show relationships between problems, we use
the notion of simulation and reducibility. A reduction is a binary relation ` on
computational problems. Moreover, reductions are a basic building block to define
traditional hardness. Let us now first introduce Karp-Reduction for decision problems:

Definition 2.9 (Polynomial Time Many-One Reduction or Karp-Reduction). A
decision problem L′ with base set Ω′ can be Karp-reduced to a decision problem L
with base set Ω if there exists a polynomial-time transformation f : Ω′ → Ω such that
x ∈ L′ ⇔ f(x) ∈ L. We write L′ ≤P L.

To be able to also reduce among other problems than decision problems, we use
Cook-reduction.

Definition 2.10 (Polynomial Time Turing Reduction or Cook-Reduction). A compu-
tational problem P ′ can be Cook-reduced to a computational problem P if there exists
a polynomial-time algorithm solving P ′ which may use an oracle solving P which
accounts only for a constant in the running time. We write P ′ ≤T P .

Now for the notion of C-hardness for a given set of computational problems C,
we have our two basic ingredients: The complexity class C and an often implicit
reduction notion `.
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Definition 2.11 (C-hardness). For a complexity class C, a problem P is said to be
C-hard w.r.t. to a reduction ` if for every problem P ′ ∈ C we have P ′ ` P .

For NP-hardness, we usually implicitly use Karp-reductions when reducing among
decision problems and Cook-reductions if we reduce to other problems, e.g., optimiza-
tion problems.

A reduction always has a direction in the sense that the complexity transfers from
one problem to the other but in general not the other way around. Sometimes we
want to show that two problems have an equivalent complexity. We can do this by
using a notion of equivalence:

Definition 2.12 (Polynomial-Time Equivalence). Two computational problems P
and Q are said to be polynomial-time equivalent if P ≤T Q and Q ≤T P . We write
P =T Q. Two decision problems L and L′ are said to be polynomial-time equivalent if
L ≤P L′ and L′ ≤P L. We write L =P L

′.

2.5. Multiobjective Optimization

Let us now turn to the main kind of problems in this thesis. Without loss of generality,
we concentrate on the minimization problem variants. Maximization objectives can
be seen as negations of minimization objectives and are used in this regard. We again
approach the problems from a computer scientists viewpoint and extend the definition
by Papadimitriou and Steiglitz [110], and Korte and Vygen [89] to multiobjective
problems.

Definition 2.13 ((Algorithmic) Multiobjective Optimization (MOO) Problem). An
algorithmic multiobjective optimization problem (I, S, v) consists of

• a set of instances I ⊆ Σ∗,

• a mapping S : I → 2Σ∗ which maps an instance to its set of solutions, and

• a mapping v : I × S(I) → Qd which maps each solution of an instance to a
vector.

It must hold that for every x ∈ I there exists a polynomial p : N→ N such that for
every s ∈ S(x) we have |s| ∈ O(p(|x|)). We again assume that S is computable, S(x) is
polynomial-time decidable for every x ∈ I, and v is polynomial-time computable. We
consider a MOO instance x ∈ I to be solved if we output the set YN := min v(x, S(x)) =
min{v(x, s) | s ∈ S(x)}.

For an instance x ∈ I of a MOO problem P , we call the set YN the nondominated
set or Pareto-front of x. A solution s ∈ S(x) is called efficient or Pareto-optimal if
v(x, s) ∈ YN . A solution s is weakly efficient or weakly Pareto-optimal if v(x, s) ∈
wmin{v(x, s) | s ∈ S(x)}. Analogous to the value of a solution in single-objective
optimization, we call v(x, s) ∈ Qd, for an instance x ∈ I and s ∈ S(x), the value vector
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of s. Usually, we expect algorithms also to produce an efficient solution s ∈ S(x) for
every y ∈ YN such that v(x, s) = y, though we do not require this formally. Observe
that this definition also subsumes single objective optimization problems.

Note that in general the nondominated set is an infinite set and so these problems
do not pose examples of computational problems. Hence, we are concerned with a
special kind of MOO problem: A multiobjective combinatorial optimization problem
(MOCO) is a MOO problem (I, S, v) where there exists a polynomial p : N→ N such
that for every instance x ∈ I the set S(x) is a subset of {0, 1}p(|x|). Again, we only
deal with problems having linear objective functions, so we again assume that for
every MOCO instance x ∈ I there exists a matrix Cx ∈ Qd×p(|x|) such that we can
write v(x, s) = CTx s.

A very important subset of the nondominated set is the set of nondominated extreme
points of MOCO problems. Given a MOCO problem (I, S, v), we define the extreme
points of the nondominated set or nondominated extreme points of an instance x ∈ I to
be the set YX := vert conv v(x, S(x)). We denote by OYEx the computational problem
of finding the set YX for a given MOCO problem O. (An analogous definition can
be stated for multiobjective integer linear optimization problems, but we are not
concerned with these problems in detail in this thesis.)
The ideal point of an instance x ∈ I of MOO (I, S, v) is the vector yxmin ∈ Rd with

(yxmin)i = min{v(x, s)i | s ∈ S(x)}. We say that the ideal point exists for the instance
x if every min{v(x, s)i | s ∈ S(x)} exists for i ∈ [d]. The weighted-sum problem of a
MOO P = (I, S, v) with respect to a vector ` ∈ Qd is the single-objective optimization
problem (Iw, Sw, vw) with Iw = {(x, `) | x ∈ I}, Sw = S and vw((x, `), s) = `T v(x, s).
We denote this problem as P1(`).

2.5.1. Problem Definitions

In this section, we define the problems that are investigated in this thesis. We usually
define the input and assume a canonical encoding of it. For graph problems, this can
be an adjacency matrix also encoding the edge-costs or an adjacency list including
the edge costs. The set of solutions is always a subset of the edges and the costs are
defined by an edge-cost function, thus the cost of a solution is the sum of the costs
of the edges in the solution. Consequently, it is sufficient to define the input—not
necessarily the concrete input encoding—and the set of feasible solutions for the
following problems. From the definition of multiobjective combinatorial optimization
problems then follows the goal to find the nondominated set.

Combinatorial Problems

Definition 2.14 (Multiobjective (global) Minimum Cut (MOMC) Problem). The
input is a graph G = (V,E) and an edge-cost function c : E → Qd. A feasible solution
is a cut in G.

Definition 2.15 (Multiobjective Unconstrained Optimization (MUCO) Problem).
The input is a matrix C ∈ Qd×n and a feasible solution is an element of {0, 1}n. The

16



2.5. Multiobjective Optimization

cost of a feasible solution x ∈ {0, 1}n is the matrix-vector product Cx.

We are concerned mainly with the special case of the biobjective unconstrained
optimization (BUCO) problem where d is fixed to 2.

Definition 2.16 (Multiobjective Spanning Tree (MOST) Problem). We are given
an undirected graph G = (V,E) and an edge-cost function c : E → Qd. A feasible
solution is the set of edges of a spanning tree of G from TG.

A set of edges M ⊆ E of a graph G = (V,E) is called a matching, if for every
e, e′ ∈ M with e 6= e′ it follows that e ∩ e′ = ∅. We call a node v ∈ V free (w.r.t. a
matching M) if there is no e ∈M with with v ∈ e. A matching M is called perfect if
there is no free node w.r.t. M in V .

Definition 2.17 (Multiobjective Matching Problem (MO-Matching)). Given a graph
G = (V,E) and an edge-cost function c : E → Qd, a feasible solution is a perfect
matching in G.

A very special case of the matching problem is the multiobjective assignment problem,
in which we require the input graph to be bipartite.

Definition 2.18 (Multiobjective Assignment Problem (MOAP)). Given a complete
bipartite undirected graph G = (V,E) with bipartition V = U ∪̇W and |U | = |W | and
an edge-cost function c : E → Qd. The feasible solutions of the MOAP problem are
all perfect matchings in G.

Definition 2.19 ((Single Pair) Multiobjective Shortest Path (MOSP) Problem).
Given a digraph G = (V,A), two nodes s, t ∈ V and an edge-cost function c : A→ Qd.
A feasible solution is the set of edges on a path in PGs,t. We define c(p) :=

∑
a∈A on p

c(a)

for a path p ∈ PGs,t.

Definition 2.20 (Multiobjective Traveling Salesperson (MOTSP) Problem). The
input is a complete graph G = (V,E) and an edge-cost function c : E → Qd. A feasible
solution is the set of edges on a Hamiltonian cycle in G. We define c(C) :=

∑
e∈E on C

c(e)

for a Hamiltonian cycle C.

Note that although the above problems are MOCO problems, we did not define them
according to the definition of MOCO problems above. We can, however, construct a
solution set in {0, 1}poly(|x|) and an objective function matrix Cx in a canonical way
for the graph problems above: A feasible solution is always a subset of the edges.
Thus, for every input graph G = (V,E) (or (V,A) for digraphs), depending on the
input encoding, p maps an instance to its number of edges and the feasible solutions
are vectors with as many components as G has edges. For an instance x ∈ I, when
we fix an arbitrary ordering of the edges in E : e1, . . . , e|E|, the ith component of a
solution s ∈ S(x) is 1 if ei is in the subset of edges s represents, or 0 if it is not in the
subset s represents. The objective function matrix then is Cx ∈ Qd×|E| where the ith
column is the cost of edge ei.
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Multiobjective Linear Programming

We first define a meta-version of the multiobjective linear programming (MOLP)
problem, define a few terms and then define the concrete computational problems we
consider in this thesis. The following definition thus is not a computational problem
in the sense of our definition of a computational problem since the output set is
uncountable and inherently unsuitable to be solved by a computer.

Definition 2.21 (Multiobjective Linear Programming (MOLP) Scheme). The input
is given as a constraint matrix A ∈ Qm×n, a cost matrix C ∈ Qd×n and a vector
b ∈ Qm. We usually write an MOLP in the mathematical form

min Cx

s.t. Ax ≤ b

x ∈ Rn.

We define the feasible set as P := {x ∈ Rn | Ax ≤ b} and the feasible set in objective
space as Y := C · P := {Cx | x ∈ P}. The nondominated set or Pareto-front is the set
YN := minY.

A pair (ai, bi) with ai being the ith row of A is called a constraint. For a
vector x ∈ Rn, a constraint (ai, bi) is called active if aTi x = bi. A set of con-
straints {(a1, b1), . . . , (ak, bk)} is called linearly independent if the set of vectors
{(a1

1, . . . ,a
1
n, b

1)T , . . . , (ak1, . . . ,akn)} is linearly independent. A vector x ∈ Rn is called
basic if there are n linearly independent constraints active in x.

Following Heyde and Löhne [75], we define the upper image as the polyhedron
P := Y+Rd≥. It gives us a better description of the nondominated set, since YN ⊆ ∂P .
We define three computational problems as incarnations of the MOLP scheme:

MOLPXEx, MOLPYEx and MOLPYFa. Let in the following a MOLP consisting of
A ∈ Qm×n, C ∈ Qd×n, and b ∈ Qm be given. In MOLPXEx we are interested in the
Pareto-optimal basic feasible solutions:

Definition 2.22 (MOLPXEx). The input is a MOLP as above and the output is the
set {x ∈ Rn | Cx ∈ YN ,x is basic, Ax ≤ b}.

Analogously to single objective optimization, we are often more interested in the
optimal value and one representative solution. This view is covered by the problem
MOLPYEx.

Definition 2.23 (MOLPYEx). The input is a MOLP as above and the output is the
set vertP.

Let us note that MOLPXEx and MOLPYEx are different problems. We can have
instances of MOLPXEx with an exponential output, where MOLPYEx has an output
size of 1.
In some applications as in finance, it can be more interesting to have a facet

representation of the upper image, which is covered by the problem MOLPYFa.
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Definition 2.24 (MOLPYFa). The input is a MOLP as above and the output is a set
of vectors {a1, . . . ,ak} ⊆ Rd such that P = {x ∈ Rd | aTi x ≥ 1 for all i ∈ [k]}+ Rd≥.

A linear programming problem is a MOLPYEx with d = 1.

Other Problems

Definition 2.25 (Multiobjective Integer Minimum Cost Flow Problem (MO-Z-Flow)).
The input is

• a digraph G = (V,A),

• two nodes s, t ∈ V ,

• a required flow R ∈ Z≥,

• a capacity function b : A→ Z≥, and

• an edge-cost function c : A→ Qd≥.

A feasible solution is a function f : A→ Z≥ such that the following flow conservation
constraints hold for every node v ∈ V :

∑
a=(v,·)∈A

f(a)−
∑

a=(·,v)∈A
f(a) =


R v = s

−R v = t

0 else

and the following capacity constraints hold for every arc a ∈ A:

f(a) ≤ b(a)

The cost of a solution then is defined as c(f) :=
∑
a∈A f(a)c(a). The set of all feasible

flows is called F and the goal is to find the set YN := min c(F).

Note that a canonical encoding for the capacity function in the input is a vector
from Z|A|≥ , for the edge-cost function a canonical encoding is a matrix from Qd×|A|,
and also the canonical encoding of a solution is a vector from Zn≥. Observe that the
MOSP problem is a special case with R = 1 and b(a) = 1 for all a ∈ A.
A very similar problem is the Multiobjective Rational Minimum Cost Flow (MO-

Flow) Problem which is essentially the same problem, but a feasible solution is a
function f : A→ Q≥. Note that it is neither a specialization nor a generalization of
MO-Z-Flow, because MO-Flow is a special case of a MOLP and thus the nondominated
set is usually an uncountable set while the nondominated set of the MO-Z-Flow problem
is always countable.
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3. Introduction
In this first part, we investigate the computational complexity of multiobjective
optimization problems. In Table 3.1, we summarize the complexity states of the
problems investigated in this thesis. In terms of classic complexity theory, only the
first column of Table 3.1 was known, excluding most of the NP-hardness results. Since
every problem could only be classified as intractable, the picture of the complexity
landscape of these problems occurred to be entirely black with no shades.
In this situation, it is not clear what constitutes a good algorithm for a multiob-

jective optimization problem. An optimal algorithm could be an algorithm spending
exponential time on every single instance, with the rationale that there are instances
where this time is required. Of course, in a practical problem having—for whatever
reason—only a small number of nondominated points, this is unsatisfactory. Informally,
what we want to design are algorithms that are fast if the nondominated set is small
and not too slow if it is large.

In this regard, what should a good theory of computational complexity of multiobjec-
tive optimization problems accomplish? The most important aspect is the classification
into “easy” and “hard” problems. But the reason to study which problems are easy or
hard is to better decide which algorithms to use. If we are constructing an algorithm
that would lead to solving the Traveling Salesperson Problem in polynomial time,
we should probably check if this algorithm or its analysis is correct (as long as we
believe in P 6= NP). Thus, the ultimate goal is a practical one: To support algorithm
designers in coming up with better algorithms.

3.1. Previous Work
The most important property from a computational complexity viewpoint of multiob-
jective combinatorial optimization (MOCO) problems in their general form is that
they are intractable in the sense of the Cobham–Edmonds thesis [33, 53]. For the
multiobjective shortest path (MOSP) problem this was proven by P. Hansen in 1979
[74] and the intractability transfers to the general MOCO problem, the matching
problem and the integer min-cost flow problem as generalizations. For fractional
min-cost flow, intractability (i.e., the number of representative points grows super-
polynomially) was proven by G. Ruhe in 1988 [119] and this transfers to the finding
of the nondominated extreme points and facets in multiobjective linear programming
(MOLPYEx and MOLPYFa) as well as finding Pareto-optimal basic feasible solutions
(MOLPXEx). For the multiobjective traveling salesperson (MOTSP) problem, V. A.
Emelichev and V. A. Perepelitsa proved intractability in 1992 [60]. The intractability
of the multiobjective spanning tree (MOST) problem was proven by H. W. Hamacher
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Problem Classic Complexity Enumeration
Name Nondominated Set Extreme Points
MOCO intractable / NP-hard /∈ TotalP /∈ TotalP
MO-TSP intractable [60] / NP-hard [69] /∈ TotalP /∈ TotalP
MOLPXEx intractable [127] /∈ TotalP not applicable
MOLPYEx intractable [119] IncP * not applicable
MOLPYFa intractable [119] IncP * not applicable
MO-Matching intractable / NP-hard /∈ TotalP TotalP
MO-Z-Flow intractable [119] / NP-hard /∈ TotalP IncP
MOAP intractable [55] / NP-hard [124] BUCO-hard IncP
MOSP intractable [74] / NP-hard /∈ TotalP P
MOST intractable [72] / NP-hard [124] BUCO-hard P
BUCO intractable [55] / NP-hard [124] ? P
MOMC ? IncP P

Table 3.1.: State of well-known MOP problems. The positive results all assume that
the number of objectives is fixed. The negatives are also true for a small
fixed number of objectives. The “/∈ TotalP”-results are true under the
assumption that P 6= NP.
* Certain assumptions need to be fulfilled.

and G. Ruhe in 1994 [72]. For the multiobjective assignment (MOAP) problem and
biobjective unconstrained combinatorial optimization problem, we refer to the book
by M. Ehrgott for proofs of intractability [55].
In the case of the MOMC problem, for d = 2 it is known that there are O(|V |7)

nondominated points [3]. For d > 2, the number of nondominated points is not known.
Another property which is important in algorithm design in single objective opti-

mization is NP-hardness. M. Ehrgott states in [54], that if a single objective problem
is NP-hard, so is its multiobjective extension. We refer the reader to the paper for
exact definitions and proofs. One example problem in this regard is the MO-TSP
problem, which thus is NP-hard and this transfers to the general MOCO problem,
since it is a generalization. In Section 4.1 we investigateNP-hardness in multiobjective
optimization in more detail.

Further, there exist results on the NP- and #P -hardness of decision problems asso-
ciated with multiobjective optimization problems. While these results are of academic
interest, they do not seem to have implications to the multiobjective optimization
problems themselves, thus we are not concerned with them in this thesis.

There is one paper about output-sensitive complexity of multiobjective optimization
problems by Y. Okamoto and T. Uno from 2010 [104]. They propose an algorithm for
the MOST problem, however, the model considered by Okamoto and Uno is different
from the one considered in this thesis. They consider enumerating all supported weakly
Pareto-optimal spanning trees, i.e., for the input graph G all T ∈ TG such that T
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is an optimal solution to P1(`) for some ` ≥ 0. This includes non-Pareto-optimal
spanning trees for ` ∈ {ei | i ∈ [d]} and also equivalent trees T and T ′ with T 6= T ′

and c(T ) = c(T ′). For this problem, the authors propose an algorithm which runs
with polynomial delay by employing a variant of the reverse search method by Avis
and Fukuda [9]. The authors also generalize this algorithm to the case of enumerating
Pareto-optimal basic feasible solutions of an MOLP if it is nondegenerate, i.e., every
basic solution has exactly n active inequalities.

In contrast to the problems investigated in this thesis, there exist many multiobjective
optimization problems for which it is known that the nondominated set is only of
polynomial size. Figueira et al. [63] investigated many of these problems as special
cases of the above problems or entirely new problems and proved polynomial time
solvability or NP-hardness.
There is also another complexity measure which was applied to multiobjective

optimization, i.e., Smoothed Analysis, which was introduced to MOP by Ackermann
et al. [1]. We dedicate Section 4.3 to summarize the findings and connection to
output-sensitive complexity.

3.2. Contributions and Organization

In the beginning of this part of this thesis, we are concerned with the first column
of Table 3.1. The intractability of all the problems given there was long known, but
for most of these problems it was assumed that they are NP-hard, especially the
MOSP, MOAP and MOST problems. We shed some light on the classic theory of
NP-hardness in multiobjective optimization in Section 4.1. This gives reasons for
striking the NP-hardness results for the MOAP, MOST and MOSP problems. We
further introduce output-sensitive complexity and see the first problem which can be
classified as “easy”, which is the MOMC problem.
Following in this first part, in Chapter 5 we are concerned with multiobjective

linear programming. We show that under mild assumptions the multiobjective linear
programming problem also belongs to the easy problems in output-sensitive complexity.
This is especially useful, because we can apply these results to MOCO problems to find
the complete set of nondominated extreme points. More specific, we prove that for
any MOCO problem if we are able to solve certain oracle problems in polynomial time,
it is easy in the sense of output-sensitive complexity to find the set of nondominated
extreme points. This leads to the complete last column of Table 3.1 and to the positive
results for the MOLP problems.

In Chapter 6 we are concerned with showing what cannot be done efficiently in the
model of output-sensitive complexity. We demonstrate a general methodology how
to show that a multiobjective optimization problem is a hard enumeration problem
and use standard assumptions from complexity theory as P 6= NP. Subsequently,
we exemplify this on the multiobjective shortest path problem and show that there
is no output-sensitive algorithm for MOSP unless P = NP. This also leads us to
the hardness results for the multiobjective versions of the matching and the integer
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min-cost flow problems. Moreover, we introduce an interesting problem that seems to
hold us back from getting better algorithms for the multiobjective assignment and
multiobjective spanning tree problems and introduce the concept of BUCO-hardness.
This can be found in the second last column in Table 3.1.
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4. Preliminaries
In this chapter, we are concerned with basic questions of the computational complexity
of multiobjective optimization problems. In Section 4.1 we reflect a few thoughts
on the theory of NP-hardness in multiobjective optimization and how some results
seem to mislead the general picture of NP-hardness of multiobjective optimization
problems. In Section 4.2, we introduce the theory of output-sensitive complexity as a
formal framework to investigate algorithms and their performance. In Section 4.3 we
discuss connections to another complexity measure for multiobjective optimization,
namely Smoothed Analysis. Concluding this chapter, in Section 4.4, we show a first
positive result that the MOMC problem is an easy problem in this framework by
demonstrating a sufficient condition for MOCO problems being easy which can be
derived from the existing literature.

4.1. Traditional NP-Hardness Theory
In multiobjective optimization the notion of NP-hardness has been adopted since the
pioneering work by P. Serafini in 1986 [124]. Many papers cite Serafini to show that
the multiobjective version of the shortest path, matching or matroid optimization
problem are hard to solve. We take the multiobjective shortest path problem as
an example how NP-hardness is usually applied in the multiobjective optimization
literature.

One of the first papers which is concerned with the MOSP problem is the work by
P. Hansen [74]. He defines a version of the biobjective shortest path problem, i.e.,
the MOSP with d = 2 and finds the first proof of intractability. He also mentions
that intractability must not be confused with NP-hardness as it can still be possible
to solve an NP-hard problem “in polynomial time in the very improbable case of
P = NP” (cf. Hansen [74]).
A. Warburton [138] and P. Serafini [124] are the first authors who discuss a gen-

eralization of the canonical decision problem (cf. Definition 2.5) for multiobjective
optimization problems:
Definition 4.1 (Canonical Decision Problem (MO Version)). For a multiobjective
optimization problem O = (I, S, v), the corresponding canonical decision problem
ODec is the following set:

{(x,k) ∈ I ×Qd | ∃s ∈ S(x) : v(x, s) ≤ k}

Both authors show that MOSPDec is NP-hard and state this as an informal
evidence that MOSP is a hard problem, while they also state that MOSP is actually
intractable.
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Later, in many papers, e.g., Galand et al. [67], Guerriero and Musmanno [71],
Horoba [77], Mohamed, Bassem, and Taicir [99], Müller-Hannemann et al. [100], Raith
and Ehrgott [115], Sanders and Mandow [120], Shekelyan, Jossé, and Schubert [125],
Shekelyan et al. [126], Skriver [128], Tarapata [132], and Tsaggouris and Zaroliagis
[134], it is claimed that MOSP itself is NP-hard. Therein, the arguments are based on

1. the paper by Serafini, or

2. the argument is given that since the output is exponential, the problem is
NP-hard.

Concerning (2), this argument is not a formal proof of NP-hardness and R. Ladner
already showed in 1975 [91] that if P 6= NP then there exist infinitely many problems
which are neither NP-hard nor polynomial-time solvable. In fact, it is what Hansen
warned against, that NP-hardness should not be confused with intractability. It is by
no means clear, why an output of exponential size implies that there is a polynomial-
time reduction from every problem in NP to MOSP. Similar examples can be found
for the multiobjective versions of the assignment, the spanning tree and matroid
optimization problems.
Let us investigate the first argument and first recap how NP-hardness is usually

derived in single objective optimization. We usually prove NP-hardness of an opti-
mization problem by showing the NP-hardness of the canonical decision problem (cf.
Definition 2.5). Let us consider the TSP as an example: To show that single-objective
TSP is NP-hard, we show that TSPDec is NP-hard. Recall, that TSPDec is the
decision problem whether there exists a feasible tour of cost less or equal to a given
number k ∈ Q. The classical reduction is by reduction from the Hamiltonian cycle
problem: In the Hamiltonian cycle problem, we are given a (not necessarily complete)
graph G and have to decide if there exists a Hamiltonian cycle in the graph. We
construct an instance of the TSP problem by copying the graph and giving each edge
the cost 1. Then, to make the graph complete, we add all remaining edges and give
these edges cost 2. Thus, there exists a Hamiltonian cycle in G iff there exists a
feasible tour of costs at most n in the new graph. But why does showing that TSPDec

is NP-hard show that TSP is NP-hard?
The key is that there is a canonical Cook-reduction from PDec to P for every (single

objective) optimization problem P . Given an instance of PDec, we can solve the
optimization problem and check if k is at least the value of an optimal solution. If it
is, then there exists a solution with cost at most k, i.e., each optimal solution. If it
is not then since every solution has at least the optimal cost which is already higher
than k, there does not exist a solution with cost less than k.

If we now turn to multiobjective optimization we have the problem that the nondom-
inated set, i.e., the output of an oracle, may be of exponential size. Thus, the same
reduction does not seem to generally hold in the context of multiobjective optimization.
Let us now look into the paper by P. Serafini and describe how his arguments fit in
this matter.
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4.1.1. The Paper by P. Serafini

Serafini is the first author conducting a deep complexity analysis of multiobjective com-
binatorial optimization problems in 1986. Serafini [124] investigates the computational
complexity of the general multiobjective combinatorial optimization problem

(S1) min f(x)
s.t. x ∈ F

for f : {0, 1}n → Zd, F ⊆ {0, 1}n and n, d ∈ N. He leaves the actual solution concept
open. Observe that if the goal is to find the nondominated set, this is exactly the
definition of MOCO problems in Definition 2.5.
Serafini is generally interested in problems for which the set of solutions F is too

large to be scanned exhaustively. He also points out that sizes of nondominated sets
can be exponential in n and thus they cannot be enumerated in polynomial time. So,
he restricts the problems he studies to problems with nondominated sets of polynomial
size by requiring that the maximum difference in solution values is bounded by a
polynomial in the input, i.e.,

max
x,y∈F

‖f(x)− f(y)‖∞ = K ∈ O(nk), for some k > 1. (4.1)

He then shows reductions among several solution concepts of problem S1, e.g., finding
the nondominated set only, finding all Pareto-optimal solutions and solving S1Dec.
He also proves that, assuming (4.1), finding the nondominated set of problem S1 is
polynomial-time equivalent to S1Dec.
He then puts forward three reasons why we can identify the complexity of ODec

with the complexity of O in general:

1. They are equivalent if (4.1) holds.

2. The canonical decision problem is also studied in single objective optimization.

3. The canonical decision problem often plays a role in methods to solve MOCO
problems in a posteriori or interactive approaches.

In the following sections, Serafini shows for several well-known MOCO problems
that their canonical decision problem is NP-hard and, in the light of the above
argumentation, states that the MOCO problem itself is NP-hard.
He starts by studying S1 with linear objective functions, which are linear MOCO

problems by our definition, and for which the feasible set F contains the extreme
points of a polyhedron P which again contains F , i.e., vertP ⊆ F ⊆ P :

(S2) min Cx

s.t. x ∈ F
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for C ∈ Zd×n. He investigates the complexity status of this general problem by looking
at the BUCO problem (cf. Definition 2.15) as a special case of S2.

(BUCO) min (c1, c2)Tx
x ∈ {0, 1}n

Serafini concludes that S2 is NP-hard, because BUCODec is the binary knapsack
problem, which is well-known to be NP-hard. He then goes on and investigates the
biobjective shortest path and biobjective assignment problems as special cases of S2.
In the last section, Serafini proves NP-hardness for the biobjective matroid opti-

mization problem and discusses neighborhoods induced by topological sorting and
locally nondominated solutions.

4.1.2. Discussion of NP-hardness in multiobjective optimization

Let us first state that Serafini did write that S2, the biobjective shortest path,
assignment and matroid optimization problems are NP-hard, but he proves it only
for the respective canonical decision problems. The reason for this is the identification
of a MOCO problem with its canonical decision problem, which was based on the
informal reasons stated above and the equivalence of the problems under (4.1).
Hence, let us revisit the three reasons Serafini offers why a MOCO problem P

can be identified with its canonical decision problem PDec. The third reason being
that the hardness of PDec influences the choice of solution method to use to solve a
problem at hand. This is a very important reason why the complexity status of PDec

is interesting. But showing that a certain solution method is incapable of solving a
problem efficiently does not determine the complexity status of the problem itself.
The second reason is that canonical decision problems are also investigated in

single-objective optimization. But in single-objective optimization this is well justified
as we discussed in the introduction to this section. And the justification might not
transfer to the multiobjective case.
The first reason that the solution concept of finding the nondominated set and

solving the canonical decision problem is equivalent under the bound (4.1) is solid on
the first glance: If PDec is NP-hard under (4.1) then P is an NP-hard multiobjective
optimization problem. But in his proofs of NP-hardness of the decision problems in
the paper, Serafini does not assume (4.1) anymore. Since it is hard to prove that a
problem is not NP-hard (proving that a problem in P is not NP-hard would imply
P 6= NP), we give an example on which the above argumentation by Serafini fails.
Let us denote the special case of the BUCO problem with nonpositive c1 and

nonnegative c2 by BUCOK . The canonical decision problem BUCOK
Dec is the 0/1-

knapsack problem and thus NP-hard in general without assuming (4.1). We already
know that from this we cannot—in contrast to single objective optimization—deduce
NP-hardness of BUCOK directly. But is there a way to deduce NP-hardness of
BUCOK

Dec under (4.1)? We show that this is not the case by proving that BUCOK
is not NP-hard under (4.1) unless P = NP. This is a strong evidence that the
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assumption that from NP-hardness of PDec follows NP-hardness of P under (4.1)
for MOCO problems P does not hold. We prove this by showing that the Nemhauser-
Ullmann algorithm (cf. Nemhauser and Ullmann [102]) for the knapsack problem
solves BUCO in polynomial time if (4.1) is assumed.
Let us first discuss the Nemhauser-Ullmann algorithm in some detail. We are

given an instance of the knapsack problem, i.e., c1, c2 ∈ Nn,W 1,W 2 ∈ N and we
are to decide whether there exists x ∈ {0, 1}n with c1Tx ≥ W1 and c2Tx ≤ W2.
We use the following interpretation: The vector (c1

i , c
2
i )T encodes the gain and loss

if we pack item i ∈ [n], thus we can view this decision problem as a biobjective
optimization problem with objective functions min−c1Tx and min c2Tx and get a
BUCOK-instance. We observe that if there is a feasible packing, then there is one
which is also Pareto-optimal.

The algorithm follows a dynamic programming scheme: Assuming an arbitrary
ordering of the items, we look at the Pareto-optimal packings for the first i items.
We get the Pareto-optimal packings for the first i+ 1 items by adding the (i+ 1)-th
item to each of our packings, retaining the old ones. We call a packing x ∈ {0, 1}n

dominated if there is another packing x′ ∈ {0, 1}n with c1Tx′ ≥ c1Tx, c2Tx′ ≤ c2Tx,
c1Tx′ 6= c1Tx, and c2Tx′ 6= c2Tx. We can now delete all packings which are dominated
by another packing we already produced, since they are never a subsolution of a Pareto-
optimal packing. To solve the knapsack problem, we can delete all solutions for which
c2Tx > W2. This algorithm is well known to be pseudo-polynomial and has a running
time of O(nW2).

Proposition 4.1. If BUCOK is NP-hard assuming (4.1) then P = NP.

Proof. To solve the BUCOK problem, we set W2 := c2T1 and thus keep all Pareto-
optimal solutions. Observe, that packing nothing, i.e., the solution x = 0, is always a
Pareto-optimal packing. Using this and because of (4.1), we have for some k > 1

O(nk) 3 K = max
y,z∈F

‖f(y)− f(z)‖∞

= max
x∈F
‖C0− Cx‖∞

= max
x∈F
‖Cx‖∞

= max{
∑
i∈[n]

c1
i ,
∑
i∈[n]

c2
i } ≥ cji , for j ∈ {1, 2} and i ∈ [n].

And since nW2 = n · c2T1 ∈ O(nk+1), the Nemhauser-Ullmann algorithm runs in
polynomial time on BUCOK instances.

As for the other problems, the MOSP problem, the multiobjective assignment and
biobjective matroid optimization problem, it is not obvious what happens if (4.1)
is assumed. Regarding the MOSP problem, there do exist pseudo polynomial time
algorithms based on the generation of Pareto-optimal paths from s to the other nodes
(cf. e.g., Martins [98]). Using the bound (4.1), we can restrict the size of the labels
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at the target node t, but we are not able to directly bound the number of candidate
paths at intermediate nodes v ∈ V \{s, t}. Moreover, the bound we showed in the
proof of Proposition 4.1 does not apply. Later in this thesis we show a new proof of
NP-hardness of the MOSP problem in Section 6.1.

In conclusion, while the NP-hardness of a canonical decision problem is interesting,
it does not seem to have (mathematical) implications on the NP-hardness of the
corresponding MOCO problem. Further, we might even want to ask the question what
we can draw from the insight of a MOCO problem with exponential nondominated set
actually being NP-hard. On one hand, NP-hardness of a problem is a good reason
to believe that the problem cannot be solved in polynomial time. On the other hand,
intractability proves that there is no polynomial-time algorithm in general.
The theory of NP-hardness in multiobjective optimization is still very interesting

if we cannot rule out polynomial-time algorithms by other means. The bound by
Serafini is one possibility to restrict problems to nondominated sets of polynomial
size. A more theoretical option is to restrict a problem to all instances which have
polynomial nondominated sets. But similar to Serafini’s bound (4.1), it might be
impossible to test this property in polynomial time in general and thus even testing
the feasibility of an instance becomes hard.
It could also be interesting to modify MOCO problems by imposing an ordering

on the nondominated set to output. That is, requiring to output the nondominated
set of a MOCO problem in an ordering which is part of the problem, i.e., output
the nondominated set in lexicographic order. Then again, NP-hardness can be an
interesting tool even though the output is exponential in the worst-case.

In this thesis, we suggest another framework of assessing computational complexity
of multiobjective optimization problems, i.e., output-sensitive complexity.

4.2. Output-Sensitive Complexity Theory

In this section, we give basic definitions of output-sensitive complexity also called
enumeration complexity. The main difference to classic complexity theory is that the
running time is not only measured in the input size but also in the size of the output.
The formal terms were used for a long time now, a first summary can be found in the
work by Johnson, Yannakakis, and Papadimitriou [79]. In 2009 in a Master’s thesis, J.
Schmidt [121] gives a complete formal framework of enumeration complexity which
we reproduce here.

The main point is that we can view the MOCO problems defined in Section 2.5
as enumeration problems. We also prove this formally in Subsection 4.2.2 to make
the relationship between MOCO problems and enumeration problems mathematically
sound. And we give a new definition of tractability of multiobjective optimization
problems.

32



4.2. Output-Sensitive Complexity Theory

4.2.1. Formal Definitions

In this section, we give formal definitions of the terms enumeration problem and
enumeration algorithm. Moreover, we define complexity classes for enumeration
problems. This section is largely based on the Master’s thesis by Schmidt [121] and
was published in a paper by Bökler et al. [18].

Definition 4.2 (Enumeration Problem, cf. Schmidt [121, pp. 7 sq.]). An enumeration
problem is a pair (I, C) such that

1. I ⊆ Σ∗ is the set of instances for some fixed alphabet Σ,

2. C : I → 2Σ∗ maps each instance x ∈ I to its configurations C(x), and

3. the encoding length |s| for s in C(x) for x in I is in poly(|x|).

We assume that I is decidable in polynomial time and that C is computable.

We usually assume that the alphabet Σ is {0, 1}. This is important, because all
instances and all configurations need to be encoded by finite strings, while the exact
encoding is not relevant here. The third requirement means, that the configurations
need to be compact, i.e., the encoding length of a configuration of an instance x should
be polynomially bounded in the size of x. The reason for this is to limit the number
of configurations to be at most exponentially many and to not make the problems
artificially hard by allowing the output of one configuration to be a hard problem.

Definition 4.3 (Enumeration Algorithm, cf. Schmidt [121, p. 11]). Let E = (I, C)
be an enumeration problem. An enumeration algorithm A for E is a RAM that

1. on input x in I outputs each c in C(x) exactly once, and

2. on every input terminates after a finite number of steps.

Let x ∈ I and let |C(x)| = k, then the 1st delay is the number of steps of A before
the first configuration is output, the ith delay for i ∈ {2, . . . , k − 1} is the number of
steps of A between the output of the (i − 1)th and the i-th configuration, and the
(k+1)th delay is the number of steps of A between the last output and the termination
of the algorithm.
The following complexity classes can be used to classify enumeration problems, cf.

also [79].

Definition 4.4 (Output-Sensitive Complexity Classes, cf. Schmidt [121, p. 12]). Let
E = (I, C) be an enumeration problem. Then E is in

1. TotalP (Output Polynomial Time/Polynomial Total Time)1,

2. IncP (Incremental Polynomial Time),
1Although we use the term output polynomial time in the remaining text, we abbreviate it to TotalP
for historical and notational reasons.
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3. DelayP (Polynomial Time Delay),

4. PSDelayP (Polynomial Time Delay with Polynomial Space)
if there is an enumeration algorithm such that

1. its running time is in poly(|x|, |C(x)|) for x in I,

2. its i-th delay for i in [|C(x)|+ 1] is in poly(|x|, i) for x in I,

3. its i-th delay for i in [|C(x)|+ 1] is in poly(|x|) for x in I, and

4. the same as in 3. holds and the algorithm requires at most polynomial space in
the input size,

respectively.
We say that an algorithm is output-sensitive if it fulfills condition 1 of the above

definition. Moreover, we say that an algorithm has incremental delay (polynomial
delay) if it fulfills the second (third) condition of the above definition. An enumeration
algorithm is regarded efficient if it is output-sensitive. As an overview on these classes,
the following hierarchy result holds.
Theorem 4.2 (Schmidt [121, pp. 14 sqq.]).

PSDelayP ⊆ DelayP ⊆ IncP ⊂ TotalP .

4.2.2. Connection to Multiobjective Optimization

We now explain, how MOCO problems as defined in Definition 2.5 relate to enumeration
problems as defined in Definition 4.2. More formally, we show that the general MOCO
problem is an enumeration problem. Given a MOCO instance O = (IO, SO, vO) we
need to define the set I of instances of the enumeration problem and the configuration
mapping C.

To define I, we identify it with IO. The configuration mapping now maps an instance
to its nondominated set YN . Let us fix an arbitrary encoding of rational numbers
with at most O(〈r〉) bits for a rational number r. We observe that the value of each
component j of each point of the nondominated set is at most

∑n
i=1 |Cji| ∈ O(〈C〉)

and thus the encoding of each point in the nondominated set is polynomial in the
instance encoding size. Thus, the configurations of a MOCO problem are the points
of the nondominated set and not, for example, the solutions of the MOCO problem.
Solving the so defined enumeration problem gives us the set of configurations, i.e.,

the nondominated set in the given encoding. This corresponds exactly to our definition
of solving a MOCO problem.

Further, we can now define what an efficient algorithm for a MOCO problem in this
framework is: We say that an algorithm for a multiobjective optimization problem is
efficient if it is output-sensitive for a fixed number of objectives. Fixing the number
of objectives is a reasonable assumption, since we usually deal with a small number
in practice and are interested in the behavior of solution methods for this specific
number of objectives.
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4.3. Connection to Smoothed Analysis for MOCO
Problems

Before we move forward to using output-sensitive complexity, we need to address one
practical objection regarding MOCO problems. It is often argued that computing
the entire nondominated set of a MOCO problem is too costly to pursue, because
it can have an exponential size in the input size. But in practice, it is observed
that usually the situation is not so bad when the number of objectives is small.
This observed discrepancy between practice and the traditional worst-case analysis
motivates stochastic running time analyses, where the inputs are drawn from a
certain distribution. One prominent stochastic running time analysis framework, so
called Smoothed Analysis, can be used to bound the expected worst-case size of the
nondominated set of a MOCO problem.
In classical running time analysis, we play against an adversary who gives us ill

posed instances in the sense that the running time is very high or the nondominated
set is very large. Smoothed Analysis aims at weakening this adversary. In the context
of multiobjective optimization, a model by Ackermann et al. [1] was used to show
the best expected bound on the smoothed worst-case size of the nondominated set of
general MOCO problems.

Let (I, S, v) be a MOCO problem. In worst-case running time analysis, the adversary
is allowed to choose an instance x ∈ I arbitrarily. In the model by Ackermann et al.
[1], the adversary is only allowed to choose the first row of it deterministically and
for all remaining rows i ∈ {2, . . . , d} and columns j ∈ [n] it may choose a probability
density function fi,j : [0, 1] → R, describing how potential entries are drawn. The
adversary is not allowed to choose these densities arbitrarily, because otherwise it
could again choose the coefficients deterministically. Rather, the fi,j are bounded by
a model parameter φ ≥ 1. The adversary chooses the set of solutions S ⊆ {0, 1}n
completely arbitrarily. Brunsch and Röglin [26] showed that the expected size of the
nondominated set of these instances is at most O(n2dφd).

Thus, when we fix the number of objectives, we can expect to have only polynomial
nondominated set sizes of any MOCO problem in practice. This emphasizes the need
for output-sensitive algorithms, because when the nondominated set is small, we want
our algorithms to be fast and when the nondominated set is large, we want them to
be not too slow.
We can also investigate the connection between smoothed complexity and output-

sensitive complexity of MOCO problems. At first we can observe that when we
have a TotalP-algorithm with a running-time polynomial in the input and the size
of the nondominated set, then by the above observations the algorithm is also a
smoothed-polynomial algorithm for every fixed number of objectives.

Corollary 4.3. If a MOCO problem O is in TotalP, then it can be solved in smoothed
polynomial time for every fixed number of objectives.

The converse is most probably not true: In Section 6.1 we see that if P 6= NP then
there is no output-sensitive algorithm for the MOSP problem even in the case of 2
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objectives. But it is easy to show that, e.g., Martins’ algorithm (cf. Martins [98]) has
indeed a smoothed polynomial running-time.

Corollary 4.4. Not every MOCO problem that can be solved in smoothed polynomial
time can also be solved in output-polynomial time, unless P = NP.

4.4. A Positive Example
In this section, we show a sufficient condition for a MOCO problem being solvable in
output polynomial time, which follows directly from the multiobjective optimization
literature. A broad subject of investigation in the multiobjective optimization literature
is the ε-constraint scalarization. Given a MOO problem it is the following single
objective optimization problem:

Definition 4.5 (ε-Constraint Scalarization). The ε-constraint scalarization of a MOO
(IM , SM , vM ) is the following single objective optimization problem (I, S, v): The
instances are the set I = IM ×Qd, the solution mapping is the function

S((x, ε)) = {s ∈ SM (x) | vM (x, s) ≤ ε}

and the value function is v((x, ε), s) = 1T vM (x, s).

In other words, we minimize the sum of the objectives and restrict the feasible set
to those solutions which have cost less or equal to ε (component wise). It is well
known that the complete nondominated set can be found using this scalarization,
cf. [29], but the scalarization itself can be hard to solve, cf. [56]. In the past, authors
have proven several bounds on the number of ε-constraint scalarizations needed to
find the nondominated set of a general MOCO problem. It is possible to construct
a sufficient condition for enumerating the nondominated set of a MOCO problem in
output polynomial time from these results.

One of the first such bounds is due to Laumanns, Thiele, and Zitzler [92], who prove
that at most O(|YN |d−1) single-objective ε-constraint scalarization instances need to
be solved. The currently best bound is due to Klamroth, Lacour, and Vanderpooten
[87], who prove a bound of O(|YN |b

d
2 c).

From these results we can formulate the following corollary.

Corollary 4.5. If the ε-constraint scalarization of a given MOCO problem P can be
solved in polynomial time for a fixed number of objectives, YN can be enumerated in
output-polynomial time for a fixed number of objectives.

One example for such a problem is the MOMC problem. Armon and Zwick [7] showed
that the ε-constraint version of the problem can be solved in time O(|E||V |2d log |V |).
Thus, the MOMC is an example of a multiobjective optimization problem that can be
solved in output polynomial time for each fixed number of objectives.
Now, the question arises if this condition is also necessary, i.e., can we show that

a MOCO problem cannot be solved in output polynomial time by showing that the
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ε-constraint scalarization cannot be solved in polynomial time. But as the following
proposition shows, if P 6= NP the condition of Corollary 4.5 is not necessary.

Proposition 4.6. There is a MOCO problem P ∈ IncP with PDec being NP-
complete.

Proof. We consider the following biobjective problem

(P ) min{(cTx,−cTx) | x ∈ {0, 1}n}

with c ∈ Nn. We first show NP-hardness and membership in NP of PDec and then
show membership in IncP of P .

Recall that PDec is defined as the decision problem in which we are given an instance
x of P = (I, S, v) and a vector k ∈ Qd and the goal is to decide whether there exists
an s ∈ S(x) such that v(x, s) ≤ k. Setting

k := 1
21T c

(
1
−1

)
,

we can reformulate PDec in the following way: Decide for a given vector c ∈ Nn if
there is an x ∈ {0, 1}n such that cTx = 1

2
∑n
i=1 ci. We observe that this decision

problem is the well-known partition problem shown by Garey and Johnson [69] to
be NP-hard. It follows from Definition 4.1 that PDec is in NP and thus PDec is
NP-complete.
Enumerating the nondominated set of P can be done in incremental polynomial

time by employing a recursive enumeration scheme on the first i variables (fixing an
arbitrary variable-ordering). Setting all variables to 0 yields point (0, 0)T . Now we fix
all variables after the i-th to 0 and allow the first i variables to vary. Let Fi be the
nondominated set for this restricted problem. If we know Fi, we can compute Fi+1 by
computing Fi ∪ (Fi + {ci+1}). Each such step yields time O(|Fi| log |Fi|) and we have
F0 ( F1 ( · · · ( Fn, i.e., we find at least one new point in each iteration.

This concludes the first chapter. We now look into other positive results in the field
of output-sensitive complexity of multiobjective optimization problems.
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and Nondominated Extreme Points

The motivation for this chapter is the following observation: In biobjective problems,
there exist very efficient practical algorithms to compute YX , i.e., the extreme points of
the nondominated set. While experience often shows that the complete nondominated
set YN can be hard to compute. This observation gave rise to a solution methodology
called the two-phases method (cf. e.g. Ulungu and Teghem [136]), where a fast method
to find the extreme points of the nondominated set is applied and then a search for the
remaining nondominated points is conducted. But the two-phases method remained
only usable in the biobjective case, because of the lack of algorithms to compute the
nondominated extreme points of problems with more than two objectives. M. Ehrgott
and X. Gandibleux address the need for practical algorithms to find nondominated
extreme points in their survey paper from 2000 [57] as a “first step to an application
of the two phases method in three or more criteria MOCO”.
There is a methodology which, at least in theory, is able to compute the extreme

points of the nondominated set of a MOCO problem by using the convex relaxation
and algorithms for MOLP. Let us define what a convex relaxation is:

Definition 5.1 (Convex Relaxation). Given a MOCO problem (I, S, v), an instance
x ∈ I with objective function matrix Cx, the convex relaxation is the following MOLP:

min Cxx

x ∈ convS(x)

Now we can observe that the problem MOLPYEx is exactly the problem of finding
the nondominated extreme points of the given MOCO problem. The concept of a
convex relaxation was introduced by Cerqueus, Przybylski, and Gandibleux [28] and
Ehrgott and Gandibleux [58]. Note though, that this MOLP is not in the standard
form of Definition 2.21, since we need to be able to describe the feasible polyhedron
by means of linear inequalities. But if we were able to describe the integer hull of
every binary linear programming problem by linear inequalities of polynomial size in
polynomial time, then essentially P = NP. Moreover, even problems in P might have
only complex integer hulls as T. Rothvoss proved [117]. So this method is usable if we
have a compact MOLP formulation for our given MOCO problem.

Previous Work on MOLP and Finding Nondominated Extreme Points

Most approaches to the MOLP problem are based on pivoting of basic feasible solutions
in the style of the traditional simplex algorithm by G. Dantzig (cf., e.g., [39]). Examples
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for such approaches are by Armand [5], Armand and Malivert [6], Ecker, Hegner,
and Kouada [51], Ecker and Kouada [52], Evans and Steuer [62], Gal [66], Isermann
[78], Philip [112, 113], Rudloff, Ulus, and Vanderbei [118], Schönfeld [122], Strijbosch,
Doorne, and Selen [131], Yu and Zeleny [139, 140], and Zeleny [141]. For an in-depth
introduction to these algorithms, we refer the reader to the book by Ehrgott [55]. All
these approaches have in common that running time analyses are not considered.
Another approach is based on the weights for weighted-sum linear programming

problems P1(`). For each extreme point y of the upper image, there is a set of weights
Λ, such that for every ` ∈ Λ the LP P1(`) has an optimal solution x with Cx = y. A
central theory around these weight spaces is formulated by Benson and Sun [14].

In recent years, new objective space centered methods evolved. Examples for these
approaches are Dauer [40], Dauer and Gallagher [41], Dauer and Liu [42], and Dauer
and Saleh [43]. And also the work by H. Benson [11–13] and since approaches spawned
by his work are the major concern in this chapter, they are discussed in detail in
Section 5.1.

Today, also implementations are available to support practitioners in solving MOLP
problems. One of the first available is from A. Löhne and B. Weißing (cf. [97] and
http://www.bensolve.org) which is an implementation of the Primal and Dual Benson
algorithm as described later. Another implementation from the Zuse Institute Berlin is
also able to solve multiobjective mixed integer programs and the core MOLP solver is
similar on the Dual Benson algorithm (cf. http://polyscip.zib.de and Borndörfer et al.
[21]). A very recent project is vOptSolver by X. Gandibleux and S. Ruzika which aims
at providing a solver suite for multiobjective optimization problems. Implementations
for MOLP and MOCO will be available over time (cf. https://vopt-anr-dfg.univ-
nantes.fr).

Regarding the problem of finding nondominated extreme points of MOCO problems
(or the more general case of bounded multiobjective integer problems), there exist
efficient methods in theory and practice for the case of two objectives. The method,
today usually called the dichotomic approach, was first introduced independently by
Cohen in 1978 [34], Aneja and Nair in 1979 [4], and Dial also in 1979 [48]. Especially,
Aneja and Nair showed that if we have access to an algorithm A which solves a
lexicographic version of the MOCO problem, we can find the set of nondominated
extreme points of size k ≥ 2 by needing 2k − 1 calls to A.
In the case of three and more objectives there are only two approaches known:

The approaches by Özpeynirci and Köksalan [106] and Przybylski, Gandibleux, and
Ehrgott [114]. Özpeynirci and Köksalan propose an algorithm which is inspired by
the dichotomic approach. The algorithm maintains stages which are similar to the
pairs of extreme points in the dichotomic approach—but in dimension d, a stage
consists of d points. The stages are then tested for new extreme points similarly to
the dichotomic approach. But in contrast to the dichotomic approach, some of these
stages can yield negative and thus invalid weights. New stages are constructed from
old stages and potential new extreme points. Özpeynirci and Köksalan do not conduct
a running-time analysis, but provide some experiments for the case of three and four
objectives. This algorithm is a competitor to our implementation in the computational
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study in the end of this chapter.

The other approach by Przybylski, Gandibleux, and Ehrgott works on the weight-
space decomposition of the given problem instance. It decomposes the set of weights
W = {` ∈ Rd−1

≥ | ||`||1 ≤ 1} into polytopes, where each polytope is the set of
weights such that each such weight yields the same extreme point of the nondominated
set when used in a weighted-sum LP. The decomposition is then constructed in a
geometric manner by inspecting the facets of these polytopes. In the special case of
three objectives, Przybylski, Gandibleux, and Ehrgott show an efficient way how this
can be executed. For more than three objectives, they show how this case can be
recursively reduced to a lower dimensional case. While this procedure is very efficient
in the case of three objectives as is also demonstrated in computational experiments
in the paper, the authors state that even the implementation for the general case is
too complicated to pursue.

Contributions and Organization

We first introduce the algorithm and its background theory in Section 5.1. In Sec-
tion 5.2, we investigate the original or primal algorithm and its running time. We see
that the original algorithm suffers from two problems: We cannot control the encoding
length of the numbers in the input easily and many redundant faces can potentially
be enumerated. To overcome these problems, we introduce an improvement of the
algorithm which allows us to reduce the running time significantly and also to control
the encoding length of numbers in the input. The result is that we can enumerate
facets of the upper image very efficiently and also bound the delay of the algorithm,
while still giving a decent running time for enumerating the extreme points of the
upper image.

In Section 5.3, we are concerned with the so called Dual Benson algorithm. We
conduct a running time analysis based on a slightly modified version of the algorithm as
presented in the literature. Again, we see that the algorithm suffers from enumerating
redundant objects and we suggest an improvement that overcomes these problems.
The result is symmetric to the result of the primal algorithm: We can bound the delay
in enumerating the extreme points of the upper image and still get a good overall
running time for enumerating the facets of the upper image.

Further, we show that by using this algorithm, we can find nondominated extreme
points for a very wide range of MOCO problems without detouring round multiobjective
linear programming in Section 5.4. We also demonstrate the practical impact of our
implementation of the algorithm and compare it to the one existing state-of-the-art
implementation for an arbitrary number of objectives. Subsequently, we see that our
Dual Benson implementation is capable of solving moderately sized instances with up
to six objectives which was not possible before.
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5.1. The Benson Algorithm Family

The algorithms of the Benson algorithm family are descendants of an algorithm which
was introduced by H. Benson in 1998 [11]. Benson notes in his paper that there is a
need for algorithms working in the output space as opposed to most of the previous
approaches which almost exclusively worked on the decision space. A first example
of an implemented algorithm for MOLP was the implementation of a multiobjective
simplex method by R. Steuer [130] which was called ADBASE from 1975. It was
the first time researchers could solve MOLP instances and at the same time it was
a prime example of its limitations: Benson writes in his paper that even a problem
with 60 variables and 50 linear inequality constraints could not be handled by the
implementation on the given hardware from 1998. One reason was that the number of
extreme points in decision space it needed to visit was very large. Hence, a driving
force to look into objective space methods was the observation that the number
of nondominated extreme points in the objective space is at most the number of
Pareto-optimal extreme points in the decision space.
The algorithm H. Benson describes maintains an outer approximation polyhedron

of the image of the feasible polyhedron under the objective function. In each iteration
an inequality is added which cuts this outer approximate polyhedron, still ensuring
this new polyhedron to be an outer approximation. New inequalities can be found by
solving linear programming problems. A computationally very demanding procedure
needed in the algorithm is to switch between inequality and vertex representations
of the outer approximate polyhedron. This problem is well known as the vertex
enumeration problem (cf., e.g., Avis and Fukuda [9], Bremner [22], Bremner [23],
Bremner, Fukuda, and Marzetta [24], Chazelle [30], Dyer [50], and Fukuda and Prodon
[65]) and is a hard enumeration problem in general (cf. Khachiyan et al. [85]). In this
way, the algorithm computes a description consisting of extreme points and inequalities
of the nondominated subset of the image of the input polyhedron under the objective
function.

The algorithm as described by H. Benson does have an assumption on the instances:
The ideal point needs to exist for the given input instance, otherwise the initial outer
approximation cannot be constructed trivially. While this excludes certain MOLP
instances, this restriction is not very limiting in practice. For example, if the MOLP
describes the integer hull of a MOCO problem, an ideal point exists iff the instance
has a feasible solution. Also for an instance of a multiobjective integer problem, the
ideal point always exists if the nondominated set itself is nonemtpy and finite.
In the last 20 years after its invention, the algorithm was tested in applications in

finance and also in information theory (cf. Csirmaz [38]). Since the algorithm got
more and more popular, also more improvements were proposed regarding the number
of linear programs that need to be solved, see for example Csirmaz [38] and Hamel,
Löhne, and Rudloff [73]. Another point of interest is the way the output space is
handled (Burton and Özlen [27]). And also H. Benson himself wrote a paper about
the theoretical properties of his algorithm, cf. Benson [12].
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A Dual Algorithm

For single-objective linear programming and its applications in combinatorial opti-
mization, linear programming duality is a crucial tool. A similar theory for MOLP
which is easy to apply and with a geometrical interpretation was lacking until the work
by F. Heyde und A. Löhne [75] in 2008. Hyde and Löhne introduce a geometrically
dual polyhedron which is closely related to duality theory in single-objective linear
optimization. Based on the upper image in MOLP (which was also defined by Heyde
and Löhne), they define the geometrically dual polyhedron and baptize it the lower
image. A very curios detail of this duality are its geometric properties: An extreme
point of the upper image can be bijectively mapped to facets of the lower image and,
in general for an upper image of dimension d, every i-dimensional face of the upper
image can be bijectively mapped to a ((d− 1)− i)-dimensional face of the lower image
for i ∈ [d − 1]. Moreover, this mapping is easy to compute. This was possible by
generalizing MOLP to vector optimization problems; so in a narrow sense, the dual
problem is not a MOLP, but a vector optimization problem. We do not go into the
details of vector optimization and general ordering-cones in this thesis, but we note
that the work by Heyde and Löhne was necessary to formulate the dual algorithm.

The dual algorithm was proposed in 2012 by M. Ehrgott, A. Löhne and L. Shao [59].
Instead of computing a description of the upper image, the dual algorithm computes an
extreme point and inequality representation of the lower image. From this perspective
the dual algorithm works in the same way as the original or primal algorithm: An
outer approximation of the lower image is maintained and refined by means of new
cutting inequalities. As in the primal algorithm, vertex enumeration is a fundamental
building block. Due to the geometric duality, finding an inequality and extreme
point representation of the lower image gives us an inequality and extreme point
representation of the upper image.

The algorithm is also of interest from the perspective of weight-set decompositions
(cf., e.g., Benson and Sun [14]). The dual polyhedron can be interpreted as a lifting
of the weight-set decomposition into a space with one additional component. The
additional component describes the optimal value of the weighted-sum linear pro-
gram with the weights given by the other components. This observation led to the
implementation used in PolySCIP (cf. Borndörfer et al. [21]).

Another interpretation of the dual algorithm is an inner approximation of the upper
image: The dual of the intermediate polyhedra maintained in the dual algorithm are
inner approximate polyhedra of the upper image. In each iteration we thus find a new
face of the upper image and solve a problem which is dual to the vertex enumeration
problem, sometimes called the facet enumeration or convex hull problem.

We now go into more details of both of the primal and dual algorithm, perform
running time analyses on both and also propose improvements to both algorithms.
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5.2. Finding Facets: Benson’s Algorithm

We now follow Ehrgott, Löhne, and Shao [59] and Hamel, Löhne, and Rudloff [73] in
describing the primal algorithm in more detail. A pseudocode listing can be found in
Listing 1.
So let an MOLP with constraint matrix A ∈ Qm×n, an objective function matrix

C ∈ Qd×n and a left hand side vector b ∈ Qm be given. In an initialization phase
(cf. Lines 2 to 5), the first step is to compute an initial polyhedron which contains
the upper image (cf. Section 2.5.1) P entirely. This polyhedron is L = ymin + Rd≥,
where ymin is the ideal point; this polyhedron can be represented by the d inequalities
yi ≥ (ymin)i for i ∈ [d]. Accordingly, the algorithm computes ymin by solving the
weighted-sum linear programs P1(ei), for i ∈ [d] and stores the initial inequalities. If
one of the programs P1(ei) is unbounded, then an ideal point does not exist. On the
other hand, if a program P1(ei) happens to be infeasible, then the MOLP is infeasible.

If the above initialization succeeds, we iterate the following process: we find a point
on the boundary of P and construct a supporting hyperplane in this boundary point.
To achieve this goal, the algorithm utilizes the linear programming oracle problem
suggested by Benson [11] and its dual:

P2(y) min z

Ax ≥ b

Cx−1T z ≤ y

(x, z)∈ Rn+1

and

D2(y) max bTu −yT `
ATu−CT ` = 0

||`||1 = 1
(u, `) ∈ Rm+d

≥

In each iteration, we pick an extreme point v of L which we have not yet stored to
the output R; if there is no such extreme point, we are done (cf. Line 7). From this
point v, we construct a point on the boundary of the upper image P : We shoot a ray
starting in v in the direction of 1 and find the first point of P the ray hits. It may
happen, that v itself is a point on the boundary of P, but then we have proven that
v is an extreme point of P. To achieve this, we compute a solution (x, z) of P2(v)
(following Hamel, Löhne, and Rudloff [73], cf. Line 8). If z = 0, then v is a vertex of
P and for the solution x of P2 we have that Cx = v. Thus, the algorithm adds (x,v)
to the output set R (cf. Line 10).

In the case z > 0, v is not in P , but v + z1 is on the boundary of P . The algorithm
now has to find a new supporting hyperplane to a face F of P where v + z1 ∈ F . This
can be accomplished by finding an optimal solution (u, `) of D2(v + z1) (cf. Line 12).
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The hyperplane {x ∈ Rd | `Tx = bTu} is a supporting hyperplane to such a face of P .
In the end of each iteration in which we find a new supporting hyperplane, we need to
recompute the extreme points of L (cf. Line 14).

Listing 1 Benson’s Outer Approximation Algorithm
Require: Matrices A,C, and vector b : P 6= ∅ and ∃y ∈ Qd : y + C · P ⊆ Rd≥
Ensure: List R of pairs (x,y) for all y ∈ vertP and some x ∈ P such that Cx = y
1: for i ∈ [d] do
2: (ymin)i ← optimal solution value of P1(ei)
3: L← {x ∈ Rd | xi ≥ (ymin)i for i ∈ [n]} . outer approximate polyhedron
4: N ←M ← {ymin} . extreme points of L
5: R← ∅ . set to be returned
6: while N 6= ∅ do . Exists new extreme points
7: pick a v ∈ N
8: (x, z)← optimal solution of P2(v)
9: if z = 0 then

10: R← R ∪ {(x,v)}
11: else
12: (u, `)← optimal solution of D2(v + z1)
13: L← L ∩ {x ∈ Rn | `Tx ≤ bTu}
14: M ← extreme points of L . vertex enumeration
15: N ← {y′ ∈M | ∀(x,y) ∈ R : y 6= y′}

Proofs of correctness of this presentation of Benson’s algorithm can be found in the
works by Ehrgott, Löhne, and Shao [59] and Hamel, Löhne, and Rudloff [73].

5.2.1. Running Time Analysis of the Original Algorithm

Since 1988 (cf. Ruhe [119]) it is known that the upper image of an MOLP can have
an exponential number of extreme points and facets in the dimensions of C and A, so
the running time cannot be polynomial and a classical running time analysis was long
deemed uninteresting. We now conduct a running time analysis in the framework of
output-sensitive complexity. Consequently, we see that there is potential to improve
the algorithm to get a better running time bound; this also enables us to show that
the improved algorithm achieves incremental polynomial delay.

To investigate the running time of the original algorithm, we first need to be able to
say something about the number of iterations: In each iteration we find either a new
face supporting inequality or a new extreme point. Hence, the number of iterations is
bounded by the number of faces of P . If the number of extreme points is our measure
of the output length, we need to know how many faces the upper image has. To bound
the number of faces of P, we prove the following lemma.

Lemma 5.1. Let ve be the number of extreme points and vf be the number of faces
of P. Then we have vf ∈ O((ve(d+ 1))b

d
2 c).
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Proof. The polyhedron P has d extreme recession directions (cf. Burton and Özlen
[27]). If we bound it by a halfspace {x ∈ Rd | ||x||1 ≤ α} for a large α > 1, we
introduce at most dve new extreme points. Thus, we can bound the number of faces
of the polyhedron P by O(((d+ 1)ve)b

d
2 c) using the asymptotic upper bound theorem

by Seidel [123].

By a duality argument for the polytope in the above proof, we can also bound the
number of faces of P in the number of facets vF : vf ∈ O((vF (d+ 1))b

d
2 c).

In Line 14 of Listing 1, we need to execute a vertex enumeration of the system
of linear inequalities L. Since we assume the number of objective functions to be a
fixed number, the best choice for this task is the algorithm by B. Chazelle [30]. This
algorithm has a running time of O(nb

d
2 c + n logn) for a system of linear inequalities

of size n in Rd and is asymptotically optimal for fixed d.
In each iteration, we solve problem P2 and in each iteration where v is not an

extreme point, we also solve problem D2, additionally, we have problem P1 which
needs to be solved in the initializations. While we can solve P1 by, e.g., the ellipsoid
method (cf. Grötschel, Lovász, and Schrijver [70]) or the inner point method by
N. Karmakar [81], it is not so obvious with problems D2 and P2 for the following
reason: Looking closer into problem P2, the input consists of data from the input
of the MOLP, i.e., A,C and b, but also of the vector y which is recomputed while
the algorithm runs. Now, the ellipsoid method and also the inner-point method are
sensitive to the encoding length of the numbers in the input. Since y is recomputed
while the algorithm runs, it is not clear how the encoding length of the ys grow in the
process of the algorithm. Even if we show that it grows only by a polynomial xk in
an iteration, in the next iteration it can grow again by this polynomial and the new
length is x2k, concluding in an exponential size in the number of iterations. Thus, let
us assume we have oracles which solve these problems for us: AP1 , AP2 and AD2

Theorem 5.2. Let vf be the number of faces of P. Then the original or primal
Benson Algorithm

1. runs oracle AP1 at most d times,

2. runs oracle AP2 at most O(vf ) times,

3. runs oracle AD2 at most vf times,

4. performs a vertex enumeration at most vf times with a running time of O(vf b
d
2 c+

vf log vf ), and

5. has an additional overhead of O(vf b
d
2 c log vf ) for every vertex enumeration.

when fixing the number of objectives d ≥ 2.

Proof. 1. To compute ymin, we have to solve P1 d times.

2. We solve AP2 in each iteration and there are at most vf + ve iterations.
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5.2. Finding Facets: Benson’s Algorithm

3. In each iteration where we do not find an extreme point, we have to run oracle
AP2 . These are at most vf iterations.

4. In each iteration in which we did not find an extreme point, we also conduct a
vertex enumeration, i.e., vf times.

5. Additionally, we have to find the extreme points of L which have not yet been
checked (cf. Line 7 in Listing 1). Suppose we computed the set M of extreme
points by the vertex enumeration procedure in the last iteration and our current
output set is R. We see that R ⊆ M . To find a point v ∈ M\R, we can
sort both sets and find the first index were the sequences differ. By the upper
bound theorem we know that |M | ∈ O(vf b

d
2 c), as the number of inequalities

which define L is at most the number of faces of P. Thus sorting takes time
O(vf b

d
2 c log vf ) and we do this every time we perform a vertex enumeration.

Now we can investigate two viewpoints: While the formulation of the algorithm
above is centered around finding the extreme points of P, the algorithm can also
be used to find the facets of P, so it can solve MOLPYEx and MOLPYFa. Note
though that since we enumerate faces and not facets of P, we need to make sure
to output facets only by removing the redundant face supporting inequalities before
the algorithm terminates which can be done in time poly(d,N, n) [80]. To arrive at
output-sensitive running times, we need to solve one remaining problem, though: The
running times in Theorem 5.2 are bounded by the number of faces and not the facets
or extreme points. By employing Lemma 5.1 we can observe the following running
times:

Corollary 5.3. Let N be the number of extreme points (facets) of P. Then the
original or primal Benson Algorithm

1. runs oracle AP1 at most d times,

2. runs oracle AP2 at most O(N b
d
2 c) times,

3. runs oracle AD2 at most O(N b
d
2 c) times,

4. performs a vertex enumeration at most O(N b
d
2 c) times at a running time of

O(N
d2
4 +N b

d
2 c logN), and

5. has an additional overhead of O(N
d2
4 +b d

2 c logN).

when fixing the number of objectives d ≥ 2.

As an immediate consequence of these running times, we see that if we can solve
the problems P1, P2 and D2 in strongly polynomial time for a set of instances, the
algorithm runs in output-polynomial time time on these instances for each fixed d. So
we arrive at this central corollary for the original version of Benson’s algorithm:
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Corollary 5.4. If for an instance of MOLPYEx or MOLPYFa we can solve problems
P2 and D2 in strongly polynomial time and ymin exists, then the original Benson’s
algorithm is output-sensitive for each fixed d ≥ 2.

The obvious next question is if we can bound the delay of the algorithm. To answer
it, we need to ask when we know that an extreme point we have found is an extreme
point of P and how much running time went into finding it? We are sure to have
found an extreme point in Line 10 in Listing 1, but it is unclear how many faces we
enumerated until this point. To answer the same question regarding finding of facets
of P, we know that a supporting inequality supports P in a facet only at the end
when we remove redundant inequalities.

One serious drawback of the algorithm is that we might enumerate many redundant
supporting hyperplanes, where we only really need the inequalities supporting P in
its facets. This is especially a problem since the number of vertex enumeration steps
depends on the number of supporting inequalities we find and also the number of
redundant extreme points we compute depends heavily on this quantity. Hence, it
is very much desirable to enumerate only facet supporting hyperplanes, which is the
subject of the following section.

5.2.2. Finding Facets Exclusively

To ensure finding facet supporting inequalities exclusively, we first add some new
insights to the theory of weight set decompositions which has been started by Benson
and Sun [14] and further developed by Przybylski, Gandibleux, and Ehrgott [114]. We
give a characterization of the weight vectors of a member of the nondominated set by
means of a hyperplane representation of the polyhedron P.

Weight Space Theory

The weight set of a point y ∈ minP is the set

WP(y) := {` ∈ Rd | `Ty ≤ `Ty′,∀y′ ∈ P, ` ≥ 0}.

In other words, it is the set of non-negative vectors ` such that the weighted sum
linear program P1(`) yields a solution x such that Cx = y. The normalized weight
set of such a vector y is then defined as the intersection with the set of normalized
weighting vectors W 0 := W 0

d := {` ∈ Rd≥ | ||`||1 = 1}, i.e., W 0
P(y) := WP(y) ∩W 0.

We first show that the general normal cone and the more specialized weight set of
P in a point y ∈ minP coincide except for the sign.

Lemma 5.5. Let y ∈ minP, then WP(y) = −NP(y).

Proof. We see that TP(y) ⊇ Rd≥. It follows that TP(y)∗ ⊆ Rd≥
∗. With TP(y)∗ = NP(y)

from Theorem 6.28 of Rockafellar and Wets [116] we get that NP(y) = TP(y)∗ ⊆
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Rd≥
∗ = Rd≤. Then

WP(y) = {` ∈ Rd | yT ` ≤ ŷT `, ŷ ∈ P, ` ≥ 0}
= −({` ∈ Rd | ŷT ` ≤ yT `, ŷ ∈ P} ∩ Rd5)

= −(NP(y) ∩ Rd5) = −NP(y).

We can now use properties of normal cones to prove the crucial theorem for finding
facets in Benson’s algorithm. Since P is a polyhedron, there is a set of k inequalities
characterizing it: P = {x ∈ Rd | aTi x ≤ αi, i ∈ [k]}. For each point y of the
nondominated set, we define the active index set IP(y) := {i ∈ [k] | aTi y = αi} for
such a characterization.
Then, the following theorem states informally: If we take a weakly nondominated

point y ∈ minP then the set W 0
P(y) is exactly the set of all convex combinations of

normalizations of the inequalities which are active in y, i.e., satisfy aTi y = αi.

Theorem 5.6. y ∈ minP =⇒ W 0
P(y) = conv{−||ai||−1

1 ai | i ∈ IP(y)}

Proof. From Theorem 6.46 from Rockafellar and Wets [116] and Lemma 5.5 we get
that WP(y) = −NY (y) = cone{−ai | i ∈ IP(y)}. Then, we can intersect this set with
the normalized weight vectors W 0:

W 0
P(y) = WP(y) ∩W 0 = cone{−ai | i ∈ IP(y)} ∩W 0

= {−
∑

i∈IP (y)
γiai | i ∈ IP(y) : γi ≥ 0,

∑
j∈[d]

(−
∑

i∈IP (y)
γiai)j = 1}

Instead of considering the ai, we can normalize them yielding the same conical
combination. So the above set expands to

{−
∑

i∈IP (y)
γi||ai||−1

1 ai | i ∈ IP(y) : γi ≥ 0,
∑
j∈[d]

(−
∑

i∈IP (y)
γi||ai||−1

1 ai)j = 1}.

Since NP ⊆ Rd≥ and using Theorem 6.46 of Rockafellar and Wets [116] again, we
see that no row vector ai has positive components. A close look at the normalization
part thus unveils∑

j∈[d]
(−

∑
i∈IP (y)

γi||ai||−1
1 ai)j =

∑
i∈IP (y)

γi||ai||−1
1
∑
j∈[d]
−(ai)j

=
∑

i∈IP (y)
γi||ai||−1

1 ||ai||1 =
∑

i∈IP (y)
γi

Then we can rewrite W 0
P(y) as

W 0
P(y) = {−

∑
i∈IP (y)

γi||ai||−1
1 ai | i ∈ IP(y) : γi ≥ 0,

∑
i∈IP (y)

γi = 1}

= conv
{
−||ai||−1

1 ai | i ∈ IP(y)
}
.
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The above theorem allows us to draw a connection between the weight set of a point
y ∈ minP and the facets of P in which y lies.

Finding Facets

We now show how we can ensure to find facets only in Benson’s algorithm. The key
ingredient is that we can always find a facet supporting inequality in a point y by
computing an extreme point of the polytope W 0

P(y). This can be proven by fixing a
nondegenerate representation of P and using Theorem 5.6.

Lemma 5.7. Let y ∈ minP and ` ∈ vertW 0
P(y). Then, there is an α̃ ∈ R such that

{x ∈ Rd | `Tx = α̃} supports P in a facet.

Proof. We see that W 0
P(y) is independent of the inequality representation of P. Let

us consider the case where ai and αi are part of a nonredundant representation of P.
Theorem 5.6 gives us a characterization of W 0

P(y) = conv{−||ai||−1
1 ai | i ∈ IP(y)}.

Since ` is a vertex of W 0
P(y), there exists an î ∈ IP(y) such that ` = −||aî||

−1
1 aî.

Using the nonredundancy, we have that the hyperplane

{x ∈ Rd | aT
î
x = αî} = {x ∈ Rd | −||aî||

−1
1 aT

î
x = −||aî||

−1
1 αî}

supports P in a facet. Thus, setting α̃ := −||aî||
−1
1 αî proves the claim.

The question how to compute such an extreme point focuses on the oracle problem
D2. Up to now, we were looking for any ` which was part of a solution to D2. We
show that the projection on the ` variables of the optimal solutions to D2(y) is exactly
the normalized weight set of y ∈ minP.

Lemma 5.8. y ∈ minP =⇒ W 0
P(y) = proj`(arg maxD2(y))

Proof. Let us first show that W 0
P(y) ⊇ proj`(arg maxD2(y)). Theorem 2.5 of Benson

[11] concludes, that WP(y) ⊇ proj`(arg maxD2(y)), but since for every ` which is
part of a feasible solution to D2(y) the equation ||`||1 = 1 holds, so does W 0

P(y) ⊇
proj`(arg maxD2(y)).
Regarding W 0

P(y) ⊆ proj`(arg maxD2(y)), by definition

proj`(arg maxD2(y)) = {` ∈ Rd≥ | u ∈ Rm≥ , bTu = yT `,1T ` = 1, ATu = CT `}.

Let y ∈ minP and ` ∈W 0
P(y). Following the definition of W 0

P(y) we get `Ty ≤ `T ŷ
for ŷ ∈ P. Because y ∈ P, there is a feasible solution x of P such that Cx = y. By
`TCx ≤ `TCx̂ for every feasible solution x̂ of P , we conclude that x is an optimal
solution to P1(`).
Let us denote the dual problem to P1(`) by D1(`) which thus is

D1(`) : max{bTu | u ∈ Rm≥ , ATu = CT `}.

In the above case, we can find a vector u ∈ Rm≥ which is optimal for D1(`) because
of duality of these linear programs. Then, we have ATu = CT ` and bTu = `TCx =
`Ty.
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We can conclude that an extreme point of W 0
P(y) can be computed by finding an

extreme point solution of the solutions of D2(y) projected on the `-variables. This is
not necessarily an extreme point solution of D2(y) itself. We now prove a Lemma,
which allows us to reduce this problem to a lexicographic linear optimization problem.

Lemma 5.9. If a point y in an n-polyhedron P = {x ∈ Rd | Ax ≤ b} is lexicographi-
cally minimal in P then y is an extreme point of P .

Proof. Let us assume that y is lexicographically minimal in P and y is not an extreme
point of P . Then y is in the relative interior of some face of P . Let F be the unique
face containing y in its relative interior. (Note that P itself is a face of P by definition.)
Since y ∈ riF , there exists an ε > 0 such that B := Bε(y) ∩ aff F ⊆ F .

Then we can construct a lexicographically smaller point in P to create a contradiction:
We take a normalized affine base {v1, . . . ,vk} of aff F with ||vi||2 = 1 for every i ∈ [k]
and pick one of the base vectors v. One of the points y+ ε

2v or y− ε
2v is lexicographically

smaller than y itself. We also observe that both points are in B and thus in F .

This shows that we can easily compute an extreme point of W 0
P(y) by solving the

lexicographic optimization problem

lex-D2(y) : lexmin{(bTu− `Ty, `1, . . . , `d−1) | (u, `) ∈ Rm+d
≥ ,ATu = CT `,||`||1 = 1}.

To implement this improvement into the algorithm, we simply have to change line 12
in Algorithm 1 accordingly.

Running Time Analysis

Now let us state the running times of the new, improved algorithm. And now we also
have an oracle Alex-D2 for solving problem lex-D2.

Proposition 5.10. Let ve (vF ) be the number of extreme points (facets) of P. Then
the improved version of Benson’s Algorithm

1. runs oracle AP1 at most d times,

2. runs oracle AP2 at most ve + vF times,

3. runs oracle Alex-D2 at most vF times,

4. performs a vertex enumeration at most vF times with a running time of O(vF b
d
2 c+

vF log vF ), and

5. has an additional overhead of O(vF b
d
2 c log vF ) per vertex enumeration.

when fixing the number of objectives d ≥ 2.
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We see that not much has actually changed in the view of problem MOLPYEx. The
best bound for vF in the number of extreme points still is the more general bound of
Lemma 5.1 and so we arrive at the same running times as in Theorem 5.3. But in the
light of MOLPYFa a lot has changed: Besides (2) in the above theorem, we only deal
with the number of facets. Let us state this as a first corollary.

Corollary 5.11. Let vF be the number of facets of P. Then the improved version of
Benson’s Algorithm

1. runs oracle AP1 at most d times,

2. runs oracle AP2 at most O(vF b
d
2 c) times,

3. runs oracle Alex-D2 at most vF times,

4. performs a vertex enumeration at most vF times with a running time of O(vF b
d
2 c+

vF log vF ), and

5. has an additional overhead of O(vF b
d
2 c+1 log vF ).

when fixing the number of objectives d ≥ 2.

We see that we improved the running time and were able to get rid of the d2 in
the exponent for problem MOLPYFa. Moreover, we can make another observation:
The intermediate extreme points y of the linear inequality system L come from facet
defining inequalities of P instead of face supporting inequalities. The difference is,
that we can relate the facet defining inequalities directly to the input encoding and
are now able to bound the encoding length of the points y. To prove this, we base the
following observation on Lemma 1.3.4 by Grötschel, Lovász, and Schrijver [70] on the
encoding length of the determinant of a matrix and using Cramer’s rule.

Lemma 5.12 (Grötschel, Lovász, and Schrijver [70]). If a rational linear system
Ax = b,x ∈ Rn with A ∈ Qm×n and b ∈ Qm has a unique solution x∗, then x∗ ∈ Qn
and 〈x∗i 〉 ∈ O(poly(〈A〉, 〈b〉)).

The first step is to bound the encoding length of any extreme point of P. From
this we construct a supporting inequality to a given facet and prove that the encoding
length of the coefficients of this inequality grow only polynomially in the input size.
By normalization we arrive at the inequalities we compute by solving lex-D2 and we
show that the numbers do not grow too fast if we normalize the vector. So let’s first
investigate extreme points of P.

Lemma 5.13. For every extreme point y of P it we have 〈yi〉 ∈ O(poly(〈C〉, 〈A〉, 〈b〉)).

Proof. For an extreme point y in P there exists an extreme point x∗ of P = {x ∈ Rn |
Ax ≤ b} such that Cx∗ = y. We can write y as the unique solution of the following
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rational linear system containing only numbers of the input.

Cx = y

ai
Tx = bi for i ∈ I(x∗)
x ∈ Rn

Departing from the extreme points, we use some extreme points of a facet of P to
construct a facet supporting inequality with well behaved coefficients.

Lemma 5.14. For every facet F of P, there exists a facet supporting inequality
cTx ≤ γ for which 〈ci〉 ∈ O(poly(〈C〉, 〈A〉, 〈b〉)) and 〈γ〉 ∈ O(poly(〈C〉, 〈A〉, 〈b〉)).

Proof. For a facet F of P there are at least d extreme points y1, . . . ,yd of P that are
also extreme points of F . We can find a facet supporting inequality by solving the
following linear system:

yi
Tx = 0, for i ∈ [d] (5.1)

1Tx = 1 (5.2)
x ∈ Rd (5.3)

The equalities (5.1) describe the linear space of all vectors orthogonal to F . The
equality (5.2) ensures that ||x||1 = 1 because recP ⊆ Rn≥ and thus for each facet
normal we have that either all components are positive or negative (or 0). Since
the encoding length of the extreme points yi can be bounded by a polynomial in
the input size, the encoding length of the unique solution c to the above system can
also be bounded by a polynomial in the input size. Now we can find γ by solving
min{cTx | Ax ≤ b,x ∈ Rn}. Again, as all numbers in this weighted-sum LP are
either from the input or can be bounded by a polynomial in the input size, the optimal
value can also be bounded by a polynomial in the input size: There is an optimal
solution x∗ to this problem which is an extreme point of {x ∈ Rn | Ax ≤ b} and thus
〈x∗〉 ∈ poly(〈A〉, 〈b〉). Since γ = cTx∗, 〈γ〉 can also be bounded by a polynomial in
〈A〉, 〈C〉 and 〈b〉.

Now we can relate these facet defining inequalities to the inequalities we find in the
process of the algorithm.

Proposition 5.15. For an inequality `Tx ≤ bTu we compute by solving D2 in
the improved algorithm, it holds that 〈`i〉 ∈ O(poly(〈C〉, 〈A〉, 〈b〉)) and 〈bTu〉 ∈
O(poly(〈C〉, 〈A〉, 〈b〉)).

Proof. Let `Tx ≤ bTu as computed in the algorithm and supporting a facet F of P.
By Lemma 5.14, there also exists c ∈ Qd and γ ∈ Q such that cTx ≤ γ also supports
F . Now, since the facet supporting hyperplane is unique we know that

{x ∈ Rd | `Tx ≤ bTu} = {x ∈ Rd | cTx ≤ γ}.
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By construction of `, we also know that ||`||1 = 1, but this is also the case for the c
constructed in Lemma 5.14. Thus, ` = c and γ = bTu.

Now let’s investigate the intermediate extreme points v we compute in the algorithm:
These points are extreme points of the intermediate outer approximation L = {x ∈
Rd | `Ti x ≤ bTui, i ∈ [#iterations]} of P . We can again write v as the unique solution
to the linear system:

`Tx = bTui, i ∈ IL(y)
x ∈ Rd

Hence, the vectors v we use in problem P2 in the improved algorithm can always be
bounded by a polynomial in the input size. In contrast to the original algorithm, we
now can solve P2 by the ellipsoid method and arrive at a polynomial running time in
the input size independent of the number of iterations. We can also bound the input
of the problem lex-D2: The input for lex-D2 consists only of numbers from the input
and v + z1, where v is as described above. Now, z is part of an optimal extreme point
solution to P2 and its encoding length is thus also in poly(〈A〉, 〈C〉, 〈b〉). There is one
caveat though: lex-D2 is a lexicographic linear programming problem, but we can
show that we can reduce a lexicographic linear programming problem to a series of
linear programming problems and prove the following Lemma:

Lemma 5.16. An optimal solution to a lexicographic LP can be computed in polyno-
mial time.

Proof. We can prove this by using a well known approach that has—to the best of our
knowledge—not been analyzed as yet. We solve the lex-LP lexmin{(c1

Tx, . . . , cd
Tx) |

Ax ≤ b} by solving a series of single objective LPs. Thus, we define LP1, . . . ,
LPd, where LP1 : min{c1

Tx | Ax ≤ b} and LPk : min{ckTx | Ax ≤ b, c1
Tx =

y1, . . . , ck−1
Tx = yk−1} for k ∈ {2, . . . , d} and yk being the optimal value of LPk. We

see that an optimal solution to LPd is also an optimal solution to lex-LP.
The question here is how the encoding length of the yk are growing. By showing

that the encoding length of the optimal extreme point solutions of each of the LPk
are always bounded by a polynomial in the input, we see that the encoding length of
yk is always bounded by a polynomial in the input size. But this is apparent by the
following observation: Let Mk be the set of optimal extreme point solutions to LPk,
then Md ⊆ · · · ⊆M1. Since the encoding length of the extreme point solutions to LP1
are bounded by poly(〈A〉, 〈b〉), the claim is proven.

So in terms of polynomial solvability, by turning D2 into a lexicographic linear
programming problem we did not lose anything. To summarize the observations of
this subsection: We showed, that by finding facets of P exclusively, we get better
running times for the problem MOLPYFa, but did not improve on the running time for
the problem MOLPYEx. However, we can now get rid of the assumption that P2 and
lex-D2 need to be solved in strongly polynomial time and we can state the running
time in a concrete way:
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Theorem 5.17. Let ve (vF ) be the number of extreme points (facets) of P. Then the
improved version of Benson’s algorithm has a running time of

O((ve + vF ) poly(〈A〉, 〈C〉, 〈b〉) + vF
b d

2 c+1 log vF )

for each fixed d ≥ 2. Moreover, problem MOLPYEx can be solved in time

O(veb
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + ve

d2
4 +b d

2 c log ve)

for each fixed d ≥ 2 and MOLPYFa can be solved in time

O(vF b
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + vF

b d
2 c+1 log vF )

for each fixed d ≥ 2 if ymin exists for all these problems.

And for the problems MOLPYEx and MOLPYFa this means:

Corollary 5.18. If for an instance of MOLPYEx (MOLPYFa) ymin exists, then the
improved version of Benson’s algorithm is output-sensitive for solving MOLPYEx

(MOLPYFa) for each fixed d ≥ 2.

We can make another observation regarding problem MOLPYFa: Each time we
solve problem lex-D2 we get a facet defining inequality. We can now consider the
delay until finding the next facet defining inequality. We have to at most investigate
all intermediate extreme points and they are either all extreme points of P and then
we are done, or we find a new facet defining inequality. This way, we can bound the
delay of the improved version of Benson’s algorithm.

Theorem 5.19. Let d ≥ 2 be fixed. The k-th delay of the improved version of Benson’s
algorithm is

O(kb
d
2 c(poly(〈A〉, 〈C〉, 〈b〉) + log k))

for solving MOLPYFa with existing ymin.

5.3. Finding Extreme Points: The Dual of Benson’s
Algorithm

We now turn to the Dual Benson Algorithm and discuss its running time. First, we
introduce the duality theory in multiobjective linear programming introduced by F.
Heyde and A. Löhne in 2008 [75] on which the algorithm is based. Then we describe
the algorithm in detail and then turn to its running time analysis.
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The Geometric Dual Polyhedron

Heyde and Löhne [75] define a dual polyhedron, or lower image, D to the upper image
P of an MOLP which we define now.
Since weight vectors ` ∈W 0

d of the weighted-sum problem are always normalized
in this work, i.e., ||`||1 = 1, it suffices to consider `1, . . . , `d−1 and calculate `d when
needed. For ease of notation we define for any v ∈ Rd : λ(v) := (v1, . . . ,vd−1, 1 −∑d−1
i=1 vi). Then, we consider the dual problem of the weighted-sum LP, which is

D1(`) max bTu

ATu = CT `

u ∈ Rm≥ .

The dual polyhedron D now consists for all possible vectors ` ∈W 0
d and solutions u

to D1(`) of the vectors (`1, . . . , `d−1, b
Tu). Thus,

D := {(`1, . . . , `d−1, b
Tu) ∈ Rd | ` ∈W 0

d ,u ∈ Rm≥ , ATu = CT `}.

Following LP duality theory, for each point y on the upper boundary of this polyhedron
yd is also the optimal value of P1(λ(y)). To take the notion of the upper boundary
to a more formal level, we define the Kd-maximal subset of a set M ⊆ Rd, where
Kd := {(0, . . . , 0, α) ∈ Rd | α ≥ 0}: A vector y ∈M is said to be Kd-maximal in M if
(y +Kd) ∩M = {y}. The subset of Kd-maximal points of M is written as max Kd

M .
The dual polyhedron can be characterized by

D = {x ∈ Rd | λ(x) ≥ 0,∀y ∈ minP : ψ(y)Tx ≥ −yd},

where ψ(y) := (y1−yd, . . . ,yd−1−yd,−1) [75]. Moreover it is proven that only those
y ∈ minP are necessary which are extreme points of P . In other words, apart from the
inequalities λ(x) ≥ 0, we can describe the polyhedron as an intersection of halfspaces
{x ∈ Rd | ψ(y)Tx ≥ −yd} for each extreme point y of the upper image P. Further,
Heyde and Löhne also prove that each of these inequalities defines a facet. Thus, we
can solve MOLPYEx by enumerating the facets and solve MOLPYFa by enumerating
the extreme points of D. While the dual algorithm originally enumerates the extreme
points of D, we change the exposition accordingly to match the description of the
primal algorithm.

Algorithm Description

We follow Ehrgott, Löhne, and Shao [59] in describing the geometric dual algorithm
and again use ideas by Hamel, Löhne, and Rudloff [73]. Proofs of correctness and
finiteness can be found in both places. A description of the entire algorithm in
pseudocode can be found in Listing 2.
The algorithm always maintains an outer approximation polyhedron L of D in an

inequality representation. In the initialization, the algorithm constructs a polyhedron
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containing D (Lines 1 to 3). This is done by finding one arbitrary weakly Pareto-
optimal solution to the MOLP, in our pseudocode we compute a solution to P1(e1)
and add the initial inequalities λ(x) ≥ 0.

Then, in each iteration, the algorithm picks one new extreme point v of the current
intermediate polyhedron and shoots a ray into the polyhedron D (Lines 6 and 7).
Similar to the original algorithm we want to find out if v already lies on the boundary
of D. And similar to the original algorithm, we can do this by shooting a ray into D
starting at v. This can be achieved by finding an optimal solution x with value z of
P1(λ(v)), which is equivalent to shooting a ray in the direction of −Kd.

By doing so, we either discover that v is an extreme point of D if z = λ(v)TCx = vd
and we proceed to the next iteration. Or we discover that v is not an extreme point,
which is the case if z = λ(v)TCx < vd. In the latter case, the algorithm computes
a face defining inequality which separates v from D. Because of geometric duality,
we can use the new inequality ψ(y)Tx ≥ −yd for y = Cx. In lines 12 and 13, the
algorithm intersects the current polyhedron with the halfspace corresponding to this
inequality. Additionally, it saves y as a candidate for an nondominated extreme point
in Line 14. This repeats until all extreme points have been confirmed to be part of
D. In the end, we still have to remove redundant pairs from the set of candidate
nondominated extreme points (see Line 15).

Listing 2 Dual Variant of Benson’s Outer Approximation Algorithm
Require: Matrices A,C, and vector b : P 6= ∅ and ∃y ∈ Rd : y + C · P ⊆ Rd≥
Ensure: List R of pairs (x,y) for all y ∈ vertP and some x ∈ P such that Cx = y
1: Find solution x of P1(e1) and set y ← Cx
2: L← {x ∈ Rd | λ(x) ≥ 0, ψ(y)Tx ≥ −yd} . Initial polyhedron
3: M ← Extreme points of L . Perform a vertex enumeration
4: E ← ∅ . Extreme points already discovered
5: while M\E 6= ∅ do
6: pick one v ∈ N
7: x← optimal solution to P1(λ(v)) . Shoot ray straight down
8: y ← Cx
9: if λ(v)Ty = vd then . Is an extreme point of D

10: E ← E ∪ {y}
11: else . Not an extreme point of D
12: L← L ∩ {x ∈ Rd | ψ(y)Tx ≥ −yd} . Add new inequality
13: M ←Extreme points of L . Perform a vertex enumeration
14: R← R ∪ {(x,y)} . Add new candidate extreme point of P
15: Remove redundant entries from R

5.3.1. Running Time Analysis

Let us now investigate the running time of the dual algorithm. Most of the theoretical
work we discovered in the previous section on the original algorithm helps us here. In
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the end of the analysis we again see, that there is room for improvement and proceed
with a subtle change to arrive at a better running time.

Again, the key insight to the running time of the dual algorithm is that the
vertex enumeration steps are performed in the ordinarily much smaller domain of the
polyhedron D, which is of dimension d. Additionally, the number of inequalities we
enumerate in the process of the algorithm is at most the number of K-maximal faces
of D which—by the geometric duality theorem [75]—is exactly the number of faces of
P . Thus by Lemma 5.1, the number of faces of D and thus the number of inequalities
the algorithm computes does not exceed O(veb

d
2 c) (for every fixed d). To compute

the extreme points of the intermediate polyhedra, we can again use the asymptotic
optimal algorithm for fixed d by Chazelle [30].

Regarding encoding length, we only solve the weighted sum LPs P1(λ(v)). The case
is easier here, since the face defining inequalities always come directly from data from
the input.

Lemma 5.20. For an inequality ψ(y)Tx ≥ −yd we add in Line 12 of the dual
algorithm we have that 〈y〉 ∈ poly(〈A〉, 〈C〉, 〈b〉).

Proof. The inequalities ψ(y)Tx ≥ −yd we add in Line 12 only depend on the vec-
tor y which is y = Cx∗ and x∗ is an optimal extreme point solution to the LP
P1(λ(v)) : min{λ(v)Cx | Ax ≤ b,x ∈ Rn}. An optimal extreme point solution to
P1(λ(v)) is a unique solution to the linear system

aTi x = bi, i ∈ IP (x∗)
x ∈ Rn

Thus, the encoding length of x∗ is bounded by poly(〈A〉, 〈b〉). The encoding length of
y then is bounded by poly(〈A〉, 〈C〉, 〈b〉).

Note though, that the encoding length of an extreme point solution of the LPs
P1(λ(v)) is independent of the vector λ(v); the time to solve P1(λ(v)) might not be.
But now we can bound the running times of weakly polynomial algorithms for solving
these LPs by the following lemma:

Lemma 5.21. The encoding length of an intermediate extreme point v to solve
P1(λ(v)) is bounded by poly(〈A〉, 〈C〉, 〈b〉).

Proof. Let j be the number of inequalities we already found until point v is discovered
and let y1, . . . , yj be the vectors y = Cx for solutions x to P1 for each inequality.
By the previous lemma we know that 〈y〉 ∈ poly(〈A〉, 〈C〉, 〈b〉). The vectors v are
extreme points of L which is defined as

ψ(yi)Tx ≥ −yid, i ∈ [j]
x ∈ Rd.
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So we can again write v as the unique solution to the linear system

ψ(yi)Tx = −yid, i ∈ IL(v)
x ∈ Rd.

As in the investigation of the primal algorithm, let’s first assume we have access to
an oracle AP1 solving problem P1 for us. Then the running time of the dual algorithm
breaks down to the following elements:

Lemma 5.22. Let vf be the number of K-maximal faces of D. Then the Dual Benson
Algorithm

1. runs oracle AP1 at most O(vf ) times,

2. performs a vertex enumeration at most vf times with a running time of O(vf b
d
2 c+

vf log vf ),

3. has an additional overhead of O(vf b
d
2 c log vf ) for every vertex enumeration, and

4. removes redundant extreme points in the end with a running time of poly(d,N, n).

when fixing the number of objectives d ≥ 2.

Proof. 1. We solve P1 in each iteration and since we either find an extreme point
or a face supporting inequality in a K-maximal face in each iteration we have at
most O(vf ) iterations.

2. In each iteration in which we do not find an extreme point, we also conduct a
vertex enumeration, i.e., vf times.

3. Additionally, we have to identify the extreme points of L which have not yet
been checked. To find a point v ∈M\E, we can sort both sets and find the first
index were the sequences differ or maintain E in a sorted manner, which does
not change the asymptotic running time. By the upper bound theorem we know
that |M | ∈ O(vf b

d
2 c), as the number of inequalities which define L is at most

the number of faces of D. Thus sorting takes time O(vf b
d
2 c log vf ) and we do

this every time we perform a vertex enumeration.

4. This reduces to a redundancy removal problem which can be solved in time
poly(d,N, n) [80]. The exact running time is of no further interest here.

By using that the the number of K-maximal faces of D is the number of faces of P
and thus can be bounded by O(N b

d
2 c) for N being the number of extreme points or

facets of P, we arrive at the following theorem:
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Theorem 5.23. Let ve be the number of extreme points of P and d ≥ 2 be fixed.
Then, Algorithm 2 has a running time bounded by

O(veb
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + ve

d2
4 +b d

2 c log ve + poly(d, ve, n)).

Note though that by solving MOLPYFa, we do not need to remove redundant
extreme points of P and thus can arrive at a better bound:

Corollary 5.24. Let vF be the number of facets of P and d ≥ 2 be fixed. Then,
Algorithm 2 has a running time bounded by

O(vF b
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + vF

d2
4 +b d

2 c log vF ).

Observe that both running times are worse than those we achieved with the primal
algorithm. But as in the primal algorithm, we can improve the dual algorithm by
finding facet supporting inequalities exclusively and this is the topic of the next section.

5.3.2. Lexicographic Dual Benson: Finding Extreme Points
Exclusively

The goal of this section is to restrict the algorithm to find facet supporting inequalities
exclusively. This can be achieved by looking closer at the MOLP duality theory by F.
Heyde and A. Löhne [75]. They prove a correspondence between extreme points of P
and facets of D.

Lemma 5.25 (Corollary 2 by Heyde and Löhne [75]). y ∈ vertP ⇐⇒ {x ∈ Rd |
ψ(y)Tx = −yd} supports D in a facet.

We observe that computing an optimal solution x of P1 in Line 7 of Listing 2
with lexicographic minimal y := Cx gives us a vertex y of P by using Lemma 5.9.
Consequently, {x ∈ Rd | ψ(y)Tv = −yd} supports D in a facet. Moreover, the second
component of the pairs we add in Line 14 are already vertices of P then and we can
skip Line 15 and do not need to remove redundant pairs anymore.
We define lex-P1(`) : lexmin{(`TCx, c1x, . . . , cdx) | Ax ≥ b,x ∈ Rn}, where

c1, . . . , cd are the rows of C and change Lines 1 and 7 accordingly. Because of
Lemma 5.16, we can solve these lexicographic linear optimization problems in poly-
nomial time. Thus again, we do not lose anything by converting this problem to a
lexicographic LP.

So let us again break the running time of the algorithm down into its parts:

Lemma 5.26. Let ve (vF ) be the number of extreme points (K-maximal facets) of D.
Then the Dual Benson Algorithm

1. runs oracle AP1 at most ve + vF times,

2. performs a vertex enumeration at most vF times with a running time of O(vF b
d
2 c+

vF log vF ), and
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3. has an additional overhead of O(vF b
d
2 c log vF ) for every vertex enumeration.

when fixing the number of objectives d ≥ 2.

By using that the number of extreme points of D is the number of faces of P and
the number of K-maximal faces of D is the number of extreme points of P, we arrive
at the running times for the algorithm:

Theorem 5.27. Let ve (vF ) be the number of extreme points (facets) of P. Then the
improved version of the dual of Benson’s algorithm has a running time of

O((ve + vF ) poly(〈A〉, 〈C〉, 〈b〉) + ve
b d

2 c+1 log ve)

for each fixed d ≥ 2. Moreover, problem MOLPYEx can be solved in time

O(veb
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + ve

b d
2 c+1 log ve)

for each fixed d ≥ 2 and MOLPYFa can be solved in time

O(vF b
d
2 c poly(〈A〉, 〈C〉, 〈b〉) + vF

d2
4 +b d

2 c log vF )

for each fixed d ≥ 2 if ymin exists for all these problems.

This is a significant improvement over Theorem 5.23, since we eliminate the term
having d2 in the exponent. Moreover, we are now able to bound the delay of the
algorithm. In the original algorithm this was not possible since it could take a large
number of iterations until the (d+ 1)-th extreme point is found.

Theorem 5.28. Let d ≥ 2 be fixed. For the lexicographic dual Benson algorithm the
k-th delay is in

O(kb
d
2 c(poly(〈A〉, 〈C〉, 〈b〉) + log k))

for solving MOLPYEx with existing ymin.

Proof. The first delay only consists of solving the problem lex-P1(e1) and can thus be
bounded by O(poly(〈A〉, 〈C〉, 〈b〉)). The k-th delay is the time between outputting
the k-th and the (k + 1)-th extreme point. We have at most as many iterations as
the intermediate polyhedron has extreme points. Since the intermediate polyhedron
has k + d inequalities, it can have at most O((k + d)b

d
2 c) extreme points. Thus, the

number of iterations is bounded by O(kb
d
2 c) for fixed d. In the ve-th delay, we explore

at most all extreme points of D and do not enter the else-branch at all.

5.4. Application to Multiobjective Combinatorial
Optimization

Let us now get back to where we started: The motivation for considering MOLP was
to find extreme points of MOCO problems. In the introduction to this chapter we
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showed, that we can try solving the convex relaxation Definition 5.1 to find extreme
points of a given MOLP.

One concern is that the algorithms only work if the ideal point ymin exists. But this
is always the case for feasible combinatorial instances, because there is only a finite
number of solutions. If we now have an algorithm which gives us for every instance of a
MOCO problem a corresponding MOLP instance, we can compute the extreme points
in an output-sensitive way. Let us formalize the notion of having such an algorithm: Let
(I, S, v) be a MOCO problem. We call an algorithm, which computes for every instance
x ∈ I a matrix A ∈ Qm×n, a matrix C ∈ Qd×n and a vector b ∈ Qm in polynomial
time in |x|, a compact formulation if convS(x) = {x ∈ Rn | Ax ≤ b} and C = Cx.
Note that the polynomial-time requirement implies that 〈A〉, 〈C〉, 〈b〉 ∈ poly(|x|).
Additionally, in Lemma 5.16 we showed that the lexicographic LP can then also

be solved in polynomial time, thus we can use the improved version of the dual of
Benson’s algorithm and arrive at the following corollary:

Corollary 5.29. If a compact formulation exists for a MOCO problem O, then OYEx

can be solved in incremental polynomial time for every fixed d ≥ 2.

This is a restriction, because there are combinatorial polytopes, even with polynomial-
time solvable optimization problems, which do not have compact formulations as for
example the matching polytope (cf. Rothvoss [117]). But we can try to generalize
the above corollary to more problems: Revisiting the (unimproved) Dual Benson
algorithm, we see that the only point where the algorithm reads the input is in solving
the problems P1(`) with varying `. Using the convex relaxation, we need to solve
the LP: min{`TCxx | x ∈ convS(x)}. We can observe that we are only interested in
extreme point solutions to this LP and in this case we can solve the weighted-sum
problem min{`TCxx | x ∈ S(x)} instead. We do not have to worry about the encoding
of the objective function vector `TC, since Lemma 5.21 guarantees that the encoding
length is bounded by a polynomial in the input size.
So we can generalize Corollary 5.29 to all problems for which the weighted-sum

problem can be solved in polynomial time.

Theorem 5.30. If for a MOCO problem O, P1 can be solved in polynomial time,
OYEx can be solved in output-polynomial time for every fixed d ≥ 2.

On the flip side though, we cannot use the improved version when we only have
access to an algorithm solving the weighted-sum problem; so we can only prove output-
polynomiality. But if we have also access to an algorithm solving the lexicographic
version of the weighted sum problem, we can use the dual algorithm and arrive at
incremental polynomial time

Theorem 5.31. If for a MOCO problem O, lex-P1 can be solved in polynomial time,
OYEx can be solved in incremental polynomial time for every fixed d ≥ 2.

If we apply Theorem 5.31 to the multiobjective spanning tree problem, we immedi-
ately obtain an algorithm with a polynomial upper bound on the running time with
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respect only to the input size to find the nondominated extreme points for each fixed
number of objectives. This is well known in the biobjective (or parametric) case, but it
is a new result for the general case. It bases on the well known fact that for the MOST
problem there exist at most O(m2(d−1)) nondominated extreme points as shown by
Ganley, Golin, and Salowe [68]. We obtain a similar result for the multiobjective global
min-cut problem, as it has been shown by Armon and Zwick [7] that the parametric
complexity is polynomial in the input size for any fixed number of objectives. For
the MOSP a polynomial parametric complexity was proven by Nikolova et al. [103],
consequently we also obtain a polynomial running time forMOSPYEx. We summarize
these findings in a corollary:
Corollary 5.32. The problems MOSPYEx, MOSTYEx and MOMCYEx can be
solved in polynomial time for every fixed number of objectives.

5.4.1. Computational Study

In the remainder of this chapter we want to change our focus from theoretical consid-
erations to more practical ones. In the introduction we said that we want to support
algorithm designers in forging more efficient algorithms. In this section we show that
through having a running time analysis framework, we are able to select efficient
algorithms for a specific task.
The problem of solving OYEx for a MOCO problem O receives its importance

through the need for algorithms for the first phase of the two phases method. There
do exist algorithms and implementations which solve this problem, most recently
by A. Przybylski, X. Gandibleux and M. Ehrgott [114] and Ö. Özpeynirci and M.
Köksalan [106]. We call the first one the PGE-algorithm and the latter one the
OK-algorithm. While a running time analysis is not conducted in either work, the
authors show empirical results of their implementations. In the PGE case, a special
implementation for three objectives is showcased, while an implementation of the
algorithm for four and more objectives is described but not implemented. The authors
state that the algorithm for four and more objectives is most certainly not practically
efficient. For the OK-algorithm, Özpeynirci and Köksalan have an implementation for
the general case of arbitrary many objectives and show empirical results for the case
of three and four objectives only, because the implementation was not able to solve
larger instances. Implementations for either algorithm were not available.

We decided to compare our algorithm to the OK algorithm, because it is capable of
solving an arbitrary number of objectives. The PGE implementation is a specialized
implementation for the three objective case and thus can be much faster than the
Dual Benson implementation on these instances. Additionally, comparing the running
times stated by Przybylski, Gandibleux, and Ehrgott [114] to our empirical results,
the PGE implementation is quite efficient for the three objective case and is always a
slight bit faster than our implementation.

To compare the implementations, we used multiobjective assignment instances from
the literature as well as newly generated ones, because the available instances are too
small to highlight the capabilities of the Dual Benson approach.
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The Lexicographic Dual Benson Implementation

The Lexicographic Dual Benson algorithm was implemented in C++ using double
precision arithmetic and compiled using LLVM 3.3. We use the formulation which
is described in Listing 2 as a base line. To mitigate numerical inconsistencies, we
do not touch the weights λ(v) as is done in the work by Ehrgott, Löhne, and Shao
[59], where the authors optimize along a line through v and a point in the interior
of D, possibly introducing longer encodings of the numbers in the input of these
LPs. We use std::vector where possible. To hold vector information, we also use
std::vector which does introduce a possibly avoidable additional indirection, but
it makes the source code very clear and easily usable for any number of objectives
without recompilation. To compute the extreme points of the intermediate polyhedra,
we implemented a version of the Double Description method with full adjacency
information in the case of d ∈ {3, 4} and for d > 4, we used the CDD library
(cf. Fukuda and Prodon [65]). To find lexicographic minimal assignments for the
lexicographic dual Benson algorithm, we implemented a lexicographic version of the
Hungarian method.

The OK Implementation

One very important caveat must be stated here: The PGE algorithm as well as the OK
algorithm were not able to find all extreme points of all given instances and sometimes
found points which are not extreme. This is due to numerical inconsistencies occurring
through the use of double precision arithmetic.
This is especially a problem in the original implementation of the OK algorithm,

which is not easy to implement efficiently and correct. Let us describe the algorithm
in some detail. The algorithm proceeds in iterations and a set of already computed
extreme points R is maintained. In each iteration the algorithm picks a subset of R of
cardinality d: Y = {y1, . . . ,yd} and computes a normal ` to the hyperplane affinely
spanned by Y by solving the linear system

yTi x = 0, i ∈ [d]
1Tx = 1

x ∈ Rd.

If all points in Y happen to lie in a common nontrivial face of convR then ` is a
normal to this face. In this case the weighted-sum problem min{`TCx | x ∈ S(x)}
gives us a new point on the boundary of P iff the face is not a face of P . If the points
in Y do not have a nontrivial face in common, solving the weighted sum problem
gives us a point we already found. Since the algorithm does not know the actual face
structure of convR, this happens on a regular base. Özpeynirci and Köksalan describe
pruning rules to mitigate this problem and compute weighted-sum problems of not
promising sets Y less often.
The severe numerical inconsistencies in the implementation are introduced in the

initialization of the algorithm: The first set of extreme points are artificially introduced
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“dummy” points Mei with M ∈ Q and i ∈ [d]. The hyperplane in the affine span of
all these Mei must not separate any point of the nondominated set from the origin,
or this point might possibly not be found (assuming minimization and y ≥ 0 for every
point y of YN ). As a solution to this problem, Özpeynirci and Köksalan propose
to set M to be “large enough”. A lower bound was shown in the dissertation by Ö.
Özpeynirci from 2008 [105] to be (

∑
i∈[d] maxy∈YX

{yi}) ·maxi∈[d] maxy∈YX
{yi}. This

results in linear systems containing numbers of very different precision, which in turn
results in numerical inconsistencies when using double precision arithmetic such as
the IEEE 754 standard.
Instead of using points with large encoding length on the axes, we use projective

points at infinity to reduce the numerical inconsistencies which occurred in the experi-
mental setting by Özpeynirci and Köksalan [106]. Nevertheless, the implementation
still misses some nondominated extreme points, but does always find more than
the original implementation. To compute optimal assignment solutions in the OK
algorithm, we use an implementation of the Hungarian method.

We also implemented the pruning steps discussed by Özpeynirci and Köksalan [106]
and as a sanity check we compared the running times of our implementation to the
running times stated in the work by Özpeynirci and Köksalan. Our implementation of
the OK algorithm is always much faster than the running times stated in the paper,
but this is only a rough estimate, since the paper was submitted in 2008 and only a
notebook was used to perform the experiments.

Questions for Empirical Investigation

We ask two questions: The first one being which algorithm performs better on a set
of benchmark instances (Q1). Our metric is the running time, since both algorithms
are exact algorithms.

The second question is asked in connection to the actual improvement we proposed
in Section 5.3.2: Does this improvement also give us an improvement in the practical
running time on the benchmark instances? (Q2)

Instances Used

Both implementations were tested on instances of the multiobjective assignment
(or minimum weight bipartite matching) (MOAP) problem. The MOAP problem
is often used as a benchmark problem in the biobjective case, but is also used in
the computational studies of the approaches existing for three and four objectives
(cf. Özpeynirci and Köksalan [106] and Przybylski, Gandibleux, and Ehrgott [114]).
The instances consist of complete bipartite graphs with 2n nodes, where n is said
to be the number of resources. The weights in the instances from Özpeynirci and
Köksalan [106] are chosen uniformly at random from the set {1, . . . , 20}. We note that
on these instances the nondominated set does not grow exponentially in n, because
the numbers in the input are bounded by a constant.
The instances available from Özpeynirci and Köksalan [106] have three or four
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objectives and for every number of objectives and resource combination there are 20
instances. The instances with three objectives have 10, 20 or 30 resources, and there
is only one instance set with 10 resources and four objectives. We extended the set of
instances and generated similar instances with up to six objectives1.

Experimental Setting

The experiments were performed on an Intel Core i7-3770, 3.4 GHz and 16 GB of
memory running Ubuntu Linux 12.04. To bound the running times within reason,
we enforce a running time limit of one hour. Additionally, because of the hardware
resource used, we enforce a memory limit of 16 GB.

Evaluation Metrics

To evaluate the results, we use the median running time and median number of extreme
points. It is easy to see that the distribution of running times is heavily skewed,
since negative running times do not exist. When using the median as a measure, the
standard deviation is not an appropriate measure of deviation. This is why we use the
median absolute deviation (MAD) for this, which is a robust measure of dispersion.
For more information on the MAD, see, e.g., Hoaglin, Mosteller, and Turkey [76] and
Leys et al. [95].

5.4.2. The Results

In this section, we present the results and answer our two questions by means of
empirical data.

Q1: Which algorithm performs better?

In Table 5.1 we can see all results showing the running times and numbers of extreme
points found. We observe that the Lexicographic Dual Benson implementation is able
to solve all instances in the given limits. The implementation of the OK algorithm is
only able to solve very small instances with three and four objectives. In all other
cases there are instance classes on which the implementation cannot solve all of the
instances, prohibiting a statistical analysis. Nevertheless, we give the median and
MAD in parentheses if the OK implementation was not able to solve all instances.
In most cases, memory was the limiting factor for the OK implementation. This is
not surprising as many tuples of extreme points survive the pruning steps. In the
cases where the OK implementation is able to solve all instances, we see that the
lexicographic dual Benson implementation is up to a factor of 640 times faster.

Without further statistical analysis we can clearly say that the Lexicographic Dual
Benson implementation is much more usable in practice, at least for MOAP instances.

1All instances are available at https://ls11-www.cs.tu-dortmund.de/staff/
boekler/moco-instances
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Lexicographic Dual Benson OK implementation
Running Time [s] |YX | Running Time [s] |YX | no. solved

d n Median MAD Median MAD Median MAD Median MAD #
3 10* 0.01 0.002 31.5 4.448 0.03 0.010 31.5 4.448 20

20* 0.11 0.014 150.5 17.050 6.31 1.491 150.5 17.050 20
30* 0.70 0.120 368.5 51.150 160.24 57.858 368.5 51.150 20
40 2.57 0.220 709 51.150 1660.63 542.646 709.0 51.150 20
50 6.77 0.617 1015.5 111.195 — — — — 0
60 18.47 1.434 1603.5 146.036 — — — — 0
70 35.31 1.770 2109.5 108.230 — — — — 0
80 67.22 4.619 2819 185.325 — — — — 0
90 120.60 8.107 3523 272.057 — — — — 0
100 203.77 4.153 4403 205.340 — — — — 0
110 312.59 25.255 5309 395.113 — — — — 0
120 472.45 34.327 6192.5 385.476 — — — — 0
130 701.87 52.801 7446.5 471.467 — — — — 0
140 961.27 32.992 8362 272.057 — — — — 0
150 1349.74 87.874 9626 374.357 — — — — 0
160 1840.59 106.013 10881.5 320.242 — — — — 0
170 2532.50 81.713 12282.5 556.716 — — — — 0

4 10* 0.06 0.019 102.5 26.687 3.29 2.447 102.5 26.687 20
15 0.33 0.079 453.5 97.852 (253.35) (105.681) (347.0) (14.826) 7
30 12.97 1.824 3646.0 444.039 — — — — 0
50 270.74 34.613 17334.0 1200.906 — — — — 0
60 789.04 65.129 30476.5 1611.586 — — — — 0
70 1978.68 269.907 48667.0 5777.692 — — — — 0

5 8 0.22 0.131 125.5 34.100 (29.91) (36.378) (124.0) (31.876 ) 18
14 33.30 16.416 1228.0 313.570 — — — — 0
20 1055.82 252.966 5052.5 699.787 — — — — 0

6 6 0.16 0.094 75.0 20.015 (39.01) (50.977) (73.0) (17.791) 18
8 1.73 1.096 228.0 54.856 (159.25) (45.658) (164.5) (20.015) 2
10 25.62 14.225 703 153.449 — — — — 0
12 213.95 159.990 1798.0 549.303 — — — — 0

Table 5.1.: Computational results on multiobjective assignment instances with d ob-
jectives and n resources. Instances with an * were taken from the work
by Özpeynirci and Köksalan [106].

Running Times Tlex/T Points found
Hungarian algorithm VE Total lex / no lex

n Median MAD Median MAD Median MAD Mean σ

20 1.114 0.0301 1.000 0.0091 1.002 0.0086 1.000 0.0003
22 1.118 0.0221 1.000 0.0046 1.000 0.0045 1.000 0.0002
24 1.130 0.0110 0.999 0.0055 1.000 0.0055 1.000 <0.0001
26 1.126 0.0170 0.999 0.0044 0.999 0.0045 1.000 <0.0001

Table 5.2.: Comparison of the dual Benson implementation with and without lexico-
graphic oracle on multiobjective assignment instances with d = 5.
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Q2: Does the improvement of the Dual Benson algorithm give us benefit
in practice?

In the second set of experiments, we compare the practical performance of the dual
Benson algorithm when using our theoretical improvements from Section 5.3.2 to
the original variant. The same instances as in the previous experiments were used.
In Table 5.2 we present the experiments with five objectives. The table displays
the medians and MADs of the quotients of the lexicographic variant over the non-
lexicographic variant. The table shows these statistics for the cumulated running
time of the Hungarian algorithm, the vertex enumeration (VE) and the total time. In
addition, the last column of Table 5.2 displays the mean and standard deviation of
the quotient of the number of points found by both algorithms. Median and MAD are
1 and 0, respectively, for every entry of the last column.

We observe that the running times are very similar. The quotients of the total
running time medians are very close to 1. On one hand, the vertex enumeration is only
slightly faster when using a lexicographic oracle. On the other hand, the cumulated
time of the lexicographic oracle is always slower than the time of the original Hungarian
method. Of course, the vertex enumeration dominates the total running time, but we
also observe that it does not happen too often that redundant inequalities are found.
We can also observe that the medians of the total running time quotients seem

to shrink when increasing the number of resources. In order to observe if this trend
continues, we need to test much larger instances which is not possible with the current
implementation, because of running times of already more than 12 hours on instances
with 26 resources.

The experiments show that on small instances the difference is small and in favor
of the unimproved variant of the Dual Benson implementation. It would be very
interesting to test this on instances of sizes up to 50 or 70 resources, but this is on the
other hand not possible in the current implementation.
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6. Showing Hardness
In the previous chapter, we demonstrated how we can show that a problem is an
easy problem in the sense of output-sensitive complexity. We now have first examples
of easy problems: the multiobjective (global) min-cut problem (cf. Section 4.4)
and the multiobjective linear programming problem as well as enumerating extreme
nondominated points. In this chapter, we show how output-sensitive complexity
can be used to prove that multiobjective optimization problems cannot be solved
efficiently under mild complexity theoretic assumptions. We approach hardness from
two different perspectives:

Our first example is the multiobjective shortest path problem, or MOSP. This very
well known MOCO problem admits fairly good algorithms in practice, at least for a
small number of objective functions. We see examples for this in Part II. Nevertheless,
computational running time guarantees beyond classical intractability are not known.
So the natural question arises if there exists an output-sensitive algorithm for MOSP.
As we see in Section 6.1, this is most probably not the case: We prove that the
existence of an output-sensitive algorithm for MOSP implies P = NP.
On the other hand, there are problems for which such a result cannot be easily

found. Especially the biobjective unconstrained optimization (BUCO) problem is an
example of a very easy looking problem, to which we are unable to assign a label “easy”
or “hard”. But we can show that if there is no output-sensitive algorithm for BUCO
then there is none for many other multiobjective optimization problems, giving rise
for a complexity class based on the BUCO problem which we introduce in Section 6.2.

6.1. Multiobjective Shortest Path
In this section, we give an example of a problem, which is not solvable in an output-
sensitive way if P 6= NP. The problem we consider is the multiobjective shortest
path problem (MOSP) as in Definition 2.19. In practice, there are many examples
where the MOSP problem can be solved relatively well. But usually algorithms
which solve MOSP solve a more general problem which we call the multiobjective
single-source shortest-path (MO-SSSP) problem. In the MO-SSSP problem, instead of
enumerating one Pareto-front of the Pareto-optimal s-t-paths, we enumerate for every
vertex v ∈ V \{s} the Pareto-front of all Pareto-optimal s-v-paths. One example of
such an algorithm is the well known label setting algorithm by Martins [98]: It is easy
to show that it solves the MO-SSSP problem in incremental polynomial time.
We stress here that MOSP and MO-SSSP are indeed different problems. The

insight that the MO-SSSP problem is solvable in incremental polynomial time does not
immediately transfer to the MOSP problem. This can be seen, when using Martins’
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algorithm for solving MOSP on a given instance, where we cannot even guarantee
output-polynomial running time.

More modern label setting and label correcting algorithms usually start from there
and try to avoid enumerating too many unneccessary s-v-paths. But how many
unnecessary s-v-paths—or states—can be pruned? Can we construct an algorithm
that does not compute too many, i.e., at most polynomially more labels than necessary?
The following considerations show that a large number of these s-v-paths are needed
in these algorithms and that—in contrast to the MO-SSSP problem—there is no
output-sensitive algorithm solving MOSP in general, if we assume P 6= NP.
Moreover, we exemplify a general methodology in output-sensitive complexity for

showing that there is no output-sensitive algorithm unless P = NP. Similar to single
objective optimization, we show that an enumeration problem is hard by showing the
hardness of a decision problem, which is defined as follows.

Definition 6.1 (Finished Decision Problem, Schmidt [121]). Given an enumeration
problem E = (I, C), EFin is the following language:

{(x,M) ∈ I × C(I) | x ∈ I and M = C(x)}.

That is, when we are given an instance x ∈ I of the enumeration problem (I, C)
and a subset M ⊆ C(x) of the configuration set, we ask the question: Do we already
have all configurations?
Lawler, Lenstra, and Rinnooy Kan [93] show for the example of an independence

system, that if there is an output-polynomial algorithm for the problem of enumerating
all maximal independent sets, then we can solve the associated finished decision problem
in polynomial time. In his Diploma Thesis, J. Schmidt [121] generalizes this to general
enumeration problems, but with the additional requirement that C(x) for a given
instance x ∈ I needs to be polynomial time decidable. We now state a very similar
proof which gets rid of the necessity of C(x) being decidable in polynomial time. This
is important, because for most MOCO problem, deciding if a given point in Qd is a
nondominated point, is either unknown to be polynomial time decidable or NP-hard.

Lemma 6.1. If E ∈ TotalP then EFin ∈ P.

Proof. Let E = (I, C) be given. Since E ∈ TotalP, there exists a polynomial function
p and a RAM A which enumerates C(x) for a given x ∈ I in time at most p(|x|, |C(x)|).
We now construct an algorithm which decides for a given instance (x,M) of EFin

whether it is a “Yes”- or “No”-instance. We simulate A on x for time p(|x|, |M |). If A
does not halt on x, then |M | < |C(x)| and we can safely answer “No”. If A does halt
on x, we are almost done. It can still be the case that the input M was invalid, i.e.,
M\C(x) 6= ∅ or that M ( C(x) and the algorithm was by chance faster than expected.
Both conditions can be tested by checking whether M is equal to the output of A. If
it is, we return “Yes”, otherwise “No”.

Simulation takes time poly(|x|, |M |). The output of A has at most size poly(|x|, |M |)
and the final check can thus be done in poly(|x|, |M |).
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Figure 6.1.: Showing the reduction in the proof for Theorem 6.2. Arcs with no label
have cost 0.

We mainly use the contraposition of this lemma: If the finished decision problem
cannot be solved in polynomial time, then we cannot solve the enumeration problem
in output-polynomial time. We can now use this method to finally show that the
MOSP problem is indeed a hard enumeration problem.

Theorem 6.2. There is no output-sensitive algorithm for the MO s-t-path problem
unless P = NP, even if d = 2 and the input graph is outerplanar.

Proof. We show that MOSPFin is co-NP-hard. By Lemma 6.1 this shows that a
TotalP algorithm for MOSP implies P = co-NP and thus P = NP.

We do this by reducing instances of the complement of the Knapsack problem:

(KP) {(c1, c2, k1, k2) | c1Tx ≤ k1, c
2Tx ≥ k2,x ∈ {0, 1}n} .

Without loss of generality, we can assume that c1, c2 ∈ Nn, k1, k2 ∈ N, c1T1 > k1
and c2T1 > k2. The problem above is still NP-complete under these restrictions,
cf. Kellerer, Pferschy, and Pisinger [83]. And thus the complement co-KP is co-NP-
hard.
We now construct an instance Î of the MOSPFin problem from an instance I

of the KP problem. The instance has nodes {v1
i , v

2
i } for every variable xi and one

additional node v1
n+1. It has one arc for every i ∈ [n] : (v1

i , v
2
i ) with cost (c1

i , 0)T and
for every i ∈ [n] it has one arc (v1

i , v
1
i+1) with cost (0, c2

i )T and one arc (v2
i , v

1
i+1)

with cost 0. The node v1
1 is identified with s, the node v1

n+1 is identified with t.
There is one additional arc (s, t) with cost (k1 + 1, 0)T and one additional path
(s, v, t) with cost (0, c2T1 − k2 + 1)T . To complete the reduction, we set M :=
{(k1 + 1, 0)T , (0, c2T1 − k2 + 1)T }. An example of this reduction can be seen in
Figure 6.1.

We observe that the instance is valid, and that there are at least two Pareto-optimal
paths, namely (s, t) and (s, v, t) having cost (k1 + 1, 0)T and (0, c2T1 − k2 + 1)T ,
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respectively. Both paths are Pareto-optimal because c1
i , c

2
i > 0 for all i ∈ [n] and thus

all other paths have either non-zero components in their objective function values or
the sum of all values in one objective function and 0 in the other. All steps can be
performed in polynomial time in the input instance I.
Now, we take an instance I /∈ co-KP, or equivalently I ∈ KP. Accordingly, there

exists x ∈ {0, 1}n with c1Tx ≤ k1 and c2Tx ≥ k2 ⇔ c2T (1 − x) ≤ c2T1 − k2.
Using this solution, we construct a path p in the MOSP instance Î: For every i with
xi = 1, we take the route through node v2

i , inducing cost of (c1
i , 0)T . For every i with

xi = 0, we take the route directly through arc (v1
i , v

1
i+1), inducing cost (0, c2

i )T . We
observe that v(Î , p)1 = c1Tx ≤ k1 and v(Î , p)2 = c2T (1− x) ≤ c2T1− k2. But then,
Î /∈MOSPFin, since p is neither dominated by (s, t) nor (s, v, t).
Now, suppose for some instance I, the constructed instance Î /∈ MOSPFin, i.e.,

there is an additional nondominated path p apart from (s, t) and (s, v, t). Since it is not
dominated by (s, t) and (s, v, t), it must hold that v(Î , p)1 ≤ k1 and v(Î , p)2 ≤ c2T1−k2.
But then, we can construct a solution to KP in I as follows: The path P cannot take
arcs from (s, t) or (s, v, t), so it needs to take the route through the v1

i and v2
i nodes.

For every i ∈ [n] it can only either take arc (v1
i , v

2
i ) or (v1

i , v
1
i+1). If it takes the first

arc, we set xi := 1; if it takes the second arc, we set xi := 0. This solution then
has cost c1Tx = v(Î , p)1 ≤ k1 and c2Tx = c2T1− v(Î , p)2 ≥ c2T1− c2T1 + k2 = k2.
Hence, I ∈ KP or equivalently I /∈ co-KP.
This proves that the reduction is a polynomial-time Karp reduction from the

complement of KP to the finished decision variant of MOSP and thus the theorem.

The proof also shows that deciding whether the nondominated set of a MOSP
instance is larger than 2 is NP-hard. Moreover, it gives us a lower bound on the
quality we can approximate the size of the nondominated set.

Corollary 6.3. It is NP-hard to approximate the size of the nondominated set of the
MOSP problem within a factor better than 3

2 .

There is one more observation we can see in this proof; it proves that the MOSP is
NP-hard in the following way:

Proposition 6.4. The MOSP problem is NP-hard (with respect to Cook-reduction).

Proof. We prove this by reducing the decision problem whether the nondominated set
is larger than 2, to the MOSP problem. Let the MOSP problem be given in the form
(I, S, v). Formally the problem whether the nondominated set is larger than 2, is the
following language:

{x ∈ I | |YN | > 2}

We can copy the instance and give it to the oracle. The oracle returns the nondominated
set and we read at most the first three entries, if they exist. If there are exactly 0, 1
or 2 entries, the algorithm returns false. Otherwise, it returns true. The reduction
runs in polynomial time.
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Since MOSP can be seen as a special case of many important MOCO problems,
e.g., the multiobjective minimum perfect matching problem and the multiobjective
minimum-cost flow problem, these problems also turn out to not have an output-
sensitive algorithm, unless P = NP. Moreover, Corollary 6.3 and Proposition 6.4 hold
accordingly.

6.2. BUCO and BUCO-Hardness

We now turn to a problem we have already seen in Section 4.1: The BUCO problem.
The definition can be found in Section 2.5.1. We do not know the output-sensitive
complexity of this problem, but we describe some methods with which the problem
can be attacked in Section 6.2.1. Since the BUCO problem can as well be a hard
enumeration problem, in Section 6.2.2 we describe some approaches how to show that
the BUCO problem is hard. Then in Section 6.2.3, we use that the BUCO problem is
probably a hard problem and transfer this hardness to other problems by introducing
a new complexity class of BUCO-hard problems.

6.2.1. Approaches to Solve BUCO

In Section 4.1 we describe how the Nemhauser-Ullmann algorithm [102] for the
knapsack problem is capable of solving the BUCO problem in time O(nW2), where
W2 = c2T1. Thus, a pseudo-polynomial time algorithm is available. Moreover,
Ackermann et al. [1] prove that the problem can be solved in smoothed-polynomial
time. The output-sensitive complexity is, however, unknown.
To try solving the BUCO problem, several approaches are possible: We could

investigate the running time of the Nemhauser-Ullmann algorithm and try to find
out if it is output-sensitive on BUCO instances or find a set of instances on which it
has a super-polynomial running time in the input and the output. As a very natural
approach, we could investigate the ε-constraint method on the BUCO problem and try
to deduce an output-sensitive running time there. We now discuss these possibilities
in more detail.

The Nemhauser-Ullmann Algorithm

Let us start with the Nemhauser-Ullmann algorithm. For an instance defined by
c1, c2 ∈ Qn, let pi(c1, c2) be the size of the nondominated set for the first i objects.
Let p(c1, c2) := maxi∈[n] pi(c1, c2), i.e., the size of the largest set we generate. We
can also define p(n) := max{p(c1, c2) | c1, c2 ∈ Qn}, which is the size of the largest
set generated over all instances with n objects. Ackermann et al. [1] prove that the
expected growth of p(n) is polynomial in the input size in the smoothed-analysis
framework (see also Section 4.3). But it is unknown how these p(n) can grow in the
worst case with respect to the input and the output.

Moreover, we observe that the order in which the objects are given does not matter
in expressing a given instance and has no influence on the nondominated set. But it
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makes a difference for the nondominated sets of the first i objects in the Nemhauser-
Ullmann algorithm. There might be a permutation π : [n] → [n] of the objects
of a given instance which reduces the sizes of the intermediate nondominated sets
significantly. The above definition of p(n) takes the worst order into account. Let us
thus define qi(c1, c2, π) as the size of the nondominated set for the first i objectives
when applying the permutation π on the order of items before the Nemhauser-Ullmann
algorithm runs. Let q(c1, c2, π) := maxi∈[n] qi(c1, c2, π) analogously to p(c1, c2). Now
we can define the minimum generated set size for all permutations of the objects for
an instance as q(c1, c2) = minπ∈Sn q(c1, c2, π) and the maximum generated set size for
a given instance size when a best permutation is considered: q(n) = max{q(c1, c2) |
c1, c2 ∈ Qn}.
If we can prove that q(n) grows super-polynomially in the input and the output

size then the Nemhauser-Ullmann algorithm is not output-sensitive for BUCO for
any permutation of the input objects. Proving that q(n) grows only polynomially in
the input and the output size leaves us with the problem of computing an optimal
permutation π or one which is good enough, but will come in useful as we see in the
next section. If we prove that p(n) grows super-polynomially in the input and the
output size, then there still might be a better permutation which might be computable
in an output-sensitive way. Otherwise, if we prove that p(n) grows in a polynomial
way in the input and output size, we are done and the Nemhauser-Ullmann algorithm
is output-sensitive.

The ε-constraint Method

Another solution method is the ε-constrained method. Let us assume w.l.o.g. that
c1, c2 ∈ Zn to make this argumentation more focused. We solve problems as described
in Section 4.4 by using the ε-constraint scalarization. We start by finding an optimal
solution x∗ for the lexicographic variant of the problem: lexmin{(c1Tx, c2Tx) | x ∈
{0, 1}n}. We can then solve the ε-constraint problem

lexmin{(c1Tx, c2Tx) | x ∈ {0, 1}n, c2Tx ≤ c2Tx∗ − 1}.

Then we iterate: We take the solution to this problem as the new x∗ and adapt
the ε-constraint in each iteration. We can observe, that we only solve one such ε-
constraint problem for every nondominated point. But how hard are these ε-constraint
problems? We can observe, that these are special cases of the knapsack problem,
which is NP-hard in general. But since the instances we solve here are a strict subset
of the possible knapsack instances, the complexity is not clear.
A possible direction is to prove that the specialized ε-constraint problems are

solvable in polynomial time in general or for special cases.

6.2.2. Approaches to Proving Hardness

Departing from the section on the hardness of the MOSP problem, to prove hardness
of the BUCO problem, we could investigate the finished decision variant of the BUCO
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problem. First we can observe that BUCOFin is in co-NP: Let’s assume we have an
instance represented by vectors c1, c2 ∈ Zn and a set of vectors M ∈ Z2. If someone
presents us a solution x ∈ {0, 1}n, we can in polynomial time compute its value
y = (c1Tx, c2Tx)T . Also in polynomial time, we can check whether y /∈ M and if
y is nondominated in M . If this is the case, y is a certificate that we are not done.
In conclusion, we have a proof encoded with n bits for not being finished and thus
BUCOFin ∈ co-NP. To show that BUCOFin is in NP, we have to find a proof of
polynomial size whether a given set is already the whole nondominated set and we
have to be able to verify the proof in polynomial time. One way to do that is to use
the Nemhauser-Ullmann algorithm in the proof of the following lemma:

Lemma 6.5. If q(n) ∈ poly(n, |YN |) then BUCOFin ∈ NP.

Proof. Since q(n) ∈ poly(n, |YN |), we know that there is a permutation π∗ : [n]→ [n]
such that the Nemhauser-Ullmann algorithm is output-sensitive when applying π∗ on
the order of the objects in the input. Let the running time be p(n, |YN |). To construct
an NP-algorithm we have access to a special string y from which we can read at most
polynomially many bits. We check if it encodes a permutation π : [n]→ [n]; if it does
not, we output “no”. If it does, we permute the objects in the input according to
the permutation encoded by y and run p(n, |M |) steps of the Nemhauser-Ullmann
algorithm. If it terminates with output M ′, we check whether M = M ′ and return
“yes” if it does and “no” if it does not. If it does not terminate, we output “no”.

Now we have to prove that for an instance x in BUCOFin, there is a y such that the
algorithm returns “yes”. Since q(n) ∈ poly(n, |YN |), we see that there is one y which
encodes π∗ and with this permutation the Nemhauser-Ullmann algorithm returns the
nondominated set in time poly(n, |YN |). Since x ∈ BUCOFin it is M = YN . Thus
the Nemhauser-Ullmann algorithm terminates and we check whether M = YN and
return “yes”.
On the other hand, if x /∈ BUCOFin the algorithm has to return “no” for every

y. So let us assume that M 6= YN . The Nemhauser-Ullmann algorithm does either
not terminate or it terminates and returns YN . If it does not terminate, we correctly
return “no”. If it terminates, we correctly return “no” after verifying that M 6= YN .
The verification can be done in time poly(n, |M |), since YN can be at most of size
p(n, |M |) because that was the maximum running time of the Nemhauser-Ullmann
algorithm.

If BUCOFin is in NP ∩ co-NP it is not very probable that it is also NP- or co-
NP-hard, because this implies NP = co-NP and thus the collapse of the polynomial
hierarchy to the first level, i.e., NP = PH. Thus we can still try to prove that
BUCOFin is NP-hard, but if q(n) ∈ poly(n, |YN |) then this method might most
probably not work.
There is also another method we can potentially use to prove that BUCO is not

solvable in an output-polynomial way. Let us assume it was solvable in output-
polynomial time by an algorithm A with running time p(n, |YN |). We can use this
algorithm to solve the knapsack problem. Let us define for a knapsack instance
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c1, c2 ∈ Nn the nondominated set of the corresponding BUCO instance with input
−c1 and c2 as the nondominated set of the knapsack instance. Our algorithm A now
is capable of solving knapsack instances with polynomial sized nondominated sets in
polynomial time.

Corollary 6.6. If there is an NP-hard set of knapsack instances with polynomial
sized nondominated set, then BUCO /∈ TotalP unless P = NP.

A third way to show hardness of the BUCO problem can go through fixed-parameter
tractability. We can investigate the knapsack problem parameterized with the size of
its nondominated set. The decision version of the knapsack problem is the following
language:

KP = {
(
c1, c2, k1, k2

)
∈ Qn ×Qn ×Q2 | ∃x ∈ {0, 1}n : c1Tx ≥ k1, c

2Tx ≤ k2}

Then the parameterized knapsack problem is the following parameterized language:

KPP =
{

(x,M) ∈ KP× N |M = |min
{ (

c1Tx, c2Tx
)
| x ∈ {0, 1}n

}
|
}

If we have a TotalP-algorithm for BUCO we can decide KPP in time poly(n,M).
That means there is a k ∈ N, such that the running time is bounded by O(nk +Mk)
which proves that KPP ∈ FPT.

Lemma 6.7. If BUCO ∈ TotalP =⇒ KPP ∈ FPT.

We can use this in the following way: If we can prove that KPP is W[1]-hard, then
BUCO /∈ TotalP unless FPT = W[1].
Let us summarize the findings in this section: We can show hardness of the

BUCO problem either by finding an NP-hard set of knapsack instances with small
nondominated set, showing that the parameterized version of the knapsack problem
is W[1]-hard or by showing that the finished decision problem is NP-hard (or co-
NP-hard). The latter being not so probable if we can prove that q(n) is bounded
by a polynomial in the input and the output size, although this does not prove
BUCO ∈ TotalP.

6.2.3. BUCO-hard Problems

In the last section we have seen several approaches to the BUCO problem. New
results for solving the BUCO problem imply new methods in the field of multiobjective
combinatorial optimization. But we can also use the BUCO problem the other way
around: If we show that the BUCO problem is a hard enumeration problem, then
many interesting MOCO problems turn out to be not solvable in an output-sensitive
way.

To investigate this formally we define an output-sensitive reduction which is not
invented by us but used more or less formally in many publications.
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Definition 6.2 (Output-Sensitive Reduction). For two enumeration problems P1 =
(I1, C1) and P2 = (I2, C2), an output-sensitive reduction from P1 to P2, or

P1 ≤TotalP P2,

is a polynomial-time computable function

f : I1 → I2,

with
C2(f(x)) = C1(x).

The purpose of such a reduction is to transfer hardness results. But this only works
if hardness of one problem implies hardness of the other problem, or equivalently, the
output-sensitive solvability of one problem implies the output-sensitive solvability of
the other. We prove this now for the output-sensitive reduction we defined above.

Proposition 6.8. Let P1 = (I1, C1) and P2 = (I2, C2) be enumeration problems and
P1 ≤TotalP P2. Then P2 ∈ TotalP =⇒ P1 ∈ TotalP.

Proof. Let A be a TotalP-algorithm for P2, we now construct a TotalP-algorithm for
P1. We get an instance x1 ∈ I1 of P1 and use the polynomial-time algorithm—which
exists by definition of ≤TotalP—to compute x2 := f(x1) ∈ I2 in time p(|x1|) for a
polynomial p. Then we let A run on x2 with output C2(x2) in time q(|x2|, |C2(x2)|)
for a polynomial q. Consequently, we output C2(x2).

Since P1 ≤TotalP P2, it holds that C2(x2) = C2(f(x1)) = C1(x1) and thus the output
is correct. Now we investigate the running time: First we construct the instance x2
which takes time p(|x1|), thus also |x2| ≤ p(|x1|). Then we let A run with running time
q(|x2|, |C2(x2)|) ≤ q(p(|x1|), |C1(x)|) which is output-polynomial for problem P1.

We note that the definition of ≤TotalP is very strong in the sense that we require
that C2(f(x)) = C1(x). We could arrive at a similar result as Proposition 6.8 by
allowing C2(f(x)) to be modified in order to arrive at C1(x). But for the following
reductions in this section the stronger version suffices.
We now consider two problems of popular interest for which we were not able to

pinpoint the output-sensitive complexity. We show that they are hard enumeration
problems if the BUCO problem is a hard enumeration problem by using output-
sensitive reductions. The first problem being the multiobjective minimum spanning
tree problem (MOST, cf. Definition 2.16) and the second one being the multiobjective
assignment problem (MOAP, cf. Definition 2.18).

Proposition 6.9. BUCO ≤TotalP MOST

Proof. We first have to find a function f from the instances of the BUCO problem
to the instances of the MOST problem computable in polynomial time. Let thus an
instance of the BUCO problem be given as c1, c2 ∈ Qn. We construct an undirected
graph G = (V,E) and an edge-weight function c : E → Q2 as an instance of the MOST
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problem in the following way: We create n+ 1 nodes and call them vi for i ∈ [n+ 1]
and connect them with edges {vi, vi+1} for every i ∈ [n] and assign cost of (c1

i , c
2
i )T .

We also create nodes wi for i ∈ [n] and connect them with two edges {vi, wi} and
{wi, vi+1} and assign cost 0 to both edges.
Now we observe that every so constructed instance is a valid MOST instance and

that the construction takes time in O(n). In order to show that the reduction is valid,
we now have to prove that the nondominated set of the constructed MOST instance
is exactly the nondominated set of the BUCO instance we started with. But we prove
something stronger: We prove that the value vectors of the BUCO instance are exactly
the value vectors of the constructed MOST instance.
So let y be a value vector of a BUCO instance given by c1, c2 ∈ Qn. Let x be a

solution that is mapped to y, i.e., y = (c1Tx, c2Tx)T . There is a path in G from node
v1 to node vn+1 with the following property: For every i ∈ [n], if xi = 1, we take edge
{vi, vi+1} and if x = 0, we take edges {vi, wi} and {wi, vi+1}. For every xi = 1 the
node wi does not occur in the path and hence the path is not a spanning tree. But
by adding for each such wi the edge {wi, vi+1} with cost 0, we have constructed a
spanning tree T of G. The cost of the spanning tree is

c(T ) =
∑
e∈T

c(e) =
∑

i∈[n]:xi=1

(
c1
i

c2
i

)
= y.

Now, let y be a value vector of a constructed MOST instance from a BUCO instance
represented by c1, c2 ∈ Qn. Let T ⊆ E a spanning tree with y = c(T ) =

∑
e∈T c(e).

We now construct a solution x ∈ {0, 1}n for the BUCO instance: We set xi = 1, if T
contains the edge {vi, vi+1} and xi = 0 otherwise. The cost of such a solution is(

c1
Tx

c2
Tx

)
=

∑
i∈[n]:xi=1

c({vi, vi+1}) =
∑
e∈T

c(e) = c(T ) = y,

since all edges apart from the {vi, vi+1}-edges have cost 0.

We can prove a similar result for the multiobjective assignment problem:

Proposition 6.10. BUCO ≤TotalP MOAP

Proof. We again have to find a function which maps an instance of the BUCO problem
to an instance of the MOAP problem. Let an instance of the BUCO problem be
given with c1, c2 ∈ Qn. We construct a complete bipartite graph G = (V,E) and an
edge-cost function c : E → Q2. We add 4n nodes to G: For each i ∈ [n] we add node
vi, nodes w1

i and w2
i and node ui. For each i ∈ [n], we also add the edges {vi, w1

i } and
{vi, w2

i }. The first edge gets cost (c1
i , c

2
i ) and the other gets cost 0. Wo connect all

the ui nodes to all nodes w1
i and w2

i with cost 0.
We again prove the stronger result that every value vector of the BUCO instance is

also a value vector of the so constructed MOAP instance and vice versa. Let thus y
be a value vector of a BUCO instance given by c1, c2 ∈ Qn and let x be a solution
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that is mapped to y, i.e., y = (c1Tx, c2Tx)T . We can construct a solution matching
M to the corresponding MOAP instance by choosing edge {vi, w1

i } if xi = 1 and edge
{vi, w2

i } if xi = 0. We observe that no node vi is free anymore, but some nodes w1
i

and w2
i and all of the ui nodes are free. We can now add the remaining edges incident

to the ui nodes to make all the remaining unmatched nodes w1
i and w2

i covered and
the matching perfect. The cost of the matching is

∑
e∈M

c(e) =
∑

i∈[n]:xi=1

(
c1
i

c2
i

)
= y.

Let nowM be a perfect matching in the constructed graph G from a BUCO instance
represented by c1, c2 ∈ Qn. We construct a solution x to the BUCO instance in the
following way: If M contains the edge {vi, w1

i } for an i ∈ [n], we set xi = 1, or if not,
we set xi = 0. The cost of this solution x thus is

∑
i∈[n]:xi=1

(
c1
i

c2
i

)
=
∑
e∈M

c(e) = c(M),

since all edges but those for which we set x1 = 1 have cost 0.

The observation of problems that turn out to be not solvable in output-polynomial
time if the BUCO problem cannot be solved in output-polynomial time gives rise to a
special hardness notion. We use a similar notion as also used for graph isomorphism,
i.e., GI-hardness, and vertex enumeration, i.e., VE-hardness.

Definition 6.3. The set of MOCO problems O for which O ≤TotalP BUCO holds is
called BUCO. We call a problem BUCO-hard, if it is BUCO-hard with respect to
output-sensitive reduction.

And we can formulate the result of the previous propositions in a succinct form:

Corollary 6.11. MOST and MOAP are BUCO-hard.
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Let us review Table 3.1 in the light of the past two chapters. In the “Classic Complexity”
column, we have seen in Section 4.1 that there are doubts if problems as the MOST,
MOAP and the BUCO problem are NP-hard. Whereas in Section 6.1, we have seen
that the MOSP problem is indeed NP-hard. Through this reasoning, we also get the
NP-hardness of MO-Z-Flow and MO-Matching.
In the column “Nondominated Set”, we were able to fill almost all the gaps there.

For the MO-TSP problem, the proof is the same as we prove that the problem is
NP-hard and the result transfers to the MOCO problem since MO-TSP is a special
case. The result for MOLPXEx comes from the work by Khachiyan et al. [85]. We
can reduce the problem of finding extreme points of a polyhedron to the problem of
finding all Pareto-optimal extreme points of an MOLP with only two objectives. The
results on MOLPYEx and MOLPYFa are the central results of Chapter 5. But these
results come with two assumptions: First, an ideal point must exist and second, the
number of objectives must be a fixed number.
That the MOSP is a hard enumeration problem is one of the main results of

Section 6.1. The consequences for practitioners were already stated in the introduction
of this thesis. Again, this transfers to the MO-Z-Flow and MO-Matching problem,
because MOSP is a special case. For the BUCO problem, we gave reason that an output-
sensitive algorithm for BUCO would need new algorithmic ideas for multiobjective
combinatorial optimization in general and if the BUCO problem is a hard enumeration
problem, several other MOCO problems are hard enumeration problems. This gave
rise to the complexity class BUCO and we coined two major BUCO-hard problems:
The MOST problem and the MOAP problem. The result for the MOMC problem
can be directly derived from the literature and this is explained in the preliminaries
chapter in Section 4.4.

Concerning the last column “Extreme Points”, most of these results come from the
extensive theory in Chapter 5 which culminate in the results for MOCO problems
in Section 5.4. Since all of the problems MO-Matching, MO-Z-Flow (the totally
unimodular version from the definition), MOAP, MOSP, MOST, BUCO, and MOMC
have polynomially solvable weighted-sum problems, we can enumerate their extreme
points in output-polynomial time. Because the MO-Z-Flow problem and the MOAP
problem have compact LP formulations, the extreme points can even be enumerated
in incremental polynomial time. Concerning the MOSP, MOST, BUCO, and MOMC
problem, we have seen that the number of extreme points grows polynomially in the
input size for every fixed number of objectives so that the extreme points can even by
enumerated in polynomial time for every fixed number of objectives.
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Open Problems

Concerning output-sensitive complexity and MOCO problems in general, the BUCO
problem is the open problem which probably will generate many new insights. It is also
a barrier, since we cannot expect to make positive progress on the MOAP or MOST
problem without also progressing considerably on the BUCO problem. Also finding
more problems in BUCO and BUCO-complete problems can lead to understanding
the BUCO problem better.

Concerning MOLP, it is interesting if we can get rid of the assumption that an ideal
point exists. The challenge is that we need to find an outer approximate polyhedron
without knowing the upper image itself. Even finding a first extreme point can be
challenging, since the weights with finite weighted-sum LPs are not known beforehand.
Fixing the number of objectives is something we most probably cannot get rid of,
because of the relation to the projection of cones and polyhedra (cf. Löhne and
Weißing [96]) which in turn is an NP-hard enumeration problem (cf. Tiwary [133]).
It is also interesting if the running time itself can be improved. Is polynomial delay
possible for each fixed number of objectives? This cannot be ruled out by what we
know at the moment and constitutes a major challenge.
Linear programming in single objective optimization is an essential part in many

approximation algorithms for single-objective combinatorial optimization problems. A
hope is that we can find good approximation algorithms for MOCO problems through
being able to solve MOLP relaxations. This is especially interesting for practice
since most of the approximation algorithms designed for MOCO problems depend
exponentially on the number of objectives even in the best case.
Another interesting and rather young field is fixed parameter enumeration (cf.

Creignou et al. [37]). Analogously to fixed parameter tractability, the question is if we
can isolate certain parameters of instances of a MOCO problem to allow an exponential
running time in this parameter but polynomial in the size of the nondominated set and
the input. Can we find a parameter interesting for MOLP and thus find an algorithm
with parameterized polynomial delay? Is there an interesting parameter such that we
can find a parameterized output-polynomial time algorithm for the MOSP problem?
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Part II.

The Multiobjective Shortest
Path Problem in Practice
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8. Introduction

In this second part, we turn to a more practical problem. As typical for Algorithm
Engineering, the most successful result can be reaped if the implementation is tailored
to the practical problem. Thus in this part, we want to approach the problem of
finding “good” power transmission lines.
In Germany, after the events of the Fukushima catastrophe in March of 2011, it

was decided that nuclear power plants should be shut down by 20221. At the time of
this writing, of the seven existing nuclear power plants2, four reside in the south of
Germany—Philippsburg and Neckarwestheim in Baden-Württemberg, and Gundrem-
mingen and Isar in Bavaria. The fact that regenerative energy producers are not as
centralized as nuclear power plants are, gives rise for the need for power transmission
lines; often even from far in the north to far in the south (cf., e.g., SuedLink3 from
Brunsbüttel, Schleswig-Holstein, to Großgartach, Baden-Württemberg). The “Netzen-
twicklungsplan 2022” or power grid development plan 2022 describes 2,800km of lines
to be built and 2,900km of power transmission lines to be reinforced4.
In a research project by the German Federal Ministry for Economic Affairs and

Energy together with the spatial planning chairs “Ver- und Entsorgunssysteme” and
“Raumbezogene Informationsverarbeitung und Modellbildung”, as well as the chair
for Discrete Optimization in mathematics and the computer science chairs computer
graphics and algorithm engineering and the spatial planning consulting bureau “Spiek-
ermann & Wegener Stadt- und Regionalforschung” as well as the Amprion GmbH, we
were investigating many aspects of this problem. We decided to model the problem of
finding new power transmission line alternatives between two points as a multiobjective
shortest path problem. Especially the number of criteria to be considered turned out
to be a major computational burden.
From the literature and first part of this thesis we learn the following statements

about the MOSP problem:

1https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010-beschluesse-juni-
2011.pdf, BMWi (German Federal Ministry for Economic Affairs and Energy), last accessed: Dec.
22nd 2017.

2http://www.bmub.bund.de/themen/atomenergie-strahlenschutz/nukleare-sicherheit/aufsicht-
ueber-kernkraftwerke/kernkraftwerke-in-deutschland/, BMUB (German Federal Ministry for the
Environment, Nature Conservation, Building and Nuclear Safety), last accessed: Dec. 22nd 2017.

3https://www.tennet.eu/de/unser-netz/onshore-projekte-deutschland/suedlink/erdkabel-
korridore/korridorverlaeufe/topographische-regionalkarten/, Tennet (German Transmission Grid
Maintainer), last accessed: Dec. 22nd 2017.

4Netzentwicklungsplan 2022: 50Hertz Transmission, Amprion, TenneT TSO, TransnetBW
(https://www.netzausbau.de/bedarfsermittlung/2022/nep-ub/de.html), last accessed: Dec. 22nd
2017.
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• The nondominated set can be of exponential size. (Hansen [74])

• The problem is NP hard. (Proposition 6.4)

• We expect the output to not be too large when the number of objectives is small.
(Brunsch and Röglin [26])

• There is no output-sensitive algorithm for the MOSP problem, unless P = NP.
(Theorem 6.2)

• The nondominated set can be computed in smoothed polynomial time if the
number of objectives is not too large. (Using Ackermann et al. [1] and, e.g.,
Martins [98])

As a consequence, while modeling the problem, the number of criteria needed to be
reduced as much as possible. Starting with more than 200 criteria that was not easily
possible and a reduction to less than eight or nine criteria would result in a loss of too
much information.
It became apparent early in the project, that with that many criteria an exact

approach would be prohibitive. So a good approximative method was sought. It turned
out, as we see in Chapter 10, that the running times of the approximation algorithms
available have worst-case running-times bounded exponentially in the number of
objectives. And also the best-case running-time on non-trivial instances happens to
be exponentially bounded from below in the number of objectives. Consequently, a
major challenge in this project from an algorithm engineering point of view was to
find an approximation algorithm with a running-time less sensitive to the number of
objectives.

8.1. Contributions and Organisation
The second part is divided into two chapters: In Chapter 9, we consider preliminaries
regarding the MOSP problem. Our special interest are labeling algorithms and we
discuss the literature about these algorithms. We also introduce the instance set for
all the experiments in this part which comes from several sources. In the same chapter
we consider a heuristic speeding up label correcting algorithms and investigate its
performance in practice.

In Chapter 10, we then introduce multiobjective approximation and give an overview
on the literature. The core of this chapter is the description of a new approximation
algorithm which is much less dependent on the number of objectives and uses the label-
ing techniques and heuristic from Chapter 9. We also present extensive computational
experiments to put the new algorithm into the context of the literature.
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Since the first paper by Hansen [74], the MOSP problem gained much interest from
the scientific community. The majority of the literature is concerned with labeling
algorithms and we discuss the general methodology in Section 9.1. Also, the majority
of the literature deals with the case of 2 objectives and tailoring special labeling
algorithms to this case. We are explicitly not dealing with the biobjective case
and only consider instances with at least 3 objectives, which is motivated from our
application.
There exist recent computational studies dealing with the efficiency of labeling

algorithms. But there is one problematic issue with these studies: The source code is
not available. This renders a comparison of the exact implementations of recent studies
impossible and the algorithm variants need to be implemented from scratch. Since
implementations cannot be compared, it is also hard to say which general method is
more promising, because a difference in the performance of an implementation can be
solely due to implementation reasons.

We make our implementations available online1. We hope that this makes it easier
for comparisons and to lay ground for the study of when which algorithmic variant is
preferable.
The instance sets we use in our study are also available from various sources. An

overview on the instances we use and where to get them is given in Section 9.2.
In Section 9.3, we compare two major strategies for label correcting algorithms: the

node-selection and label-selection strategy. We show that contrary to the results in
the literature, node-selection is always faster than label-selection strategies.
Then in Section 9.4, we introduce a heuristic for label-correcting algorithms, the

tree-deletion heuristic. We show that it is useful in many cases, especially in real-world
scenarios. The heuristic becomes an integral part of our approximation algorithm.

9.1. Multiobjective Labeling Algorithms

There are many variants of multiobjective labeling algorithms for the MOSP problem,
but all of these methods share a similar idea: The algorithms maintain a set of labels
Lu at each node u ∈ V . A label is a tuple which represents a path from s to a node
u ∈ V and it consists of the cost vector of the path, the associated node u and, for
retrieving the actual path, a reference to the predecessor label. The algorithms are
initialized by setting each label-set to ∅ and adding the label (0, s,nil) to Ls.

1The code is available on GitHub: https://github.com/FritzBo/mco
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Labeling algorithms for the MOSP problem can be divided into two classes, depend-
ing if they select either a label or a node in each iteration. These strategies are called
label or node selection strategies, respectively. When we select a label ` = (v, u, ˆ̀)
at a node u, this label is pushed along all out-arcs a = (u,w) of u, meaning that a
new label is created at the head of each arc with cost v + c(a), predecessor label `
and associated node w. This strategy is due to Tung and Chew [135] for d > 2. If
we follow a node-selection strategy, all labels in Lu are pushed along the out-arcs of
a selected node u. This strategy was first proposed in Brumbaugh-Smith and Shier
[25] for the biobjective case and has been generalized by many authors in subsequent
works. Nodes or labels that are ready to be selected are called open.

After pushing a set of labels, the label sets at the head of each considered arc are
cleaned, i.e. all dominated labels are removed from the modified label sets. We say
a label ` = (v, u, ˆ̀) dominates a label `′ = (v′, u′, ˆ̀′, ) if v � v′. Moreover, if a label
already exists at the target node, usually the new label is discarded and the old one is
kept.

There are many ways in which an open label or node can be selected. A comparative
study was conducted by Paixao and Santos [107]. For example, a pure FIFO strategy
seems to work best in the aforementioned study. But also other strategies are possible:
For example, we can sort the labels by their average cost, i.e.,

∑
i∈{1,...,d} vi/d and

always select the smallest one. A less expensive variant is due to Bertsekas, Guerriero,
and Musmanno [15] and Paixao and Santos [108], where we decide depending on the
top label ` = (v, u, ˆ̀) in a FIFO queue Q where to place a new label `′ = (v′, u′, ˆ̀′):
If v′ is lexicographically smaller than v, then it is placed at the front of Q, otherwise
it is placed at the back of Q.

Another result from the available computational studies on labeling algorithms on
problems with more than 2 criteria suggests that label-selection strategies are far
superior compared to node-selection strategies [71, 108].
After all labels are pushed and there are no open labels left, we can reconstruct

the paths connected to the labels if we want to. This can be achieved by recursively
following the previous label pointer until we reach the initial label at the source node.

Label-Setting vs. Label-Correcting Algorithms

There is a special method based on a label-selection strategy which is due to Martins
[98]. The algorithm selects the next label by choosing the lexicographically smallest
label among all labels in L :=

⋃
u∈V Lu. In general, whenever we select a lexicographi-

cally smallest label ` = (v, u, ˆ̀) in L, this label represents a nondominated path in
Ps,u. Labeling algorithms having the property that whenever we select a label we know
that the represented path is a Pareto-optimal path, are called label-setting algorithms.
Labeling algorithms which do not have this property, and thus sometimes delete or
correct a label, are called label-correcting algorithms. On the plus side, in label-setting
algorithms, we never select a label which is deleted in the process of the algorithm. But
selecting these labels is not trivial. For example, selecting a lexicographically smallest
label requires a priority queue data structure, whereas the simplest label-selection
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strategy requires only a simple FIFO queue.
There is recent work by Erb, Kobitzsch, and Sanders [61], which suggests that in the

biobjective case, a label-setting approach can outperform the label-correcting method
they considered. But in the studies for 3 and more objectives, the label-correcting
algorithms are superior to the label-setting variants [71, 108], even when considering
several heap data structures [108]. It is not clear why this is the case. One possible
reason for this is that the cost of the data structure can not make up for the advantage
of not pushing too many unneeded labels.

Computational Experiments in the Literature

We now give an overview on the existing studies on labeling methods for the MOSP
problem, but we focus only on the studies considering three and more objectives.

The latest computational study for more than 2 objectives is by Paixao and Santos
[108] from 2009 and compares 27 variants of labeling algorithms on 9,050 artificial
instances. These are the instances we also use for our studies. In summary, a
label-correcting implementation with a label-selection strategy in a FIFO manner is
concluded to be the fastest strategy on the instance classes provided. The authors do
not consider a node-selection strategy with the argument that it is harder to implement
and is less efficient (cf. also Paixao and Santos [107]). They also conclude that the
label-setting approach is in general less efficient than the label-correcting methods.
In an older study by Guerriero and Musmanno [71] from 2001, also label-selection

and node-selection strategies are compared. The authors conclude that, in general,
label-selection methods are faster than node-selection methods. However, the test set
is rather small, consisting of only 8 artificial grid-graph instances ranging from 100 to
500 nodes and 2 to 4 objectives and 18 artificial random-graph instances ranging from
500 to 40,000 nodes and densities of 1.5 to 30 with 2 to 4 objectives. The authors also
conclude that the label-setting approach is slower on larger graph instances.
As the source code of Guerriero and Musmanno [71] and Paixao and Santos [108]

is not available, we cannot say how our implementations behave compared to the
implementations tested in these studies. But for the sake of simplicity we assume
that the general observation is true that the label-correcting methods are superior to
the label-setting method if the graphs are sufficiently large or the instances have a
sufficiently large number of objectives.
In the work by Delling and Wagner [44], the authors solve a variant of the mul-

tiobjective shortest path problem where a preprocessing is allowed and we want to
query the nondominated set of paths between a pair of nodes as fast as possible. The
authors use a variant of SHARC (SHort cuts and ARC flags, cf. Bauer and Delling
[10]) to solve this problem. Though being a different problem, this study is the first
computational study where an implementation is tested on real-world road networks
instead of artificial instances. The instances have sizes of 30,661, 71,619 and 892,392
nodes and 2 to 4 objectives. Though, the largest instance could only be solved using
highly correlated objective functions resulting in nondominated set sizes of only at
most 2.5 points on average.
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Name n d density
CompleteN-large 10–200 6 n− 1
CompleteK-large 100 3–9 n− 1
GridN-large 100–400 6 ~4
GridK-large 100 3–9 ~4
RandomN-large 1000–20000 6 6
RandomK-large 5000 3–9 6

Table 9.1.: Overview on the artificial test instances by Paixao and Santos [108]

9.2. Instances

We used three sets of instances. First, we took the instances by Paixao and Santos
[108] and tested our implementations on them. The instance set consists of random,
complete and grid graphs. An overview of these instances can be seen in Table 9.1.

The random graph instances are based on a Hamiltonian cycle and further arcs are
randomly added. In the complete graph instances, arcs are added between each pair
of nodes in both directions. In the grid graphs, each node is connected to its right and
lower neighbor if it exists. The grid graphs are square and the start node is in one
corner of the graph and the target node is in the opposite corner of the graph. For all
these instances, the arc costs are chosen uniformly at random in [1, 1000] ∩ N. For
each problem type, there are 50 randomly drawn instances. In summary they make
up a set of 9,050 test problems.
The instances come in three size groups: small, medium and large. It turns out

that the small and medium size instances are so small that they can be solved in
milliseconds and do not show much variation among the implementations. In our
tests, we only use the large size instances. The instances are available online, cf. the
work by Paixao and Santos [108] for details.

The second set of instances is similar to the instances from a work by Delling and
Wagner [44]. They are based on the road network of Western Europe provided by
PTV AG for scientific use. We conduct our experiments on the road network of
the Czech Republic (CZE, 23,094 nodes, 53,412 edges), Luxembourg (LUX, 30,661
nodes, 71,619 edges), Ireland (IRL, 32,868 nodes, 71,655 edges) and Portugal (PRT,
159,945 nodes, 372,129 edges, only for the tree-deletion experiments). As metrics
we use similar metrics as those by Delling and Wagner: travel distance, cost based
on fuel consumption and travel time. The median nondominated set sizes are 13.0,
30.5, 12.5 and 133.5, respectively and thus comparable or larger than those by Delling
and Wagner. For each of the instances we draw 50 pairs of source and target nodes
uniformly at random.
We also test our implementations on a set of instances coming from the finding of

Pareto-optimal power transmission lines. The test area is a small 6 km times 3 km
square near Münster, North Rhine-Westfalia in Germany. The considered criteria for
this first study are bird preservation areas (BPA), landscape preservation areas (LPA),
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existing power lines (EPL), freeways (FW), settlement areas (SA), and length (L). We
superimpose an undirected grid graph (i.e., there exists an arc in both directions) with
eight neighbors per inner node and raster pitch of 100m on the area we investigate.
The resulting graph has 1859 nodes and 12674 edges. For each criterion, we add one
objective. In the case of the BCA, LPA, and SA criteria, an edge gets the cost of the
length of traversing this area. The settlement area gets a buffer of 400m which follows
German and North Rhine-Westfalian law. For the EPL and FW criteria, the case
is the other way around: Instead of trying to avoid these linear infrastructures, it is
preferable to build the new line in a 200m buffer around these. To represent this, we
add an area to avoid everywhere outside the 200m buffer around the infrastructure.
Thus, an edge gets the cost of the length of not traversing the buffer. To get different
instances, we use different combinations of criteria.

9.3. Node Selection vs. Label Selection

Early in our comparative studies to find the best labeling strategies for our project,
we tried several strategies for selecting next labels in label-correcting methods. Our
findings and conjectures were that node-selecting strategies are far better than label-
selection strategies, while in the literature usually label-selection strategies are de-
scribed to be superior. It is hard to prove who is right or wrong here since no
source-code is available for the computational studies. To make our points attackable
by other researchers, we provide the implementations online, the instances are also
available online and we describe the implementations in detail.

So to evaluate whether node or label selection is a preferred method, we want to test
these variants on our instances. We implemented both label-correcting algorithms, a
version of the FIFO label-selection (LS) and FIFO node-selection (NS) algorithms in
C++11. The reason for choosing these variants is that the LS-algorithm is the fastest
method in the latest comparative study [108].

9.3.1. Implementation Details

A pseudocode overview of the implementations can be found in Listing 3 and 4. We
use the OGDF2 for the representation of graphs, because it is a well tested graph
library. For cache efficiency, we try to use std::vector for collections of data wherever
possible.

Node Selection In the node-selection variants we use our own implementation of a
ring buffer based on std::vector to implement the queue of open nodes. Also, only
those labels of a node are pushed, which have not been pushed before.

Label Selection In the label-selection variant we use a std::deque to implement
the queue of open labels. A ring buffer cannot be used easily, because the size of the

2http://ogdf.net/
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Listing 3 Abstract version of the LS algorithm
Require: Graph G = (V,A), nodes s, t ∈ V and objective function c : A→ Qd
Ensure: List R of pairs (p, y) for all y ∈ c(Ps,t) and some p ∈ Ps,t such that c(p) = y
1: Lu ← ∅ for all u ∈ V \{s}
2: `← (0, s,nil)
3: Ls ← {`}
4: Q.push(`)
5: while not Q.empty do
6: ` = (v, u, ˆ̀)← Q.pop
7: for each (u,w) ∈ A do
8: Push ` along (u,w) and add the new label `′ to Lw
9: Clean Lw

10: if `′ is nondominated in Lw then
11: Q.push(`′)
12: Reconstruct paths for each label in Lt and output path/vector pairs

Listing 4 Abstract version of the NS algorithm
Require: Graph G = (V,A), nodes s, t ∈ V and objective function c : A→ Qd
Ensure: List R of pairs (p, y) for all y ∈ c(Ps,t) and some p ∈ Ps,t such that c(p) = y
1: Lu = ∅ for all u ∈ V \{s}
2: Ls = {(0, s,nil)}
3: Q.push(s)
4: while not Q.empty do
5: u← Q.pop
6: for each (u,w) ∈ A do
7: for each not yet pushed label ` in Lu do
8: Push ` along (u,w) and add the new label to Lw
9: Clean Lw

10: if at least one new label survived the cleaning process and w /∈ Q then
11: Q.push(w)
12: Reconstruct paths for each label in Lt and output path/vector pairs
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queue can vary a lot, i.e., it can be as small as 1 or larger than 2n.

Cleaning Step While there is a considerable literature on finding the subset of
minimal vectors in a set of vectors, it is not clear which method to use in practice.
There exist practical implementations mostly for the case of 2 or 3 objectives. Imple-
mentations for more objectives are usually multiprocessor or GPU based and begin to
be efficient only if the data set is very large, i.e., more than 105 points (cf., e.g., Bogh,
Assent, and Magnani [16] and Mullesgaard et al. [101]), whereas we usually deal with
a lot less points (cf., e.g., Table 9.2). The more theoretical results by Kirkpatrick and
Seidel [86] and Kung, Luccio, and Preparata [90]—even though quite some time on
the market now—do not seem to have found practical use yet. In our preliminary
tests it turned out to be the case that when the number of objectives is growing and
the number of vectors is not too large, a simple pairwise comparison between the
labels works very well especially when tuned to be cache efficient.

9.3.2. Question, Metrics and Experimental Setting

Our main question in this study is whether node or label selection is preferable. Testing
both implementations gives us a good idea which one is better, depending on the
actual difference in performance.

We use the median running times to compare them, since the distribution of running
times is expected to be skewed. To gain an overview, we visualize the running times
with box plots. The box plots give a direct overview on the quartiles (box dimension)
and median (horizontal line inside the box). The size of the box in the y-direction, or
the difference of the first and third quartile is called interquartile range. The whiskers
(lines above and below the box) show the range of points which lie below the third
quartile plus 1.5 times the interquartile range and above the first quartile minus
1.5 times the interquartile range. Outliers are given by points above and below the
whiskers.

The experiments are performed on an Intel Core i7-3770, 3.4 GHz and 16 GB of
memory running Ubuntu Linux 12.04. The algorithms are implemented in C++11
and the code is compiled using LLVM 3.4 with compiler flag -O3.

9.3.3. Results

In Figure 9.1 we see the results on the large size instances by Paixao and Santos
[108]. We see that the node-selection strategy performs better than the label-selection
strategy on all these instances. The measured maximum factor of how much faster
the node-selection strategy is compared to the label selection strategy is 3.17 over all
instances.
Also on the real-world road networks the results are positive. The results can be

seen in Figure 9.2. The node-selection strategy is up to factor of 3.16 faster than the
label-selection strategy.
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Figure 9.1.: Comparison of the running times (in seconds) of the label-selection (LS)
and node-selection (NS) strategies on the instances by Paixao and Santos
[108].
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Figure 9.2.: Comparison of the running times (in seconds) of the label-selection (LS)
and node-selection (NS) strategies on real-world road networks by PTV
AG.

Figure 9.3.: Caption this!

9.3.4. Discussion

After evaluating the figures, it is hard to hold to the thesis that the label-selection
strategy is always preferable to the node-selection strategy. This is especially true
since the performance gain of the node-selection runs increase as the instance sizes
grow for every single instance group.
There is also a good reason why the node-selection strategy performs better when

implemented carefully: In the node-selection strategy a consecutive chunk of memory
which contains the values of the labels pushed along an arc can be accessed in a
small amount of cache accesses. While in the label-selection strategy only one label
is picked in each iteration, producing potentially many cache misses when the next
label—potentially at a very different location—is accessed.

9.4. Tree-Deletion Pruning

As we discussed the differences between label-correcting and label-setting algorithms
previously, we pointed out a major shortcoming of label-correcting algorithms: It can
happen that we push labels which later are dominated by a new label. To address
this issue, let us take a label-selection algorithm into consideration which selects the
next label in a FIFO manner. In Fig. 9.3, we see the situation where a label ` at node
v, which encodes a path a from s to v, is dominated by a label `′, which encodes a
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a

b

c

v

s

Figure 9.4.: Illustration of the tree-deletion pruning

different path b from s to v. Based on the label `, we might already have built a tree
of descendant labels c. If we proceed with the usual label-correcting algorithm, first
the descendant labels of ` are pushed and later are dominated by the descendants of
`′. To avoid the unnecessary pushes of descendants of `, we can delete the whole tree c
after the label ` is deleted. Instead of traversing the queue of open labels to delete the
tree labels, we mark labels as being deleted and actually delete them when they are
popped from the queue. We call this pruning method tree-deletion pruning (TD). We
can employ this method in label-correcting algorithms using both, the label-selection
and node-selection strategies. The tree-deletion pruning also plays an important role
in the approximation algorithm which we introduce in Chapter 10.

This strategy is similar to the parent-checking heuristic for the single-objective
shortest path problem in the work by Cherkassky, Goldberg, and Radzik [31]. But
it is not so clear how the more lightweight methods can be implemented in the
multiobjective setting.

We again conduct a computational experiment to investigate the performance gains
when using the tree-deletion heuristic. We implemented TD into the label-correcting
implementations with the LS and NS strategies. But since the NS strategy was
considerably faster in the previous experiment and the picture did not change when
using the tree-deletion heuristic, we only present the results of the label-correcting
implementation using the NS strategy.

Following our philosophy to include as much detail about the implementations
as possible, we give some more about how we integrated the tree-deletion part into
the node-selection algorithm. The main implementation detail is how we store the
successor labels. We decided to use a std::list. The reason for this is that the
successor-lists are constructed empty and most of them remain empty for the whole
process of the algorithm. Construction of empty std::lists is the cheapest operation
among the creation of all other relevant data structures.
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9.4.1. Question, Metrics and Experimental Setting

Our goal in this experiment is two-fold: First, we want to investigate if it happens
often that labels are created which could have been avoided by using TD (Q1). Second,
we want to know if our implementation does also improve the running time compared
to the first NS implementation (Q2).

To answer Q1, we implement a number of hooks in our NS and LS code and instead
of deleting a label in the course of TD, we mark them deleted and every time we push
a label which is marked as being deleted, we count this event. This way we count the
number of pushes which could be avoided by TD. We confine these experiments to
the instances by Paixao and Santos [108] to get a general idea on the most important
instance classes. We show box plots for all our instances to answer this question.

To answer question two, we implement a version of TD into our NS implementation.
We see the running time differences by showing boxplots of the running times of the
pure NS implementation and the implementation with TD. We measure the running
times and present the differences in boxplots.

The experiments are again performed on an Intel Core i7-3770, 3.4 GHz and 16 GB
of memory running Ubuntu Linux 12.04. The code is implemented in C++11 and
compiled using LLVM 3.4 with compiler flag -O3.

9.4.2. Computational Study

Let us now turn to the results of the experiments.

Q1: Do unnecessary pushes happen and how often on the various
instance classes?

The results can be seen in Figure 9.4. We observe that on these instances, especially
the node-selection strategy tends to produce larger unnecessary trees than the label-
selection strategy. The situation is different on the grid-graph instances, where both
algorithms have a similar tendency to produce unnecessary trees.

Another observation is that when increasing the number of objectives, the number
of unnecessary trees which could have been deleted decreases in the grid and random
graph instances (see Figs. 9.4 b, d and f). This happens because when looking at
instances with a large number of objectives and totally random objective values, most
labels remain nondominated in the cleaning step. The node-selection implementation
on complete-graph instances is an exception here, where the number of unnecessary
pushes increases with the number of objectives. Which is similar to the situation of
increasing number of nodes in the complete graph instances.

Hence, we expect that on instances where a large number of labels is dominated in
the cleaning step the tree-deletion pruning is very useful. Especially the node-selection
strategy, which is already faster than the label-selection strategy, should benefit from
it.
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running time (s)
objectives NS NS-TD |YN |
BPA, LPA, L 4.04 3.72 377
BPA, EPL, L 13.41 6.37 1170
BPA, FW, L 1.13 1.10 280
BPA, SA, L 172.23 76.80 693
LPA, EPL, L 0.30 0.24 109
LPA, FW, L 6.59 4.95 634
LPA, SA, L 11.35 7.49 640
EPL, FW, L 1.65 1.13 428
EPL, SA, L 134.21 52.82 3767
FW, SA, L 40.98 20.97 1301
BPA, LPA, EPL, L 1549.16 941.01 11902
BPA, EPL, FW, L — 508.33 13449
LPA, EPL, FW, L 336.38 222.30 8106

Table 9.2.: Running times and nondominated set sizes of the node-selection (NS)
implementation and the node-selection implementation with tree-deletion
(NS-TD) on the power grid optimization instances. In the penultimate
instance, the NS implementation exceeded the memory limit of 16 GB.

Q2: Is the running time of the NS implementation faster using TD? How
is the situation on the different instances?

The results of the comparison of the running times can be seen in Figures 9.5, 9.6
and Table 9.2. It can be seen on the real-world road networks that the tree-deletion
pruning works very well and we can achieve a speed-up of up to 3.5 in comparison to
the pure node-selection strategy.

On the instances from the power transmission line optimization set, we first see that
we cannot optimize all objectives at once because of memory constraints which was
16 GB in these experiments. The combinations with at least three objectives which
could be solved are shown in Table 9.2. But there is still one instance which could
be solved by the NS implementation with TD but not with the NS implementation
without TD with the given memory limit of 16 GB. We observe that the TD strategy
again improves the performance of the node-selection strategy on these instances with
a speed-up of up to 2.54.

On the artificial benchmark instances however, the results are not so clear. On most
instances of the artificial benchmark set, TD performs slightly worse than the pure
node-selection strategy.

9.4.3. Discussion

It seems curious that the result is very positive on the real world instances, while
TD is not effective on the artificial bechmark instances by Paixao and Santos [108].
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This behavior can be explained by the large number of labels which are dominated
in the road network and power grid instances. The sizes of the nondominated sets
are small compared to the instances of the artificial test set. We can explain this
behavior by the correlation between the objectives of these instances: In the artificial
instances by Paixao and Santos [108], the weights are drawn independently at random
and thus, no correlation exists between them. In the real-world instances, always
some correlation can be observed: Bird preservation areas tend to be close to or inside
landscape preservation areas, large settlements are usually not too far away from
freeways and existing power grid lines.

Concerning the question if TD is a useful tool in power transmission line optimization,
the answer is positive, besides the instances that could be solved with exact methods
was comparably small.
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(e) CompleteN-large
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Figure 9.5.: Measuring how many nodes have been touched which could have been
deleted by tree-deletion pruning in the label-selection (LS) and node-
selection (NS) strategies on the instances by Paixao and Santos [108]
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Figure 9.6.: Comparison of the running times (in seconds) of the node-selection strategy
with (NS-TD) and without (NS) tree-deletion pruning on the instances
by Paixao and Santos [108]
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Figure 9.7.: Comparison of the running times (in seconds) of the node-selection strat-
egy with (NS-TD) and without (NS) tree-deletion pruning on real road
networks by PTV AG
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10. Multiobjective Approximation

In the last chapter we have seen that exact methods turn out to be infeasible for
our problem of identifying good power transmission lines. The next step thus is to
investigate approximation algorithms. Let us first define what approximation in the
context of multiobjective optimization means.

10.1. Models of Approximation
If a problem instance becomes very large, either in terms of number of variables or
number of objectives, exact methods can be prohibitive. Instead, we want to have a
good approximation of the nondominated set. But what makes a good approximation?
Zitzler et al. [142] give a review and analyze various measures in multiobjective
approximation. In summary they point out that the one measure that gives the best
evaluation of an approximate Pareto set probably does not exist. There are measures
which are better than others and some measures have advantages above others but
are not entirely better. It depends heavily on the application and the circumstances
involved in the solution process.

Keeping these considerations in mind, the following definitions arise from the study
of approximation algorithm for multiobjective optimization problems in theoretical
computer science as pursued by, e.g., Papadimitriou and Yannakakis [111] and many
others. This definition of approximation is almost identical to the measure of the
ε-indicator in the broader picture of multiobjective optimization. From a computer
science perspective, this is a very appealing notion, since it resembles approximation
in single-objective optimization. It also is a setting in which most progress could be
made with respect to performance and quality guarantees.
For a vector ε ∈ Rd≥, we say a point p1 ∈ Rd≥ (1 + ε)-dominates another point

p2 ∈ Rd≥ if p1 ≤ (1+ ε)⊗c p2. Further we say, a set of points M1 ⊆ Rd (1+ ε)-covers
a set M2 ⊆ Rd if for every point p2 ∈M2, there exists a point p1 ∈M1 such that p1
(1 + ε)-dominates p2. An example is shown in Fig. 10.1. Conclusively, for a MOCO
problem with nondominated set YN , a set M ⊆ Rd is an (1 + ε)-Pareto set if M
(1 + ε)-covers YN .

Definition 10.1 (Multiobjective (1 + ε)-approximation Algorithm). For a MOCO
problem O with nondominated set YN , an algorithm A is an (1 + ε)-approximation
algorithm for O if

1. A computes a set M ⊆ Qd and M is an (1 + ε)-Pareto set for O, and

2. A runs in polynomial time in the instance size.
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Figure 10.1.: An example for the definition of ε-cover: The set of hollow black points
ε-covers the set of filled points for ε = 3

2 ·1. The red circles are the black
points scaled by 3

2 .

The following definition is analogous to the definition of FPTASes in single-objective
optimization and most of the literature and all of the following is concerned with this
multiobjective equivalent.

Definition 10.2 (Multiobjective FPTAS (Fully Polynomial-Time Approximation
Scheme)). For a MOCO problem O with nondominated set YN we say an algorithm
A with additional input of ε ∈ Qd> is an FPTAS for O, if for every ε it holds that A
is an (1 + ε)-approximation algorithm for O with running time bounded polynomially
in the input size and ε−1.

10.2. Literature Review
In this section we give a short overview on the existing literature of approximation
algorithms for the multiobjective shortest path problem with performance and quality
guarantees in the given model.

10.2.1. Early works by Hansen and Warburton

The first approximation algorithm for the MOSP problem was proposed by P. Hansen
in 1979 [74]. The algorithm is similar to the classical rounding algorithm for the
knapsack problem, and operates only on biobjective instances. In this algorithm, all
coefficients of one objective function are scaled down and the floor of each of these
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numbers is taken to obtain only integer numbers. We obtain a new instance by keeping
the old instance and only replacing one objective function by its scaled version. Then,
we can use a pseudopolynomial labeling algorithm like the one given in Hansen [74] to
obtain the nondominated set of the scaled instances. As proven by Hansen, this yields
an ε-Pareto set for the biobjective shortest path problem.
A more sophisticated algorithm, capable of approximating the general MOSP

problem was proposed by A. Warburton in 1987 [138]. The basic idea is the following:
If we have an upper bound U on the cost of the paths in every objective, we can divide
the objective space into exponentially growing cells, where we set B := log2 U and
cell Cj for j ∈ (0 ∪ [B])d−1 is the set {x ∈ Rd−1 | 2ji < xi ≤ 2ji+1, i ∈ [d− 1]}. For
each cell we run a pseudopolynomial MOSP algorithm with costs of the first d − 1
objective functions scaled depending on the cell to obtain nondominated vectors for
this cell, again similar to the FPTAS for the Knapsack problem. An example of such
a pseudopolynomial algorithm is the algorithm by Martins [98].
The key insight to the running time is that the number of cells is bounded by the

logarithm of the cost of the most expensive path per objective in the graph. And thus
only a polynomial number of cells need to be considered and the pseudopolynomial
algorithm always runs in polynomial time due to the scaling.

10.2.2. A General Approximation Approach

In their work and many subsequent papers, Papadimitriou and Yannakakis showed in
their paper from 2000 [111] that it is possible to generalize the ideas by Warburton to
a very general class of multiobjective optimization problems. First, they prove that for
every MOP and every ε > 0, there exists an (1+ ε ·1)-Pareto set of size polynomial in
the instance size and ε−1 (but exponential in the number of objectives d). The basic
idea is to decompose the objective space into slightly different cells than the idea by
Warburton (cf. Fig. 10.2). For a given ε = ε · 1, we set B := log1+ε U and the cell j
for j ∈ ({0}∪B)d−1 is the set Cj := {x ∈ R | (1+εi)ji−1 < xi ≤ (1+εi)ji , i ∈ [d−1]}.
If we have a set of points M such that there is a point in every cell (1 + ε)-covering
every point in this cell then M is an (1+ ε)-cover of the nondominated set and M has
a size of O(Bd−1) which is polynomial in the instance size and ε−1 for each fixed d.
Further, they prove that an FPTAS exists if we can solve a so-called gap problem

in polynomial time. The gap problem is almost the problem A. Warburton solved
to get the nondominated set for a cell, but in the gap problem only one point needs
to be found. This idea is a generalization of the idea of Warburton. Moreover, they
also show that the converse direction of this implication holds, i.e., if the gap problem
cannot be solved in polynomial time, then there is no FPTAS for the MOP at hand.

This theory was further refined to find succinct ε-Pareto sets. The existence result
above and also the algorithms do not guarantee that the sets output are anywhere near
a small size, albeit their polynomiality. Vassilvitskii and Yannakakis [137] proved that
in the case of two objectives an ε-Pareto set of size at most three times the smallest
such set can be found in polynomial time and that smaller sets cannot be found in
polynomial time. For the case of three and more objectives the same authors show
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Figure 10.2.: The cell structure introduced by Papadimitriou and Yannakakis [111].
In this figure, ε = 1. If we scale point y by 1+ ε, we get a point in a cell
at the boundary of the same cell or in another cell with a larger index.

that no ε-Pareto set of size within a constant factor from the smallest such set can be
found in polynomial time. Other relaxations of this model also exists by Diakonikolas
[45] and Diakonikolas and Yannakakis [46, 47].

10.2.3. The FPTAS by Tsaggouris and Zaroliagis

The most recent approximation algorithm for the MOSP problem was proposed by
Tsaggouris and Zaroliagis [134] in 2009. Instead of filling the cells of the decomposition
given by Papadimitriou and Yannakakis each cell at a time, the algorithm by Tsaggouris
and Zaroliagis executes only one labeling algorithm and fills the cells while the labeling
algorithm runs. Thus, for each node the algorithm maintains a table of cells as a
(d− 1) dimensional array. In each cell only the cost of the last objective function is
stored and always filled with the path with the least value of the last objective.

The ith position in the table of the cell for the label ` = (v, u, ˆ̀) of a given path is
computed by the function posr : Qd−1

> → Nd−1 depending on r ∈ Qd−1
≥ :

posri (v) =


blog1+ri

vi

cmin
i
c if vi ≥ 1 and cmin

i > 1
blog1+ri

vic if vi ≥ 1 and cmin
i ≤ 1

0 else

where cmin
i = min{ci(a) | a ∈ A} for i ∈ [d].
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The labeling algorithm follows a traditional Bellman-Ford algorithm also described
in the book by Ehrgott [55]. Albeit, Bellman-Ford labeling strategies are not well
tested in the literature of MOSP in practice, but the proof of correctness relies heavily
on the fact that it is a Bellman-Ford procedure.

10.3. A General Approximation Scheme
We now describe how we can derive a general approximation scheme from the work
by Tsaggouris and Zaroliagis [134]. Similar to them, we consider only one run of a
multiobjective labeling algorithm. But we do not limit ourselves to a Bellman-Ford
method and apply the idea to general multiobjective labeling algorithms. This is
especially interesting in practice, since there is a lot of work in the literature about
speeding up label-setting and label-correcting implementations.

Consider Algorithm 5 as a generic example of a labeling algorithm—it is our model-
algorithm in this section. Notice that this algorithm is a generalization of Listings 3
and 4. The generalization happens in Line 5, where a general selection rule is employed.
This way, the algorithm can also be seen as a generalization of the Bellman-Ford
algorithm as used in [134].

Listing 5 A Generic MOSP Labeling Algorithm
Require: Graph G = (V,A), nodes s, t ∈ V , objective function c : A → Qd and a

vector r ∈ Qd≥
Ensure: List R of pairs (p, y) for all y ∈ c(Ps,t) and some p ∈ Ps,t such that c(p) = y
1: Lu ← ∅ for all u ∈ V \{s}
2: Initialize label ` at node s
3: Ls ← {`}
4: while there are still labels left do
5: Select a node v and a subset of labels L of Lv
6: for each label ` ∈ L do
7: for each (u,w) ∈ A do
8: Push ` along (u,w) and add the new label `′ to Lw
9: Clean Lw

10: if `′ is nondominated in Lw then
11: Q.push(`′)
12: Reconstruct paths for each label in Lt and output path/vector pairs

Departing from Algorithm 5, we extend each label ` = (v, u, ˆ̀) by the position
in the table given by the decomposition of Papadimitriou and Yannakakis and get
new labels ` = (v,p, u, ˆ̀). If we push a label ` along an arc a = (u,w), we obtain
a new label ˜̀ = (v + c(a),pos(v + c(a)), w, `). Here, we extend the function pos to
pos : Qd> → Nd to cover all objective functions.
When adding a new label at a node u, we have to check whether the new label is

dominated and do the clean up step in Line 9 of Listing 5. We perform almost the
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same dominance check as in Listings 3 and 4, but use the index of the Papadimitriou
and Yannakakis decomposition and the component-wise < relation instead of the ≤
relation. This way, labels with cost vectors in a cell which have at least one same or
smaller index are kept. Only labels with an index strictly larger in every objective are
discarded. If a label with the same Papadimitriou-Yannakakis-index is pushed, we
always keep the old label and discard the new one. The goal of this step is to speed up
the algorithm considerably in practice while still guaranteeing the same approximation
ratio.

Now, we analyze this algorithm. To run the algorithm, we need to specify the vector
r for the posr-function. Clearly, r needs to be chosen depending on the given ε. In
our analysis, we change this viewpoint at first. Given a vector r ∈ Qd≥, we prove
that we can arrive at the same ε as in the proof by Tsaggouris and Zaroliagis [134]
no matter what selection procedure we use. The running time then depends on the
selection routine.

Lemma 10.1 (Loss on a Path: Upper Bound). Given an instance of the MOSP
problem and a vector r ∈ Qd≥. Let p∗ = (s = v1, . . . , vl+1 = t) be a Pareto-optimal path
and ei := (vi, vi+1) for i ∈ [l]. Independent of how the selection routine is implemented,
the algorithm finds a path p with cost

c(p)i ≤
l∑

k=1
c(ek)i(1 + ri)l−k+1.

for every i ∈ [d].

Proof. Let a graph G = (V,A) be given with objective function c : A→ Qd and source
node s and target node t. Let p∗ be given as above.

Now let us assume the algorithm ran on the instance and let the selection routine be
arbitrary. This defines the sets Lv in the end of the algorithm, which depend on the
selection routine used. If the algorithm finds a label at t corresponding to p∗, we are
done. So let us assume p∗ is not found, then there is a node v := vi ∈ p∗ = (v1, . . . , vl+1)
with the smallest index i such that there is no label in Lv corresponding to the subpath
(s, . . . , v) of p∗. Let p∗v = (s, . . . , v) be the subpath of p∗ from s to v.

Claim 1. There is a label ` = (v,p, v, ˆ̀) ∈ Lv with p = posr(c(p∗v)).

Proof. Assume there is no such label, then there is a label ` = (v,p, v, ˆ̀) ∈ Lv with
p < posr(c(p∗v)) which dominated a label induced by p∗, otherwise there existed a
label for p∗v. But then v � c(p∗) and that cannot be true since every subpath of p∗ is
also Pareto-optimal.

Now since we know that there is a label ` = (v,p, v, ˆ̀) ∈ Lv with p = posr(c(p∗v)),
we know that v ≤ (1 + r)c(p∗v), because of the definition of posr. Let p̂v be the path
corresponding to the label `.
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We can now construct a new path taking the arcs of p̂v from s to v and the arcs of
p∗ from v to t, let this path be p̂. The path p̂ is not necessarily simple, but if it is not,
we can construct a new path from s to t from p̂ by eliminating all cycles on the path
and we see that c(p̂) is an upper bound on its cost and the path uses fewer arcs of p∗.

Now we can iterate the above considerations with p̂ taking the place of p∗. Each time
we show that there must be a label along this path found by the labeling algorithm
independent of the selection method. We end up with a path p̂ from s to t with at
most k iterations with a label ` = (v,p, v, ˆ̀) at node t. In each iteration we lose
a factor of (1 + ri) times the cost of the iteration before in every objective. Thus
c(p̂)i ≤ ((c(e1)i(1 + ri) + c(e2)i)(1 + ri) + c(e3)i)(1 + ri) + ...

Claim 2. c(p̂)i ≤
l∑

k=1
c(ek)i(1 + ri)l−k+1 for all i ∈ [d]

Proof. We prove the claim by induction over the length l of the Pareto-optimal path
p∗. If l = 1, then c(p̂)i ≤ c(e1)i(1 + ri) since we can only lose a factor of (1 + ri)
once. Now let’s assume the claim is true for l′− 1, i.e., we already lost

∑l′−1
k=1 c(ek)i(1 +

ri)(l′−1)−k+1 in each objective. If the path was one edge longer, e.g., having the
additional edge el′ , we lose (1 + ε) for this edge and for all costs we had before, i.e.,

c(p̂)i ≤ (
l′−1∑
k=1

c(ek)i(1 + ri)(l′−1)−k+1 + c(el′)i)(1 + ri)

= (c(e1)i(1 + ri)l
′−1 + c(e2)i(1 + ri)(l′−1)−1 + · · ·+ c(el′−1)i(1 + ri) + c(el′)i)(1 + ri)

= c(e1)i(1 + ri)l
′ + c(e2)i(1 + ri)l

′−1 + · · ·+ c(el′−1)i(1 + ri)2 + c(el′)i(1 + ri)

=
l′∑
k=1

c(ek)i(1 + ri)l
′−k+1

This way we have seen that the algorithm constructs a label at t with cost at most∑l
k=1 c(ek)i(1 + ri)l−k+1 for all i ∈ [d] which proves the lemma.

Accordingly, to compute an r from a given ε, we can safely set ri := ε
1

n−1
i . We thus

use that no path can have more than n− 1 edges which is a very rough bound. If we
have more information about maximum path length, we can adapt this computation
of r accordingly.

Let us now discuss the running time of the approximation algorithm. In contrast to
the algorithm by Tsaggouris and Zaroliagis, we only store labels for paths that we
really need. In the worst case, however, we need to store as many labels as the number
of cells in the tables used in the algorithm by Tsaggouris and Zaroliagis. Hence in the
worst case, we do not gain anything. Even worse, we have to perform a dominance
check for each new label we produce. In practice, this is not so bad assuming that the
worst-case amount of labels is not created. In the worst-case, however, we have to
perform a dominance check even on the worst-case amount of labels. In the algorithm
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by Tsaggouris and Zaroliagis, a dominance check is not even required in the end
because dominated labels are allowed by the definition of ε-Pareto sets.
For the sake of completeness, we give the running-time of the algorithm if we

use a Bellmann-Ford selection scheme and for a label-setting selection scheme. A
label-correcting scheme does not yield good worst-case running times because, in
the worst-case, many labels can be pushed which are dominated later. But first, we
reproduce a lemma by Tsaggouris and Zaroliagis [134], to show a bound on the number
of labels we get. In the following, let n := |V |,m := |E|, cmax := max{cmax

i | i ∈ [d]}
and ε := max{εi | i ∈ [d]}.

Lemma 10.2 (Tsaggouris and Zaroliagis [134]). For a given MOSP instance and
ε ≥ 0, we have |Lv| ∈ O((n log(ncmax)

ε )d) for every v ∈ V independently of the selection
routine and at any given point in the algorithm.

Proof. Let ri := (1 + εi)
1

n−1 . A path’s cost does not exceed ncmax
i in objective i ∈ [d].

Accordingly, we have at most N :=
∏d
i=1 logri

(ncmax
i ) many labels at each node

because it is an upper bound on the number of values the pos-function can attain.
Using that

logri
x = log x

log ri
, for x > 0,

and because log(1 + x) = Θ(x) for small x, we have

N = O(
d∏
i=1

logncmax
i

log ri
)

= O(
d∏
i=1

logncmax
i

log(1 + εi)
1

n−1
)

= O(
d∏
i=1

(n− 1) logncmax
i

εi
)

= O(nd
d∏
i=1

logncmax
i

εi
)

Now, we can investigate the running time using a Bellmann-Ford strategy.

Proposition 10.3. When a Bellmann-Ford selection routine is employed, the running
time of the algorithm is

O(nd+1m( log(ncmax)
ε

)d logd−2(n( log(ncmax)
ε

)))

for each fixed number of objectives.
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Proof. We have n− 1 iterations and in each iteration, we inspect all edges and push
at most all N := O(nd

∏d
i=1

1
εi

log(ncmax
i )) (cf. Lemma 10.2) labels at every node. For

each such push we remove all dominated labels at the target node. The worst-case
running time for the clean-up step in a set of k vectors with t components is bounded
by O(k logt−2 k) [90]. Consequently, the running time is O(nmN logd−2N)).

In Chapter 9 we introduced the label-setting strategy by Martins [98]. In contrast
to other label-correcting strategies, we can give a polynomial upper bound for the
approximation algorithm with this strategy.

Proposition 10.4. When using the lexicographic selection routine from the label-
setting algorithm by Martins [98], the running time of the approximation algorithm
can be bounded by

O(n2d+2( log(ncmax)
ε

)2d logd−2(n log(ncmax)
ε

))

for each fixed number of objectives.

Proof. According to Lemma 10.2, at most N := O(nd
∏d
i=1

1
εi

log(ncmax
i )) labels are

stored per node. Thus in total, we store at most nN labels at all nodes. If the priority
queue is implemented as a Fibonacci heap (cf. Fredman and Tarjan [64]), we get the
following results: Because of the label-setting property, we extract at most nN labels
from the queue. For each such label, we insert at most n new labels, giving a total
running time for all inserts of O(n2N). Consequently, the queue contains at most
n2N elements and the extract-min operation is performed at most nN times, resulting
in a running time of O(nN lognN) for all extract-min operations.
For each label we push across an edge, we perform a dominance check. The

dominance check on k labels with d objectives takes time at most O(k logd−2 k) [90].
We create n2N labels at most and we have N labels per node, so the running time
for all dominance checks is O(n2N2 logd−2N). Hence, the running time totals to
O(n2N2 logd−2N).

For comparison, the running time of the fastest as yet known algorithm by Tsaggouris
and Zaroliagis [134] is

O(ndm( log(ncmax)
ε

)d−1).

The theoretical running times do not look too promising, but we show in the next
section, that the worst-case is not the regular case.

10.4. Comparison of Practical Running Time and Ratio

We now investigate the performance in practice. Coming back to our motivational
problem, our goal is to find an approximation that works well in practice, especially
with more than only four or five objectives. While the analysis again suggests, that
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the running time is upper bounded exponentially in the number of objectives, we
conjecture that the running time does not usually reach this upper bound.
Further, the analysis and especially Lemma 10.1 is very defensive: We assume

that we lose a factor of (1 + ri) in every objective i ∈ [d] on every edge of a path of
maximum length. But we suppose that this is highly improbable in practice. Thus,
assuming to set ε(n)i = r

1
n−1
i might as well be too defensive. We test another possible

function ε(n), namely ε′(n)i = r
1

log(n−1)
i , and see how much faster the algorithm is

and how much we lose in quality on the instances tested. But, we note that this way
we lose the quality guarantees.

10.4.1. The Implementation

Departing from our studies in Chapter 9, we implemented a label-correcting version
of our approximation algorithm. We call this implementation LC Approx. The same
reasonings as in Section 9.3 apply and we also use the naive cleaning procedure due
to the larger number of objectives.
Additionally, we implemented the tree-deletion heuristic from Section 9.4 for two

reasons: First, especially on the transmission grid instances we did see a performance
gain. Second, there is a subtle memory problem compared to the original algorithm
by Tsaggouris and Zaroliagis: Suppose we have a label ` and the predecessor label of
` is deleted. In the approximation algorithm, it can happen that ` is never deleted by
other labels and persists until the algorithm terminates. This is problematic in two
ways: The labels unnecessarily occupy memory. And a more severe reason is that we
run into problems when computing the paths in the end of the algorithm: A label
whose predecessor got deleted does not get its predecessor pointer set into a valid
state. Thus, if that label is not deleted, the reconstruction of the paths represented
by the labels at t at some point discovers ` and tries following its predecessor pointer.
As an aside: In the algorithm by Tsaggouris and Zaroliagis, the predecessor is

always valid, because it points into a table. We cannot guarantee that the label at
the destination cell is the original predecessor, but we can check whether the costs
match. If they do not, we can safely discard this path. If they do, we can try to
further construct the paths and if it contains a cycle we can again discard it and thus
always end up with a feasible path.

10.4.2. State-of-the-Art Algorithms and Implementations

To the best of our knowledge there are no implementations of the algorithms by
Warburton [138] and Tsaggouris and Zaroliagis [134] or any approximation algorithm
for MOSP available. Further, there are no studies investigating the empirical running
times of these algorithms. So we are faced with a bleak picture concerning the running
times and quality in practice and we implemented both of the above methods ourselves.
The method by Warburton is a special case of the scheme by Papadimitriou and

Yannakakis [111] in the following sense: To solve the gap problem, a pseudopolynomial
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algorithm for the constrained shortest path (CSP) problem needs to be used. State-
of-the-art pseudopolynomial algorithms for the CSP problem are labeling algorithms
which solve the multiobjective extension of the CSP instance and can discard labels
which exceed the bounds (cf., e.g., Dumitrescu and Boland [49]). An example of such
an algorithm is the label-setting algorithm by Martins [98]. Moreover, while there is a
considerable literature on the CSP with one resource constraint, not much is known
for the case of an arbitrary number of resource constraints. The grid in the algorithm
by Warburton is always the size of the grid of the algorithm by Papadimitriou and
Yannakakis with ε = 1. For smaller ε, the size of the grid increases in the algorithm of
Papadimitriou and Yannakakis, but stays the same size in the algorithm by Warburton.
To be faster in practice, we use our node-selection label-correcting algorithm to solve
the scaled subproblems and to further accelerate the implementation, we permute the
objectives such that the objective i with the largest cmax

i /cmin
i is last, where cmax

i is
defined analogously to cmin

i .
In the implementation of the algorithm by Tsaggouris and Zaroliagis, we use two

tables per node, one for the current labels and one for the labels of the last iteration.
We switch the semantics of each table in each iteration. The Bellmann-Ford algorithm
frame is implemented in a straight forward way.

In our preexperiments, we see that the implementation of the algorithm by Tsaggouris
and Zaroliagis is very slow even on instances with 3 objectives. This comes to no
surprise, since the table for every node which consists of a number of entries which is
exponential in the number of objectives needs to be checked in every iteration. Hence,
we decided to exclude this implementation from our further study.

10.4.3. Questions, Metrics and Experimental Setting

First, we want to compare the running-times of the LC Approx implementation
and the Warburton implementation and see which one is faster while guaranteeing
the same quality guarantees. We formulate this as question one (Q1). To test the
implementations, we use ε := α · 1 for α ∈ {0.1, 0.25, 0.5, 1}.

It is not only interesting which algorithm is faster, but also how the quality develops
over the instances. We thus differentiate between the guaranteed quality and the
empirical quality. One peculiarity can be observed here: While it is easy to decide if a
given set of points is an (1 + ε)-Pareto set for a given instance and ε, the vector ε for
which a given set of points is an (1 + ε)-Pareto set for a given instance is not unique.
Thus, if we want to evaluate a set of points for a given instance we need a metric of
how good the approximation is. Since in our experiments we set ε1 = · · · = εd, it
is a reasonable choice to measure the quality of an approximation by the smallest α
such that the set of points is a (1 + α · 1)-Pareto set. So our second question (Q2) is,
which algorithm gives the better empirical performance under the same performance
guarantee under the above measure.

Following our observation that it is highly improbable that the worst-case assump-
tions of Lemma 10.1 apply, we also test the LC Approx algorithm with a smaller r for
a given ε. More specifically, we chose ri := εi

1
log(n−1) for every i ∈ [d] and assume to
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get a much faster empirical running time, but we also lose the performance guarantee.
We call this implementation the LC Approx (log) implementation, although the only
thing that changes is the way how it computes r. Our third question (Q3) thus is,
how much to we gain in speed and more importantly, do we really lose much in the
performance and how does it develop over the instances?
The experiments were performed on an Intel Core i7-3770, 3.4 GHz and 16 GB of

memory running Ubuntu Linux 16.04. The algorithms are implemented in C++11
and the code is compiled using LLVM 3.4 with compiler flag -O3. For all experiments
there is a memory limit of 16 GB and a time limit of one hour.

10.4.4. Computational Study

We now describe the results of the computational study and group the results by our
research questions. As the results are very similar for the various choices of α, we
present the results for α = 1.

Q1: Which implementation is faster?

On the transmission grid instances, we observe a mixed result. See Table 10.1 for
the details. The Warburton implementation is faster on almost all instances with
three objectives and gives roughly the same quality as the LC Approx implementation.
On the instances with four objective functions, the Warburton implementation is not
able to terminate on even one out of four instances in the given time limit. The LC
Approx implementation, however, is able to complete three out of four instances in
less than 8min. The hardest instance with objectives BPA, LPA, FW and L could
only be finished by the LC Approx (log) implementation in the given limits. This
instance was also not solved in the tree-deletion experiments by either of the exact
methods (cf. Section 9.4) due to the memory limit.
On the real-world road instances by the PTV AG (cf. Figure 10.3) the picture is

very much the same as for the transmission grid instances with three objectives: The
median running time of the Warburton implementation is better than the median
running time of the LC Approx implementation. But in this instance set we see that
there exist heavy outliers on the side of the Warburton implementation. While the
median on all three instance sets is less than 3s, the farthest outlier has a running time
of about 634s, 1689s and 2705s on the CZE, IRL, and LUX instances, respectively.
The LC Approx implementation on the other hand has a maximum over all instance
at 146.2s and does not have any point which is farther away from the box than 1.5
times the interquartile range while still having the median at about 16.5s. One has to
bear in mind that the PTV instances only have three objective functions.
The results on the artificial benchmark instances by Paixao and Santos [108] with

increasing number of objectives is depicted in Figure 10.4. A general picture for all
instances from the set by Paixao and Santos emerges: The curve of the running times
of the Warburton implementation is always above the curve of the running times of
the LC Approx implementation which again is above the curve of the running times of
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LC Approx LC Approx (log) Warburton
objectives time [s] ratio time [s] ratio time [s] ratio
BPA, LPA, L 4.11 1.0026 0.04 1.4200 1.38 1.0051
BPA, EPL, L 5.96 1.0051 0.03 1.3390 3.57 1.0664
BPA, FW, L 1.24 1.0024 0.03 1.2084 0.47 1.0000
BPA, SA, L 47.72 1.0026 0.04 1.2907 2.78 1.0019
LPA, EPL, L 0.50 1.0031 0.02 1.2120 0.10 1.0014
LPA, FW, L 5.18 1.0026 0.04 1.4531 12.92 1.0011
LPA, SA, L 6.36 1.0035 0.04 1.5203 1.49 1.0007
EPL, FW, L 1.06 1.0054 0.03 1.3097 5.21 1.2302
FW, SA, L 10.61 1.0034 0.04 1.3013 16.55 1.0033
BPA, LPA, EPL, L 480.17 1.0054 0.07 1.4200 — —
BPA, EPL, FW, L 88.05 1.0059 0.04 1.4867 — —
LPA, EPL, FW, L 74.42 1.0059 0.06 1.4531 — —
BPA, LPA, FW, L — — 0.13 1.5763 — —

Table 10.1.: Running times (in seconds) and empirical ratios of the implementations
of the label-correcting approximation algorithm (LC Approx), the label-
correcting approximation with logarithmic ratio (LC Approx (log)) and
the method by A. Warburton (Warburton) on the power transmission grid
optimization instances. In the cases where the running time is marked
with a ‘—’, one of the limits was exceeded. These are the results for
α = 1.

the LC Approx (log) implementation. We can clearly see that the implementation of
the Warburton algorithm scales badly with the number of objectives. The time limit
is already reached on instances with 5 objectives on complete and random instances or
6 objectives on grid instances. Our LC Approximation implementation is able to solve
every instance with up to 9 objectives in less than 40s whereas the implementation
with logarithmic scaling of r solves every instance in less than 6s. The difference in the
LC Approx and LC Approx (log) implementations are larger than the boxplots with
logarithmic ordinate axis suggests. It appears as if it is constant but the difference
actually increases with increasing number of objectives.

The results on the instance set by Paixao and Santos [108] with increasing number
of nodes and fixed six objectives can be found in Figures 10.5 – 10.7. We expected the
Warburton implementation to perform a lot better when the number of objectives is
fixed but it turns out that the implementation can only solve the most basic instances.
On the GridN-large and RandomN-large instances, it can not even solve the smallest
instance with 6 objectives in the given limit. Nevertheless, we show the running
time of the Warburton implementation on the smallest instance with 100 and 1000
nodes—which by far exceeds the running time limit of 1 hour—to show this relation.
On the CompleteN-large instances, we can see a bit of the scaling with increasing
number of nodes. The LC Approx implementation is far superior and the LC Approx
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(log) implementation is again even faster.
We see a comparison of the running times and ratios on the instance set by Paixao

and Santos with α ∈ {0.1, 0.25, 0.5, 1} 1 in Figures 10.8 and 10.9. We see that the
running time of the LC Approx implementation is almost invariant to the setting of
α in this range and the reason for this can be seen in the measured ratio. Already
for α = 1, it often hits the exact nondominated set and the measured ratio is 1.0. By
selecting smaller α, we do not get significantly more labels and thus the algorithm
performs almost the same computations. For the Warburton implementation this
picture is mixed: On the CompleteK-large instance set, larger ε result in much faster
running times. Whereas not much changes on the CompleteN-large and GridK-large
instances. On the GridN-large and RandomN-large instances, the running times
exceeded the 1 hour limit even on the smallest instance. The running time of the LC
Approx (log) implementation, however, is very sensitive to the ε chosen.

Q2: Which implementation gives better empirical approximation quality?

On the real-world road networks and on the transmission grid instances the LC
Approx and Warburton implementation have about the same empirical quality. The
LC Approx implementation seems to be more robust and stable on these instances.

This impression is also visible on the artificial networks by Paixao and Santos. The
LC implementation is a bit ahead in quality compared to the Warburton implementa-
tion especially on the GridK-large instances. But the differences are not significant,

1As a reminder: ε := α1
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Figure 10.3.: Running times and measured approximation ratios of the label-correcting
approximation algorithm (LC Approx), the label-correcting approxima-
tion with logarithmic ratio (LC Approx (log)) and the method by A.
Warburton (Warburton) on the real-world road network by PTV AG.
The ordinate axis in the running time plot is logarithmic. These are the
results for α = 1.

116



10.4. Comparison of Practical Running Time and Ratio

3 4 5 6 7 8 9

1

100

3 4 5 6 7 8 9
Number of Objectives

R
u
n
n
in

g
 T

im
e
 [

s
]

Method

LC Approx (log)

LC Approx

Warburton

3 4 5 6 7 8 9

1.0

1.2

1.4

1.6

3 4 5 6 7 8 9
Number of Objectives

M
e
a
s
u

re
d
 R

a
ti
o

Method

LC Approx (log)

LC Approx

Warburton

(a) CompleteK-large

3 4 5 6 7 8 9

1e−02

1e+00

1e+02

1e+04

3 4 5 6 7 8 9
Number of Objectives

R
u
n
n
in

g
 T

im
e
 [
s
]

Method

LC Approx (log)

LC Approx

Warburton

3 4 5 6 7 8 9

1.0

1.2

1.4

1.6

1.8

3 4 5 6 7 8 9
Number of Objectives

M
e

a
s
u
re

d
 R

a
ti
o

Method

LC Approx (log)

LC Approx

Warburton

(b) GridK-large

3 4 5 6 7 8 9

1

100

3 4 5 6 7 8 9
Number of Objectives

R
u
n
n
in

g
 T

im
e
 [
s
]

Method

LC Approx (log)

LC Approx

Warburton

3 4 5 6 7 8 9

1.00

1.05

1.10

1.15

1.20

1.25

3 4 5 6 7 8 9
Number of Objectives

M
e
a
s
u
re

d
 R

a
ti
o

Method

LC Approx (log)

LC Approx

Warburton

(c) RandomK-large

Figure 10.4.: Comparison of the running times (in seconds) and measured approxima-
tion ratios of the label-correcting approximation algorithm (LC Approx),
the label-correcting approximation with logarithmic ratio (LC Approx
(log)) and the method by A. Warburton (Warburton) on the instances by
Paixao and Santos [108]. These are the results for α = 1. The ordinate
axes in the running time plots are logarithmic. The Warburton imple-
mentation exceeded the time limits on instances with at least 6, 7, and 6
objectives, respectively. Thus, if there are only two boxes visible, those
are the boxes from the LC Approx (log) and LC Approx implementation
(in this order). 117
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Figure 10.5.: Comparison of the running times (in seconds) and measured approxi-
mation ratios of the label-correcting approximation algorithm (LC Ap-
prox), the label-correcting approximation with logarithmic ratio (LC
Approx (log)) and the method by A. Warburton (Warburton) on the
CompleteN-large instances by Paixao and Santos [108]. These are the
results for α = 1. The ordinate axis in the running time plot is logarith-
mic. The Warburton implementation was only able to solve instances
with up to 50 nodes in the given time limit. Thus, if there are only two
boxes visible, those are the boxes from the LC Approx (log) and LC
Approx implementation (in this order).
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Figure 10.6.: Comparison of the running times (in seconds) and measured approxima-
tion ratios of the label-correcting approximation algorithm (LC Approx),
the label-correcting approximation with logarithmic ratio (LC Approx
(log)) and the method by A. Warburton (Warburton) on the GridN-large
instances by Paixao and Santos [108]. These are the results for α = 1.
The ordinate axis in the running time plot is logarithmic. The Warbur-
ton implementation exceeded the time limit on all instances, we include
the result for n = 100 for reference. Thus, if there are only two boxes
visible, those are the boxes from the LC Approx (log) and LC Approx
implementation (in this order).
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Figure 10.7.: Comparison of the running times (in seconds) and measured approxi-
mation ratios of the label-correcting approximation algorithm (LC Ap-
prox), the label-correcting approximation with logarithmic ratio (LC
Approx (log)) and the method by A. Warburton (Warburton) on the
RandomN-large instances by Paixao and Santos [108]. These are the re-
sults for α = 1. The ordinate axis in the running time plot is logarithmic.
The Warburton implementation exceeded the time limit on all instances,
we include the result for n = 1000 for reference. Thus, if there are only
two boxes visible, those are the boxes from the LC Approx (log) and LC
Approx implementation (in this order).
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especially since the measured quality of both implementations are far better than the
guarantee.

Q3: Is a larger choice of r and losing the performance guarantee
reasonable?

On the transmission grid instances the results are very promising. The instance with
objectives BPA, LPA, FW and L could not be finished by any of the methods seen
until this point of this thesis in the given limits. We were only able to compute the
exact nondominated set, because we had access to a computer with more than 128GB
of memory. The LC-log implementation took only 0.13s and a bit under 1 GB of
memory. At the same time the goal ratio of 2 · 1 was still not exceeded, the actual
ratio was about 1.57.

On the road networks the running times with at most 0.43s is also very impressive
while at the same time never exceeding the empirical ratio of 1.23 and thus being far
away from the goal of 2 · 1.

Comparing the ratios on the artificial benchmark instances with increasing number
of objectives by Paixao and Santos, we can observe the same results. The worst
measured approximation ratio is 1.875 on an instance from the GridK-large set. An
explanation for this happening on the grid instances is that the paths are forced to
have a minimum length of 2(n− 1) for an n× n grid to move from one corner to the
opposing corner. While the path length in complete or random graphs are presumably
shorter. It occurs that the measured ratio does not generally worsen with an increasing
number of objectives, which is what the analysis also suggests.

More interesting in this context is how the measured ratio changes when the number
of nodes is varied and thus the expected path length. But we get the same picture
on the complete and random graphs: On the complete graph instances the measured
ratio gets even better and stabilized with growing number of nodes. But on the grid
graph instances, the performance is still satisfying, but there is one outlier almost
worse than the target ratio of 2 on an instance with 14 · 14 nodes.

When changing α, there is one instance in the GridK-large family which for a
given α = 0.5 exceeds this bound. But this is the only test in which this happened.
The influence of the input ε on the measured ratio is as expected. There is no clear
picture visible that suggests that the quotient of measured ratio over input ratio gets
worse with increasing or decreasing input ε.

10.4.5. Discussion

It seems that the LC Approx implementation did what it was designed for: Giving good
quality guarantees even on instances with a larger number of objectives. Starting at
about 4 objective functions, the LC Approx implementation dominates the running time
of the Warburton implementation on every instance, usually in orders of magnitude.
And at the same time it gives the same theoretical performance guarantees and also
is more robust in the measured performance. The performance of the Warburton
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Figure 10.8.: Comparison of the running times (in seconds) and measured approxima-
tion ratios of the label-correcting approximation algorithm (LC Approx),
the label-correcting approximation with logarithmic ratio (LC Approx
(log)) and the method by A. Warburton (Warburton) on the instances
by Paixao and Santos [108] varying the input ε.
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Figure 10.9.: Comparison of the running times (in seconds) and measured approxima-
tion ratios of the label-correcting approximation algorithm (LC Approx),
the label-correcting approximation with logarithmic ratio (LC Approx
(log)) and the method by A. Warburton (Warburton) on the instances
by Paixao and Santos [108] varying the input ε. The ordinate axis in
the running time plot for the CompleteN-large instances is logarithmic.
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implementation was also rather disappointing since it was slower than the exact
labeling algorithms by orders of magnitude on instances with 4 or more objectives.
The LC Approx implementation on the other hand is never much slower than an
equivalent label-correcting implementation since it is almost the same algorithm: If we
set r close to 0, we only have to deal with the superfluous creation and bookkeeping of
the pos-vectors. The difference in the domination check is almost unnoticeable since
it is not very probable that two labels share the same cost in one component.
Concerning the LC Approx (log) implementation, the results are very interesting.

It seems to be a reasonable choice to raise the values of r to speed the running time
up and lower the memory requirements. The goal was exceeded only once on a grid
graph instance with α = 0.5. But concerning the generalizability of these findings,
we also have to say that there might be a graph size from which on the Approx LC
(log) implementation performs worse and exceeds the goal. But up to a certain graph
size it can still be used, if the exact ratio is not critical. In a specific application, a
reasonable choice of r should always be tested beforehand.
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11. Conclusion

Returning to the introduction of this part, our goal was to find an algorithm which
works well on MOSP instances with more than just a few objectives. To achieve this, in
Chapter 9, we review multiobjective labeling algorithms which are the most promising
algorithmic methodologies for the MOSP problem and present some preliminary
experimentation. We show that the common belief that the label selection strategy is
superior to the node selection strategy is most probably wrong and show that even
the exact opposite can be assumed. We also present a speed-up heuristic for label-
correcting algorithms which speeds-up the running time considerably especially on the
real-world instances from the literature and the power transmission line optimization
problem.
But since the instances of the real power transmission optimization problem are

a lot larger than what can be solved efficiently with exact algorithms, we turn to
approximation methods in Chapter 10. We present a multiobjective FPTAS with the
special property that what is known about practically efficient labeling algorithms can
be incorporated into implementations of the algorithm. In our extensive computational
experiments we show that our implementation of the approximation algorithm is far
superior to the other state-of-the-art FPTAS from the literature. Especially, it scales
much better with the number of objectives and even instances with up to 9 objectives
can be approximated in reasonable time.
We did the whole analysis of the labeling algorithms under the assumption that

label-correction methods are superior to label-setting methods when the number of
objectives grow. This assumption is based on the thesis in the studies by Guerriero and
Musmanno [71] and Paixao and Santos [108]. As the source code is not available, we
cannot verify this thesis directly. Nevertheless, the algorithmic scheme we developed
in Chapter 10 is also applicable to a label-setting algorithm as the one by Martins
[98].

Open Problems

A systematic study with published source code is needed to state reliable theses on
the performance of algorithms for the multiobjective shortest path problem. At this
point, it is definitively not clear which algorithm to implement in which situation.
The demonstration of the inconsistencies regarding label or node selection strategies is
only a small area in this science landscape; the question of when to use label-setting
and when to use label-correcting algorithms is a larger one.
In general, there does exist a substantial amount of research for approximate

methods (with performance guarantees) for multiobjective optimization problems. But
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11. Conclusion

they are implemented only seldom or are hopeless to implement, particularly because
of a dependence on the number of objectives. It is an interesting field of research to
find approximation algorithms which are useful in practice. The results from Part I of
this thesis about MOLP might be of help in this regard.
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