
On the relationship between
satisfiability and partially observable

Markov decision processes

by

Ricardo Salmon

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Ricardo Salmon 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/161400985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

Supervisor(s): Pascal Poupart
Professor, Dept. of Computer Science, University of Waterloo

Internal Member: Peter van Beek
Professor, Dept. of Computer Science, University of Waterloo

Jesse Hoey
Professor, Dept. of Computer Science, University of Waterloo

Internal-External Member: Mark Crowley
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

External Examiner: Fangju Wang
Professor, Dept. of Computer Science, University of Guelph

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Stochastic satisfiability (SSAT), Quantified Boolean Satisfiability (QBF) and decision-
theoretic planning in finite horizon partially observable Markov decision processes (POMDPs)
are all PSPACE-Complete problems. Since they are all complete for the same complexity
class, I show how to convert them into one another in polynomial time and space. I discuss
various properties of each encoding and how they get translated into equivalent constructs
in the other encodings. An important lesson of these reductions is that the states in SSAT
and flat POMDPs do not match. Therefore, comparing the scalability of satisfiability and
flat POMDP solvers based on the size of the state spaces they can tackle is misleading.

A new SSAT solver called SSAT-Prime is proposed and implemented. It includes im-
provements to watch literals, component caching and detecting symmetries with upper and
lower bounds under certain conditions. SSAT-Prime is compared against a state of the art
solver for probabilistic inference and a native POMDP solver on challenging benchmarks.

iv

Acknowledgements

I would like to personally thank my supervisor, Dr. Pascal Poupart, for his guidance
and support else this thesis would not be possible. We had many intense meetings fleshing
out ideas on the whiteboard that were instrumental in narrowing the scope of my work.
Also, special recognition to my committee members Dr. Peter van Beek, Dr. Jesse Hoey,
Dr. Mark Crowley, and Dr. Fangju Wang for their time.

I would also like to show appreciation to all the friends I have made during my time
in Waterloo, including members of the Hopeless Experts soccer team and the Computer
Science GSA. A special thank you to Cristina and Jimmy that have kept me grounded and
motivated through the good and bad times. Thanks to my brother, Shane, my mother,
Sandra, and close family for their support in my journey here.

Finally, I would like to thank the following organizations for providing financial support.
These include the University of Waterloo, Cheriton School of Computer Science, Canadian
Natural Sciences and Engineering Council (NSERC), Ontario Graduate Scholarship (OGS),
Mitacs Accelerate, Kik Interactive, Hockeytech, and Vector Institute.

v

Dedication

I dedicate this dissertation to Wayne Erdman, my high school teacher, for his encourage-
ment. He was a tremendous teacher and mentor who inspired my pursuit of Mathematics,
Computer Science, and higher education.

vi

Table of Contents

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

2 Background 4

2.1 POMDP . 4

2.1.1 Value Function . 5

2.1.2 Value Iteration . 6

2.1.3 Approximations . 7

2.2 Satisfiability . 10

2.2.1 Boolean Satisfiability . 10

2.2.2 Quantified Boolean Formula . 12

2.2.3 Stochastic Satisfiability . 13

2.3 Probabilistic Inference . 14

2.3.1 Bayesian Network . 14

2.3.2 Inference Problems . 14

2.3.3 Maximum a Posteriori (MAP) . 15

vii

2.3.4 Marginal MAP . 16

2.3.5 Inference Algorithms . 16

2.3.6 Discussion . 18

2.4 Summary . 19

3 Related Work 20

3.1 POMDP Encoding . 20

3.2 Model Counting . 21

3.2.1 Encoding . 21

3.2.2 Local Structure . 23

3.3 Probabilistic Planning Solvers . 26

3.3.1 Zander . 26

3.3.2 DC-SSAT . 27

3.3.3 APPSAT . 28

4 Encoding Problems into POMDP 29

4.1 SAT ⇒ POMDP . 29

4.2 QBF ⇒ POMDP . 32

4.3 SSAT ⇒ POMDP . 35

4.4 Discussion . 39

5 Encoding Problems into SSAT 40

5.1 POMDP ⇒ SSAT . 40

5.1.1 Example . 49

5.2 Summary . 53

5.3 Inference ⇒ SSAT . 54

5.3.1 Example . 54

5.4 Summary . 56

viii

6 SSAT Solver 57

6.1 Finite Domain . 57

6.2 Unit Rule . 57

6.2.1 Two-Literal Watch Scheme . 58

6.2.2 Improved Watch Literal Scheme . 60

6.3 Component Decomposition . 63

6.3.1 Example . 64

6.4 Component Caching . 65

6.4.1 LRU Cache . 65

6.4.2 LRU-sizeof Cache . 65

6.5 Symmetry . 66

6.5.1 Canonical Representation . 66

6.5.2 Component Projection . 68

6.6 Branch and Bound . 69

6.7 Summary . 69

7 Experiments 71

7.1 Improvements . 71

7.1.1 Unit Rule . 72

7.1.2 Component Caching . 73

7.1.3 Symmetry . 75

7.1.4 Upper Bound . 75

7.1.5 Extra Techniques . 77

7.1.6 Summary . 78

7.2 Inference Competition . 79

7.2.1 Results . 79

7.2.2 Summary . 79

7.3 POMDP Benchmarks . 81

ix

7.3.1 Results . 81

7.3.2 Summary . 83

7.4 Satisfiability Benchmarks . 83

7.5 Random Satisfiability . 83

7.5.1 Results . 84

7.5.2 Summary . 86

7.6 Conclusion . 87

8 Conclusion and Future Work 89

8.1 Conclusion . 89

8.2 Future Work . 90

8.2.1 Improve Solver Efficiency . 90

8.2.2 Changing the Encoding space . 92

References 94

APPENDICES 102

A Stationary Encoding of SAT 103

A.1 SAT ⇒ POMDP . 103

A.2 Theorem . 105

A.3 Example . 106

x

List of Figures

3.1 A 3-variable Bayesian network. 22

6.1 Watch literals for a clause when making the assignments x74 = 0, x3 =
1, x22 = 0, x53 = 2. Orange is watch literal 1 and teal is watch literal 2. . . 59

6.2 The constrained graph of a problem decomposed into a joint set of components. 64

6.3 Representation of Eq. (6.3.1) in canonical form. 68

6.4 Components of Eq. (6.3.1) in canonical form after assigning x3. 68

7.1 Convergence of lower and upper bound on two probabilistic problems. . . . 77

7.2 Cumulative time on inference benchmark from 2008 Competition 80

7.3 The number of steps and probability of satisfiability for stochastic 3-SAT,
4-SAT, and 5-SAT problems . 85

7.4 The difficulty threshold for stochastic 3-SAT, 4-SAT, and 5-SAT problems 86

7.5 The number of steps and the probability of satisfiability for stochastic SAT
for variables with increasing number of values. 87

xi

List of Tables

3.1 Conditional distribution for random variables A, B, and C from Fig 3.1 . . 22

3.2 Parameter generated clauses for encoding Fig 3.1. 24

3.3 Weights for the CNF encoding of Fig 3.1. 24

4.1 beliefs in SAT example after taking actions x1 = false, x2 = false, x3 =
false, x4 = true and x5 = true. 31

4.2 intermediate (unnormalized) beliefs in QBF example after processing a0 =
(x1 := false), o1 = (x2 := false), a1 = (x3 := false), o2 = (x4 := true)
and a3 = (x5 := true). 35

4.3 intermediate (unnormalized) beliefs in SSAT example after processing a0 =
(x1 := false), o1 = (x2 := false), a1 = (x3 := false), o2 = (x4 := true) and
a3 = (x5 := true) where Pr(o1 = (x2 := true)) = 1/6 and Pr(o2 = (x4 :=
true)) = 6/7. 38

5.1 The parameters for the tiger POMDP problem with normalized rewards. . 49

5.2 Example encoding of the Tiger problem from Table 5.1 for a horizon of
length 2. 51

5.3 Example encoding of the transition and observation distributions in the
Tiger problem from Table 5.1 for a horizon of length 2. 52

5.4 Conditional distribution for random variables A, B, and C. 55

5.5 Example encoding of the Bayesian network in Table 5.4. 55

7.1 Basic information for each benchmark problem. 72

7.2 Improvement to the watch literal rule. 73

xii

7.3 Different improvements to the cache. 74

7.4 Results for improvement in symmetry by Canonical and Projection relabeling. 76

7.5 Basic information for each benchmark type. 78

7.6 The composition of the 251 problems in the Relational benchmark from the
Inference competition. 79

7.7 Solving POMDP problems with a native solver PRUNE compared to encod-
ing into SSAT and using PRIME and ZANDER. 82

A.1 States updated after taking actions x1 = false, x3 = true, x4 = false,
x2 = true, and x5 = true. 106

xiii

Chapter 1

Introduction

Partially observable Markov decision processes (POMDPs) provide a flexible framework
for planning under uncertainty when action effects are uncertain and the state of the en-
vironment is partially observable. However, planning with finite-horizon flat POMDPs is
notoriously difficult since the problem is PSPACE-Complete [66]. State of the art solvers
for flat POMDPs [43, 71] can tackle problems on the order of 104 states (although other
statistics such as the covering number have been advocated as better indicators of dif-
ficulty [45]). Factored POMDPs can represent succinctly much larger planning problems
since the state space is implicitly defined as the cross product of the domains of many state
variables, but factored POMDPs are EXP-hard [53] and therefore even harder to solve.

In a separate line of work, tremendous progress has been made in solving Boolean
satisfiability (SAT) problems despite the fact that SAT is NP-Complete. State of the
art solvers can now solve SAT problems on the order of 105 variables and 107 clauses
reasonably quickly [4]. If we treat each joint assignment of the binary variables as a state,
this means that modern solvers effectively search in a space on the order of 2(105) states.
This remarkable success has lead many researchers to investigate reductions of planning as
satisfiability [37, 39, 78, 77], which have been quite successful for deterministic planning.

A stochastic extension of satisfiability called stochastic satisfiability (SSAT) has also
been considered to model planning problems with uncertain action effects and partially
observable states [50, 59]. In fact, SSAT is PSPACE-Complete [67], which means that
SSAT and flat POMDPs can express the same space of planning problems. State of the art
solvers such as Zander [59], DC-SSAT [57] and APPSAT [56] can tackle SSAT problems on
the order of 103 variables and clauses, which means that they search a space on the order of
2(103) states. Nevertheless, solvers and benchmarks for SSAT and POMDPs remain largely
separate and to this day there has not been any cross-fertilization.

1

1.1 Contributions

I take a first step in this direction by describing constructive reductions from satisfiability
problems (SAT, QBF and SSAT) to flat POMDP and from flat POMDP to SSAT. A full
list of the encodings are below:

• Satisfiability ⇒ POMDP

1. SAT ⇒ POMDP

2. QBF ⇒ POMDP

3. SSAT ⇒ POMDP

• POMDP ⇒ SSAT

• Probabilistic Inference ⇒ SSAT

The first half of this thesis is theoretical in nature. It opens the door to future cross-
fertilization by explaining how POMDP solvers could be run on SSAT problems and how
SSAT solvers could be run on flat POMDP problems. An important lesson of this work is
to show that states in satisfiability problems (SAT, QBF and SSAT) do not correspond to
states in flat POMDPs.

The reductions that I present demonstrate that 1) Clauses in satisfiability correspond
to states in flat POMDPs and 2) Variables in satisfiability determine the planning horizon
in flat POMDPs. It is possible to design a reduction that maps states in satisfiability to
states in POMDPs. However this reduction yields factored POMDPs with exponentially
many states that are EXP-hard. Hence, the common belief that satisfiability solvers scale
much better than flat POMDP solvers based on a comparison of the size of their respective
state spaces is erroneous.

In the second half, I build a solver, SSAT-Prime, for SSAT problems by extending
techniques from various satisfiability solvers and generalizing them to the stochastic case:

• Watch Literals

• Component Decomposition

• Component Caching

• Symmetry Detection

2

• Upper Bounds

Furthermore, I verified the correctness of the encodings using my solver and tested the
solver on encoded POMDP and Inference problems.

1.2 Outline

The thesis is structured as follows. Chapter 2 provides the necessary background on
POMDPs, the different Satisfiability problems, and Probabilistic Inference that will be
used throughout. Chapter 3 covers related works to encode restricted forms of POMDP
as inference and model counting techniques for satisfiability. Later, I look at some of
the problems and some available solvers. Chapter 4 describes how to encode satisfiability
problems as POMDPs while Chapter 5 explains how to convert POMDP and Inference
problems into SSAT and discusses the complexity of the reductions. Chapter 6 explains
in detail the different advances of our SSAT solver and Chapter 7 shows some benchmark
results using the encoding on some Inference, POMDP and random problems. Finally,
Chapter 8 concludes and discusses future work.

3

Chapter 2

Background

In this chapter, we briefly review POMDPs, Boolean satisfiability and probabilistic infer-
ence. Boolean satisfiability solvers have improved tremendously in the last 50 years, which
encouraged their use in numerous application domains including planning [37], schedul-
ing [31] and hardware verification [92]. For many applications it is now reasonable to
encode the original problem in SAT, find a solution, and decode the solution. Frequent
SAT competitions have led to many clever improvements. In fact, modern SAT solvers are
now able to solve instances with tens of thousands of variables and million of constraints.

2.1 POMDP

Partially Observable Markov Decision Processes (POMDPs) provide a principled math-
ematical framework for planning under uncertainty. Formally, it is specified by a tuple
P = (S,A,O, T,Ω, R, b0, γ, h), where S is a set of states, A is a set of actions, O is a set of
observations, T (s, a, s′) = Pr(s′|s, a) is the transition distribution, Ω(o, a, s′) = Pr(o|s′, a)
is the observation distribution, R(s, a) is the reward function, b0(s) = Pr(s0) is the initial
belief, γ ∈ [0, 1] is the discount factor and h is the planning horizon. In this work, we
will assume a finite horizon h and we will consider non-stationary dynamics by allowing
different transition, observation and reward functions at different time steps.

In each time step, the agent is in some state s ∈ S and takes an action a ∈ A that
moves the agent to a new state s′ according to the transition distribution T (s′, a, s) =
Pr(s′|s, a). Since the state of the agent is not directly observable, instead, it receives an
observation o ∈ O according to the observation distribution Ω(o, s′, a) = Pr(o|s′, a). The
agent receives a reward R(s, a) after executing action a in state s. The reward function

4

captures preferences over states and actions for the agent. The objective of the agent is to
maximize the expected sum of rewards received by choosing good actions.

The discount factor γ can be seen as controlling the importance of rewards received in
the future (γ ≈ 1) versus rewards received immediately (γ = 0).

A POMDP solution is a policy. A policy, π, is usually a mapping from states to actions.
However, since we are uncertain regarding the current state, we will use a sufficient statistic
known as the belief [2]. A belief b is a distribution over states given all previous pairs of
observations received and actions taken. An optimal policy, π∗, is a mapping from beliefs
to actions that maximizes the long term rewards. We can define b0 to be the starting
distribution over states before any action is taken at time step t = 0.

Given an observation and action, we can derive the next belief state as in Eq. 2.1 by
using the observation distribution and state transition distribution. In fact, the belief state
is a sufficient statistic to derive optimal policies [2].

bao(s
′) ∝

∑
s

Pr(s′|s, a) Pr(o|s′, a)b(s) (2.1)

The value V π(b) of a policy π can be specified as the expected total future reward
received by executing the policy starting from some belief state b.

2.1.1 Value Function

A policy, π, has a corresponding value function that is the expected sum of rewards starting
from an initial belief b0:

V π(b0) =
∞∑
t=0

γtEπ[R(bt, π(bt))], ∀b0

We can rewrite the value function recursively as:

V π(b) = R(b, π(b)) + γ
∑
o

Pr(o|π(b), b)V π(bao) ∀b

where the value of starting in belief b and following policy π is the immediate reward
of taking action π(b) in b plus the sum of the value of all successor states weighted by their

5

likelihood. The probability of an observation given an action a and belief b is:

Pr(o|a, b) =
∑
s′

Ω(s′, a, o)
∑
s

T (s, a, s′)bs

An optimal value function, V ∗, is one which entails the highest reward over all policies
starting from some belief b and is unique [7] while satisfying Bellman’s equation:

V π∗(b) = max
a
R(b, a) + γ

∑
o

Pr(o|a, b)V π∗(bao) ∀b

2.1.2 Value Iteration

It is not clear based on the form of the optimal value function how polices should be
represented. One common approach is to use a policy tree where nodes are belief states,
node labels are actions, edges are possible observations and the starting belief would be
the root such that the value of policy tree p starting in belief b is

V p(b) =
∑
s∈S

b(s)V p(s)

A consequence of the policy tree representation is that value functions are linear with
respect to beliefs. We show linearity by considering a base case of one node as the root
(horizon = 1). It’s value function will be V p

t=1(b) =
∑
b(s)R(s, a(p)). In the general case,

if we have a linear value function at horizon h then a horizon h+ 1 value function will also
be a linear combination of |O| horizon h value functions:

V p
t=h+1(b) =

∑
s

b(s)[R(s, a(p)) + γ
∑
o

Pr(o|s, a(p))V
o(p)
t=h (ba(p)

o)]

Let Γ be a set of policy trees each corresponding to a linear function in b. The optimal
value function will be the upper surface of the linear functions in Γ. Hence, the value
function will be piecewise-linear and convex.

Vt(b) = max
p∈Γ

b · αp

where αp corresponds to the linear value function of policy p and is a vector of dimension
|S|.

6

The Value Iteration algorithm works by computing the optimal value functions for an
increasing horizon t. Let’s start with a default policy tree at t = 0 of value zero. Assume
we’re at time step t, to build a t + 1 policy we consider taking all actions and receiving
each observation for all previous policy trees. The value is updated based on the immediate
reward received.

Unfortunately, the number of policy trees grows exponentially. Therefore previous
methods have tried to find novel and clever ways of pruning useless α-vectors. We say
an α-vector is useful if it is optimal for at least some nonzero region in the belief space,
otherwise it is useless and can be removed without affecting the value function. Related
algorithms include Sondik’s one-pass and two-pass algorithm [16], Cheng’s linear support
algorithm [19], Witness algorithm [47], and Zhang and Liu’s incremental-pruning algorithm
[98].

There are other techniques for solving POMDPs. In particular Policy Iteration [33]
which optimizes a policy directly instead of a value function, forward search [83] which
instead does a bounded online look-ahead while executing a policy and finite controllers
[70].

2.1.3 Approximations

In the next sections, we consider some approximations based on value iteration that bound
the value function from below and the fast informed bound that bounds the value function
from above.

Point-based Value Iteration

A major contribution in solving POMDPs was the introduction of the Point-based Value It-
eration (PBVI) algorithm [69, 71]. Point-based algorithms have been particularly successful
in computing approximate solutions to large POMDPs that were considered intractable.

The key insight of PBVI was to bound the size of the value function by only considering
α-vectors that are optimal at some belief points. It was first suggested to use the set of
regular grid points as the belief set, but that led to optimizing belief points that might
not be reachable from our initial belief. We maintain a set of beliefs that are reachable
from the initial belief and only keep optimal α-vectors for each belief. Assuming we choose
actions and observations appropriately for reachable beliefs, a compact update is:

backup(V , b) = argmax
αa
b

b · αab (2.2)

7

where

αab = ra + γ
∑
o

argmax
αa
o∈V a

o

b · αao ∀a, b (2.3)

αao = γ
∑
s′

Ω(s′, a, o)T (s, a, s′)αs′ ,∀o,∀α ∈ V (2.4)

A generic PBVI algorithm can be found in Algorithm 1 and provides a lower bound
estimate of the optimal value function.

Algorithm 1 Point-based Value Iteration

1: procedure PBVI(P)

2: αa0(s)← mins′
R(s′,a)

1−γ ∀a, s
3: Γ = {αa0|a ∈ A}
4: B = {b0}
5: repeat
6: for each b ∈ B do
7: b′ ← argmaxa,o |bao − B|
8: B ← B ∪ {b′}
9: end for

10: Γ′ ← {}
11: for each b ∈ B do
12: αao = γ

∑
s′ Ω(s′, a, o)T (s, a, s′)αs′ ,∀o,∀α ∈ Γ

13: αab = ra + γ
∑

o argmaxαa
o∈Γa

o
b · αao

14: αb ← argmaxαa
b
b · αab

15: Γ′ ← Γ′ ∪ {αb}
16: end for
17: Γ← Γ′

18: until convergence
19: return Γ′

20: end procedure

Observable MDP

One of the simplest approaches to approximate a POMDP is to consider the MDP model
[52]. A solution to the MDP will give you the value of corners of the simplex in the original

8

POMDP space and interior beliefs can be represented as linear combinations of the corners.

V =
∑
s∈S

b(s)V ∗MDP (s)

In fact, the MDP solution bounds the POMDP value function from above. It makes sense
by noting that we are assuming the MDP is a fully observable version of the POMDP. This
corresponds to gaining additional information. In general, you should have higher rewards
with more information. An advantage of the approximation is the speed to calculate and
the fact that it can be used in more complex approaches.

Fast Informed Bound

A draw back of the MDP approximation is the assumption of full observability. By in-
corporating partial observability to some degree in the update rule, we obtain the fast
informed bound (FIB) [34].

We can derive the FIB from the exact update rule by moving the sum over states
outside the max of Bellman’s equation. Note that we will be maximizing the α-vectors for
each state in contrast to finding a state that maximizes the α-vectors.

V t+1(b) = max
a∈A
{
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

max
αi∈Γi

∑
s′∈S

∑
s∈S

Pr(s′, o|a, s)b(s)αi(s′)} (2.5)

≤ max
a∈A
{
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

∑
s∈S

max
αi∈Γi

∑
s′∈S

Pr(s′, o|a, s)b(s)αi(s′)} (2.6)

= max
a∈A

∑
s∈S

b(s){R(s, a) + γ
∑
o∈O

max
αi∈Γi

∑
s′∈S

Pr(s′, o|a, s)b(s)αi(s′)} (2.7)

As with the MDP approximation, the value function is piecewise linear and convex
with |A| α-vectors (one for each action). The time complexity of the FIB update is
O(|A||S|2|O||Γt|) up to time horizon t. An implementation is shown in Algorithm 2 based
on [71].

9

Algorithm 2 Fast Informed Bound algorithm

1: procedure FIB(P)

2: αa0(s)← maxs′
R(s′,a)

1−γ ∀a, s
3: repeat
4: αat+1 ← R(s, a) + γ

∑
o∈Omaxαa

i ∈Γi

∑
s′∈S Pr(s

′, o|a, s)αai (s′)
5: until convergence
6: return αa, ∀a ∈ A
7: end procedure

2.2 Satisfiability

2.2.1 Boolean Satisfiability

The Boolean satisfiability problem or SAT is to determine if it is possible to find a joint
variable assignment to a Boolean formula that evaluates to true. Consider a formula F
and a set of Boolean variables X. An example formula is shown below:

F = (x3 ∨ x4 ∨ ¬x5) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x5) (2.8)

SAT is the first known NP-complete problem [20]. A sub-problem of SAT is restricting
the formulas to be in conjunctive normal form (CNF). The CNF representation is a con-
junction of clauses where a clause is a disjunction of literals and a literal is a variable or
its negation. Without loss of generality, it is sufficient to consider formulas composed of
only AND, OR, NOT operators. Furthermore, if we limit the number of literals in the
disjunction to three this gives us 3SAT and an example is shown in Eq 2.8 for F . Unfor-
tunately, even 3SAT is in the same complexity class as SAT (in fact, any SAT problem
can be converted in polynomial time and space to 3SAT). In the next sections, we cover
different approaches to solving SAT.

SAT solvers can be classified into complete methods and incomplete methods. Given a
formula F , the complete methods, as their name implies, will return a satisfying set of vari-
able assignments or will prove that the formula F is unsatisfiable. Most complete methods
are based on the popular Davis-Putnam-Logemann-Loveland (DPLL) algorithm [27, 26].
The DPLL algorithm is an exhaustive branching procedure that is able to efficiently prune
parts of the search space when clauses become unsatisfiable.

In contrast, incomplete methods often do a stochastic local search and provide no guar-
antee. Either a solution is returned or a time limit is reached and the process terminates.

10

In spite of the short comings, these methods are able to scale to much larger problems than
complete methods and have been the driving force for large problems. Two key methods
that enjoy success in the literature are GSAT [82] and Walksat [61]. In the remaining
chapters we will focus on complete methods and in particular DPLL inspired techniques.

The key features of modern DPLL solvers are efficient unit propagation, clause learn-
ing, non-chronological back-jumping, variable/value selection heuristic and randomized
restarts.

Unit Propagation

In SAT, a unit clause is where there is an unsatisfied clause with one unassigned literal.
The unit rule says that since we are trying to satisfy all clauses, it is valid to assume such
a clause will be satisfied and to make the necessary assignment to satisfy the clause. All
clauses have to be satisfied and therefore it should not hurt to work under this assumption.
The act of performing such assignments might lead to further unit clauses and propagating
all such assignments is unit propagation. If the assumption was wrong, then a conflict will
eventually occur and we will have to backtrack.

Performing unit propagation efficiently is a challenging task. A basic method is to track
the number of unassigned literals in each clause and when it is one, we know it is a unit
clause. Although, this technique and other similar techniques solve the problem, they tend
to be too costly on larger problems, especially when the number of comparisons needed
grows and there is extra work to backtrack. For most SAT problems, the solver spends up
to 90% of the time on unit propagation. It was not until the 2-scheme watch literals was
introduced in the solver zChaff [64] that a substantial breakthrough was made.

Clause Learning

The clause learning approach can be argued as the most important technique in modern
DPLL solvers that gets us exponential speedups. When a conflict is encountered we con-
cisely learn a new clause that encodes the reason for the conflict and as a result, future
branches in the search space that include the original conflict can be avoided earlier.

The outline of a DPLL implementation is shown in Algorithm 3. Given a formula, F ,
we first check if the set of literals can be reduced to true or false, otherwise we perform
unit propagation and assign pure literals. Pure literals are literals in F that only take one
form. A pure literal can easily be removed by setting it to a value that satisfies all the
clauses that contain it. Next, a new literal is chosen and we recurse on both possible values
and return its disjunction.

11

Algorithm 3 DPLL algorithm

1: procedure DPLL(F)
2: if F is consistent set of literals then
3: return true
4: end if
5: if F contains an empty clause then
6: return false
7: end if
8: for all unit clause l in F do
9: F ← unit-propagation(l, F)

10: end for
11: for all literal l that occurs pure in F do
12: F ← pure-literal-assign(l, F)
13: end for
14: l← choose-literal(F)
15: return DPLL(F ∧ l) ∨ DPLL(F ∧ ¬l)
16: end procedure

2.2.2 Quantified Boolean Formula

A general extension of SAT is the satisfiability of quantified Boolean formulas (QBF) where
Universal quantifiers are introduced over variables. Each variable has a domain consisting
of the set {true, false}. The universal and existential quantifiers are defined below:

∃x F (x) = F (x = true) ∨ F (x = false)

∀x F (x) = F (x = true) ∧ F (x = false)

where F is a Boolean formula with a free variable x. It is also the case that all quantified
Boolean formulas can be written in prenex normal form as below:

Q1X1Q2X2...QDX|X| F (X)

where Xi ⊆ X, X =
⋃
i

Xi and all variables in the set Xi have the same quantifier type.

In particular, the index i of each quantifier set corresponds to the quantifier level. The
quantifier level restricts a variable in a higher level to be assigned before a variable in a
lower level and the order of variables in the same level are interchangeable.

12

QBF is PSPACE-complete, but it shares many similarities with SAT and it is usually
the case that similar techniques are used to tackle both types of satisfiability problems,
including clause learning, backtracking and unit propagation.

2.2.3 Stochastic Satisfiability

Stochastic satisfiability (SSAT) was first proposed by [67] as a generalization of Boolean
satisfiability where each variable xi is either existentially quantified ∃ or randomly quanti-
fied

R

as below:
∃x1

R

x2∃x3...

R

xnF (x1, x2, ..., xn) (2.9)

Stochastic Satisfiability is closely related to quantified Boolean satisfiability (QBF) in
the sense that both are PSPACE-complete, but they differ in the choice of quantifiers since
randomization quantifiers are used in SSAT, while universal quantifiers are used in QBF.
In SSAT, the goal is to find an assignment of values to the existentially quantified variables
that maximizes the probability that a Boolean formula F (x1, x2, ..., xn) is satisfied.

The probability of satisfiability for a true formula is 1 and in the case of unsatisfiable
formula evaluates to 0. Therefore the computation for each quantifier type is now:

∃x F (x) = max (F (x = true), F (x = false))
R

x F (x) = Pr(x = true)F (x = true) + Pr(x = false)F (x = false)

The probability depends on the distribution of the randomized variables. In this thesis,
I consider discrete variables xi that can take two or more values. Hence, the SSAT problem
in Eq. 2.9 corresponds to the following optimization problem:

max
x1

∑
x2

Pr(x2) max
x3

...
∑
xn

Pr(xn)δ(F (x1, x2, ..., xn)) (2.10)

where δ(true) = 1 and δ(false) = 0.

SSAT can be used to encode planning problems with uncertainty. The existentially
quantified variables correspond to actions while the randomized variables correspond to
uncertain environmental variables whose values are decided by nature. The formula F
encodes the goal of the planning problem and the dynamics of the environment, including
action effects [59]. The marginal distributions for each randomized variable quantify the
uncertainty. SSAT solvers find values (corresponding to the actions) for the existential

13

variables that maximize the probability of reaching the goal while respecting the dynamics
of the environment by satisfying formula F .

2.3 Probabilistic Inference

Probability theory was originally developed to analyze games, but it has since evolved and
it is now grounded in a rigorous set of axioms. Probabilistic models are the corner stone of
many decision making systems across a variety of fields and inference allows us to quantify
the uncertainty of these models in a principled way. In the next section, I discuss Bayesian
networks and the different inference problems. The scope of my work is limited to discrete
variables.

2.3.1 Bayesian Network

A Bayesian Network (BN) [42] is a graphical model that captures probabilistic relations
between a set of random variables. The representation used is a directed acyclic graph
(DAG) such that each node is a random variable and an edge implies a conditional de-
pendence between variables while the lack of an edge implies conditional independence. In
this model, a random variable can be observed or latent (i.e., unobserved or hidden).

Let X = {x1, ..., x|X|} represent a finite set of random variables and E is the set
of directed edges in the Bayesian network. A random variable xj is a parent of xi if
(xi, xj) ∈ E and all the parents of xi are parents(xi) = {xj|(xi, xj) ∈ E}. An advantage of
using a BN is that the joint distribution for the set of random variables X can be factorized
as a product of conditional distributions:

Pr(X) =
∏
xi∈X

Pr(xi| parents(xi))

The conditional distributions can be represented as a table for discrete random variables.
A Bayesian Network is a general representation that many approaches use to compactly
represent multivariate distributions, express conditional independences and facilitate in-
ference.

2.3.2 Inference Problems

There are usually three problems of interest when using Bayesian Networks.

14

• Infer the value(s) of some variable(s) given some evidence.

• Learn the parameters of the conditional distributions in the network.

• Identify the most likely structure of the network based on some data.

Our focus will be on the first kind of problem: inference. It is known that inference
is in PP [15, 44]. In probabilistic inference we are interested in answers to queries of the
form:

Pr(θ|y) =
∑
h∈H

Pr(θ, h|y)

where a set of variables H has been marginalized.

Complexity classes are a way to capture the difficulty of a set of problems in a general
way. They are usually defined with respect to a computational model that is able to
recognize such a language. In particular, the complexity classes that interest us can be
described by some restricted Turing machines.

Gill [30] defined the class Probabilistic Polynomial time, PP , as the decision problems
solvable by probabilistic Turing machines where:

• more than 1
2

of computation paths accept if the answer is yes.

• at most 1
2

of computation paths accept if the answer is no.

2.3.3 Maximum a Posteriori (MAP)

Another problem related to inference is Maximum a Posteriori (MAP) estimation. This
type of problem usually comes from attempting to find an optimal point estimate, the
mode, of some parameter given it’s posterior distribution. In statistics the mode is the
most frequent value in the data. In fact, if we consider a likelihood function or conditional
distribution, Pr(y|θ), for y given a parameter θ and a prior, Pr(θ), on θ, we can compute
the posterior distribution for θ given y according to Bayes theorem:

Pr(θ|y) ∝ Pr(y|θ)Pr(θ)

Normally, we are interested in a point estimate. Therefore the MAP problem is one of
maximization:

θMAP = argmax
θ

Pr(θ|x)

15

We can also relate the MAP solution to the Maximum Likelihood solution, θML, by noting
that MAP is a regularized version of ML. This is of interest to us because MAP is in the
complexity class NP which is related to PP by NP ⊆ PP.

2.3.4 Marginal MAP

Finally, marginal MAP is MAP where in addition we need to marginalize the hidden
variables in the set H.

θMAP = argmax
θ

∑
h∈H

Pr(θ|h, y)

We note that marginal MAP is in the complexity class NPPP [68] where NP ⊆ PP ⊆ NPPP.

2.3.5 Inference Algorithms

In the next sections, we will review current approaches for performing inference on a
Bayesian Network. We will start by describing Enumeration and Variable Elimination for
exact inference. In the next section, we review approximate techniques that are stochastic
and in particular Gibbs sampling. Finally, we will review approximate methods that are
deterministic based on Variational Bayes.

Exact Inference

The naive approach, inference by enumeration, uses a table representation of the full
joint distribution. Therefore, for each row there is a corresponding combination of vari-
able assignments and inference would amount to summing the proportion of assignments
consistent with the query. Variable Elimination is a dynamic programming approach that
improves upon Enumeration by caching repeated computations in sub-expressions for reuse
and avoiding irrelevant variables. The key idea is to push sums further inside the joint
equation whenever possible. Unfortunately, the worst time and space complexity of Enu-
meration and Variable Elimination is exponential in the number of variables [79]. Inference
techniques based on weighted model counting are among the best exact inference techniques
since they can exploit several types of structure including context specific independence
and sparsity [46].

16

Approximate Inference - Sampling

In many large real-world problems, inference becomes intractable and approximate methods
are sought after. Approximate methods achieve a compromise by trading off computation
time for accuracy. These approximate techniques are ideal when the network is too large
for exact methods.

Monte Carlo (MC) methods [65] are a class of stochastic algorithms that allows one to
estimate key statistics from a multivariate distribution by gathering samplings from the
joint distribution. In particular, we discuss Gibbs sampling [29, 51] that is a special case
of MC methods.

Gibbs sampling allows us to sample from a multivariate distribution by considering the
conditional distribution of each variable given the rest. Given a distribution of random
variables X = {x1, ..., x|X|} that forms a joint distribution Pr(x1, ..., x|X|), we gather N
samples as follows:

• arbitrarily set initial values V (0) = 〈v(0)
1 , ..., v

(0)
|X|〉

• for sample n = {1, ..., N}

– for each variable xi ∈ {x1, ..., x|X|}
∗ sample xi from conditional distribution:

Pr(xi|x1 = v
(n)
1 , ..., xi−1 = v

(n)
i−1, xi+1 = v

(n−1)
i+1 , ..., x|X| = v

(n−1)
|X|)

∗ V (n) = 〈v(n)
1 , ..., v

(n)
i−1, v

(n)
i , v

(n−1)
i+1 , ..., v

(n−1)
|X| 〉

– record new sample: V (n) = 〈v(n)
1 , ..., v

(n)
|X|〉

Approximate Inference - Variational Bayes

Variational Bayes (VB) [54, 11] algorithms are a family of approximate inference methods
that aim to find an analytical form of the posterior distribution of θ given data y. The
motivation for VB is a method that is deterministic in contrast to MC methods.

In Variational Bayes, we are interested in the posterior distribution, Pr(θ|y) over a set
of hidden or latent variables θ = 〈θ1, ..., θ|θ|〉 given some data y. A distribution Q(θ), called
the variational distribution is proposed as an approximation to Pr(θ|y) such that Q(θ) has a
simpler form (i.e., analytically tractable) than Pr(θ|y) and expressive enough to be similar
to the true posterior. The concept of similarity can be captured by a distance function,

17

in particular we minimize the Kullback-Leibler (KL) divergence or relative entropy. The
KL-divergence is:

KL(Q(θ)||Pr(θ|y)) =
∑
θ

Q(θ) log
Q(θ)

Pr(θ|y)

It turns out that minimizing the reverse form of the KL-divergence, KL(Pr(θ|y)||Q(θ)),
leads to another algorithm Expectation Propagation [63]. Variational Bayes is often faster
than MC methods for comparable accuracy, however the draw back is that deriving the
equations can be tedious and requires lots of work even for modestly complex models.

2.3.6 Discussion

While tremendous progress has been made in recent years to develop approximate inference
techniques that scale to large problems. Most of the current methods usually provide
no performance guarantees on the quality of the solution for queries. Variational Bayes
techniques typically improve a lower bound estimate, but are prone to getting stuck in
local optima. They can return answers that are arbitrarily far from the correct one and
it doesn’t matter whether we give them more time, they will remain stuck. While there
are variational methods that provide an upper bound [94], the solution quality is not
competitive. The best methods are by far those which do not provide any guarantees.

Similarly, Monte Carlo techniques may get stuck in a mode for a while and even though
they will converge in the limit, it is never clear when a run has converged. As a result,
existing approximate inference techniques are often sufficient for research purposes, but
their lack of performance guarantees make them poor candidates for industrial grade tasks.
Stochastic methods can be used to derive confidence bounds on key statistics, but are
usually probabilistic in nature unless hard assumptions are made on the distribution and
the form of the latent variables.

There is usually a time consuming and error prone manual step to derive the necessary
equations for variational techniques. MC methods are usually easier to use, but in practice
there are many fine tunings required to get good results such as how to detect that the
chain has converged, how many samples should be used for burn-ins, and the strength
of auto-correlation between samples. To overcome these issues we propose an anytime
algorithm that comes with performance guarantees in the form of lower and upper bounds
while being easier to use.

18

2.4 Summary

In this chapter we reviewed three research areas, which are POMDP, Satisfiability and
Inference. In POMDPs, computations based on Value Iteration are usually intractable.
Therefore research is now focusing on approximation methods. The most common algo-
rithm, Point Based Value Iteration, is an approximation that refines a lower bound to
the optimal value function. In contrast, computing the upper bound based on the Fast
Informed Bound ties in with the value of information and MDPs. The tractability limit of
exact flat POMDP solvers is usually around tens to thousands of states.

Boolean satisfiability is a well studied problem that has matured with numerous solution
methods. In particular, exact solvers can often solve problems on the order of hundreds of
thousands of variables and millions of clauses. In QBF problems, we see a drop to tens of
thousands of variables and hundreds to thousands for SSAT. Empirically, SSAT problems
seem to be more difficult on average and this might be related to the fact that there are
no equivalent rules to reduce randomly quantified variables.

19

Chapter 3

Related Work

In this chapter we cover related approaches for encoding POMDPs to inference, inference
into satisfiability models such as stochastic SAT and weighting model counting of #SAT,
and various probabilistic planning solvers.

3.1 POMDP Encoding

In the POMDP literature, several approaches have been proposed to optimize POMDP
policies by probabilistic inference [88, 89] and they have been expanded to continuous [35]
and hierarchical [87] domains. It was shown by [89] how to encode a POMDP into a mixture
of dynamic Bayesian network using Expectation-Maximization for inference. The optimal
policy is derived by transforming the problem from maximizing expected future rewards
into likelihood maximization using mixture models. Later, [40] reduced the encoding to a
single Dynamic Bayesian Network from a mixture.

However, there is no known technique for converting POMDPs to inference problems in
probabilistic graphical models without doing an approximation or incurring an exponential
blow up in the representation since probabilistic inference problems are in lower complexity
classes than PSPACE (i.e., NP for MPE inference, #P for plain inference and NP#P for
marginal-MAP inference). For instance, [93] explained how to reduce the complexity of
POMDP planning from PSPACE to lower complexity classes by restricting the policy
search to various classes of bounded finite state controllers while understanding that these
restrictions may prevent an optimal policy from being found.

There has been related work by [90] in reducing conditional planning of polynomial

20

length to QBF and [12] for partially observable plans which are linear. [14] showed that
3SAT and hence n-SAT can be polynomially reduced to PLANSAT.

3.2 Model Counting

Model counting [32] or #SAT is an extension of SAT that asks how many variable as-
signments satisfy the formula. In contrast, SAT is a decision problem where as #SAT is
a counting problem in the class #P-complete. Surprisingly, model counting is hard even
for [91] 2SAT! Exact solvers are able to handle hundreds of variables while approximate
solvers can handle up to thousands of variables [81]. If efficient solution algorithms can be
derived, the main applications would be contingency planning and probabilistic reasoning.
The focus of this section will be on mapping probabilistic inference to weighted model
counting using exact methods.

Exact model counting methods are usually based on systematic DPLL inspired search
or knowledge compilation [18]. Solvers based on searching usually use techniques from the
SAT literature for pruning and to more efficiently explore the search space. In contrast,
for knowledge compilation, the CNF formula is usually converted into another logical
form that allows solutions to be counted in polynomial time. The most common of these
forms include binary decision diagram (BDD) and deterministic decomposable negation
normal form (d-DNNF). Some exact model counters are Relsat [5], CDP [10], Cachet [80],
sharpSAT [86], c2d [25], and more recently ACE 1.

To solve basic model counting using search, explore all branches and whenever a sat-
isfiable partial assignment is encountered that assigns m of n total variables we deduce
that there are 2n−m solutions by exhaustively enumerating the remaining n−m variables.
Normally, DPLL solvers are not able to detect when a solution is found except when all
the variables are assigned. But the solver can be augmented with an extra data-structure
to track when all clauses have been satisfied.

3.2.1 Encoding

In weighted model counting, we review a way to encode random variables and their con-
ditional probability tables into a CNF. First, assume a Bayesian network contains a set
of n variables X such that Xi ∈ X with finite domain Xi = {0, 1, ..., |Xi|}. See Section

1http://reasoning.cs.ucla.edu/ace

21

2.3.1 for more information on inference in Bayesian networks. The joint distribution can
be represented as a product of conditional distributions:

Pr(x1, x2, ..., x|X|) =
∏
n

Pr(xn|parent(xn)) (3.1)

where parent(xn) is the set of assigned variables that are parents of xn.

A

B C

Figure 3.1: A 3-variable Bayesian network.

Table 3.1: Conditional distribution for random variables A, B, and C from Fig 3.1

a Pr(A)

0 0.4
1 0.6

a b Pr(B|A)

0 0 0.2
0 1 0.8
1 0 0.7
1 1 0.3

b c Pr(C|B)

0 0 0.0
0 1 0.0
0 2 1.0
1 0 0.2
1 1 0.6
1 2 0.2

Going forward, we refer to Figure 3.1 as an example Bayesian network with 3 variables.
In WMC, given a theory of propositional logic one needs to assign a weight W (l) to each
literal l such that an assignment to all the variables corresponds to a model m that has
weight:

W (m) =
∏
l∈m

W (l) (3.2)

and is proportional to the probability Pr(m).

Based on the work of [24], to transform a Bayesian network into CNF requires clauses
(1) encoding the variable values and (2) the parameters of the conditional distribution.
Let β represent indicator variables for each variable in the Bayesian network and λ be

22

parameters for each probability value in the CPTs. Each variable x that has domain
values {0, 1, ..., |x| − 1} is represented by the following clauses:

|x|−1∨
v=0

βxv , βxv ⇒ ¬βxv′ , v 6= v′ (3.3)

the parameters of the distribution Pr(x|y1, ..., ym) induce the following clauses:

βx ∧ βy1 ∧ ... ∧ βym ⇐⇒ λx|y1,...,ym (3.4)

where in Eq. (3.3) it is guaranteed that at least one of the values in the domain of x is
true and in the second term at most one literal in each clause is true. Taken together,
exactly one value will be active. In Eq. (3.4), if the indicators for each variable are active,
then the corresponding parameter must be active. Since the relation is an equivalence the
reverse implication is also true. That is, if a parameter with certain indicator variables is
true, then each individual variable indicator must be true.

The network in Fig 3.1 can be encoded as a CNF formula as shown below. First,
according to rule (3.3), we can encode the indicator variables into the following clauses:

βa0 ∨ βa1 ,¬βa0 ∨ ¬βa1 (3.5)

βb0 ∨ βb1 ,¬βb0 ∨ ¬βb1 (3.6)

βc0 ∨ βc1 ∨ βc2 ,¬βc0¬ ∨ βc1 ,¬βc0 ∨ ¬βc2 (3.7)

and the parameters generate the clauses in Table 3.2:

The weights for the indicator literals (both positive and negated) and the negated
literal weights of all the parameters are always 1. The remaining weights are shown below
in Table 3.3.

3.2.2 Local Structure

A consequence of doing the transformation to CNF is the exploitation of structure not
present in the Bayesian networks such as context-specific independence (CSI). This includes
determinism, equal parameters, and evidence.

In the CNF representation, determinism can be exploited by noting that whenever
a parameter, λx|y1,...,ym , is 1, this implies that any clause that contains such a variable
can be removed. Furthermore, the other parameters from the same CPT will be 0 since

23

Table 3.2: Parameter generated clauses for encoding Fig 3.1.

βa0 ⇒ λa0

λa0 ⇒ βa0

βa1 ⇒ λa1

λa1 ⇒ βa1

βc1 ∧ βb1 ⇒ λc1|b1
λc1|b1 ⇒ βc1
λc1|b1 ⇒ βb1

βc2 ∧ βb1 ⇒ λc2|b1
λc2|b1 ⇒ βc2
λc2|b1 ⇒ βb1

βb0 ∧ βa0 ⇒ λb0|a0

λb0|a0 ⇒ βb0
λb0|a0 ⇒ βa0

βb1 ∧ βa0 ⇒ λb1|a0

λb1|a0 ⇒ βb1
λb1|a0 ⇒ βa0

βb0 ∧ βa1 ⇒ λb0|a1

λb0|a1 ⇒ βb0
λb0|a1 ⇒ βa1

βb1 ∧ βa1 ⇒ λb1|a1

λb1|a1 ⇒ βb1
λb1|a1 ⇒ βa1

βc0 ∧ βb0 ⇒ λc0|b0
λc0|b0 ⇒ βc0
λc0|b0 ⇒ βb0

βc1 ∧ βb0 ⇒ λc1|b0
λc1|b0 ⇒ βc1
λc1|b0 ⇒ βb0

βc2 ∧ βb0 ⇒ λc2|b0
λc2|b0 ⇒ βc2
λc2|b0 ⇒ βb0

βc0 ∧ βb1 ⇒ λc0|b1
λc0|b1 ⇒ βc0
λc0|b1 ⇒ βb1

Table 3.3: Weights for the CNF encoding of Fig 3.1.

W (λa0) = 0.4
W (λa1) = 0.6
W (λb0|a0) = 0.2
W (λb1|a0) = 0.8

W (λb0|a1) = 0.7
W (λb1|a1) = 0.3
W (λc0|b0) = 0.0
W (λc1|b0) = 0.0

W (λc2|b0) = 1.0
W (λc0|b1) = 0.2
W (λc1|b1) = 0.6
W (λc2|b1) = 0.2

probabilities add up to 1 and these parameters can be removed from any clause they are
included in. This will have no effect on the number of solutions, but this will reduce the
size of the CNF and the search space the solver has to explore. In fact, many networks in
the industry are highly deterministic and would greatly benefit.

Equal parameters occur when many parameters in the same CPT have equal values.
For instance, in Table 3.1, the CPT for variable C has a repeated value of 0.2 for λc0|b1 and
λc2|b1 . We can merge the variables λc0|b1 and λc2|b1 into a single new variable λc0,2|b1 since
only one parameter variable can be active in a particular CPT. If we replace the clauses
that include λc0|b1 and λc2|b1 , we obtain:

24

βc0 ∧ βb1 ⇐⇒ λc0,2|b1
βc2 ∧ βb1 ⇐⇒ λc0,2|b1

(3.8)

Unfortunately, when the equivalence is expanded in both directions these lead to in-
consistent indicator variables being implied by the merged parameter variable as shown
below for c0 and c2:

βc0 ∧ βb1 ⇒ λc0,2|b1 , λc0,2|b1 ⇒ βc0 , λc0,2|b1 ⇒ βb1 (3.9)

βc2 ∧ βb1 ⇒ λc0,2|b1 , λc0,2|b1 ⇒ βc2 , λc0,2|b1 ⇒ βb1 (3.10)

If the equivalence is replaced with implication in (3.8), that will remove conflicting
assignments, but increases the number of models that are consistent with the original joint
assignment. It turns out that these extra models all assign more variables to true than in
the original joint distribution. A process call minimization can be used to filter out the
extra models by placing an upper limit on the number of variables that are assigned the
value true.

Evidence is usually in the form of a conjunction of variables assigned over a disjunction
of values. Therefore, evidence can be incorporated into the CNF encoding without extra
complications as additional clauses. Directly encoding evidence into the WMC encoding
usually reduces significantly the original problem space since many variables are assigned
fixed values. Evidence often makes tractable some problems that would otherwise be
intractable.

The trade off for solvers that compile to a different logical form would be that the
transformation is query specific and it would need to be recomputed for new evidence.
However, queries such as finding the marginal of each variable conditioned on evidence
would still be computationally efficient.

There are many more improvements in the literature that is beneficial to a #SAT solver
that may require modification of the solver (eclause [18]) or is domain specific (noisy-
or/max relations [96]) that we do not consider here. An eclause is a clause with the
additional constraint that exactly one of its literal must be satisfied. This can be used
to enforce finite domain values over multiple boolean variables. See [18, 46, 9] for further
readings.

25

3.3 Probabilistic Planning Solvers

Probabilistic planning is defined by a set of states, actions, initial state and goal states.
Here, actions map states to next states stochastically. The solution is a sequence of actions
from the initial state that is able to reach a goal state with high probability. For instance,
in propositional planning, states are described by the joint assignment of propositional
variables.

In the case of deterministic planning, the solver SATPLAN [38] was able to encode
planning problems into satisfiability and the solution was decoded back to the original
planning domain. This proved to be successful and analogous to other problems that have
a reduction to SAT. Intuitively, probabilistic planning, corresponding to the SAT extension
called E-MAJSAT, is at least as hard as classical planning and is in the complexity class
NPPP-complete.

One of the earlier solvers, MAXPLAN [58], encodes planning problems into an E-
MAJSAT problem. An E-MAJSAT problem is a Boolean formula quantified by a set
of variables such that the first block is a set of existential variables followed by a block
of randomized variables. This approach was tested on stochastic propositional planning
problems and it performed competitively against other non-satisfiability solvers. The main
contributions were a LRU cache to store sub-formulas for reuse and a smart cache based
off the estimated difficulty of a subproblem.

3.3.1 Zander

Later the solvers Zander and C-MAXPLAN were introduced by [59] to solve contingent
planning under uncertainty. Contingent plans are those which depend on observable vari-
ables during execution. Unlike MAXPLAN and C-MAXPLAN, Zander encodes proba-
bilistic plans in Stochastic SAT. In fact, Zander was the first true stochastic SAT solver
to incorporate techniques from satisfiability. Overall, the encoding of ZANDER is more
compact than that of C-MAXPLAN, but it is also responsible for the resulting higher
complexity class.

A partially observable probabilistic plan is specified by a set P of unique propositions
that take on Boolean values. The states are configurations of propositions and an initial
state is described by a decision tree for each proposition. The goal states consist of a partial
set of all configurations where some propositions are satisfied. An action from the set A
maps a state to a distribution over next states and only a subset of the propositions are
observable. The solution is a maximal plan that recommends an action at each time step

26

conditioned on observable propositions where a maximal plan maximizes the probability
of reaching a goal state.

Zander encoded plans as an alternating sequence of existential and randomized vari-
ables. Existential blocks correspond to action variables and randomized blocks to obser-
vations. A very general encoding for contingent plans is shown below in (3.11):

first action︷ ︸︸ ︷
∃x1,1, ..., ∃x1,|A|

first observation︷ ︸︸ ︷

R

y1,1, ...,

R

y1,|O|, ...,

last observation︷ ︸︸ ︷

R

y|O|,1, ...,

R

y|O|,|O|

last action︷ ︸︸ ︷
∃x|A|,1, ..., ∃x|A|,|A|

random outcomes︷ ︸︸ ︷

R

z1, ...,

R

z|Z|

the states︷ ︸︸ ︷
∃s1, ..., ∃s1,ks (3.11)

Now future actions can depend on previous observations to allow contingency in plans.
The final two blocks compute the effects of random outcomes and states consistent with
the current set of actions and observations.

The contributions of Zander include a variable ordering heuristic, unit propagation,
pure literal elimination, and thresholding. Although, results for the variable ordering
heuristic were disappointing.

In follow up work, [55] described how non-chronological backtracking (NCB) can be
incorporated into a SSAT solver. Early backtracking allows the solver to skip over com-
puting the right branch after accumulating sufficient information during computation of
the left branch such as a satisfiability or unsatisfiability which is called the reason. Their
approach allowed for backtracking over many variables in a single jump if they were not
contributing to the reason. The results looked promising on randomly generated problems,
however on planning problems the overhead was significant and NCB was outperformed
by the base model. They concluded that the structure of probabilistic planning problems
does not offer many situations where NCB would be useful.

3.3.2 DC-SSAT

DC-SSAT [57], like Zander, is a stochastic SAT solver for probabilistic planning prob-
lems that is sound and complete. DC-SSAT works by decomposing the original problem
into overlapping subproblems called viable partial assignments (VPA) and combining the
solutions.

More specifically, DC-SSAT tackles SSAT encodings of completely observable proba-
bilistic planning (COPP) problems. These types of problems have extra structure that
can be exploited by the solver for much larger speedups. The requirements are that the
first quantifier block must correspond to existential variables, among which the second half
of the existential variables can only appear in clauses with other variables from the same
existential block or an adjacent block of randomized variables.

27

Given a problem Φ = Φ1,Φ2, ...,Φs, we generate VPAs for each subproblem Φi that
satisfies all the clauses in that subproblem. The subproblems can be created in O(|V |+|C|)
that is linear in the number of variables and clauses. Next, a VPA for the current problem,
Φ, is constructed by noting which set of VPAs together satisfy all the clauses. VPAs that
share contradictory assignments of variables are discarded.

On benchmarks, DC-SSAT was able to consistently achieve 1-2 orders of magnitude
improvements in both time and space in comparison to Zander. However, it is still an
open question if the technique can be expanded to general SSAT problems efficiently. The
issue is that the VPA for subproblem Φi may share variables with another VPA Φj such
that j > i + 1. This rules out adjacent subproblems. Checking compatibility between
subproblems further apart will need to keep track of many potentially useless subproblems
that might undo any gains.

3.3.3 APPSAT

APPSSAT [56] is another solver based on Zander that tackles probabilistic contingent
plans, but it is an anytime algorithm. In a probabilistic plan encoding to SSAT, many
of the variables are randomly quantified. APPSAT seeks to determine the most likely
instantiations of these variables that are consistent and form an approximate plan that is
improved given additional time.

In APPSSAT, each observation variable (associated with a randomized quantifier) is
assigned a new type called a branch variable, which does not have an associated probability
distribution. Additionally, the full contingency of a plan is considered not just for the
sampled path variables. The results show that APPSSAT is able to generate lower bounds
on problem sizes beyond Zander’s reach.

28

Chapter 4

Encoding Problems into POMDP

While the goal of this chapter is to explain how to reduce QBF and SSAT problems to
POMDPs since they are all PSPACE-Complete, we start by explaining how to encode
propositional satisfiability as POMDPs. This will ease the description of the QBF and
SSAT conversions to POMDPs.

4.1 SAT ⇒ POMDP

We describe a transformation from SAT to POMDP where a joint assignment of variables
in SAT corresponds to a policy in the resulting POMDP encoding. A joint assignment is
satisfiable if and only if the value of the corresponding policy is 1. The planning horizon in
the POMDP encoding has a number of steps equal to 1 plus the number of variables in SAT.
At each step, the POMDP assigns a truth value to a variable such that a joint assignment
for all the variables is obtained at the end of the plan. In this section, we consider SAT
problems where the Boolean formula F is defined by a set of clauses C = {c1, ..., c|C|}
where each ci is a disjunction of literals from the set of variables X = {x1, ..., x|X|}. We
describe below a (constructive) reduction that yields the following POMDP components:

• State space S = {sat, c1, c2, ..., c|C|}: A state labeled by ci indicates that clause ci
has not been satisfied yet. The state labeled by sat can be interpreted as the entire
formula is satisfied.

• Initial belief b0: Initially, none of the clauses are satisfied, hence we start with
b0(sat) = 0 and b0(ci) = 1

|C| ∀i. Here we should not interpret the uniform distribution

29

over the ci’s literally. Instead, we will interpret a belief as denoting a set of clauses
that remain to be satisfied. More precisely, whenever b(ci) > 0, this means that
clause ci has yet to be satisfied. The precise probability b(ci) is not important. We
will simply distinguish between b(ci) = 0 (ci is satisfied) and b(ci) > 0 (ci is not
satisfied).

• Action space A = {true, false}: At time step t, variable xt is assigned either true
or false.

• Transition function Pr(st+1|st, at): The transition function is deterministic. When
in state st = ci, the process will transition to the satisfiable state sat, if the current
action assigns a truth value to variable xt+1 that satisfies clause ci. Otherwise, the
process remains in the current state.

Pr(st+1|st, at) (4.1)

=

1 if st = ci and at satisfies ci and st+1 = sat
1 if st = ci and at ¬satisfy ci and st+1 = ci
1 if st = st+1 = sat
0 otherwise

• Reward function R(st, at): The reward function returns a non-zero reward only
at the last time step where a reward of 1 is earned if the system is in the satisfiable
state sat.

R(st, at) =

{
1 if t = |X| and st = sat
0 otherwise

(4.2)

Note that the reward function does not depend on the action since this is not needed
for the reduction.

• Observation space O = {null}: There is a single null observation, which means
that this observation is uninformative and the process is effectively unobservable.

• Observation distribution Pr(ot+1|at, st+1): Since there is a single observation, the
probability of that observation is always 1.

Pr(ot+1 = null|at, st+1) = 1 (4.3)

• Horizon h = |X|: There are |X|+ 1 time steps (time step 0 to time step |X|).

• Discount factor γ = 1: Since the process has a finite horizon, we do not use any
discount factor.

30

States b0 b1 b2 b3 b4 b5

sat 0 1/3 2/3 2/3 1 1
c1 = x3 ∨ x4 ∨ ¬x5 1/3 1/3 1/3 1/3 0 0
c2 = ¬x1 ∨ ¬x2 ∨ x4 1/3 0 0 0 0 0
c3 = x1 ∨ ¬x2 ∨ x5 1/3 1/3 0 0 0 0

Table 4.1: beliefs in SAT example after taking actions x1 = false, x2 = false, x3 = false,
x4 = true and x5 = true.

To illustrate the POMDP reduction, we give an example in Table 4.1 for the SAT
problem from Eq. 2.8 that shows how the belief is updated as we execute the sequence of
actions x1 = false, x2 = false, x3 = false, x4 = true and x5 = true. Since the final belief
b5 has all its mass in the state sat, we conclude that this joint assignment is satisfiable.

The POMDP obtained by our reduction has |C|+1 states, 2 actions, 1 observation and
a planning horizon of |X| + 1 time steps. Note that the POMDP is not stationary since
the transition and reward functions are not stationary. The transition function assigns
a truth value to a different variable xt+1 at each time step t while the reward function
produces a non-zero reward only at the last time step |X|. It is possible to obtain a
stationary process by enlarging the state space, but this will complicate the reduction.
Note also that the resulting POMDP is unobservable since the single null observation is
uninformative. Unobservable POMDPs are NP-Complete [66] and therefore it makes sense
that we can reduce SAT to unobservable POMDPs. The following theorem confirms that
a SAT problem is satisfiable when there exists a POMDP policy with value 1.

Theorem 1. In the above reduction from SAT to POMDP, there exists a policy with value
1 iff there exists a satisfiable joint assignment.

Proof. Suppose there is a satisfiable joint assignment 〈x1 = a0, x2 = a1, ..., x|X| = a|X|−1〉,
the transition function ensures that the final belief is b|X|(ci) = 0 ∀i and b|X|(sat) = 1
since all the clauses are satisfied. In turn, the reward function returns a value of 1 for this
belief. Conversely, if we solve the POMDP and find a policy with value 1, it means that
this policy selected actions that satisfied all the clauses and therefore the joint assignment
corresponding to this policy is satisfiable.

31

Example

Lets focus on the state representation by using Eq. 2.8 as an example. Shown in column
two of Table 4.1 is the initial belief state the process could be in where each clause has
equal probability of being unsatisfiable. In columns b1 to b5 is the belief state if we consider
a policy, πF that recommends the assignments ¬x1 ∧ x3 ∧ ¬x4 ∧ x2 ∧ x5. Since the belief
state has all its mass concentrated in the satisfiable state, sat, after all variables have been
assigned in X, we can conclude that the original SAT problem is satisfiable and πF is an
optimal policy. An immediate reward of 1 is also gained from being in the satisfiable state.

In summary, we have shown how to reformulate a SAT problem as a POMDP where
the size of the state space, |C|+ 1, is linear in the number of clauses |C|.

4.2 QBF ⇒ POMDP

We now extend the SAT reduction to POMDP to work with quantified Boolean formulas
(QBF) of the form

Q1x1Q2x2...Q|X|x|X| F (x1, ..., x|X|)

Without loss of generality, we require the sequence of quantifiers to be of the form
∃x1,∀x2, ∃x3, ...,∀x|X|. If the sequence is non alternating, we can introduce extra quantified
variables until we satisfy our condition without changing the semantics of the formula. In
the worst case, we will add |X|+ 1 new variables.

The reduction for QBF is similar to that of SAT. At each time step, the action corre-
sponds to assigning a value to the next existentially quantified variable and the observation
corresponds to assigning a value to the next universally quantified variable. This is be-
cause the maximization over actions can be used to encode an existential quantifier and
the expectation with respect to observations can be used to encode a universal quantifier.
An existentially quantified variable is assigned a value by an action. We therefore relabel
variables for simplicity to be xat and xot respectively.

We can reduce a QBF problem with alternating quantifiers to a POMDP as follows:

• State space S = {sat, c1, c2, ..., c|C|}: This is the same as for SAT where state ci
indicates that the ith clause has yet to be satisfied and state sat indicates that all
clauses have been satisfied.

• Initial belief b0: We start with a uniform initial belief, i.e., b0(sat) = 1
|C|+1

and

b0(ci) = 1
|C|+1

∀i. For the QBF reduction, it is important to start with b0(sat) > 0,

32

otherwise some observations might have 0 probability. Nevertheless, as in the SAT
reduction, the precise probability of each state is not important. What matters is
whether b(ci) = 0 (ci is satisfied) or b(ci) > 0 (ci is not satisfied).

• Action space A = {true, false}: Each action is an assignment of true or false to
the lowest unassigned existentially quantified variable.

• Transition function Pr(st+1|st, at): The transition function is the same as for SAT.
When in state st = ci, the process will transition deterministically to the satisfiable
state sat if the current action satisfies clause ci. Otherwise, the process remains in
the current state.

Pr(st+1|st, at) (4.4)

=

1 if st = ci and at satisfies ci and st+1 = sat
1 if st = ci and at ¬satisfy ci and st+1 = ci
1 if st = st+1 = sat
0 otherwise

• Reward function R(st, at): The reward function is the same as for SAT. It returns
a non-zero reward only at the last time step where a reward of 1 is earned if the
system is in the satisfiable state sat.

R(st, at) =

{
1 if t = |X| and st = sat
0 otherwise

(4.5)

• Observation space O = {true, false}: Each observation is an assignment of true
or false to the lowest unassigned universally quantified variable.

• Observation distribution Pr(ot+1|at, st+1): The observation distribution is setup
in a way to ensure that b(ci) becomes 0 (at the next time step) when clause ci is
satisfied by the truth value assigned by the observation to the current universally
quantified variable. Otherwise, b(ci) remains greater than 0 when clause ci has not
been satisfied yet. We achieve this effect by defining a deterministic observation
distribution for the ci states and a stochastic observation distribution for the sat
state. The stochastic distribution over the observation for the sat state is needed to

33

ensure that both truth values are considered for universally quantified variables.

Pr(ot+1|at, st+1) (4.6)

=

0 if st+1 = ci and (xot+1 := ot+1) satisfies ci
1 if st+1 = ci and (xot+1 := ot+1) ¬satisfy ci
1
2

otherwise (i.e., st+1 = sat)

Note that the observation distribution does not depend on the current action at.
Note also that the observation probability for st+1 = sat does not have to be 1/2.
Any probability between 0 and 1 is fine.

• Horizon h = |X|/2: Two variables (one existentially quantified and one universally
quantified) are processed per time step. An additional time step is created at the
end for the final reward. Hence there are |X|/2 + 1 time steps (from time step 0 to
time step |X|/2).

• Discount factor γ = 1: Since the process has a finite horizon, we do not use any
discount factor.

Consider again the Boolean formula in Eq. 2.8. Suppose that we quantify the 5 vari-
ables as follows: ∃x1,∀x2, ∃x3,∀x4,∃x5. Table 4.2 reports the intermediate (unnormalized)
beliefs that are obtained when we process the sequence of actions and observations a0 =
(x1 := false), o1 = (x2 := false), a1 = (x3 := false), o2 = (x4 := true), a2 = (x5 := true).
Let bat denote the intermediate belief obtained after processing action at−1:

ba(st) =
∑
st−1

b(st−1) Pr(st|st−1, at−1) (4.7)

Similarly, let b̂aot denote the unnormalized belief obtained after processing observation ot

b̂ao(st) = ba(st) Pr(ot|at−1, st) (4.8)

This belief is unnormalized since we do not divide by Pr(ot) to normalize it. Hence
the sum of the probabilities for each belief is equal to the probability of the observations
processed so far. In Table 4.2, b̂a3 has all its mass in the sat state, which means that this
joint assignment is satisfiable and the mass of 1/8 reflects the probability of o1 and o2. In
QBF, we do not need to assign probabilities to observations, but this is an indirect way of
making sure that all observations are considered for universally quantified variables. This
also explains why the precise probabilities do not matter, as long as each observation has
a non-zero probability.

34

States b0 ba1 b̂ao1 b̂a2 b̂ao2 b̂a3
sat 1/4 1/2 1/4 1/4 1/8 1/8

c1 = x3 ∨ x4 ∨ ¬x5 1/4 1/4 1/4 1/4 0 0
c2 = ¬x1 ∨ ¬x2 ∨ x4 1/4 0 0 0 0 0
c3 = x1 ∨ ¬x2 ∨ x5 1/4 1/4 0 0 0 0

Table 4.2: intermediate (unnormalized) beliefs in QBF example after processing a0 =
(x1 := false), o1 = (x2 := false), a1 = (x3 := false), o2 = (x4 := true) and a3 = (x5 :=
true).

Similar to the POMDP obtained from SAT, the one obtained from QBF has |C| + 1
states, 2 actions, 2 observations, a planning horizon of |X|/2 + 1 time steps and it is
non-stationary. The main difference is the observation space, which has increased to 2
observations that are generally informative. The following theorem confirms that a QBF
problem is satisfiable when there exists a POMDP policy with value 1.

Theorem 2. The reduction from QBF to POMDP guarantees that optimal policies have
value 1 iff the quantified Boolean formula is satisfiable.

Proof. Assume there exists an optimal policy π that has value 1. We can construct an
assignment tree in QBF that satisfies all clauses by assigning the variables in order of
the POMDP time steps. An action at corresponds to the assignment of an existential
variable and for observations we branch on both truth values. Since the value of the policy
is 1, the reward of each branch must be equal to the probability of the observations of
this branch and therefore the entire mass of the final belief must be in the sat state, which
means that the entire assignment tree is satisfiable. Conversely, if we are given a satisfiable
assignment tree we could construct an optimal policy with value 1 by taking actions based
on the existential variable assignments.

4.3 SSAT ⇒ POMDP

We now show a transformation from SSAT to POMDP. In our reduction, at each time step,
the action corresponds to assigning a value to the next existentially quantified variable and
the observation corresponds to assigning a value to the next randomized variable. This is
because the maximization over actions can be used to encode an existential quantifier and
the expectation with respect to observations can be used to encode a randomize quantifier.

35

We can reduce a SSAT problem with alternating quantifiers to a POMDP as follows:

• State space S = {sat, prob, c1, c2, ..., c|C|}: The state space is similar to the one for
SAT, with the addition of the special state prob whose probability will be proportional
to the probability of the current path for randomized variable assignments.

• Initial belief b0: The initial belief is set to a uniform distribution, i.e., b0(sat) =
b0(prob) = b0(ci) = 1

|S| ∀i.

• Action space A = {true, false}: Each action is an assignment of true or false to
the lowest unassigned existentially quantified variable.

• Transition function Pr(st+1|st, at): The transition function is similar to the one
for SAT. In state st = ci, the process will transition deterministically to the sat state
if the current action satisfies clause ci. Otherwise, the process remains in the current
state.

Pr(st+1|st, at) (4.9)

=

1 if st = ci and at satisfies ci and st+1 = sat
1 if st = ci and at ¬satisfy ci and st+1 = ci
1 if st = st+1 = sat
1 if st = st+1 = prob
0 otherwise

• Reward function R(st, at): We design a reward function that effectively yields a
reward of 1 when the belief at the last time step corresponds to a satisfiable joint
assignment and 0 otherwise. A belief that corresponds to a satisfiable assignment
has all its mass in the sat and prob states. By giving a reward of |S| to state prob,
we cancel the initial probability b0(prob) = 1/|S| and the belief effectively earns a
reward of 1. A belief that corresponds to a non-satisfiable joint assignment has part
of its mass in some state ci (unsatisfied clause). By assigning a reward of −|S| to
each ci we penalize the belief by effectively canceling the reward of |S| in state prob.
Since the mass in prob might be less than the mass in all the ci’s combined, the
overall reward might be negative. However, since an optimal policy will choose the
action with the highest reward and the reward is 0 when at = false, the effective

36

reward will be 0.

R(st, at) (4.10)

=

|S| if t = |X|

2
and st = prob and at = true

−|S| if t = |X|
2

and st = ci and at = true
0 otherwise

• Observation space O = {true, false}: Each observation is an assignment of true
or false to the lowest unassigned randomized variable.

• Observation distribution Pr(ot+1|at, st+1): The observation distribution ensures
that b(ci) becomes 0 when clause ci is satisfied by the truth value assigned to the
observation of the current universally quantified variable. Otherwise, b(ci) remains
greater than 0 when clause ci has not been satisfied yet. We achieve this effect by
defining a deterministic observation distribution for the ci states and a stochastic
observation distribution for the sat and prob states. The stochastic distribution
over the observations for the sat and prob states ensures that both truth values
are considered for randomized variables. We denote by λt the probability that xt
takes value true. The prob state will effectively keep track of the probability of the
observation sequence.

Pr(ot+1|at, st+1) (4.11)

=

0 if st+1 = ci and (xot+1:=ot+1) satisfies ci
1 if st+1 = ci and (xot+1:=ot+1) ¬satisfy ci
1
2

st+1 = sat
λt if st+1 = prob and ot+1 = true
1−λt if st+1 = prob and ot+1 = false

• Horizon h = |X|/2 + 1: Two variables (one existentially quantified and one ran-
domized) are processed per time step. An additional time step is created at the end
for the final reward. Hence there are |X|/2 + 1 time steps (from time step 0 to time
step |X|/2).

Consider again the Boolean formula in Eq. 2.8. Suppose that we quantify the 5 variables
as follows: ∃x1,

R

x2, ∃x3,

R

x4,∃x5 where Pr(x2 = true) = λ2 = 1/6 and Pr(x4 = true) =
λ4 = 6/7. Table 4.3 reports the intermediate (unnormalized) beliefs that are obtained
when we process the sequence of actions and observations a0 = (x1 := false), o1 = (x2 :=
false), a1 = (x3 := false), o2 = (x4 := true), a2 = (x5 := true).

37

States b0 ba1 b̂ao1 b̂a2 b̂ao2 b̂a3
prob 1/5 1/5 1/6 1/6 1/7 1/7
sat 1/5 2/5 1/5 1/5 1/10 1/10

c1 = x3 ∨ x4 ∨ ¬x5 1/5 1/5 1/5 1/5 0 0
c2 = ¬x1 ∨ ¬x2 ∨ x4 1/5 0 0 0 0 0
c3 = x1 ∨ ¬x2 ∨ x5 1/5 1/5 0 0 0 0

Table 4.3: intermediate (unnormalized) beliefs in SSAT example after processing a0 =
(x1 := false), o1 = (x2 := false), a1 = (x3 := false), o2 = (x4 := true) and a3 = (x5 :=
true) where Pr(o1 = (x2 := true)) = 1/6 and Pr(o2 = (x4 := true)) = 6/7.

Theorem 3. The reduction from SSAT to POMDP guarantees that the value of any op-
timal POMDP policy is equal to the probability of satisfiability obtained by the best SSAT
policy tree.

Proof. Consider a POMDP policy π, which defines a policy tree. Each branch yields a
final (unnormalized) belief with mass

b̂πo1:|X|/2
(prob) = b0(prob) Pr(o1:|X|/2|prob, π) (4.12)

Based on the properties of the reward function, the expected reward of each branch is

R(b̂πo1:|X|/2
) = max

a

∑
s

b̂πo1:|X|/2
(s)R(s, a) (4.13)

=

{
Pr(o1:|X|/2|prob, π) if branch is satisfying
0 otherwise

(4.14)

Hence the value of the best policy is

V ∗ = max
π

∑
o1:|X|/2

R(b̂πo1:|X|/2
) (4.15)

= max
π

∑
o1:|X|/2 is satisfying

Pr(o1:|X|/2|prob, π) (4.16)

The above equation shows that the value of an optimal policy is equal to the highest
expected probability of satisfying the Boolean formula of the corresponding SSAT problem.

38

4.4 Discussion

In the reduction of satisfiability (SAT, QBF and SSAT) to POMDP, we showed that the
number of clauses |C| determines the number of POMDP states and the number of vari-
ables |X| determines the planning horizon. This is surprising since the usual belief is that
satisfiability solvers operate in a state space of size 2|X|, which is usually much larger than
the size of the state spaces of flat POMDPs that are commonly tackled. In contrast, our
reduction shows that O(|C|) states are sufficient in the resulting POMDP. It is possible
to consider different reductions that will map each joint assignment in satisfiability to a
POMDP state. However, these reductions yield an exponential blow up in the number of
states and therefore are clearly intractable. Alternatively, one can also construct reductions
from satisfiability to factored POMDPs by associating Boolean variables to POMDP state
variables. While these reductions do not yield an exponential blow up, they map satisfia-
bility problems to an artificially more complex class of problems since factored POMDPs
are EXP-hard.

39

Chapter 5

Encoding Problems into SSAT

In this chapter, we demonstrate through a constructive proof that it is possible to encode
POMDPs into SSAT. Afterwards, we show a similar proof for encoding Inference into SSAT
in Section 5.3.

Before continuing I would like to cover some of the notation used in this chapter. Given
a set X = {x0, x1, . . . , xK} for xi ∈ X we can list all elements as x0, x1, . . . , x|X|.

The notation below can be used to specify a conjunction of literals,

x0 ∧ x1 ∧ . . . ∧ xK ⇐⇒
K∧
i=0

xi (5.1)

or a disjunction of literals.

x0 ∨ x1 ∨ . . . ∨ xK ⇐⇒
K∨
i=0

xi (5.2)

Terms that contain an implication can be converted to a disjunction of terms as follows:

x ≡ kx → y ≡ ky ⇐⇒ x 6≡ kx ∨ y ≡ ky (5.3)

5.1 POMDP ⇒ SSAT

Since SAT is NP-Complete while POMDPs are PSPACE-Complete, it is unknown whether
it is possible to reduce POMDPs to SAT without an exponential blow up. Hence, encoding

40

POMDPs as SAT is not viewed as tractable. In contrast, since POMDPs and QBF are
both PSPACE-Complete it is possible in theory to reduce POMDPs to QBF in polynomial
time and space. However, in practice, one needs to convert real values (i.e., probabilities
and rewards) into binary encodings and real arithmetic into binary operations. This is
obviously possible since current computers perform real arithmetic up to some precision
via binary operations. Abio and Stuckey [1] recently showed how to convert integer linear
constraints into binary constraints, however it remains impractical to express explicitly
real arithmetic as binary operations in the context of a reduction from POMDP to QBF.
Hence we restrict our discussion to a reduction of POMDPs to SSAT since the probabilities
in SSAT can be used to encode the probabilities and rewards of POMDPs.

The domain of the reward function is the set of Reals. However, rewards can be scaled
and translated without changing the optimal policy. We define a new reward function

r(s, a) =
R(s, a)−mina′,s′ R(s′, a′)∑
a,s[R(s, a)−mina′,s′ R(s′, a′)]

(5.4)

that can be interpreted as a distribution that sums to 1 and with values in [0, 1] for all
s and a. We will also work with a generalization of SSAT that is not limited to binary
variables, but allows multi-valued discrete variables.

The general idea is to represent the POMDP parameters (probabilities and rewards)
as probabilities of randomized variables and the POMDP actions as existential variables
in SSAT.

As a starting point, consider a simple POMDP with only one time step (i.e.,
h = 1). In this simple setting, the optimal policy is obtained by computing the expected
reward for each action and by selecting the best action:

a∗ = arg max
a∈A

∑
s∈S

b0(s)r(s, a) (5.5)

In the corresponding SSAT encoding, we introduce a variable xa for the action such that
xa ∈ {0, ..., |A| − 1}. Next, define a Boolean formula1 that encodes Eq. 5.5∧

k∈A

∧
i∈S

(xa ≡ k ∧ xs ≡ i)→ xr ≡ k|S|+ i (5.6)

with quantified variables ∃xa followed by

R

xs and

R

xr in order, where xs ∈ {0, ..., |S| − 1}
1While this formula is not in conjunctive normal form (CNF) to ease the exposition, it can easily be

converted in CNF.

41

and xr ∈ {0, 1, ..., |A||S| − 1}. Here x ≡ k denotes true when x = k and false otherwise.
The distributions for the randomized variables are:

Pr(xs ≡ i) = b(i) (5.7)

Pr(xr ≡ k|S|+ i) = r(i, k),∀i, k (5.8)

The first term in Eq. 5.6 guarantees that whenever an action, k, is taken, all clauses
containing the term xa 6≡ j for j 6= k are removed since they have been satisfied and the
term xa 6≡ k is removed from the remaining active clauses.

The remaining terms are used to perform the summation of randomized variables. The
same reasoning is used to set xs ≡ i. After selecting a state s from the initial belief, only
one clause will be active (yet to be satisfied), a unit clause that implies the value of the
reward variable based on a state-action combination.

Therefore, with only one literal remaining in one clause, xr ≡ k|S| + i, our goal is to
make the probability of satisfying this clause equal to the reward of taking action k in state
i. The optimal action in the original POMDP is recovered in SSAT as an assignment to
xa ≡ k that maximizes the probability of satisfying all the clauses.

Consider general POMDPs with horizon h > 1. We can define the optimal value
function as follows:

Vh(b) = max
a∈A

∑
s

b(s)[r(s, a) +
∑
o

∑
s′

Ωa
s′oT

a
ss′Vh−1(bao)] (5.9)

where an optimal policy maximizes the value function over a horizon h. Based on Eq. 5.9,
we can reduce a POMDP problem with horizon h to SSAT in two steps: i) policy selection
and ii) policy evaluation.

Introduce an alternating sequence of variables,

∃x1
a,

R

x1
p,

R

x1
o,∃x2

a,

R

x2
p,

R

x2
o, · · · ,

R

xh−1
o , ∃xha,

R

xhp ,

for policy selection. The ∃xta variable corresponds to the action taken at time-step t in
the original POMDP. The variable xtp is an auxiliary variable with domain {T, F} and
uniform distribution that indicates whether the process stops (F) and a reward is earned,
or the process continues to the next time step (T). Each

R

xto has domain {0, ..., |O| − 1}
and uniform distribution Pr(xto ≡ z) = 1

|O| . The observation distribution Pr(o|s′, a) will be

encoded later during the policy evaluation step. The uniform distribution for each xto will
change the scale of all probabilities by a factor of 1/|O| at each time step and therefore we

42

can recover the probability of satisfiability by multiplying by |O|h−1.

Next, policy evaluation computes the value of a policy by introducing the variables:

R

xts,

R

xtr ∀t such that 1 ≤ t ≤ h (5.10)

R

xtΩ,

R

xtT ∀t such that 1 ≤ t ≤ h− 1 (5.11)

Those randomized variables can appear in any order as long as they are after the variables
for policy selection. We will explain the semantics of those variables after introducing the
Boolean formulas they appear in:

∧
1≤t≤h−1

xtp ≡ 0→
(
xto ≡ 0 ∧ xt+1

s ≡ 0
)

(5.12)∧
1≤t≤h−1

xtp ≡ 0→ xt+1
p ≡ 0 (5.13)

xhp ≡ 0 (5.14)∧
k∈A

∧
i∈S

(x1
p ≡ 0 ∧ x1

a ≡ k ∧ x1
s ≡ i)→ x1

r ≡ k|S|+ i (5.15)∧
2≤t≤h

∧
k∈A

∧
i∈S

(xt−1
p ≡ 1 ∧ xtp ≡ 0 ∧ xta ≡ k ∧ xts ≡ i)→ xtr ≡ k|S|+ i (5.16)∧

1≤t≤h−1

∧
k∈A

∧
i∈S

∧
j∈S

(xtp ≡ 1 ∧ xta ≡ k ∧ xts ≡ i ∧ xt+1
s ≡ j)→ xt+1

Tk,i
≡ j (5.17)∧

1≤t≤h−1

∧
k∈A

∧
j∈S

∧
z∈O

(xtp ≡ 1 ∧ xta ≡ k ∧ xt+1
s ≡ j ∧ xto ≡ z)→ xtΩk,j

≡ z (5.18)

The formula in Eq. 5.13 ensures that once the process has stopped, it doesn’t continue
in the future and Eq. 5.12 guarantees that if the process stopped early, the observation
and state auxiliary variables will all be assigned some arbitrary value as a normalization
constant. xts and xto are used because they function as indicator variables and hence their
distribution is uninformative. Since the horizon is finite, the formula in Eq. 5.14 ensures
that the process is necessarily stopped at the horizon h.

The variable xts encodes the state at time step t and has uniform distribution Pr(xts ≡
i) = 1

|S| ∀i ∈ S. The variable xtr has domain {0, 1, ..., |S||A| − 1} and has a distribution
proportional to the rewards

Pr(xtr ≡ k|S|+ i) = r(i, k), ∀k ∈ A, i ∈ S (5.19)

43

that encodes the reward to be received for a particular action, k, and state, i, pair as a
probabilistic value. The formula in Eq. 5.15 ensures that the process receives a reward at
the first time step when x1

p ≡ F , while Eq. 5.16 yields a reward at subsequent time steps
when xt−1

p ≡ T changes to xtp ≡ F .

The variable xt+1
Tk,i

has domain S and encodes the transition distribution after executing
action k in state i

Pr(xt+1
Tk,i
≡ j) = Pr(st+1 = j|st = i, at = k) (5.20)

The formula in Eq. 5.17 encodes this transition. Similarly, the variable xt+1
Ωk,j

has domain
O and encodes the observation distribution after executing action k and arriving in state
j

Pr(xtΩk,j
≡ z) = Pr(ot+1 = z|st+1 = j, at = k) (5.21)

The formula in Eq. 5.18 encodes this transition.

The following theorem confirms the equivalence of the SSAT problem obtained from a
POMDP by the reduction.

Theorem 4. In the reduction of POMDP to SSAT, there exists a satisfiable policy tree, φ,
with probability Pr(φ) iff there exists a POMDP policy, π, with value function V π = Pr(φ).

Proof. Consider a base case policy tree of size 1. Let the policy tree be φ = {xa ≡ k̂} with
clauses: ∧

i∈S

xs 6= i ∨ xr ≡ k̂|S|+ i (5.22)

after simplifying Eq. 5.6 with the assignment xa ≡ k̂. The probability of satisfiability of
(5.22) is equivalent to

Pr(φ) =
∑
i

Pr(xs ≡ i) Pr(xr ≡ k̂|S|+ i) =
∑
i

b(i)r(i, k̂) (5.23)

by using the distributions from (5.7) and (5.8). However, (5.23) corresponds exactly to
the policy that takes action a1 = k̂ and has a value of V π =

∑
i b(i)r(i, k̂).

For the general case, we give a proof by induction. Assume we have a policy tree φh,
policy πh, and we know Pr(φh) = V πh . Given φh+1 and πh+1 show that Pr(φh+1) = V πh+1 .

Since we are given the policy tree, all the actions are known. Therefore, if we simplify
first by making the assignments in φh+1, then only the randomized variables will remain in
the quantifier prefix. Any subset of variables can now be re-ordered freely. Based on the

44

number of randomize quantified variables we introduced for horizon h and h+ 1, encoding
the probability of satisfiability is:

Pr(φh+1) =
2∑

v1,··· ,vh+1

|O|∑
z1,··· ,zh

|S|∑
s1,··· ,sh+1

h+1∏
l=1

Pr(xlp = vl, x
l
s = i, xlo = zl, x

l
r)

h∏
l=1

Pr(xlΩ, x
l
T |xlp = vl, x

l
s = i, xlo = zl) (5.24)

To achieve the second line, the distribution for xp is just a uniform distribution that can
be factored out as 2−h. However, each xp is controlling the length of the process, so it
naturally controls how many terms contribute to the total sum if we re-arrange by horizon
and then simplify. Note that given values for xp, xo, xs the other variables are forced by
unit propagation to a specific value.

= 2−(h+1)

h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

ĥ∏
l=1

Pr(xls = i, xlo = zl, x
l
r)

ĥ−1∏
l=1

Pr(xlΩ, x
l
T |xlp = vl, x

l
s = i, xlo = zl) (5.25)

Similarly, for the distribution xo the constant, |O|h−1, can be factored out in front and its
value is used in the conditional distribution xΩ.

= 2−(h+1)|O|−h
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

ĥ∏
l=1

Pr(xls = i, xlr)
ĥ−1∏
l=1

Pr(xlΩ, x
l
T |xlp = vl, x

l
s = i, xlo = zl)

(5.26)

45

the next variable xls has uniform distribution for all l > 1 and the initial belief when l = 1.
Therefore, we can simplify the equation by pulling out the constant factors again.

= 2−(h+1)(|O| · |S|)|−h
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

Pr(x1
s = i)

ĥ∏
l=1

Pr(xlr)

ĥ−1∏
l=1

Pr(xlΩ, x
l
T |xlp = vl, x

l
s = i, xlo = zl) (5.27)

According to the distribution xp, rewards xr will only be given at the end of the process

for each ĥ.

= 2−(h+1)(|O| · |S|)−h
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

Pr(x1
s = i) Pr(xĥr)

ĥ−1∏
l=1

Pr(xlΩ, x
l
T |xlp = vl, x

l
s = i, xlo = zl) (5.28)

If we replace the distributions below with their definitions and replace constants with the
proportional relation, we obtain

∝
h+1∑
ĥ=1

|O|∑
z1,··· ,zĥ−1

|S|∑
s1,··· ,sĥ

b(s1)
ĥ−1∏
l=1

Ωal
sl+1,zl

T alsl,sl+1
r(sĥ, aĥ) (5.29)

=

|S|∑
s1

b(s1)

r(s1, a1) +

|O|∑
z1

|S|∑
s2

Ωa1
s2,z1

T a1
s1,s2

r(s2, a2) +

|O|∑
z2

|S|∑
s3

Ωa2
s3,z2

T a2
s2,s3

(r(s3, a3) + ...)

(5.30)

=

|S|∑
s1

b(s1)

r(s1, a1) +

|O|∑
z1

|S|∑
s2

Ωa1
s2,z1

T a1
s1,s2

Pr(φh)

 (5.31)

where Pr(φh) = r(s, a) +

|O|∑
z

|S|∑
s′

Ωa
s′,zT

a
s,s′ Pr(φh−1)

Now consider the reverse. Given a policy, πh+1, with value function V πh+1 there exists

46

a satisfiable policy tree, φh+1, with satisfiability probability Pr(φh+1) such that V πh+1 =
Pr(φh+1). First, Bellman’s equation for a h+ 1 horizon policy is:

V πh+1 =
∑
s

bh+1(s)

(
r(s, a) +

∑
o

∑
s′

Ωa
s′oT

a
ss′V

πh(bao)

)
, a = π(b) (5.32)

However, any h + 1 horizon policy can be written as a linear combination of h horizon
policies. Since we know Pr(φh) = V π

h by the inductive step, we conclude, that (5.31)
and (5.32) are equal. Therefore, the probability of satisfying a h + 1 depth policy tree
corresponds to the value function of a h+ 1 step policy.

In Algorithm 4, a procedure is shown to encode a POMDP into a SSAT problem. The
first step is to normalize the reward function into a valid probability distribution r(s, a).
The next step is to create 3 lists to hold the sequence of variables in order, the distribution
for randomly quantified variables, and the dynamics of the POMDP encoded as a set of
clauses.

47

Algorithm 4 Encode Finite Horizon POMDP into SSAT
1: procedure encode-pomdp(POMDP)
2: (S,A,O, T,Ω, R, b0, H) = POMDP
3: for a ∈ A do
4: for s ∈ S do

5: r(s, a) =
R(s,a)−min

a′,s′ R(s′,a′)∑
a,s[R(s,a)−min

a′,s′ R(s′,a′)]

6: end for
7: end for
8: vars ← list-init()
9: distr ← list-init()

10: clauses ← list-init()

11: list-add(vars, ∃x1
a, |A|)

12: list-add(vars, ∃x1
p, 2)

13: list-add(distr, Pr(x1
p ≡ i) = 1

2
∀i)

14: for h from 2 to H do
15: list-add(vars,

R

xh−1
o , |O|)

16: list-add(distr, Pr(xh−1
o ≡ z) = 1

|O| ∀z)

17: list-add(vars, ∃xh
a , |A|)

18: list-add(vars, ∃xh
p , 2)

19: list-add(distr, Pr(xh
p ≡ i) = 1

2
∀i)

20: end for
21: list-add(vars,

R

x1
s, |S|)

22: list-add(distr, Pr(x1
s ≡ i) = b0(i) ∀i)

23: list-add(vars,

R

x1
r, |A||S|)

24: list-add(distr, Pr(x1
r ≡ k|S| + i) = r(i, k) ∀k, i)

25: for h from 2 to H do
26: list-add(vars,

R

xh
s)

27: list-add(distr, Pr(xh
s ≡ i) = 1

|S| ∀i)

28: list-add(vars,

R

xh
r)

29: list-add(distr, Pr(xh
r ≡ k|S| + i) = r(i, k) ∀k, i)

30: for k ∈ A do
31: for i ∈ S do
32: list-add(vars,

R

xh−1
Tk,i

)

33: list-add(distr, Pr(xh−1
Tk,i

≡ j) = Tk
i,j ∀j)

34: list-add(vars,

R

xh−1tΩk,i
)

35: list-add(distr, Pr(xh−1
Ωk,i

≡ z) = Ωk
i,z ∀z)

36: end for
37: end for
38: end for
39: list-add(clauses, xH

p ≡ 0)

40: for k ∈ A do
41: for i ∈ S do
42: list-add(clauses, (x1

p ≡ 0 ∧ x1
a ≡ k ∧ x1

s ≡ i)→ x1
r ≡ k|S| + i)

43: end for
44: end for
45: for h from 1 to H − 1 do

46: list-add(clauses, xh
p ≡ 0→

(
xh
o ≡ 0 ∧ xh+1

s ≡ 0
)
)

47: list-add(clauses, xh
p ≡ 0→ xh+1

p ≡ 0)

48: for k ∈ A do
49: for i ∈ S do
50: list-add(clauses, (xh

p ≡ 1 ∧ xh+1
p ≡ 0 ∧ xh+1

a ≡ k ∧ xh+1
s ≡ i)→ xh+1

r ≡ k|S| + i)

51: for j ∈ S do

52: list-add(clauses, (xh
p ≡ 1 ∧ xh

a ≡ k ∧ xh
s ≡ i ∧ xh+1

s ≡ j)→ xh+1
Tk,i

≡ j)

53: end for
54: for z ∈ O do
55: list-add(clauses, (xh

p ≡ 1 ∧ xh
a ≡ k ∧ xh+1

s ≡ i ∧ xh
o ≡ z)→ xh

Ωk,i
≡ z)

56: end for
57: end for
58: end for
59: end for
60: return SSAT(vars, distr, clauses)
61: end procedure

48

5.1.1 Example

Let’s consider the tiger problem from the literature for a horizon of 2. The output of
applying Algorithm 4 is shown. The parameters are in Table 5.1. First, following Line 5
the reward function is scaled and translated to be in the interval [0,1] and sums to 1 (valid
probability distribution).

Table 5.1: The parameters for the tiger POMDP problem with normalized rewards.

At St St+1 Pr(St+1|St, At)
0 0 0 1.0
0 1 1 1.0
1 0 0 0.5
1 0 1 0.5
1 1 0 0.5
1 1 1 0.5
2 0 0 0.5
2 0 1 0.5
2 1 0 0.5
2 1 1 0.5

A S R(St, At)

0 0 0.236842
0 1 0.236842
1 0 0.0
1 1 0.263158
2 0 0.263158
2 1 0.0

At St+1 Ot+1 Pr(Ot+1|St+1, At)

0 0 0 0.85
0 0 1 0.15
0 1 0 0.15
0 1 1 0.85
1 0 0 0.5
1 0 1 0.5
1 1 0 0.5
1 1 1 0.5
2 0 0 0.5
2 0 1 0.5
2 1 0 0.5
2 1 1 0.5

Second, we need to define the variables that will be used and their distribution. Fol-
lowing Lines 11 to 19 of Algorithm 4, the policy can be represented by a set of variables
with the following quantifier ordering

∃x1
a,

R

x1
p,

R

x1
o,∃x2

a,

R

x2
p (5.33)

that corresponds to an action, an observation, the next action and then the process
terminates. Note that the auxiliary variables, xp, govern when the process terminates. The
distribution of these variables are given below:

Pr(xtp ≡ i) =
1

2
, 1 ≤ t ≤ 2, 0 ≤ i ≤ 1 (5.34)

Pr(x1
o ≡ z) =

1

|O|
∀z ∈ O (5.35)

49

Finally, we have the set of variables in a last randomized block that is generated in
Lines 21 to 35:

R

x1
s, x

2
s, x

1
r, x

2
r, (5.36)

x1
T0,0

, x1
T0,1

, x1
T1,0

, x1
T1,1

, x1
T2,0

, x1
T2,1

, (5.37)

x1
Ω0,0

, x1
Ω0,1

, x1
Ω1,0

, x1
Ω1,1

, x1
Ω2,0

, x1
Ω2,1

(5.38)

The distribution of the randomized variables for T = {1, 2} timesteps are:

Pr(xts ≡ i) =
1

2
∀t ∈ T, i ∈ S (5.39)

Pr(xtr ≡ k|S|+ i) = R(k, i) ∀t ∈ T, i ∈ S (5.40)

Pr(xtr ≡ 0) = 0.236842, ∀t ∈ T (5.41)

Pr(xtr ≡ 1) = 0.236842, ∀t ∈ T (5.42)

Pr(xtr ≡ 2) = 0.0, ∀t ∈ T (5.43)

Pr(xtr ≡ 3) = 0.263158, ∀t ∈ T (5.44)

Pr(xtr ≡ 4) = 0.263158, ∀t ∈ T (5.45)

Pr(xtr ≡ 5) = 0.0, ∀t ∈ T (5.46)

Pr(x1
Tk,i
≡ j) = Pr(st+1 = j|st = i, at = k) ∀k ∈ A, i ∈ S (5.47)

Pr(x1
Ωk,j
≡ z) = Pr(ot+1 = z|st+1 = j, at = k) ∀k ∈ A, j ∈ S (5.48)

where the transition and observation distributions are unchanged from the POMDP model.

Finally, we use Lines 39 to 55 to generate the clauses. The clauses in Table 5.2 are
associated with the reward function and when the process terminates through the auxiliary
variables.

Next, the clauses in each column of Table 5.3 represent the transition constraints and
observation constraints. These constraints ensure that the right probabilities are implied
based on the next state and observation.

50

Table 5.2: Example encoding of the Tiger problem from Table 5.1 for a horizon of length
2.

reward constraints
x1
a ≡ 0 ∧ x1

s ≡ 0 ∧ x1
p ≡ 1⇒ x1

r ≡ 0
x1
a ≡ 0 ∧ x1

s ≡ 1 ∧ x1
p ≡ 1⇒ x1

r ≡ 1
x1
a ≡ 1 ∧ x1

s ≡ 0 ∧ x1
p ≡ 1⇒ x1

r ≡ 2
x1
a ≡ 1 ∧ x1

s ≡ 1 ∧ x1
p ≡ 1⇒ x1

r ≡ 3
x1
a ≡ 2 ∧ x1

s ≡ 0 ∧ x1
p ≡ 1⇒ x1

r ≡ 4
x1
a ≡ 2 ∧ x1

s ≡ 1 ∧ x1
p ≡ 1⇒ x1

r ≡ 5

x2
a ≡ 0 ∧ x2

s ≡ 0 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 0

x2
a ≡ 0 ∧ x2

s ≡ 1 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 1

x2
a ≡ 1 ∧ x2

s ≡ 0 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 2

x2
a ≡ 1 ∧ x2

s ≡ 1 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 3

x2
a ≡ 2 ∧ x2

s ≡ 0 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 4

x2
a ≡ 2 ∧ x2

s ≡ 1 ∧ x1
p ≡ 0 ∧ x2

p ≡ 1⇒ x2
r ≡ 5

x1
p ≡ 0⇒ x1

o ≡ 0
x1
p ≡ 0⇒ x2

s ≡ 0

x1
p ≡ 0⇒ x2

p ≡ 0
x2
p ≡ 0

51

Table 5.3: Example encoding of the transition and observation distributions in the Tiger
problem from Table 5.1 for a horizon of length 2.

transition constraints
x1
a ≡ 0 ∧ x1

s ≡ 0 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T0,0
≡ 0

x1
a ≡ 0 ∧ x1

s ≡ 0 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T0,0
≡ 1

x1
a ≡ 0 ∧ x1

s ≡ 1 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T0,1
≡ 0

x1
a ≡ 0 ∧ x1

s ≡ 1 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T0,1
≡ 1

x1
a ≡ 1 ∧ x1

s ≡ 0 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T1,0
≡ 0

x1
a ≡ 1 ∧ x1

s ≡ 0 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T1,0
≡ 1

x1
a ≡ 1 ∧ x1

s ≡ 1 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T1,1
≡ 0

x1
a ≡ 1 ∧ x1

s ≡ 1 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T1,1
≡ 1

x1
a ≡ 2 ∧ x1

s ≡ 0 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T2,0
≡ 0

x1
a ≡ 2 ∧ x1

s ≡ 0 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T2,0
≡ 1

x1
a ≡ 2 ∧ x1

s ≡ 1 ∧ x2
s ≡ 0 ∧ x1

p ≡ 0⇒ x1
T2,1
≡ 0

x1
a ≡ 2 ∧ x1

s ≡ 1 ∧ x2
s ≡ 1 ∧ x1

p ≡ 0⇒ x1
T2,1
≡ 1

observation constraints
x1
a ≡ 0 ∧ x2

s ≡ 0 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω0,0
≡ 0

x1
a ≡ 0 ∧ x2

s ≡ 0 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω0,0
≡ 1

x1
a ≡ 0 ∧ x2

s ≡ 1 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω0,1
≡ 0

x1
a ≡ 0 ∧ x2

s ≡ 1 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω0,1
≡ 1

x1
a ≡ 1 ∧ x2

s ≡ 0 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω1,0
≡ 0

x1
a ≡ 1 ∧ x2

s ≡ 0 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω1,0
≡ 1

x1
a ≡ 1 ∧ x2

s ≡ 1 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω1,1
≡ 0

x1
a ≡ 1 ∧ x2

s ≡ 1 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω1,1
≡ 1

x1
a ≡ 2 ∧ x2

s ≡ 0 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω2,0
≡ 0

x1
a ≡ 2 ∧ x2

s ≡ 0 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω2,0
≡ 1

x1
a ≡ 2 ∧ x2

s ≡ 1 ∧ x2
o ≡ 0 ∧ x1

p ≡ 0⇒ x1
Ω2,1
≡ 0

x1
a ≡ 2 ∧ x2

s ≡ 1 ∧ x2
o ≡ 1 ∧ x1

p ≡ 0⇒ x1
Ω2,1
≡ 1

52

5.2 Summary

In the reverse reduction of POMDP to SSAT, the number of variables and clauses is
polynomial in the parameters of the original POMDP. The number of variables in the
equivalent SSAT problem is 4 variables initially (action, policy horizon, current state, and
reward) and 5 + 2|A||S| variables per time step for the remaining h − 1 time steps. This
gives a complexity of:

|X| = O
(
h|A||S|

)
(5.49)

The number of clauses initially is 1 + |A||S| and 3 + |A||S| + |A||S|2 + |A||S||O| clauses
per time step for the remaining h− 1 time steps. This gives a complexity of:

|C| = O
(
h|A||S|

(
|S|+ |O|

))
(5.50)

53

5.3 Inference ⇒ SSAT

In this section, we propose a solution for inference in Bayesian Networks by encoding
inference queries as SSAT problems. The intuition of the encoding is to represent each
full joint assignment of the variables as an assignment to matching indicator variables
in the SSAT encoding and the probability of satisfiability corresponds to the probability
of just such an assignment from the joint distribution. We now show a reduction from
probabilistic inference to SSAT. Start by (1) encoding the probabilistic variables and (2)
the parameters of each distribution.

In the quantifier prefix, we’ll have a set of randomly quantified variables followed by
existentially quantified variables. Let the existentially quantified indicator variable xyi
be associated with each probabilistic variable, yi, and have cardinality |yi|. For each
conditional probability distribution, Pr(y0|y1, ..., ym), create a randomly quantified variable,
λy0=v|y1,...,ym , with cardinality |y0| and distribution

Pr(λy0=v|y1,...,ym = v) = Pr(y0 = v|y1, ..., ym) (5.51)

for each instantiation of the parents’ values. The corresponding clauses are:

xy1 ∧ xy2 · · · ∧ xym ∧ xy0=v ⇒ λy0=v|y1,...,ym (5.52)

They indicate that if all the parent indicator variables are set and y0 = v then the param-
eter, λ, takes on value v with probability Pr(y0 = v|y1, ..., ym).

Now it is simple to encode additional constraints on probabilistic variables to incorpo-
rate evidence through clauses that contain strictly indicator variables. These extra clauses
are usually beneficial to reduce the problem complexity significantly.

5.3.1 Example

To get a feel for how the encoding works, let us use the example network from Section
3.2.1 shown here below.

The set of variables includes a block of randomized variables for the parameters of each
conditional probability distribution followed by an existentially quantified block for the
variables in the network:

R

xa,

R

xb|a=0,

R

xb|a=1,

R

xc|b=0,

R

xc|b=1,∃xA,∃xB,∃xC (5.53)

54

Table 5.4: Conditional distribution for random variables A, B, and C.

a Pr(A)

0 0.4
1 0.6

a b Pr(B|A)

0 0 0.2
0 1 0.8
1 0 0.7
1 1 0.3

b c Pr(C|B)

0 0 0.0
0 1 0.0
0 2 1.0
1 0 0.2
1 1 0.6
1 2 0.2

The distribution for each of the randomly quantified variables is:

Pr(xa) =(0.4, 0.6) (5.54)

Pr(xb|a=0) = (0.2, 0.8), Pr(xb|a=1) = (0.7, 0.3) (5.55)

Pr(xc|b=0) = (0.0, 0.0, 1.0), Pr(xc|b=1) = (0.2, 0.6, 0.2) (5.56)

The clauses in each column of Table 5.5 are associated with different conditional dis-
tributions:

Table 5.5: Example encoding of the Bayesian network in Table 5.4.

xA ≡ 0⇒ xa ≡ 0
xA ≡ 1⇒ xa ≡ 1

xA ≡ 0 ∧ xB ≡ 0⇒ xb|a=0 ≡ 0
xA ≡ 0 ∧ xB ≡ 1⇒ xb|a=0 ≡ 1
xA ≡ 1 ∧ xB ≡ 0⇒ xb|a=1 ≡ 0
xA ≡ 1 ∧ xB ≡ 1⇒ xb|a=1 ≡ 1

xB ≡ 0 ∧ xC ≡ 0⇒ xc|b=0 ≡ 0
xB ≡ 0 ∧ xC ≡ 1⇒ xc|b=0 ≡ 1
xB ≡ 0 ∧ xC ≡ 2⇒ xc|b=0 ≡ 2
xB ≡ 1 ∧ xC ≡ 0⇒ xc|b=1 ≡ 0
xB ≡ 1 ∧ xC ≡ 1⇒ xc|b=1 ≡ 1
xB ≡ 1 ∧ xC ≡ 2⇒ xc|b=1 ≡ 2

We see that the encoding has similarities with that of weighted model counting from
Section 3.2.1. In terms of complexity, the number of clauses generated is about half since
implication is used instead of equivalence. Also, a similar number of indicator variables
and parameter variables is used (assuming we are restricted to binary variables). However,
using a finite domain over variables will allow us to use fewer variables in general.

Note here that the use of equivalence would lead to incorrect models. The reason is

55

that different parameter values in the CPT are shared across randomized variable values
in SSAT and that will lead to a conflicting assignment. For instance consider the current
example for the CPT of variable C.

xB ≡ 0 ∧ xC ≡ 0 ⇐⇒ xc|b=0 ≡ 0 (5.57)

xB ≡ 0 ∧ xC ≡ 1 ⇐⇒ xc|b=0 ≡ 1 (5.58)

If we convert these formulas to CNF and consider what happens under the assignment
xc|b=0 ≡ 0, we get:

xB 6≡ 0 ∨ xC 6≡ 0 ∨ xc|b=0 ≡ 0 (5.59)

xB ≡ 0 ∨ xc|b=0 6≡ 0 (5.60)

xC ≡ 0 ∨ xc|b=0 6≡ 0 (5.61)

xB 6≡ 1 ∨ xC 6≡ 2 ∨ xc|b=1 ≡ 2 (5.62)

xB ≡ 1 ∨ xc|b=1 6≡ 2 (5.63)

xC ≡ 2 ∨ xc|b=1 6≡ 2 (5.64)

Then (5.59) is satisfied by xc|b=0 = 0, (5.60) implies xB = 0, and (5.61) implies xC = 0.
However, it also follows that (5.62) is satisfied by xc|b=1 ≡ 2, but that conflicts with our
original assignment xc|b=0 = 0.

5.4 Summary

We show an encoding to reduce probabilistic inference to SSAT by encoding probabilistic
variables and the parameters of the distributions separately. This is similar to the encoding
used in weighted model counting however finite domain variables and implication instead
of equivalence operators are exploited to reduce the total number of variables and clauses.

56

Chapter 6

SSAT Solver

In this chapter, we describe our Stochastic SAT solver, SSAT-Prime, with many success-
ful techniques incorporated from the SAT and #SAT literature including watch literals,
component decomposition, caching, and symmetry. We also consider incremental bounds
for when an exact solution cannot be found in time. Afterwards, pure literal and clause
learning techniques were tried, but did not transfer well into the SSAT problems we are
interested in solving.

6.1 Finite Domain

Although SAT solvers usually operate on strictly Boolean variables, in our case for easy
encoding to SSAT, consider an extension to finite domain variables with equality (=) and
non-equality (6=) as literals. As an example, the clause (x1 ≡ v0 ∨ x2 6≡ v3) with variables
whose domains are x1 ∈ {v0, v1} and x2 ∈ {v0, v1, v2, v3} is satisfied when either x1 = v0 or
x2 6= v3.

6.2 Unit Rule

In satisfiability problems the unit rule is very effective across all problems. If a clause, c, has
only two unassigned literals such that c = (x1 ≡ v0 ∨ x2 6≡ v3). Then any assignment that
falsifies a literal, say x2 ≡ v3 will leave c = (x1 ≡ v0). A clause with only one unassigned
literal is a unit clause. The unit rule says that it is valid to assign x1 = v0 and satisfy c

57

since in the CNF representation all clauses must be satisfied to attain satisfiability. If the
formula is unsatisfiable, then we will eventually reach a conflict.

More importantly, if any part of the assignment falsifies a unit clause, the current
partial assignment has led to a conflict and all future assignments that use the current
partial assignment are unsatisfiable. All unit rule assignments are propagated to other
clauses until no more deductions can be made. In addition, for SSAT, when the variable
being assigned is randomly quantified, we need to scale the probability of satisfiability by
the probability of the variable taking that particular value.

Let’s define an active literal as a literal whose associated variable has not been assigned
and an active clause as a clause with at least one active literal. We can apply the unit
rule efficiently by tracking which clauses mention each literal for all variables. Whenever
we assign a variable to a value with literal, xi = v, we know that all clauses that contain
the literal xi ≡ v are satisfied. However, all clauses containing xi 6≡ v have a counter
that is decremented. In each clause, the counter is initialized to the number of literals
in the clause and represents the number of unassigned literals remaining. To detect unit
clauses, it is only required to know when the number of unassigned literals goes from 2 to
1. Furthermore, in backtracking we have to undo all the decrements with increments.

To analyze the complexity, assume a k-SAT problem with parameters (k, |C|, |V |, τ, θ, π)
is generated such that there are |V | variables, |C| clauses, exactly k literals per clause, each
variable is of τ dimensions, the probability that a variable will be existentially quantified
is θ (and 1 − θ for randomly quantified variables) and for randomly quantified variables,
the associated distribution πi is sampled from a uniform Dirichlet of τ dimensions.

If a variable appears in z = |C|
(|V |
k

)
clauses and each value of a variable appears in

zi = |C|
τ

(|V |
k

)
clauses, then in the worst case we will perform zi updates for τ − 1 values of

an assigned variable. In backtracking, the reverse computation will also be required for a
total of 2zi(τ − 1) or 2|C|·(τ−1)

τ

(|V |
k

)
updates.

In practice, most SAT solvers spend up to 90% of their time, according to [64], do-
ing unit rule updates. Depending on the implementation, updates are made before each
assignment and after each unassignment to the clause and variable.

6.2.1 Two-Literal Watch Scheme

The watch literal data-structure is an efficient way to determine assignments from the unit
rule. We would like to minimize the number of clauses we check when assigning a variable
and unassigning in backtracking. According to the explanation above, we learned that it

58

is only the last two unassigned literals that play a role in determining when a unit clause
occurs. The idea is for each clause to always be tracking 2 unassigned literals such that
when a new assignment, x = v, is made, we only visit clauses that are watching literals
consistent with x 6= v. Assume one of the two watch literals, WL1, is falsified by the
assignment. There are two possible outcomes:

1. Invariance is maintained: the clause remains active since we are able to find another
literal, WL0, in the clause that is unassigned and there by replacing the currently
falsified literal WL1.

2. Watch literal implied: we are unable to find another unassigned literal that is not
being watched to replace WL1. Therefore, we have a unit clause and we can imply
the other literal being watched WL2 (which could be a source of conflict).

The key benefit of the two-literal watching scheme is that there is no further work
necessary upon backtracking and unassigning a variable can be done in constant time
without any change to the watch literals. In fact, reassigning a variable to a different value
will in general be faster the second time since the first time we removed watch literals that
refer to the variable. Note that the initial choice of which literals to watch is arbitrary,
however it is recommended to spread them apart.

X15 ≡ 2

X22 ≡ 1

X3 ≡ 0

X74 ≡ 1

X53 ≡ 3

X15 ≡ 2

X22 ≡ 1

X3 ≡ 0

X74 ≡ 1

X53 ≡ 3

X15 ≡ 2

X22 ≡ 1

X3 ≡ 0

X74 ≡ 1

X53 ≡ 3

X15 ≡ 2

X22 ≡ 1

X3 ≡ 0

X74 ≡ 1

X53 ≡ 3

X15 ≡ 2

X22 ≡ 1

X3 ≡ 0

X74 ≡ 1

X53 ≡ 3

x74 = 0 x3 = 1 x22 = 0 x53 = 2

Figure 6.1: Watch literals for a clause when making the assignments x74 = 0, x3 = 1, x22 =
0, x53 = 2. Orange is watch literal 1 and teal is watch literal 2.

Consider an example as shown in Figure 6.1 where for a clause with watch literal 1
(WL1 is orange) and watch literal 2 (WL2 is teal) are initialized to indices 1 and 3. First,
the assignment x74 = 0 is made, which falsifies WL1 and forces us to find another literal
that is active to preserve the invariance. We pick the literal X3 ≡ 0. We continue until

59

the last column where we assign x53 = 2, but WL2 (teal) is watching x53 ≡ 3. There is
no other unassigned literal besides WL1. Therefore, we can conclude WL1 must hold and
make the implication x15 = 2.

6.2.2 Improved Watch Literal Scheme

One disadvantage of the watch literal scheme is that we may end up checking all literals in
a clause when searching for a replacement watch literals even though the clause is already
satisfied. This seems very wasteful and this could be a source of extended solution time
for problems with large a number of literals per clause.

The idea for our improvement is a constant time statistic that can determine if a clause
is satisfied. We can do this by using a stack, satisfy, to hold the current list of satisfied
clauses in order and a field, clause.satisfied, for each clause that indexes the position
in the stack that the particular clause is satisfied. Whenever a clause, c, is known to be
satisfied, we can perform the updates:

clauses[c].satisfied = stack-size(satisfy) (6.1)

stack-push(satisfy, c) (6.2)

In Algorithm 5, we define is-satisfied that determines in constant time if a clause is
satisfied. For a clause to be satisfied it must satisfy two conditions (1) the index of the
stack corresponding to the clause must point to itself and (2) the clause’s index into the
stack must be at most the stack size.

Algorithm 5 Determine in constant time if a clause is satisfied
1: procedure is-satisfied(satisfy, c)
2: s = clauses[c].satisfied
3: return stack-index(satisfy, s) ≡ c ∧ s <stack-size(satisfy)
4: end procedure

To show the rule is consistent and complete, first, if the clause at position c is satisfied,
then it was added to the satisfy stack previously and its position in the stack will be at
least less than or equal to the current size. clause.satisfied will point to that location in
the stack which will contain c. Otherwise, if the clause at position c is not satisfied then
clause.satisfied does not point to a valid position in the stack or the value at that position
is different from c since there was never a reason to assign it to c. During backtracking,
all that is required is to update the size of the stack in constant time.

60

Given an assignment literal, x ≡ v, the complete function is shown in Algorithm 6.
First set the probability to satisfiability to the default value of 1.0 and if the variable
is randomly quantified we update the probability. Next, mark all clauses containing the
literal satisfied if they weren’t before. Finally, update all literals belonging to variable x
that were previously watch literals. If those clauses containing x were already satisfied, we
can skip to the next clause. Afterwards, find a replacement watch literal and if none is
found the other watch literal is implied. We conclude by checking if the alternative watch
literal is unassigned then the assignment is followed, else there is a conflict.

61

Algorithm 6 Two-Literal Watching Scheme
1: procedure constraint-propagate(x ≡ v)
2: path = 1.0
3: if Q(x) ≡

R

then
4: path ← path ·Pr(x ≡ v)
5: end if
6: for c ∈ clause-with-literal(x ≡ v) do
7: if ¬clause-satisfied(c) then
8: clause(c, satisfied) = true
9: end if

10: end for
11: for v̂ ∈ {0, ..., |x| − 1} − {v} do
12: for c ∈ clauses-watched(x, v̂) do
13: if clause-satisfied(c) then
14: break . abort satisfied clauses in constant time
15: end if
16: found-no-replacement = true
17: for index ∈ {1, ..., |c|} do . assume match literal is watch-index(c, 1)
18: w ← watch-index(c, 1) + index mod |c|
19: y ≡ u← c[w] . watch-index(c, 1) corresponds to falsified watch literal
20: if watch-index(c, 1) ≡ w then
21: continue
22: else if is-unassigned(y) then
23: watch-index(c, 1)← w
24: update watch literal from x ≡ v̂ to y ≡ u in clause c
25: found-no-replacement = false
26: break
27: end if
28: end for
29: if found-no-replacement then
30: z ≡ vz ← c[watch-index(c, 2)]
31: if is-unassigned(z) then
32: path ← path · constraint-propagate(z ≡ vz))
33: else if ¬is-unassigned(z) ∧ z 6= vz then
34: return 0.0 . there is a conflict and we need to abort!
35: end if
36: end if
37: end for
38: end for
39: return path
40: end procedure

62

6.3 Component Decomposition

Component decomposition was introduced by [5] in the context of #SAT for model count-
ing. The idea is given a graph G, to look at the constraint graph and find maximal
connected subgraphs, called components. The constraint graph is derived by representing
each variable x ∈ X as a vertex and each pair of vertices x, y has an edge if they appear
in an active clause together.

The connected subgraph is defined such that each vertex is reachable from every other
vertex. The connected subgraph is maximal when it is the largest such set. All the
connected subgraphs of G can be computed in linear time, O(|X|+ |C|), in the size of the
graph as shown in [36]. Additionally, we need to maintain the relative quantifier ordering
between variables within each component.

Initially component decomposition was only developed as a pre-optimization procedure
that is applied on the instance once before the solver attempts to solve the problem. Each
connected subgraph in the constraint graph represents a component or a completely in-
dependent subproblem from the original satisfiability instance. We apply the procedure
recursively after each decision variable is assigned and the problem is simplified by con-
straint propagation.

Given a constraint graph, G, using variables X with a complete set of components
G1, G2, ..., G|G| over variable subsets X1, X2, ..., X|G| that share no elements. The probabil-
ity of satisfiability is

Pr(X) =

|G|∏
i

Pr(Xi) (6.3)

which means that the complexity is not determined by G but the largest subgraph Gi. The
idea should work well on problems that are highly decomposable and are made up of highly
reusable subproblems. Here, there is room for different optimization choices by changing
the order in which subproblems are solved even though it has no effect on the correctness.
Although it has no effect on correctness, we order subproblems by the most constrained
subproblem first or incrementally find the components. Note that if any of the components
are unsatisfiable, we can backtrack early and the original problem is unsatisfiable as well.

With component decomposition our worst case complexity for searching through all
solutions is reduced from 2O(n) to 2O(w) for a binary variable problem with n variables and
a tree width of w [41, 23].

63

6.3.1 Example

As an example, consider the problem (6.4) below:

F = ∃x8

R

x3∃x7

R

x14∃x11

R

x23

R

x5 (6.4)

(x7 ≡ 0 ∨ x14 ≡ 1 ∨ x3 ≡ 0) ∧ (x11 ≡ 1 ∨ x23 ≡ 0 ∨ x3 ≡ 1) ∧ (x5 ≡ 2 ∨ x8 ≡ 1)

where the randomized variables have distributions:

Pr(x5) ∈ {3

5
,
1

5
,
1

5
},Pr(x23) ∈ {1

5
,
4

5
} (6.5)

Pr(x14) ∈ {4

5
,
1

5
},Pr(x3) ∈ {1

4
,
3

4
} (6.6)

Initially, we can decompose the problem into two independent components that share
no variable as shown in Figure 6.2:

X11

X7

X3

X23

X14

X5

X8

Figure 6.2: The constrained graph of a problem decomposed into a joint set of components.

where the analytical form of the components are given below:

1. ∃x8

R

x5(x5 ≡ 2 ∨ x8 ≡ 1)

2.

R

x3∃x7

R

x14∃x11

R

x23(x7 ≡ 0 ∨ x14 ≡ 1 ∨ x3 ≡ 0) ∧ (x11 ≡ 1 ∨ x23 ≡ 0 ∨ x3 ≡ 1)

(a) ∃x7,

R

x14(x7 ≡ 0 ∨ x14 ≡ 1)

(b) ∃x11

R

x23(x11 ≡ 1 ∨ x23 ≡ 0)

If we evaluate variable x3 next depending on the value then component 2 can be further
divided into two more components shown in (2a) and (2b). In the final result, this gives
us 3 components to solve that are individually easier than the original problem.

64

6.4 Component Caching

Memorizing solutions of E-MAJSAT problems dates back to [58] and specifically component
caching has been used by [3] in model counting for #SAT. A proof system was later
developed by [6]. A huge advantage of caching is that a component produced in one
branch of the search space can reappear numerous times throughout the search space and
we only need to find a solution once. We show an extension to SSAT. Given a component,
Gk = {Xk, Ck}, that is defined by a set of variables Xk and clauses Ck. Note that all
variables will be unassigned and clauses unsatisfied where clauses contain only mentions
of variables in Xk.

Assume we are given a hash-table, H, to be used as cache. We first compute a hash
of Gk by using the active clauses and whenever we encounter a new subproblem in the
future, we consult the cache first to see if we’ve already solved it and return the solution
else compute its value and store the result in the cache as well.

6.4.1 LRU Cache

In larger problems there are many more subproblems to be stored than available memory.
In general, basic caching of components is a memory expensive technique and usually leads
to the exhaustion of main memory. One approach is to limit the number of components
in the cache and to replace components as the need arise. There are many replacement
policies studied in general, but the simple Least Recently Used (LRU) policy will be the
approach we take based on results from [58].

6.4.2 LRU-sizeof Cache

Even with a LRU cache of a fixed size there is still the issue of getting the number of com-
ponents just right such that you take advantage of all available memory without exhausting
memory. In general, this is extremely difficult to achieve since individual problems have
varying component distributions.

Instead, if we place a limit on the size of the memory that the cache and all it’s
components consume, then for a system with limited memory we can solve a variety of
problems without ever exhausting memory. Whenever we add a new component, check if
it will exceed our memory limit then free a set of stored components according to the LRU
policy until the total size of the cache is under the limit.

65

6.5 Symmetry

The idea of symmetry in SSAT problems is represented by a subset of variables, Xπ ⊆ X,
that forms a solution with satisfying probability Pr(Xπ), but there exist further solutions
that are permutations of the variables Yπ ∈ σ(Xπ) such that Pr(Yπ) ≡ Pr(Xπ) for all Yπ.
Symmetries are an issue because they artificially increase the size of the search space with
extra solutions that are effectively the same, but need to be enumerated independently.

A symmetry of variables can arise from interchangeability in the original domain over
objects. When interchangeability is encoded into CNF, it generates symmetries for each
possible permutation. Furthermore, symmetry of values can occur when mapping finite
domains to binary values and the values are exchangeable with no proper ordering.

In [21] a general technique to break symmetries was introduced by imposing a lexico-
graphic ordering to the variables that form a symmetric group. Later, [75] used element
constraints to break symmetries on variables. This is shown to reduce the set to a single
solution by ruling out unsorted solutions. However, in [95] they show that it is in general
intractable to remove all the symmetries from a group for a sufficiently complex domain.
In [73, 74, 9] Puget outlined further techniques to break symmetries for CSPs.

6.5.1 Canonical Representation

Usually, breaking symmetries requires adding additional constraints to enforce only one
assignment from each equivalence class. This can be done by sorting the solutions according
to some ordering. However, in SSAT, we are still required to enumerate all the solutions
to calculate the probability of satisfiability accurately so instead we focus on symmetric
components as subproblems. Previous work in SAT has been on static symmetry breaking
where the procedure is only applied as a preprocessing step in the solver. Our work will
focus on dynamic or conditional symmetries that occur during the execution of the solver.

Although the combination of component decomposition and component caching gives
major speed improvements there are unfortunately many redundant components that are
symmetric and therefore have to be re-solved for each problem. Planning problems encoded
into satisfiability variables for different timesteps usually share the same structure and
randomized variables share the same distribution. Together these structures produce many
overlapping subproblems that are symmetric.

Therefore, we could actually do better by removing symmetric components. That is
many of the redundant components are permutations of the variables or clauses in a differ-
ent position since we are comparing at the syntax level. By extension, the use of symmetries

66

makes component decomposition and caching more efficient since more components will
be likely to match a component already in the cache and hence consume less space in the
cache.

This requires further integration of symmetry detection and symmetry breaking into
the solver. In [41] they used graph canonization on CSPs to find a canonical labeling of
a graph that is invariant to symmetries in the variables, values or some mixture. This
reduces symmetry detection to graph isomorphism where we are tasked with determining
if two finite graphs are isomorphic. Graph isomorphism is known to be in NP but it is
unknown whether it is also NP-complete.

Furthermore, [41] showed that it is best to represent the component as a graph that
is in a normal form invariant to any symmetries. The advantage of this approach is
that we can encode variable and value symmetries explicitly into the graph. The graph
isomorphism package by McKay, nauty [62], is usually used for graph labeling and the
package called saucy [22] presents an improvement that focuses on sparse graphs generated
by CNF encodings.

Given a subproblem, S = (X,C), that is constrained by clauses C using variables X,
we can define a coloured graph, G=(V, E), such that we have

1. a vertex for each clause with colour 0

2. a vertex for each variable with colour corresponding to quantifier level

3. a vertex for each existential literal with a shared unique colour

4. a vertex for each randomized literal where each literal share the same colour iff they
share the same probability and the colours are unique

5. a directed edge connecting each clause vertex to all the literal vertices it contains

6. a directed edge connecting each variable vertex to its associated literal vertices

After the graph is set up, call a graph library to perform canonization. In the relabeling,
vertices that share a similar structure are exchangeable and a natural ordering is found.
Note that only vertices of the same type can be exchanged since vertices can only be
swapped iff they share the same colour and degree. This guarantees that a clause and a
variable vertex are never swapped. The relabeling of the graph vertices is used for future
identification of the component and storage in the cache.

Consider the previous example from Section 6.3.1 that we were able to reduce into 3
separate components. If we apply the transformation above, we get Figure 6.3:

67

0

clause1

0

clause2

7

x7 ≡ 0

29 53

x3 ≡ 0

72

x3 ≡ 1

7 29

x23 ≡ 0

2
x7

3
x14

1
x3

4
x11

5
x23

0

clause3

7

x8 ≡ 1

29

x5 ≡ 2

1
x8

2
x5

Figure 6.3: Representation of Eq. (6.3.1) in canonical form.

where the problem is decomposed into 2 independent components. The 1st subproblem
with clause1 and clause2 can be solved first by assigning x3 according to the quantifier
ordering of the variables. Which leads to the components in Figure 6.4.

0

clause1

7

x7 ≡ 0

29

x14 ≡ 1

1
x7

2
x14

0

clause1

7

x11 ≡ 1

29

x23 ≡ 0

1
x11

2
x23

0

clause3

7

x8 ≡ 1

29

x5 ≡ 2

1
x8

2
x5

Figure 6.4: Components of Eq. (6.3.1) in canonical form after assigning x3.

Although the components are syntactically different in the graph encoding they have
the same labeling and hence are equivalent. Therefore, the problem could be represented
by just one component.

6.5.2 Component Projection

Sparse graph canonization is usually fast for one time events (on the order of a few seconds)
on large scale graphs, but this becomes questionable for hundreds of thousands to millions

68

of calls per problem. We propose Component Projection, which is a simplification of graph
canonization that only does the mapping to a coloured graph without graph relabeling.

The reasoning is that the most expensive part of the encoding is not present and
moreover most subproblems would still be a match since the act of relabeling vertices from
1 to |X| provides most of the expressive power. That is, perfect graph canonization is not
as helpful for most problems. Especially since the restriction on quantifier ordering limits
the order of variables in a subproblem.

6.6 Branch and Bound

Bounds on the optimal probability of satisfiability is another useful technique that can be
applied to SSAT problems. Assume the current partial assignment is σ and the probability
of the current variable assignment is α. If we are evaluating variable x with quantifier
Q(x) =

R

and the value of the current value tried is Pr(x = vi|σ) = pi then we can
maintain a lower and upper bound on the global probability by updating the bounds using
the rules below:

LB(σ) := LB(σ) + αpi, if σ is a solution (6.7)

UB(σ) := UB(σ)− α(1− pi), otherwise (6.8)

Initially, LB is set to 0 and UB is set to 1. These lower and upper bound rules are
guaranteed to converge to the correct probability as long as there are only randomized
quantifiers.

6.7 Summary

In summary, I introduced my solver, SSAT-Prime, that solves general SSAT problems using
DPLL inspired methods from the SAT, #SAT and SSAT communities. An improvement
to the two-watch literal scheme for unit propagation is shown where searching through
already satisfied clauses is avoided. Component decomposition is exploited dynamically
during execution of the solver to detect components that would only appear conditioned
on certain assignments.

In addition, the components are stored in a cache for reuse whenever possible. This
means that components only need to be solved once and could be used in a different
context. In spite of the improvements made, many problems lead to components that are

69

symmetric to many other components. They may be just a permutation of the variables or
different variables all together. A symmetry detection scheme was used to match equivalent
components in the cache dynamically. Finally, a simple scheme to track the upper and
lower bounds on a subset of SSAT problems was given.

70

Chapter 7

Experiments

In this chapter, I show some experimental results on improvements made to the solver and
run some tests using the encodings developed in the previous chapters to determine their
practicality. My improvements include a faster way to detect unit clauses as described in
Section 7.1.1, an improved caching policy described in Section 7.1.2, detecting symmetries
described in Section 7.1.3, and computing an estimate of the upperbound described in
Section 7.1.4.

Furthermore, the results for the encoding from Section 5.3 are shown in Section 7.2 for
inference problems. In Section 5.1, I showed an encoding that allowed me to transform
POMDPs to SSAT and test the Prime solver on solving some benchmark problems in
Section 7.3. Finally, I generate instances from a random distribution and show some
results regarding the relative difficulty of solving random SSAT.

Before we begin, note that all experiments were conducted on an Intel i5 at 3.5GHz
with 4GB of available RAM. In each scenario, the solvers had 1, 000 seconds to solve each
problem before timing out.

7.1 Improvements

Many of the techniques implemented in my solver are borrowed from the SAT, #SAT and
CSP communities. However, I have made some improvements and extension for SSAT and
in the next sections I describe some experiments to infer what benefits, if any, are achieved.

I test the improvements on a variety of problems from 3 different benchmark types
as shown in Table 7.1. The random benchmarks tend to be a series of variables with

71

alternating quantifiers in 3-SAT and 10-SAT forms. The POMDP problems consist of
two easy and two hard problems that have quite a large number of literals per clause
and variable cardinality. Finally, the inference problems tend to be highly structured
and contain a large number of variables and clauses. I try to test on the same problems
throughout the chapter for a better understanding of the differences that each feature
induces.

Benchmark Problem #var #clause avg #value avg #literal

RANDOM

fail-learn1.ssat 50 120 2.00 3.00
pure1.ssat 50 120 2.00 3.00
big1.ssat 30 450 2.00 10.00
big2.ssat 15 60 4.00 10.00

POMDP

tiger.95.H10 157 304 2.31 5.60
ejs7.H10 121 212 2.16 4.58
query.s4.H2 657 27,868 42.68 160.40
aloha.10.H3 1,094 18,637 17.14 64.39

INFERENCE
mastermind 04 08.. 6,319 14,670 2.00 2.90
fs-29.uai 327,787 803,068 2.00 2.74

Table 7.1: Basic information for each benchmark problem.

7.1.1 Unit Rule

In Section 6.2, I proposed an improvement to the watch literal rule by keeping a lazy
structure that allows us to determine in constant time if a clause is satisfied. This was
necessary to perform component decomposition efficiently if we wanted to continue using
watch literals. I did not consider alternative unit rule variants that relied on updating a
counter or requires extra work during backtracking.

In Table 7.2, I show the results of both unit rule algorithms on a variety of problems.
UR-Improved is my new algorithm and Unit-Rule is the original implementation. My
approach yielded an improvement in time (seconds) across all benchmarks and moreover
improvements in running time (of 1.13x to 5.36x are achieved for the problems with longer
clauses such as big1, big2, query and aloha).

The last column indicates the percentage of all clauses visited by the unit rule that
were already satisfied and hence a waste of effort to search. The problems that showed the
most improvement also had most of the visited clauses already satisfied over 99% of the
time. This makes sense since longer clauses are more likely to be satisfied by at least one
of the many literals when searching for a replacement watch literal.

72

Benchmark Problem Unit-Rule UR-Improved Speedup Satisfied

RANDOM

fail-learn1.ssat 2.79 2.73 1.02 64.68%
pure1.ssat 2.91 2.85 1.02 64.92%
big1.ssat 72.03 63.88 1.13 99.24%
big2.ssat 8.36 6.69 1.25 85.38%

POMDP

tiger.95.POMDP.H10 4.79 4.67 1.03 88.55%
ejs7.POMDP.H10 64.35 63.56 1.01 81.08%
query.s4.POMDP.H2 113.56 21.18 5.36 99.99%
aloha.10.POMDP.H3 13.41 6.66 2.01 99.94%

INFERENCE
mastermind 04 08.. 27.80 27.69 1.00 64.88%
fs-29.uai 12.33 12.06 1.02 87.90%

Table 7.2: Improvement to the watch literal rule.

7.1.2 Component Caching

In previous work, a memory was introduced to store the solutions of re-occurring subprob-
lems in the context of #SAT. In SSAT problems, any fixed memory could eventually be
exhausted so alternative caching policies were considered based on the simplicity of Least
Recently Used (LRU) policy. Table 7.3 compares (1) Cache-Unrestricted (CU) that adds
components to memory until it is exhausted (2) Cache-LRU (CLRU) that implements the
LRU policy using a fixed number of components and (3) Cache-LRU-Sizeof (CLRUS) that
uses a fixed space in memory for LRU based on the size of each component. The duration
to solve each problem is measured in seconds, Cache Miss is the number of times the com-
ponent was not found in the cache and % Cache Miss is the percentage of requests to the
cache that resulted in no hit or were unsuccessful in finding a matching component.

On the RANDOM benchmarks, CLRU performed the best by having the best times
on the 4 problems and the number of cache miss were comparable except on big1 where
CLRUS had a lot more misses. However, on the POMDP and INFERENCE benchmarks
both CU and CLRU timeout on larger problems where some components could not be fit
in memory (CU) and even with a fixed size cache, memory was still exhausted because of
the cumulative size of each component. In general, finding the right size cache for CLRU
is quite a challenge since one setting might not work for other benchmark types. In fact,
we observed that different benchmarks usually have varying distributions for the number
of components used and their size.

73

Problem Cache Duration Cache Miss Percent Cache Miss

fail-learn1 CU 2.53 184,600 43.52%
CLRU 2.46 184,600 43.52%

CLRUS 2.72 191,627 43.26%

pure1 CU 2.73 211,475 44.63%
CLRU 2.65 211,475 44.63%

CLRUS 2.86 211,539 44.63%

big1 CU 50.60 4,412,327 38.34%
CLRU 48.33 4,412,327 38.34%

CLRUS 64.19 5,130,325 37.86%

big2 CU 6.33 676,853 72.01%
CLRU 6.05 676,853 72.01%

CLRUS 6.68 685,673 72.39%

tiger.95.H10 CU 4.49 118,095 10.62%
CLRU 4.42 118,095 10.62%

CLRUS 4.68 118,095 10.62%

ejs7.H10 CU X X X
CLRU X X X

CLRUS 63.71 1,398,111 18.05%

query.s4.H2 CU 21.00 398 0.02%
CLRU 21.12 398 0.02%

CLRUS 21.07 398 0.02%

aloha.10.H3 CU 6.69 1,552 2.68%
CLRU 6.67 1,552 2.68%

CLRUS 6.67 1,552 2.68%

mastermind 04 08.. CU X X X
CLRU X X X

CLRUS 27.67 42,620 61.57%

fs-29 CU 11.72 1,332 0.52%
CLRU 11.75 1,332 0.52%

CLRUS 12.07 1,357 0.53%

Table 7.3: Different improvements to the cache.

74

7.1.3 Symmetry

In this section, I compare the effect of using symmetry. First, I consider Component Basic
(CB) where a component is recorded as a set of unassigned literals for each clause. Next,
we explore using Component Canonical (CC) that encodes each component into a coloured
graph and finds a canonical relabeling of the variables that is invariant to any permutation
of variables or clauses. Finally, Component Project (CP) encodes a component into a
graph, but relabels the variables sequentially. The results are shown in Table 7.4 where
duration is in seconds, no C. indicates the number of components generated and the last
column indicates the percentage of reused components.

Unfortunately, CC’s performance was the worst in a majority of the benchmarks (9 out
of 10). However, in 7 cases, CP performed the best and among the remaining problems, CP
performed the best by a significant margin of up to x100 speed improvement. In general,
we found the results hold across most problems from the POMDP benchmarks. It should
be noted that there is only a huge improvement over CB when the number of components
is significantly reduced. This means that the extra time on the other problems is pure
overhead and maybe there is room for improvement here. Therefore, the cost of CC was
too high, especially on the RANDOM and INFERENCE benchmarks.

7.1.4 Upper Bound

Up until now, the solver has mainly focused on refining the lower bound incrementally, but
in Section 6.6, we introduced a way to also track incremental improvements to the upper
bound. The results are shown in Figure 7.1 for two problems from the INFERENCE
benchmark (a) fs-10 and (b) variant of blockmap. The x-axis is time in seconds and
probability of satisfiability is shown on the y-axis in log scale.

In both problems, the lower bound quickly converges, but the upper bound requires
more refinement. This holds for most inference problems since the lower bound is only
summing a few satisfying solutions, however the upper bound has to reject all other solu-
tions. Unfortunately, in much larger problems we observe some numerical instability, so
this will not be a general solution.

75

Problem Symmetry Duration No. C Percentage Reuse

fail-learn1 CB 2.70 457,209 56.89%
CC 9.16 471,469 56.99%
CP 2.72 442,921 56.74%

pure1 CB 2.72 471,269 55.34%
CC 9.72 480,377 55.27%
CP 2.85 473,939 55.37%

big1 CB 64.34 13,249,524 61.80%
CC 171.44 13,801,715 62.21%
CP 63.78 13,549,226 62.14%

big2 CB 6.96 955,347 26.14%
CC 18.77 955,567 26.42%
CP 6.68 947,171 27.61%

tiger.95.H10 CB X 133,713,296 84.13%
CC 20.86 1,111,885 89.38%
CP 4.69 1,111,885 89.38%

ejs7.H10 CB 56.99 7,748,117 81.95%
CC 220.12 7,748,117 81.95%
CP 63.87 7,747,733 81.95%

query.s4.H2 CB 24.47 2,264,792 99.98%
CC 35.70 2,264,792 99.98%
CP 21.04 2,264,792 99.98%

aloha.10.H3 CB 68.01 514,004 97.24%
CC 18.69 57,828 97.32%
CP 6.67 57,828 97.32%

mastermind 04 08.. CB 29.98 69,252 38.35%
CC 155.05 69,252 38.35%
CP 27.67 69,220 38.43%

fs-29 CB 13.54 254,205 99.42%
CC 258.56 254,205 99.47%
CP 12.01 254,201 99.47%

Table 7.4: Results for improvement in symmetry by Canonical and Projection relabeling.

76

0 0.2 0.4 0.6
10−34

10−25

10−16

10−7

102

Time (sec)

S
at

is
fi

ab
il

it
y

lower
upper

(a) Bound for fs-10

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10−2

10−1

Time (sec)

S
at

is
fi

ab
il

it
y

lower
upper

(b) Bound for blockmap 10 02-0013

Figure 7.1: Convergence of lower and upper bound on two probabilistic problems.

7.1.5 Extra Techniques

There are a variety of features we have not implemented fully, but two in particular will
be the focus of this section. These are pure literal elimination and clause learning.

The benefit of the pure literal elimination rule is usually quite significant when it
can be performed efficiently in traditional SAT environments. Specifically, when there
is a significant number of existential variables, pure literal elimination can be effective.
Unfortunately for randomly quantified variables there is no equivalent reduction rule. This
automatically rules out improvements in inference related problems. In POMDP problems,
only action variables are existentially quantified which usually cannot be implied by unit
clause. Therefore, pure literal elimination is a poor fit for the type of problems that we
are interested in solving.

I did not implement clause learning in this version of the solver. The main reason
being that I am working with finite domains and I do not have an explicit representation
for negation. To perform clause learning, I must first determine when a conflict occurs and
then extract a succinct clause that summarizes the reason for the conflict. In Table 7.5, I
show the number of conflicts encountered in the problems I used for different benchmarks.
I note that the POMDP and INFERENCE benchmarks usually have significantly fewer
conflicts compared to RANDOM problems.

77

Benchmark Problem #conflict

RANDOM

fail-learn1.ssat 77,702
pure1.ssat 64,125
big1.ssat 32,751
big2.ssat 1,212,635

POMDP

tiger.95.H10 1
ejs7.H10 1
query.s4.H2 865
aloha.10.H3 34,686

INFERENCE
mastermind 04 08.. 37,047
fs-29.uai 1

Table 7.5: Basic information for each benchmark type.

7.1.6 Summary

Going forward, I incorporate the key features discussed earlier as default configuration into
the solver, including

• Improved Watch Literal: the changes to the watch literal rule was at least an im-
provement in every benchmark tested on with larger gains on the POMDP problems.

• Cache LRU Sizeof: the added time for managing the cache and recursively calculating
the size of each item was reasonable and yields more stability memory wise on larger
problems.

• CP: even though its running times were greater than CB for all but one problem, it
provides the most potential, especially on POMDP benchmarks where the observed
symmetry could be beneficial.

• No upper bound: this feature is turned off by default since it only works on a subset
of SSAT problems.

78

7.2 Inference Competition

In the following section, I test the solver on a benchmark from the 2008 Inference Com-
petition. The benchmark data is a set of relational Bayesian networks constructed with
the Primula tool. There are 251 networks that are all binary variables. The networks
contain quite large tree-widths, however there are high levels of structure and determin-
ism to compensate. That is, most problems contain a significant number of deterministic
variables.

#Problem Name min #var max #var

150 Blockmap 700 59,404

80 Mastermind 1,220 3,692

11 Friends & Smoker 10 76,212

10 Students 376 376

Table 7.6: The composition of the 251 problems in the Relational benchmark from the
Inference competition.

7.2.1 Results

The results are shown in Figure 7.2. The solvers have 1000 seconds to solve each problem
and the problems are sorted by run time from shortest to longest. Problems that were not
solved are shown by a flat line at the end. In the competition, the winner is usually the
solver that solves the most problems and ties are broken by the cumulative time.

Overall, ace was the clear champion of the 2008 competition by a wide margin of 20
more problems solved than the 2nd place solver. In comparison, I re-ran Ace on the same
machine as my solver. My solver, ssat-prime, was able to solve 234 problems in 14, 691.73
seconds compared to 228 for ace in 14, 691 seconds. All of the failed problems for SSAT-
Prime were from the Mastermind problem set where as the failed problems for ace were
from the Blockmap problem set.

7.2.2 Summary

In the previous section, I demonstrated how to solve probabilistic inference problems en-
coded as SSAT problems from the 2008 Inference competition against the past winner,
ACE, which uses model counting. My contribution is achieving state of the art results on

79

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

Number of Problems

C
u
m

m
u
la

ti
ve

T
im

e

prime
ace

Figure 7.2: Cumulative time on inference benchmark from 2008 Competition

these benchmarks. Solving inference problems as SSAT is very promising in that I am now
able to solve more problems and demonstrate scalability of SSAT-Prime on large networks
in comparison to other techniques.

One of the advantages of ACE and similar solvers that use compilation is that after a
steep up front cost for compilation, all further queries can be answered in linear time with
respect to the compiled representation. In the future, I would like to amortize the cost
of computing solutions to components and use that to speed up the performance across
multiple queries in similar time.

80

7.3 POMDP Benchmarks

Next, I show some results on POMDP problems from the literature, Cassandra’s thesis,
and a collection of other problems [17]. Various subsets of these have been used by other
researchers to benchmark POMDP solvers. However, there is a large portion of those prob-
lems that remains unsolved due to being intractable such as pentagon, milos or forth. I will
compare a solver from [17] that is the classical POMDP solver using incremental pruning
(PRUNE), my solver ssat-prime (PRIME) and a previous exact SSAT solver (ZANDER).
PRUNE is configured to use a discount of 1.0 and a finite horizon (not undiscounted case).
Since ZANDER only works with binary variables the problems were re-encoded to binary
variables and to ZANDER’s format, which increases the complexity of the problems. It
was verified that all solvers found equivalent optimal policies and the correctness of the
encoding was also checked empirically.

7.3.1 Results

Now we compare native POMDP solvers against SSAT solvers on POMDP problems. The
results are in Table 7.7 where the first column is the problem name followed by the number
of actions, states and observations and then the results for the three solvers. The number
in each column is the maximum horizon (limit of 20) each solver is able to successfully
solve in a time limit of 1000 seconds. First, we notice that PRUNE was far superior to
the SSAT solvers and the number of times each solver reaches the maximum horizon (20)
for each problem is (45 for PRUNE, 27 for SSAT-PRIME, 1 for ZANDER). PRIME was
not able to quickly solve the simpler problems but tend to perform reasonably well on the
tougher problems such as learning and query. ZANDER’s results are poor for most of
the problems except for a few cases. The big issue was memory since ZANDER works by
constructing optimal subproblems into larger building blocks. Most of the problems were
quite large after being converted into a binary encoding.

PRUNE was able to quickly solve problems that could be represented compactly. How-
ever, if we remove the smaller benchmark sets such as cheng (11 problems) and ejs (7
problems) the PRUNE and PRIME solvers are surprisingly closer with 28 and 24 problems
solved to the maximum horizon respectively. It is clear that problems where a low number
of alpha vectors is sufficient to represent the optimal value function correspond to problems
that PRUNE does well on.

81

problems |A| |S| |O| prune prime zander

1d 2 4 2 20 14 0
4x3.95 4 11 6 10 4 0
4x4.95 4 16 2 0 6 0

4x5x2.95 4 39 4 0 4 0
aloha.10 9 30 3 3 4 0
aloha.30 29 90 3 0 2 0
baseball 6 7681 9 0 1 0

bridge-repair 12 5 5 6 4 0
bulkhead.A 6 10 6 11 4 0

cheese.95 4 11 7 20 4 0
cheng.D3-1 3 3 3 20 7 1
cheng.D3-2 3 3 3 20 7 1
cheng.D3-3 3 3 3 20 7 1
cheng.D3-4 3 3 3 20 7 1
cheng.D3-5 3 3 3 20 7 1
cheng.D4-1 4 4 4 20 5 0
cheng.D4-2 4 4 4 20 5 0
cheng.D4-3 4 4 4 20 5 0
cheng.D4-4 4 4 4 20 5 0
cheng.D4-5 4 4 4 20 5 0
cheng.D5-1 3 5 3 20 6 0

cit 4 284 28 0 2 0
concert 3 2 2 20 9 9

ejs1 4 3 2 20 8 1
ejs2 2 2 2 20 12 0
ejs3 2 2 2 20 11 0
ejs4 2 3 2 20 11 1
ejs5 2 2 2 20 20 11
ejs6 2 2 2 20 20 11
ejs7 2 2 2 0 11 11

ejs-ft-counter 2 2 2 20 11 0
fourth 4 1052 28 0 1 0

hallway2 5 92 17 2 2 0
hallway 5 60 21 3 2 0

hanks.95 4 4 2 20 8 0
iff 4 104 22 1 2 0

learning.c2 8 12 3 2 4 0
learning.c3 12 24 3 2 3 0
learning.c4 16 48 3 1 2 0

line4-2goals 2 4 1 0 19 2
machine 4 256 16 0 2 0

marking2 4 9 3 20 6 0
marking 4 9 3 20 6 0

mcc-example1 3 4 3 20 7 1
mcc-example2 3 4 3 20 7 1

milos-aaai97 6 20 8 2 4 0
mini-hall2 3 13 9 20 4 0

mit 4 204 28 0 2 0
network.95 4 7 2 20 6 0

network 4 7 2 20 6 0
paint.95 4 4 2 20 8 0

parr95.95 3 7 6 20 6 0
pentagon 4 212 28 0 2 0
query.s2 2 9 3 5 7 0
query.s3 3 27 3 3 4 0
query.s4 4 81 3 2 2 0

saci-s100-a10-z31 10 100 31 2 1 0
saci-s12-a6-z5.95 6 12 5 6 4 0

shuttle.95 3 8 5 10 5 0
stand-tiger.95 4 4 4 20 7 0

sunysb 4 300 28 0 2 0
test-simple 2 4 1 0 20 0

tiger.95 3 2 2 20 14 9
tiger.aaai 3 2 2 20 14 9
tiger-grid 5 36 17 2 2 0

web-ad 3 4 5 5 6 1
web-mall 3 2 2 20 14 9

Table 7.7: Solving POMDP problems with a native solver PRUNE compared to encoding
into SSAT and using PRIME and ZANDER.

82

7.3.2 Summary

In this section, I compared my solver against a native POMDP solver, PRUNE and another
SSAT solver ZANDER over many common POMDP benchmark problems. My solver is
not quite competitive against PRUNE yet, but it fares well against ZANDER. Overall, my
contribution is in developing a solver that is able to find solutions to POMDPs encoded
as SSAT and showing that it is possible. Furthermore, my solver is competitive on the
larger benchmarks, which shows progress in the right direction. PRUNE is better to find
solutions to problems that can be accurately represented by a small set of alpha vectors.
In future work, it will be key to represent the policies of problems more compactly and to
quickly find an optimal policy.

7.4 Satisfiability Benchmarks

I also attempted to show experimental results for converting satisfiability (SAT, QBF and
SSAT) problems to POMDP and applying a modified version of the GapMin [71] solver.
For SAT problems the planning horizon was too large for POMDP solvers in comparison
to state of the art SAT solvers.

However, for QBF problems encoded as POMDPs we require that the value of the
policy be equal to 1 for satisfiable instances and less than 1 for unsat instances. Unfortu-
nately, due to numerical instability induced by summing over exponentially many sequences
of observations that each have tiny probabilities (corresponding to universally quantified
variables in QBF) the correctness cannot be guaranteed for horizons greater than 60. In
some cases the value of the optimal policy is one, but our computed value is less than 1
(and vice versa).

7.5 Random Satisfiability

Finally, in the last section I study my solver’s sensitivity to satisfiability problems generated
according to different parameters and attempt to see how this affects the difficulty and
probability of satisfaction. The phase transition phenomenon found in randomly generated
SAT problems has been extensively studied in the literature. For k-SAT problems, if we
let α = C/V and vary the number of variables and the number of clauses, this parameter
becomes a good indicator of the problem difficulty. There exists a threshold α0 such that
all problems with a smaller α are relatively easy to solve and all problems with a greater

83

α are also easier but a little harder. However, around the value α0, problems become
extremely difficult to solve for the current class of solvers. It has been empirically observed
that the hardest problems for 3-SAT are at α0 ≈ 4.26.

7.5.1 Results

For SSAT, we generate random problems for 3-SAT, 4-SAT, and 5-SAT parameterized by e
where the ith variable, vi, has probability e of being randomly quantified with a distribution
over values that follows a uniform Dirichlet Dir(1) and vary e from 0 to 1. Results are in
Figure 7.3. They are averaged over 50 trials where by fixing the number of variables to
30, we generate problems with clauses within a range of [10, 320] to get the x-axis. The
y-axis of the graphs in the first column is the number of decisions required to solve each
problem. The y-axis of the graphs in the second column is the probability of satisfaction.

Similar to the SAT graphs, there is a peak corresponding to easy-hard-easy zones of
difficulty and various values of e seem more difficult. We have 2 special cases where e = 0.0
corresponds to regular SAT in NP and is shown as a flat line since it’s relatively easy to
solve at this scale and e = 1.0 corresponds to probabilistic inference in PP. In general, the
alternating sequence of quantifiers should be the most difficult at e = 0.5, even though
there is no guarantee that every instance will have perfectly alternating quantifiers. In fact
this is supported by the data. In (a) it is clear that there is only 1 maximum value for
α = C/V however in (c) and (e) the peak is more noisy and there are signs of multi-modal
distributions for some e values. But I believe this to be noise.

Alternatively, the probability of satisfaction in Column 2 shifts from being almost surely
satisfiable with probability 1 to 0. Consider (b), in particular for e = 0 there is a phase shift
at α = 4.26 that is confirmed by the data. I found in general that for parameters ei and
ej such that ei < ej then the phase transition occurs between 0 and 4 with the constraint
phase-shift(ei) < phase-shift(ej). For (d) I see a smoother decline in satisfiability over a
much larger region, however in many cases the decline is not monotone and it is much
more pronounced in (f).

Estimates for the region in which problems are more difficult to solve are in Figure
7.4. I show a bounded range for the most difficult problems for each value of e on 3-SAT,
4-SAT, and 5-SAT problems.

84

0 2 4 6 8 10

0

2,000

4,000

6,000

8,000

C/V

S
te

p
s

(n
d

ec
is

io
n

s)

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(a) 3-SAT Steps

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

C/V

S
at

is
fa

b
il

it
y

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(b) 3-SAT Satisfiability

0 2 4 6 8 10

0

0.5

1

1.5

·105

C/V

S
te

p
s

(n
d

ec
is

io
n

s)

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(c) 4-SAT Steps

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

C/V

S
at

is
fa

b
il

it
y

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(d) 4-SAT Satisfiability

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

·106

C/V

S
te

p
s

(n
d

ec
is

io
n

s)

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(e) 5-SAT Steps

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

C/V

S
at

is
fa

b
il

it
y

e = 0/10
e = 1/10
e = 2/10
e = 3/10
e = 4/10
e = 5/10
e = 6/10
e = 7/10
e = 8/10
e = 9/10
e = 10/10

(f) 5-SAT Satisfiability

Figure 7.3: The number of steps and probability of satisfiability for stochastic 3-SAT,
4-SAT, and 5-SAT problems

85

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Probability

C
/V

T

k = 3
k = 4
k = 5

Figure 7.4: The difficulty threshold for stochastic 3-SAT, 4-SAT, and 5-SAT problems

Next, I study the effect of increasing the number of values for each variable in randomly
generated SSAT problems. The data is generated in the same way as before, but with a
fixed number of variables (15), number of clauses (30), and e = 0.5. In Figure 7.5, I
show how the cardinality of the domain of the variables affects the computation. In (a) I
report the number of steps necessary for different k-SAT problems as I vary the cardinality
of the domain of each variable on a semi-log scale and in (b) I report the probability of
satisfaction for the same problems.

I expected an exponential increase in difficulty as the cardinality changes. However, for
3-SAT the difficulty remains relatively stable even up to a cardinality of 30. For 4-SAT and
especially 5-SAT there was a sharp rise in difficulty but it eventually settled into a stable
difficulty level. In (b) it was expected that the satisfiability approaches 0 as the cardinality
of the domain of the variables increases since in the limit values used could only satisfy
one clause. In general, clauses with more literals lead to more satisfiability as we observe
in Figure 7.5. However, after a cardinality of 8, satisfiability is almost zero.

7.5.2 Summary

I showed some interesting properties of satisfiability. By extending the quantifier to ran-
domized variables, we witness an easy-hard-easy curve for randomly generated problems
that is similar to the curve for random SAT problems. However, the curve is more com-
plex by being multi-modal and the probability of satisfiability is also no longer a smooth

86

0 5 10 15 20 25 30

102

103

104

105

106

Number of values

S
te

p
s

(n
d

ec
is

io
n

s)

3-sat
4-sat
5-sat

(a) Number of steps required to solve a problem.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

Number of values

P
ro

b
a
b

il
it

y
o
f

S
at

is
fi

ab
il

it
y

3-sat
4-sat
5-sat

(b) Probability of Satisfiability

Figure 7.5: The number of steps and the probability of satisfiability for stochastic SAT for
variables with increasing number of values.

downward slope but a multi peak graph where the differences become more pronounced
for problems with variables that have a uniform distribution over quantifier type.

7.6 Conclusion

In this chapter, I tested various features of my SSAT solver, SSAT-Prime, that demon-
strated improvements over standard implementations. These include an improvement to
the watch literal scheme, a new policy for caching components, detecting symmetries and
an upper bound for inference problems.

I showed competitive results on benchmarks from the 2008 Inference Competition where
I was able to solve more problems than the winning solver, ACE, which is using model
counting techniques. Prime was also tested against a native solver and another SSAT
solver on POMDP benchmarks, but the results were less convincing. After adjusting
for the few small problems where performance was poor, Prime, showed promise on the
larger benchmarks by being competitive. In general, the results were good for an initial
comparison.

I conclude by stating that like model counting, using a SSAT solver for inference tasks

87

can achieve state of the art results. However, POMDP problems will require more im-
provements in the solver or the encoding.

88

Chapter 8

Conclusion and Future Work

In this chapter, I summarize the work that was done in this thesis regarding (1) the
encodings, (2) my SSAT-PRIME solver and (3) the impact. Finally, I discuss some future
work that could improve the encodings and the solver.

8.1 Conclusion

In summary, one of my contributions is in showing how to encode various satisfiability prob-
lems (SAT, QBF, SSAT) into flat POMDPs without any exponential blowup. Surprisingly,
the results show that the number of clauses in satisfiability determines the number of states
in POMDP problems and the number of variables corresponds to the horizon length. In
the reverse direction, from POMDP to SSAT, I gave a constructive procedure to perform
the transformation with a proof. Similarly, I showed an encoding of inference problems to
SSAT.

Furthermore, I developed a SSAT solver, SSAT-Prime, that improves techniques such
as watch literals, component caching, symmetry detection, and a valid upper bound for a
subclass of problems. For watch literals, I can detect in constant time if a clause was previ-
ously satisfied using a set of lazy data structures that require minimal work in backtracking.
Next, detecting components in a partially evaluated formula and caching components al-
lows significant improvements in running time. This is more beneficial for SSAT problems
where all the solutions must be enumerated. In fact, many of the solutions are permutations
of particular variables and values. This led to symmetry detection and ways to generalize
the representation of components used by mapping the problem to a canonical labeling of

89

the constraint graph. Finally, for the class of problems that corresponds to probabilistic
inference, we have valid lower and upper bounds on the probability of satisfiability.

Overall, the solver was most competitive on a probabilistic inference task from the
inference competition against the past winner. The results on POMDP encoded problems
were very good compared to ZANDER (another SSAT solver), however against PRUNE
(a native POMDP solver) PRIME was not competitive on some smaller problems where
the optimal value function could be represented compactly by a small set of alpha vectors.

The overall impact of this research is a better understanding of the relationship between
satisfiability and POMDP problems. Furthermore, with access to solvers in both domains,
techniques from POMDP solvers could be used in SSAT solvers and vice versa. Some
of these features may induce additional restrictions on the types of SSAT problems that
are able to be solved. Finally, my solver SSAT-Prime is a modern solver than implements
many of the important features from satisfiability. This can motivate industry applications
and further research into SSAT problems that will expand the literature.

8.2 Future Work

I propose future work into two directions. First, to improve the PRIME solver through
additional features or improvements to current solution techniques. Second, to extend the
scope of the problems that can be solved by the theory through extensions and various
encodings.

8.2.1 Improve Solver Efficiency

One of the most prolific features in modern satisfiability solvers is clause learning, however
its efficiency gains do not translate well to SSAT problems. This can be partly explained
by noting the difference in finding one solution compared to enumerating all solutions. It
is not as beneficial to record a conflict.

Component Templates

In [41], the authors introduced the idea of component templates that showed significant
speedups in detecting dynamic components that are cached. This is an important con-
tribution since decomposing the constraint graph after every decision can be costly in
general. There are clear benefits to detecting symmetry in components. In some cases, I

90

saw significant improvements in running time in spite of the overhead for some benchmark
problems. There is room for improvement in further interleaving component decomposition
and symmetries that would minimize the cost in cases when symmetries are absent.

Branch and Bound

Branch and bound is another useful technique that can be applied to SSAT problems.
Assume the current partial assignment is σ. If we are evaluating variable x with quantifier
Q(x) = ∃ and the probability of satisfiability for the first value tried is Pr(x = v0|σ) = p0,
then by maintaining lower and upper bounds we can backtrack earlier and thereby prune
subtrees when the upper bound for x = v1 is less than p0.

The same idea can be used to backtrack earlier for universal quantifiers by updating a
lower bound. Unfortunately, there is nothing equivalent for randomly quantified variables.
Note that this is different from the thresholding technique introduced in [50]. There, pa-
rameters θ = (θl, θh) were used for the upper and lower bound probabilities of satisfaction.
If the probability was not within this range, the search could terminate early. We are in
fact calculating the exact probability of satisfaction regardless if its value is within some
predefined range.

Learn Parameters

One of the obstacles for further adoption of this work is in domains where a model is not
known or is difficult to extract. That is for a particular domain the constraints might
be constant for each instance of a problem but the distribution of randomly quantified
variables could change depending on values observed so far in the process.

As an example the process of belief monitoring in POMDPs where you are updating
the probabilities of being in a state given a history of observations and actions. If these
parameters are needed to make decisions, then the solver can learn these parameters based
on observed values (either from existential or randomize variables).

Continuous Domains

In this section, the motivation is in solving planning problems and in particular POMDP
problems. In spite of the flexibility of current theories in solving problems over discrete
domains, there is a large set of industry problems from motor control to robot navigation
where the state space or action space is continuous. Here, traditional discrete approaches

91

do not carry over and usually continuous spaces are discretized or function approximators
are used.

In the case of continuous variables, function approximators can be embedded into the
solver, which for computation will lead to an integral for randomly quantified variables and
continuous optimization for existentially quantified variables. Therefore the computation
for each quantifier type is now:

∃x F (x) = max
x

F (x) (8.1)

R

x F (x) =

∫ x1

x0

Pr(x = v)F (x = v)dv (8.2)

POMDP Features

One of the original goals outlined at the start of this research was to look for ways to
convert POMDP techniques into satisfiability and vice versa. Now with an encoding to go
back and forth between the different problems and a better understanding it will be easier
to see which features are beneficial.

8.2.2 Changing the Encoding space

In addition to changes made to the solver, we can improve the complexity of solving
problems by changing the theory and encodings.

Inference Problems

Conceptually, the solver can handle additional types of inference that were discussed in
Section 2.3, but this will require a change to the current encoding. My focus so far has
been on computing the partition function and probability of query variables. This can be
extended to compute the probability of query variables given some evidence by fixing the
values of certain indicator variables.

Also, computing the most likely assignment to all variables given evidence can be
encoded using a set of existential and randomized variables. Furthermore, both Bayesian
networks and Markov networks can be reduced to the same encoding for inference. This
will allow benchmark comparisons with a greater variety of solvers.

92

Min-Max Games

We can extend the expressiveness of the solver by including universally quantified variables
without increasing the complexity class. This model, Extended SSAT (ESSAT) [50], will
be more compact in representing various planning problems. The inter-mixing of existen-
tial, randomized and universal variables corresponds to two player adversarial games that
perform alternating min-max functions with stochastic outcomes. Furthermore, ESSAT
will be more compact in representing various planning problems in adversarial domains
similar to SSAT in the stochastic domain.

Extensions of POMDPs

Various extensions of POMDPs could all be naturally encoded into SSAT and solved by
the same solver. In comparison, a POMDP solver would require special adjustments.
For instance, factored POMDP, and the associated dynamics could be represented with
a similar encoding or non-stationary dynamics. Additionally, like inference, prior domain
knowledge on actions or observations can be encoded as extra clauses.

93

References

[1] Ignasi Ab́ıo and Peter J Stuckey. Encoding linear constraints into SAT. In Inter-
national Conference on Principles and Practice of Constraint Programming, pages
75–91. Springer, 2014.

[2] K. J. Astrom. Optimal control of markov decision processes with incomplete state
estimation. J. Math. Anal. Appl., 10:174–20, 1965.

[3] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity
results for# sat and bayesian inference. In Foundations of computer science, 2003.
proceedings. 44th annual ieee symposium on, pages 340–351. IEEE, 2003.

[4] Tom Balyo, Marijn J. H. Heule, and Matti Jrvisalo. Proceedings of SAT competition
2016; solver and benchmark descriptions. In SAT Competition 2016. University of
Helsinki, Department of Computer Science, 2016.

[5] Roberto J Bayardo Jr and Joseph Daniel Pehoushek. Counting models using connected
components. In AAAI/IAAI, pages 157–162, 2000.

[6] Paul Beame, Russell Impagliazzo, Toniann Pitassi, and Nathan Segerlind. Memoiza-
tion and dpll: Formula caching proof systems. In Computational Complexity, 2003.
Proceedings. 18th IEEE Annual Conference on, pages 248–259. IEEE, 2003.

[7] Dimitri Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
2012.

[8] Dimitri Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
tific, 1996.

[9] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume
185. IOS press, 2009.

94

[10] Elazar Birnbaum and Eliezer L Lozinskii. The good old davis-putnam procedure helps
counting models. Journal of Artificial Intelligence Research, 10:457–477, 1999.

[11] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

[12] Blai Bonet. Conformant plans and beyond: Principles and complexity. Artificial
Intelligence, 174:245–269, 2010.

[13] Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based algorithms.
Proceedings of the Twenty-First International Joint Conference on Artificial Intelli-
gence, pages 1641–1646, 2009.

[14] Tom Bylander. The computational complexity of propositional strips planning. Arti-
ficial Intelligence, 69:165–204, 1994.

[15] Cassio Polpo De Campos and Fabio Gagliardi Cozman. The inferential complexity of
bayesian and credal networks. In In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1313–1318, 2005.

[16] A. R. Cassandra. Exact and approximate algorithms for partially observable Markov
decision problems. PhD thesis, Department of Computer Science, Brown University,
1988.

[17] Anthony R. Cassandra. The pomdp page, 2003-2017. [Online; accessed 25-October-
2017].

[18] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model
counting. Artificial Intelligence, 172(6-7):772–799, 2008.

[19] H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD
thesis, University of British Columbia, 1988.

[20] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971.

[21] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. KR, 96:148–159, 1996.

[22] Paul Darga, Karem Sakallah, and Igor L. Markov. Faster symmetry discovery using
sparsity of symmetriess. In Proceedings of the 45th Design Automation Conference,
pages 149–154, 2008.

[23] Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 126(1-2):5–41, 2001.

95

[24] Adnan Darwiche. A logical approach to factoring belief networks. KR, 2:409–420,
2002.

[25] Adnan Darwiche. New advances in compiling cnf into decomposable negation normal
form. In In ECAI. Citeseer, 2004.

[26] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, 1962.

[27] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1060.

[28] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data
Analysis. Chapman & Hall/CRC, 2004.

[29] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6(6):721–741, 1984.

[30] J. Gill. omputational complexity of probabilistic turing machines. SIAM Journal on
Computing, 6(4):675–695, 1977.

[31] C. P. Gomes, B. Selman, K. McAloon, and C. Tretkoff. Randomization in backtrack
search: Exploiting heavy-tailed profiles for solving hard scheduling problems. In 4th
Int. Conf. Art. Intel. Planning Syst., pages 208–213, 1998.

[32] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting. 2008.

[33] Eric A Hansen. An improved policy iteration algorithm for partially observable mdps.
In Advances in Neural Information Processing Systems, pages 1015–1021, 1998.

[34] Milos Hauskrecht. Value-function approximations for partially observable markov
decision processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[35] Matt Hoffman, Hendrik Kueck, Nando de Freitas, and Arnaud Doucet. New infer-
ence strategies for solving markov decision processes using reversible jump mcmc. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence,
pages 223–231. AUAI Press, 2009.

[36] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973.

96

[37] H. A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI92), pages 359–363, 1992.

[38] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the National Conference on Artificial Intelli-
gence, pages 1194–1201, 1996.

[39] Henry Kautz and Bart Selman. SATPLAN04: Planning as satisfiability. Working
Notes on the Fifth International Planning Competition (IPC-2006), pages 45–46, 2006.

[40] Igor Kiselev and Pascal Poupart. Pomdp planning by marginal-map probabilistic
inference in generative models. In Proceedings of the 2014 AAMAS Workshop on
Adaptive Learning Agents, 2014.

[41] Matthew Kitching and Fahiem Bacchus. Symmetric component caching. In IJCAI,
pages 118–124, 2007.

[42] Daphne Koller and Nir Friedman. Probabilistic Graphical Models. MIT Press, 2009.

[43] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces. In Robotics:
Science and Systems, volume 2008. Zurich, Switzerland, 2008.

[44] Johan Kwisthout. The computational complexity of probabilistic inference. Technical
report, Radboud University Nijmegen, 2011.

[45] Wee S Lee, Nan Rong, and Daniel J Hsu. What makes some POMDP problems easy to
approximate? In Advances in neural information processing systems, pages 689–696,
2007.

[46] W. Li, P. Poupart, and P. van Beek. Exploiting structure in weighted model count-
ing approaches to probabilistic inference. Journal of Artificial Intelligence Research,
40:729–765, 2011.

[47] Michael L. Littman. The witness algorithm: Solving partially observable markov
decision processes. Technical report, 1994.

[48] Michael L Littman. Probabilistic propositional planning: Representations and com-
plexity. In AAAI/IAAI, pages 748–754, 1997.

[49] Michael L Littman, Judy Goldsmith, and Martin Mundhenk. The computational com-
plexity of probabilistic planning. Journal of Artificial Intelligence Research, 9(1):1–36,
1998.

97

[50] Michael L Littman, Stephen M Majercik, and Toniann Pitassi. Stochastic Boolean
satisfiability. Journal of Automated Reasoning, 27(3):251–296, 2001.

[51] Jun S. Liu. The collapsed gibbs sampler in bayesian computations with applica-
tions to a gene regulation problem. Journal of the American Statistical Association,
89(427):958–966, 1994.

[52] W. S. Lovejoy. Suboptimal policies with bounds for parameter adaptive decision
processes. Operations Research, 41:583–599, 1993.

[53] Christopher Lusena, Judy Goldsmith, and Martin Mundhenk. Nonapproximability
results for partially observable Markov decision processes. J. Artif. Intell. Res.(JAIR),
14:83–103, 2001.

[54] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[55] Stephen M Majercik. Nonchronological backtracking in stochastic boolean satisfiabil-
ity. In Tools with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International
Conference on, pages 498–507. IEEE, 2004.

[56] Stephen M. Majercik. APPSSAT: Approximate probabilistic planning using stochastic
satisfiability. International Journal of Approximate Reasoning, 45(2):402–419, 2007.

[57] Stephen M Majercik and Byron Boots. DC-SSAT: a divide-and-conquer approach to
solving stochastic satisfiability problems efficiently. In Proceedings of the Naional Con-
ference on Artificial Intelligence, volume 20, page 416. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005.

[58] Stephen M Majercik and Michael L Littman. Using caching to solve larger probabilistic
planning problems. In AAAI/IAAI, pages 954–959, 1998.

[59] Stephen M Majercik and Michael L Littman. Contingent planning under uncertainty
via stochastic satisfiability. Artificial Intelligence, 147(1):119–162, 2003.

[60] Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI
Perspective. Morgan & Claypool, 2012.

[61] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants in local
search. In In Proceedings of the Fourteenth National Conference on Artificial Intelli-
gence (AAAI97), pages 321–326, 1997.

98

[62] Brendan McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87,
1981.

[63] Thomas P Minka. Expectation propagation for approximate bayesian inference. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

[64] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the 38th annual
Design Automation Conference, pages 530–535. ACM, 2001.

[65] Radford M. Neal. Suppressing random walks in markov chain monte carlo using
ordered overrelaxation. University of Toronto, Department of Statistics, Technical
report 9508, 1995.

[66] Christos Papadimitriou and John N. Tsitsiklis. The complexity of markov decision
processes. Mathematics of Operations Research, 12(3):441450, 1987.

[67] Christos H Papadimitriou. Games against nature. Journal of Computer and System
Sciences, 31(2):288–301, 1985.

[68] James D Park. Map complexity results and approximation methods. In Proceedings
of the Eighteenth conference on Uncertainty in artificial intelligence, pages 388–396.
Morgan Kaufmann Publishers Inc., 2002.

[69] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Point-based value iteration:
An anytime algorithm for pomdps. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 1025 – 1032, August 2003.

[70] Pascal Poupart and Craig Boutilier. Bounded finite state controllers. In Advances in
neural information processing systems, pages 823–830, 2004.

[71] Pascal Poupart, Kee-Eung Kim, and Dongho Kim. Closing the gap: Improved bounds
on optimal pomdp solutions. In International Conference on Automated Planning and
Scheduling (ICAPS), 2011.

[72] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. Wiley, 2011.

[73] Jean-Francois Puget. On the satisfiability of symmetrical constrained satisfaction
problems. Methodologies for Intelligent Systems, pages 350–361, 1993.

99

[74] Jean-François Puget. Dynamic lex constraints. In CP, pages 453–467. Springer, 2006.

[75] Jean-François Puget. An efficient way of breaking value symmetries. In AAAI, vol-
ume 6, pages 117–122, 2006.

[76] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley-Interscience, 2009.

[77] Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–
86, 2012.

[78] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170(12):1031–1080, 2006.

[79] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd Edition.
Prentice Hall, 2003.

[80] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and Toniann Pitassi. Com-
bining component caching and clause learning for effective model counting. SAT, 4:7th,
2004.

[81] Tian Sang, Paul Beame, and Henry Kautz. Heuristics for fast exact model counting. In
International Conference on Theory and Applications of Satisfiability Testing, pages
226–240. Springer, 2005.

[82] Bart Selman, Hector Levesque, and D. Mitchell. A new method for solving hard sat-
isfiability problems. In In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI92), pages 459–465, 1992.

[83] Guy Shani, Ronen I Brafman, and Solomon Eyal Shimony. Forward search value
iteration for pomdps. In IJCAI, pages 2619–2624, 2007.

[84] Olivier Sigaud and Olivier Buffer. Markov Decision Processes in Artificial Intelligence.
Wiley-ISTE, 2010.

[85] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. The MIT Press,
1998.

[86] Marc Thurley. sharpsat–counting models with advanced component caching and im-
plicit bcp. In International Conference on Theory and Applications of Satisfiability
Testing, pages 424–429. Springer, 2006.

100

[87] Marc Toussaint, Laurent Charlin, and Pascal Poupart. Hierarchical pomdp controller
optimization by likelihood maximization. In UAI, volume 24, pages 562–570, 2008.

[88] Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and
continuous state markov decision processes. In Proceedings of the 23rd international
conference on Machine learning, pages 945–952. ACM, 2006.

[89] Marc Toussaint, Amos Storkey, and Stefan Harmeling. Expectation-maximization
methods for solving (po) mdps and optimal control problems. Inference and Learning
in Dynamic Models. Cambridge University Press: Cambridge, England, 2010.

[90] Hudson Turner. Polynomial-length planning spans the polynomial hierarchy. In Euro-
pean Workshop on Logics in Artificial Intelligence. Springer Berlin Heidelberg, 2002.

[91] Leslie G Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189–201, 1979.

[92] M. N. Velev and R. E. Bryant. Effective use of boolean satisfiability procedures in
the formal verification of superscalar and vliw microprocessors. Journal of Symbolic
Computing, 35(2):73–106, 2003.

[93] Nikos Vlassis, Michael L Littman, and David Barber. On the computational complex-
ity of stochastic controller optimization in pomdps. ACM Transactions on Computa-
tion Theory (TOCT), 4(4):12, 2012.

[94] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. A new class of upper
bounds on the log partition function. IEEE Transactions On Information Theory,
51(7):2313–2335, 2005.

[95] Toby Walsh. Symmetry breaking constraints: Recent results. In AAAI, 2012.

[96] Peter van Beek Wei Li, Pascal Poupart. Exploiting structure in weighted model
counting approaches to probabilistic inference. Artificial Intelligence Research, 40:729–
765, 2011.

[97] Lintao Zhang. Searching for truth: Techniques for satisfiability of boolean formulas.
PhD thesis, Princeton University, 2003.

[98] N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and
approximation. Department of Computer Science, Hong Kong University of Science
and Technology, Technical Report HKUST-CS96-31, 1996.

101

APPENDICES

102

Appendix A

Stationary Encoding of SAT

A SAT problem can be encoded as an undiscounted (no discount factor), unobservable
(one uninformative observation), finite horizon POMDP. At each time step, the decision
assigns a value to a variable (actions) and receives a reward proportional to the number
of clauses satisfied (for the first time) by this assignment. An optimal policy satisfies the
largest number of clauses possible. Here is a formal encoding of SAT as a POMDP.

A.1 SAT ⇒ POMDP

Our basic goal is to borrow ideas from SAT solvers. To learn more about SAT problems
and how they relate to POMDP problems we develop an encoding that transform SAT
problems to POMDP problems and compare the states and actions. It is known that
POMDPs are in the complexity class PSPACE-complete [66] and any problem in PSPACE
or a lower complexity class such as NP can be reduced to a POMDP. The plan is to see
if common SAT techniques that operate on variables and clauses carry over to POMDP
problems.

We now show a transformation from SAT to POMDP where the policy corresponds to
a satisfiable set of variable assignments in SAT and the horizon length will be the number
of variables. We formally define SAT as a set of clauses C = {c1, ..., c|C|} where each ci is
a disjunction of literals from the set of variables X = {x1, ..., x|X|}.
Therefore, the reduction from a SAT problem to POMDP problem given a formula F is:

• S = {c0, c1, c2, ..., c|C|} ∪ {x0, x1, x2, ..., x|X|} where st ∈ S is the state at time t. A
state labeled by ci (with i > 0) indicates that clause ci has not been satisfied yet.

103

The state labeled by c0 can be interpreted as the entire formula is satisfied. Similarly,
a state labeled by xj (with j > 0) indicates that variable xj has not been assigned
a value yet. The state labeled by x0 can be interpreted as all variables have been
assigned a value. We define the initial belief as follows: b0(c0) = 0, b0(x0) = 0,
b0(ci) = 1

|C|+|X| and b0(xj) = 1
|C|+|X| for all i > 0 and j > 0.

• at ∈ A where A = {x1 = true, x1 = false, ..., x|X| = true, x|X| = false} such that
each action is an assignment of xi ∈ X. Let xi,0 denote xi = false and xi,1 denote
xi = true for all i ∈ {1, 2, ..., |X|}.

• ot ∈ O where O = {o} is the singleton set of observations for all time steps such that
no information is provided after each transition.

Pr(ot+1 = o|at, st+1) = 1, for all at and st+1

• The transition function is a deterministic function of the action, at. When in a state,
st = ci, the process will transition to the satisfiable state, c0, if the current action
satisfies clause ci regardless if there are more variable assignments remaining. Other-
wise, the process remains in the current state when the assignment does not satisfy
the clause or the clause does not contain the current variable at time t. Similarly, for
a state, st = xi, the process will transition to the all assigned state, x0, if the current
action is an assignment of variable xi otherwise it stays in the current state.

Our belief state is updated by the elimination of invalid worlds based on actions
selected and their probability mass transferred to the satisfiable state, i.e.,

Pr(st+1|at, st) =

1 if st = ci and at satisfies ci and st+1 = c0

1 if st = ci and at ¬satisfy ci and st+1 = ci
1 if st = xi and at = xi,· and st+1 = x0

1 if st = xi and at 6= xi,· and st+1 = xi
0 otherwise

• Reward function:

R(st, at) =

|C|+|X|
|C| if st = ci and at satisfies ci

1 if st = xi and at = xi,·
− 1
|X|−1

if st = xi and at 6= xi,·
0 otherwise

Therefore, the possible actions available at time t is equivalent to the number of

104

remaining unassigned variables since negative rewards will be accumulated otherwise.

• the parameter γ should be set to 1.

• A satisfiable set of assignments exists if after a horizon of length |X| the belief at

b(c0) = |C|
|C|+|X| and b(x0) = |X|

|C|+|X| with a reward of 1 accumulated. The solution

to the SAT problem is encoded in the policy, π(bt), such that each xt assignment
corresponds to an action chosen by π(bt).

A.2 Theorem

Here, we present an outline of a proof that shows the equivalence between SAT and our
POMDP reduction. We will show that (1) any satisfiable SAT solution corresponds to an
optimal policy in the equivalent POMDP and (2) an assignment from any optimal policy
in our reduces POMDP corresponds to a satisfiable solution in SAT.

1. Assume there exists a satisfiable joint assignment S = 〈x1 := a1, x2 := a2, ..., x|X| :=
a|X|〉. We argue this will correspond to an optimal policy in the POMDP. Consider
a policy, πS, that makes the same assignments as S. After |X| steps all clauses will
be satisfied and we will receive total reward of 1, hence, πS is optimal.

2. Assume πS is an optimal policy in our reduction to POMDP. We argue that this
policy corresponds to a satisfiable set of assignments in the SAT problem. Since
the belief state has all its probability mass in state c0 and x0 after |X| steps, this
implies that for each clause ci there exists satisfiable action at. Therefore, the joint
assignments S = 〈x1 := a1, x2 := a2, ..., x|x| := a|X|〉 is sufficient to satisfy all the
clauses in the SAT problem and hence is a solution.

3. We can use the same reason to show that for the unsatisfiable cases the reduc-
tion holds. Assume there is no satisfiable joint assignments S = 〈x1 := a1, x2 :=
a2, ..., x|X| := a|X|〉. We argue this will correspond to a policy in the POMDP with
value less than 1. Consider a policy, πS, that makes the same assignments as S. After
|X| steps, not all clauses will be satisfied and therefore we will receive a reward less
than 1 in the POMDP, hence, the value of πS is less than 1.

105

States b0 b1 b2 b3 b4 b5

c0 0 1/8 2/8 2/8 2/8 3/8
c1 = x3 ∨ x4 ∨ ¬x5 1/8 1/8 0 0 0 0
c2 = ¬x1 ∨ ¬x2 ∨ x4 1/8 0 0 0 0 0
c3 = x1 ∨ ¬x2 ∨ x5 1/8 1/8 1/8 1/8 1/8 0

x0 0 1/8 2/8 3/8 4/8 5/8
x1 1/8 0 0 0 0 0
x2 1/8 1/8 1/8 1/8 0 0
x3 1/8 1/8 0 0 0 0
x4 1/8 1/8 1/8 0 0 0
x5 1/8 1/8 1/8 1/8 1/8 0

Table A.1: States updated after taking actions x1 = false, x3 = true, x4 = false,
x2 = true, and x5 = true.

A.3 Example

Lets focus on the state representation by using Eq. 2.8 as an example. Shown in column
two of Table A.1 is the initial belief state the process could be in where each clause has
equal probability of being unsatisfiable. In columns b1 to b5 is the belief state if we consider
a policy, πF that recommends the assignments ¬x1 ∧ x3 ∧ ¬x4 ∧ x2 ∧ x5. Since the belief
state has all its mass concentrated in the satisfiable state, c0, after all variables have been
assigned in x0, we can conclude that the original SAT problem is satisfiable and πF is an
optimal policy. An immediate reward of 1 is also gained from being in the satisfiable state.

In summary, we have shown how to reformulate a SAT problem as a POMDP where
the size of the state space, |C|+ |X|+2, is linear in the number of clauses |C| and variables
|X|.

106

	List of Figures
	List of Tables
	Introduction
	Contributions
	Outline

	Background
	POMDP
	Value Function
	Value Iteration
	Approximations

	Satisfiability
	Boolean Satisfiability
	Quantified Boolean Formula
	Stochastic Satisfiability

	Probabilistic Inference
	Bayesian Network
	Inference Problems
	Maximum a Posteriori (MAP)
	Marginal MAP
	Inference Algorithms
	Discussion

	Summary

	Related Work
	POMDP Encoding
	Model Counting
	Encoding
	Local Structure

	Probabilistic Planning Solvers
	Zander
	DC-SSAT
	APPSAT

	Encoding Problems into POMDP
	SAT POMDP
	QBF POMDP
	SSAT POMDP
	Discussion

	Encoding Problems into SSAT
	POMDP SSAT
	Example

	Summary
	Inference SSAT
	Example

	Summary

	SSAT Solver
	Finite Domain
	Unit Rule
	Two-Literal Watch Scheme
	Improved Watch Literal Scheme

	Component Decomposition
	Example

	Component Caching
	LRU Cache
	LRU-sizeof Cache

	Symmetry
	Canonical Representation
	Component Projection

	Branch and Bound
	Summary

	Experiments
	Improvements
	Unit Rule
	Component Caching
	Symmetry
	Upper Bound
	Extra Techniques
	Summary

	Inference Competition
	Results
	Summary

	POMDP Benchmarks
	Results
	Summary

	Satisfiability Benchmarks
	Random Satisfiability
	Results
	Summary

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Improve Solver Efficiency
	Changing the Encoding space

	References
	APPENDICES
	Stationary Encoding of SAT
	SAT POMDP
	Theorem
	Example

