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Abstract

Due to the fast-growing number of cell-phone users, channel allocation scheme for
channel assignment plays an important role in cellular networks. Having known that for
downlink transmission the base-station aims to transmit signals over a specific channel to
different users, broadcasting enhancement gains momentum in cellular networks. Consider
a set-up in which the base-station is equipped with M time/frequency recourses and M
clients are being served with their own rate requirements. Optimum solution in a degraded
broadcast channel is to send signals to all users over all channels. However, this enlarges the
codebook, which leads to an intricate coding/decoding system. Taking this into account,
the idea of grouping the clients into smaller subsets has been proposed in this research.
The required rate for each client should be satisfied in each subset, which determines the
size of the groups. As the highest gain in each subset is obtained by applying broadcasting
scenario, one can just focus on finding the best method of grouping; henceforth, each group
follows broadcasting scenario.

Similarly, the same scenario applies to uplink transmission in which clients transmit
signals to a single base station.

Intuitively, the optimum solution can be achieved using linear programming. However,
it turned out linear programming satisfies the zero-one constraint which can be efficiently
solved by Hungarian method. It has been shown that this practical method conspicuously
outperforms the traditional frequency division method.
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Chapter 1

Overview and Literature Review

1.1 Overview

In the early mobile systems, there was only a single transmitter installed on a very high
location. Only one station covers the entire region. The range for the transmitter was up
to 50 km. In order to cover this range, the transmitter needs a lot of power. The problem
with this approach was that if a frequency was used in the region of coverage, the same
frequency cannot be reused by other users. The transmitter needs to be very powerful in
this case.

What cellular network suggested is as follows:

Instead of having one transmitter, multiple transmitters with low power can be exploi-
ted. Since they have limited power, they can cover a smaller region with respect to the
early transmitters. Each station covers a specific area. These transmitters are known as
Base Station (BS) and each of them can be used as both transmitter and receiver; that is
why they are also called transreceiver. The area that is covered by one BS is known as a
cell. Each BS is provided with a portion of entire existent channels (frequencies).

There are some criteria for determining the shape of the cells. For instance, the area
of the shapes should not overlap, the shapes should be geometric and should cover the
maximum possible area. By considering these benchmarks, the hexagonal shape has been
chosen as the shape of the cells, since it covers the maximum area.

Nevertheless, what would be the advantages of cellular networks with respect to the
early mobile systems?
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If the number of users increases, traffic would also increase and to solve this problem
more base station can be installed without using more frequencies. This could be practical
by using frequency reuse. In other words, one frequency can be used in another cell if the
distance between these two cells is greater than a predefined number.

In order to avoid interference in cellular networks, some methods have been introduced.
Under the simplest conditions, a medium can carry only one signal at any moment in time.
For multiple signals to share one medium, the medium must somehow be divided, which
is known as multiplexing.

Multiple access is nothing but the application of multiplexing. Two well-known ways
of multiplexing are time division and frequency division multiplexing. Multiplexing is a
technique, in which several messages are combined into a composite signal such that these
can be transmitted over a common channel. In frequency division multiple access (FDMA),
all clients use the same channel at the same time. Here, the available frequency bandwidth
is divided between users accordingly. Each user has its own bandwidth to use and they are
allowed to transmit their signals for full time. A different frequency is allocated to each
user to avoid interference. In addition, there is a possibility of crosstalk in FDMA, for all
the users transmit their signals at the same time.

However, what is the best way of allocating the existent channels to the users?

From the genesis of wireless cellular networks, channel allocation schemes for channel
assignment have been the backbone of many studies over cellular networks. Due to the
fast-growing number of cell-phone users, how the base station transmits signals to different
users and how the clients attempt to transmit their signals to a base station have gained
much momentum. This report has been divided into two main parts:

1. Downlink transmission

2. Uplink transmission

In each of the abovementioned parts, the writer attempts to find a decent way of
channel allocation for both transmitter (in downlink transmission) and receivers (in uplink
transmission).

In the following chapters, it is assumed that the base station is equipped with M
time/frequency recourses, called tones. For downlink transmission, if the base station
transmits signals to all clients simultaneously using all tones—which is known as broadcast
transmission—the total consumed power would be minimized. In other words, the optimum
solution in a broadcast channel is to send signals to all clients, through the entire M tones by
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means of superposition coding and successive decoding. Similarly, for uplink transmission,
a multiple access channel (MAC) gives us the highest gain. Nevertheless, when the number
of clients increases, these two methods become overly complicated.

On the other hand, if the base station transmits signals to each client through one
tone—traditional frequency division—, inter-client interference would disappear. The same
scenario happens when in uplink transmission each client transmits signals to a base sta-
tion through one tone. However, it is obvious that these two methods would not give a
reasonable gain and by using them, existed resources have not been exploited properly.

This report aims to find a strategy between mentioned extreme cases for both uplink
and downlink transmission, in which one, two, three or four clients are grouped and serviced
in one tone based on their rate requirements and channel gains. Careful scrutiny of the
proposed method has revealed that corresponding gain is significant in comparison with
one-client-per-tone method.

The thesis is organized into two main chapters. Chapter 2 addresses downlink trans-
mission. Section 2.1 describes the linear assignment method, which would be used for
optimization purposes in this thesis. In addition, the basic properties of an additive white
Gaussian noise (AWGN) channel have been briefly explained in this part. Section 2.2 defi-
nes the set-up which is used in this thesis and introduces the idea of grouping the clients.
Section 2.3 formulates the idea of grouping the clients such that it could be solvable by
using linear optimization. Also, this part analyses three different ways of grouping, which
are groups of two, three and four clients. Section 2.4 assesses the advantages of grouping
the clients by simulating the cases with MATLAB. Section 2.5, the last part of chapter 2,
provides a brief summary of what has been mentioned in chapter 2 and makes a conclusion
about what has been obtained based on MATLAB simulations.

Chapter 3 focuses on uplink transmission. Section 3.1 addresses the basic features of a
MAC set-up. In this part, the capacity region of a MAC system has been plotted and also
the way to obtain this region is briefly discussed. Section 3.2 brings up the idea of grouping
the clients in uplink transmission and explains why MAC always leads to the highest gain.
Section 3.3 formulates the idea of grouping in uplink transmission and attempts to find
a way such that the problem is solvable with linear optimization. This section ends up
finding a criterion for optimizing the total rate. This criterion brings about some grouping
algorithms which are addressed in section 3.4. Moreover, in section 3.4, the algorithms
for different ways of grouping have been assessed by MATLAB. Section 3.5 summarizes
chapter 3 and suggests what would be the best way of uplink transmission in the defined
set-up.
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1.2 Literature Review

Many methods have been introduced for channel assignment for mobile communications.
Among them, the most related ones have been briefly discussed here.

For downlink transmission, it has been generally accepted as an optimal solution that each
subcarrier is allocated to the users with the best channel condition and power is allocated
by the water-filling over subcarriers [9], [2]. In [2], in formulating sum-rate maximization
problem, a subcarrier could be exploited by multiple users at the same time and the power
allocation scheme is obtained by subcarrier assignment for users and power allocation for
subcarriers. It has been found that sum-rate of a multiple access channel is maximized
when each subcarrier is allocated to one user and total power is distributed over the users
based on water-filling. In addition, to simplify the required mathematical calculation to
obtain water-filling level, a simple method has been proposed in which users with the best
channel gain for each subcarrier are chosen and then the power is evenly distributed among
them.

In [11], some sub-carrier allocation algorithms for multiple access scheme in downlink
transmission have been proposed. The main goal of this paper is to minimized the total
consumed power. This problem has been solved by using improved Hungarian linear as-
signment algorithm [4]. An optimal subcarrier assignment and power allocation based on
utility has been introduced in [9]. In this paper, the optimization of dynamic channel allo-
cation on downlink transmission is analyzed with the purpose of maximizing the aggregate
network utility.

For uplink transmission, at first power-frequency allocation is discussed in [14]. It
turned out the optimal subcarrier allocation is a simple two-band partition and the power
allocation follows the multiuser water-filling; however, the results are valid only when SNR
for the two users is the same. In [6], the goal is to maximize the rate-sum capacity. In this
paper, by using Karush-KuhnTucker (KKT) condition, a method for subcarrier allocation
based on marginal rate function and a method for power allocation based on water-filling
have been proposed. Additionally, water-filling method and even power distribution in
uplink transmission have the same performance, when they are combined with the proposed
method in [6].
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Chapter 2

Downlink transmission

2.1 Linear Assignment

The assignment problem has been studied extensively in optimization. It is defined as the
assignment of a number of agents to a number of tasks. It is necessary to perform all tasks
by a one-by-one agent-task assignment. Any agent assignment to a task has a defined and
distinguished cost.

Linear assignment problem is defined as follows:

If the number of agents and tasks are equal and the total cost for all tasks becomes equal
to the sum of the costs for each agent, then the problem is called the linear assignment
problem [8].

A schematic view of the assignment problem for n-agents/n-tasks has been illustrated in
2.1.

Mathematically, the linear assignment problem can be defined as follows. Consider
a square real-valued weight matrix C, with one agent and one task sets as A and T ,
respectively. The problem is to find the function f : A → T such that the following cost
function is minimized: ∑

a∈A

Ca,f(a) (2.1)

One can formulate the problem as a standard linear program with the following ob-
jective function: ∑

i∈A

∑
j∈T

C(i, j)λij (2.2)

5



Figure 2.1: Linear assignment problem scheme

and the following constraints:∑
j∈T

λij = 1 for i ∈ A, (2.3)

∑
i∈A

λij = 1 for j ∈ T, (2.4)

λij ≥ 0 for i, j ∈ A, T. (2.5)

The variable λij is equal to 1 if task j is done by agent i and otherwise it is equal to 0.

2.1.1 Achievable Rate for the Gaussian Channel

Consider an AWGN channel with output Y , where Y is the sum of input X and noise n.
A schematic view of the set-up has been illustrated in figure 2.2. Meanwhile, the additive
noise has a zero-mean normal distribution with variance N . Hence,

Y = X + n, n ∼ N (0, N) (2.6)

The channel capacity of an AWGN channel is

C = max
EX2≤P

I(X;Y ) =
1

2
log (1 +

P

N
) (2.7)

6



Figure 2.2: Additive white Gaussian channel

where I(X;Y ) is the mutual information between X and Y . P and N are the power of
signal and noise, respectively.

On the other hand, a rate R is achievable for a Gaussian channel with a power constraint
P if there exists a sequence of codes with code-words satisfying the power constraint. The
capacity of the channel is the supremum of the achievable rates [1]. Therefore, we have:

R ≤ C =
1

2
log (1 +

P

N
). (2.8)

In addition, given a bandwidth w, the rate would be

R =
w

2
log (1 +

P

N
). (2.9)

By normalizing w = 1, the required power to satisfy the known rate Ri for the ith client
will be

Pi = Ni × (22Ri − 1). (2.10)

For K independent Gaussian channels in parallel with a common power constraint,
it is necessary to distribute the total power among the channels in order to maximize the
capacity. For channel j, Yj = Xj + nj, j = 1, 2, .., K with nj ∼ N (0, Ni), and n1, n2, ..., nK
are independent. We have

C ≤
∑
i

1

2
log(1 +

Pi
Ni

), (2.11)

where
∑
Pi = P .

7



Also, the maximum capacity can be obtained by using water-filling method [1].

Henceforth, we consider a Gaussian broadcast channel. As can be seen in figure 2.3,
for the sake of simplicity, one transmitter and two receivers are depicted, which can be
generalized to M receivers.

Figure 2.3: Broadcast channel with two receivers

Consider an AWGN channel with output Y , where Y is the sum of input X and noise
n. Meanwhile, the additive noise has a zero-mean normal distribution with variance N .
Thus,

Y = X + n, n ∼ N (0, N) (2.12)

The transmitter sends signals with power P to the two receivers with channel gain G1

and G2 and independent Gaussian noise distributions. For such a channel, the received
signal will be Y1 = G1.X+n1 and Y2 = G2.X+n2 , where n1 and n2 are Gaussian random
variables with variances N1 and N2. It is necessary to send independent messages at rates
R1 and R2 to receivers Y1 and Y2, respectively. The channel can be re-characterized as
shown in Figure 2.4.

One can find the capacity region for the Gaussian broadcast channel, with signal power
constraint P by time-sharing as follows:

R1 ≤
1

2
log (1 +

αP

N1

), (2.13)

R1 ≤
1

2
log (1 +

(1− α)P

αP +N2

), for 0 ≤ α < 1. (2.14)

8



Figure 2.4: Re-characterized broadcast channel

Receiver i ∈ {1, 2} deals with a constant channel fading gain, Gi, during the study
period. Also, in channel k ∈ {1, 2}, the signal for one receiver appears as an interference
for the other receiver. Therefore, if G1 > G2, we have

R1 ≤
1

2
log (1 +

G2
1.P1

N
) (2.15)

and

R2 ≤
1

2
log (1 +

G2
2.P2

G2
2.P1 +N

), (2.16)

in which, P = P1 + P2.

In broadcast set-up, the client with a given channel gain can decode the signals sent
to clients with a lower channel gain. Therefore, the rate of the ith client in the jth tone,
denoted as Ri

j will be

Ri
j =

1

2
log(1 +

G2
iP

i
j

σ2 +G2
i

∑
m∈Ai

Pm
j

), (2.17)

in which σ2 is the power of Gaussian noise and Ai is the set of clients with channel gains
higher than the ith one. Therefore, we have

P i
j = (22Ri

j − 1)×
σ2 +G2

i

∑
m∈Ai

Pm
j

G2
i

. (2.18)

It is worth mentioning to say that for the broadcast scenario with M receivers, in order
to satisfy the rate requirement for each receiver, Ri, it is required to have:

Ri =
∑
j

Ri
j. (2.19)

9



In the broadcast set-up, each client receives
1

M
fraction of its required rate in each

tone. Therefore, Ri
j =

Ri

M
. Now, considering the Equation (2.18), the total power used for

the ith client is

Pi = M × (2

2Ri

M − 1)×
σ2 +G2

i

∑
m∈Ai

Pm
j

G2
i

(2.20)

where
Pi =

∑
j

P i
j . (2.21)

The above-mentioned equations will be used in the following sections to find the mini-
mum transmitted power such that the required rates are achieved.

2.2 System model

In this section, the following set-up for a downlink transmission has been considered:

• There exist one transmitter and M receivers (clients).

• The transmitter is assumed to have M frequency bands to service the clients.

• The requested rate for each client is known and fixed over the study period, defined
as Ri, i ∈ 1, 2, ...,M .

• There exist K = M independent Gaussian channels with the variance σ2. Every
channel has a fading gain Gi, i ∈ 1, 2, ...,M which is assumed to be constant and
known over the study period.

That being said, we have K frequency tones available to be assigned for transmissions.

The clients are grouped in Q. Here, groups of Q is defined as a grouping of the clients
such that each group has at least one and at most Q clients. Noted that each client can
exist in one or more groups at the same time. However, each tone is allocated to one and
only one group and applies broadcast scheme to that group which is illustrated in figure
2.5.

In this report, four cases of Q = 2, Q = 3 and Q = 4 have been considered and
formulated. The examples of a Single-tone and a broadcast scheme for k = 5 have been

10



Figure 2.5: Clients grouping solution vs. traditional frequency division

illustrated in Figure 2.6. The examples of grouping of two, three, and four clients have
been shown in Figure 2.7. Noted that an arrow from a tone to a client means that the client
receives a fraction (or all) of its required rate from that tone. Moreover, in the grouping
idea, the broadcast scenario is applied to each group separately.

Figure 2.6: Broadcast and traditional frequency division schemes

11



Figure 2.7: Examples of grouping

2.3 Problem formulation

In this section, we aim to minimize the total required power to send code-words to the
clients, such that all the required rates are achieved. We take advantage of the fact that
the total power varies by changing the combination of groups of Q. Therefore, we have
to find the best choice from the possible combinations of groups of Q which minimizes
the total required power. This problem is formulated as the linear assignment problem,
described in section 2.1. The agent/task sets are assumed to be a similar set of clients
A = {1, 2, ...,M} for Q = 2. The latter is to choose the first client (agent) and the second
client (task) to be grouped. Moreover, the problem is generalized to Q > 2 by increasing
the cost function dimensions.

The required power to transmit code-words to the clients of every possible group is
calculated based on the requested rate and the channel gain as calculated in section 2.1.1.
These power values generate the weight matrix C. Then, the general problem can be

12



formulated as
min
λ

∑
C.λ (2.22)

in which λ is a matrix with elements showing the grouped clients. If an element has a
non-zero value, its index shows the clients that are meant to form a group. The value of
that element is corresponding to the number of required tones for that group. There exist
some constraints on λ with the following descriptions:

1. Elements of λ matrix can get values between zero and one.

2. The summation over λ elements with any specific index i should be equal to one,
since every client i needs to be serviced only one time.

3. The summation over all λ elements should be equal to the number of tones.

4. Index order of λ elements has no effect in this problem. Therefore, λxy and λyx have
the same meaning and get the same values.

5. The summation over λ elements that describe the same group of clients shows the
number of tones allocated to that group. For example, the value of λxy + λyx is the
amount of allocated tones to the group of x and y in groups of two clients.

In order to clarify the formulation details for groups of two, three and four scenarios,
the formulation will be elaborated separately in the following sections.

2.3.1 Groups of two clients

For groups of two clients, there exist single element groups and/or groups of size two. The
weight matrix C is a two-dimensional M ×M matrix. It is generated such that

C(i, j) =

{
Pi if i = j,
Pi,j if i 6= j.

where, Pi is the required power to send to only client i in one tone. Moreover, Pi,j
is the summation of the required power to send to clients i and j in one tone, such that
Ri/2 and Rj/2 are achieved. Achieving half of the requested rate in one tone is due to
sharing the channel between two clients. It is obvious that the other half rate is achieved
in other tones. Figure 2.8 shows the assignment matrix for group of size 2 with M = 4.
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Figure 2.8: Weight matrix for grouping of two clients with M = 4

The energy to service two clients is repeated in the matrix two times as shown by the same
colors. Therefore, totally we have energy to service two clients in two tones with their
rates completely achieved.

Based on equations 2.10, 2.15 and 2.16, Pi and Pi,j are calculated as

Pi = (22Ri − 1).(σ2)/Gi
2, (2.23)

Pi,j =

{
(2Rj − 1)(SiGi

2 + σ2)/Gi
2 + Si, if Gi > Gj,

(2Ri − 1)(SjGj
2 + σ2)/Gj

2 + Sj, if Gi ≤ Gj,

in which Si = (2Ri − 1).(σ2)/Gi
2, and Sj = (2Rj − 1).(σ2)/Gj

2.

After generating the weight matrix C from the possible combinations in groups of two,
the cost function, which is meant to be minimized, becomes:∑

i∈A

∑
j∈A

C(i, j).λij (2.24)
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in which λij shows that grouping of i and j is chosen if λij 6= 0, and not chosen, otherwise.
Here, we have M2 elements of λ as the optimization arguments.

For the constraints, client’s rate should be taken into account only one time to be
achieved. Therefore, if λîj = 1 for some î, λij has to be zero for i 6= î. With the same

reason, if λiĵ = 1 for some ĵ, λij has to be zero for j 6= ĵ. Therefore, the constraints are∑
j∈A

λij = 1 for i ∈ A, (2.25)

∑
i∈A

λij = 1 for j ∈ A, (2.26)

λij ≥ 0 for i, j ∈ A. (2.27)

Here, λij + λji shows how many tones are required for the rate achievement of the group
of i and j. For example, if λ2,3 = 1 and λ3,2 = 1, two tones should be allocated to clients 2
and 3. The problem is now formulated as a linear programming problem and can be solved
easily using Simplex or Hungarian method [7].

For solving the above linear programming problem, we have a λ matrix with λij ≥ 0.
The resulting clients in a group are the i and j indexes of λi,j 6= 0. Moreover, the summa-
tion of all possible combinations of a specific i and j will be the number of tones that are
allocated to these clients. As an example, let’s consider M = 6 clients with the requested
rates R and K = 6 tones with the channel gains G:

R = [2.63, 1.55, 2.71, 1.72, 1.12, 2.51].
G = [0.90, 2.19, 0.51, 0.85, 0.39, 0.65].

The minimum power to achieve the requested rates for groups of two clients is the
solution of Equation 2.24 with the constraints in Equations 2.25,2.26 and 2.27. The solution
to this problem is as follows:

λ =


0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0


As it was expected, based on our constraints’ definitions, the solution for λ matrix is

always symmetric. The above λ results in grouping of clients 1 and 5, clients 2 and 3, and
clients 4 and 6.

15



2.3.2 Groups of three clients

We have extended the Q = 2 grouping to Q = 3 grouping such that the weight matrix is
changed from a 2-D to a 3-D matrix. In this case, we may have group of size 1, 2 and/or 3.
All three dimensions of the weight matrix are from the set A = {1, 2, ...,M}. Let’s define
C(i, j, k) as the total power to send signals to clients i,j and k using one tone. Then, we
have:

C(i, j, k) =


Pi if i = j = k,
Pi,j if i = k or j = k,
Pi,k if i = j,
Pi,j,k ifi 6= j 6= k,

in which,

• Pi is the required power to send to only client i in one tone.

• Pi,j and Pi,k are the total power to send code-words to two clients using one tone.

• Pi,j,k is the total power to send code-words to three clients using one tone.

Figure 2.9 shows the assignments for the weight matrix in grouping of three clients.
Again, we have λijk regarding to choose i, j and k in a group, if λijk 6= 0 and do not choose
otherwise.

The cost function for the 3-D weight matrix will be:∑
i∈A

∑
j∈A

∑
k∈A

C(i, j, k)λijk (2.28)

The constraints are also extended from the groups of two clients, therefore we have:∑
i∈A

∑
j∈A

λijk = 1 for k ∈ A, (2.29)

∑
i∈A

∑
k∈A

λijk = 1 for j ∈ A, (2.30)

∑
j∈A

∑
k∈A

λijk = 1 for i ∈ A, (2.31)

λijk ≥ 0 for i, j, k ∈ A. (2.32)
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Figure 2.9: Weight matrix for grouping of three clients with M = 3

Similarly, this problem formulation also leads to a linear assignment problem which can
be easily solved by Simplex algorithm.

In the obtained λ matrix, we have values other than 0 and 1 for Q = 3 and this
should be translated in terms of our set-up. Let us consider the same color elements in
the assignment matrix, which shows the same group representatives, in Figure 2.9. As
shown, the representatives of each group exist in different places in the assignment matrix.
Moreover, based on the above constraints, presenting of a same group with two clients
happens three times in a constraint; and presenting of a same group with three clients

happens two times in a constraint. Therefore, we have
1

3
or 2 × 1

3
, or 3 × 1

3
values for

the λ element for groups of two, and
1

2
, or 1 values for λ element for groups of three. As

explained before, the summation of the representatives of one group over the whole matrix
shows the number of tones that are assigned to that group. Here, each of two-clients and
three-clients groups repeated 6 times in the whole matrix. Therefore, at least two and
three tones are assigned to two-clients and three-clients groups, respectively. The latter
explanation can be extended to any M clients with their specific values.
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To shed more light on what we said, consider an example of groups of three clients in
which M = 3 with the following requested rates and channel gains, respectively.
R = [1.8834, 1.9844, 2.9572],
and
G = [1.2876, 0.5803, 0.5679].

Solving the above linear assignment problem, we have λ as:

λ(:, :, 1) =

0 0 0
0 0 0.5
0 0.5 0

λ(:, :, 2) =

 0 0 0.5
0 0 0

0.5 0 0

λ(:, :, 3) =

 0 0.5 0
0.5 0 0
0 0 0

.

The result is to group 1,2 and 3 in all three tones which is exactly the same as broadcast
in this scenario.

λ1,2,3 + λ1,3,2 + λ2,1,3 + λ2,3,1 + λ3,1,2 + λ3,2,1 = 3 (2.33)

2.3.3 Groups of four clients

The groups of four clients is defined as grouping of at most 4 clients for a tone, i.e. we
have single element groups, groups of size two, groups of size three, and/or groups of size
four. Therefore, for Q = 4, the weight matrix will be 4-D with every dimension of size M
with the assignment shown in Figure 2.10.

The cost matrix C has four indexes here in which the matrix element C(i, j, k, l) re-
presents the total power needed to send code-words to clients i, j, k and l. Each matrix
element is the total power to send signals to 1,2,3 or 4 clients using one tone. The va-
lues of λijkl for all i, j, k, l ∈ {1, 2, ...,M} is the solution of the following linear assignment
problem.

min
∑
i∈A

∑
j∈A

∑
k∈A

∑
l∈A

C(i, j, k, l)λijkl, (2.34)

∑
i∈A

∑
j∈A

∑
k∈A

λijk = 1 for l ∈ A, (2.35)

∑
i∈A

∑
j∈A

∑
l∈A

λijl = 1 for k ∈ A, (2.36)

∑
i∈A

∑
k∈A

∑
l∈A

λikl = 1 for j ∈ A, (2.37)
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Figure 2.10: Assignment matrix for grouping of four clients with M = 4

∑
j∈A

∑
k∈A

∑
l∈A

λjkl = 1 for i ∈ A, (2.38)

λijkl ≥ 0 for i, j, k, l ∈ A. (2.39)

Again, we have the same discussion as Section 2.3.2 for possible values of λ elements.
Thus far, the algorithm has determined the best way of grouping the clients and allocates
the required tones to the groups. In the following section, the latter is enhanced by focusing
on how to satisfy the rate of client i through specified groups.

2.3.4 Augmented solution

Consider the grouping method is performed and the results are available. Having known
the result, it is decided that each client, say the ith client, would be involved in m different
groups, denoted by the set Ai. It is possible to further reduce the power if the proportion
of the ith client’s rate to be satisfied in the jth group is calculated efficiently. Formulating
the problem, we have the following optimization problem:
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min
∑
j∈Ai

P i
l (2.40)

such that
Ri =

∑
j∈Ai

αijR(P i
j ), (2.41)

and ∑
j∈Ai

αij = 1 for i ∈ A, (2.42)

where P i
j is the allocated power to the ith receiver through the jth group.

2.3.5 Uneven tone assignment

Thus far, based on the proposed methods, the number of tones that can be assigned to the
groups with the same size has been constant. Now, the question is whether we can get a
higher gain if we assign more tones to some groups and less to the others such that the total
number of tones remains constant. To clarify the latter statement, consider Figures 2.11
and 2.12. For M = 4 clients and grouping of two clients, four rates needs to be achieved.
In the classic grouping, two groups are chosen and two tones are assigned to each group
as shown in Figure 2.11. Here, the idea is to have two groups in this way: one group has
the clients with the highest rate requirements and the other group has the clients with the
lowest rate requirements. Then, three tones are assigned to the first group and one tone is
assigned to the second group as shown in Figure 2.12.

Figure 2.11: grouping in the previous report
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Figure 2.12: uneven tone assignment

Generally speaking, for the idea of uneven tones, the assignment method and the num-
ber of tones that are assigned to each group can vary and needs to be studied. For now,
we have just considered the discussed scenario with M = 4 and grouping of two clients.

Consider M = 4 clients with requested rates as R1, R2, R3, R4, and 4 available tones.
The system model and formulation is the same as grouping of two clients discussed in the
previous section. What we need to add for uneven tones will be explained here.

First, the requested rates are sorted and the two clients with higher and the two clients
with lower rates are chosen as max1,max2 and min1,min2, respectively. Let us define
the tone matrix T as an M × M matrix with all ones except those elements with the
following indices: (max1,max2), (max2,max1), (min1,min2) and (min2,min1). The

latter elements get
3

2
,

3

2
,

1

2
and

1

2
, respectively, to provide the assigned tones as Figure

2.12.

In order to formulate the problem, the weight matrix is calculated as stated for the
grouping method. The only difference is the power for the group of (max1,max2) and
(min1,min2). Three tones are assigned to group (max1,max2), so the power to satisfy
1

3
fraction of the requested rates should be considered. In the same way, the requested

rates of min1 and min2 should be considered for the group of (min1,min2). Now, the
formulation becomes:
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∑
i∈A

∑
j∈A

C ′(i, j).λij (2.43)

∑
j∈A

λij
Tij

= 1 for i ∈ A, (2.44)

∑
i∈A

λij
Tij

= 1 for j ∈ A, (2.45)

0 ≤ λij ≤ Tij for i, j ∈ A. (2.46)

∑
i∈A,j∈A

λij = M. (2.47)

Meanwhile, equation 2.47 needs to be considered in order to keep the total number of
tones equal to M.

In section 2.4, the simulation results for the above groupings and the augmented method
would be presented and compared to the broadcast scenario.

2.4 Simulation results

For the simulation, the linear assignment problem for groups of two, groups of three and
groups of four is considered and solved by Matlab linear programming solver. The fading
channels are independent with a Gaussian distribution. Therefore, the channel gains are
assumed to have a Rayleigh distribution with average one. In addition, channel noise has
a Gaussian distribution with average zero and variance one. Moreover, the requested rates
are chosen randomly in a specific range that will be mentioned for each case.

The comparison base for each scenario is the traditional frequency division mode in
which the code-words for each client are sent through one and only one tone. The traditio-
nal frequency division scheme is called single-tone in all simulations. The grouping results
are compared to the broadcast scenario in which the code-words are sent to all M clients
from all M channels.

Considering 10 clients, i.e. M = 10, the grouping results for grouping of two, three and
four is compared to the traditional frequency division and broadcast. In Figure 2.13, the
requested rates are randomly generated such that 1 ≤ R ≤ 2.
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Figure 2.13: Gain comparison based on the traditional frequency division power. M = 10
and 1 ≤ R ≤ 2.

As shown in Figure 2.13, the required power for groups of two is significantly less than
that of traditional frequency division. The improvement continues by increasing Q from 2
to 4, i.e. from grouping of two to grouping of four. The difference between required power
for groups of four and broadcast is less than 1 dB.

The same simulation with 2 ≤ R ≤ 3 leads to the results as shown in figure 2.14. For
averagely higher rates, the achieved gain for grouping of two is more than the lower rates
and the differences between grouping of four clients and broadcast is still less than 1 dB.

As another setting, for 1 ≤ R ≤ 3, we have the results as shown in Figure 2.15.
Here, the grouping of four has an acceptable gain compared to the broadcast gain like the
previous simulations.

For 3 ≤ R ≤ 5, the result is shown in Figure 2.16. The achieved gain over traditional
frequency division scheme is greater than that of lower rates. However, the difference
between the gain of grouping of four and broadcast is more than that of lower rates.

Table 2.1 compares different grouping gains for 10 clients and 10 tones. The results are
provided in Table 2.2 for 20 clients and 20 tones as well. As can be seen in these tables,
the grouping gains are closer to the broadcast gains when the number of clients are closer
to the Q value.
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Figure 2.14: Gain comparison based on the single-tone power. M = 10 and 2 ≤ R ≤ 3.
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Figure 2.15: Gain comparison based on the single-tone power. M = 10 and 1 ≤ R ≤ 3.

For the augmented method, the simulation results for 1 ≤ R ≤ 2 have been illustrated
in Figure 2.17. The gain achieved by using augmented method depends on the rates.
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Figure 2.16: Gain comparison based on the single-tone power. M = 10 and 3 ≤ R ≤ 5.

method/Rate R ∈ [1, 2] R ∈ [1, 3] R ∈ [2, 3] R ∈ {1, 2, 3}
Grouping of 2 2.78 4.03 4.55 4.0
Grouping of 3 3.5 5.66 5.87 5.71
Grouping of 4 3.98 6.07 6.64 6.51

Broadcast 4.54 6.89 7.42 7.01

Table 2.1: Grouping improvements for 10 clients and 10 tones. All values are in dB.

method/Rate R ∈ [1, 2] R ∈ [1, 3] R ∈ [2, 3] R ∈ {1, 2, 3}
Grouping of 2 2.9 4.17 4.88 4.03
Grouping of 3 3.52 5.88 5.97 5.82
Grouping of 4 4.03 6.49 6.89 6.64

Broadcast 4.63 7.45 7.80 7.49

Table 2.2: Grouping improvements for 20 clients and 20 tones. All values are in dB.

However, on average, the improvement is less than 1 dB.

As another setting, for 1 ≤ R ≤ 3, we have the results for augmented grouping method
compared to grouping only as shown in Figure 2.18.

The same simulation with 2 ≤ R ≤ 3 leads to the results as shown in figure 2.19.
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Figure 2.17: Augmented method results. M = 10 and 1 ≤ R ≤ 2.
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Figure 2.18: Augmented method results. M = 10 and 1 ≤ R ≤ 3.
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Figure 2.19: Augmented method results. M = 10 and 2 ≤ R ≤ 3.

Comparing the three augmented method figures, the improvement through the augmented
method is more significant in higher rates. The augmented method for grouping of four has
the best result among the considered schemes, i.e. its gain is the closest to the broadcast
scenario’s gain. The difference between the gain of best result and that of broadcast for
M = 10 is less than 0.7dB.

Table 2.3 compares different grouping gains with the augmented method for 10 clients
and 10 tones.

For the uneven tone assignment, the results for M = 4 and grouping of two are as
stated in Table 2.4.

The performance of grouping of three clients for 2 ≤ R ≤ 3, for different number of
clients has been illustrated in figure 2.20. The grouping gain for three clients is exactly
the same as the broadcast scenario. As expected, the difference between broadcast and
grouping gain increases by growing the number of clients.

Considering different channel models, i.e. shadowing and multi-path with and without
line of Sight (LOS), the groups of three clients is compared to the broadcast scenario. Here,
we have M = 10 and 2 ≤ R ≤ 3. The channels are modeled by Log-normal distribution
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method/Rate R ∈ [1, 2] R ∈ [1, 3] R ∈ [2, 3]

Grouping of 2 2.78 4.03 4.55
Augmented grouping of two 2.8 4.09 4.58

Grouping of 3 3.5 5.66 5.87
Augmented grouping of 3 3.56 5.77 6.01

Grouping of 4 3.98 6.07 6.64
Augmented grouping of four 4.05 6.19 6.80

Broadcast 4.54 6.89 7.42

Table 2.3: Augmented improvements for 10 clients and 10 tones. All values are in dB.

Method/Rate R ∈ [1, 2] R ∈ [2, 3] R ∈ [1, 3]

Grouping of 2 2.73 4.81 4.26
Uneven tones for grouping of 2 3.08 5.33 4.75

Broadcast 3.75 6.49 5.70

Table 2.4: Uneven tones result for M = 4
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Figure 2.20: Performance for grouping of three clients

with µ = 0 and σ = 1, Rician distribution with parameters s = 1 and σ = 1 and Rayleigh

distribution with parameters b =

√
2

π
and µ = 1. Figure 2.21 shows that the grouping
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idea works well for different kind of channels.

Channel with shadowing effect Multi-path channel with LOS Multi-path channel without LOS
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Figure 2.21: Grouping gain over different channels

2.5 Summary

2.5.1 Conclusions

In this section, the idea of grouping clients was introduced. The channel tones are assigned
to the groups of clients with at most Q members. Optimum (minimum) power is computed
to serve all clients at their required rate levels. Different grouping schemes are possible.
Among these possible methods, the grouping which minimizes the total power to send code-
words to the clients is chosen by formulating and solving the problem as the well-known
linear assignment problem. The required power in grouping is significantly less than the
single-tone power in which each tone is allocated to one and only one client. Moreover, the
grouping gain is not far from the broadcast gain. By increasing the number of clients in
the grouping, i.e. increasing Q, the grouping gain improves. This has been achieved with
the cost of increasing the inter-carrier interference and some insignificant computations.
However, the grouping assignment gain is significant compared to traditional frequency
division method and can be used practically in many applications.
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2.5.2 List of contributions

In this chapter, a new method for channel allocation in downlink transmission was propo-
sed. The idea of grouping the clients and applying the broadcast set-up in each group has
the following merits:

1. It has less complexity with respect to the broadcast set-up, for the size of the code-
book used for coding/decoding would be decreased. On the other hand, the gain for
the new set-up would remain roughly the same as the broadcast set-up.

2. The gain for the proposed method is significantly higher than the gain for traditional
FDMA. This is because in FDMA the channels are not exploited efficiently.

3. The idea of an uneven tone assignment to each group was raised which outperforms
the simple grouping method.

2.5.3 Future research

Many different ideas and tests have been left for the future due to lack of time. There
is a couple of ideas that I would have liked to try during my research. Future work can
possibly concern more about the following topics:

1. Increasing the size of the groups to the numbers greater than four. As the number of
existent clients increases, the size of the groups can increase accordingly. However,
this needs more work on defining the corresponding optimization problem.

2. The way that the set-up was defined could be also changed. In practice, the number
of channels may differ from the number of clients. In our set-up, these numbers are
the same.

3. It could be interesting to define a channel which is not Gaussian and after finding
the capacity for the new channel, one can test the proposed method over it.
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Chapter 3

Uplink transmission

3.1 Introduction

In uplink transmission, the MAC set-up gives us the highest gain. However, when the
number of clients increases, the size of the codebook used for coding/decoding increases,
which leads to a more complex transmitter/receiver system.

The idea of grouping the clients arises out of the following question:

How to decrease the complexity without losing much gain?

It has been shown that grouping the clients would effectively save most of the gain and
decrease the complexity. In this method, the clients of one group would not make any
interference for the other groups’ clients. Meanwhile, in each group, the clients form a
MAC set-up to use the maximum gain of the existent channels.

As an example, consider the grouping of size two. The capacity region for MAC can be
obtained as shown in figure 3.1.

Which has been obtained based on the following inequalities:

R1 ≤
1

2
log (1 + SNR1) (3.1)

R2 ≤
1

2
log (1 + SNR2) (3.2)

R1 +R2 ≤
1

2
log (1 + SNR1 + SNR2) (3.3)
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Figure 3.1: Capacity region for MAC with 2 clients

In order to achieve point A on figure 3.1, first, the decoder decodes the second client’s data
and treats the first clien’s data as a noise. Therefore, the achievable rate for the second
client would be [13]:

R2 =
1

2
log (1 +

SNR2

1 + SNR1

) (3.4)

Afterward, the receiver subtracts the second client’s data from what has been received and
then decodes the first client’s data. Therefore,

R1 =
1

2
log (1 + SNR1) (3.5)

Point B can be obtained with the same approach.

In order to obtain a point over the line AB, say qA + (1 − q)B, the system can perform
one of the following strategies:

1. Allocate (1−q) proportion of time to decode second users data and then q proportion
of time to decode first users data.
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2. Allocate q proportion of time to decode first users data and (1 − q) proportion of
time to decode second users data

That being said, the maximum sum rate in every single group would satisfy inequality
3.3, for the clients form a MAC together.

By generalizing this idea, the capacity region of a group, say S, with the size less than
or equal to K, can be achieved as follows:

ζuplink = ∪{(R1, ..., RK) ≥ 0 :
∑
k∈S

Rk ≤
1

2
log (1 +

∑
k∈S

SNRk),∀S ⊆ [1 : K]} (3.6)

Moreover, the sum capacity will be:

Csum
uplink =

1

2
log (1 +

K∑
k=1

SNRk) (3.7)

Therefore, the maximum sum rate can be obtained from the following equation:∑
i∈S

Ri =
1

2
log (1 +

∑
i∈S

SNRi) (3.8)

Where S is the set of group elements.

As an example, an uplink channel capacity region for a group of 3 clients is obtained
from the following equations:

Rk ≤
1

2
log (1 + SNRk), k = 1, 2, 3 (3.9)

R1 +R2 ≤
1

2
log (1 + SNR1 + SNR2) (3.10)

R2 +R3 ≤
1

2
log (1 + SNR2 + SNR3) (3.11)

R1 +R3 ≤
1

2
log (1 + SNR1 + SNR3) (3.12)

R1 +R2 +R3 ≤
1

2
log (1 + SNR1 + SNR2 + SNR3) (3.13)
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3.2 Grouping the clients

Let us consider a set-up in which:

1. The base station is equipped with M time/frequency resources.

2. Each client’s power is bounded by P .

3. The channel is AWGN with noise variance σ2 in all transmission channels.

4. The channel gains follow Rayleigh distribution with average 1.

Suppose that we have N clients to be grouped into K groups of size B. For each of
these groups, say group k, the maximum summation rate, Rk, will be obtained by:

Rk =
1

2
log (1 +

B∑
i=1

P

σ2
G2
ki

) (3.14)

Considering all K groups, the problem can be defined as maximizing the total rate over
all groups, i.e.

K∑
k=1

Rk =
K∑
k=1

1

2
log (1 +

B∑
i=1

P

σ2
G2
ki

) (3.15)

The effect of group size on rate improvement has been examined via simulation. In this
simulation, the number of clients/channels is equal to 48 and P

σ2 = 10. At this point, the
clients have formed the groups randomly and each method’s gain has been calculated with
respect to the single channel allocation method’s gain.The results can be seen in table 3.1.

Random grouping group size=2 group size=3 group size=4 group size=6 group size=8 group size=12 All- MAC

Gain 0.3662 0.4914 0.5530 0.6155 0.6465 0.6767 0.7208

Table 3.1: Effect of group size on gain. Gains have been obtained with respect to single
channel allocation method. All values are in dB.

As it has shown in table 3.1, the rate improves by increasing the group size with
the cost of more complexity and delay in decoding the messages. Considering the above
maximization problem, two different strategies have been examined. The first one is to
define an optimization problem and to solve it efficiently. This would be explained in
section 3.3. The second one is to consider the problem as maximizing the product of
positive integers. The latter would be elaborated in section 3.4.
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3.2.1 Why all-MAC set-up always leads to the maximum gain

Suppose that we have nk channels/clients. Here we have compared two cases:

1. All the channels/clients form a MAC set-up.

2. nk channels/clients are divided into n groups of size k. Afterward, each group forms
a MAC set-up.

By normalizing the bandwidth of each channel to 1, the available bandwidth for the clients
in the first case would be 1

nk
. Therefore, the maximum sum rate for this case can be

obtained from the following formula:

Csum
MAC = (nk)× 1

2
log (1 +

P

σ2
×
∑

iG
2
i

nk
) (3.16)

In the second case, suppose that n groups of size k have been arbitrarily chosen such that
they form n disjoint groups. For the sake of simplicity, channels are denoted by the
squared value of their gains. Therefore, the groups can be shown as follows:

St = {G2
t1
, G2

t2
, ..., G2

tk
}, 1 ≤ t ≤ n (3.17)

where: ⋃
t

St =
⋃
i

Si, 1 ≤ t ≤ n, 1 ≤ i ≤ nk (3.18)

⋂
t

St = φ, 1 ≤ t ≤ n (3.19)

Moreover, the sum of each group’s elements can be shown by st, which means that:

st =
∑
1≤i≤k

G2
ti

(3.20)

In This case, since |St| = k, the available bandwidth for each client would be 1
k
. Therefore,

the maximum sum rate can be obtained based on the following formula:

Csum
grouping =

∑
1≤t≤n

k × 1

2
log (1 +

P

σ2
× st
k

) (3.21)

Henceforth, we will try to prove that:∑
1≤t≤n

k × 1

2
log (1 +

P

σ2
× st
k

) ≤ (nk)× 1

2
log (1 +

P

σ2
×
∑

iG
2
i

nk
) (3.22)
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or equivalently: ∑
1≤t≤n

log (1 +
P

σ2
× st
k

) ≤ n× log (1 +
P

σ2
×
∑

iG
2
i

nk
) (3.23)

By Jensen’s inequality [3] for the concave function ψ:∑
ψ(xi)

n
≤ ψ(

∑
xi
n

) (3.24)

Also, it is obvious that f(x) = log (1 + x) is a concave function, therefore:∑
f( P

σ2 × st
k

)

n
≤ f(

∑
P
σ2 × st

k

n
) (3.25)

On the other hand, ∑
1≤t≤n

st =
∑

1≤i≤nk

G2
i (3.26)

This gives us the desired inequality.

3.3 Optimizing the total rates

Let us start with the problem of maximizing the sum rate with M clients and groups of
two clients.

max
γ

∑
i,j∈A

log (1 + Cij.γij) (3.27)

In which Cij is the summation of SNR of the clients i and j in one group. We have some
constraints as well: ∑

i∈A

γij = 1 (3.28)

∑
j∈A

γij = 1 (3.29)

0 ≤ γij ≤ 1 (3.30)

It seems that we need to add another constraint which satisfies Ri ≤ 1
2

log (1 + SNRi).
Then, based on 3.27, we need to find a solution for this problem:

max
γ

(log
∏
i,j∈A

(1 + Cij.γij)) (3.31)

36



which is equivalent to:

max
γ

∏
i,j∈A

(1 + Cij.γij) (3.32)

This formulation brings up the idea of using related algorithms to find the groups, instead
of finding an optimized solution. This idea would be described in the next section. Based
on other formulation for optimization, we have:

max
∑
i∈A

λiRi (3.33)

∑
i∈A

λiPi ≤ P0 (3.34)

Rj > R0,∀j ∈ C (3.35)∑
i∈Sj

λi > 0,∀j ∈ {1, 2, ..., K} (3.36)

∑
i

λi = 1 (3.37)

where A is the set of all possible combinations of clients. For example, for two clients
and grouping of two, A includes (1), (2), and (1, 2). In this formulation, the total power
is bounded by P0 and all single rates need to be more than a minimum, say R0.

Now, let us define Rj
i as the maximum rate of client j in the ith group. Therefore, the

optimization problem can be written as:

max
∑
i∈A

λiRi (3.38)

= max
∑
i∈A

(λi
∑
j

Rj
i ) (3.39)

max
λ

∑
i

∑
j

λiR
j
i , (3.40)

with the following constraints: ∑
i∈A

λiPi ≤ P0, (3.41)

∑
i∈A,j=J

λiR
j
i ≥ R0,∀J ∈ {1, 2, ...,M}, (3.42)
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∑
i∈Sj

λi ≥ 0,∀j ∈ {1, 2, ..., K}, (3.43)

∑
i

λi = 1. (3.44)

We need to deal with both rate and energy parameters in the above inequalities in which
their relationship is not linear. As the first step, the problem is reduced to a simpler one
with all rate constraints as

max
∑
i∈A

(λi
∑
j

Rj
i ) = max

λ

∑
i

∑
j

λiR
j
i = max

λ

∑
j

∑
i

λiR
j
i (3.45)

∑
i∈A,j=J

λiR
j
i ≥ R0,∀J ∈ {1, 2, ...,M}, (3.46)

λiR
j
i ≤ Rj

max, ∀i ∈ A, j ∈ K (3.47)

λiR
j
i + λiR

ĵ
i ≤ Ri

max, ∀j, ĵ ∈ any group (3.48)∑
i

λi = 1. (3.49)

The above problem for grouping of two clients will be as follows:

Case number i 1 2 3
Clients in i 1 2 1,2

Table 3.2: Grouping two clients.

max

3∑
i=1

(λi

2∑
j=1

Rj
i ) = maxλ1R

1
1 + λ2R

2
2 + λ3R

1
3 + λ3R

2
3 (3.50)

λ1R
1
1 + λ3R

1
3 ≥ R1

min (3.51)

λ2R
2
2 + λ3R

2
3 ≥ R2

min (3.52)

λ1R
1
1 ≤ R1

max (3.53)

λ2R
2
2 ≤ R2

max (3.54)

λ3R
2
3 ≤ R3

max (3.55)
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λ3R
1
3 ≤ R4

max (3.56)

λ3R
1
3 + λ3R

2
3 ≤ R5

max (3.57)

λ1 + λ2 + λ3 = 1 (3.58)

Now, let us divide the problem into two parts. The first part is:

maxλ1R
1
1 + λ2R

2
2 + λ3(R

1
3 +R2

3) (3.59)

λ1R
1
1 + λ2R

2
2 + λ3(R

1
3 +R2

3) ≥ R1
min +R2

min (3.60)

λ1R
1
1 ≤ R1

max (3.61)

λ2R
2
2 ≤ R2

max (3.62)

λ3(R
1
3 +R2

3) ≤ min {R3
max +R4

max, R
5
max} (3.63)

λ1 + λ2 + λ3 = 1 (3.64)

Then, the second part is:
λ1R

1
1 + λ3R

1
3 ≥ R1

min (3.65)

λ2R
2
2 + λ3R

2
3 ≥ R2

min (3.66)

λ3R
2
3 ≤ R3

max (3.67)

λ3R
1
3 ≤ R4

max (3.68)

The first problem is a linear optimization problem that can be solved easily.

Always, the result is λ1 = 0, λ2 = 0, λ3 = 1. As expected, multiple access channels with
both clients is always the best result for this scenario.

The second part can be calculated based on λ values. We have:

R1
min − λ1R1

1

λ3
≤ R1

3 ≤
R4
max

λ3
(3.69)

R2
min − λ2R2

2

λ3
≤ R2

3 ≤
R3
max

λ3
(3.70)

For a grouping of three clients we have:

max

6∑
i=1

(λi

2∑
j=1

Rj
i ) = max(λ1R

1
1 +λ2R

2
2 +λ3R

3
3 +λ4(R

1
4 +R2

4)+λ5(R
1
5 +R3

5)+λ6(R
2
6 +R3

6))

(3.71)
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Case number i 1 2 3 4 5 6
Clients in i 1 2 3 1,2 1,3 2,3

Table 3.3: Grouping three clients.

λ1R
1
1 + λ4R

1
4 + λ5R

1
5 ≥ R1

min (3.72)

λ2R
2
2 + λ4R

2
4 + λ6R

2
6 ≥ R2

min (3.73)

λ3R
3
3 + λ5R

3
5 + λ6R

3
6 ≥ R3

min (3.74)

λ1R
1
1 ≤ R1

max (3.75)

λ2R
2
2 ≤ R2

max (3.76)

λ3R
2
3 ≤ R3

max (3.77)

λ4R
1
4 ≤ R4

max (3.78)

λ4R
2
4 ≤ R5

max (3.79)

λ5R
1
5 ≤ R6

max (3.80)

λ5R
3
5 ≤ R7

max (3.81)

λ6R
2
6 ≤ R8

max (3.82)

λ6R
3
6 ≤ R9

max (3.83)

λ4R
1
4 + λ4R

2
4 ≤ R10

min (3.84)

λ5R
1
5 + λ5R

3
5 ≤ R11

min (3.85)

λ6R
2
6 + λ6R

3
6 ≤ R12

min (3.86)

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1 (3.87)

The problem is separated into two parts. The first part is:

max(λ1R
1
1 + λ2R

2
2 + λ3R

3
3 + λ4(R

1
4 +R2

4) + λ5(R
1
5 +R3

5) + λ6(R
2
6 +R3

6)) (3.88)

λ1R
1
1+λ2R

2
2+λ3R

3
3+λ4(R

1
4+R2

4)+λ5(R
1
5+R3

5)+λ6(R
2
6+R3

6) ≥ R1
min+R2

min+R3
min (3.89)

λ1R
1
1 ≤ R1

max (3.90)

λ2R
2
2 ≤ R2

max (3.91)

λ3R
2
3 ≤ R3

max (3.92)

λ4(R
1
4 +R2

4) ≤ min {R4
max +R5

max, R
10
max} (3.93)
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λ5(R
1
5 +R3

5) ≤ min {R6
max +R7

max, R
11
max} (3.94)

λ6(R
2
6 +R3

6) ≤ min {R5
max +R7

max, R
12
max} (3.95)

λ1 + λ2 + λ3 + λ4 + λ5 + λ6 = 1 (3.96)

Then, inequalities number 3.72,3.73,3.74,3.75,3.76,3.77,3.78,3.79 and 3.80 should be chec-
ked.

The above problem cannot be solved by separating it into two parts, because the solu-
tion for the first part does not have a feasible solution that satisfies the second part.

Considering the above results, it is decided to consider related algorithms in order to
group the clients almost efficient.

For the optimization problem, some primary simulations have been done in order to
understand the problem and possible results. The uplink grouping is considered for groups
of two clients, for total clients of 4 and 6. Five schemes are simulated.

1. Maximizing the minimum rate for grouping.

2. Sorting the channel gains and grouping the biggest with the smallest.

3. Random clients grouping.

4. Multiple access channel with no grouping.

5. Considering uneven tone assignment for random grouping.

(1) and (2) are exactly the same schemes which are better than random grouping but the
difference is not significant. The difference between (1), (2), (3) and (4) shows that an
optimum or near optimum grouping can improve the grouping gain more than what we
have now. The following results are for 6 clients and constant energy which equals one.

method 1 2 3 4 5
Sum rate 0.5954 0.5954 0.5796 0.8639 0.5734

Table 3.4: Sum rate for different schemes considering normalized energy P
σ2 = 1
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3.4 Algorithms for grouping

Suppose that we have N clients to be grouped into K groups of size B and the available
power for each client is equal to P . For each of these groups, say group k, the maximum
summation rate, Rk, will be obtained by the following formula:

Rk =
1

2
log (1 + γ × sk) (3.97)

Where γ = P
σ2 and st =

∑B
i=1G

2
ki

and Gki is the channel gain for client i in group k.
Therefore, we should maximize the following function:

K∑
k=1

Rk =
K∑
k=1

1

2
log (1 + γ × sk) =

1

2
log

K∏
k=1

(1 + γ × sk) (3.98)

Therefore, maximizing
∑K

k=1Rk is equivalent to maximizing the following term:

K∏
k=1

(1 + γ × sk) (3.99)

On the other hand, we have:

K∑
k=1

(1 + γ × sk) = K + γ ×
K∑
k=1

sk = K + γ ×
N∑
k=1

G2
i (3.100)

In which
∑N

k=1G
2
i is constant over the study period as each gi is assumed to be constant.

Consequently, the above summation is constant over the study period.

Claim : The maximum product of positive integers with constant summation happens when
all of them are equal.

This can be easily proven by using AM −GM inequality. See Appendix A for the proof.

That being said, we should get down to finding (1 + γ × sk)’s such that they are roughly
equal. In other words, we have to find groups of size B such that the summation of G2’s for
the group’s elements are roughly equal. Therefore, to optimize the sum rate, the following
problem should be taken into account:

Given N positive numbers, how to distribute them in K groups with a constant cardinality
of B such that the summation of the elements of each group is roughly equal to the other
ones.

42



Type of grouping Size=6 Size=12 Size=24 Size=48 Size=72
Random group of size=2 0.3651 0.3643 0.3644 0.3664 0.3658

Grouping around average point of size=2 0.4653 0.3591 0.3078 0.2882 0.2819
Random group of size=3 0.4901 0.4872 0.4904 0.4917 0.4912

Grouping around average point of size=3 0.5398 0.5007 0.4407 0.4091 0.3995
All MAC 0.6140 0.6748 0.7056 0.7208 0.7254

Table 3.5: Grouping algorithm considering the average point. All values are in dB and
over single channel allocation.

This problem is an nondeterministic polynomial time (NP) problem that has been studied
extensively. Some algorithms have been proposed so far, like KK [5], BLDM [12], LRM
[15], Meld [15] etcetera. We have examined different algorithms and provided the results
in the simulation section. As it will be shown, some algorithms are not effective and some
increase the gain.

3.4.1 Grouping around the average point

The first algorithm is known as grouping around the average point. In this algorithm, the
average of all channel gains is calculated and denoted by Ḡ. Then, |G − Ḡ| is calculated
and sorted. Grouping starts simply with choosing the first K clients that are sorted as the
smallest ones. The second group is chosen by having the next K clients and so on. In this
way, we try to keep the values in a group that have an average around Ḡ.

We have simulated this simple algorithm and rate improvement is provided in 3.5. As
shown, the algorithm is only helpful for a small number of clients and is not able to
increase the rate for a large number of clients.

3.4.2 LRM Algorithm

Suppose that we are meant to group N numbers to K groups with a constant cardinality
of B such that the sum of the numbers in each group is equal. ”Spread” for each group
means the difference of max and min number in each group. This method tries to make
the sums roughly equal by decreasing the spread of each group.

The algorithm is defined as follows:

1. Sort out the numbers decreasingly.
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2. Put the first K numbers in one group, the second K numbers in another group and
so on.

3. Find the mean of each group, µi, and define µ =
∑
µi.

4. Pick the leftmost number of the group which has the largest spread and put it equal
to L.

5. Pick the rightmost number of the group which has the second largest spread and put
it equal to R.

6. Among the numbers in the group which has the smallest spread, find the number
which is closer to µ− L−R and define it as M .

7. If the number of groups is greater than 3, then do the previous step for the other
groups as well.

8. Put R, L, M (and the other numbers found in the previous step) in one group and
eliminate them from the original groups.

9. Return back to the step 4 and do the algorithm until the numbers are over.

3.4.3 BLDM Algorithm

Similarly, this method tries to solve the abovementioned problem but the algorithm is
slightly different:

1. Sort out the numbers decreasingly.

2. Put the first K numbers in one group, the second K numbers in another group and
so on.

3. Find two groups which have the largest spread and fold them. By folding, we mean
that we have to add the largest number of the first group to the smallest number of
the second group and then add the second largest number of the first group to the
second smallest number of the second group and so on. This step will decrease the
number of groups by one.

4. Return to step 3 until just one group left.

5. Each number in the final group is corresponding to the sum of b numbers which are
meant to form a group.
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Type of grouping Size=6 Size=12 Size=24 Size=48 Size=72
Random group of size=2 0.3651 0.3643 0.3644 0.3664 0.3658

LRM (BLDM) group of size=2 0.5357 0.5891 0.6154 0.6312 0.6357
Random group of size=3 0.4901 0.4872 0.4904 0.4917 0.4912

LRM group of size=3 0.5899 0.6439 0.6704 0.6851 0.6892
BLDM of size=3 0.5899 0.6448 0.6724 0.6887 0.6940

All MAC 0.6140 0.6748 0.7056 0.7208 0.7254

Table 3.6: Effect of size on gain for different algorithms. All values are in dB and over
single channel allocation.

3.4.4 Simulation results

For the groups of size 2, both LRM and BLDM methods result in the same grouping
strategy. In the following, six methods have been compared:

1. When the users randomly form a group of size 2.

2. When the users form a group of size 2 based on LRM (or BLDM) algorithm.

3. When the users randomly form a group of size 3.

4. When the users form a group of size 3 based on LRM algorithm.

5. When the users form a group of size 3 based on BLDM algorithm.

6. When all of the clients use the whole channels simultaneously and make a full MAC
system.

First case, size effect

In this simulation, the effect of size on the rate improvement is compared, while P
σ2 is

constant. The gains have been calculated with respect to the single channel allocation
set-up. Note that the values are in dB. The comparison has been shown in 3.7.

Here, P
σ2 is fixed and equal to 10 for all types.

It is observed that LRM grouping with size=2 has better performance compared to
the random grouping of size=3. In addition, both LRM and BLDM methods result in the
same gain for the groups of size 6. Moreover, BLDM for the group size of greater than 6
has a slightly better performance with respect to LRM.
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Type of grouping P
σ2=5

P
σ2=10

P
σ2=15

P
σ2=20

P
σ2=50

Random group of size=2 0.3773 0.3664 0.3526 0.3423 0.3021
LRM (BLDM) group of size=2 0.6634 0.6312 0.6021 0.5812 0.5043

Random group of size=3 0.5108 0.4917 0.4708 0.4558 0.3991
LRM group of size=3 0.7256 0.6851 0.6513 0.6278 0.5421

BLDM of size=3 0.7293 0.6887 0.6540 0.6298 0.5455
All MAC 0.7667 0.7208 0.6839 0.6589 0.5674

Table 3.7: Effect of power on gain for different algorithms. All values are in dB and over
single channel allocation.

Second case, power effect

In this simulation, the group size is constant and P
σ2 varies. This means that the required

rate for each client, which is considered to be the same for all clients, may vary. Here, the
number of clients/channels is equal to 48. The results have been shown in 3.7.

3.5 Summary

3.5.1 Conclusions

In uplink transmission, multiple transmitters can send their messages to the receiver fol-
lowing multiple access channel protocol, which has the best rate achievement but delay
and complex decoding at the receiver. Using single channel allocation has the worst rate
achievement but less delay and complexity. By grouping the clients into groups of K clients
and having MAC set-up in each group, the total rate improves compared to single channel
allocation. Simulation results show that among the considered algorithm, BLDM has the
best gain.

3.5.2 List of contributions

In this chapter, a new method for channel allocation in uplink transmission was proposed.
The idea of grouping the clients and applying the MAC set-up in each group has the
following merits:
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1. It has less complexity with respect to the All-MAC set-up, for the size of the codebook
used for coding/decoding would be decreased. On the other hand, the gain for the
new set-up would remain approximately the same as the MAC set-up.

2. The gain for the proposed method is noticeably higher than the gain for FDMA.

3.5.3 Future research

The topics which need more work in this chapter could be as follows:

1. Increasing the size of the groups. As the number of clients increases, the size of
the groups can increase accordingly. However, this needs more work on defining the
corresponding optimization problem and it seems to be time-consuming.

2. In a general set-up, the number of channels may differ from the number of clients.
In our set-up, these numbers are the same.

3. As it was discussed in the previous chapter, it could be interesting to define a channel
which is not Gaussian and after finding the capacity for the new channel, one can
test the proposed method over it.
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Appendix A

Proof of the claim made in 3.4

Claim : The maximum product of positive integers with constant summation happens when
all of the numbers are equal.

Based on AM-GM inequality we have [10]:

n
√
x1x2...xn ≤

x1 + x2 + ...xn
n

(A.1)

Therefore, we have:

(x1x2...xn) ≤ (
x1 + x2 + ...xn

n
)n (A.2)

and equality happens when: x1 = x2 = ... = xn.

In the abovementioned claim, the right side of inequality A.2 is constant; therefore the
maximum value of (x1x2...xn) happens when x1 = x2 = ... = xn.
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