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Abstract

This thesis introduces a new Monte Carlo randomized algorithm for computing the
characteristic polynomial of a rank-2 Drinfeld module. We also introduce a deterministic
algorithm that uses some ideas seen in Schoof’s algorithm for counting points on elliptic
curves over finite fields. Both approaches are a significant improvement over the current
literature.
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Chapter 1

Motivation

Elliptic curves are one of the most well-studied Algebro-geometric objects. Their deep
importance to Number theory is emphasized by a connection to several famous theorems
and conjectures, including Fermat’s Last theorem and the Birch and Swinnerton-Dyer
conjecture. Among the most ground breaking results is Schoof’s algorithm for counting the
number of points on an elliptic curve over a finite field [26]. Along with later improvements
due to Elkies and Atkin, Schoof’s algorithm provides an approach for point counting which
is practical for use in cryptography. Elliptic curve cryptography using the Schoof-Atkin-
Elkies algorithm is currently the most widely used implementation of pre-quantum public
key cryptosystem.

Drinfeld modules were originally introduced in [7] who used them to partially prove the
Langlands conjecture for GL(2, F') when F is an algebraic function field. This proof was
later completed using shtukas, a further generalization of Drinfeld modules. The original
name of “elliptic module” emphasizes the fundamental connection between elliptic curves
and Drinfeld modules, with the latter intended as a function field analogue of the former.
In this vein, significant scholarship has been devoted to producing Drinfeld analogues of
elliptic curve constructions, including cryptographic protocols which are highly insecure
[25]. The primary motivation of this thesis is to extend this scholarship by providing
efficient algorithms for performing computations on Drinfeld modules, and in particular
studying techniques for computing the characteristic polynomial of a Drinfeld module,
which characterizes equivalence classes of Drinfeld modules up to isogeny and performs a
critical role in Schoof’s algorithm for elliptic curves.

The main results of this thesis are two new algorithms for computing the characteris-
tic polynomial of a rank-2 Drinfeld module. The best algorithm given in the literature,
due to Gekeler, runs in O(n®log®q) field operations. In contrast, our new randomized
algorithm takes O(n?lognloglognlog q), while our deterministic approach uses approxi-
mately O(n?%°®logn + n*lognloglognlogq) operations. Also included is a new divide-
and-conquer algorithm for evaluating the characteristic map of a Drinfeld module which
runs in O(n?rdlog(rd)log q) field operations.



Chapter 2

Preliminaries

2.1 Basic Algorithms and Notation

There will be core algorithms and notation that we will make use of throughout this
work, but will largely treat as black boxes. We will assume the reader is familiar with
the algebraic concepts of groups, rings, and fields. In determining the complexity of the
algorithms presented, two computational models will be used:

e an algebraic model for algorithms over a ring or field, in which the standard ring
operations of addition and multiplication can be performed at unit cost.

e a boolean model which counts bit complexity of all operations.

The algebraic model will typically be preferred, however the Kedlaya-Umans algorithm
for modular composition does not always admit an algebraic algorithm. Algorithms uti-
lizing modular composition will have their complexity given in both an algebraic and
boolean model.

Operation 1 (Matrix Multiplication). Let R be a ring, and let M be an m X n matriz,
and N an n x ¢ matriz, both with entries contained in R. Compute M x N.

We will let w denote an exponent such that two n X n matrices can be multiplied using
O(n%) ring operations in any ring R. The current best known bound is w ~ 2.3728 [9].
Similarly, we let wy denote the exponent of n x n and n x n? multiplication, with the best
known bound of wy < 3.2516 [9], and naively wy < w + 1.

Operation 2 (Polynomial Multiplication). Let R be a commutative ring, and let f,g be
polynomials in R[T)|. Compute f-g.

We will let M(n) denote the the complexity of polynomial multiplication when f
and g are both of degree at most n. For rings containing sufficiently many primitive
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roots of unity, methods based on the Fast Fourier Transform achieve operation counts
of M(n) € O(nlogn) [10, Chapter 8]. For general rings, the best known ring operation
count is M (n) € O(nlognloglogn) [4].

We may interpret a polynomial f = > ™", ¢;T" as a vector whose " entry is ¢;, and
may similarly interpret such a vector as a polynomial. We will also have a standard notion
of interpreting a list of polynomials { f1, ..., f,} C R[T] of degree at most m as the matrix
M € R™DX" whose it column is the vector f;. We will also implicitly assume that, for
a prime power ¢, any finite field written as Fym is implemented as a polynomial ring over
F, modulo an irreducible of degree m.

Definition 1. Let f,g be polynomials of degrees di,ds respectively, with coefficients in
a commutative ring R, and roots ay,...,aq,, B1,..., B4, in some extension of R. The
resultant of f and g is defined to be

di d2

res(f, g) : d1 gd2 HH

=1 j=1

2.2 Modular Operations

Operation 3 (Modular Composition). Let R be a ring, and f, g, h € R[T] with h monic.
Compute

f(g(T)) mod h(T).

Fix deg(f),deg(g),deg(h) < d. Naively using polynomial multiplication to substi-
tute ¢g into f yields a runtime of O(dM(d)) operations in R. The classical algorithm
for modular composition due to Brent and Kung [2] solves modular composition using
O(dwTH) operations in F. A slight improvement to this by Huang and Pan gives a count
of O(d?)[11], which for current estimates of w, is approximately O(n'25). More recent
work due to Kedlaya and Umans, utilizing a reduction to multipoint evaluation and an
FFT approach, gives an operation count of O(d'*9log'**™" |R|) for any § > 0 when R
is a finite ring of the form Z/rZ[T]/E(T) for some positive integer r and some polyno-
mial E(T) € Z/rZ[T) and containing at least d'*° elements whose differences are units
[19, Theorem 7.1]. Moreover, they show that this runtime is optimal up to lower order
terms. Since the algorithm involves lifting the ring to characteristic 0, the complexity is
determined in a bit operation model rather than an algebraic one.

Operation 4 (Automorphism Projection). Given a field L, automorphism o of L fizing
a subfield K with m = [L : K], and a K-linear map u : L — K, for any « € L and
positive integer k, compute u(c'(a)) for all 0 < i < k.



For a prime power ¢, when K = F,, L = F;m, and 0 : o — o is the order ¢ Frobenius,
we can take K < m — 1 and an algebraic baby-step/giant-step algorithm due to Kaltofen
and Shoup solves the automorphism projection problem in O(mw2/2+(1=A)w=1)/2+0(1) 4
m!*A+teW log q) field operations in F, for any 0 < 8 < 1. For the current best bounds
of w,wy, taking B = 0.6258 yields a complexity of O(m!%?8t°W]ogq). Kedlaya and
Umans extend their approach for modular composition to produce an algorithm to solve
automorphism projection in O(d'*°log|L|) bit operations when L is finite and o is the
order g Frobenius.

2.3 Automorphisms and Normal Bases

We again let L be a field, K a subfield of L, and let o : L — L be a K-automorphism.

Definition 2. A basis {bo,...,bm_1} for L as a vector space over K is normal with
respect to o if o(b;) = b;i_1 for1=0,...,m — 1, with indices taken modulo m.

Operation 5 (Normal Basis Construction). Find an element b € L such that
{b,0(b),...,0™ ()} is a basis for L/K.

In the finite field case, with K =F,, L =Fm, 0 : a — a?, von zur Gathen and Gies-
brecht [25] give a randomized algorithm that runs in O(m?log q) F,. Kaltofen and Shoup
in [18] give an improved algorithm, again randomized, that determines a normal element
in O(m2/2+1=A)w=1/2+0(1) 4 pl+b+e(l) |og ¢) F, operations for any 0 < 3 < 1. Kedlaya
and Umans in [19] produce an overall runtime for selecting a normal basis, and converting
to and from the standard basis for Fm over F,, of O(m®2/?log' ") ¢ 4 m!+e) Jog?toM) ¢)
bit operations. This is achieved by utilizing the algorithm due to Kaltofen and Shoup,
which depends on algorithms for automorphism projection and evaluation, in conjunction
with their own asymptotically optimal algorithm for modular composition and modular
power projection. This yields a complexity of roughly O(m!628+°() Jog q) F, operations
for Kaltofen-Shoup when 8 = 0.6258, and O(m!6258 1og! W ¢ 4 m!+e() 1og?toM ¢) it
operations for Kedlaya-Umans.

2.3.1 Linear Recurring Sequences

Definition 3. A sequence {a;}°, with entries in a field L is said to be a linear recur-
ring sequence if there exists cq,cy,...,cq—1 wn L such that

agij + Ca-10dyj—1 + Ca—2aq1j—2+ ...+ coa; =0 Vi >0
The polynomial x® + 30"} ¢z is called a characteristic polynomial of {a;}22,. The
mainimal polynomial of the sequence is the unique monic polynomial Z?:o k;xt of smallest

degree d such that Z?:o kiajyi =0 for all 5 > 0.
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Operation 6. Given a linear recurring sequence {a;}5°,, compute its minimal polynomial.

If the linear recurring sequence {a;}:2, is known to have a minimal polynomial of de-
gree at most d, the Berlekamp-Massey algorithm [21] determines the minimal polynomial
given 2d entries in O(d?) field operations over any field.



Chapter 3

Fast Multiplication of Skew
Polynomials

As part of the general view towards providing efficient algorithms for basic operations
on Drinfeld modules, efficient techniques for arithmetic on skew polynomial rings become
necessary. We begin with a field K = [F, and an irreducible commutative polynomial
p € F,lz] of degree m. Let L = F,[z]/p = F,m be a field extension of degree m, and
let 0 be a K-automorphism of L. Then the ring of skew polynomials L[X, o] consists of
polynomials in a new variable X with coefficients in L together with the commutation
relation Xa = o(a)X for a € L.

Example 1. Let =2, p=2>+x+1. Then L = {0,1, 2,2+ 1}, 0 : x — 2%, and we
have the following defining relations for L[ X, o]:

Xrz=(@+1)-X

X-(z+1)=z-X.
The goal of this section is to examine efficient algorithms to solve the following problem.

Operation 7 (Skew Polynomial Multiplication). Let a,b € L[X,o]. Compute a-b.

An algorithm due to Giesbrecht [13] for multiplying skew polynomials of degree at most
d in L[X, o] has a runtime of O(d*M (m)logq + dmM (m)logm]logq). In the following
section we will provide two more recent algorithms.

3.1 Puchinger and Wachter-Zeh’s Algorithm

The first algorithm for skew polynomial multiplication we will present is due to Puchinger
and Wachter-Zeh [24], and is valid when o is the order g Frobenius map. We provide a



more detailed analysis than in [24], particularly in light of the fact that, in their original
work, the authors assume that K-automorphisms of L can be evaluated in constant time,
whereas here we will drop this assumption.

Theorem 1. Let a,b € Fym[X, 0] be skew polynomials of degree at most d. The product
a-b can be computed in
e O(d“*?M(m) + d*/*m=2/2)) F, operations in the algebraic model using Brent-Kung

Modular composition

o O(d22M(m) + d®?>m 0 1log' W q) bit operations using the Kedlaya-Umans algo-
rithm for modular composition.

Proof. Let d* = [v/d + 1] We write a and b as

d

a= Z a; X*
=0
d

b= bX'
=0

for a;,b; € Fym. Now define

d*—1
i) _ id*+j
a® = § gy X4

=0
d*—1d*—1

_ § : E id*+j
a = aid*+jX J

i=0 j=0
d—1

=Y,
=0

Let then

A =a®.p fori=0,...,d" — 1.

Then we can rewrite a - b as

ar—1 d -1
c= Za(l)-b: Zcm.
i=0 i=0
Fori=0,...,d" — 1, each ¢V can be expanded as



d*—1 d
C(Z) = Z U,id*_i_ind*—i_j (Z kak>

=0 k=0

d* d
_ E E id*+j id*+j+k
= Qid++450 ](bk)X J

1=0 k=0

d+d*—1 h
_ Z Z jd* -+ jd*+h
= aid*+jO'Z ](bh—j) X! .

h=0 7=0

For h=0,...,d+d"—1, let

h

(9 _ id*+j

¢ —E Wigx 150" 7 (bn—j).
=0

Then
d*—

—_

d+d*—1
— (4)
c= c,

h=0

o

1=

and

O'iid* (ald*+]>0"] (bh,J)

M-

<
I
]

o (ch)) =

Let A be a d* x d* and B,C be d* x (d 4+ d*) matrices such that

Ay =07 (tiar15)
Bz’,k = O-l<bk7i) (1)
Cix =0 ()

for 0 <i,j<d*,0<k<d+d". By (1) we have C = A- B. This leads to the following
algorithm for computing c:

1. Build matrices A, B as given in (1)
2. Compute the matrix product A- B

3. Determine cy) from the entries of C' and compute ¢

In determining the complexity of step 1, the following two approaches may be used to
compute the entries of A, B:



(a) Compute matrices for o, =1 as K-linear maps on L and compute matrix powers

1

(b) Use “polynomial representations” of both o,0~! and fast modular composition.

The notion of a “polynomial representation” of the Frobenius map, which is credited
to Kaltofen in [29], proceeds as follows: first compute o := z¢ mod p, and then exploit the
observation that, for any element g(z) € Fym[z]|/p, g(2?) = g(x)?. This allows evaluation
of the Frobenius map by computing the modular composition of g with a.

In either case, we begin by representing the automorphism o : x = 2% on Fym as a, a
polynomial of degree at most m — 1, which can be done in O(M(m)log q) F,-operations.

Using the matricial approach, computing the matrix representation M, requires eval-
uating o on the standard polynomial basis {1, z,...,2™ '} for F,m over F,, which can be
done by computing o?,...,a™ ! in time O(M(m)m), and M,-1 can be computed from

M, in O(m¥).

To determine the entries of A we compute M, for 1 <7 < d*. Computation of the
matrix power M, 4+ costs O(m“logd), and computing M, ..+ for all 1 < i < d* takes
O(d*m®). With d possible values for a4+, evaluation costs O(m?d) for all entries. To
determine the entries of B we determine M, for i < d 4+ d* with a total cost O(dm®)
[F,-operations using matrix multiplication, and evaluation takes O(d3?m?) since there are
d*(d + d*) entries of the form o%(b;_;) to compute. The overall runtime of step 1 using
the matricial approach is therefore O(log(q)M (m) + dm® + d*/?m?).

We may instead compute o’ by composing o with itself. Each individual composition
takes O(m=2/2) field operations using Brent-Kung, or m!*9 log!™°" ¢ bit operations using
Kedlaya-Umans. The polynomial representation of =1 can be determined by computing
o?""", which can be done in O(logm) compositions. Computing the entries of A of the
form o= (a4« ;) requires O(log(d)) compositions to compute c~¢", and a further O(d)
compositions to compute each of o~ (ajg++;) for all choices of 0 < ¢, j < d*. Moreover, to
determine B, we use up to O(d*?) compositions to compute all entries of the form o*(by_;)
fori < k,i < d*, k < d+d*. This gives step 1 a runtime of O(d*?m®“2/24M (m) log m) field
operations using Brent-Kung, or O(d®?m!+% 4 M (m)log m) bit operations using Kedlaya-
Umans. The best overall runtime of the procedure is then O(d“2/2M (m) + d3/>m'+?)
F,-operations using Kedlaya-Umans modular composition when p < d°W.

Step two takes the time of multiplying an d* x d* matrix with an d* x (d + d*)
matrix, which is no more than O((d*)*2M (m)) = O(d*?/*M (m)). Computing cy) requires
computing and evaluating '@ (C; ;) for i < d*, k < d-+d* which adds O(d®?m?) operations

using the matricial approach or O(d*?m) using the polynomial representation.

[]

Under the current bounds for wy and M (m), the Brent-Kung approach has a complex-
ity of O(d"****mlogmloglogm + d"*m'%?°®) F, operations, while the Kedlaya-Umans



Algorithm 1 Puchinger-Wachter-Zeh (Matrix Multiplication)

1: procedure SKEWMULTIPLICATION

2 Input A prime power g, integer m, skew polynomials a, b
3 Output a-b

4: d < Max(Degree(a), Degree(b))

5: d* < [vVd+1]
6:
7

8

9

M, <+ Matrix(1, 29, 2%, ..., 2(m=19)
M, -1+ Mg_l
Mo.—d* < Mgil
: Mod* < Mg*
10: fori=2to d* —1do
11: Mo.fid* < Mo.—(ifl)d* Ma—d*
12: fori=2tod+d* —1do
13: Myi < Myi-1 M,
14: fori=0tod" —1do
15: for j=0to d*—1do
16: A[Z,j] — Ma_m* (aid*ﬂ»)
17: fori=0to d" —1do
18: fork=0tod+d" —1do
19: B[i, k‘] — Mgi(bk_i)
20: C < MatrixMultiply(A, B)
21: c+ 0
22: fori=0to d*—1do
23: fori=0tod+d" —1do
24: ¢ c+ M (C[Z,k’])
25: return c

10



Algorithm 2 Puchinger-Wachter-Zeh (Modular Composition)

1: procedure SKEWMULTIPLICATION
2: Input A prime power ¢, integer m, skew polynomials a, b
3: Output a-b

7 times
ModularCompose(«,i) :=a@oao...oq
d + Max(Degree(a), Degree(b))
a < x7 mod p
d*  [Vd+1]
a_; < ModularCompose(a,m — 1)
a_g+ < ModularCompose(a_1,d*)
10: fori=2tod" —1do

11: Ol y—id* € Oly—(i—-1)d* O Qly—d*
12: fori=2tod+d* —1do
13: Qgi < Qyi-1 O Oy

14: fori:=0to d*—1do

15: for j=0to d*"—1do
16: A[Z,j] & Qg—idx O Qjg*+j
17: fori=0tod* —1do

18: for k=0tod+d —1do
19: B[i, /{}] — Qi 0 by

20: C' < MatrixMultiply(A, B)
21: c+0

22: fori:=0to d*—1do

23: fori=0tod+d" —1do
24: ¢ ¢+ agiar 0 Ci, k]
25: return c

11



variant has a complexity of O(d"%?*mlogmloglogm + d'*m!*? Jog! o) q) bit opera-

tions. The pseudocode for the Puchinger-Wachter-Zeh algorithm is given in figures 1 and
3.

The main limiting factor is computing the evaluations of the of. The next algorithm
we will look at will attempt to eliminate this by exploiting a normal basis for o.

3.2 Fast Multiplication from Evaluation on Normal
Bases

A more recent algorithm for multiplication of skew polynomials is given by Caruso and
Le Borgne in [5], which again requires that L = F,m. Their main results are contained in
the following two theorems:

Theorem 2. Let a,b € L[X, 0] such that deg(a) + degb < d < m. Then there is an
algorithm that can compute a-b in O(d*=>m? + m@?/2H(1=0)w=1)/2+0(1) 4 y1+6+0(1) Jog ¢)
K operations for any constant 0 < 5 <1 [5].

Theorem 3. Leta,b € L[ X, o] such that deg(a), deg(b) > m. Then there is a probabilistic
algorithm that can compute a-b in O(dm@ =" 4 me2/2+A=B)w=1)/2+o(1) 4 p1+B+e(1) o0 ¢) K
operations for any constant 0 < [ < 1 with likelihood at least % [5].

The first lemma, given in [5, lemma 1.4], establishes a natural correspondence between
elements of L[X, o] and Endg(L).

Lemma 1. The map

X : L[X, 0] = Endg (L)

X—o

Z &iXi — Z &Z'O'i
induces an isomorphism x : L[X,o]/(X™ — 1) — Endg(L).
The next lemma, which is [5, proposition 1.6], allows us to exploit multiplication on
commuting polynomials to evaluate the automorphisms efficiently on normal bases:

Lemma 2. Suppose A(X) = >, a;X" € L|X, 0], and let A(T) = 3, a;T* be the poly-
nomial with identical coefficients in a commuting variable T. Let B(T) = S ' bT",
C(T) =, x(A)(b;)T". Then:



The proofs for Theorems 2 and 3 rely largely on a more general version of the following
result, which is sufficient for multiplying two skew polynomials of total degree at most
m — 1. We present a more detailed version of the proof that appears in [5, corollary 1.7],
to account for the cost of constructing and converting to and from a normal basis.

Theorem 4. Let a,b € L[X,0]/(X™ —1). The product a-b can be computed in O(m* +
mw2/2+(1=B)(w=1)/2+0(1) + mtB+o(1) log Q) ]Fq operations.

Proof. Select a normal basis {f, ..., Sm-1} of L over F, using the Kaltofen-Shoup algo-
rithm seen in 2.3, and let ) represent the change of basis matrix from a chosen stan-
dard basis to the the normal one. Assuming the standard basis is the usual power
basis {1,z,2% ...},  can be constructed from the coefficients of the prev1ously com-
puted normal basis in O(m?) F,-operations. Moreover let B(T) = S7.' 8;T%. Compute
d(T) =a(T)B(T), V(T) = b(T)B(T) which can be done in O(M (m)?) F,-operations us-
ing commutative polynomial multiplication. From Lemma 2, a/(T") = Z?Z)l x(a)(B:)T,
and so we may construct the matrices of x(a), x(b), where the domain uses the normal
basis and the codomain has the standard one, by extracting the coefficients of a’ and
v in O(m?) operations. Then x(ab) = x(a)Qx(b) which can be computed in O(m*)
[F,-operations, and the column entries give the coefficients x(ab)(3;) which allows us to
compute ¢ (T) = 27! x(ab)(8;)T" in O(m?) operations. Using Lemma 2 again, we have
that ¢/(T)B~(T) = ab(T), which takes at most O(M(m)), and the result is obtained.

]

Algorithm 3 Caruso-Le Borgne
1: procedure SKEWMULTIPLICATION
2 Input A prime power ¢, integer m, a = Z;’:Ol a; X", b= Z?:Ol b X" € Fym[X, 0]
3 Output a-b
4: Generate a normal basis {0y, ..., Bnm_1}
5: Q<+ Matrlx(ﬁo, oy Bm—t)
6
7
8
9

B« Zl_q BZTZ
a3
bt b TZ
: a <« aB
10: Y < bB
11: M, (a) < Matrix(x(a)(5o), - -, x(a)(Bm-1))
12 My  Matrix(x(5)(Bo). .- X(5) B 1)
13: C < MatrixMultiply (M, ), 2, M, ))
14: for:=0tom—1do
15: C; + i column of C
16: ¢ SO
17: c+ d(T)B(T)
18: return ¢(X)

13



3.3 Summary and Comparison

The bottleneck in the Puchinger and Wachter-Zeh approach is the computation of powers
and evaluation of the automorphism o. Representing o and o~! as polynomials and
utilizing fast modular composition to compute the ¢ eliminates an m* term over the
matricial approach guaranteeing a run time at worst quadratic in m. The Caruso-Le
Borgne manages to evade this difficulty completely by relying on a normal basis relative
to o, which in the case where ¢ is the Frobenius map we can guarantee the existence of
with natural assumptions, and algorithms to compute these bases are well studied.

The Caruso-Le Borgne algorithm’s runtimes of sm*~! (for large degree) and s*~2m?

(for small degree) offer a lower total degree than Brent-Kung’s s%/ 2m% . The Puchinger-
Wachter-Zeh approach offers an asymptotic advantage over the Caruso-Le Borgne algo-
rithm in the low degree case when we roughly have s%/2 < /m.
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Chapter 4

Elliptic Curves

The primary objective of this thesis is to develop a function field analog of techniques
used in counting rational points on elliptic curves. To that end, we first present classical
concepts and results pertaining to elliptic curves. In particular we will describe Schoof’s
algorithm, which together with improvements due to Atkin and Elkies is one of the fastest
methods available.

4.1 Mathematical Background

We will give a basic introduction to some of the core concepts of classical algebraic ge-
ometry. For further exposition, see [3].

Definition 4. Let L be a field. An (affine irreducible) variety is a set V. C L™ such that
there exist polynomials fi(x1,...,2n), ..., fm(x1, ..., 2n) € L]z, ..., x,] such that for all
v € V we have that f;(v) =0 for 1 < i < m. We may replace L™ with n-dimensional
projective space P™ to obtain the notion of a projective variety, in which case we also
require that each f; is a homogeneous polynomial.

Example 2. Let L be a field and n = 2. The polynomial f(z,y,2) = 2°+azxz*+bz3 —y*z
is irreducible for any a,b € L and therefore the set V- = {(z,y,2) : f(z,y,2) = 0} is a
projective variety over P?

For the purposes of this thesis we will consider “projective curves” with domain L? U
{o0}; the plane together with a ”point at infinity”. Over this domain we can represent
f(x,y,2) from the preceding example as f(z,y) = 23 + ax? + b — y>.

Definition 5. An abelian variety is a projective variety whose points form an abelian
group whose group operation and element inversion can be defined by regqular maps.

Definition 6. An elliptic curve E is a smooth abelian variety over L? U {oo} defined
by the affine equation
v =23 +ax+b
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For a,b € L such that 4a® + 27b* # 0.

Addition on F can be defined as follows:

o0+ 00 =00

(z,y) + 00 = (,y)

For z,y € L, let:

3t +a
-3

1

and then we have:
2(z,y) = (1* — 2, 3px — pi° — y)

For any pair of points (z1,41), (22, y2) with z1 # x4, define:

\ = y2—y1.
To — Iq

Then we have:

(1, 11) + (22, 42) = (A — 21 — 02, A(221 — X + 33) — 1)
When L is finite, we let |E| denote the number of points on the curve in L?> U {oo}.

Operation 8. Given an elliptic curve E over a finite field, compute |E)|.

4.2 Schoof’s Algorithm for Elliptic Curves

Schoof’s algorithm for counting the number of points on an elliptic curve is based on a
result due to Hasse:

Theorem 5 (Hasse). Let E be an elliptic curve over F,. Then

1Bl —q—1]<2y/q

Letting h = |E| — ¢ — 1, by Hasse’s theorem, it is sufficient to compute h modulo any
m > 4,/q. The approach used by Schoof computes & mod p for a number of primes p;
such that Hz pi = 4,/q and uses the Chinese Remainder theorem to then reconstruct h.
We now let o denote the order ¢ Frobenius map. Moreover, let E be the curve with the
same defining equation of E but whose entries now come from Fq, the algebraic closure
of IF,. We then have the following theorem.
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Theorem 6 (Hasse’s Theorem for Elliptic Curves). Let o be the order q Frobenius endo-
morphism defined over IF Then o has the following characteristic equation over E:

X’ +hX+q¢=0

a times
7\

For any a € Z, define a(z,y) := Ex,y) + ...+ (z,y), then Hasse’s theorem tells us
that, for any point (z,y) € E, we have that:

O'2<l’,y) + Q(x7y> - —hO’(ZE,y)

Rather than attempt to solve for h directly, we restrict to the p-torsion subgroups
E, ={(z,y) € £ : p(x,y) = oo} for a set of primes p € P, and compute an integer h,
such that the restricted morphisms satisfy the equation

tp(2,y) = 02, y) + g, y) = —hyou(x,y) for (z,y) € E,

where ¢, = ¢ (mod p), h, = h (mod p).

In order to compute the restricted morphism z,, we construct a class of polynomials
in F [z, y] whose roots are exactly the elements of E, inductively as follows:

1y =0
=1
o =2y

s = 3zt + 6az? + 120z — a?
Yy = 4y(z® + bax® + 2002° — 5a*x? — dabx — 8b* — a?)

77027714-1 ¢m+2¢ _r(/)m 17/}m+1

%U wm (wm-‘rme 1 ?/)m—2¢72n+1)

Lemma 3. The points (z,y) € E satisfying 1;(z,y) = 0 are exactly the set Ej.

To determine h, (mod p), we let u,(z,y) = (15 (2, y), py(x,y)), where ug (v, y), u2(z,y)
are rational functions over F, [z, y]/(y? — 23 —ax —b,1,) computing the z-coordinate and y-
coordinate of y,(z, y) respectively. We may then solve for an h,, such that (u (2, y), ud(z,y))
= —h,o(z,y). Having computed h, for each p € P, we can use the Chinese Remainder
Theorem to solve for an integer h such that h = h, mod p for all p € P, and by Hasse’s
theorem, |E| =h+q+ 1.

5+0(1)

The runtime of Schoof’s original algorithm in [20] is O(log q).
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Algorithm 4 Schoof’s Algorithm for Point Counting on Elliptic Curves
procedure ELLIPTICPOINTCOUNT
Input A prime power ¢ and an elliptic curve E represented by y? = 2% — ax + b
Output |E|

1:

2

3

4: Fix a set of primes P < {p: ged(p,q) =1} and [[,cpp > 4,/
5: for each p € P do
6

7

8

9

1, < DivisionPolynomial(p)
(@) = o*(2,y) + ¢(z,y) mod y* — 2° — az — b, v,
solve p,(z,y) = —h,o(z,y) for h, mod p
: h <— CRTSolve({h, mod p}yep)
10: Return h+q+1

4.3 The Hasse Invariant

An alternate approach to point counting utilizes the Hasse invariant of an elliptic curve

Definition 7. The Hasse invariant Hy,(E) of an elliptic curve E over the field IF, with
characteristic p and defined by the equation y*> = f(x) = x> + ax + b is the coefficient of

Theorem 7. For any prime power q¢ = p° and elliptic curve E over F, we have:
|E| =1— H,(E) mod p.
If g = p, this uniquely determines H,(E).

In the prime field case, this leads to an alternative algorithm for point counting on
elliptic curves that runs in O(p) F, operations by simply expanding the expression for
fla=1/2 More involved algorithms reduce this to O(/p) operations [1].
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Chapter 5

Drinfeld Modules

The primary goal of this thesis is to translate machinery for point counting from the
classical elliptic case to the function field analog. To this end, we now introduce some
theoretical machinery required to introduce the generic definition of a Drinfeld module.

5.1 Mathematical Background

Definition 8. The (finite) transcendence degree of a field L over a subfield K is the
largest cardinality n of a set {x1,...x,} contained in L such that there is no non-zero
polynomial f in n variables with coefficients in K with f(x1,...,2,) = 0. If such a set
can be found for all n > 0 then we say that the transcendence degree of L/K 1is infinite.

Example 3. Let K be any field, T', ..., T, a set of n indeterminates and L = K(Th,...,T,).
Then L has transcendence degree n over K.

Definition 9. A function field L over a field K is a field extension of K with tran-
scendence degree n > 1

Given a field extension L/K, any element ¢ € L corresponds to a linear operator
{: L — L defined by {:aw la. Let M, be the matrix for E with entries in K.

Definition 10. Let L/K be a field extension. For any ¢ € L, define:

Np/k(0) == det(M,)
Trpk(€) := trace(M,)

which are referred to as the norm and trace of ¢ respectively.
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5.1.1 Valuations

Definition 11. A wvaluation on a field F into an ordered abelian group G is a map
v: F— GU{oco} satisfying the following conditions:

1. v(a) = o0 if and only if a =0

2. v(ab) = v(a) + v(b)

3. v(a+b) > min(v(a),v(d))
Example 4. Let F' = Q. For any prime p we can define the p-adic valuation v, : Q —
Z U {oco} as follows:

o 1,(0) =00

o v,(z) = max(n: p"|z) for allx € Z

o [fx =7 fora,be Z, then vy(x) = vp(a) — vp(b)

Two valuations vy : F' — G1, vy : ' — G5 are equivalent if there is an order-preserving
group isomorphism ¢ : Gy — G such that v(a) = @(ve(a)).

Example 5. Recalling the example of the p-adic valuations on Q, if p1, po are two distinct
primes, then vy, (p2) = 0 = p(vp,(p2)) = (1), which implies ¢ is the trivial map. So all
p-adic valuations are non-equivalent.

Definition 12. A place of a field F is an equivalence class of valuations.

In the typical number field setting, one can construct the the finite places of a number
field F as follows: consider the ring of integers Z of F' and let p be a maximal prime ideal.
We define v : Z — Z by setting v(a) to be the largest n such that a € p”, and then extend
v to F' as done in the p-adic case form the preceding example. This same construction
can be repeated for F(T'), over an underlying field F', by replacing the ring of integers
with F[T].

5.2 Drinfeld Modules

Definition 13. Let F' be a function field with a place oo, and A a sub-ring of F of
elements regqular at every point except possibly oo containing the field F, for a prime
power q. Consider a map v : A — L and set 0 : a — a%. Then a Drinfeld A-module
over L is an injective morphism ¢ : A — L[X, 0| such that

¢la) =~v(a)+ a1 X +...a. X"
With the further requirement that r > 1 and a, # 0 for at least one a € A.
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There is a simpler construction when L is an extension of a finite field F,, say L =
F,[T]/f = F4n for some monic irreducible f € F,[T] of degree n. Here we have A =T, [T],
and we fix an inclusion 7 : A — L where ker() is a prime ideal of A generated by a
monic irreducible polynomial p of degree d referred to as the A-Characteristic of L. Then
K = A/p and ~y(a) represents the canonical mapping of a € A into L. Let m := [L : K.
Finally, let ¢ : L — L be the order ¢ Frobenius map. Then a Drinfeld module is a ring
homomorphism ¢ : A — L[X, o] such that

ola) =v(a) + a1 X +...a, X"

and r > 1 and a, # 0 for at least one a € A. For the remainder of this thesis, this will
be the definition we will make use of. If a = T', a Drinfeld Module is completely specified
by the parameters (q,f,p, a1, ...,a,) or as (q,f,p, ¢r), though we will frequently drop the
references to ¢.f, and p. Since each of these parameters can be specified with coefficients
in IF,, all cost analysis will be done in the algebraic model using I, operations unless
specified otherwise.

Example 6. Let ¢ = 2, A =T[T|, f=T*+T+1, and L = A/f = Fy. Then let
v: A — L be the quotient map by f and define the Drinfeld Module ¢ : A — L as

¢pr=T+ X + X?

We will often write ¢, in place of ¢(a). Since ¢ is a ring homomorphism, we have
Dap = Gap, and so the Drinfeld module is determined entirely by ¢r; the degree of ¢r is
referred to as the rank of the Drinfeld Module.

There is a map ¢ of elements of L[X, o] into Endg,[L] given by:

Liag+ a1 X +asX?+ ... apl + a0+ asc® + ...

where [ : L — L is the identity operator. This mapping is a ring homomorphism, and
given a Drinfeld module ¢ we will interpret elements ¢, as operators L — L under this
association for all a € A.

We will restrict our consideration to rank-2 Drinfeld modules, which are widely viewed
in the literature as a direct function field analogue of elliptic curves [11]. Letting ¢7 =
YT) + gX + AX? we can represent any rank-2 Drinfeld module with the pair (g, A).
From [12], we have the following theorem.

Theorem 8. Suppose ¢ is a rank-2 Drinfeld module over L, a degree n extension of Fy,
and suppose o is the order q Frobenius map. Then there is a polynomial T? —aT+b € A[T]
such that the absolute Frobenius operator T = o" : L — L satisfies the characteristic
equation
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72— GgT + =0 (5.1)

as an element of L[ X, o] under ¢; that is, (X")?—¢,X"+¢, = 0 in L[X, o]. The coefficients
a and b are referred to as the Frobenius trace and Frobenius norm respectively.

5.3 An Algorithm for the Characteristic Map

One of the most basic operations that can be performed on a Drinfeld module is the
computation of ¢, € L[X, o] for an arbitrary element a = Z?:o a; Tt € A.

Operation 9 (Evaluating the Characteristic Map). Given a Drinfeld Module ¢ : A — L
and an element a € A, compute ¢,.

Let 6 be the exponent such that two skew-polynomials in F,m[X, o] of degree at most
e can be multiplied in O(e?) F, operations, dropping dependence on all other parameters.
Since ¢ is a ring homomorphism, we have that:

d d
Q: ZaiTi — ZaigbiT
i=0 i=0

which leads to a naive algorithm for computing ¢, by computing ¢% via skew-polynomial
multiplication for all 2 < ¢ < d, which works for any rank r Drinfeld Module. This involves
at least d/2 multiplications of skew-polynomials of degree at least rd/2, and therefore has
a complexity of Q(d?*1).

Theorem 9. There is an algorithm that evaluates the characteristic map of any finite
Drinfeld module (q,f,p, ¢r) of rank v at an element a € F,[T] of degree at most d in
O(n?*rdlog(rd)logq) F, operations.

Proof. Given an element a € F,[T], without loss of generality we may assume deg(a) =
d = 2° for some integer e. Then we may factor a as

a=b4+ T

with deg(b),deg(c) < d/2. We then have:

Pa = Pb + Grasze

where each of ¢, ¢pa/2, and ¢. have degree at most %’ in X. This suggests a divide
and conquer algorithm which recursively computes ¢, ¢. and ¢paj2 = @Opajappa/a when
e > 2, with runtime O(t(n,dr)) F, operations for some ¢ depending on n, d, ¢, and r.
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Suppressing the dependence on n and ¢, set d = rd and t(d) = t(n,d,q,r). Using the
Caruso-Le Borgne algorithm for skew multiplication twice to compute ¢ra2 and @pa2¢e,
which from theorems 2 and 3 has worst case runtime O(dn?logq) for any value of d, n,
and ¢, to recombine the subproblems, we obtain the following recurrence:

t(d) = 2i(d/2) + O(d).

Therefore t € O(dlogd), and O(t(n,d,r)) € O(m?rdlog(rd)logq).

Algorithm 5 Evaluating the Drinfeld Characteristic Map
1: procedure CHARMAPEVAL

2 Background A Drinfeld Module (g, f, p, ¢r)
3 Input An element a € A

4 Output ¢,

5 a:=Y0 aT
6
7
8
9

if deg(a) <1 then return ag + a1¢r
b ZWJ a;T"
¢ Y0 aispa T
: Memoize gde/QJ < SkewMultiplication(gbHd/QJ /2]» QZSH_d/QJ/QJ)
10: if d is odd then

11: Pra/21 < SkewMultiplication(¢||q/2 /2, ¢1)
12: else
13: Praj2) < Plas)

14: ¢p < CharMapEval(b)
15: ¢. < CharMapEval(c)
return ¢, + SkewMultiplication(¢q/2), ¢.)

5.4 Previous Algorithms for Computing the Charac-
teristic Polynomial of the Frobenius Map

We now state the central problem of this thesis

Operation 10 (Computing the Characteristic Polynomial). Given a rank-2 Drinfeld mod-
ule ¢ = (g,A), compute its Frobenius Trace and Norm.

5.4.1 Gekeler’s Algorithm

Determining the Frobenius norm is done using the following theorem from [12]:
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Theorem 10. The Frobenius norm b of a rank-2 Drinfeld Module (g, A) is given by:

b= (=1)"Ne./m, (D) p™
Furthermore, the above expression can be determined in O(M (n)logn) F, operations.

Proof. We will provide only the cost analysis, which is new. Note p™ is a degree n poly-
nomial and can compute p™ in time O(M (n)log m) IF, operations. Moreover Ny r, (A) =
+res(A, f) [23], which can be computed in O(M (n)logn) F, operations [23]. O

Gekeler in [12] gives a general algorithm that determines the Frobenius trace for any
rank-2 Drinfeld module. We present that algorithm now, together with a new cost analysis
which is not provided in the original paper.

Theorem 11. The Frobenius trace of a rank-2 Drinfeld Module ¢ = (g, A) over L can be
determined in

e O(n®log® q) F, operations
o O(n*te log!+ot) q) bit operations for any € > 0.

Proof. From [12] we obtain that deg(a) < . Set :

i<n/2
pr= ZpiTi
i<n
¢ri = Z figX
J<2

With a;,p;, and f;; € Fyn for all choices of 4, j, and fio = v(T%), fi1 =g, fi2 = A. Using
theorem 10, we can compute ¢, in O(M(n)logn) F, operations, and by theorem 8 we
have:

o+ Z a;prio” + ¢p =0

i<n/2

which gives

O_2n_'_ Z aszz]U]Jrn NL/IFq szZfng = 0.

i<n/2  j<2 i<n §<2i
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Factoring out ¢?", this gives a system of n + 1 equations

— Z a,-fm-_n + (—1)nNL/Fq (A)_l Z plfl,j =0 fOI'j < 2n

i<n/2 li/2]<i<n

and
— Z a; fin + (_1)nNL/Fq<A)_1pnfn,2n =-1

i<n/2

with p; already computed while determining the Frobenius norm, and f;; determined
using a method that is to be discussed later. From known values, we can compute

a; = (=1)"Npr,(A)~ Z pifij+n for 0 <j<n
[(G+n)/2]<i<n

ap = 1+ (_1)nNL/]Fq(A)71pnfn,2n

Since |2] = |+ when n is even, we have that the equations are redundant when

je{n+2i—1:1<i< 7} for even n, while for odd n this occurs when j € {n+2i+2:
0<:1< "T_l} Eliminating redundancies and noting that f; ; = 0 whenever ¢ < 2j leaves

the following upper triangular system of | %] + 1 equations

[foo fio - flns2)0]
0 fiz - flus2)e2 o t
. . a1 6%)]
o o0 " : , =1 . (5.2)
; - : a|n/2] Q,
L0 0 ..o fln2)ad

whose diagonal entries are f; o;, which are the coefficients of the leading terms of ¢7:, and
therefore are of the form f;o; = A® # 0 for some exponent e and for 0 < i < [%] since
A # 0. The upper triangular system can be solved in O(n?) F » operations, and therefore
O(n*M(n)) F, operations, by solving for a|,/s| using fin 2| n@(n/2] = @n and recursively
solving for a; using the solution for a;1,...,a|,/2). However, determining the system
requires computing f;; for i < n/2, j < n. Techniques for skew polynomial multiplica-
tion offer a naive approach, however an improvement can be obtained by determining a
recurrence:

privn = prop = (V(T) + gX + AX?) ) fi,X7

J<2i

= DD+ D gL X Y AL

J<2i J<2i J<2i
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So the f; ; satisfy the recurrence

2
fi+1,j = ’Y(T>fi,j + gfzj—l +A gj—2

With initial conditions foo = 1, fio = Y(T), fi1 = ¢, and fio-a. Evaluating one
instance of the recurrence involves three applications of the Frobenius map, which is the
dominating step, and takes O(M(n)logq) F, operations. There are O(n?) choices of i
and 7 on which we want to evaluate this recurrence and so we obtain a worst case runtime
of O(M(n)n?logq) field operations to determine all f;;. Using Kedlaya-Umans modular
composition, however, gives a bit operation count of O(in1+61°g1+0(1) 7), and computes all
fi; in time O(n3*¢ logHo(l) q) for any constant € > 0. The cubic complexity in n is due to
the need to solve O(n) recurrences to determine all f; ;, and therefore can not be repaired

in an elementary manner.

O
Algorithm 6 Gekeler’s Algorithm for the Frobenius Trace
1: procedure FROBENIUSTRACE
2 Input A rank-2 Drinfeld Module (g, A)
3 Output The Frobenius Trace
4: foo <1
5: fl,O — ’Y(T)
6: Ji1¢ 9
7 fiz < A
8 for i =2 to |5] do
9: for j =1to 5] do
10: Jig e (T mod p) - fisyja+g iy o+ Ay,
11: for i =0 to |5] do
12: for j =0 to 5] do
13: Alj, 1] < fioy
14: for j =0 to |5 do
15: alj] < (=1)"Nrr, (A)~! Z\_(Qj+n)/2j§i§n pifi2jtn
16: Solve Az = «
17: Return x
5.4.2 The Case L =K
Gekeler in [12] gives a much simpler algorithm in the case where L = K. In analogy with

the elliptic case, we may define the Hasse Invariant h,4 for a rank-2 Drinfeld module.

Definition 14. Let (q,f,p,g,0) be a rank-2 drinfeld module with f = 0. We define the
Hasse invariant hy of ¢ to be the coefficient of X™ in ¢,.
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Theorem 12. Let (g,A) be a rank-2 Drinfeld module, L =TF,[T]/p, [L : F,] =n. We let
gi for 1 < n be the sequence defined by go =1, g1 = g and

k—1

gk+1 = qugk - (qu - T)Aq B Jk—1-
Then v(a) = hy = gu

Using fast modular composition and techniques for solving linear recurrences with
polynomial coefficients as given in [0], we obtain a runtime for solving the recurrence for
gn of O(nU=A@=D24HwHD/2 4 Af(n'+Ploggn)) F, operations for any positive constant
£ < 1. Again making use of Kedlaya-Umans modular composition, all of gqi, Aqi, and
T9 — T for i < n can be computed in O(n?** logHo(l) q) bit operations, and therefore g,
can be computed with the same asymptotic cost.

5.4.3 Narayanan’s Algorithm

A first randomized approach based on computing minimal polynomials of sequences due

to Narayanan [22, 3.1], is below. This algorithm works only for Drinfeld modules where
CharPoly(¢7) = MinPolyg, (¢7), which holds for generic choices of g and A; that is, for
more than half of all elements of the parameter domain [22, theorem 3.6]. It further

requires that the automorphism power projection algorithm of Kaltofen and Shoup can
be extended elements of L[X,c]|. Narayanan stated the latter assumption as a fact, and
although he was contacted regarding this statement, no resolution regarding whether it
holds was reached.

We first state the following lemma due to Kaltofen and Saunders [17] :

Lemma 4. Let A be an n X n matriz over a field F, u : F™ — F a linear map, and b a
vector of length n whose entries come from a set S C F. Then:

Prob[MinPoly({uA’b},) = MinPoly({A’},)] > 1 — deg(MiﬂzTg({A"b}i))
and
Prob [Minpoly({Aib}i) _ MinPoly({A"}i)} >1- deg(Mlngf;T({Al}z))

Theorem 13. Let ¢ = (A,g) be a rank-2 Drinfeld module over L, [L : F,] = n,
and suppose CharPoly(¢r) = MinPolyr, (¢7r). There exists a Monte Carlo random-
ized algorithm for determining the characteristic polynomial Cy = X* —aX + b in
O(ntw2)/2+o) jogtte) ¢ 4 plte() 1og2 o) o) | field operations.
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Proof. Choose an « € L and an [F, linear map ¢ : L — [, uniformly at random. By Lemma
4, with probability at least half and at least 1— 7, MinPoly ({¢(¢% () };) = MinPolyr, (¢r).
The determination of MinPoly({{(¢%(a)};) can be done using the Berlekamp-Massey al-
gorithm in time O(n'*t°(Mlogq) using the first 2n — 1 entries. Narayanan claims that
computing the collection {£(¢%(a)}"5? is a restatement of the automorphism projec-
tion problem for elements of the endomorphism ring L{c}, for which the algorithm of
Kedlaya-Umans in [19] yields a runtime of O(n(<2)/2t0(1) Jog+oll) g 4 pl+o() Jog+o) g it

operations. ]

5.5 New Algorithms for Computing the Characteris-
tic Polynomial

5.5.1 A New Randomized Algorithm

Theorem 14. Let ¢ = (A, g) be a rank-2 Drinfeld module over L, [L : F,] = n. There
exists a Monte Carlo randomized algorithm for determining the characteristic polynomaial
Cyp=X?—aX+bin O(M(n)nlogq) F, operations.

Proof. Letting 7 denote the Frobenius map ¢”, by theorem 8, the characteristic equation
for 7 tells us that for any a € L

7 (a) + gp(@) = da((a))

Determining b using Gekeler’s algorithm, we may compute the left-hand side efficiently
by determining ¢4 () for i < n. Each individual application of ¢ requires three Frobenius
operations on polynomials of degree n giving an individual runtime of O(M (n)log q) and a
complexity of determining ¢y (cv) of O(M (n)nlogq). Define r := a+¢y(a) and ¢ : L — F,
a linear projection map, we can write down the following relations with

2l
a= Z a;T" € F,[T)
i=0

we get
Ln/2]

r= Z ;¢ ()
=0

For 7 > 0 this implies
[n/2]

Uop(r)) = Y ail(d7 (@),

=0
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which gives us the following Hankel system H, for some parameter s to be determined:

[ o) Mor() @) | ] _a;%)_
Ho= |6(¢h(a) 66iP() ... (o™ (a)) = f(gbé(r))

(@) 1o @) o 1 D] |aa] Leoron)

There are O(k + n) entries of the form ¢(¢%(a)), £(¢(r)) that need to be computed.
Evaluating the projection map takes O(n) time on each ¢i(a). We have ¢/F'(a) =
(T + go + Ao?)¢i-(a) and evaluating the operator T'+ go + Ac? on an element of L takes
O(M (n)logq) time, giving a complexity of O((n + k)M (n)logq)

If k € O(n), then the solution of the Hankel system can be solved in O(n?) operations
using classical algorithms or O(n log?(n)) using algorithms due to Kaltofen [15]. It remains
to show x € O(n). This depends in part on a lemma of Kaltofen and Pan [16]

Lemma 5. Let {a;};°, be a linear sequence over F, and d the degree of its minimal
polynomial. For any m > 0 let T,,, be the matriz given by:

ag ay . Am—1
aq a9 e [07%%
Am—1 Am s A2m—2

Then det Ty # 0 and for any m > d, det T}, = 0.

Since L is a degree n extension of F, there must be a degree n monic polynomial f
over F, such that f(¢7) = 0. Now let f be the minimal of ¢ with deg(f) = d. For any
positive integers i, j with i < j < n, 0" = 07 implies 07" is the identity on F», which can’t
occur since j —i < m. Therefore by independence of characters, o, 02, ...,0" ! satisfy no
non-trivial F -linear relation; that is, there are no constants co, ..., c,—; with at least one
c; # 0 such that co +cio+ ... +c,m10" P =0. Soif 0 = f(¢r) = co+ 10 + ... + coq0,
where the lead term cyq0? is given by (Ac?)?, s0 c9q = AL~¢*D/(01=0) £ () then 2d > n—1
and so ”T’l < d = deg MinPolyr, (¢1) < n.

By lemma 4, with probability at least (1 — 2%)2 we have that MinPolyg, ({£(¢%()};) =
MinPoly, (¢7), in which case by lemma 5 and the upper bound deg MinPolyr_ (¢7) < n
we can guarantee that an upper left submatrix of
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[ o) Uor(e) o OF @) Lo @) U6 @)
T — (oo oot QA () (ol o221+
5 (¢7(@) Upp () ... Loy ™ () Uop (@) ... Uop (a))
(¢5(0) o™ (@) oo Lo @) o™ @) L 0 @)
of size at least 25+ is invertible when x = MinPolyr, ({¢(¢}(e)};) and %51 < k < n.
Therefore a solution to the system
C T
ai
w | [ U+ )
- Uor(r)) + Uo7 (1)
o, ") =] N
o U (r)) + +U( o7 (1)
aq :
I R GGG
[ @[n/2] ]
determines unique values for ao, ..., ap,/2) with probability at least (1 — 2%)2. We may

determine the value of x using the Berlekamp-Massey algorithm in O(n?) operations. One

final observation is that when n is even and deg MinPolyr, (¢r) = %, then the invertible

upper left matrix guaranteeing uniqueness has dimension 7, which does not guarantee a

unique solution for a, /.. Using [12, proposition 2.14], this coeflicient may be computed
as

nj2 =TT 4 /8, (NL/qu (A)~

where Fg2 is the unique degree 2 extension of Fy contained in Fgn. Using T'rg ,/r,(z) =
x + 29 we can compute a,/o in O(M(n)(logn + logq)) F, operations.

O

5.5.2 Schoof’s Algorithm for Drinfeld modules

We present here an alternative approach inspired by Schoof’s algorithm for elliptic curves.
Supposing § + 1 < g, for some choice of elements eg, ey, ..., €,/2 € Fy, we aim to compute
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Algorithm 7 A New Randomized Algorithm for Finding the Frobenius Trace

1: procedure RANDOMIZEDFROBENIUSTRACE

2 Input A rank-2 Drinfeld Module (g, f,p, g, A) and Frobenius Norm b
3 Output The Frobenius Trace a

4 Choose a map ¢ : L — F, uniformly at random from F}
5: Choose an element a € L uniformly at random from L
6 T o+ ¢pa)

7 Al0] + «

8 B[0] < r

9: fori=1 to L”;J do
10: Bli] = ¢r(¢7 (1))
11: Bli — 1] + ¢(B[i — 1])
12: fori=1ton—1do
B Al = or(d5 ()
14: Ali — 1] + L(A[i — 1])
15: for i =0 to [25*] do
16: for j =0 to |5] do
17: Mli, j] = Ali + j]
18: Solve Hankel system Mx = B return x

a(e;). Invoking either the Universal Property of Quotients for rings, or the observation
that ¢oir(r—c,) = Ga + Ordr—e,, this can be determined using ¢, (mod ¢r_c,) = Pa(e,) =
a(e;) for each index i. Reducing the characteristic equation mod ¢7_., we obtain

a(e;)o"™ = o® + b(e;) (mod ¢ — €;). (5.3)

Therefore it is sufficient to determine

o" (mod ¢r — €;)
for each e; and solve for a satisfying equation 5.3.

Theorem 15. Let ¢ = (A, g) be a rank-2 Drinfeld module over L, [L : F,| = n. There
exists a deterministic algorithm for determining the characteristic polynomial Cy = X? —
aX +bin

e O(n“2/**logn + M(n)nlogq) F, operations

o O(n*" log't*™M ¢ log n) bit operations for any § > 0.

Proof. Let

0! = vj + pjo (mod ¢r — e;)
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for v;, u; € L and let v(T") = 7. Then we obtain the recurrence relation:

j YT — € g
ot =vio+ o’ = vio+ pl( - — =-0) (mod ¢r — €).

A A
That is, vj11 = =P 5%pd and pjg = v — {pj. Letting o = =%, 8 = — £, and
M) — 0 O‘qi
1 pe

Ul _oym@ e L
Hn 0

Therefore, efficiently computing 0" relies on computing the products P; = M M @ M@
This can be done effectively using the following observation:

Py = Pij(qu) .

We then compute 02" as

0-271 = (Vn + ,uno-)(yn + ,uno-) (mod ng — €Z-)
= VZ + UnpinOo + ,uanLO' + ,ugfl (Oé + ﬁO') (mod ng — €i)
= Vzb + ,u;];_la + (anlm + ,Unl/z + //Lgl+1 )U (mOd ¢T — 6i)

Substituting back into 5.3 results in the relation

a(e;)(Wn + pno) = V2 + ula + ble;) + (Vpptn + pnv? + pdB3)o (mod ¢p —e;).  (5.4)
Therefore when p, # 0 we conclude that

a(e)) = v + v+ 1

which allows the determination of a(e;) without computing the Frobenius norm before-
hand. Otherwise, 5.4 gives

a(e;) = v, + b(e;) (5.5)

when p,, = 0.

The algorithm may be summarized as follows:
1. Compute ¢" (mod ¢ — €;) by computing P,.
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2. Solve for a(e;) € F, such that a(e;)o™ = 02" + b(e;) (mod ¢r — e).

3. Interpolate the values a(e;).

The only potential degeneracy occurs when ¢” = 0 (mod ¢r — e;), which can be
excluded when yr # e;. Suppose ¢" = Z?:_(f a;0'(¢pr — e;). Then clearly ag = 0 if
yr — e # 0. Moreover, if a; = 0 for all i < d < n — 2, then 0 = aq(yr — e;) + ag_19% 1 +
ag_oA"% = ag(yr — €)%, therefore ag = 0. So 0™ = a,_ 0" 20 (¢p — €;) which is a

contradiction.

We can compute polynomial representations for all 0% beforehand using modular com-
position for at most O(logn) choices of index i. Next, for each e;, we perform O(logn) 2x2
matrix multiplications and modular compositions to evaluate the Frobenius map up to
order ¢"/2. These two steps together contribute O(n“?/2logn + M (n) log q) F, operations
using Brent-Kung composition, or O(n!*° log't°M ¢ log n) bit operations, for any 6 > 0,
using Kedlaya-Umans. Repeating for § + 1 choices of e; raises the cost in either case by a
factor of O(n). The interpolation step takes at most O(n?) operations, so the total cost
remains either O(n“2/>*11og n 4 M (n)n log q) F, operations or O(n***log" ™M glogn) bit
operations

]

We expect the algorithm may be extended to the case § + 1 > ¢ by computing
0" mod ¢, for irreducible polynomials g, though an exposition of this approach will not
be given.

Example 7. Let ¢ = 5, n = 4. Then L = F5[T]/(T* + 4T? + AT + 2). Take ¢ to be
a rank-2 Drinfeld module over L with g = 1,A = 1. Then for eg = 0 we have a = 4t,
b =4. Letting

0 4T
w0 )

We get:

T3 +T%+3 T3 4+2T7 +3

SAr25 A 125
MAMEMZM _{2T3+2T2+3T+4 AT® +4T% 4+ 4

Sovy, =T34+ T?+3 and py = 273 + 272 + 3T + 4 and

a(0) = vy + v + 4dp =2

For e; =1 we have
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Algorithm 8 Schoof’s Algorithm for Drinfeld modules

1: procedure FROBENIUSTRACE

2 Input A rank-2 Drinfeld Module (g, f,p, g, A) and Frobenius Norm b
3 Output The Frobenius Trace a

4: E < {eo,...,enpn} CFy

5: o+ z? mod §

6 while i < n do

7 if 20 +1 < n then

8 ol oloo

9

: o2t L piogioo
10: 142141
11: else
12: ot cdloo
13: 1+1+1
14: for e; € F do
15: a+— —(yr—e)/A
16: B+ —g/A
17: PO — |:(1) g:|
18: 1+ 0
19: while i <n — 1 do
20: if21+1<n ’chh[%nO]( 41 P, 1](o™)
oitl i |Y, g iU, g
. e L%[L 0(0) P[L1)(0")
22: P2i+1 — PiPiaiJrl
23: 1+ 21+ 1
24: else 0 afod
oo’
25: M; [1 5(01»)]
26: Py« PM;
27: 1+ 1+1
28: Vp < P,1]0,0]
29: fn, <— Pn_1[1,0]
30: if p, # 0 then
31: ale;) < v, +vi+pip
32: else
33: a(e;) < v, + b(e;)

return Interpolate({ (e, a(eg)), (e1,a(er)), ..., (€n/2,alens2))})
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1 4

AT 47
273 + 21 +3T+2 T +3

Mo {0 4t+1}

MM5M25M125 — |i

and we get a(l) = 3. Repeating this calculation once more yields a(2) = 3 and we can
interpolate to get

a=(T—1)(T—2)+2T(T —2) +4T(T — 1) = 2T* + 4T + 2.
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Chapter 6

Computational Results

We attempted to verify the runtime of the two new algorithms presented here with an
implementation using SageMath [27]. The rank-2 Drinfeld module with parameters g = 1,
A =1 was used for all computations. The runtimes shown in tables 6.1 and 6.2 are for
fields of characteristic p = 1299827 and p = 179426549 for varying values of k£ such that
the base field has order ¢ = p*, and n = [L : F,] was fixed at n = 6. The values given are
the averages over 10 trials. The results appear to confirm the logarithmic dependence on
q for both new algorithms.

p = 1299827 p = 179426549
k=1 0.0791 0.0951
k=3 1.1438 1.418019056
k=6 5.3689 11.35429311

Table 6.1: Runtime in seconds of our new randomized algorithm when ¢ = p* and n = 6

p = 1299827 p = 179426549
k=1 0.0791 0.0951
k=3 1.1438 1.418019056
k=6 5.3689 11.35429311

Table 6.2: Runtime in seconds of our new deterministic algorithm when ¢ = p* and n = 6

We then attempted to verify the order of dependence on n by producing a log-log plot
on n versus runtime. Logarithms are taken base 2, and results are averaged over 10 trials.
The linear regressions for our randomized algorithm shown in figures 6 and 6 have slopes
below 3, which is consistent with the sub-cubic runtime given by our analysis.
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Figure 6.1: Log-log plot of n versus runtime with p = 2, £ = 1 for our new randomized
algorithm

In contrast, our linear regression for the deterministic algorithm exceeds 3. This is
almost certainly due to difficulties in finding library implementations for fast modular
composition. The only reference implementations we could find worked only in the case
where the base field was Iy, which due to the requirement ¢ > 7 + 1 was insufficient for
testing our deterministic algorithm. Efforts to produce our own general implementation
of fast modular composition were unsuccessful in the time available.
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Figure 6.2: Log-log plot of n versus runtime with p = 31, £ = 2 for our new randomized

algorithm
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Figure 6.3: Log-log plot of n versus runtime with p = 31, k = 2 for our new deterministic

algorithm
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