
Bidirectional Learning in Recurrent
Neural Networks Using Equilibrium

Propagation

by

Ahmed Faraz Khan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2018

c© Ahmed Faraz Khan 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/161400953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Neurobiologically-plausible learning algorithms for recurrent neural networks that can
perform supervised learning are a neglected area of study. Equilibrium propagation is a
recent synthesis of several ideas in biological and artificial neural network research that
uses a continuous-time, energy-based neural model with a local learning rule. However,
despite dealing with recurrent networks, equilibrium propagation has only been applied
to discriminative categorization tasks. This thesis generalizes equilibrium propagation to
bidirectional learning with asymmetric weights. Simultaneously learning the discrimina-
tive as well as generative transformations for a set of data points and their corresponding
category labels, bidirectional equilibrium propagation utilizes recurrence and weight asym-
metry to share related but non-identical representations within the network. Experiments
on an artificial dataset demonstrate the ability to learn both transformations, as well as
the ability for asymmetric-weight networks to generalize their discriminative training to
the untrained generative task.

iii

Acknowledgements

Firstly, I would like to express my gratitude for my supervisor, Prof. Jeff Orchard, for
his continuous support and for guiding this thesis in the right direction, and my labmate
Ehsan Ganjidoost, who has witnessed my spiral into a severe caffeine dependency over the
past 2 years. I also appreciate my thesis readers, Profs. Justin Wan and Yaoliang Yu, for
taking the time to review this work.

I gratefully acknowledge the support of NVIDIA Corporation with the donation of the
Titan Xp GPU used for this research.

Finally, I would like to thank my family and friends for their support and encourage-
ment, and the fine establishment of Burrito Boyz at 255 King Street North, Waterloo, for
fueling the writing of this thesis.

iv

Table of Contents

List of Figures vii

1 Introduction 1

2 Background 6

2.1 Biological Plausibility . 6

2.2 Backpropagation and Weight Symmetry 8

2.3 Local Learning Rules . 12

2.4 Error Functions and Energy-Based Models 13

2.5 Contrastive Learning . 17

2.6 Equilibrium Propagation . 19

2.7 Timescale and Gradient Dynamics . 22

2.8 Generative Models and Recurrence . 23

3 Bidirectional Equilibrium Propagation 26

3.1 Network Architecture . 26

3.1.1 Energy Dynamics . 27

3.2 Discretized Simulation . 28

3.3 Dataset . 30

3.3.1 Learning Algorithm . 31

v

4 Results and Discussion 33

4.1 Results . 33

4.1.1 Bidirectional Equilibrium Propagation 34

4.1.2 Restricted Bidirectional Equilibrium Propagation 34

4.2 Biological Plausibility . 37

5 Conclusion 40

5.1 Future Work . 41

5.1.1 Bidirectional Learning . 41

5.1.2 Finite Input Clamping . 41

5.1.3 Time-Varying Environment . 42

5.1.4 Biological Realism . 42

5.1.5 Deep Networks . 43

References 44

vi

List of Figures

1.1 Artificial neuron with inputs . 2

2.1 Feedback Alignment architectures . 10

2.2 A Hopfield network . 15

2.3 A Restricted Boltzmann Machine . 17

2.4 Impulse response of recurrent architectures 25

3.1 Bidirectional Equilibrium Propagation and its directed modes 29

3.2 Example dataset class archetypes . 32

4.1 Bidirectional learning over 20 epochs, with tied weights 35

4.2 Bidirectional learning over 20 epochs, with asymmetric weights 36

4.3 Restricted bidirectional learning over 20 epochs, with asymmetric weights . 38

vii

Chapter 1

Introduction

Artificial neural networks (ANNs) are a computing paradigm roughly based on the dis-
tributed network of neurons in the brain, with applications in machine learning. Typically,
neurons are treated as nearly identical, applying a simple non-linear function to the sum
of their inputs and passing the resulting signal to other neurons. While each neuron is
simple, collections of such units are able to learn and implement complex transformations.

Mathematically, a neural network is a graph of homogeneous non-linear units, with
directed and weighted synaptic connections between units as shown in Figure 1.1. These
networks are typically, but not necessarily, organized into input and output layers, with
one or more “hidden layers” sandwiched in between. Each unit (or neuron) applies a
non-linear activation function to the weighted sum of its pre-synaptic inputs, and then
outputs this signal (or “activity”) to its post-synpatic neurons. Architecturally, ANNs can
be characterized as either feedforward (where signals propagate from source to sink along
a directed acyclic graph) or recurrent (where lateral connections or feedback loops of some
sort exist).

Neural networks are turned into useful forms by “learning” desired input-output trans-
formations via supervised methods, or by unsupervised extraction of features from inputs
without target outputs. In either case, such transformations are parametrized by connec-
tion weights between neurons. Thus, learning constitutes modifying synaptic weights for
a desired change in input-response. Since neural networks are typically high-dimensional
systems, with each neuron influencing the eventual output, updating weights to minimize
output error is a non-trivial multivariate optimization problem. The process of determin-
ing weight updates for some data is known as the credit assignment problem of neural
networks.

1

Figure 1.1: An artificial neuron with inputs and a bias, implementing y = f(
∑

iwixi + b)
for weights wi, bias b, pre-synaptic input neurons xi and post-synaptic neuron y with
activation function f .

A feedforward network can be organized such that each neuron belongs to exactly one
hierarchical layer. Neural activity begins at the input layer and experiences a series of
non-linear transformations. Modifying a synaptic weight affects only higher layers, leading
to a simpler optimization problem than recurrent neural networks. Thus, solutions to the
feedforward credit assignment exist, primarily based on the backpropagation algorithm
[25] using the chain rule of calculus on the gradient of output error. These update rules
allow feedforward networks to generalize a variety of input-output transformations from
training data examples. It has been shown that a feedforward network with at least one
hidden layer, and a continuous, non-constant and bounded activation function is able to
learn an arbitrary input-output function, given enough hidden layer units between input
and output layers [20].

However, recurrent neural networks have proven more difficult to tame, due to the
complexity of the credit assignment problem in the presence of cycles. In a feedforward
network, the activities of neurons {xl+1

i } in layer l + 1 are conditionally independent of
neurons {xl−1i } in layer l− 1, given the activities {xli}. In general, such a claim cannot be
made for a recurrent neural network. The consequences of changes to connection weights
are not straightforward to predict, whereas backpropagation guarantees a reduction in out-
put error given a small enough update step size. Recurrent connections open the Pandora’s
box of dynamical systems behaviour, including divergent activity and sensitivity to initial
states.

Biologically, however, connections between brain areas are often reciprocal, and the

2

resulting network effects of this recurrent connectivity can influence function [12]. Phe-
nomena such as working memory are difficult to explain without recurrent models [8].
Similarly, recurrent neural networks are better suited to certain (artificial) applications
involving dynamic memory, such as audio/speech, language/text, and other forms of time
series data. Thus, a convincing biological neural network model must handle recurrent
connections. While some efforts have been made to adapt backpropagation to recurrent
neural networks [44], these methods tend to not scale well as RNNs are temporally un-
furled. In addition, from the perspective of neuroscience, backpropagation is considered
biologically implausible (Section 2.2).

While neural learning algorithms for recurrent networks do exist, they are generally a
less satisfactorily solved problem. Backpropagation-through-time, a variant applied to an
unrolled recurrent network, suffers from the compromise of temporal truncation, and is
only really applicable to a finite impulse network. Additionally, backpropagation-through-
time is particularly susceptible to vanishing and exploding gradients (discussed in Sec 2.2)
[33]. Other algorithms generally show limited consideration of biological plausibility (with
the exception of Hebbian-like rules discussed in Section 2.3). Contrastive methods, which
are the most promising basis for the models considered in this thesis, lack a guarantee of
convergence [42].

Research in the propagation of activities through a network of simple neuronal units
comes from two fields with slightly different foci. Machine learning is primarily concerned
about statistical performance in terms of modeling training data, while computational
neuroscience is interested in neural networks with the additional constraint that they are
consistent with biological observations.

To contextualize the neuroscientific interest in artificial neural networks and the de-
sired properties of such models, it is useful to consider the level of modeling abstraction.
Neurobiological models of a process, such as control of a limb, are often described in their
scope in terms of Marr’s levels of analysis [6].

• Computational models state the problem to be solved, without constraining the
method of their solution. This may be a kinematic model of the limb that the
motor cortex articulates, with desired joint states or trajectories.

• Algorithmic models describe how problems may be solved, agnostic to how this may
be realized. This may be a general description of the type of error-feedback used to
generate motor commands.

• Implementational models describe the exact mechanism of the solution. At the ex-
treme end, this would be a neuromorphic spiking neural network, whose architecture

3

and hyperparameters are informed by biology, that implements the algorithmic ob-
jective with close correspondence to biological data.

For our purposes, each level is built on its preceding one. In the context of a neuro-
biological process, implementational models represent a more “complete” understanding
of a neural process, and are thus more difficult to achieve in synergy with an algorithmic
solution to a computational task. That is, we do not consider a detailed, biologically-
realistic neuron model, with sophisticated simulations of neuronal electrical properties, in
itself to be an implementational level model because it does not implement any algorithmic
solution to a computational problem faced by a neurobiological system. Likewise, we do
not consider neuroscientific, experimentally-derived learning rules such as spike timing-
dependent plasticity (STDP) [40] in isolation, but only in the context of network-level task
performance.

However, if the difficult task of integrating this low-level model with a higher level
task and algorithm is achieved, it would classify as an implementational level model. In
addition, particular models may fall between levels on this spectrum. Typical neural
networks models lie between algorithmic and implementational levels, being more ”neural-
like” than an algorithmic description, but falling short of an implementational replica.

Typically, the network-level research is dominated by artificial neural networks and
machine learning. One learning framework that has attempted to bridge the gap between
single-neuron models and networks, as well as pushing towards an implementational Marr
levels, is equilibrium propagation (EP) [37]. Equilibrium propagation is an artificial neural
network model, but one that is intended to incorporate more biologically realistic neu-
ron models, network architectures and synaptic plasticity (i.e. weight updates) without
sacrificing high-level task performance.

Equilibrium propagation uses only local computations, with signals physically accessible
to a neuron, with a general Hebbian weight update algorithm applicable to recurrent
networks. It has been shown that equilibrium propagation allows neural networks with 1-3
hidden layers to learn to classify images of the benchmark MNIST dataset of digits with
test accuracies approaching the state of the art [37].

This thesis introduces bidirectional equilibrium propagation (BEP), which extends equi-
librium propagation from the classification task to the generative one. While the classifica-
tion task involves mapping a D-dimensional input vector x to its correct class y by learning
the discriminative model distribution P (Y |X = x), the generative task performs the com-
plimentary action of producing a sample given the class by learning the joint probability
distribution P (X, Y) in the same network as well.

4

Conventionally, in neuroscience, the sensitivity of neurons to different inputs is char-
acterized by their receptive fields, which is the region of the input data and the features
in that region that most excite a neuron. Similarly, feedforward artificial networks, such
as convolutional networks [47], interpret the functional roles of neurons, parametrized by
their preceding connection weights, as filters. For example, in a visual neural network,
a neuron in a certain layer that has high values when two lines intersect at a particular
spatial location is interpreted as a corner detector filter.

While this is a useful characterization in purely feedforward networks, it is an incom-
plete description of a neuron’s role in a network with recurrent connections. In such a case,
the network becomes a dynamical system, and is perhaps better described in terms of at-
tractor states of neural activity rather than a stacked hierarchy of static neural responses.
Furthermore, real biological neurons are involved in multiple tasks. Sensory processing,
for example, is really an active process, receiving feedback from higher area neurons which
guides stimulus selection and attention [39]. Even early-stage auditory cortex neurons re-
spond to the same stimuli differently, depending on the behavioural context [11]. Friston
and Price [10] also argue that what the activity of a neuron represents is dynamic (i.e.
time-dependent) and contextual (i.e. input-dependent).

The bidirectional equilibrium propagation model in this thesis is continuous in time.
Temporal dynamics occur on two time scales: the fast, transient energy-minimization
dynamics of neuronal states, and the slower settling of the network into a steady state
equilibrium. Additionally, a distinction must be made between both of these scales of
activity dynamics and the synaptic plasticity that occurs due to the contrastive equilibrium
propagation learning rule (described in Section 2.6).

Bidirectional equilibrium propagation attempts to reproduce a type of task multiplic-
ity: invertible representations. By learning the weights that satisfy both a bottom-up,
discriminative task, as well as a top-down, generative task, neurons are involved in distinct
computations that share the same parameters (i.e. connection weights), but a different
network energy.

5

Chapter 2

Background

Bidirectional equilibrium propagation is composite model synthesizing several ideas from
neuroscience and artificial neural networks. This section summarizes the influences of the
model, from the research objective of biological plausibility to bidirectional and asymmetric
weights, energy-based learning, contrastive methods and generative models.

2.1 Biological Plausibility

The motivation to study biologically-plausible algorithms derives in part from potential
computation modeling contributions to neuroscience, as well as from the potential of ar-
chitectural or algorithmic contributions to artificial neural networks. While artificial neural
networks were first inspired by biology, the basic neuron model used has not changed much
since the early perceptron [35] in the 1950s. Meanwhile, several decades of experimental
research on the complex mechanisms of biological neural signal processing has been ne-
glected. A biologically-realistic neural network model that is also functionally capable of
machine learning task performance would thus serve both fields.

Broadly, the biological plausibility of a network model is evaluated by its adherence
to known neurobiological principles and observations. In practical terms, this does not
necessarily mean perfect fidelity, and some criteria are more critical to biological realism
than others. For example, while biological neurons transmit action potentials (rapid voltage
spikes) when their cell membrane potential exceeds a certain threshold, most artificial
models transmit continuously-valued activities. These activities are interpreted as some
running average of the spiking rate, and so these abstractions are called rate neurons.

6

While many neuromorphic networks do use spiking neurons, particularly to try to learn
and use possible representations encoded in the relative timings of spikes [22], and the goal
of biologically plausible learning rules is to handle the spiking neuron case, the rate neuron
approximation is often forgiven. However, to claim that a group of neurons implements
a learning algorithm that computes the product of two distant, non-adjacent neurons’
activations would be less believable, as this global information is not available in a biological
setting.

As a guideline, O’Reilly lists 6 interrelated criteria for biologically-plausible cortical
models, divided into three principles [32]:

• biological realism: models should not violate known biological constraints (e.g.
weight-copying)

• architectures reflect the structure and functional organization of biological networks

– distributed representations : encoding information among a population of simple
units, rather than in a centralized memory

– inhibitory competition: allowing only the strongest activations to prevail for
sparse representations (similar to max-pooling in a convolutional neural net-
work)

– bidirectional activation propagation: higher areas influencing lower ones using
recurrence and feedback to resolve ambiguity

• learning is split into task-specific and general environmental components

– error-driven task learning : using supervised learning error signals

– Hebbian model learning : collects correlated environmental stimulus statistics in
an unsupervised way

O’Reilly emphasizes the interactions between these principles, and how each may re-
solve problems introduced by the others. For instance, distributed representations and in-
hibitory competition strike a balance between competition and cooperation, or between a
winner-takes-all level of sparsity and conditionally-independent neuron activities. O’Reilly
argues that approaches that successfully integrate multiple biological principles may be
more robust than, for example, manually added extra parameters to enforce criteria such
as sparsity, namely in the case of bidirectional networks where activity competition can
provide a form of dynamic thresholding to restrain runaway positive feedback.

7

2.2 Backpropagation and Weight Symmetry

Backpropagation is a supervised learning algorithm based on gradient descent on the cost
or error function E [36]. This error function is a function of the state of the output layer
and some target output data. The credit assignment problem is solved by using the chain
rule to assign the “blame” for the output error to each neuron, working backwards from
the output layer. This gives the partial derivative of the error function with respect to the
weight wli,j

∂E

∂wlij
=
∂E

∂aj

∂aj
∂sj

∂sj
∂wij

, (2.1)

where the weighted sum of inputs is s =
∑

k(w
l
kja

l−1
k), and alk is the activity of the kth

neuron of layer l.

This informs the direction of the weight update

∆wlij = −γ ∂E
∂wlij

(2.2)

where the learning rate is γ and wlij is the weight from pre-synaptic neuron i of layer l− 1
to post-synaptic neuron j of layer l.

However, backpropagation faces issues in terms of biological plausibility [41, 4]. Net-
works must operate in distinct forward and backward modes. The latter, during which the
errors are back-propagated, is linear, in contrast to the nonlinear operation of biological
neurons [23]. In addition, evaluating the weight updates during the backpropagation phase
requires computing the derivative of neuronal activation functions at its value during the
forward phase. The existence of a regulatory mechanism that alternates between forward
and backward passes is also contentious [41]. In addition, supervised learning methods in
general face the issue of how neurons may have access to target outputs at all.

Another criticized aspect of backpropagation is the the linear backwards error propa-
gation down the hierarchy as in Equation 2.1. However, biological neurons are non-linear,
making them unlikely to perform this sort of computation.

Perhaps the most common criticism of the biological plausibility of backpropagation is
its requirement of weight symmetry [4, 41]. Evidently, this back-propagating signal uses
the same connection weights as the forward signal. As real biological synapses are unidi-
rectional, this algorithm implies that there would be a separate, parallel network with the
same (but transposed) weights running backwards to communicate weight updates. An

8

update to the feedforward network would require an instantaneous weight update to the
backward network, so that further weight updates are appropriately handled by the back-
propagation chain rule. This copying of weights is considered highly unlikely in biological
substrates due to known physical and biological constraints. Thus, the dilemma posed by
the requirement of the forward and backward networks to share identical weights wlij is
known as the weight-transport problem.

In recent years, however, several works have found that such a parallel network need
not necessarily have identical weights. Lillicrap et al. used random and fixed weights for
the feedback network [28], with comparable task performance with backpropagation. They
note that backpropagation uses the error signal W Te, where W is the (forward) weight
matrix (composed of the elements wij and e is the output error vector. In the backward
network, the forward weights may be substituted by any random weight matrix B and
learning would still occur, as long as the condition on B in Equation 2.3 is met.

eTWBe > 0 (2.3)

Intuitively, this requires that the feedback signals Be and W Te point in the same
direction (i.e. less than 90 degrees apart). Of course, a better alignment results in faster
learning, which can be achieved even with a fixed B by adjusting only W . In a network
with one hidden layer, Lillicrap et al. used standard backpropagation to adjust W , except
for the first layer of connections W0 from the input x, which were adjusted based on the
feedback alignment learning rule,

∆W0 = ηBexT (2.4)

where η is some scalar learning rate.

Similarly, direct feedback alignment (DFA) and indirect feedback alignment (IFA) [31]
achieved good results on the MNIST and CIFAR datasets using the output error projected
back to each layer (depicted in Figure 2.1). It breaks the reciprocal error feedback of both
backpropagation and Lillicrap et al.’s feedback alignment; that is, layers connected in a
forward pass do not necessarily connect backwards in an error pathway. These architectures
present alternatives to the standard feedforward structure that may be worth exploring.

Liao et al. [27] quantified the performance of 6 different levels of weight symmetry in
asymmetric backpropagation, ranging from sign-concordant feedback (where forward and
backward weights shared the same signs for each of their entries, but not magnitudes) to
completely random but fixed feedback. They concluded that the magnitudes of the feed-
back weights do not affect performance too much, but the signs do matter. In fact, random

9

Figure 2.1: Feedback Alignment: Variations of the feedback alignment principle, compared
with the standard backpropagation architecture. Error pathways are on the right of each
diagram.

10

magnitudes with sign-concordance perform comparably to stochastic gradient descent, al-
though some input-normalization is required for such methods to work.

Target propagation [26] takes a different approach. Rather than using the chain rule
to transfer gradients of output error backwards across layers, target propagation assigns
a target activity vector ĥl to each layer l by calculating an “approximate inverse” gl such
that, for all layers l,

fi(gi(hi)) ≈ hi or gi(fi(hi−1)) ≈ hi−1. (2.5)

Given these layer-wise inverses {gi}, target propagation addresses the vanishing gradi-
ent problem, where deep networks with highly non-linear activation functions have back-
propagated gradients that are very small or zero. Target propagation does not enforce the
biologically implausible, linear computation nor symmetric backward weights of backprop-
agation. It does not require evaluation of the operating point of the feedforward activation
function. The weights wlij from pre-synaptic neuron i layer l− 1 to the post-synaptic neu-
ron j in layer l are then updated using stochastic gradient descent on a (local) layer error
function

El(hl, ĥl) = ||hl − ĥl||2 (2.6)

∆wlij = −η∂El(hl, ĥl)

∂wlij
(2.7)

where hl is the actual activity vector of layer l and η is the learning rate.

The target for a preceding i− 1 is given by

ĥi−1 = gi(ĥi). (2.8)

Naturally, the base case of the output layer uses the target ĥL = y (where y is the
target output vector from the training data) is given by

∆wLij = −η∂EL(hL,y)

∂wLij
. (2.9)

Thus, target propagation essentially amounts to learning layer-wise auto-encoders (i.e.
networks that learn a sparse representation of the input in the hidden layer by training
to reconstruct the input at the output layer), so that the backward weight update pass
can be done using local computations only. While it performs comparably to backprop-
trained networks [26], it, like backpropagation, does not address learning in recurrent neural

11

networks. It also trades the issue of weight symmetry for the problem of inverting each
layer.

Backpropagation is the dominant learning algorithm, at least for feedforward neural
networks. It can be extended to unrollable neural networks (whose recurrent cycles can be
removed by temporally expanding the network as depicted in Figure 2.4a). Nevertheless,
research into backpropagation has recently been the field for the study of asymmetric
weights and alternative methods of credit assignment such as target propagation, factors
that appear in bidirectional equilibrium propagation.

2.3 Local Learning Rules

An alternative to backpropagation and reciprocal error pathways is Hebbian learning,
where connections are strengthened by the correlated firing of pre- and post-synaptic neu-
rons (i.e. before and after the connection, or x and y in Equation 2.10, respectively). The
standard Hebb’s rule is typically stated as:

∆wij = ηxixj (2.10)

This unsupervised form of synaptic learning requires no error signal and uses only local
signals: pre- and post-synaptic activity. Consequently, it is often the basis of attempts at
biologically-plausible models, whether in this form or as another, more stable variant (e.g.
BCM rule, Oja’s rule, Sanger’s rule etc.).

Spike-timing-dependent plasticity (STDP) [29] is the dominant spiking variant of Heb-
bian learning. As an empirical model, it uses a window function Q(t) (Equation 2.12) on
the difference between the pre-synaptic spike arrival time tki and the post-synaptic spik-
ing time tlj to determine the potentiation or depression (i.e. strengthening or weakening,
respectively) of a synapse with weight wij between neurons indexed i and j. For N pre-
synaptic spike arrivals and consequently N post-synaptic firing events, the weight update
is determined by

∆wij =
N∑
k=1

N∑
l=1

W (tlj − tki) (2.11)

where the window function is

Q(t) =

A+ exp(−t/τ+) if t > 0

−A− exp(t/τ−) if t < 0

0 if t = 0

. (2.12)

12

The parameters τ+ and τ− are time constants, while A+ and A− are magnitudes that
may have some dependence on wij. The weight update strengthens the synapse if the
pre-synaptic spike precedes the post-synaptic event, and vice versa, with an exponentially
decaying dependence on the time difference. Unlike the naive Hebb’s rule of Equation 2.10,
STDP accounts for causal temporal relationships, whereas the former does not consider
spike timing. For perfectly coincidental spike arrivals and firings, tki − tlj is zero, so there is
no weight change with STDP; one cannot be said to have caused the other. For maximal
weight change, the pre-synaptic arrival should be slightly before the post-synaptic firing
event.

Bengio et al. [4] reinterpret STDP as a machine learning update rule

∆Wij ∝ SiV̇j (2.13)

where Si is the pre-synaptic activity and V̇j is the rate of change of the post-synaptic
voltage potential Vj. They note that STDP corresponds to the stochastic gradient descent
on the objective function that is improved by the change in post-synaptic potential or ∆Vj.

In machine learning terms, rather than biological ones, this weight update can be stated
in terms of the activation function ρ as

δWij ∝ ρ(si)δsj (2.14)

where δWij and δsj are the differentials of the weight Wij and neuronal activity sj, respec-
tively.

This particular variant of Hebbian learning, in a contrastive form, is the basis of weight
updates in equilibrium propagation.

2.4 Error Functions and Energy-Based Models

Supervised learning in a neural network is driven by the optimization of an objective or
error function of the output. A common objective is the minimization of mean squared
error (MSE) of the output layer, compared to a target vector output ~y

min
W

1

N

N∑
j=1

(ŷj − yj)2 , (2.15)

13

where W is the set of all weight matrices and

ŷlj = fl,j

(∑
i

wlija
l−1
i

)
, (2.16)

l indexes the final and output layer, wlij is the connection weight to the jth output neuron
from the ith neuron of its preceding layer, fl,j is the activation of this post-synaptic neuron,
al−1i is the activity of the ith pre-synaptic neuron, yj is the target of the jth output neuron,
and N is the number of output neurons.

Alternatively, minimization of cross-entropy (as in Equation 2.17) between the network
output ŷi and the target yi is also used, particularly for classification tasks.

min
w
− 1

N

N∑
i=1

yi ln ŷi + (1− yi) ln (1− ŷi) (2.17)

However, energy-based models are an alternative learning methodology, where the op-
timization objective is not a function of the output, but rather some scalar “energy” func-
tion of the entire network state. An early example of such models is the Hopfield network,
shown in Figure 2.2 [19]. The dynamics of the network are governed by the Hopfield energy
function of Equation 2.18. The Hopfield energy is

E = −1

2

∑
j,k

wjkajak −
∑
j

xjaj , (2.18)

where aj and ak are the activations (states) of nodes j and k, respectively, and xj is the
jth input bit.

While learning, (e.g. binary string) input patterns are memorized by modifying weights
such that each pattern is a local minimum of the Hopfield energy function. The storage of
such k-bit patterns {xm}, i = 1, . . . , k occurs during training through weight updates with
each xk as input. Following the negative of the energy function gradient gives the weight
update for two connected neurons given M training examples xm, ami and amk

∆wij =
M∑
m=1

(2ami − 1)(2amj − 1), wii = 0,∀i. (2.19)

Consequently, these stored patterns are attractor states of the network. Now, the
network may operate with these learned weights, and any (possibly unlearned) input may

14

Figure 2.2: A Hopfield network with 3 units. The all-to-all connections are symmetric; i.e.
the connection weight wij from neuron i to neuron j is the same as wji from neuron j to
neuron i.

be applied to the nodes. The states of the nodes will then ideally converge to the learned
pattern closest (in Hamming distance) to the input pattern.

Convergence to a (local) minimum is guaranteed, although the “correctness” of this
attractor state is not. Given an n-bit input string x, a Hopfield network will converge to
a stored x̂ or its additive inverse −x̂ such that the distance between x and x̂ is minimal.
Alternatively, the network may also converge to a spurious minimum, which is a non-
trained pattern that is a linear combination of an odd number trained patterns.

Energy-based models tend to be more conductive to the use of local learning rules,
such as the Hopfield rule in Equation 2.19, due to the fact that weights appear in the
total energy function in adjacent pairs corresponding to the pre- and post-synaptic ends of
each neuron. Consequently, weight updates performing energy-minimization tend to use
neuron-local information only.

Friston proposed the minimization of a quantity he termed “free energy” [9] as the
driving force behind neurobiological self-organization for active perception. Active percep-
tion refers to the closed-loop sensorimotor setting where sensory model-building and motor
control are both involved simultaneously. To quantify sensory predictions, we consider sen-
sory surprise S, or self-information, which is the negative log-likelihood of an event x with
probability P (x)

S(xi) = − log(P (x)). (2.20)

The the entropy H(X) of a discrete distribution X = {xi} is the weighted sum of these

15

surprise terms for each of its N events xi

H(X) = −
N∑
i

P (xi) log(P (xi)). (2.21)

The Kullback-Leibler (or KL) divergence is a common measure of the “distance” of distri-
bution Q from distribution P , defined as

DKL(P ||Q) = −
∑
i

P (xi) log

(
Q(xi)

P (xi)

)
. (2.22)

Free energy may be understood as the sum of either neural activation energies plus
entropy, or as statistical surprise plus KL divergence. Free energy is defined as

F (x, h) = Eq[− logP (x, l|θ)︸ ︷︷ ︸]energy −H[Q(µ|h)]︸ ︷︷ ︸
entropy

= − logP (x|θ)︸ ︷︷ ︸
surprise

+DKL[Q(l|h)||P (l|x, θ)]︸ ︷︷ ︸
divergence

(2.23)
where E[·] represents the expected value over the distribution, P is the generative model
distribution and Q is the variational density of the external-world latent states µ. The
sensory state x can be considered the input in artificial neural network terms, h represents
the hidden brain states (equivalent to hidden layers), l represents the latent states of the
external world, and θ encapsulates the model parameters (e.g. connection weights in a
neural implementation).

The free energy principle works by minimizing F with respect to its parameters, the
input sensory state x and the hidden state h. Since DKL is non-negative from Equation
2.22, Friston notes that

F (x, h) ≥ − logP (x|h). (2.24)

In other words, free energy is an upper bound on surprise.

The sensory model improves predictions, reducing divergence, while the action con-
troller changes the sensory input to reduce prediction error and thus surprise. Thus,
energy-based models can help address some of the biological plausibility issues in ANN
training, as they provide an alternative to supervised training signals propagating back-
wards from the output layer into the network.

In addition, according to Friston, such models can account for the fundamentally bidi-
rectional processes of sensorimotor or active learning, where both perception and action
circuits in the brain are modified. When the environment is viewed as both a sensory input
and a modifiable output, as in bidirectional equilibrium propagation, an energy-based view
is a more versatile formalism that the supervised input-output model.

16

.

Figure 2.3: A Restricted Boltzmann Machine with 3 input units and 4 output units.

2.5 Contrastive Learning

The origin of the preceding network training methodologies are best understood as credit
assignment at the level of neurons. Backpropagation uses the chain rule to determine the
steepest descent path for a connection weight, while Hebbian learning arises from local
correlations. On the other hand, contrastive methods are based on the idea of matching
two population distributions. A network is run in two phases, a free phase without exter-
nal influence and a clamped or externally-forced phase, and the distributions of neuronal
activities of these two phases are used to determine the gradient for weight updates.

The initial success of this approach came primarily from contrastive divergence (CD)
applied to Restricted Boltzmann Machines (RBMs) [24]. Essentially, RBMs are a variant
of Hopfield networks with hidden units connected as a bipartite graph. Consequently,
RBMs have a Hopfield-like energy function, as defined in Equation 2.25 in terms of visible
(“input”) and hidden neurons x and h, respectively, as well as their respective weights wij
and biases ai and bj.

E(x,h,W, a,b) = −
∑
i

aixi −
∑
j

bjhj −
∑
i

∑
j

wijxihj (2.25)

Ideally, optimizing an RBM would mean minimizing the gradient of a loss function

17

defined as the difference between the equilibrium state energies of two different phases of
the network

∂L(θ;x)

∂θ
=

〈
∂E(x, θ)

∂θ

〉
∞︸ ︷︷ ︸

positive phase

−
〈
∂E(x, θ)

∂θ

〉
0︸ ︷︷ ︸

negative phase

(2.26)

where θ encapsulates the parameters of the network (i.e. any weights and biases). For
RBMs, 〈·〉0 represents an average with respect to the sample (i.e. dataset) distribution
while 〈·〉∞ represents an average with respect to model (i.e. network-generated) distribu-
tion. By optimizing the loss function L, the two equilibrium distributions are made more
similar. However, this is difficult to compute, with a large variance in the estimate for the
positive phase component [5].

Instead, RBMs are trained using contrastive divergence to minimize the distance be-
tween two Kullback-Leibler divergences [5]

CDn = DKL(P0||P∞)−DKL(Pn||P∞), (2.27)

where n specifies the number of iterations of the contrastive divergence procedure. Specif-
ically, P0 is the data distribution and P∞ is the model distribution parametrized by the
weights W so that

DKL(P0||P∞) =
∑
x

P0(x) log

(
P0(x)

P (x,W)

)
. (2.28)

From Equation 2.25, gradient ascent on this objective then leads to the update

∂ logP (x)

∂wij
= 〈xihj〉0 − 〈xihj〉∞ (2.29)

P (x) =

∑
h e
−E(x,h)∑

v,h e
−E(x,h)

. (2.30)

In practice, it is not P∞ that is computed but rather an approximation Pn using n
iterations. A single iteration of contrastive divergence (CD-1) for a data point x performs
the following steps:

1. Compute the hidden unit activations h for input x given weights W and hidden layer
biases b

2. Compute and store the positive phase gradient xhT

18

3. Generate a reconstructed input x̂ using h, W and visible layer biases a, then use the
reconstructed input to compute new hidden layer activities ĥ

4. Compute and store the negative phase gradient x̂ĥ
T

5. With some learning rate ε, update the weights W and biases a and b (for the visible
and hidden layers, respectively) according to

∆W = ε(xhT − x̂ĥ
T

) (2.31)

∆a = ε(x− x̂) (2.32)

∆b = ε(hT − ĥT) (2.33)

Sutskever and Tieleman [42] show that contrastive divergence does not follow the gra-
dient of any objective function. While this does not preclude it from minimizing a function
without following a gradient, the authors do show that convergence can be prevented by
adding certain regularization terms. In practice, this can make training via contrastive
divergence a matter of careful parameter selection.

Nevertheless, Xie and Seung [45] show that the training and test error due to contrastive
Hebbian learning and backpropagation are similar for a layered network with forward as
well as backward connections. Contrastive Hebbian learning is a similar local learning
rule with a Hebbian (i.e. weight-strengthening) update followed by an anti-Hebbian (i.e.
weight-weakening) update.

Hinton [17] notes that contrastive learning forces weight symmetry as long as there is
weight decay proportional to weight magnitude. As the weight updates due to contrastive
divergence are symmetric (i.e. ∆wij = ∆wji, the weights wij and wji always approach each
other.

Equilibrium propagation uses a variant of a contrastive Hebbian algorithm to sample
the network at different levels of external forcing or clamping. In such a layered network,
contrastive methods allow errors to be propagated from terminal layers, which have access
to environmental inputs, to internal layers.

2.6 Equilibrium Propagation

A recent learning algorithm for the supervised training of continuous-time, energy-based
neural networks is equilibrium propagation [37]. It is a phased algorithm; the free phase

19

presents the input to the network and allows it to settle into a free equilibrium, and the
second, weakly-clamped phase then introduces an error to the output neurons (whose mag-
nitude depends on the degree of clamping) and the network settles into a weakly clamped
equilibrium. The weakly-clamped phase is essentially a small perturbation, forcing the
network away from the free equilibrium in the direction that improves task performance.
A contrastive Hebbian-like local learning rule then uses the difference in co-activation
statistics of neurons between the two phases to make a weight update.

Energy Function & Activity Dynamics

Equilibrium propagation is built around a continuous-time neural model. Consequently, it
is defined by differential equations. The activity si of each neuron is governed by a network
energy function

F (w,x,y, β, s) = E(w,x, s) + βC(w,x,y, s) (2.34)

where w is the connection weights, x is the input to the network, y is the target output, β
is the clamping factor, and s = {s} = {x, h, ŷ} is the collection of neuron states, comprised
of input, hidden and output neurons, respectively. The Hopfield-like total energy function
is composed of two sub-parts: the internal energy E and the external energy or “cost” C,
modulated by the clamping factor β > 0.

Each neuron with activity si attempts to minimize the total energy. This process is
completely local. Neural activity follows the negative of the energy gradient,

dsi
dt

= −∂F
∂si

= − ∂

∂si
(E + βC) = −∂E

∂si
− β∂C

∂si
. (2.35)

A simple substitution of the neuronal dynamics shows that following Equation 2.35
guarantees that the total energy F is non-increasing in time

dF

dt
=
∂F

∂s
· ds
dt

= −
∣∣∣∣∣∣∣∣dsdt

∣∣∣∣∣∣∣∣2 ≤ 0. (2.36)

Neurons implement the hard sigmoid activation function

ρ(si) = min(1,max(0, si)). (2.37)

Biologically, the state or activity si of a neuron would correspond to its average mem-
brane potential, while ρ(si) would be the firing rate.

20

The total internal energy on the network is

E(s) =
1

2

∑
i

s2i −
∑
i 6=j

WFW,ijρ(si)ρ(sj)−
∑
i 6=j

WBW,ijρ(si)ρ(sj)−
∑
i

biρ(si) (2.38)

where WFW,ij is the connection weight matrix for all upper-layer neurons sj to which si
outputs (“projects”), WBW,ij is the same for all lower-area projections, and bi is the bias of
si. Equation 2.38 shows that E can be split into a quadratic leaky (i.e. decay) term and
the weighted sum of input currents to the neuron.

The external energy on the network is task-dependent. In the case of the classification
problems presented in Scellier et al. [37] as well as this thesis, it is defined as the L2 norm

C(ŷ,y) =
1

2
||ŷ − y||2 (2.39)

where ŷ is the vector activities of output neurons {ŷi} ∈ s, and y is the one-hot encoded
vector of the output class y (i.e. with only one nonzero entry corresponding to the class).

The forces applied to each neuron’s activity si due to the potential energies E and C
are given by their derivatives. The force due to the internal energy is

∂E

∂si
= si︸︷︷︸

leaky term

− ρ′(si)︸ ︷︷ ︸
slope of activation function

∑
j 6=i

Wijρ(sj) + bi︸ ︷︷ ︸
input current

 . (2.40)

As summarized in Equation 2.40, the internal force can be broken down into a term due
to persistent activity si (i.e. the pre-existing neuronal state), and a term due to incoming
input to the neuron; these neurons behave as leaky integrators. Likewise, the “external
force” due to the output cost function is present only when β is non-zero, and affects only
output neurons yi, since

∂C

∂si
=

{
0 if si /∈ {ŷ}
si − yi if si ∈ {ŷ}

(2.41)

Activation Function & Dead Neurons

The derivative of the hard sigmoid activation function is defined such that it keeps neurons
operating in the linear region 0 ≤ si < 1. If the activity drops below zero, the contribution

21

of the input current to the internal force is eliminated, allowing the leaky term in Equation
2.40 to raise the activity up to zero. This serves to minimize the dead neuron problem,
where a zero activation function derivative prevents useful updates to the neuron state,
effectively making the neuron a uniformly zero-output computational burden. For large
values of si, the slope of the activation function is zero, so the gradient ∂E

∂si
= si and,

following the negative of this gradient (Equation 2.36, si decreases over time. This prevents
the complimentary “exploding gradient problem”, where the neuronal activity increases
without bound. To minimize this issues, the derivative of ρ is defined at the boundaries as

ρ′(si) =

0 s < 0

1 0 ≤ s ≤ 1

0 s ≥ 1

. (2.42)

EP Algorithm

Equilibrium propagation can be summarized as operating over three timescales, and it is
important to identify what parameters are varied at what scale.

1. The fast neuronal dynamics descend along the gradient of the total energy ∂F
∂si

.

2. The slower network dynamics run until the network converges to an equilibrium state
{s0}. This is repeated for a free network followed by a non-zero clamping factor β,
giving the weakly-clamped equilibrium state {sβ}.

3. At the end of each equilibrium propagation cycle, the contrastive weight update

∆Wij =
λ

β

((
sβi

)
ρ
(
sβj

)
−
(
s0i
)
ρ
(
s0j
))

(2.43)

is applied, where λ is the learning rate.

2.7 Timescale and Gradient Dynamics

Given the complexity of biological nervous systems, particularly the brain, many phenom-
ena have nuanced explanations covering multiple timescales. Inter-neuron competition, for
example, can be framed in terms of synaptic learning and sparsity, or alternatively in terms

22

of activity and input selectivity [32]. The temporal and spatial level of a neural model is
an important consideration for neurobiological modeling.

Bassett & Sporns [3] make a distinction, in terms of network science, between dynam-
ics on networks (i.e. the changing patterns of node activity on a graph), and dynamics of
networks (i.e. changes in edges, and consequently in the structure of the network). In neu-
roscience and neural networks, these correspond to neural activity and synaptic plasticity,
respectively. Of course, both phenomena occur simultaneously, with synaptic plasticity
occurring over longer timescales. In biological neurons, this would be an online process,
while, in artificial neural networks, batch processing may occur.

In the context of biological plausibility, the relevant consideration is the type of compu-
tation neurons perform at each stage. In backpropagation, forward and backward passes
correspond to activity and synaptic plasticity, yet they require the same neurons and con-
nections to function differently. In Hebbian and energy-based models, including equilibrium
propagation, neurons perform the same computations in each stage, and weight changes
do not require propagation through the network.

More comprehensive neural models would likely also include other biological processes
with functional, computational effects. For example, at longer time scales intrinsic plastic-
ity, the homeostatic modification of a neuron’s activation function to maximize information
transfer [43], would show its effects. At higher levels still, gene expression, organism de-
velopment, and even evolution influence the behaviour of neural systems.

Since training a neural network has the goal of optimizing task performance, weight
updates typically follow the gradient of an objective function (or, equivalently, the negative
of the gradient of an error). This is true by definition in the case of algorithms such as
backpropagation, as evident in Equation 2.1.

2.8 Generative Models and Recurrence

Recurrent neural networks (RNNs) may be classified by the duration of their impulse
response. Figure 2.4a depicts an example of a finite-impulse RNN. The output of a finite-
impulse system to a finite impulse (i.e. an input applied for a short duration) should
decay to zero. Notably, an finite-impulse RNN’s cycle is directed; consequently it can be
represented by an equivalent feedforward network. However, infinite-impulse networks may
sustain activities that never quite decay to zero. This happens specifically in undirected
graphs such as Figure 2.4b, as there is no activity sink.

23

Biologically, recurrent, lateral connections and feedback are extremely common. In
particular, tasks such as attention and input selectivity seem to require top-down feedback.
Even feedforward models of biological systems acknowledge the presence of feedback from
higher areas in the brain [46]. As such, we can conclude that biologically relevant network
architectures should not only be recurrent, but that they should also utilize this recurrence
for some sort of task.

24

(a) Directed cyclic RNNs may be unrolled.

(b) This network forms an undirected cylic graph and
cannot be unrolled into a feedforward network.

Figure 2.4: Impulse Response and Directedness

25

Chapter 3

Bidirectional Equilibrium
Propagation

Bidirectional equilibrium propagation (BEP), the main contribution of this thesis, is a
variant of equilibrium propagation that works by alternating between forward and back-
ward passes. Unlike backpropagation-like algorithms, however, both directions use the
same neuronal computations, and weight updates are always computed as the contrastive
co-activations of two runs of the network with different levels of clamping. Simultane-
ously, bidirectional equilibrium propagation allows recurrent connections. Unlike the orig-
inal equilibrium propagation model, bidirectional equilibrium propagation uses a directed
graph model with distinct (asymmetric) forward and backward weights.

3.1 Network Architecture

For clarity of nomenclature, each sequence of free and fixed phase passes, culminating in
a weight update, is called one training pass. Each time the network is allowed to settle to
an equilibrium, with a new input or a different clamping factor is referred to as a phase, as
with regular equilibrium propagation. For the tasks used in this section, the discriminative,
“forward”, “bottom-up”, or “afferent” direction classifies a D−dimensional vector input
“image” into one of D classes. The generative, “backward”, “top-down”, or “efferent”
direction generates an image given a class as input. Both directions use the same network,
with bidirectional connections between layers; the difference is what layer is clamped. In
the discriminative mode, the bottom or x−layer is clamped, while the top or y−layer is
clamped for generative operation.

26

In bidirectional equilibrium propagation, there are task-specific input and output units
that alternate roles, as well as hidden units. The BEP architecture is distinct from standard
layered neural networks, Hopfield networks with all-to-all connections, as well as restricted
Boltzmann machines. Thus, to avoid confusion, especially for bidirectional equilibrium
propagation networks, neither terminal layer of a network is considered a purely “input”
or “output” layer without a directional qualifier. As shown in Figure 3.1, discriminative
mode uses the bottom layer for inputs and the top layer for output, while this is reversed
for the generative mode. .

In addition, it is notable that BEP networks are undirected graphs. This makes them
unsuitable for recurrent variants of backpropagation, as temporally expanding the network
does not remove cycles.

3.1.1 Energy Dynamics

Learning in the top-down direction requires augmenting the energy function of Equations
2.38 and 2.39 with a generative cost function D defined as

D(ẑ, z) =
1

2
||ẑ− z||2 (3.1)

where ẑ is the output layer activities of the generative mode and z is the target class
archetype (described in Section 3.3). Notably, while the squared L2 norm was applied to
a one-hot encoded target, the interpretation for this cost D is the distance from the class
archetype vector defined in Section 3.3 at the equilibrium (generative) output state of the
network. The gradient of this new external energy is nevertheless the same as Equation
2.41

∂D

∂si
=

{
0 if si /∈ {ẑ}
si − zi if si ∈ {ẑ}

(3.2)

with {ẑ} being the entirety of the set of neurons in the bottom layer.

Combining this into the total energy gives

F (θ, z,y, α, β) = E(θ, sα,βθ) + βC(sα,βθ ,y) + αD(sα,βθ , z) (3.3)

where α is the clamping factor of this generative cost function, θ encapsulates the network
parameters (weights and biases), z is the bottom layer external target and y is the top
layer external target.

27

Considering the discriminative and generative cases, we define the free-phase equilibria,
which is effectively the “prediction” of the model parametrized by θ with input but not
target clamping, as sα=0,β=∞

θ .

The total energy of the network is

F =
1

2

∑
i

s2i−
∑
i 6=j

wFW.ijρ(si)ρ(sj)−
∑
i 6=j

wBW.ijρ(si)ρ(sj)−
∑
i

biρ(si)+
β

2
||ŷ−y||2+α

2
||ẑ−z||2.

(3.4)
where the separate forward and backward weights are defined as for Section 2.6.

The gradient of the total energy, and consequently the force on each neuron si, is thus

∂F

∂si
= si − ρ′(si)

(∑
j 6=i

Wijρ(sj) + bi

)
+ β

∂C

∂si
+ α

∂D

∂si
. (3.5)

When a layer is fully clamped, as is the case for the bottom layer which is clamped to
x during the regular discriminative mode of equilibrium propagation, the clamping factor
α is essentially infinite. In this case, the rest of the network can have no influence on the
input layer, and by convention the D term drops out of the total energy gradient, which
reduces to the F in Section 2.6. This is illustrated in Figure 3.1.

Gradient Dynamics

Equilibrium propagation allows the network to settle into a free equilibrium, then clamps
the output and allows the network to settle into a (weakly-)clamped or perturbed equi-
librium. The direction of weight updates are intended to shift the free equilibrium point
(in the space of network activities {si}) to the clamped equilibrium point. Basically, after
the weight update, the free dynamics of the network should settle to a point that mini-
mizes output error. This directional information would not be possible without running
the network in two phases per task.

3.2 Discretized Simulation

As equilibrium propagation uses a continuous-time neural model, in each phase the dy-
namical system with a state defined by the set of activities of all neurons s is simulated.

28

Figure 3.1: Bidirectional Equilibrium Propagation: The clamping factors α and β deter-
mine the effect of the environment on the bottom and top input/output layers, respectively.
When an input (on either side: top or bottom) is fixed, the clamping factor is infinite so
that layer is not affected by network dynamics.

29

Using Euler’s method to solve the differential equation in Equation 2.35, with a time step
ε

si(t+ ε) = si(t)− ε
∂F

∂si
(t). (3.6)

Neuron activities and biases are initialized to zero, while weights are initialized using
a Xavier/Glorot uniform distribution, suggested by Glorot and Bengio [15].

def initialize_weights(...):

n_lower = size(layer[l])

n_higher = size(layer[l+1])

for each lower_neuron in n_lower:

for each higher_neuron in n_higher:

// Uniform Glorot initialization

max_value = sqrt(6 / (n_lower + n_higher))

W_fw[in] = unif(- max_value, + max_value)

W_bw[in] = unif(- max_value, + max_value)

end

Learning rates are assigned individually by weight layer. Heuristically, learning per-
forms better when learning rates are increased further from the source of external influence,
to address the vanishing gradient problem. In a purely discriminative task, this means that
earlier levels will have higher learning rates than later areas, and vice versa for a purely
generative task.

3.3 Dataset

The network was tested on an artificial dataset containing D−dimensional vectors and
their corresponding classes, using the following process.

1. A large number of D−dimensional vectors are sampled with components in the range
[0, 1). These vectors are clustered into D clusters, with the centroids forming the class
archetypes.

2. A cluster centroid is randomly chosen, and zero-mean Gaussian noise with standard
deviation of 0.1 is added to give a data point xi.

30

3. Each data point xi, along with its corresponding cluster label yi and class archetype
zi form one training example (xi, yi, zi).

The pair (xi, yi) is the training data for the discriminative direction, while (yi, zi) is the
data point for the generative direction.

3.3.1 Learning Algorithm

To derive the weight update function, we can consider a contrastive learning objective
function. Such a learning objective is interpreted as bringing two equilibrium distributions
closer together. Specifically, these are the output layers of the network at equilibrium, with
and without target clamping. For unidirectional EP, we can define this objective function
as

JEP = β(Cβ+
∞ − Cβ−

∞) (3.7)

where C∞ is the external cost or energy of the equilibrium states with the respective
clamping factor values (α+, β+) and (α−, β−).

Extending this to BEP requires incorporating the generative cost, so we define a new
vector objective function

~JBEP =

[
β(Cα+β+

∞ − Cα−β−
∞)

α(Dα+β+
∞ −Dα−β−

∞)

]
(3.8)

∂J

∂θ
=
∂Fα+β+

∂θ
− ∂Fα−β−

∂θ
(3.9)

∂J

∂θ
=
∂Fα+β+

∂θ
− ∂Fα−β−

∂θ
(3.10)

To perform a contrastive weight update on the network, two (or more) equilibrium
states s with different values of the clamping factors (α, β) must be sampled. Firstly, the
edge case of a completely unclamped network with α = 0, β = 0 is meaningless, as there is
no input to the network. Similarly, both the inputs and outputs cannot simultaneously be
fully clamped; the parameters α = ∞, β = ∞ allow neither discriminative nor generative
learning.

For simplicity, we use the 4 points with clamping factors (0,∞), (α,∞), (∞, 0) and
(∞, β).

∆Wij =
λ

α

(
(sαi) ρ

(
sαj
)
−
(
s0i
)
ρ
(
s0j
))
β=∞ +

λ

β

((
sβi

)
ρ
(
sβj

)
−
(
s0i
)
ρ
(
s0j
))

α=∞
(3.11)

31

(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6 (g) Class 7 (h) Class 8

(i) Class 9 (j) Class 10 (k) Class 11 (l) Class 12

(m) Class 13 (n) Class 14 (o) Class 15 (p) Class 16

Figure 3.2: Example class archetypes for D = 16. Data x vectors are generated by adding
independent and identically-distributed Gaussian noise to a class archetype.

32

Chapter 4

Results and Discussion

4.1 Results

Bidirectional equilibrium propagation successfully and simultaneously learns the discrimi-
native and generative transformations for the artificial dataset, by achieving 0% validation
error on the generative task, and low (below 1%) validation error on the discriminative
task. In addition, special cases of the network were also tested to isolate the mechanisms
contributing to this bidirectional learning, namely

• asymmetric vs. symmetric (i.e. independent vs. matching) forward and backward
weights,

• discriminative-only training vs. generative-only training compared to bidirectional
learning, and

• BEP vs. restricted BEP (r-BEP), where only the weights corresponding to the task
direction are modified (note that this is distinct from regular EP).

For each task, which includes several permutations of the above scenarios, the network
is run in the free phase (i.e. with no target-clamping) until equilibrium. The equilibrium
states of the terminal layer are then read out and compared to the target. The discrimina-
tive classification task presents the input x at the bottom layer the network and evaluates
the top-layer output in comparison to the target y. The generative task presents the class
y at the top layer and evaluates the similarity of the generated bottom-layer vector to the
target z.

33

The works discussed in Section 2.2 on feedback alignment and random backpropagation
weights suggest that optimizing even a restricted subset of weights can improve task perfor-
mance. Carrying this idea to bidirectional learning with asymmetric weights, optimizing
forward and backward weights for the discriminative-only error improves the generative
task performance significantly. Optimizing the generative task does not improve the dis-
criminative task as much, although some gains are still evident. However, this transfer
learning is lost entirely when symmetric weights are used.

For all cases, discriminative and generative modes were both run for 25 free phase
iterations and 5 clamped iterations each, with α = 0.5, β = 0.5 and the timestep ε = 0.5.
The layer-wise learning rates were set at lr = (0.1, 0.05), and the network was trained for
20 epochs.

4.1.1 Bidirectional Equilibrium Propagation

Figure 4.1 shows the classification errors for the special case of “tied”, or symmetric, for-
ward and backward weights. In addition to bidirectional training in Figure 4.1c, two other
cases are shown, of only discriminative learning in Figure 4.1a and only generative learning
in Figure 4.1b. This shows that transfer learning across the tasks is normally low; training
for near-perfect discriminative performance does not improve generative performance to
better than chance (i.e. 1/16 success rate or 93.75% error), and likewise for generative
training. Yet, bidirectional training improves both objectives without compromise.

Likewise, the split or asymmetric weights case in Figure 4.2 optimizes both tasks well.
Additionally, the split weights afford some freedom for the complimentary task to improve
even though it is not being optimized. Generative performance improves significantly when
only discriminative performance is optimized, and discriminative performance improves
slightly better than chance with only generative training. This asymmetry in transferability
may have some dependence on the separability of the dataset, but it indicates that the two
tasks may be encouraging different hidden-layer representations, with varying applicability
to the complimentary task.

4.1.2 Restricted Bidirectional Equilibrium Propagation

To further isolate the mechanisms in BEP, the special case of r-BEP with only direction-
specific learning for each task is shown in Figure 4.3. For the discriminative-only case
in Figure 4.3a, only bottom-up weights are adjusted to optimize the discriminative task.
Nevertheless, generative performance improves substantially. Figure 4.3b shows the case

34

(a) Discriminative with tied weights (b) Generative with tied weights

(c) Bidirectional with tied weights

Figure 4.1: Learning in BEP network with tied weights.

35

(a) Discriminative with split weights (b) Generative with split weights

(c) Bidirectional with split weights

Figure 4.2: Learning in BEP network with asymmetric (split) forward and backward
weights.

36

of generative learning to adjust only top-down weights. Once again, discriminative perfor-
mance does not improve much, although it does better than chance.

Even though top-down weights are not explicitly optimized in the discriminative-only
case of Figure 4.3a, it must be noted that these weights still influence the network activity
dynamics through the network energy function from Equation 3.3.

4.2 Biological Plausibility

Equilibrium propagation is consistent with O’Reilly’s criteria in Section 2.1. The model is
parametrized by a distributed connection weights that are modified by local Hebbian plas-
ticity, while avoiding biologically implausible constraints such as linear error propagation.
Simultaneously, equilibrium propagation is able to perform error-driven supervised learn-
ing, as proven by the original implementation on the MNIST digit classification dataset
[37].

Most “biological” neural learning rules, such as Hebbian learning and STDP, are unsu-
pervised. Brains constantly deal with a flood of inputs with no associated labels, categories
or target outputs, and efforts to understand synaptic plasticity cannot ignore the high de-
gree of self-organization evident in biological neural networks [2]. A great deal of synaptic
plasticity and neuronal specialization can be explained by Hebbian learning without the
use of supervised error signals [18]. In fact, the biological implausibility of algorithms like
backpropagation comes specifically and explicitly from the credit assignment processing
due to an external error.

In addition, bidirectional equilibrium propagation extends this error-driven learning to
simultaneously learn discriminative and generative models for a supervised dataset. This
more explicitly aims to replicate the sort of feedback and lateral processing that occurs
in the brain. Typically, neurons are often described as “encoding” a certain property of
the input. BEP takes some first steps towards a more sophisticated idea of neural input-
selectivity than the classical idea of receptive fields.

BEP also removes the biologically implausible constraint of symmetric forward and
backward weights. It extends the layer-wise level of recurrence to a network-level task-
reversibility, by attempting to learn the corresponding generative task for a discriminative
problem. The same set of parameters are shared across forward and backward tasks; this
transfer learning and multiplicity of encoding is another layer of distributed representation
across (related) tasks.

37

(a) Discriminative with split weights (b) Generative with split weights

(c) Bidirectional with split weights

Figure 4.3: Learning with r-BEP and split forward and backward weights.

38

The phased contrastive update does not necessarily require the storage of free and
weakly-clamped equilibrium states in a biological implementation. As framed by Xie and
Seung [45], contrastive update of Equation 2.43 can be viewed as two separate weight
updates

1.

∆Wij− = −λ
β
s0i ρ
(
s0j
)

(4.1)

2.

∆Wij+ =
λ

β
sβi ρ

(
sβj

)
(4.2)

which would be local signals, both spatially and temporally.

Additionally, Baldi and Pineda [1] have proposed neurobiological mechanisms for the
phase-switching of contrastive learning. Slower timescale neural oscillations can possibly
account for the modification and synchronization of environmental clamping factors α and
β.

39

Chapter 5

Conclusion

Equilibrium propagation proposes a local mechanism for neural dynamics based on energy-
minimization followed by a local, contrastive Hebbian weight update. However, the original
equilibrium propagation model was restricted to only feedforward operation with symmet-
ric feedback weights. This thesis generalizes equilibrium propagation to multiple output
layers and asymmetric feedforward-feedback weights. Specifically, BEP trains a network
using successive discriminative and generative phases such that an invertible model of the
data is learned. Overall, weight asymmetry seems to allow greater transfer learning to the
untrained task, while restricting training to a subset of weights worsens the transferability.

BEP is applicable to continuous-time neural models and temporally unrollable recurrent
neural networks with asymmetric connection weights. The algorithm exploits a network’s
recurrent connections to learn the reciprocal generative transformation. It does so in a
biologically plausible manner, using local computations for contrastive weight updates. It
is consistent across a range of temporal scales, with fast neuronal dynamics, longer network
trajectory navigation, synaptic plasticity and large-scale neural oscillations.

Essentially, bidirectional equilibrium propagation generalizes the contrastive learning
rule for multiple “outputs”, each governed by a clamping factor. The claim of the method
is that with the right selection of clamping factors, to sample points in the activity space
vector field, forward and backward mappings may be learned simultaneously. Experiments
show a high degree of transfer learning when the network has asymmetric weights, whether
the complimentary task direction weights are trained or not.

40

5.1 Future Work

As equilibrium propagation straddles the fields of machine learning, artificial neural net-
works, network science, dynamical systems and computational neuroscience, a variety of
research directions building upon bidirectional equilibrium propagation involve the synthe-
sis of two or more fields.

5.1.1 Bidirectional Learning

Bidirectional equilibrium propagation proposes a training methodology that not only copes
with asymmetric forward and backward weights, but actually tries to exploit the represen-
tational capability this decoupling provides to learn a complimentary and invertible pair
of mappings. While discriminative and generative models have been combined in artificial
neural networks before, they have typically been in a serial arrangement. The canonical
example of this is a Generative Adversarial Network [16], where a generative network is
trained to generate samples from the distribution it is trying to model, while simultane-
ously a discriminative network is being trained to identify generated images from samples
from the data distribution. In contrast, the generative-discriminative pair is inseparable.
While this allows some degree of transfer learning across the forward/backward tasks, it
has its disadvantages, namely the difficulty of learning in deeper networks. It shares a lack
of convergence guarantees with other contrastive methods [42], since it does not follow the
gradient of any objective function.

5.1.2 Finite Input Clamping

Equilibrium propagation uses the same type of neuronal computation at all times, address-
ing a biologically-motivated criticism of backpropagation. Yet, its phased operating modes
require some external synchronization. Bidirectional equilibrium propagation relaxes this
requirement by allowing bottom as well as top layers to be subjected to environmental
cost functions. Nevertheless, there must still be some degree of synchronization between
the clamping factors; i.e. one of α or β must be infinite. This constraint is, depending on
the interpretation of the input layer, biologically motivated. For example, visual inputs
from the retina to lateral geniculate nucleus (LGN) are not affected by further downstream
processing; thus, considering retinal signals via the optic nerve to be the environment and
the LGN to be the input layer would make an infinite α a reasonable assumption.

41

However, when modeling even just slightly higher areas of the visual stream, such as
V1-V3 of the visual cortex, feedback or lateral connections on the hierarchy may change
the input layer. Thus, considering the LGN to be the “environment” and its immediate
projections to V1, V2 and V3 to be the input layer would necessitate a finite α. While
this presents a more challenging optimization problem, addressing such variable clamping
scenarios would be of interest from both a neuroscientific perspective, as well as a network
science one.

5.1.3 Time-Varying Environment

Closely related to the problem of finite input clamping is that of time-varying input. With
a finite clamping factor, the input is subject to change due to network feedback. With time-
varying environmental input, the clamping factor may well be infinite, but the changing
environmental input would force the input layer to change over time even without network
feedback. The case of inputs varying on timescales much faster than synaptic weights is
more biologically realistic.

In addition, recurrent neural networks are well-suited to processing time series data, due
to the capability of network memory in sustained recurrent activity. A variety of artificial
architectures have been successful in domains with sequences and temporal dependencies,
such as long short-term memory [13]. Even echo state networks, randomly-connected pools
of neurons with trained feedback weights, can learn to model time series data to some extent
[21]. Thus, adapting a recurrent network such as BEP, or even vanilla EP, to time-varying
inputs or “environments” would be a worthwhile area of study.

5.1.4 Biological Realism

A framework that claims to model biological neural networks should be able to replicate
biological results at different spatial or temporal scales [46]. Whether this would be spiking
neuron models, the ability to recreate network-level effects such as neural responses to
certain stimuli, or to displaying layer-wise correspondence to biological activities, the ability
to explain neural data would lend credibility to EP as a biological model.

Similarly, the ability to incorporate other biological processes at different spatial and
temporal scales into the equilibrium propagation model would strengthen its case as a
biologically-realistic model. In particular, intrinsic plasticity [43] would be a natural can-
didate. Intrinsic plasticity is the adaptation of the neuronal activation function based on
the distribution of its inputs, by a variety of mechanisms generally occurring on a shorter

42

timescale than synaptic plasticity (i.e. weight modification). This serves to keep the neu-
ron from operating in a saturated activation function regime. Thus, intrinsic plasticity
avoids the dead neuron problem of Section 2.6.

Additionally, intrinsic plasticity has been used to improve the performance of echo-
state networks [38], which are similar to equilibrium propagation networks due to their
feedback connections. As deeper BEP networks would generally require a larger number
of iterations to settle to equilibrium, take more training epochs to learn allowing longer
timescale processes to take effect, and be more susceptible to vanishing error influence and
dying neurons due to depth, intrinsic plasticity may be a useful computational tool as well
as a biological feature.

Similarly, the viability of slower time-scale processes such as neural oscillations for
modulating clamping factors could be investigated.

5.1.5 Deep Networks

While unidirectional EP has been shown to learn in deeper networks with more than one
hidden layer [37], this proves to be a more difficult task for the bidirectional framework.
Maintaining neural representations across layers would be the next computational challenge
for bidirectional equilibrium propagation.

43

References

[1] Pierre Baldi and Fernando Pineda. Contrastive learning and neural oscillations. Neural
Computation, 3(4):526–545, 1991.

[2] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[3] Danielle S Bassett and Olaf Sporns. Network neuroscience. Nature Neuroscience,
20(3):353, 2017.

[4] Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, and Zhouhan
Lin. Towards biologically plausible deep learning. arXiv preprint arXiv:1502.04156,
2015.

[5] Miguel A Carreira-Perpinan and Geoffrey E Hinton. On contrastive divergence learn-
ing. In Aistats, volume 10, pages 33–40. Citeseer, 2005.

[6] Paul Dean and John Porrill. The importance of Marrs three levels of analysis for
understanding cerebellar function. Computational Theories and their Implementation
in the Brain: The legacy of David Marr, page 79, 2016.

[7] Richard Durbin and David E Rumelhart. Product units: A computationally powerful
and biologically plausible extension to backpropagation networks. Neural Computa-
tion, 1(1):133–142, 1989.

[8] Daniel Durstewitz, Jeremy K Seamans, and Terrence J Sejnowski. Neurocomputa-
tional models of working memory. Nature Neuroscience, 3(11s):1184, 2000.

[9] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 11(2):127, 2010.

[10] Karl J Friston and Cathy J Price. Dynamic representations and generative models of
brain function. Brain Research Bulletin, 54(3):275–285, 2001.

44

[11] Jonathan B Fritz, Mounya Elhilali, and Shihab A Shamma. Differential dynamic
plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience,
25(33):7623–7635, 2005.

[12] Nicholas Furl. Structural and effective connectivity reveals potential network-based
influences on category-sensitive visual areas. Frontiers in Human Neuroscience, 9:253,
2015.

[13] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with LSTM. Neural Computing, 12(10):2451 – 2471, 2000.

[14] Aryn H Gittis and Sascha du Lac. Intrinsic and synaptic plasticity in the vestibular
system. Current Opinion in Neurobiology, 16(4):385–390, 2006.

[15] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256, 2010.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[17] Geoffrey E Hinton. Deterministic boltzmann learning performs steepest descent in
weight-space. Neural Computation, 1(1):143–150, 1989.

[18] Gregor M. Hoerzer, Robert Legenstein, and Wolfgang Maass. Emergence of complex
computational structures from chaotic neural networks through reward-modulated
hebbian learning. Cerebral Cortex, 24(3):677–690, 2012.

[19] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–
2558, 1982.

[20] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.

[21] Herbert Jaeger. Adaptive nonlinear system identification with echo state networks.
In Advances in Neural Information Processing Systems, pages 609–616, 2003.

[22] Andrzej Kasiński and Filip Ponulak. Comparison of supervised learning methods
for spike time coding in spiking neural networks. International Journal of Applied
Mathematics and Computer Science, 16:101–113, 2006.

45

[23] Christof Koch and Idan Segev. The role of single neurons in information processing.
Nature neuroscience, 3(11s):1171, 2000.

[24] Hugo Larochelle, Michael Mandel, Razvan Pascanu, and Yoshua Bengio. Learning
algorithms for the classification restricted Boltzmann machine. Journal of Machine
Learning Research, 13(Mar):643–669, 2012.

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015.

[26] Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target
propagation. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 498–515. Springer, 2015.

[27] Qianli Liao, Joel Z Leibo, and Tomaso A Poggio. How important is weight symmetry
in backpropagation? In AAAI, pages 1837–1844, 2016.

[28] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman.
Random synaptic feedback weights support error backpropagation for deep learning.
Nature Communications, 7:13276, 2016.

[29] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. Spike-timing-dependent
plasticity: a comprehensive overview. Frontiers in Synaptic Neuroscience, 4:2, 2012.

[30] Pietro Mazzoni, Richard A Andersen, and Michael I Jordan. A more biologically
plausible learning rule for neural networks. Proceedings of the National Academy of
Sciences, 88(10):4433–4437, 1991.

[31] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks.
In Advances in Neural Information Processing Systems, pages 1037–1045, 2016.

[32] Randall C O’Reilly. Six principles for biologically based computational models of
cortical cognition. Trends in Cognitive Sciences, 2(11):455–462, 1998.

[33] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International Conference on Machine Learning, pages
1310–1318, 2013.

[34] Steven A Prescott and Terrence J Sejnowski. Spike-rate coding and spike-time coding
are affected oppositely by different adaptation mechanisms. Journal of Neuroscience,
28(50):13649–13661, 2008.

46

[35] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[36] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. Nature, 323(6088):533, 1986.

[37] Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap
between energy-based models and backpropagation. Frontiers in Computational Neu-
roscience, 11:24, 2017.

[38] Benjamin Schrauwen, Marion Wardermann, David Verstraeten, Jochen J Steil, and
Dirk Stroobandt. Improving reservoirs using intrinsic plasticity. Neurocomputing,
71(7-9):1159–1171, 2008.

[39] Charles E Schroeder, Donald A Wilson, Thomas Radman, Helen Scharfman, and Peter
Lakatos. Dynamics of active sensing and perceptual selection. Current Opinion in
Neurobiology, 20(2):172–176, 2010.

[40] Sen Song, Kenneth D Miller, and Larry F Abbott. Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9):919,
2000.

[41] David G Stork. Is backpropagation biologically plausible. In International Joint
Conference on Neural Networks, volume 2, pages 241–246. IEEE Washington, DC,
1989.

[42] Ilya Sutskever and Tijmen Tieleman. On the convergence properties of contrastive
divergence. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 789–795, 2010.

[43] Jochen Triesch. A gradient rule for the plasticity of a neurons intrinsic excitability. In
International Conference on Artificial Neural Networks, pages 65–70. Springer, 2005.

[44] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

[45] Xiaohui Xie and H Sebastian Seung. Equivalence of backpropagation and contrastive
hebbian learning in a layered network. Neural Computation, 15(2):441–454, 2003.

[46] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to
understand sensory cortex. Nature neuroscience, 19(3):356, 2016.

47

[47] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer, 2014.

48

	List of Figures
	Introduction
	Background
	Biological Plausibility
	Backpropagation and Weight Symmetry
	Local Learning Rules
	Error Functions and Energy-Based Models
	Contrastive Learning
	Equilibrium Propagation
	Timescale and Gradient Dynamics
	Generative Models and Recurrence

	Bidirectional Equilibrium Propagation
	Network Architecture
	Energy Dynamics

	Discretized Simulation
	Dataset
	Learning Algorithm

	Results and Discussion
	Results
	Bidirectional Equilibrium Propagation
	Restricted Bidirectional Equilibrium Propagation

	Biological Plausibility

	Conclusion
	Future Work
	Bidirectional Learning
	Finite Input Clamping
	Time-Varying Environment
	Biological Realism
	Deep Networks

	References

