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Abstract 

With automotive trends leading towards electrification and inclusion of intelligent technology for 

advanced driver assistance systems (ADAS), there is a need to research the use of advanced control 

strategies. This report touches on the development of a powertrain model built in Simulink used 

for simulation testing and vehicle development. While addressing the needs of incorporating state-

of-the-art technology, this report shows how a LiDAR and camera system can function together 

as ADAS sensors for vehicle detection and range estimation. Lastly, the main purpose of this report 

is to show how the UWAFT powertrain model and ADAS sensors, along with behaviour 

recognition software, can be used to reduce emissions and energy consumption while also 

increasing driveability.  

Machine learning techniques are used to classify a driver’s behaviour on a spectrum from 

aggressive to eco-cautious. 288 hours of driver behaviour data is simulated using the UWAFT’s 

vehicle model built in Simulink. The data is labelled as aggressive, normal, or eco-cautious 

depending on the scaling factor applied to the drive cycle inputted. Linear discriminant analysis is 

performed to maximize the separation between classes and reduce the dimensionality. Support 

vector machines are used to classify the driver’s behaviour. Lastly, fuzzy logic is used to assign a 

driver an aggressiveness value between 0 and 100. The classifier implemented achieved 81.53% 

accuracy; however, the aggression value assigned to the data via fuzzy logic is a more accurate 

representation. Vehicle testing is performed with the use of a closed-loop testing track and a chassis 

dynamometer. An acceleration test is conducted by applying a wide-open throttle in various 

operating modes. This identified drive traces that are only achievable in certain modes, thus 

concluding that if the driver’s behaviour is predicted prior to an acceleration event, the correct 

operating mode could be selected ahead of time, increasing the driveability. Additionally, a 

regenerative braking test is conducted on a chassis dynamometer to determine the optimal regen 

torque parameters for a given braking rate. It is concluded that using the best parameters for a 

stopping distance of 2 mph/s would result in a 0.003% state of charge gain per second. Therefore, 

by knowing a driver’s braking behaviour the UWAFT PHEV could select the best parameters for 

the current drive to decrease energy consumption.  
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CHAPTER 1 

1.0 Introduction 

In the following thesis, a predictive powertrain management strategy based on driver behaviour 

recognition is explored. The topics discussed in this thesis were initiated by the EcoCAR 3 

Advanced Vehicle Technical Competition (AVTC) run by the U.S. Department of Energy and 

General Motors. The AVTC series provided students from across 16 North American universities 

(14 American, 2 Canadian) with the opportunity to gain hands on automotive experience. From 

modelling and architecture selection, to vehicle integration and road testing, students followed 

automotive industry standards and best practices to design innovative vehicles of the future [1]. 

The EcoCAR 3 competition challenged students over the course of four years to reduce the 

emissions of a 2016 Chevrolet Camaro while maintaining its legendary performance. Motivated 

by the competition to explore leading-edge technologies, the University of Waterloo Alternative 

Fuels Team (UWAFT) chose to look for areas in which machine intelligence could be incorporated 

in the supervisory control of the vehicle. The particular area UWAFT chose to explore was the use 

of machine intelligence to recognize a driver’s behaviour and predict their next move. Learning a 

driver’s behaviour can be beneficial for a wide range of applications, which can be directly applied 

to a vehicle’s supervisory controller. These include the following: assisting the powertrain energy 

management leading to reduced emissions, improved fuel economy, improved drivability, 

providing feedback to the driver to suggest driving habit improvements, and changing vehicle 

parameters to suit a specific driver’s needs [2].  

The need for more complex and integrated control strategies stems from the rise of more complex 

vehicle architectures. The future of vehicle powertrains no longer consists of only an engine and 

transmission. As the industry pushes to adopt green, environmentally friendly vehicles, the 

vehicles are becoming more complex, incorporating components like electric motors, battery 

packs, and fuel cells [3]. Thus, there is a need for more complex power management control 

systems to maximize the range and use of each power source (fuel, electricity, hydrogen, etc.). The 
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UWAFT-designed Camaro, a plug-in hybrid electric vehicle (PHEV), was used for experimental 

data collection supporting the proof of concept and development of the driver behaviour 

recognition algorithm. 

The UWAFT PHEV has a series-parallel split architecture that is comprised of a 2-cylinder 850cc 

engine, two electric motors, 8-speed transmission, a friction disk clutch and a 16.2kWh battery 

pack. With such a multifaceted powertrain, it is difficult to determine which operating mode is the 

best to be in at any given time. By predicting the driver’s behaviour, UWAFT’s power 

management strategy can be greatly improved. A simple example of this is, if the vehicle knows 

the driver behaves aggressively it may leave the engine on longer with the anticipation that the 

driver may request torque shortly after braking. Two different experiments were conducted using 

the UWAFT PHEV to show areas in which the behaviour recognition software could be used as a 

solution to impact emissions and energy consumption. 

This thesis uses the comprehensive powertrain model created for the controls development of the 

UWAFT PHEV to assist in the training and validation of the recognition algorithm. The model 

was first developed to validate the vehicle’s architecture design and determine the technical 

specifications of the proposed architecture [4]. Over the course of the competition, the model 

achieved higher fidelity through the incorporation of experimental data. This thesis discusses some 

of the ways in which the model’s fidelity was improved, as well as how the model was used to 

collect driver behaviour data.  

Along with conventional vehicle data to determine a driver’s behaviour, advanced driver assistance 

system (ADAS) sensors were investigated. With the future of the automotive industry pushing 

toward autonomous vehicles, there is now an abundance of sensors all over vehicles collecting a 

plethora of situational and environmental data [5]. This thesis explores the integration of ADAS 

sensors onto the UWAFT PHEV and the possibilities of using them for driver behaviour 

recognition. The ADAS sensors on the UWAFT PHEV focus on detecting vehicles in the front, in 

the same lane, as well as in neighbouring lanes. Object detection, tracking, and range are all taken 

into consideration.  Lastly, this thesis outlines how the following machine learning techniques 

were used to classify driver behaviour and assign them an aggression value: linear discriminant 

analysis (LDA) for dimensionality reduction, support vector machines (SVM) for classification, 

and fuzzy logic to assign an aggression value. 
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1.1 Objective 

The objective of this thesis is to provide the initial resources required to develop and apply a 

predictive powertrain management strategy based on driver behaviour recognition, while also 

highlighting the potential incorporation and use of a powertrain model and multiple advance driver 

assistance system (ADAS) sensors. Additionally, provide a feasibility study for a unique approach 

to driver behaviour recognition utilizing machine learning techniques that have yet to be applied 

to this application. 

1.2 Outline 

The development of the tools and algorithms used for the predictive powertrain management 

strategy are discussed in Part I of this report. The components that are discussed in this section of 

the report are: 

Chapter 3.  University of Waterloo Alternative Fuels Team – Highlights how the advanced 

vehicle technical competition and the target market influenced the innovation 

project. As well, discuss the unique vehicle architecture chosen and current controls 

strategy used with non-predictive aspects, which will later develop into a predictive 

powertrain management controls strategy. 

Chapter 4.  Powertrain Modelling – Provides a brief overview of the powertrain model 

developed for the UWAFT PHEV showing how comprehensive it is. 

Chapter 5.  Advanced Driver Assistance System – Discusses the integration and algorithms 

used for the UWAFT PHEV ADAS sensors relating to object detection and range 

estimations of vehicles in front of the driver.  

Chapter 6.  Predictive Controls Strategy Based on Driver Behaviour – Outlines the 

technical goals and impact metrics for the innovation project, as well as provides 

details of the machine learning algorithm used for driver behaviour recognition. 
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Part II of this thesis focuses on the applications of the discussed tools and algorithms from Part I. 

Through basic testing the feasibility of a predictive powertrain management strategy based on 

driver behaviour is evaluated. 

Chapter 7.  Vehicle and Environment Simulation – Shows how the powertrain model is used 

to create labelled data for the machine-learning algorithm.  

Chapter 8.  Experimental Results – Four different experiments are conducted to show the 

effectiveness of each tool developed in Part 1.  The first experiment applies the 

labelled data collected in Chapter 7 to the driver behaviour recognition algorithm 

developed in Chapter 6 to show the effectiveness of driver behaviour recognition.  

Acceleration and regenerative braking experiments are conducted to show the 

feasibility of a predictive powertrain management strategy. Lastly, the ADAS 

sensors are tested to evaluate their accuracy.  

Part III of this thesis concludes the results found in Part II and discusses recommendations and 

future work.  
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CHAPTER 2 

2.0 Literature Review 

2.1 Hybrid Vehicles 

Currently, fossil fuels are a major resource for the world energy supply. Due to the decline in fossil 

fuel reserves it has ben predicted that there would be a scarcity of fossil fuel by the middle of the 

21st century [1]. The automotive industry is continuing to shift its resources into alternative fuel 

sources. Automotive trends also show customers getting behind this shift with the sale of electric 

vehicles in Canada growing 68% in the last year [2]. 

 

Figure 1: Year Over Year Electric Vehicle Sales by Month in Canada [2] 
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One of the most popular alternative fuels is electricity with the inclusion of a high voltage battery. 

Battery electric vehicles (BEV) have only the battery as an energy source. BEVs are currently 

trying to overcome the issue of range anxiety in customers. Essentially, customers do not want to 

have to worry about whether or not their vehicle will make a longer trip. Neubauer [3] finds that 

the effects of range anxiety can be significant, but are being reduced with access to additional 

charging infrastructure.  

Another way to alleviate range anxiety is with hybrid vehicles. Hybrid vehicles have two energy 

sources, the most common being electric and gasoline. Having a small engine coupled with electric 

motors reduces emissions as well as eliminates range anxiety as customer can fill up their car at 

any gas station. A plug-in hybrid electric vehicle (PHEV) allows the vehicle to regain charge by 

plugging into an external energy source.  

UWAFT’s approach to designing a hybrid architecture was to minimize emissions and appeal to 

customers with a PHEV that would primarily run on the electric power source over the average 

commuting distance of 40.55 kilometers [4]. This approach results in significantly reduced tail 

pipe emissions as the majority of the driving would be done in a full electric mode. At the same 

time, having an engine still helps to remove the range anxiety that might be present in customers. 

By shifting towards electric power and investing in clean energy sources the automotive industry 

can reduce its environmental impact significantly.  

 

2.2 Drive Cycles 

Drive cycles are a velocity time graph used to represent the speed a vehicle is expected to match 

during a testing procedure. In order to follow a drive trace properly, a large open track or a chassis 

dynamometer is often required.  Drive cycles are designed to test city driving, highway driving, or 

a combination of both. The Environmental Protection Agency (EPA) has developed numerous 

drive cycles for emissions and fuel economy testing for numerous scenarios [5]. They also provide 

detailed information on drive cycles used by California, Europe and Japan. UWAFT has used a 

variety of these drive cycles for vehicle testing and simulation as it provides a good tool to compare 

UWAFT’s performance against other vehicles in the market.    
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2.3 Influence of Driver Behaviour 

The major motivation behind the behind the predictive powertrain management strategy based on 

driver behaviour recognition stems from the fuel saving opportunities related to a driver’s 

behaviour. More so in hybrid vehicles, where range anxiety is a common concern, energy 

consumption is a major focus for car manufacturers. Jimenez [6] incorporates a driver’s style to 

predict their energy consumption over a given route. The results showed an increased reliability in 

predicting energy consumption as well as enhanced customer confidence in the capabilities of 

electric vehicles. These findings help to support the fact that a particular driving style has a 

significant effect on an electric vehicle’s energy consumption as well as a conventional vehicle’s 

fuel economy.  

Not only do companies want to improve the range of their vehicles, they are also interested in 

creating more environmentally friendly ones. Through reviewing a number of studies involving 

fuel economy and driver behaviour there is a general agreement that 10% fuel savings can be 

achieved by modifying the driver’s behavior. “Considering the effects of real-world driving 

conditions, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles 

and by 5-10% on more moderately driven trips” [7].  

Various papers discuss the cause of increased fuel economy; however, what it comes down to is 

aggressive drivers requesting more power, thus needing more fuel to produce that power, as well 

as the torque producing components not being able to operate in their most efficient speed. 

Through large amounts of data collection, conclusions are drawn between the cause and effect of 

a vehicle’s fuel economy. Ericsson [8] uses a large amount of driving cycle tests to determine the 

impact of 62 driving pattern parameters on fuel economy and emissions. The study showed that 

power demand, gear changing behavior, and speed level have an important effect on fuel 

consumption and emissions. Lee and Son [9] found a relationship between fuel consumption, 

vehicle speed, gear selection, steering angle, as well as acceleration/brake pedal position. They 

concluded that fuel efficiency was significantly affected by average accelerator pedal position on 

the highway. 

Along with these findings come countless attempts to mitigate a driver’s aggressive behaviours 

through a feedback system in the vehicle. The aim is to improve the customer’s driving behaviour 
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without affecting their expectations and requirements. Driver feedback systems can be integrated 

into a vehicle in a number of ways, the most popular are described briefly below. 

1. Heads-Up Display (HUD) – An LED screen projected onto the glass windshield. 

Example: Used by General Motors to display vehicle speed.  

2. Flashing Lights – LED lights incorporated into the interior or a part of the HUD to convey 

warning signs. Example: General Motors flashes a red light on the HUD when it predicts 

a head-on collision is near. 

3. Haptic Seat – Vibration motors placed inside the driver’s seat. Example: General Motors 

uses haptic seats to warn the driver they are exiting the right side of a lane unintentionally 

by vibrating the right side of the seat. 

4. Haptic Steering Wheel – Vibration motors placed inside the driver’s steering wheel. 

Example: General Motors vibrates the steering wheel to warn the driver it is leaving super 

cruise and the driver must take over vehicle operations.  

Conveying to the driver better habits is proving a difficult task, partly due to the delay in a driver’s 

response to a feedback system. If the driver has already accelerated aggressively, alerting him to 

slow down can be annoying as well as too late. Therefore, for a feedback system to be non-

intrusive, it will be unable to recover all the fuel saving associated with a driver’s behaviour; 

however, it can still do a good job. Syed et al. [10] statistically quantified fuel economy 

improvements using haptic and visual feedback mechanisms. The study results demonstrated that 

a driver feedback system could achieve up to 6% fuel economy improvements without 

significantly affecting the drivability of the vehicle.   
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2.4 Autonomous Levels 

Autonomous vehicles (AVs) are complex systems that interact with humans using a range of 

computational, sensing, and control capabilities [11]. The benefits of autonomous vehicles are 

being seen from every manufacturer, and the race to develop the first full autonomous production 

vehicle has started. According to IHS Markit forecasts [12], it is expected that the annual 

worldwide sales of AVs in 2040 will exceed 33 million units. Several companies have already 

released products that have limited autonomous capabilities. The Society of Automotive Engineers 

(SAE) has defined levels of autonomy in order to categorize these features, shown in the table 

below [13].  

Table 1: SAE (J3016) Autonomy Levels [13] 

SAE 

Level 
Name Definition 

Human driver monitors the driving environment 

0 No Automation The full-time performance by the human driver 

1 Driver Assistance The driving mode-specific execution by a driver 

assistance system of "either steering or 

acceleration/deceleration" 

2 Partial Automation The driving mode-specific execution by one or more 

driver assistance systems of both steering and 

acceleration/deceleration 

Automated driving system monitors the driving environment 

3 Conditional Automation Expectation that the human driver will respond 

appropriately to a request to intervene 

4 High Automation Even if a human driver does not respond appropriately to 

a request to intervene 

5 Full Automation under all roadway and environmental conditions that can 

be managed by a human driver 

 

Due to safety concerns from the competition organizers, UWAFT is unable to exceed level 0 

automation with their integrated advance driver assistance system, nor can they interfere with level 

1 driver assistance features that came stock in the 2016 Camaro. Therefore, efforts were put in 

place to develop a sophisticated driver feedback system.  
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2.5 Advanced Driver Assistance Systems 

In 2016 there were more than 37,000 automotive related fatalities and over 6 million police-

reported crashes [14]. Theses alarming statistics are which cause the automotive manufactures to 

pursue new safety technologies and embedded systems. A major cause behind road crashes are 

human errors, such as: distracted driving, slow reaction time, inability to read signs in a particular 

situation, etc [15]. Advanced driver assistance systems (ADAS) of a vehicle can largely help to 

reduce car crashes through features, such as: autonomous emergency-braking, adaptive cruise 

control, forward-collision warning, lane-departure warning, parking assistance, back-side 

monitoring, night vision, driver monitoring, and traffic-signal recognition [16]. According to the 

National Highway Traffic Safety Administration (NHTSA) in the United States there has been a 

downward trend of deaths per billion vehicle miles travelled (VMT) [14], which can be partially 

attributed to the advancement of those systems.  

 

Figure 2: NHTSA United State Motor Vehicle Fatalities [14] 

 

The field of advanced driver assistance systems (ADAS) has developed into a wider range of 

vehicle features with increased complexity. ADAS assumes control of vehicle functions to increase 

safety and make driving easier. The most common ADAS feature is cruise control, which takes 
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over the accelerator pedal to maintain a constant speed set by the driver. Over the years, this and 

many other ADAS features have developed towards more autonomy. ADAS sensors are used to 

detect environmental factors such as other motor vehicles, pedestrians, or obstacles in the way. 

Todays vehicles are equipped with LiDAR, RADAR, and numerous camera has to capture as much 

information as possible.  

 

2.6 Driver Behaviour Recognition Approaches 

One of the main functions of a predictive powertrain management strategy based on driver 

behaviour is being able to accurately learn and classify a driver’s behaviour. Fortunately, many 

different researchers have already explored driver behaviour recognition due to the increase in 

autonomous driving needs. Machine intelligence is a relatively large field of study and growing in 

interest; therefore, there are lots of different techniques and algorithms available. Often times there 

are multiple approaches to solve a problem and finding the best one can be difficult. Thus, it is 

important to investigate the approaches already taken and their individual successes. This 

ultimately helped UWAFT to determine their own approach for learning driver behaviour.  

Investigating different machine learning projects can be broken down into three main parts:  the 

characteristic chosen to classify, the data used to train the algorithms, and the algorithms or 

techniques used for classification. Some of the approaches found are highlighted below. 

Lui [17] was able to successfully characterize and detect driving maneuvers related to different 

types of lane changes.  

1. Characteristic – Classify driver behaviour during lane changes into three categories, 

emergency lane change, ordinary lane change, and lane keeping 

2. Data – Collected vehicle data with the use of a driver simulator 

3. Techniques – Hidden Markov Models 

Clustering is a machine learning technique in which the specific classes or the number of classes 

is unknown. Clustering will determine the right number of groups and cluster the data in each 

group. Si [18] demonstrated the possibility of recognizing different patterns in various driving 

circumstances.  
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1. Characteristic – Driving pattern clusters (i.e. a specific type of driver will belong to cluster 

of data with similar driving style) 

2. Data – Vehicle-related parameters (e.g. acceleration and jerk), in combination with 

additional environmental and road characteristics (e.g. road style, and inclination) 

3. Techniques – K-Means Clustering 

 

Apart from using vehicle data, there have also been attempts to use external sensors to collect data 

for classification. Brombacher [19] mounted a Raspberry Pi with inertial and GPS modules on the 

dashboard creating a low-cost measurement device.  

1. Characteristic – Classify driving events into different longitudinal and lateral event class, 

such as defensive acceleration, sporty acceleration, defensive light turn, and sporty light 

turn. 

2. Data – Longitudinal acceleration, lateral acceleration, yaw rate, and velocity. 

3. Techniques – Artificial Neural Networks 

Similarly, Trividi [20] and Minh [21] uses lateral and longitudinal acceleration values as indicators 

to determine aggressive drivers. Trividi concluded that 97% of aggressive events were correctly 

identified. 

Supervised machine learning methods are widely used; however, they require a large amount of 

labelled training data. Wang [22] avoided this need by implementing a semi-supervised approach 

to classify drivers into aggressive and normal styles. 

1. Characteristic – Two classes: aggressive and normal driving behaviour. 

2. Data – Throttle, braking force, steering wheel angle, longitudinal and lateral speed. 

3. Techniques – Semi-supervised Support Vector Machines  

One of the simpler techniques uses the readings of a two-axis accelerometer and speed to feed into 

a fuzzy logic system to classify a driver [23]. After reading numerous techniques to recognize a 

driver’s behaviour, the most common data used is vehicle velocity, acceleration, and jerk. An 

investigation reveals that the acceleration and jerk-based driving style classifications are only 

applicable to certain driving conditions, prompting the need for a more comprehensive 
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classification of driving style [24]. Along with the need to require large amounts of labelled 

training data for supervised learning [22], UWAFT aimed to develop a comprehensive 

classification of driver behaviour via supervised learning techniques. To overcome the hurdle of 

obtaining large amounts of labelled training data, UWAFT used a vehicle model to simulate the 

data.  

 

2.7 Controls Strategies Based on Driving Style 

Very few have attempted to incorporate driver behaviour recognition into a controls system. 

However, there have been several successful implementations of adaptive changes to vehicle 

parameters and supervisory controllers, based on driving behaviour. Malikopoilos [25], 

demonstrated the feasibility of a self-learning controller for optimal injection timing in a diesel 

engine based on individual driving styles. “That is, while the driver drives the vehicle, the 

controller identifies engine realization as designated by the driver’s driving style. At the same time, 

the controller utilizes a lookahead algorithm to derive the values of the controllable variable for 

this realization” [25]. Ultimately, Malikopoilos achieved 8.4% fuel consumption improvements. 

This is very successful given that they were focusing their efforts for only one parameter change 

and still achieved meaningful results.  

Lee et al. [26] investigates the application for hybrid electric vehicles (HEVs). “The consideration 

of different driving patterns in supervisory control design improves the fuel economy further and 

makes the HEV performance less sensitive to variations of driving conditions. Thus, Adaptive 

strategies with respect to driving patterns in HEVs can lead to further fuel economy improvement 

under real-world driving conditions” [26]. Lee goes on to discuss how the operating mode of HEV 

and various propulsion and braking parameters can be optimized based on a driving pattern. 

The UWAFT PHEV’s unique architecture posses as an excellent test subject to learn how such 

driver behaviour recognition algorithms can be incorporated into the supervisory controllers. The 

UWAFT hybrid supervisory controller’s most important job is to handle torque requests and 

determine how to split the torque between the electric motors and engine. UWAFT has decided to 

develop experiments to show how the use of driver behaviour recognition can help determine the 

optimal mode of the vehicle as well as help tune regenerative braking parameters. It was decided 
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not to experiment with engine tuning based on driving style, as there was a lot of mechanical 

downtime related to getting the engine to run. On the other hand, the post-transmission electric 

motor that handles all of the regenerative braking torque requests was very reliable for testing.  
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CHAPTER 3 

3.0 University of Waterloo Alternative Fuels Team 

3.1 Advanced Vehicle Technology Competition 

The University of Waterloo Alternative Fuels Team (UWAFT) is a student design team established 

in 1995 with a rich history in Advanced Vehicle Technology Competitions (AVTC). EcoCAR 3 

is the latest AVTC run by the U.S. Department of Energy, which challenged teams to convert a 

2016 Chevrolet Camaro into a Plug-in Hybrid Electric Vehicle (PHEV) by demonstrating 

emerging automotive technologies, while still maintaining the expected performance associated 

with the Camaro. One of the main goals of the EcoCAR 3 competition was to reduce emissions 

and create the ultimate energy-efficient, high performance vehicle [27]. 

EcoCAR 3 was a four-year competition (2014-2018) with different goals and milestones set out 

each year. Year 1 focused on vehicle architecture selection and target market research. Year 2 was 

the integration year where a ‘mule’ vehicle (60% ready) was developed. Finally, years 3 and 4 

were refinement years to get the designed vehicles roadworthy. One of the major goals for teams 

in year 4 is reaching the 99% milestone, which is a “showroom ready” vehicle [1].  

The competition was split into multiple swim-lanes as established by the competition organizers 

(U.S. Department of Energy). Each swim-lane had its own defined set of goals and tasks within a 

specific disciplinary focus. The swim-lanes were as follows: 

1. Project Management – provide management and planning for the overall project so that 

the team can operate more efficiently and better align with business and automotive 

industry practices [28].  

2. Mechanical – develop a comprehensive computer-aided design (CAD) model of the 

vehicle, reach 100% integration of system for full functionality, optimize mechanical 

systems (safety, weight, serviceability, consumer appeal), and tune vehicle dynamics [29]. 
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3. Controls and Modelling – refine hybrid strategies to improve reliability, energy 

consumption, emissions, drivability and performance in all modes. Utilise a combination 

of software-in-the-loop (SIL), hardware-in-the-loop (HIL), and vehicle testing 

environments to accomplish these activities [30].  

4. Electrical and Advance Driver Assistance Systems (ADAS) – obtain 100% integration 

of low voltage (LV) and high voltage (HV) systems, develop and deploy ADAS and driver 

feedback systems [31]. 

5. Innovation – develop a selected topic and obtain actual data and functionality by the end 

of the year [32].  

UWAFT’s team structure also followed the swim-lanes defined by the competition, creating four 

sub-teams: mechanical, controls, ADAS, and innovation.   

3.2 UWAFT Target Market 

The target market is the customers that, through research, UWAFT believes would be interested 

in purchasing the UWAFT PHEV. It is important to reflect back on the target market decided upon 

in year 1. Given the limited time and resources UWAFT has at its disposal, projects are often 

scrapped due to lack of one or the other. Therefore, determining a project’s impact on the target 

market can help determine its importance.  

In order to identify the target market for UWAFT’s Camaro, segments based on income, 

performance expectations, environmental considerations, population density, and age were created 

[33]. UWAFT decided to focus on people in their late 20s and 30s who are high-income earners, 

performance oriented, and live in urban areas. This will be herein referred to as UWAFT’s target 

market, and is graphically shown in the spider diagram below. The spider diagram is created using 

a scaled qualitative (fuel economy and performance) and quantitative (age, income, and 

rural/urban) analysis between zero and one.  
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Figure 3: UWAFT Target Market 

 

UWAFT was developing an eco-friendly, high-tech, performance-oriented Camaro. As a result, 

the team’s target market shows these preferences in accordance with the team’s direction in 

EcoCAR 3. Though an emphasis was put on performance, fuel economy and other eco-parameters 

were still important. Trends show Generation Y being more environmentally conscious and living 

in urban centres more than rural areas; both are traits of UWAFT’s target consumer and product 

development [34] [35]. These consumers are pushing for more innovation in their vehicles, 

breaking the tradition of brand loyalty and demanding constant updates to the highest technology 

components. [36]. Therefore, UWAFT targeted high-tech components and vehicle features to 

appeal to the connectivity requests of Generation Y. UWAFT’s vehicle technical specifications 

are shown in Appendix A. 

3.3 Vehicle Architecture  

The chosen vehicle architecture was a split-parallel configuration (has both a series mode with an 

engine connected to a generator, and a parallel mode with the engine providing torque directly to 

the wheels), using two GKN AF130-4 electric motors in a P2 (pre-transmission) and P3 (post-

transmission) position to supplement power from a Weber MPE 850cc turbo engine [37]. The 

engine and P2 motor connect to the drive shaft through a General Motors 8L45 automatic 

transmission. The vehicle uses an A123 6x15s3p battery and two Rinehart PM100 inverters to 
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power the electric motors. These components are capable of supplying a maximum of 232 kW to 

the road with a battery capacity of 16.2 kWh. 

 

Figure 4: UWAFT PHEV Architecture 

 

This architecture allows for multiple operating configurations with unique benefits in each. The 

parallel configuration utilizes all torque producing components and delivers all the power to the 

wheels. This configuration is used for high power demand applications, such as acceleration events 

and maintaining the Camaro performance expectations. The series configuration is initiated by 

sending a neutral override command to the automatic transmission. It is used to add energy back 

into the battery pack and ultimately help increase the range of the vehicle. Lastly, the engine can 

be decoupled from the powertrain via the clutch between the P2 and engine, thus allowing the 

vehicle to be in a full electric configuration, producing zero tailpipe emissions. These are the three 

main operating configurations, which are shown below with accurate representation of the 

component packaging in the vehicle. Note that the orange and black lines represent high voltage 

electrical and mechanical power transfer respectively.  
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Figure 5: UWAFT PHEV Parallel Configuration 

 

Figure 6: UWAFT PHEV Series Configuration 

 

Figure 7: UWAFT PHEV Electric Configuration 
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Along with these operating configurations come many variations depending on the state of the 

vehicle. For the ease of controls organization, the different vehicle configurations are split into six 

different operating modes depending on the state of the powertrain components. There are various 

charge-depleting (CD) modes and charge-sustaining (CS) modes that the vehicle can operate. The 

selected drive mode and drive mode transitions are determined by factors such as energy storage 

system (ESS), state of charge (SOC), and torque demanded.  When the net charge of the battery 

pack is decreasing, the vehicle is in a charge depleting mode. 

 The UWAFT PHEV can operate in three different CD modes. 

1. CD P3 Only mode 

2. CD Full Electric mode 

3. CD Performance mode 

The UWAFT PHEV is capable of two all-electric CD modes: one utilizing just the P3 motor and 

the other utilizing both electric motors. The P3 only mode is beneficial for applications where the 

SOC is high and the torque demand is below the specification of the P3 motor. When an increase 

in torque is requested beyond the limits of the P3 motor alone, the P2 electric motor will engage 

through the transmission providing additional power. Additionally, the P3 only mode is used when 

the vehicle is in reverse.  

If the torque demanded exceeds the limits of the combined P2 and P3 motors, the clutch will 

engage the engine that will work with the motors to provide additional power. This is called 

performance mode since it offers the most power to the wheels.  

A vehicle is in charge sustaining mode when the charge of the battery remains level or rises. The 

UWAFT PHEV switches to charge sustaining mode when the SOC of the battery pack falls below 

a certain threshold. Similarly, the UWAFT PHEV is capable of three different CS modes.  

1. CS Series 

2. CS Parallel   

3. CS Engine Only 

In CS series, a neutral override is sent to the transmission allowing the P3 motor to drive the wheels 

while the engine and P2 motor act as a generation set providing power to the battery pack. Having 
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the generation set disconnected from the wheels allows it to operate at the highest efficiency point. 

If the torque demands exceed the limits of the P3 motor, the vehicle will enter CS parallel mode 

where all torque-producing components connect to the wheels. When all of the torque produced 

by the engine is not required at the wheels, the P2 motor acts as a generator (applies braking torque) 

to sustain the charge of the battery pack.  Lastly, in engine only CS mode the vehicle behaves as a 

conventional vehicle. This drive mode is beneficial when the electric powertrain is no longer useful 

(zero charge/failure). 

3.4 Non-Predictive Controls Strategy 

UWAFT follows a model-based design approach for controls development. By following the 

stages of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Hardware-in-the-Loop (HIL), 

and Component-in-the-Loop (CIL) before integrating hardware into the vehicle, the team was able 

to change modeling information and control algorithms quickly. As the fidelity of the results 

increase so does the complexity of the model. Validation can be performed at each stage of 

development, and the team can go back in the process should any new developments occur. The 

hybrid supervisory controller is modelled by the SIL. Although the supervisory control takes care 

of an abundance of controls in the vehicle, for the purpose of this report it is only important to 

discuss the torque control strategy in a bit more detail as it pertains directly to the systems 

discussed in the following chapters. 

The torque control strategy of the UWAFT PHEV is complex in nature due to the complexity of 

the chosen architecture (having multiple torque producing components and multiple drive modes). 

The torque control strategy determines the appropriate vehicle drive mode and values (set-points, 

minimums/maximums) to effectively control the different torque-producing components 

depending on which drive mode the vehicle is in. The subsection called Drive Mode Aim calculates 

the desired drive mode given the information of the faults, current drive mode, computed torque 

splitting between components and other input signals. Kartha’s thesis is a source for a more in 

depth look at UWAFT’s non-predictive controls strategy [38].  

The transitions are determined primarily based on requested torque from the driver and state of 

charge (SOC) of the battery pack. At a high level, the vehicle will transition into charge sustaining 

modes when the SOC falls below a certain threshold, and will transition into higher performance 
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modes when there is an increase of torque demanded. This is shown below in the simple block 

diagram. Additional signals and faults are also monitored to determine when and when not to 

transition between modes, but for the purpose of this report are not displayed. Note: The arrows 

representing transitions in the diagram below are reversible if the opposite condition is met. 

 

Figure 8: High Level Non-Predictive Controls Operating Mode Strategy  

 

Because the drive mode transitions are based on requested torque, the processing time inherently 

creates a delay for the driver. Once the hybrid supervisor controller detects the torque request from 

the driver, depending on the current drive mode there may be delays from the clutch and 

transmission having to engage components to the driveline. This is one of the reasons UWAFT 

believes it can improve the vehicle’s driveability by integrating a predictive controls strategy based 

on driver behaviour, which is discussed in detail in coming sections of this report.   
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CHAPTER 4 

4.0 Powertrain Modeling 

UWAFT’s model was developed with the use of Autonomie [39] vehicle modeling software 

developed by Argonne National Laboratory. Autonomie is a software wrapper that runs on top of 

MATLAB/Simulink and auto-generates models to run in the Simulink environment. UWAFT 

began its modelling process by using default vehicles and models within Autonomie, later updating 

components based on experimental data collected. The UWAFT PHEV architecture in Autonomie 

is illustrated below. 

 

Figure 9: UWAFT PHEV Autonomie Model 

 

For the purpose of the predictive powertrain management strategy, discussed in later sections of 

this report, it is crucial that the powertrain components be modelled accurately. This is important 

since UWAFT is trying to develop advanced controls strategies that will be tested and validated 

by the vehicle model. The predictive powertrain management strategy may have a minor effect on 

efficiency or other impact metrics, thus requiring a higher fidelity model. How the powertrain 
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components were modelled along with some of the actions taken to achieve high fidelity is 

discussed in subsequent sections.  

4.1 Engine 

The engine selected for the architecture is a Weber 850cc. During the early stages of the UWAFT 

PHEV model development, the engine was modelled with the engine performance curves from the 

supplier and a stock efficiency map found in Autonomie. However, the engine performance curve 

from the supplier assumes the engine is running on gasoline. Theoretically, since UWAFT decided 

to use 85% ethanol (E85) as their fuel, there should be greater peak power output. This is due to 

ethanol having a higher energy density than gasoline.  

 

Figure 10: Weber 850cc Manufacturer Performance Curve (Gasoline) 
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The efficiency map provided by Autonomie is based on a Honda Insight engine model. This engine 

was chosen from the list of available maps as it closely represents the engine used by the UWAFT 

PHEV.  

 

Figure 11: Autonomie Honda Insight Engine Efficiency Map [39]  

 

In years 3 and 4 of the EcoCAR 3 competition, the fidelity of the engine model was greatly 

improved using experimental data collected from an engine dynamometer. The engine was tuned 

on an engine dynamometer to make it operate on E85 fuel and to characterize it for more accurate 

modeling. Motec’s engine control unit (ECU) manager is the software used to change all of the 

parameters relevant to controlling the Motec ECU. Through comprehensive tuning, UWAFT was 

able to successfully run the engine using E85 fuel. Once open loop tuning was finished, data was 

collected to determine the most efficient operating point. Using the Super Flow Dynamometer, 

fuel consumption data was recorded at all possible load points between 2,000 and 5,000 RPM. A 

brake specific fuel consumption map was then developed as shown below.  
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Figure 12: Weber 850cc Brake Specific Fuel Consumption 

 

Additionally, the engine performance curve was captured on the dynamometer with the use of E85 

as shown below. 
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Figure 13: Weber 850cc Dynamometer Performance Curve (E85) 

 

Both the efficiency map and power curve of the engine differ from the originals used at the 

beginning of the model development. Collecting experimental data from the dynamometer and 

updating the information in the model helps to create a higher fidelity model.  

4.2 Transmission 

The UWAFT PHEV uses a GM manufactured transmission (8L45) that came stock in the Camaro. 

The transmission allows the engine and P2 motor to be used in their most efficient operating point 

during series operations. UWAFT’s modelled transmission is based on a stock transmission model 

found in Autonomie. The gear ratios and their corresponding efficiencies are shown below.  
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Table 2: Transmissions Gear Ratio Efficiencies [39] 

Efficiency 0.96 0.95 0.95 0.95 0.95 0.98 0.93 0.93 

Ratio 4.62 3.04 2.07 1.66 1.26 1.00 0.85 0.66 

Gear 1 2 3 4 5 6 7 8 
 

 

4.3 Electric Motor 

UWAFT’s PHEV utilizes two electric motors in the pre-transmission (P2) and post-transmission 

(P3) locations. They are both the same GKN manufactured AF130-4 motors. These motors are 

axial flux permanent magnet motors, packaged in an extremely compact enclosure.  

Having the high voltage bus at a nominal voltage of 292 volts, results in the GKN AF130-4 power 

versus torque curve used in the model shown below. 

 

Figure 14: GKN AF130-4 Power/Torque Curve 

Additionally, the efficiency map of the electric motors is not included in this report due to a non-

disclosure agreement signed by UWAFT. The efficiency map implemented into the model for the 

electric motors is a 4D map. The inputs are torque, speed, and temperature.  
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4.4 Model Limitations 

Modelling is a very important engineering tool as it provides insight and validation to new ideas. 

Although accurate, it is often difficult to achieve a model that takes into consideration every input 

possible. To reduce the processing power required to run simulations, models are often simplified 

to only include the most significant information. It is crucial to understand a model’s limitations 

and what assumptions were made when the model was developed. The UWAFT PHEV powertrain 

model has two major aspects that limit the fidelity of the results obtained.  

 

1. Look-Up Tables – The UWAFT PHEV uses look-up tables (maps) to determine values 

such as component efficiency. This is a useful tool in modelling as it avoids the use of 

complex computations.  Instead of using an equation to calculate the engine’s efficiency 

continuously, the UWAFT PHEV model looks up a value based on engine speed and 

torque. The limitation exists due to the coarseness of a look-up table. A look-up table will 

only have exact values for a given set of inputs; therefore, if the inputs fall between two 

cells of the look-up table, the output needs to be interpolated.  A well constructed look-up 

table will have enough cells such that linear interpolation between two cells will meet the 

accuracy requirements of the model. One of the UWAFT PHEV’s powertrain model’s 

biggest limitations is the engine efficiency map. The Super Flow Dynamometer that was 

used to tune the engine and create the efficiency map is designed for larger engines. The 

biggest drawback this created was the resolution of the fuel flow meter. Naturally, larger 

engines consume larger amounts a fuel and thus higher resolution flow measurements are 

not required. This resulted in a coarser engine efficiency map as shown previously. 

 

 

2. Inputs – As previously mentioned it is difficult to develop a model that includes all inputs. 

Thus, inputs that have minimal effects on the results are left out as long as their effect is 

below the accuracy requirements of the model. For example, the vibrations from the road 

could effect the power output of the engine; however, since the effect so miniscule it does 

not make sense to waste computational power to include it. Thus, the number of inputs 

omitted can limit the model’s fidelity. The UWAFT PHEV is limited by excluding various 
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inputs. The engine’s efficiency map is not a function of temperature like the electric 

motor’s map. This is acceptable, as the operating temperature of the engine does not vary 

as much as the electric motor’s. However, it does limit the model in accurately calculating 

start-up efficiency as the engine warms up.  
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CHAPTER 5 

5.0 Advanced Driver Assistance Systems 

UWAFT designed and integrated an Advanced Driver Assistance System (ADAS) for the 2016 

Chevrolet Camaro. The primary focus of ADAS is to increase system performance around 

detecting and measuring vehicle targets, and using those measurements to provide feedback to the 

driver. The scope has been limited to focus on detection and ranging of vehicles in uncluttered 

environments. This direction was chosen to enable time for simulation and testing of vehicle 

efficiency impacts through driver feedback. The systems will therefore be tested in environments 

resembling highway and country roadways, without complications such as urban environments, 

pedestrians, or traffic lights. Due to safety concerns of the AVTC organizers, systems are not 

allowed to modify torque distribution, powertrain behaviour, or steering controls [40]. However, 

the concepts and knowledge developed are directly applicable to develop autonomous features 

such as adaptive cruise control and automatic braking. Rather than actively controlling the vehicle, 

the information from the ADAS sensors was utilized to provide feedback to the driver in an attempt 

to improve vehicle efficiency.  

The UWAFT PHEV designed system consists of a forward facing camera for detecting regions of 

interest and a LiDAR for range and range rate measurements. A NXP S32V board is used for 

preprocessing and streaming video to a NVIDIA Jetson TX2 where a majority of the computations 

are done. Lastly, a Raspberry Pi and HD-Link communicate to the centre console HMI screen to 

provide driver feedback features. The entire ADAS architecture is graphically laid out below and 

the ADAS sensors used for the UWAFT PHEV are described in the following sections. 
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Figure 15: UWAFT ADAS Architecture 

5.1 Sensors 

Forward Facing Camera 

The forward facing camera is an OmniVision 10635 with a standard focal length lens recording at 

1280x800 pixels at 30 frames per second. It has a measured range of 30 metres with a 50° field of 

view with the current setup. The 50° field of view provided by the standard lens captures the 

vehicles lane and two adjacent lanes to detect vehicles that may be merging. 

 

Figure 16:  UWAFT PHEV OmniVision Camera Integration 
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Light Detection and Ranging  

The chosen LiDAR is a Velodyne VLP-16, which has a 360° field of view and scans the 

environment using 16 independent lasers. The LiDAR is able to retrieve reflectivity and distance 

data for each point in its point cloud. It has a range of 100 metres for distance measurement on 

retro-reflective surfaces such as road signs, licence plates, and vehicle lights and is able to measure 

as close as 50 centimeters accurately.  

 

Figure 17: UWAFT PHEV Velodyne LiDAR Integration 

 

The range rate accuracy of the LiDAR system is a function of the ranging accuracy of the LiDAR 

and the time accuracy of the computing system. The computing system (NVIDIA Jetson TX2) is 

accurate down to the microsecond level, therefore the range rate will be limited by the ranging 

accuracy (+/- 3cm) of the Velodyne. The error under good conditions with a sample rate of 15 

samples per second is calculated below resulting in a range rate accuracy of +/- 0.45 m/s. This 

error would increase in adverse conditions such as precipitation or non-retroreflective surfaces.  

𝑅𝑎𝑛𝑔𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒
= 𝑅𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

 

±
0.03𝑚

1
15

𝑠
= ±0.45 𝑚/𝑠 

 

(1) 
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Sensor Fusion 

There are two data sources in this system, a 3D point cloud from the LiDAR, and 2D image frames 

from the camera. The camera feed is processed using a neural network to identify bounding boxes 

around vehicles in the camera frame. These bounding boxes are then passed to the LiDAR 

processing code, which identifies corresponding 3D points in the point cloud to estimate the 

distance of the vehicles. 3D points are first mapped to the camera’s 3D reference frame, then the 

distances of points in the bounding boxes are estimated by using a pinhole camera model, and 

determining the 3D rays for given pixel coordinates.  

5.2 Object Detection 

Multiple object detection algorithms were developed and tested on UWAFT’s ADAS equipment. 

However, due to the complexity and time needed to train algorithms, all the methods that were 

developed by the team for object detection lagged behind industry standards. Ultimately, it was 

decided to go with an existing method for object detection developed by You Only Look Once 

(YOLO) [40]. YOLO takes each frame from the camera and a single convolution network on the 

image, and then creates a bounding box around the detected object if the confidence score is above 

a certain threshold. 

YOLO operates similarly to a Fast Regions with Convolutional Neural Nets (R-CNN) method. 

However, R-CNNs require some very powerful computers to run and a very long time to train. 

This would not work well on the embedded system inside UWAFT’s vehicle. YOLO addresses 

this issue by approximating the weights in the R-CNN to binary values that are much smaller. The 

nature of these values allows for the convolution operations to require much less computing power. 

The binary input is passed to the XNOR-network with the binary weights. The binary XNOR 

operations are very fast since both the inputs and weights are binary valued approximations.  This 

brings R-CNN levels of accuracy into the realms of possibility in the embedded space. UWAFT 

was able to run YOLO at real-time speeds at around 20 frames per second on the NVIDIA Jetson 

TX2. 
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5.3 Range Estimation 

The distance a vehicle is ahead of UWAFT’s vehicle is determined with the use of the LiDAR. 

First the LiDAR outputs a 3D point cloud which is cropped to only use the field of view 

overlapping with the camera. Next the data is down-sampled, using a voxel grid. After down-

sampling, the 3D points are mapped to the camera’s reference frame. Using a pinhole model of the 

camera, a 3D vector is obtained for given pixel coordinates. Points in the point cloud that lie along 

the direction of this vector are selected as distance candidates and averaged. This averaged distance 

is then returned and stored so that range rate and the time step can be calculated.  

5.4 Object Tracking 

To track vehicles, a bounding box overlap method was used. The overlapping area between a 

previous bounding box and all new bounding boxes in the frame was calculated. If any box 

overlaps with at least 50% of a previous box (if the overlap area is greater than half of the area of 

the old box) it is determined to be the same vehicle. If multiple boxes meet this criterion, the box 

with the highest percentage of overlap will be chosen. It is identified that this is not the most robust 

method of doing object tracking but was implemented for simplicity. 
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CHAPTER 6 

6.0 Predictive Controls Strategy Based on Driver 

Behaviour 
 

6.1 Overview 

A major part of the AVTC series is to challenge students to develop industry-leading ideas and 

take them from proof of concept to vehicle insertion. This is the primary focus for the innovation 

stream each year. The major milestone for the innovation stream is to develop a selected topic and 

obtain actual data and functionality by the end of the year. It was chosen to address a continuous 

need in the automotive industry, which is to reduce energy consumption and emissions of vehicles. 

With the increase in alternative fuels energy sources, vehicle architectures are becoming more 

complex. Rather than having just an internal combustion engine connected to the wheels, there are 

now multiple torque producing components in numerous different configurations. This ultimately 

leads to a more complex controls strategy to control vehicle operations. 

It is decided to investigate how advance controls techniques (particularly machine learning) can 

be incorporated into the hybrid supervisory controller to improve energy consumption and 

emissions of a PHEV. While reflecting on the target market defined by UWAFT in year one, it 

was important that the innovation project bring state-of-the-art technology to consumers and create 

a unique experience while reducing the environmental impact of the vehicle. A predictive controls 

strategy based on driver behaviour recognition was selected as the year 4 innovation project.  

It is believed by recognizing the driver’s behaviour and ultimately learning who they are as a driver 

it would help give UWAFT’s PHEV a personalized feel while reducing the energy consumption 

of the vehicle.  Utilizing facial recognition to identify who is driving, and a database of the driver’s 

behaviour history (recognized via machine learning); the UWAFT PHEV could change its control 

strategy and specific control parameters to adapt to each driver. This can influence various driving 

scenarios, with situational and environmental factors all coming into effect. It was decided to 
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narrow the scope to investigate the effect during simple braking and accelerating events, with no 

external factors taken into effect. For example, given an aggressive accelerator the UWAFT PHEV 

will pre-emptively be in a configuration to provide maximum torque, eliminating the engagement 

time of certain powertrain components. Alternatively, given an eco-cautious accelerator (easy on 

the pedal) UWAFT PHEV will pre-emptively be in a configuration to optimize for energy 

consumption and emissions. Experiments conducted with the predictive controls strategy include: 

1. Energy consumption during acceleration events in different configurations  

2. Regenerative energy captured during braking events  

6.2 Technical Goals for Innovation Project 

At the start of the EcoCAR 3, year 4 innovation project, multiple technical goals to achieve over 

the course of one year were identified. The innovation project aimed to add value for the target 

market, as well as value to EcoCAR 3 AVTC and UWAFT directly. The goals developed by 

UWAFT are described in the list below.  

1. Driver Identification – It needs to be able to identify who is driving the vehicle to 

activate a predictive powertrain management strategy that is specific to the driver. This 

is to be accomplished via a driver-facing camera utilizing facial recognition algorithms. 

Additionally, once the driver is recognized, the vehicle settings such as seat, mirror 

position, and HMI settings will automatically be adjusted resulting in a refined driver 

experience. The facial detection system may also double as a security feature, disabling 

the vehicle for unknown drivers.  

 

2. 300+ Hours of Driver Data – In order to train and validate driver behaviour algorithms 

driver data will need to be collected. Driver data can be collected via the onboard 

diagnostic (OBD) port on all types of vehicle via OBD loggers. Depending on the 

machine learning technique chosen, labelled or unlabelled data may be necessary. 

Labelled data refers to data that has already been identified or given a ground truth. In 

the described scenario, it refers to driver data logged from the OBD port of a driver 

who has already been labelled as aggressive, normal, or eco-cautious. Conversely, 

unlabelled data is essentially unknown. 
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3. Driver Behaviour Recognition – 80% reliability in identifying driver behaviour as 

characterized in Section 8.1. Algorithms that are available for use include but are not 

limited to; fast Fourier transform, finite/hybrid state machines, graphical methods, 

hidden Markov models, Bayesian networks, k-nearest neighbour classifiers, decision 

tress, fuzzy logic, clustering, Kalman filtering, and support vector machines. Based on 

literature review, drivers can be profiled based on their acceleration/braking and vehicle 

speed; however, as the innovation project develops it may prove beneficial to include 

data from GPS, ADAS, situational factors, and environmental factors as well. 

 

4. Powertrain Management Strategy – Once the driver has been classified, the optimal 

powertrain management strategy needs to be determined for that specific driver. This 

includes determining which mode the vehicle should be in, parameter optimizations, 

and regen braking calibrations. This thesis aims to do as much in vehicle testing as 

possible to optimize the controls strategy, but ultimately will be limited by any 

mechanical failures experienced by the team.  

 

5. Effect on Competition – The innovation project must facilitate the accomplishment of 

the team’s competition goals. Two of UWAFT’s major goals for the competition are to 

reduce emissions and have a vehicle range of 300 kilometres. By completing this 

innovation project, it will have investigated numerous ways to reduce vehicle emissions 

and power consumption thus developing a thorough understanding of the vehicle’s 

powertrain management. This will ultimately allow UWAFT to select the best 

powertrain management strategy to achieve the highest scores at competition events. 

(Such as the emissions and energy consumption event) 
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6.3 Impact Metrics 

Four metrics were determined to use in order to gauge the success of the predictive controls 

strategy and driver behaviour recognition.  

1. Energy Consumption – The more energy saved by the predictive controls strategy the 

more successful it will be. By analyzing the energy saved during one driving event, the 

data can be extrapolated over the course of an entire trip to determine the cost savings 

associated with the implementation of a driver behaviour recognition algorithm.  

 

2. Emissions – Similar to energy consumption, by comparing the emissions of the predictive 

controls strategy to that of the stock, “one size fits all”, controls strategy, there should be a 

noticeable reduction difference. 

 

3. Driveability – A successful implementation of a predictive powertrain management 

strategy should go unnoticed by the user, as changes would be incremental at first as the 

driver’s behaviour is being learnt. Vehicle test laps on a closed course and survey can be 

used to receive feedback from various types of drivers.  

 

4. Recognition Accuracy – By validating the algorithm for driver behaviour recognition, an 

reliability value can be obtained to represent how well the algorithm preforms. Using cross 

validation a group of labeled data (aggressive, eco-cautious, and normal drive cycles) can 

be inputted into the algorithm, and then the predicted label can be compared to the actual 

label. 

 

6.4 Machine Learning Methodology  

An algorithm designed to recognize and classify driver behaviour based on features extracted from 

CAN data was developed. The algorithm was developed in a Python environment due to its 

dominant use in machine learning and various open source machine intelligence libraries available. 

The algorithm architecture follows a standard set sequence described below: 
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1. Feature Extraction – Extracts unique characteristics from the raw data. 

2. Feature Normalization – Normalizes the features so each feature has equal effect on the 

outcome. 

3. Dimensionality Reduction – Determines the most important features and reduces the 

complexity of the problem. 

4. Classification – Classifies the features into distinct categories. 

This methodology was applied to a supervised and unsupervised learning approach to determine 

which would perform better. The feature extraction and normalization were the same for both the 

supervised and unsupervised approach. However, different dimensionality reductions and 

classifications were used for each. The supervised approached used linear discriminant analysis 

(LDA) [41] and support vector machines (SVM) [42] for dimensionality reduction and 

classification, respectively. Whereas the unsupervised approach used principal component 

analysis (PCA) [41] and k-means [43] for dimensionality reduction and classification, respectively. 

The unsupervised learning approach initially seemed to be an appropriate solution; however, the 

team ultimately chose to pursue a supervised learning method due to the various drawbacks 

encountered, namely, the larger amount of data required. The supervised approach and techniques 

chosen are discussed in more detail in the following sections. 

Feature Extraction  

A feature is a quantitatively measurable property that serves as a unique characteristic of the data 

being studied. The driver specific signals used for classification in this paper are accelerator pedal 

position (APP), brake pedal position (BPP), and vehicle speed. A total of five features were 

extracted for each input signal recorded from a specific driver (APP, BPP, and vehicle speed). The 

features explored were the raw signal value, discrete first derivative, moving mean, moving 

median, and moving standard deviation. An individual data point was created by averaging all of 

the features over the time driven. Thus, for an individual driver the data set would be a 1x15 array. 

[𝐴𝑃𝑃 𝐴𝑃𝑃𝑟𝑎𝑡𝑒 … 𝐵𝑃𝑃]1𝑥15 

Once all of the labelled data points were created, representing individual drivers, the features were 

normalized to produce a standardized set of data which the classifier can operate on. This is a 
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necessary step as normalization ensures that all features have a proportional contribution to the 

classification. Additionally, during dimensionality reduction the linear discriminant analysis 

results improve when using normalized data. 

Dimensionality Reduction 

Linear discriminant analysis (LDA) was used as the dimensionality reduction technique during the 

pre-processing step. LDA projects the dataset onto a lower-dimensional space that has high class-

separability as well as low interclass-separability, both of which are desired, reducing 

computational costs.  

LDA begins by calculating the mean of each feature separately for each class (eco-cautious, 

normal, aggressive). Two scatter matrices are then calculated, one to represent inter-class scatter 

and one that represents class separation. The goal of LDA is to find dimensions that minimize 

inter-class scatter while maximizing class separation. The inter-class scatter is computed by the 

following equation using the variance of the data. 

𝑆𝑊 = ∑ 𝑆𝑖

𝑐

𝑖=1

 (2) 

𝑤ℎ𝑒𝑟𝑒,   𝑆𝑖 = ∑ (𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)𝑇

𝑛

𝑥∈𝐷𝑖

 (3) 

The class separation can be calculated using the following equation. 

𝑆𝐵 = ∑ 𝑁𝑖(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇

𝑐

𝑖=1

 (4) 

 

𝑤ℎ𝑒𝑟𝑒,   𝑚 =  𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑚𝑒𝑎𝑛,   

 𝑁𝑖 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 

 

 

Lastly, to minimize 𝑆𝑊 and maximize 𝑆𝐵, the generalized eigenvalue problem for the matrix 𝑆𝑊
−1𝑆𝐵 

needs to be solved. Sorting the eigenvectors by decreasing eigenvalues allow the most important 

dimensions to be determined. The eigenvectors with the highest eigenvalues bear the most 
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information about the distribution of data. Thus, the data will be projected onto the eigenpairs with 

the greatest variance, setting up the problem nicely for classification. 

Classification 

The classification approach, chosen for supervised learning, was support vector machines (SVM). 

SVM finds the vector or hyperplane that creates the widest gap between the classes. Classification 

can then be done on unlabelled data by determining which side of the support vectors the data 

point lies on. The processed training data was used to fit the SVM classifier using a linear kernel, 

thus returning three vectors that divide the three driver behaviour classes.  

As opposed to purely classifying drivers into three distinct classes, eco-cautious, normal, or 

aggressive, it was decided to assign an aggression value between 0 and 100 to each driver using 

fuzzy logic [44]. Due to several areas of overlap between classes, this approach is desirable to 

minimize misclassification. Thus, instead of misclassifying in those areas, the driver’s behaviour 

can be assigned a value somewhere between eco-cautious, normal, or aggressive, resulting in a 

more descriptive classification. The consequent membership function for aggression level is 

defined in the figure below. 

 

Figure 18: Aggression Membership Function 

 

Additionally, three antecedent membership functions were also defined for each of the support 

vectors. These antecedent membership functions use the distance from the support vector as the 
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input, meaning the closer the data point is to the support vector the more “fuzzy” the classification. 

These membership functions are all defined similarly as shown in the figure below. The two classes 

intersect when the data point falls on the support vector and the distance is equal to zero. 

 

Figure 19: Distance from Support Vector Membership Function 

 

The distance to the support vectors was calculated via the following formula: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|

√𝑎2 + 𝑏2 
 (5) 
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CHAPTER 7 

7.0 Vehicle and Environment Simulation 

In order to use the machine learning methodology, discussed in previous sections, labelled data is 

needed first to train the algorithm. The data used was collected from various streams through the 

duration of this project. The training and validation data was simulated using the UWAFT PHEV 

powertrain model discussed in a previous section. Furthermore, unlabelled data was collected via 

the onboard diagnostic (OBD) port on various vehicles logging their day-to-day driving.  

The UWAFT PHEV model was used to rapidly generate unique driver behaviour data by 

recursively running the model through a collection of standard drive cycles and logging various 

controller area network (CAN) signals. The drive cycles used as inputs to the model were vehicle 

speed as a function of time. A sample drive cycle is shown in the figure below. This drive cycle is 

the highway fuel economy test (HWFET) developed by the United States Environmental 

Protection Agency for the determination of fuel economy of light duty vehicles [45]. Similarly, 

the other 11 drive cycles used were sourced from various institutions for standard vehicle testing 

applications. This ensured that the values inputted into the model were realistic. 

 

Figure 20: HWFET Drive Cycle [45] 
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The data collected via the simulation was labelled by scaling the drive cycles’ vehicle speed and 

time by a random factor from 0.60-1.55 using the following equations. 

 

𝑣𝑒ℎ𝑠𝑝𝑒𝑒𝑑 = 𝑣𝑒ℎ𝑠𝑝𝑒𝑒𝑑 ∗ 𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 (6) 

  

𝑡𝑖𝑚𝑒 =
𝑡𝑖𝑚𝑒

𝑠𝑐𝑎𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
 (7) 

   

A scaling factor of 0.60-0.75 results in lower speeds and slower accelerations, thus the driver was 

labelled as eco-cautious. Similarly a scaling factor of 0.9-1.1 was labelled as normal, and 1.25-

1.55 labelled as aggressive. The raw signals that were logged during the simulation were the 

accelerator pedal position (APP), brake pedal position (BBP), and vehicle speed, which were then 

able to be fed into the feature extraction algorithm.  

In total, 144 log files were simulated using 12 randomly scaled drive cycles. There are 48 unique 

log files for each labelled class, eco-cautious, normal, and aggressive. This results in more than 

288 hours of driving data. 

In addition to simulating vehicle CAN data, several FleetCarma [47] C2 data logging devices were 

obtained and used to collect the day-to-day driving logs of various drivers. This data was used to 

ensure that the final algorithm would be compatible with real world data collected from various 

types of vehicles.
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CHAPTER 8 

8.0 Experimental Results 

8.1 Driver Behaviour Recognition  

The following sections display the results obtained when applying the machine learning 

methodology described to the 288 hours of labelled driving data simulated by the UWAFT PHEV 

powertrain model. Additionally, once the algorithm was trained and validated with simulated data, 

it was tested using real world vehicle data from various types of cars.  

Driver Behaviour Classification 

Prior to preforming LDA on the dataset there are 15 features (dimensions) that individually have 

poor class-separability. Shown below is a visual representation of the training sample distribution 

over two randomly selected features in one-dimensional histograms. The classes displayed on the 

features below clearly cannot be classified and there is no separability between the classes. 

 

(A) (B) 

Figure 21: Data Projected onto Feature 6 (A) and Feature 12 (B) 
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After performing LDA on all 15 features, the eigenvectors that contain the most information about 

the distribution of the data can be found as they correspond to the largest eigenvalues, shown in 

the table below. 

Table 3: LDA Variance for Each Eigenvalue 

Eigenvalue Variance as Percentage 

2.44 63.5% 

1.38 36.1% 

0.0157 0.41% 

⋮ ⋮ 

2.84x10-13 0.00% 

 

The first two eigenpairs are by far the most informative ones, and not much will be gained 

expanding beyond the 2D-feature space based on the first two eigenpairs. Below is a figure of the 

training data set projected onto the first two linear discriminants. 

 

Figure 22: Data Projected onto the First Two Linear Discriminants 
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SVM was then used to determine the vectors that separate the data best. The figure below shows 

the processed data with each support vector. 

 

Figure 23: Support Vectors Graphed Over Data 

 

The three separating vectors found are: 

𝑦 = −7.32𝑥 + − 4.80 ∗ 10−6 (8) 

𝑦 = −0.33𝑥 + 8.63 ∗ 10−6 (9) 

𝑦 = 1.82𝑥 + 1.94 ∗ 10−6 (10) 

  

Driver Behaviour Validation 

K-fold cross validation was used to determine the accuracy of the classification implemented 

above. The 48 labelled log files for each class were split into 8 groups of 6 log files. The algorithm 

was run 8 times using a different group for testing each time and the other 7 groups used for 

training. The results are summarized in the table below. 
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Table 4: K-Fold Validation Accuracy 

Fold 

# 

Accuracy 

Class 1 Class 2 Class 3 

1 76.66% 86.66% 90% 

2 76.66% 76.66% 76.66% 

3 73.33% 80% 80% 

4 73.33% 86.66% 86.66% 

5 80% 80% 90% 

6 90% 86.66% 80% 

7 83.33% 80% 80% 

8 83.33% 80% 80% 

AVG 79.6% 82.1% 82.9% 

 

Therefore, from K-fold cross validation the implemented algorithm has a total classification 

accuracy of 81.53%. The algorithm has some degree of misclassification; however, this was 

anticipated when observing the classes overlapping when the data is projected onto the first two 

linear discriminants. To account for this and better describe driver behaviour, fuzzy logic was 

implemented to assign a driver with an aggression value from 0-100. Therefore, the overlapping 

regions could be represented partially by each overlapped class. Refer to Appendix C for a 

classification and misclassification example addressed via fuzzy logic.  

Real World Results 

To maximize its benefit, a driver behaviour recognition algorithm should work in real time as the 

driver drives. This way it can modify the vehicle’s control parameter to adapt to the driver, as well 

as suggest to the driver to make changes to bad habits.  

The best way to test if the algorithm works in real time is by using real world logged data from 

vehicles driving on the road. As mentioned in a previous section of this paper, data was logged 

from various drivers driving different vehicles using FleetCarma C2 data loggers [47]. When 
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combining GPS data and the driver behaviour algorithm the following results can be obtained, 

shown in the image below. 

 

Figure 24: Aggression Level Projected onto City Map 

 

Figure 25: Aggression Level Projected onto GPS Data 
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As the driver drives from his/her home to work their aggression level changes based on the scenario 

they are in. An average aggression score is also posted for the entire trip. Having this information 

can aid the vehicle’s controls to determine the best vehicle parameters and operating mode for the 

driver. As shown in the following sections, a regenerative braking test is used to determine the 

best applied torque for a specific braking behaviour, and an acceleration test shows the effect of 

operating in different vehicle modes.  

 

8.2 Chassis Dynamometer Regenerative Braking 

The following test aims to study, characterize, and optimize the regenerative braking capabilities 

of the vehicle’s post-transmission (P3) electric motor. Under UWAFT’s current control 

architecture, the P3 motor is typically used as the sole propulsive powertrain component (P3 only 

electric vehicle mode) in low torque demand applications, and the primary source of regenerative 

braking in all applications in electric vehicle modes. UWAFT was motivated to optimize and fine-

tune its regenerative braking scheme in an attempt to improve overall vehicle range, efficiency, 

and performance. Additionally, by investigating different regenerative braking parameters, it 

desired to learn the best parameters based on different braking rates. This directly benefitted the 

predictive powertrain management strategy, because once the driver’s behaviour was determined 

it could be matched with the regenerative braking parameters that best suited their braking rate. 

This provided the driver with the most efficient parameters.  

Regenerative Braking Test Setup 

The aforementioned regenerative braking calibration tests were conducted on the AVL All-Wheel 

Drive dynamometer (Test Cell 3) located at the Transportation Research Center in East Liberty, 

Ohio. With the chassis of the test vehicle securely strapped down to the dynamometer, at standstill, 

and no changes made to the vehicle's control architecture, the test driver was instructed to gradually 

accelerate from 0-70mph (~113km/h). Once the vehicle had reached a speed of 70mph, the driver 

was instructed to fully release the accelerator pedal and let the vehicle coast-down until a vehicle 

speed of 0mph was achieved. Lastly, the test vehicle was allowed to rest at standstill until the P3 
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motor temperature had cooled to approximately 42  ְ  ְ °C, ensuring that temperature variation 

would not have any significant impact on test results. The drive cycle graph is shown below. 

 

Figure 26: Drive Cycle Used for Regenerative Braking Test 

 

This initial test run was used as a baseline to which all other subsequent test runs would be 

measured against. The test procedure detailed above was conducted nine times in immediate 

succession, under the same testing environment conditions. Prior to the start of each test run, 

various regenerative control parameters, such as maximum regenerative torque applied, were 

altered. This ultimately simulated various braking rates representing different types of drivers. The 

following metrics were actively monitored throughout the course of testing and used to determine 

in which direction parameters would be tuned during the subsequent test-run: 

1. Net energy consumed 

2. Net SOC gain 

3. Peak regenerative current  

4. Battery charge current buffer consumption 

5. Coast down duration 

6. Motor temperature 

7. Motor speed 
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Regenerative Braking Results 

The results for all nine regenerative braking cycles are described in the table below. The charge 

gained was calculated by integrating the net battery current for the duration of each braking event. 

The temperature change in the P3 motor was calculated by taking the difference in temperatures 

from when the driver let go of the pedal to when the vehicle came to a stop.  

Table 5: Calculated Results from Nine Regenerative Braking Events 

Event # Max Regen 

Torque (Nm) 

Stopping 

Rate (mph/s) 

Charge Gained 

(A-hrs) 

SOC Gain 

(%) 

ΔT P3 

Motor (°C) 

1 0 0.593 0 0 -13.3 

2 160 1.621 0.576 1.00 9.8 

3 280 2.304 0.638 1.11 17.6 

4 340 2.306 0.586 1.01 18.7 

5 190 1.977 0.630 1.09 14.6 

6 190 2.071 0.637 1.10 15.7 

7 190 2.229 0.638 1.11 15.7 

8 120 1.129 0.514 0.89 0 

9 210 2.702 0.643 1.11 14.8 

 

The maximum regenerative torque applicable was varied between runs, as well as how this torque 

would taper with vehicle speed. The figure below shows how the torque command was tapered 

with speed for each run. The shape of this curve was also varied as a control parameter.  
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Figure 27: Regenerative Braking Profile Curves 

 

Events 1-4 were conducted using the base regenerative braking curve while varying the maximum 

regenerative torque. In general, increasing the maximum regenerative torque command decreased 

the stopping time, increased the battery charge recovery, and increased the change in motor 

temperature. Significant wheel slip occurred in the run using 340 Nm of torque, so it did not follow 

this trend. Events 5-7 were conducted using the same maximum regenerative torque while varying 

the shape of the regenerative braking curve. It is shown that changing the shape of the regenerative 

braking curve did not have as much of an effect on the stopping time, SOC gain, or P3 motor 

temperature as did changing the maximum regenerative torque. Lastly, events 8 and 9 were 

conducted using different maximum torques and curve shapes. 

The P3 motor current and temperature during the test can be found in Appendix B. It is important 

to note that events 3-7 all had a stopping time of around 30 seconds. This represents all drivers 

who have a similar stopping rate (~2.0mph/s deceleration). In other words, they have the same 

braking behaviour.  Therefore, the results discovered via the regenerative braking test above are 

used to find the best parameters for the tested driving behaviour class (Eco-cautious drivers). 

Additionally, this test can be repeated to find parameters for each class of driver behaviour.  
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8.3 Acceleration Testing  

Similar to the regenerative braking test described above, acceleration is a characteristic directly 

related to a driver’s behaviour. Aggressive drivers who push on the pedal harder will accelerate 

faster, whereas eco-cautious drivers will take longer to reach their desired traveling speed. Due to 

the complex architecture of the vehicle, the rate at which it accelerates may differ greatly 

depending on which mode the vehicle is operating in. If they know the rate of acceleration and 

how the driver behaves during an acceleration event, the controls can predict the best mode for the 

vehicle.  

The following test aims to compare acceleration performance between two different situations: 

one where the vehicle begins in P3 only electric mode and transitions into performance mode (full 

drive) due to requested torque and another where the vehicle is already in full drive. 

Acceleration Test Setup 

The following test was taken on a closed course test track operated by the city of Waterloo. This 

was to ensure a controlled environment with similar conditions for both accelerations events. Each 

event consisted of the driver reaching 20 km/h and then applying wide-open throttle (accelerator 

pedal 100% pressed) for 5 seconds.  

Acceleration Test Results 

The following graph shows the vehicle speed versus time. The dotted line is the acceleration event 

when the vehicle is already in full drive and the solid black line is the vehicle starting in P3 only 

electric mode and eventually transitioning into full drive. The transition occurs around the four-

second mark when the graph changes from green to red. 
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Figure 28: Vehicle Speed Trace during Wide Open Throttle Acceleration Test 

 

By observing the results from the acceleration testing experiment, there are two areas of interest 

as described and shown in the figures below.  

1. The Aggressive Driver – If the driver’s acceleration behaviour exceeds the profile of the 

acceleration test with a mode transition, then starting the UWAFT PHEV in full drive mode 

will benefit the driver when such acceleration event is imminent. Correctly identifying this 

increases the driveability of the UWAFT PHEV as the driver will not experience the lag 

required to set the vehicle into the correct operating mode able to meet the torque demands. 

 

Figure 29: Vehicle Speed Trace during Wide Open Throttle Acceleration Test 

(Aggressive Drive Trace Marked) 

 

2. The Eco-Cautious Driver – If the driver’s acceleration behaviour falls below the profile 

of the acceleration test with a mode transition, then the UWAFT PHEV should stay in P3-

only electric mode. Correctly identifying this increases the efficiency and decreases the 

emissions of the UWAFT PHEV. Having the vehicle in the correct mode eliminates having 
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the engine on unnecessarily and allows the UWAFT PHEV to operate in the most efficient 

mode. 

 

 

Figure 30: Vehicle Speed Trace during Wide Open Throttle Acceleration Test 

(Eco-Cautious Drive Trace Marker) 

 

8.4 ADAS Algorithm Performance 

The predictive powertrain management strategy based on driver behaviour recognition discussed 

throughout this report has many areas in which it may be enhanced. One of those areas, for 

example, is the integration of situational information. Depending on the situation the driver is in, 

it may cause them to behave differently then normal. An example of this is when a driver gets cut 

off by another vehicle, causing them to brake aggressively, although this doesn’t necessarily mean 

they always brake aggressively. Therefore, including additional pieces of information from ADAS 

or GPS can help to improve the driver behaviour recognition. The following section discusses the 

performance of the UWAFT integrated ADAS sensors.  

The test connected was a vehicle approach test from 100 meters away. A stationary vehicle was 

placed in front of the UWAFT PHEV, which had all of the ADAS sensors integrated, and the 

driver slowly approached the rear of the stopped vehicle. Pylons were set up every 5 metres to act 

as the ground truth, allowing the range measurement error to be calculated. It should be noted that 

the vehicle approach test was conducted during the presence of rain, which affected the 

performance of the sensors.  
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Figure 31: ADAS Vehicle Approach Test 

Object Detection Performance 

The UWAFT PHEV’s object detection algorithm managed to detect the vehicle in the correct 

location for the majority of the test. The first detection occurred around 50 meters and it was able 

to track the vehicle in the frame until the end of the test. The system has a 96% true positive and 

4% false positive rate. However, when the vehicle is too small in the video frame, the algorithm 

has a high false negative rate while maintaining a high true negative rate. For the intended range 

of less than 50 meters the algorithm performs well. It is expected that the rates drop when more 

cars are involved.  

Table 6: ADAS Object Detection Accuracy Statistics 

Statistic Percent Detected 

Avg. True Positive Rate 96% 

Avg. True Negative Rate 81% 

Avg. False Positive Rate 4% 

Avg. False Negative Rate 19% 
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Range Measurement Performance 

While approaching the stopped vehicle, the LiDAR sensor was recording distance measurements 

of the point of interest determined by the object detection algorithm. The figure below shows that 

the error of the range measurement decreased as the UWAFT PHEV approached the stopped 

vehicle. One explanation for this may be the presence of rain and the decrease in droplets between 

the target vehicle and the LiDAR sensor. Additionally, due to the angled nature of the 16 lasers in 

the LiDAR sensor itself, more lasers were collecting information the closer the UWAFT PHEV 

got to the target vehicle, allowing the averaged distance to be more accurate.  

 

Figure 32: ADAS Range Detection Performance Error 

 

 In addition to range measurements, the range rate was also calculated. There is a lot of random 

error present in the range rate error showed below. This can also be explained due to the presence 

of rain interfering with the LiDAR’s emitted lasers. However, the time measurement technique 

used was also flawed in this test because processing latencies were not taken into account which 

would lead to an increase in error. 
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Figure 33: ADAS Range Rate Performance Error 
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CHAPTER 9 

9.0 Conclusions  

9.1 Driver Behaviour Recognition Experiment 

With the use of the UWAFT PHEV vehicle model developed in Simulink, 288 hours of labelled 

driving data was simulated. This data represented three different classes of drivers, eco-cautious, 

normal, and aggressive. The CAN signals that were recorded from the model and used for driver 

behaviour recognition were accelerator pedal position, brake pedal position, and vehicle speed. 

Through the process of feature extraction on the logged CAN data, 15 unique features were 

processed to represent a single driver. Each feature alone was unable to classify an unknown driver 

behaviour. However, after preforming linear discriminant analysis class separation was more 

noticeable when projecting the data onto the first two linear discriminants.  

Support vector machines were able to take the processed data and classify them into three classes, 

eco-cautious, normal, or aggressive, with an average accuracy of 81.53%. Some degree of 

misclassification was expected, as there was crossover between classes; for example, lower-end 

aggressive drivers and high-end normal drivers. Better representing the classification, fuzzy logic 

was successfully integrated to assign drivers an aggression value between 0 and 100. Instead of a 

point near the support vector being classified as either one class or the other, it was given an 

aggression value through fuzzy logic. The membership functions used for the fuzzy logic were 

based on the distance the point was to each support vector. This proved beneficial as it helped 

distinguish between data near the support vector and data further away, also reducing the error of 

misclassified data near a support vector.  

Ultimately, the driver behaviour recognition implemented was successful. As shown, when applied 

to real world driving data it correctly provided feedback to identify the driver’s aggression level.  
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9.2 Predictive Controls Strategy Experiments 

Two scenarios were explored to investigate how a predictive controls strategy could be 

implemented if the vehicle knew the driver’s behaviour. One was an acceleration event where the 

UWAFT PHEV was in different operating modes, and the other was a braking event using different 

regenerative braking parameters.  

By observing the results from the acceleration testing experiment, two conclusions can be drawn 

as described below: 

1. If the driver’s acceleration behaviour exceeds the profile of the acceleration test with a 

mode transition, then starting the UWAFT PHEV in full drive mode will benefit the driver 

when such acceleration event is imminent. Correctly identifying this increases the 

driveability of the UWAFT PHEV as the driver won’t experience the lag required to set 

the vehicle into the correct operating mode able to meet the torque demands. 

2. If the driver’s acceleration behaviour falls below the profile of the acceleration test with a 

mode transition, then the UWAFT PHEV should stay in P3-only electric mode. Correctly 

identifying this increases the efficiency and decreases the emissions of the UWAFT PHEV. 

Having the vehicle in the correct mode eliminates having the engine on unnecessarily and 

allows the UWAFT PHEV to operate in the most efficient mode. 

By observing the results from the regenerative braking test it can be seen that properly tuning the 

regenerative braking parameters to match a driver’s braking style results in a gain of as much as 

0.1% SOC. Although relatively small, the gain in SOC is per braking event, which can add up over 

the course of an entire trip. This can also be represented as 0.003% SOC gain per second of 

braking.  
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9.3 ADAS Performance Experiment 

The integrated LiDAR and camera sensors performed successfully in meeting the competition 

requirements for the ADAS swim-lane. The camera was able to correctly and accurately detect 

vehicles in the driver’s lane and neighbouring lanes, while the LiDAR determined the distance.  

The effectiveness of the system will depend on the effective range of the sensors. The system can 

only react to what it is able to detect and within the stopping distance of the Camaro. The range of 

the ADAS sensors is susceptible to environmental and operating conditions of the vehicle. Due to 

the use of lasers in the LiDAR system, environmental conditions such as rain and snow will reduce 

the range of the system as it adds noise. In turn, this limits the maximum effective speed that the 

UWAFT PHEV’s ADAS sensors can operate at because, the faster the vehicle is moving, the 

longer the required stopping distance is.  

Similarly, the forward-facing camera is susceptible to low light conditions. Nighttime driving will 

experience reduced range because of the darkening of the image that is used to detect vehicles. 

This is partially mitigated by the vehicle’s headlights, but the system will still have increased 

difficulty and reduced confidence in detecting vehicles in the adjacent lanes.  

Ultimately, UWAFT PHEV made good progress towards a viable ADAS solution. The algorithms 

proved successful for their intended purpose and with additional refinement, they can be depended 

upon for detecting dangerous situations.  

9.4 Innovation Project 

The innovation project proposed and investigated throughout this thesis has a lot of potential to 

change the way the hybrid supervisory controller makes decisions. By utilizing machine 

intelligence techniques over time, the UWAFT PHEV has proven it can learn how the driver 

behaves. With these additional pieces of information the controls system becomes more advanced. 

By knowing the driver will accelerate aggressively, the UWAFT PHEV can primitively enter a 

vehicle mode that will be able to provide the torque requested. This reduces the lag the driver 

would normally experience, increasing the driveability of the vehicle. A few of these scenarios are 

explored in the predictive controls strategy experiments section above. 
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Ultimately, this brought a unique feature to the UWAFT PHEV that is desired by the target market. 

The aim to reach tech savvy individuals pushed UWAFT to implement state-of-the-art technology 

allowing these features to be first to the market for their customers. Additionally, the benefits of 

the hybrid supervisory controller knowing the driver’s behaviour creates a more environmentally 

friendly vehicle. This supports the subconscious environmentalist who is drawn to a hybrid vehicle 

in the first place. Lastly, the increase in driveability helps the Camaro to maintain its iconic role 

as a high performance car. 
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CHAPTER 10 

10.0 Discussions and Future Work 

The predictive powertrain management controls strategy based on driver behaviour explored 

throughout this paper is still very much in the early stages of development. There are several 

features that still need refinement to advance this project to a point where it can be deployed into 

a vehicle. Along with need for refinement, there are some areas in which expanding this project 

could improve its overall impact. Those areas include, incorporating the ADAS data, GPS data, 

and developing a Bayesian network.  

10.1 Recommendations for Future Work 

Due to the strict timeline of the competition, only 6 months of development was progressed; 

however, a strong foundation was built on which this project could continue for the next AVTC 

series UWAFT participates in. The recommendations for future work are discussed in the 

following section. 

Continued Vehicle Testing 

Although only one acceleration event and one regenerative braking calibration were tested in this 

report it is believed that it can be easily expanded to a wide range of scenarios. Continuing to do 

vehicle testing of the aforementioned experiments with different goals should be a priority. The 

following experiments should be repeated with the described goals in mind: 

1. Acceleration Testing – Repeat the experiment conducted in this report for multiple runs 

at various starting speeds and acceleration rates in different vehicle modes. This will 

ultimately create a 3D map of acceleration profiles in different modes, just as the 

experiment in this report showed the best mode for a wide open throttle event given the 

predicted drive profile (driver’s behaviour). The 3D map would be an extension of this 
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capturing not only wide open throttle events but as many different acceleration types as 

possible. This would increase the effectiveness of the predictive powertrain management 

controls strategy as each scenario tested would result in a scenario where the driver’s 

behaviour could factor into the operating mode decision.  

 

2. Regenerative Braking – Similarly, repeating the regenerative braking test conducted in 

the report to encompass additional driving styles would result in improved effectiveness of 

the predictive powertrain management. Due to time restrictions on the chassis 

dynamometer, optimized regenerative braking parameters were determined for only one 

driving style. To see the benefits of utilizing a driver’s behaviour to change parameters, 

optimal parameters need to be found for multiple driving styles. This way, once the driver’s 

behaviour is detected correctly, the vehicle can change to the parameters that best suit them. 

Behaviour Recognition Refinement 

The methodology described in the report to classify drivers based on their driving behaviour is 

sound and should be continued to be used in further development. However, the training process 

needs to be refined. While creating labelled data with the help of the UWAFT PHEV powertrain 

model proved viable, it is not the most representative of a true driver. Incorporating more data 

collected via the OBD port data loggers from vehicles driving around roads in real traffic is a more 

realistic approach. As opposed to following a drive cycle, drivers are more susceptible to sudden 

stops, aggressive passing, and lateral acceleration in the presence of traffic. These are all actions 

that help define a driver’s behaviour. Thus, refining the training algorithm to use data that is more 

realistic may improve the results found.  

Additional Input Signals 

As discussed previously, using data that is more realistic can improve the results and classification 

accuracy for a driver’s behaviour. In addition to this, using more input signals for the algorithm 

will increase the effectiveness of the overall project. As discussed, sudden stops, aggressive 

passing and later accelerations all help to define a driver’s behaviour, but this depends on the 

scenario of the driver. Depending on situational or environmental impacts, a driver may need to 
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come to a sudden stop without displaying habits of aggressive driving. An example of this may be 

an unforeseen object entering the path of the vehicle. Many scenarios like this can introduce errors 

into the recognition algorithm. Taking the average over the course of a certain timeframe will help 

to dilute any of the bias data. However, the inclusion of ADAS and GPS data would help to 

determine environmental and situational impacts to a driver’s behaviour. This adds the benefit of 

predicting a driver’s behaviour given a certain repeated scenario.  

Bayesian Network Development 

One missing factor required for the implementation of the predictive powertrain management 

strategy that would greatly increase its effectiveness is the development of a Bayesian network. A 

Bayesian network is a probabilistic graphical model that can be used as the final piece to determine 

the actions taken by the controls. In other words, given the following inputs – situational data (ex. 

ADAS), environmental data (ex. GPS), vehicle data (ex. CAN), and driver behaviour data – what 

is the probability that the driver will accelerate? Once this probability is determined, if it exceeds 

a defined threshold then the controls can select an operating mode in which the UWAFT PHEV is 

ready to accommodate the coming requested torque needs. 

Gamification 

Ultimately, the best way to reduce emissions and energy consumption is to change a driver’s 

behaviour. One potential way to do this is through the gamification of the recognition software. 

Having a leaderboard and reward system showing the top eco-drivers in your area can unleash 

people’s competitive sides and push them to drive more eco-cautiously. Knowing the way you’re 

driving affects your fuel economy and seeing the comparison to others also brings light to the 

situation allowing you to make improvements. This may also result in a less complex need to have 

a predictive powertrain management strategy if the recognition software is focused on changing 

the way people drive rather than adapting to it.  
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ADAS Potential Issues 

Although the implemented ADAS was successful, it is important to keep in mind potential issues 

identified by the team. Minimal in-vehicle testing was completed due to lack of dedicated ADAS 

work time, thus there is a possibility of these issues arising. 

1. Transmitting data over CAN – Ensure that data being sent from the Jetson TX2 is without 

errors and has the correct identifications number. Sending the data to the wrong receiver 

could be catastrophic. There is also a need to make sure the Jetson TX2 receives the correct 

data to perform relative speed calculations. At the same time, UWAFT must be cautious 

not to overload the CAN bus. Otherwise, the car will not be able to function.  

 

2. Latency – Ensure latency of the system is kept to a minimum to maintain real-time 

reliability. Evaluate performance by benchmarking the ADAS system’s time from 

detection to alerting. Additionally, for the system to be reliable, the system needs to notify 

the driver when it is not functional. When the system is not confident in performing in 

adverse conditions such as low light or heavy precipitation, the driver feedback system 

needs to alert the driver for attention. Detecting these conditions can be challenging but 

can be accomplished by analyzing noise in LiDAR signals and the overall light levels in 

the forward-facing camera. 
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APPENDIX A 

12.0 Vehicle Technical Specifications 

Table 7: UWAFT Vehicle Technical Specifications 

Specification UWAFT’s Target Simulation Results 

Acceleration, IVM-60mph [s] 5.82 5.6 

Acceleration, 50-70mph (Passing) [s] 6.6 3.2 

Braking, 60-0mph [ft] 121.4 121 

Acceleration Events Torque Split 

(Fr/Rr) 

0/100 0/100 

Lateral Acceleration, 300ft. Skid Pad 

[G] 

0.84 N/A 

Double Lane Change [mph] 54.4 N/A 

Highway Grade ability, @60 mph for 

20 mins 

6% 7% 

Cargo Capacity [ft3 ] 2.4 2.4 

Passenger Capacity 4 4 

Vehicle Mass [kg] N/A N/A 

Curb Mass [kg greater than stock] 275 160 

Starting Time [s] 5 N/A 

Total Vehicle Range [km] 301 303.79 

CD Mode Range [km] 36 53.79 

CD Mode Total Energy Consumption 

[Wh/km] 

267.8 223.44 

CS Mode Fuel Consumption [mpgge] 30 42.89 

UF-Weighted Fuel Energy 

Consumption [Wh/km] 

736.6 232.71 

UF-Weighted AC Electric Energy 

Consumption [Wh/km] 

23.8 116.87 

UF-Weighted Total Energy 

Consumption [Wh/km] 

758 349.59 
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UF-Weighted WTW Petroleum Energy 

Use [Wh PE/km] 

621  67.92  

UF-Weighted WTW Greenhouse Gas 

Emissions [g GHG/km] 

222.6 113.93 

UF-Weighted Criteria Emissions [g/km] 2.64 0.402 
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APPENDIX B 

13.0 Regenerative Braking Test Results 

 

Figure 34: P3 Motor Temperature during Nine Regenerative Braking Tests 
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Figure 35: P3 Motor Current during Nine Regenerative Braking Tests
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APPENDIX C 

14.0 Driver Behaviour Classification Example 

Below is the fuzzy logic representation of the classification of an aggressive driver after 

preforming LDA and SVM. The aggression value given to this driver was 85.9% and the driver 

was classified via SVM as aggressive. 

 

Figure 36: Classification of One Driver Using Aggression Membership Function 

 

Below is another classification of an aggressive driver; however, in the case above the SVM 

classifier initially misclassified the driver’s behaviour. The aggression value assigned to the driver 

is 74.57%, meaning although it was incorrectly classified, with the use of fuzzy logic the 

aggression value still accurately represents the driver’s behaviour and provides more information 

as opposed to only identifying which class it belongs to.  
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Figure 37: Misclassification of One Driver Using Aggression Membership Function 

 

 


