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1 Introduction

Tuberculosis (TB) is a world-wide [1] problem and it is estimated

that one-third of the world’s population is infected with the My-

cobacterium tuberculosis [2]. It is also the leading cause of death

due to a single infectious disease [3]. TB is an airborne disease

and can be transmitted from one person to another by cough,

sneeze, speak etc. [4,5].

Many mathematical models have been created to describe the dy-

namics of this illness and many others [6,7]. Most of these models

deal with the problem of transmission dynamics with emergence

of drug resistance [8–15], impact of other infections on TB [16,17]

and the role of dormancy in the persistence of the infection [18]. In

contrast, within-host models have received little attention [15,18–

21].

Within-host models have several advantages for study the evo-

lution and spread of a disease [22–26]. One of these advantages

is that the host’s health state is defined according to his/her

internal population of pathogens. In transmission models, tran-

sitions among states are fixed parameters determined only by

external factors. In contrast, in within-host models, transitions
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among host’s health states emerge naturally from changes in the

host’s pathogen populations.

The possibility of defining a different set of parameters for each

host is another important feature of these kinds of models. Im-

mune response, initial load of pathogens, bacterial rate of dor-

mancy and others parameters allow the creation of heteroge-

neous populations [18,27–31]. Within-host heterogeneity param-

eters (governed by the individual’s biological characteristics) are

useful to study TB spread because it is possible to simulate a

large spectrum of virtual populations.

In principle, models of disease transmission from one individual to

another can also be augmented by combining them with within-

host models. Contagion no longer occurs because of some fixed

probability, but it also depends on the amount of pathogens in-

volved in the process. Thus, the transmission of the disease among

individuals on a population can be informed by monitoring host

parameters.

In previous models, resistant strains [15] and bacterial dormancy [18]

are treated separately. We propose to combine both effects simul-

taneously in a within-host model. Further, in our model, there is
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an interplay among sensitive/resistant pathogens, immune sys-

tem cells, bacterial dormancy and antibiotics as the key features

of the dynamics. Additionally, the immune system is assumed

to depend on T-cell migration from the thymus, with a limited

reproduction cycle.

The emergence of drug resistance due to the use of antibiotics [32–

34] is analyzed using three different treatment protocols. The

standard, intermittent and oscillating intermittent protocols are

characterized by the antibiotic doses and their periodicity. Out-

comes are obtained for the within-host system with different T-

cell migration rates and pathogen dormancy rates. Numerical cal-

culations of the within-host model indicate the oscillating inter-

mittent use of antibiotics as the most suitable protocol. It in-

creases the susceptible number of individuals, but the number of

drug resistant individuals is small.

This paper is organized as follows. In Section The Model, we de-

scribe the methods to build the within-host model of TB describ-

ing variables and parameters of the system. Also the dynamics of

the within-host model is explained in details using coupled ordi-

nary differential equations. Model numerical solutions and results

are discussed in Sec. Results. In this section we present the way
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outcomes of the within-host dynamics are related to the host

health states. Concluding remarks and our perspective on future

studies are discussed in the last section.

2 The Model

Based on the models from Refs. [15,18], we propose a within-host

model of Tuberculosis. We consider two types of M. tuberculo-

sis strains: sensitive type, S, which can be killed by treatment

with antibiotics; and a resistant type, R, which is resistant to

the treatment. The influence of bacterial dormancy in the disease

prevalence is also considered including dormant sensitive and dor-

mant resistant types of bacteria, Sd and Rd, respectively. We also

model the emergence of drug resistance due the treatment with

antibiotics.

The dynamics of bacterial populations and the immune system

are modeled by using differential equations. The within-host sys-

tem, defined by these set of equations, is solved numerically. We

note that outcomes presented in the following sections are for

one host only; the process of contagion or any interaction among

hosts are not considered in this work.
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As mentioned above, the host health states are a consequence of

the within-host dynamics. These states indicate the stage of the

disease in which a host may be. In the case of TB, we define the

possible health states for a host as: X, susceptible, Li, latent; or

Ti, infectious. The subscript i = S,R defines the type of pathogen:

sensitive or resistant to antibiotics, respectively.

Susceptible individuals,X, are those that had no contact with TB

pathogens. They are healthy and their system is free of tubercu-

losis pathogens. Individuals previously susceptible who acquire

TB pathogens may enter into a latency period. A latent state,

Li, is the stage when there are no disease symptoms. Finally, in-

dividuals in the infectious state, Ti, are in the active tuberculosis

stage, i.e., the host is sick. Antibiotic treatment is applied in this

stage of the disease.

M. Tuberculosis may enter mononuclear cells like the immune

system cells, the T-cells [18]. A fraction of these bacteria go into

a dormancy state for some time and consequently they do not

reproduce [35]. During the dormancy state these pathogens are

not detected by the immune system and they also can not be

affected by the antibiotics [18,36,37]. Dormant sensitive and re-

sistant bacteria will be represented as Sd and Rd, respectively.
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On one hand, population of active sensitive pathogens, S, repro-

duce at rate (1−q)ν and they also may be converted to a dormant

state, S to Sd, at a rate f . On the other hand, the conversion back

from the dormant to the active state, Sd to S, occurs at a rate

g. The S type pathogens can be killed by the immune system

response, I, or by the action of antibiotics with a clearance rate

α. The two types of strains compete for resources, thus a com-

petition term [15] ν(S + R)S/kb is added to the dynamics. This

competition is only by their intrinsic growth rate and efficiency in

utilizing available nutrients [38]. Then, as modeled in Ref. [15],

a logistic competition term mimics the competition of survival

between S and R pathogens.

Due to mutations, type S pathogens may give rise to active resis-

tant type bacteria, R, at rate qν. Reproduction of R population

that already exist occurs at rate ν1, which is lower than type

S because of an evolutionary cost [39]. Conversion from active

state to a dormant state, R to Rd is also possible, as well as the

conversion back to activity. Rates of conversion from active to

dormant and dormant to active states are f and g, respectively,

as for sensitive pathogen.

Because of resistance to antibiotics, drug efficacy to clear R type
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bacteria is reduced by a factor δ. Consequently, the clearance

rate due the use of antibiotics is lower than the one obtained

to treat S type infections. Resistant strains can be killed by the

immune system similarly as the type S pathogens. Analogously

to S strains, resistant bacteria has a competition term added to

their dynamics, ων(S + R)R/kb.

The within-host system evolves according to the equations:

dS

dt
=[(1− q)ν − (f + α)]S − γSI + gSd − ν

(S +R)

kb
S, (1)

dSd

dt
=fS − gSd, (2)

dR

dt
= qνS + [ν1 − (f + δα)]R− γRI + gRd − ων

(S + R)

kb
R,(3)

dRd

dt
=fR− gRd. (4)

Definition of the parameters used in Eqs. (1-4) as well as their

respective ranges are in Table 1.

The last terms in Eqs. (1) and (3) are the competition terms

between S and R strains. The amount of pathogens, Ω = S+R, is

the bacterial load inside the host’s lung which determines his/her

health condition. Mutations have a fitness cost [39] that may

affect the reproduction ability of these strains [40].

The immune system, I, is modeled similarly to the dynamics pre-
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sented in Ref. [18]. Firstly, consider the thymus, an organ where

immature T-cells stay until they fully mature [41,42]. Let a(Ω)

be the immigration rate of T-cells from thymus, which depends

on the pathogen density, given by:

a(Ω) = a1 −
a1Ω

m

am2 + Ωm
, (5)

where a1 is the recruitment rate of T-cells from thymus; a2,

pathogen load at which the immigration rate a(Ω) is half of the

T-cell recruitment rate; and m defines the shape of recruitment

function.

Note that as Antia et al [18] point out, “if the parasite persists,

the presence of parasite antigens could lead to clonal deletion of

parasite-specific immune cells in the thymus.”In other words, the

clonal deletion, or clonal elimination, is the elimination of T-cells

that react with self antigens [42]. Thus, this phenomenon [41,42]

explains the negative sign in the second term of Eq. (5).

Moreover, the number of times that immune cells can reproduce

is limited [43]. This is a phenomenon observed in epithelial cells

by Hayflick and Moorhead [44]. The average number of times

that a cell can reproduce is called the “Hayflick limit” [18] and

for T-cells, reproduction can be repeated only about 23 times.
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To incorporate the Hayflick limit in the model, a set of n equa-

tions represents the reproductive state of the T-cells [18]. The

variable ij represents the population of T-cells in the j-th stage

of the reproduction. Thus, the reproduction cycle of the immune

cells is given by:

di0
dt

=a(Ω)− ǫ
Ω

κ+ Ω
i0 − µi0 , (6)

dij
dt

=2ǫ
Ω

κ+ Ω
ij−1 − ǫ

Ω

κ+ Ω
ij − µij , (7)

where, ǫ is the reproductive stimulus of T-cells; κ is a control

density to make T-cells to reproduce up to half the maximum

value and µ is the death rate of immune system cells. Thus, in

each time step the total population of the immune system cells is

I =
n∑

j=0

ij. (8)

At each time step Eqs. (6) and (7) are concurrently solved and

the immune system population is obtained by the sum defined in

Eq. (8) for n = 3.

For the sake of clarity, parameters of the model and their defini-

tion can be seen in Table 1.
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Table 1

Parameters of the model.

Par. Definition Range References

q mutation rate of S strains [10−8, 10−6] generations−1 [45,46]

ν reproduction rate of S strain [0.36, 0.52] day−1 [47–50]

ν1 R strains reproduction rate (ν1 = wν) w ∈ [0.5, 1.2] [39,51–53]

f conversion rate from active to dormant

state

[0.0, 1.0) day−1

g conversion rate from dormant to active

state

[0.0, 1.0) day−1

α antibiotics clearance rate for S strains [0.003, 0.8] day−1 [54]

δ relative antibiotics efficacy for R

pathogens

[0.0, 1.0]

ρ drug dose reduction factor (0.0, 1.0)

kb carrying capacity 400 cell units [18]

γ strength of immune system response 0.1

a1 recruitment rate of T-cells from thymus [0, 0.5] day−1

a2 saturation limit for the recruitment of

T-cells

200 cell units [18]

ǫ reproductive stimulus of T-cells 1.0 [18]

κ reproduction control of T-cells 200 cell units [18]

µ death rate of immune cells 0.1 day−1
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3 Results

To assess the within-host model proposed in the previous section,

Eqs. (1-7) are numerically solved. To accomplish this, the fourth

order Runge-Kutta method has been used with the initial condi-

tions S = i0 = 1 and R = Sd = Rd = 0. Besides, to reduce com-

putational time, we have solved these equations with a Hayflick

limit n = 3, which yields the results as n = 23. Figures 4(a) and

4(b) depict results for n = 3 and n = 23, respectively, showing

that they are qualitatively equivalent. In all simulations, except

when it is mentioned, parameters used are q = 10−6, ν = 0.4,

γ = 0.1, g = 0.1, kb = 400, ω = 0.9, ν1 = νω, a2 = 200, m = 3.0,

κ = 200, ǫ = 1.0, and µ = 0.1.

Since the model is numerically evaluated, two different thresholds

have to be defined to solve equations (1-7). The first threshold is

the minimum bacterial load ⋆ , Ωmin = 10−3, a value used due to

limitations in the computational numerical precision. If the host

bacterial load, Ω, falls below this threshold (Ω < Ωmin), then

Ω is considered to be zero. In other words, a pathogen load be-

low this value means that the host is clear of TB pathogens, i.e.,

⋆ Note that the bacterial load of each threshold, and for all bacterial populations

mentioned in this work, represents a normalized number of pathogens.
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he/she is susceptible, X. The second threshold, Ωlat = 102, sets

the amount of pathogens necessary for the transition between

TB latency and activity to take place. If a host bacterial load is

Ω ≤ Ωlat, the host is latent, LS or LR; otherwise, the host is in-

fectious, TS or TR. For instance, this can be seen in Figure 3 from

the 0th to approximately 3rd year. In this period, the bacterial

load (Ω < 102) and the immune system population are higher

than their initial values. However, from the 3rd year on, bacte-

rial load increases (Ω > 102) whereas the immune system goes to

a minimum value remaining steady. This behavior characterizes

the transition between the latent and active states.

In our model, cases of co-infection are not considered, in the

sense that only one strain defines the type of infection, S or R.

As an example, one can see the bacterial load as function of

time in Figure 4(a). In the first 20 years prior to treatment, S

population is higher than R population. Then, even though both

strains coexist, we consider the host as being in TS state. Yet, in

the 22th year,R population turns to be higher than S population.

Again, even both strains are present in the within-host, he/she

is considered as TR. The same criteria is used to define whether

the host is LS or LR.
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Figures 1-6 depict numerical solution of our model. For Figs. 1-

3 the system evolves with no health system intervention, α = 0.

Yet, for Figs. 4-6 the system evolves with no antibiotics treatment

until the last day of the 19th year. In the first day of the 20th

the treatment is introduced with α = 0.5 for the cases shown in

Figs. 4-6. In the six cases, infection of a susceptible individual,X,

took place at time t = 0, with type S bacteria only, thus S = 1

and R = 0. The figures show S, R and I populations as function

of time. The interpretation of these within-host populations as

health states are in the text.

Figures 1-3 depict numerical solution of our model with no health

system intervention, α = 0. In the three cases, infection of a

susceptible individual, X, took place at time t = 0, with type

S bacteria only, thus S = 1 and R = 0. The figures show S, R

and I populations as function of time. The interpretation of these

within-host populations as health states are in the text.

In Figure 1 one can see a within-host system evolution during

10 years with a recruitment rate of T-cells from thymus a1 =

0.41. This value allows the host immune response to be strong

enough to clear the infection. Therefore, one month after infection

has occurred, the immune system starts to control the pathogen
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Fig. 1. Arbitrary population S (solid line) and I (dotted dashed line) as function of

time for a host infected at t = 0. Host is clear of TB pathogens 10 years after the

infection. Vertical axis is on a logarithmic scale. Parameters: a1 = 0.41, f = 0.2,

α = 0.

reproduction. Close to the end of the tenth year, the host system

is completely clear of the infection. Note that no antibiotics was

used in this case, α = 0.
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Fig. 2. Arbitrary population S (solid line) and I (dotted dashed line) as function

of time for a host infected at t = 0. Host is in an latent state of TB, LS. Horizon-

tal dotted line represents the latency threshold, Ωlat = 102. Vertical axis is on a

logarithmic scale. Parameters: a1 = 0.27, f = 0.2, α = 0.
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Figure 2 depicts the evolution of the within-host system for a1 =

0.27. From the first month until the second one after the infection

has happened, the S population grows. This bacterial growth is

followed by the immune response, which increases the I popu-

lation as well. Then, by approximately in the fourth month the

infection is under control due to the immune system response.

Once the host immune system has controlled the infection, but

not cleared it, and Ω < Ωmin, the latent stage starts.
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Fig. 3. Arbitrary population S (solid line), R (dashed line) and I (dotted dashed

line) as function of time for a host infected at t = 0. Host is in an active state of

TB, TS . Horizontal dotted line represents the latency threshold, Ωlat = 102. Vertical

axis is on a logarithmic scale. Parameters: a1 = 0.251, f = 0.2, α = 0.

The evolution of a TB infection from a susceptible state to an ac-

tive state can be seen in Figure 3. In this case, a1 = 0.251, which

represents a lower migration rate of T-cells in comparison to the

previous cases, figures 1 and 2. The reduction in this parameter
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value completely changes the outcome of the system. Approxi-

mately one year after infection starts, the immune system is no

longer capable of controlling the bacterial reproduction. In the

beginning of the second year, R type pathogens start to increase

to significant values. Thus, bacterial load, Ω, reaches values that

suppress the immune system, I, to minimum values.

Then, by around the 3rd year, S type population crosses the

latency limit (dashed line), Ωlat. From this moment, the host

progress from the latent state, LS, to the active state, TS. Note

that no antibiotics are being used, therefore, the rise of resistant

strains is due only to the mutation of sensitive strains. At the 10th

year, ≈ 12% out of the total pathogen population is composed of

R type bacteria.

The impact of antibiotic treatment on the emergence of drug

resistance can be seen in Figure 4. An individual with active

tuberculosis with type S pathogen, TS, starts the treatment in

the first day of the 20th year. The drug is taken on a daily basis

during 180 days with clearance rate α = 0.5.

An abrupt fall in the S population occurs immediately after the

treatment begins. About one month after the use of drugs starts,
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Fig. 4. Arbitrary population S (solid line), R (dashed line) and I (dotted dashed

line) as function of time. Treatment starts at the first day of the t = 20th year

for (a) n = 3 and t = 25 for (b) n = 23. Antibiotic doses are applied on a daily

basis during 180 days. Host is initially in TS state but after the use of drugs he/she

becomes TR. Horizontal dashed line represents the latency threshold, Ωlat = 102.

Vertical axis is on a logarithmic scale. In addition, we present the results for n = 23

and they are qualitatively the same as n = 3, since S population vanishes and R is

the highest population. Parameters: (a) n = 3, a1 = 0.20, f = 0.1, α = 0.5, δ = 0.5

(b) n = 23, kb = 10000, α = 0.8, δ = 0.2.
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sensitive pathogens are completely cleared from the system. Be-

cause of the relative efficacy of antibiotics, δ = 0.5, the R pop-

ulation also decreases rapidly. Nevertheless, resistant strains are

not completely cleared from this system. These two phenomena

are followed by the increase in the immune system population, I.

Also in Fig. 4, as soon the treatment ends, the immune system

response is not enough to inhibit the R strain’s growth. As long as

the remaining resistant pathogens do not have to compete with

sensitive strains (S = 0), their growth is faster. Thus, around

the first month of the 21th year, this host becomes TR. This is

a typical case of emergence of drug resistance due to the use of

antibiotics.

Figure 5 depicts a within-host system with the same initial con-

ditions as in fig. 4. The only difference in this case is a slightly

higher recruitment rate of T-cells from thymus, a1 = 0.24. Again,

S strains vanish due to the drugs, which gives a competitive ad-

vantage to R strains. A rapid growth of resistant pathogens initi-

ates as soon as treatment ends. Yet, a higher a1 allows a stronger

immune system response to fight against resistant strains. The

final result is an equilibrium between R and I populations. Once

the R population is lower than the latency limit, this individual

19
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Fig. 5. Arbitrary population S (solid line), R (dashed line) and I (dotted dashed

line) as function of time. Treatment starts at the first day of the t = 20th year.

Antibiotic doses are applied on a daily basis during 180 days. Host is initially in

TS state but after the use of drugs he/she becomes LR. Horizontal dashed line

represents the latency threshold, Ωlat = 102. Vertical axis is on a logarithmic scale.

Parameters: a1 = 0.24, f = 0.1, α = 0.5, δ = 0.5.

becomes latent, LR.

Results shown in Figure 6 are for a system under the same initial

conditions of figures 4 and 5. The conversion rate to the dormant

stage is reduced to f = 0.05, a1 = 0.23. The change in these

parameters combined with the effect of antibiotics are enough

to eliminate S and R type pathogens completely. This is a case

where the host is cured due to the use of antibiotics.

The numerical solutions of equations (1-7), shown in Figures 1-6,

do not reveal the important role of entry (f) and exit (g) of the

dormancy state. We note that dormant bacteria do not reproduce
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Fig. 6. Arbitrary population S (solid line), R (dashed line) and I (dotted dashed

line) as function of time. Treatment starts at the first day of the t = 20th year.

Antibiotic doses are applied on a daily basis during 180 days. Host is initially in

TS state but after the use of drugs he/she becomes LR. Horizontal dashed line

represents the latency threshold, Ωlat = 102. Vertical axis is on a logarithmic scale.

Parameters: a1 = 0.23, f = 0.05, α = 0.5, δ = 0.5.

and thus they also are not affected by antibiotics. Thus, in the

next subsection, the impact of this state in the outcome of the

within-host system is tested by using a set of antibiotic protocols.

3.1 Protocols

In this section, the use of antibiotics is analyzed by testing differ-

ent types of protocols. All the results are obtained for the within-

host model applied to only one host. Outcomes of each protocol

are shown in diagrams for parameters f , conversion rate from ac-

tive to dormant state, versus a1, and recruitment rate of T-cells
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from the thymus. Three types of protocols are implemented: stan-

dard (SP), intermittent (IP) and oscillating intermittent (OIP).

For the three types of protocols, Eqs. (1-8) are solved numerically

for several combinations of parameters f and a1. Initially, the sys-

tem evolves with no intervention during a period equivalent to 75

years. After this period, steady state is reached, the treatment is

applied and the system starts to evolve again. Outcomes shown

in all diagrams are obtained 25 years after the beginning of the

treatment.

However, to check the evolution of the system with no medical

intervention, we initially present a diagram without treatment.

Figure 7 depicts a phase diagram for individuals without treat-

ment. In this case, three outcomes are possible: i) to be naturally

cured; ii) to become latent with only type S pathogen (LS) and,

iii) to become ill with TB with type S bacteria only, (TS). One

can see clearly in the diagram that the existence of a dormant

stage (variation of f), without the use of antibiotics, does not

affect the outcomes. The different results are due only to the

recruitment rate of immune cells coming from the thymus, a1.

Note that for latent and active states, only sensitive pathogens

are present. This is the reason that if no antibiotics is used, the

22



possibility for the R type to arise is due only to mutation of S

during strain reproduction.

Fig. 7. Phase diagram of the conversion rate from active to dormant state, f , versus

the recruitment rate of T-cells from thymus, a1, without treatment (α = 0). Each

color represents a state: green, X; yellow, LS ; red, TS .

3.1.1 Standard Protocol (SP)

The standard protocol (SP) is characterized by the fact that indi-

viduals are getting antibiotics on a daily basis during 180 days (6

months). Figure 8a depicts the phase diagram for the standard

protocol with α and δ kept constant during the treatment pe-

riod. In this plot, δ = 0.8, what means that the actual clearance

rate of R strains is not α, but δα. The use of a relative efficacy,

δ 6= 0, can be interpreted as a multi-drug antibiotic treatment.

Due to this combination of parameters, only four states of TB

are present in the diagram. If both S and R are above threshold,
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we considered as an S strain for the effect of representation in

the diagram, hereafter.

(a) α = 0.8, δ = 0.8 (b) α = 0.8, δ = 0.0

Fig. 8. Phase diagram of the conversion rate from active to dormant state, f , versus

the recruitment rate of T-cells from thymus, a1, using standard protocol (SP). Note

how dormancy changes the outcomes. Each color represents a state: green,X; yellow,

LS ; blue, LR; red, TS ; purple, TR. In this diagram and in the following ones, if S

and R are above threshold, we considered as an S state for representation.

As expected, on the other hand, there is a strong reduction in

TS cases (red area of the diagram) due to the effect of drugs

in sensitive strains. On the other hand, the emergence of drug

resistance problem, i.e, TR cases (purple area) is now present.

Resistant strains do not arise for f / 0.15 no matter the value of

a1. For values of f ' 0.20, the influence of the dormancy in the

emergence of resistant strains becomes evident. As a1 increases,

more immune cells from thymus are available in the host system.

Thus, to allow the existence of R type pathogen, the conversion

rate to the dormant state, f , also has to be increased. Cells in
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a dormant state are not affected by immune response nor by

antibiotics.

The plot of Fig. 8b shows the results of a SP protocol treatment

with one drug. Since resistant strains are not affected only by

the treatment (δ = 0.0), the emergence of drug resistance is high

(purple area). Cases of latency with resistant pathogens, LR, even

small, (blue area) can be seen in the diagram. The prevalence of

TS cases occurs only for f ' 0.40 and for a1 / 0.25. If a1 '

0.25, the immune system is strong enough to eliminate all type

of pathogens (no active cases) or to allow the latency state (yellow

area).

3.1.2 Intermittent Protocol (IP)

The intermittent protocol (IP) is characterized by the application

of drugs in an intermittent fashion. More specifically, individuals

get antibiotics during y days. These doses are interrupted for

another n days. This cycle is repeated during a predetermined

period, p. The relation y/n/p defines the type of intermittent

protocols that is being implemented.

Figure 9a depicts a phase diagram for an IP:3/6/540. The treat-

ment is applied during 3 days, it is interrupted during 6 days
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and this cycle is repeated by 540 days. Note that a 3/6/540 cy-

cle guarantees that the total amount of doses is the same of a

standard protocol.

(a) IP:3/6/540, α = 0.8, δ = 0.8 (b) IP:6/1/210, α = 0.8, δ = 0.8

Fig. 9. Phase diagram of the conversion rate from active to dormant state, f , ver-

sus the recruitment rate of T-cells from thymus, a1, with intermittent protocol

IP:3/6/540. The cycle is 3 days with treatment and 6 days without. Note that dor-

mancy changes the outcomes. Each color represents a state: green, X; yellow, LS ;

blue, LR; red, TS ; purple, TR.

Fig. 9a shows that the IP:3/6/540 presents a worse outcome com-

pared to the SP protocols, show in Figs. 8a and 8b. Red area of

the diagram, representing TS, is bigger than in the case of SP

protocols. Besides, IP:3/6/540 presents emergence of drug resis-

tance and it also allows the existence of a larger latency region,

LS (yellow area).

Results for an IP:6/1/210 are displayed in Figure 9b. Again, for

the sake of comparison, the whole cycle is 210 days, to keep the
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same amount of doses of a SP. The IP:6/1/210 presents better

results than the IP:3/6/540 (Fig. 9a), a similar outcome with

δ = 0.8 (Fig. 9b) and better than SP with δ = 0.0 (Fig. 8b). This

protocol has a smaller area for TS cases in comparison to the

IP:3/6/540. Nevertheless, in the diagram of Fig. 9b, TR region is

larger than in the Fig. 9a.

3.1.3 Oscillating Intermittent Protocol (OIP)

The oscillating intermittent protocol (OIP) is similar to intermit-

tent protocol discussed previously. As mentioned before, α is the

rate at which antibiotics kill S type bacteria. The main feature of

OIP is that the value of α oscillates during the treatment. Thus,

this parameter becomes time dependent and obeys the relation

αt = ραt−1, where ρ is the drug dose reduction factor. For in-

stance, OIP:3/6/540 means that the drug is: taken during three

days (α is constant)/suspended by six days (α decays)/the whole

treatment lasts 540 days.

Using OIP, we aim to simulate two different types of conditions.

Firstly, a scenario where the drug is not completely cleared from

the host system in a period of one day. Thus we can observe how

different amounts of the antibiotics, inside the host, can affect the
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disease. Secondly, a kind of antibiotic which is taken up by the

host during a period with different concentration. By concentra-

tion, we mean that each dose could be made of pills of different

sizes.

Fig. 10. Oscillation of αt as function of time for intermittent protocols. At the first

day of treatment, t = 0, αt=0 = 0.8 and it is reduced daily by a factor ρ = 0.8. Note

that after a period of 9 days the parameter αt returns to its initial value αt=0.

In Figure 10, the behavior of αt as function of time in days,

with a reduction factor, ρ = 0.8, is shown. In other words, αt is

reduced 80% in relation to the value of the previous day. This

daily reduction occurs in a period without treatment and then it

returns to its initial value again.

Figure 11a depicts results for an OIP:3/6/540, i.e, 3 days getting

antibiotics, 6 days without antibiotics, during a 540 days period.

Again, the amount of doses taken is the same as in the standard
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protocol.

The αt oscillation is implemented similarly to method shown in

figure 10. In the first day, αt=0 = 0.8 and then, in the second day,

it is reduced for a value of αt=1 = ραt=0 = 0.64, with ρ = 0.8.

In the third day, the antibiotics is again reduced for the value

αt=2 = ραt=1 = 0.512. Finally, the treatment is interrupted (α =

0) during 6 days and this whole cycle is repeated for 540 days.

The largest area in diagram of Fig. 11a is related to susceptible

cases, X. In comparison to the the SP and IP protocols tested in

the previous subsections, OIP:3/6/540 has the best outcome. TS

and TR cases emerge only for small values of a1 and high values of

f . Note that even though the number of doses is the same as SP

protocol, the different values of concentrations implies that the

total quantity of antibiotics is smaller. In other words, an OIP

protocol presents better results and besides it is less expensive.

Figures 11b depicts an OIP:3/6/540 with a reduction factor ρ =

0.5. This protocol is similar to the fig. 11a except by the reduction

factor which is now 0.5. This means that the concentration of

antibiotics in the host system is reduced by 50% in relation to

the previous day. A simple 50% reduction in the concentration of
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(a) OIP:3/6/540, δ = 0.8, ρ = 0.8 (b) OIP:3/6/540, δ = 0.8, ρ = 0.5

(c) OIP:1/6/540, δ = 0.8, ρ = 0.8 (d) OIP:3/6/360, δ = 0.8, ρ = 0.5

Fig. 11. Phase diagram of the conversion rate from active to dormant state, f , versus

the recruitment rate of T-cells from thymus, a1 for oscillating intermittent protocols

with αt=0 = 0.8. Note how dormancy changes the outcomes. Each color represents

a state: green, X; yellow, LS ; blue, LR; red, TS ; purple, TR.

antibiotics provokes worse results, as seen in fig. 11b.

In an OIP:3/6/540 with ρ = 0.5, though TR cases area has just

been displaced in the diagram, TS cases area is clearly larger than

in OIP:3/6/540 with ρ = 0.8. The difference in the concentration

of antibiotics does not affect the emergence of drug resistance. On

the other hand, this reduced concentration allows the persistence

of S strains in a larger region of the diagram.
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Figure 11c depicts results for an OIP:1/6/540 with ρ = 0.8. The

cycle 1/6 for the whole 540 days period means that only 1/3 of SP

doses will be used. For this protocol, each individual will only take

one dose of antibiotics once in a week. For this protocol, results

are between those obtained in figs. 11a and 11b. Emergence of

drug resistance is higher, despite the one week dose.

In Fig. 11d is plotted an OIP:3/6/360 with a reduction factor

ρ = 0.8. The reduction of the period of treatment from 540 days

to 360 days means that 2/3 of the total doses are being used. In

this diagram regions related to TS is bigger whereas TR region is

similar to the protocol form fig. 11c. Sentitive TB persists and

the emergence of drug resistance still takes place. Even though

the OIP:3/6/360 has worse outcomes compared to OIP:3/6/540

(fig. 11a), its results are better than the SP.

In order to understand why the OIP is so efficient, we present in

Fig. 12, how the population of S is changed for both protocols:

IP and OIP. It is clear that the population decreases in a faster

rate for the OIP than IP.
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Fig. 12. Arbitrary populations of S and R strains for two different protocols

IP:3/6/540 and OIP:3/6/540. Inset: Zoom for the period between 0.00 and 0.04

years. Although one can see a decreasing trend in both protocols, it is more pro-

nounced in the OIP. Parameters are: α = δ = 0.8 and f = a1 = 0.2.

4 Discussion

In this paper we propose a within-host TB model with the inter-

play among sensitive/resistant pathogens, immune system cells,

bacterial dormancy and antibiotics. In contrast to existing within-

host models, here resistant strains and bacterial dormancy are

combined simultaneously in our model. The host’s health state is

defined according to his/her pathogen load, allowing more pre-

cise quantification of the distance between TB latency and activ-

ity. This is important to determine the necessity of an antibiotic

treatment as well as its urgency.

A set of coupled ordinary differential equations describes the
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within-host model dynamics. Numerical solutions varying the

amount of antibiotic doses and their periodicity define three dif-

ferent protocols: standard (SP), intermittent (IP) and oscillating

intermittent (OIP) protocols. They are analysed for a range of

values for the rate of T-cells migration from thymus and pathogen

dormancy rates.

Although there are the remnants of active cases with drug resis-

tant strains, TR, the oscillating intermittent protocol (OIP) leads

to a greater number of susceptible individuals, X. This is robust

under the variation of the drug dose reduction factor, ρ = 0.8

and ρ = 0.5, with relative efficacy δ = 0.8 for both cases. It is

the most effective protocol analysed. The effectiveness of OIP is

followed by SP, also with δ = 0.8. Even though the latter proto-

col presents a lower amount of susceptibles, X, it only presents

latent drug resistant cases, LR. Finally, the least effective proto-

col is IP, with δ = 0.8, since active cases, TR, are present instead

of resistant latent ones, LR. We speculate that OIP may also be

the most effective protocol for other diseases, implying in a lower

treatment cost.

33



5 Acknowledgments

A.L.E. and C.T.B. wish to thank Natural Sciences and Engineer-

ing Research Council of Canada (NSERC) and Canadian Insti-

tutes of Health Research (CIHR) for financial support. A.S.M. ac-

knowledges the Brazilian agency CNPq (305738/2010-0) for sup-

port. B.C.T.C. acknowledges the Brazilian agency CNPq (127151/2012-

5) for support. This work is partially supported by Brazilian agen-

cies CNPq, FAPERJ and CAPES.

References

[1] C. D. Deangelis and A. Flanigin. Tuberculosis - a global problem requiring a

global solution. JAMA, 293:2793–2794, 2005.

[2] World Health Organization. Tuberculosis fact sheet nr. 104. http://www.who.

int/mediacentre/factsheets/fs104/en/index.html, Nov 2010.

[3] B. R. Bloom and C. J. L. Murray. Tuberculosis: commentary on a reemergent

killer. Science, 257:1055–1064, 1992.

[4] M. A. Behr et al. Transmission of mycobacterium tuberculosis from patients

smear-negative for acid-fast bacilli. Lancet., 353(9151):444–449, 1999.

[5] W. W. Nazaroff M. Nicas and A. Hubbard. Toward understanding the risk

of secondary airborne infection: emission of respirable pathogens. J. Occup.

Environ. Hyg., 2(3):143–154, 2005.

34



[6] Thomas House and Matt J. Keeling. The impact of contact tracing in clustered

populations. PLoS Comput Biol, 6(3):e1000721, 03 2010.

[7] Mercedes Pascual. Computational ecology: From the complex to the simple and

back. PLoS Comput Biol, 1(2):e18, 07 2005.

[8] S. M. Blower et al. The intrinsic transmission dynamics of tuberculosis

epidemics. Nature Medicine, 8(1):815–821, 1995.

[9] P. M. Small S. M.Blower and P. Hopewell. Control strategies for tuberculosis

epidemics: new models for old problems. Science, 273:497–500, 1996.

[10] T. C. Porco T. S. M. Blower and T. Lietman. Tuberculosis: the evolution of

antibiotic resistance and the design of epidemic control strategies. Mathematical

Models in Medical and Health Sciences. Eds Horn, Simonett, Webb. Vanderbilt

University Press, 1998.

[11] S. M. Blower and C. L. Daley. Problems and solutions for the stop tb

partnership. Lancet. Infect. Dis., 2:374–376, 2002.

[12] K. Koelle S. M. Blower and T. Lietman. Antibiotic resistance - to treat...(or

not to treat)? Nature Medicine, 5(4):358–359, 1999.

[13] T. C. Porco and S. M. Blower. Quantifying the intrinsic transmission dynamics

of tuberculosis. Theor. Popul. Biol., 54:117–132, 1998.

[14] S. M. Blower et al. The intrinsic transmission dynamics of tuberculosis

epidemics. Nature Medicine, 1(8):815–821, 1995.

[15] Justino Alavez-Ramirez et al. Within-host population dynamics of antibiotic-

resistant M. Tuberculosis. Mathematical Medicine and Biology, 24:35–56, 2006.

[16] C. Castillo-Chavez and Z. Feng. To treat or not to treat: the case of tuberculosis.

J. Math. Biol., 35:629–659, 1997.

35



[17] C. Castillo-Chavez and Z. Feng. Mathematical Models for the Disease

Dynamics of Tuberculosis. In: Axelrod, O.D., Kimmel, M. (eds.) Advances In

Mathematical Population Dynamics - Molecules, Cells and Man, pp. 629-656.

World Scientific Press, Singapore, 1998.

[18] Jacob C. Koella Rustom Antia and Veronique Perrot. Models of the within-

host dynamics of persistent mycobacterial infections. Proc. R. Soc. Lond. B,

263:257–263, 1996.

[19] S. Marino, D. Sud, H. Plessner, P.L. Lin, J. Chan, et al. Differences in

reactivation of tuberculosis induced from anti-tnf treatments are based on

bioavailability in granulomatous tissue. PLoS Comput Biol, 3(10):e194, 2007.

[20] Sud D., Bigbee C., Flynn J.L., and Kirschner D.E. Contribution of cd8+ t cells

to control of mycobacterium tuberculosis infection. J Immunol., 176(7):4296–

314, 2006.

[21] M. Fallahi-Sichani, M. El-Kebir, S. Marino, D.E. Kirschner, and J.J. Linderman.

Multiscale computational modeling reveals a critical role for tnf-alpha receptor

1 dynamics in tuberculosis granuloma formation. The Journal of Immunology,

186(6):3472, 2011.

[22] M.A. Nowak and R.M.C. May. Virus Dynamics: Mathematical Principles of

Immunology and Virology. Oxford University Press, 2000.

[23] Rustom Antia, Bruce R. Levin, and Robert M. May. Within-Host Population

Dynamics and the Evolution and Maintenance of Microparasite Virulence. The

American Naturalist, 144(3), 1994.

[24] Lauren Ancel Meyers, Bruce R. Levin, Anthony R. Richardson, and Igor

Stojiljkovic. Epidemiology, hypermutation, within-host evolution and the

virulence of neisseria meningitidis. Proceedings of the Royal Society of London.

Series B: Biological Sciences, 270(1525):1667–1677, 2003.

36



[25] Kasia A. Pawelek, Giao T. Huynh, Michelle Quinlivan, Ann Cullinane, Libin

Rong, and Alan S. Perelson. Modeling within-host dynamics of influenza virus

infection including immune responses. PLoS Comput Biol, 8(6):e1002588, 06

2012.

[26] Fabio Luciani and Samuel Alizon. The evolutionary dynamics of a rapidly

mutating virus within and between hosts: The case of hepatitis c virus. PLoS

Comput Biol, 5(11):e1000565, 11 2009.

[27] S. Alizon and van M. Baalen. Acute or chronic? within-host models with

immune dynamics, infection outcome, and parasite evolution. Am Nat.,

172(6):E244–56, December 2008.

[28] Gesham Magombedze Edward T. Chyiaka and Lawrence Mutimbu. Modelling

within host parasite dynamics of schistosomiasis. Computational and

Mathematical Methods in Medicine, 11(3):255–280, Semptember 2010.

[29] Carl T. Bergstrom Vitaly V. Ganusov and Rustom Antia. Within-host

population dynamics and the evolution of microparasites in a heterogeneous

host population. Evolution, 56(2):213–223, 2002.

[30] A. J. Grant, O. Restif, T. J. McKinley, M. Sheppard, D. J. Maskell, and

P. Mastroeni. Modelling within-host spatiotemporal dynamics of invasive

bacterial disease. PLoS Biol., 6(4):e74, April 2008.

[31] Janis E. Wigginton and Denise Kirschner. A model to predict cell-mediated

immune regulatory mechanisms during human infection with mycobacterium

tuberculosis. The Journal of Immunology, 166(3):1951–1967, 2001.

[32] Sarah L. Kinnings, Nina Liu, Nancy Buchmeier, Peter J. Tonge, Lei Xie, and

Philip E. Bourne. Drug discovery using chemical systems biology: Repositioning

the safe medicine comtan to treat multi-drug and extensively drug resistant

tuberculosis. PLoS Comput Biol, 5(7):e1000423, 07 2009.

37



[33] Bálint Mészáros, Judit Tóth, Beáta G. Vértessy, Zsuzsanna Dosztányi, and
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