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Abstract

Let E be a finite set, and let R(E) denote the algebra of polynomials in indeterminates
(xe)e∈E, modulo the squares of these indeterminates. Subalgebras of R(E) generated by
homogeneous elements of degree 1 have been studied by many authors [1, 16, 22, 27, 28]
and can be understood combinatorially in terms of the matroid represented by the linear
equations satisfied by these generators. Such an algebra is related to algebras associated to
deletions and contractions of the matroid by a short exact sequence, and can also be written
as the quotient of a polynomial algebra by certain powers of linear forms.

We study such algebras in the case that the matroid is regular, which we term circulation
algebras following Wagner [27]. In addition to surveying the existing results on these algebras,
we give a new proof of Wagner’s result that the structure of the algebra determines the
matroid, and construct an explicit basis in terms of basis activities in the matroid. We
then consider generalized circulation algebras in which we mod out by a fixed power of each
variable, not necessarily equal to 2. We show that such an algebra is isomorphic to the
circulation algebra of a “subdivided” matroid, a variation on a result of Nenashev [16], and
derive from this generalized versions of many of the results on ordinary circulation algebras,
including our basis result. We also construct a family of short exact sequences generalizing
the deletion-contraction decomposition.
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Chapter 1

Introduction

1.1 Background

A flow on a graph Γ is a function defined on the edge set E(Γ) which satisfies a “conservation
law” at each vertex. The study of flows has its origins in the theory of electrical networks:
interpreting the values of the flow function as measuring electric current through the cor-
responding edges, the conservation constraint is precisely Kirchhoff’s current law. In this
guise, Kirchhoff himself developed much of the elementary theory of flows in [14]. Though
phrased in terms of electricity, much of this work applies in a far more general context:
for instance, while electric current is real-valued, the circuit laws are linear equations with
integer coefficients and can thus be interpreted in any abelian group.

Flows on graphs have been studied in many different contexts. In physics, conservation
laws appear in many contexts besides electrical current: for instance, we may think of the
edges as paths through spacetime of particles moving at constant velocity, with the vertices as
positions at which they interact. Then by conservation of momentum, the function assigning
each edge the momentum vector of the corresponding particle is an R4-valued flow. This is
essentially a simplified version of the idea of a Feynman diagram, and the Feynman integrals
of quantum field theory can be written as integrals over flow spaces.

Of course, these concepts are not restricted to physics. Mathematically, flows can be
studied from the perspective of algebraic topology: A-valued flows on Γ can be identified
with the elements of the homology group H1(Γ;A). A consequence of this, together with the
fact that the sphere is simply connected, is that for graphs embedded in the sphere, every
flow can be obtained as the boundary of a 2-chain; in other words, a flow can be written as a
difference in “potential” between the two incident faces. Planar duality, then, interchanges
the roles of current and voltage in electrical networks.

This duality gives a connection to the map colouring problem: a flow which is nowhere
zero implies the existence of a 2-chain in which no two adjacent faces have equal potential;
in other words, a proper face colouring, with the elements of A as colours. In particular,
the four-colour theorem is equivalent to the existence of flows on planar graphs valued in an
abelian group of order 4. Stemming from this, flows valued in finite abelian groups are of
great importance in structural graph theory, giving on one hand an algebraic perspective on
face colourings of planar graphs and on the other, a notion of “face colouring” for non-planar
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graphs, which unlike the planar case is not equivalent to vertex colouring on a dual graph.
See chapter 6 of Diestel’s book [8] for an exposition of this perspective on flows.

The introduction of matroids by Whitney [30] allowed for vast generalizations of these
ideas. A matroid can be associated to any system of linear equations whatsoever, and
solutions to the system can still be loosely viewed as “flows” on the matroid. Surprisingly,
much of Kirchhoff’s work still applies in this context. This is especially true in the special case
of regular matroids, a class which includes those derived from either of Kirchhoff’s laws. For
instance, regular matroids satisfy a natural generalization of Kirchhoff’s matrix-tree theorem.
Moreover, regular matroids have a unique representation property which ensures that, like
graphs, all interesting algebraic properties of flows can be derived from the combinatorial
properties of the matroid.

Matroid duality generalizes planar duality in precisely the correct way to maintain the
duality between current and voltage. Flows on graphic matroids behave like current, while
flows on cographic matroids behave like voltage. Kirchhoff’s current and voltage laws are thus
two examples of the same mathematical phenomenon: regular matroids and their flow spaces.
Indeed, the decomposition theorem of Seymour [19, Theorem 13.1.1] says that all regular
matroids can be built out of graphic and cographic matroids, plus a single other minimal
example, so in this sense the theory of regular matroids is really just a mild generalization
of the theory of electrical networks.

In [27], Wagner introduced the circulation algebra Φ(Γ) of a graph Γ as a tool to study
flows. This is a graded commutative algebra with the property that the homogeneous ele-
ments of degree 1 can be identified with flows on Γ. The algebra can be described in several
different ways:

• As dual to a certain coalgebra, the “Kirchhoff group” K(Γ).

• As a subalgebra of the “squarefree algebra” Q[xe : e ∈ E(Γ)]/ 〈x2
e : e ∈ E(Γ)〉 generated

by the space of flows.

• As a quotient of the symmetric algebra of the flow space by certain powers of linear
forms.

We will take the second formulation as primary. Wagner showed that for e an edge, Φ(Γ)
is related to Φ(Γ \ e) and Φ(Γ / e) by a short exact sequence, and from this derived the
equivalence of the second and third descriptions above. The short exact sequence also allows
one to express the Poincaré polynomial of Φ(Γ) in terms of its Tutte polynomial:

P (Φ(Γ); t) = tr(Γ)T (Γ; t−1, 1 + t).

(Here r(Γ) denotes the rank of the associated graphic matroid, i.e. the number of vertices
minus the number of connected components.)

Though initially described for graphs, circulation algebras – like flows – are really much
more general. Viewing a matrix as defining a space of “flows” on the matroid it represents,
we can view the corresponding subalgebra of the squarefree algebra as a circulation algebra of
the corresponding matroid. In [28], Wagner studied arbitrary subalgebras of the squarefree
algebra generated by degree-1 elements, and extended most of his results to this context.
In particular, all such algebras have an exact sequence and corresponding Tutte polynomial
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formula, as well as a presentation as a quotient of a polynomial algebra by powers of linear
forms.

These same ideas were also discovered independently in a very different context. Let B be
the group of n×n complex upper triangular matrices with determinant 1, the Borel subgroup
of the special linear group SLn(C). The coset space Fln = SLn(C)/B is the complete flag
variety (of type A) parametrizing flags

V1 ⊂ · · · ⊂ Vn

of subspaces of Cn, with dimVi = i. A classical result gives a presentation for its cohomology
ring:

H•(Fln;Z) ∼= Z[x1, . . . , xn]/ 〈e1(x), . . . , en(x)〉
where ei(x) denotes the ith elementary symmetric polynomial. Shapiro and Shapiro [23] ob-
served that there is a quite natural way to choose differential 2-forms ω1, . . . , ωn representing
the cohomology classes corresponding to the indeterminates x1, . . . , xn, and proceeded to
study the ring generated by these forms, of which the cohomology is a quotient. Based
on computations for small n, they conjectured that this algebra’s graded dimension had a
combinatorial interpretation related to forests.

This conjecture was confirmed by Postnikov, Shapiro, and Shapiro in [21] and extended
by the same authors to flag varieties of other types in [22]. The key observation of this
latter paper is simply that the forms ωi can be expressed as complex linear combinations of
another collection of 2-forms ϕ1, . . . , ϕm which are linearly independent, pairwise commute,
and square to zero. In other words, the algebra they are interested in is a subalgebra of
a squarefree algebra, generated by degree-1 elements. The remainder of their results are
applicable to any algebra of this kind, and overlap heavily with Wagner’s: they show that
any such algebra can be presented as a quotient of a polynomial algebra by powers of linear
forms, and that its graded dimension can be expressed in terms of basis activity, a result
equivalent to the Tutte polynomial formula. The connection to forests is explained by the
fact that their algebra, in the original case of Fln, is generated by the cut space of the
complete graph Kn. Thus it is a “cocirculation algebra”, related to voltage in the same
way that Φ(Kn) relates to current. Extending the notion of circulation algebra to regular
matroids therefore encompasses this algebra as well.

1.2 Summary of this thesis

In Chapter 2 we review the background material from matroid theory and from commutative
algebra that we will make use of.

In Chapter 3, we discuss the theory of flows on regular matroids. The main result is
Theorem 3.7, which states that the structure of a regular matroid is uniquely determined
by equipping the flow space with a “black box” that can determine the number of edges
on which a flow is nonzero. This result is not entirely new, but we give a new proof which
is more combinatorial than previous ones. The multiplicative structure of the circulation
algebra gives an implementation of such a black box, motivating its study.

In Chapter 4 we detail the theory of circulation algebras of regular matroids. We first
show (Theorem 4.2) that the isomorphism type of the algebra determines the matroid, which
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follows easily from the results of the previous chapter. We then study various structural
properties of these algebras. These results are not new, being a special case of the general
theory in [22] and [28]. However, we present it in a somewhat different way, closer to how
the graphic version was handled in [27] and emphasizing the special properties of regular
matroids. Highlights include the deletion-contraction exact sequence (Theorem 4.5) and
presentation as a quotient by powers of linear forms (Theorem 4.7). The one totally new
result of the chapter, Theorem 4.11, gives an explicit basis for the circulation algebra in
terms of basis activities in the matroid.

Section 4.5, the final section of the chapter, details a filtration that can be placed on the
algebra, adapting a result of Berget [3]. This gives a two-variable version of the Poincaré
polynomial, which is essentially equivalent to the full Tutte polynomial. We also study
quotients of the algebra by the ideals of the filtration, in particular one we call Φ̃(M) which
has a theory somewhat parallel to the circulation algebra.

In Chapter 5, we introduce “generalized circulation algebras”, in which we replace the
squarefree algebra with the quotient of Q[x] by the monomials x

1+σ(e)
e where the weight σ(e)

may be any natural number. We show this algebra is isomorphic to the circulation algebra
of a “subdivided” matroid, a result which had previously appeared in the work of Nenashev
[16]. However, the main results of this chapter are new and do not follow directly from this
fact. Theorem 5.15 gives a family of exact sequences generalizing Theorem 4.5. From one
of these we derive an expression for the graded dimension of generalized circulation algebras
in terms of Sokal’s multivariate Tutte polynomial. Theorem 5.9 generalizes Theorem 4.11 to
give explicit bases for all generalized circulation algebras.

Finally, in Chapter 6 we discuss the conjecture of Wagner [27, 28] that the graded di-
mension of circulation algebras is logarithmically concave. Proving this was the original goal
of this project, but unfortunately very little progress was made. We give overviews of two
potential approaches to solving this problem.

1.3 Related work

Before beginning, we mention some other related work. As previously discussed, the results
of [22] and [28] show that any subalgebra of the squarefree algebra generated by linear forms
can be seen as a “circulation algebra”, and in particular has a presentation as a quotient
of a polynomial by an ideal generated by powers of linear forms. Such an ideal is called
a power ideal. A natural question is to what extent the theory of circulation algebras can
be extended more generally to algebras with such a presentation. While arbitrary power
ideals are likely too general, Ardila and Postnikov [1] were able to do this for a larger class
of power ideals associated to (represented) matroids, showing that the associated algebras –
or rather their duals – satisfy a deletion-contraction exact sequence generalizing the one for
circulation algebras. Their work can be thought of as generalizing the power ideal descrip-
tion of circulation algebras in a way analogous to how we generalize the squarefree algebra
description.

One particularly interesting algebra that falls into the above class is the one considered
by Postnikov and Shapiro in [20]. Analogously to the multiple descriptions of the circulation
algebra, this algebra can described, in addition to the power ideal presentation, as the
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subalgebra generated by the cut space of a graph in the quotient of the squarefree algebra by
those squarefree monomials corresponding to cuts of the graph. This is precisely the algebra
Φ̃(M) for M the cographic matroid. However, the main results of that paper involve relating
the algebra to a different algebra which is more specifically “graphic” and thus do not seem
likely to generalize to matroids.

The final section of Wagner’s paper [27] deals with another interesting topic related to
flows, namely the lattice of integer-valued flows within the euclidean space of real-valued
flows. Like the circulation algebra, this naturally generalizes to regular matroids. Su and
Wagner [25] proved that a regular matroid can be reconstructed from its lattice of integer
flows, a result which can be seen as a cousin of our Theorems 3.7 and 4.2. Dancso and
Garoufalidis [7] recently gave another proof which is algorithmic in nature (stated only
for graphic matroids, but plausibly generalizable). Their methods resemble our proof of
Theorem 3.7, though there does not appear to be a direct connection.

Finally, we mention that there are many other algebra-valued matroid invariants that do
not appear to be part of the circulation algebra “story”. Some of these, nonetheless, share
similar properties. Perhaps the best-known is the Orlik–Solomon algebra OS(M), introduced
by Orlik and Solomon in [17]. It can be defined combinatorially as the quotient of the exterior
algebra with a generator for each element of the ground set by the “boundaries” of dependent
sets in the matroid. The Orlik–Solomon algebra has a deletion-contraction exact sequence
which is formally identical to that for the circulation algebra, giving its graded dimension
the same recurrence relation but with different initial conditions. The corresponding Tutte
polynomial formula is

P (OS(M); t) = tr(M)T (M ; 1 + t−1, 0)

which since the second variable is set to zero is usually thought of as a transformation of
the characteristic polynomial χ(M ; t) = (−1)r(M)T (M ; 1 − t, 0). For matroids represented
over C, the Orlik–Solomon algebra is isomorphic to the cohomology of the complement of
the corresponding arrangement of hyperplanes.
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Chapter 2

Preliminaries

2.1 Matroids

We assume basic familiarity with matroids; see Oxley’s book [19] for a reference. We review
some basic results and notation in this section, but no attempt is made at completeness.

Matroids can be defined in many ways. The most convenient for us will be the following:
a matroid is a finite set E (the ground set) equipped with a collection C(M) of subsets called
circuits, such that

1. The empty set is not a circuit.

2. No circuit properly contains another.

3. If C1 and C2 are distinct circuits and e ∈ C1∩C2, then (C1∪C2) \ e contains a circuit.

A subset of E is said to be dependent if it contains a circuit, and independent otherwise.
A maximal independent set is a basis. A set which has a nonempty intersection with every
basis is codependent ; a minimal codependent set is a cocircuit. The sets of all bases and co
circuits of M are denoted B(M) and C∗(M) respectively. The rank of a set S ⊆ E is the
size of the largest independent set contained in S. This is denoted rM(S) or just r(S) when
there is no chance of confusion. We will also write r(M) for rM(E).

Another characterization of matroids involves a certain partial order on sets. Let E be
a totally ordered finite set and 1 ≤ k ≤ |E|. The Gale order on k-subsets of E is given as
follows: let

S = {s1 < · · · < sk}
and

T = {t1 < · · · < tk}
be subsets of E. Then write S ≤G T if si ≤ ti for 1 ≤ i ≤ k.

Proposition 2.1 (Gale [10]). Let E be a finite set, and A a collection of subsets of E. The
following are equivalent:

• For every total ordering on E, there exists a unique maximal element of A with respect
to Gale order.

• There exists a matroid M on ground set E such that A = B(M).
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This is essentially equivalent to the greedy algorithm characterization discussed in [19,
Section 1.8]. In particular, the Gale-maximal basis can be found as follows:

• Start with X = ∅.

• Let (e1, . . . , em) be the elements of E listed in descending order.

• For i from 1 to m: if X ∪ {ei} is independent, set X = X ∪ {ei}.

At the end of the loop, X is the Gale-largest basis (see [19, Lemma 1.8.3]).

2.2 The Tutte polynomial

The Tutte polynomial T (M ;x, y) of a matroid M of is a polynomial invariant introduced by
Crapo [6] generalizing a construction of Tutte [26] for graphs. It is given by

T (M ;x, y) =
∑
S⊆E

(x− 1)r(M)−rM (S)(y − 1)|S|−rM (S) (2.1)

where E is the ground set. We refer to [5] for the basic theory of this polynomial.
Let R be a commutative ring and f be an R-valued matroid invariant; that is, a function

that assigns each matroid an element of R, such that isomorphic matroids are assigned the
same element. We say f is a Tutte–Grothendieck invariant if it for any matroids M and N
we have

f(M ⊕N) = f(M)f(N) (2.2)

and for any matroid M and element e which is not a loop or coloop,

f(M) = f(M \ e) + f(M / e). (2.3)

Lemma 2.2. The Tutte polynomial is a Tutte–Grothendieck invariant.

Proof. See [5, Lemma 6.2.1].

More generally, suppose a, b ∈ R are not zero-divisors. We say f is a generalized Tutte–
Grothendieck invariant with coefficients a and b if it satisfies (2.2), and for e not a loop or
coloop,

f(M) = af(M \ e) + bf(M / e). (2.4)

The Tutte polynomial is the universal Tutte–Grothendieck invariant in the following
sense.

Proposition 2.3. Let f be a generalized Tutte–Grothendieck invariant satisfying (2.2) and
(2.4). Then for any matroid M on ground set E,

f(M) = a|E|−r(M)br(M)T (M ; b−1f(U1,1), a−1f(U0,1)).

Proof. See [5, Corollary 6.2.6].
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Another formula for the Tutte polynomial is given in terms of basis activity. Let E be a
totally ordered set and M be a matroid on ground set E. For a basis B of M and an element
e ∈ B, we define the fundamental cocircuit of e with respect to B to be the unique cocircuit
C∗B,e such that C∗B,e ∩ B = {e}. Dually, for e /∈ B the fundamental circuit of e with respect
to B is the unique circuit CB,e contained in B ∪ {e}.

For an element e ∈ E, we say that e is

• internally active (with respect to B) if e ∈ B and e is the smallest element in C∗B,e

• internally passive if e ∈ B and e is not internally active,

• externally active if e /∈ B and e is the smallest element in CB,e, and

• externally passive if e /∈ B and e is not externally active.

The sets of internally active, internally passive, externally active, and externally passive
elements with respect to B are denoted IA(B), IP(B), EA(B), and EP(B) respectively.

Basis activity gives a way to decompose the collection of all subsets of E into “structure-
less intervals”, which contain exactly one basis of M .

Proposition 2.4 (Crapo [6, Proposition 12]). Let M be a matroid on totally ordered ground
set E. For any S ⊆ E, there is a unique basis B of M such that IP(B) ⊆ S ⊆ B ∪ EA(B).

From this we can derive the activity formula for the Tutte polynomial. This is essentially
given by rewriting (2.1) as a sum over bases using Proposition 2.4.

Proposition 2.5 (Tutte [26], Crapo [6]). For any matroid M and any total order on its
ground set,

T (M ;x, y) =
∑
B

x|IA(B)|y|EA(B)|.

2.3 The multivariate Tutte polynomial

Let E be a finite set and let v = (ve)e∈E be a sequence of indeterminates. Introduced by
Sokal in [24], the multivariate Tutte polynomial of a matroid M on E is given by

Z̃(M ; q,v) =
∑
S⊆E

q−rM (S)vS.

Two remarks are in order. The first is that despite the name, Z̃(M ; q,v) is not a many-
variable version of the Tutte polynomial in the most obvious way. Rather, setting all variables
to the same value v gives

Z̃(M ; q, v) = (q−1v)r(M)T (M ; 1 + qv−1, 1 + v)

as is easily seen from (2.1). Thus the multivariate Tutte polynomial is really a many-variable
version of the polynomial on the right. The ordinary Tutte polynomial can be recovered as

T (M ;x, y) = (x− 1)r(M)Z̃(M ; (x− 1)(y − 1), y − 1).
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The second remark is that since a matroid is determined by its rank function, the multi-
variate Tutte polynomial of a matroid is really just an algebraic encoding of its entire combi-
natorial structure. Thus, in principle, any property of M can be recovered from Z̃(M ; q,v).
However, it is still an interesting question to ask which properties can be computed from it
algebraically by making substitutions for the variables.

Like the Tutte polynomial, the multivariate Tutte polynomial has a deletion-contraction
formula.

Proposition 2.6. For M a matroid and any element e which is not a loop, the multivariate
Tutte polynomial satisfies the recurrence

Z̃(M ; q,v) = Z̃(M \ e; q,v) + q−1veZ̃(M / e; q,v).

Proof. See [24, Section 4.3].

The base cases of this recurrence can easily be computed from (2.3):

Z̃(U0,1; q, ve) = 1 + ve

and
Z̃(U1,1; q, ve) = 1 + q−1ve.

Proposition 2.7. For matroids M and N ,

Z̃(M ⊕N ; q,v) = Z̃(M ; q,v)Z̃(N ; q,v).

Proof. Immediate from the definition.

2.4 Graded and filtered algebras

Throughout this thesis, the noun algebra without qualifiers will always refer to a unital,
associative, commutative algebra over a field. A graded algebra is an algebra A with a
decomposition

A =
⊕
i∈N

Ai

into finite-dimensional linear subspaces, such that AiAj ⊆ Ai+j. For a concise and self-
contained introduction to the subject of graded algebras, chapter 4 of Hibi’s book [11] is
highly recommended. (Of course, any standard commutative algebra book, such as Eisenbud
[9], will also contain the relevant results, implicitly or explicitly.) We will on occasion refer
to standard results without proof; in this section we simply establish some notation.

The elements of Ai are said to be homogeneous of degree i. A subalgebra generated by
homogeneous elements is a graded subalgebra; an ideal generated by homogeneous elements
is a homogeneous ideal. A graded subalgebra is indeed a graded algebra in its own right, as
is the quotient by a graded ideal. For any fixed n ∈ N let

A≥n =
⊕
i≥n

Ai.
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This is a homogeneous ideal in A. We will also write A+ for A≥1; this is known as the positive
ideal or irrelevant ideal.

A graded A-module is an A-module V equipped with a decomposition

V =
⊕
j∈Z

Vj

into finite-dimensional linear subspaces, such that AiVj ⊆ Vi+j. Naturally, A itself is a
graded A-module, as is any homogeneous ideal. For V a graded module and d ∈ Z, the dth
twist, denoted V (d), has the same underlying module, and grading given by

V (d)n = Vn+d.

If U and V are graded A modules, an A-linear map P : U → V is said to be grade-preserving,
or a map of graded modules, if P (Ui) ⊆ Vi. A map U → V which does not preserve degree but
instead shifts it by a constant amount d is the same as a grade-preserving map U → V (d).

The Poincaré series or Hilbert series of a graded algebra is the space A is

P (A; t) =
∑
i∈N

dim(Ai)t
i.

When A is finite-dimensional this is a polynomial, and we call it the Poincaré polynomial.1

Naturally, we may extend this notion to graded modules, in which case it is in general a
Laurent series or polynomial since we allow Z-grading. Clearly, we have

P (V (d); t) = t−dP (V ; t).

An important example of a graded algebra is the symmetric algebra of a finite-dimensional
vector space V . To define this, we first construct a graded vector space T (V ) from the tensor
powers of V :

T (V ) =
⊕
i∈N

V ⊗i.

This has a noncommutative multiplication given by “removing brackets”, i.e.

(u1 ⊗ · · · ⊗ ui)(v1 ⊗ · · · ⊗ vj) = u1 ⊗ · · · ⊗ ui ⊗ v1 ⊗ · · · ⊗ vj

extended linearly. The symmetric algebra or free commutative algebra, denoted SymV , is
the quotient of T (V ) given by forcing this multiplication to be commutative, i.e. we mod
out by the two-sided ideal generated by all degree-2 elements of the form u ⊗ v − v ⊗ u.
Since the generators of this ideal are homogeneous of degree 2, SymV is a graded algebra
and its degree-1 piece is naturally identified with V . If V is the vector space spanned by the
indeterminates x1, . . . , xm then SymV is the polynomial ring in m variables. Of course, any
m-dimensional vector space is isomorphic to any other, so SymV is always isomorphic to a
polynomial algebra, but the former does not require choosing coordinates. For more details
on symmetric algebras see [9, Section A2.3].

1To make life interesting, the Hilbert polynomial is something different.
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We will in one section make use of the notion of a filtered algebra; this is an algebra A
equipped with a descending chain

A = I0 ⊇ I1 ⊇ I2 ⊇ . . .

of ideals (the filtration), such that IiIj ⊆ Ii+j, and the quotients Ii+1/Ii are finite-dimensional.
If A is graded, we can take Ii = A≥i. The Poincaré series of a filtered algebra A is

P (A; t) =
∑
i∈N

dim(Ii/Ii+1)ti

which generalizes the notion for graded algebras.

2.5 Exact sequences

A sequence of vector spaces and linear maps2

V1 V2 · · · Vk
P1 P2 Pk−1

is said to be exact if the image of Pi equals the kernel of Pi+1, for each i. A short exact
sequence is an exact sequence of the form

0 U V W 0.P Q

The exactness condition in the short case amounts to saying the map P is injective, the map
Q is surjective, and QP = 0. The first isomorphism theorem for vector spaces then says that
Q descends to an isomorphism V/P (U)

∼−→ W .
The vector spaces in our exact sequences will often be (graded) modules over some

(graded) algebra, with the maps preserving this structure. We will simply refer to an “exact
sequence of graded A-modules” or similar to mean this.

Homological algebra has many things to say about exact sequences (see Mac Lane’s book
[15]) but the relevant part to us will boil down to the following classic pair of diagram
lemmas.

Lemma 2.8 (Short Five Lemma). Suppose the diagram

0 U V W 0

0 U ′ V ′ W ′ 0

P Q R

commutes, and both rows are exact. If P and R are isomorphisms, then so is Q.

Proof. See [15, Lemma 3.1].

2Of course, these results are true in more generality than this.
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Lemma 2.9 (Nine Lemma). Suppose the diagram

0 0 0

0 U ′ V ′ W ′ 0

0 U V W 0

0 U ′′ V ′′ W ′′ 0

0 0 0

commutes. If all three columns and the middle row are exact, then the first row is exact if
and only if the last row is exact.

Proof. See [15, Lemma 5.1].
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Chapter 3

Flows on Regular Matroids

3.1 Regular matroids

An integer matrix A is totally unimodular if the determinant of every square submatrix lies
in {0, 1,−1}. (In particular, this includes the entries of the matrix.) A matroid is regular
if it can be represented in characteristic 0 by a totally unimodular matrix. Since these
subdeterminants are nonzero modulo any prime, it follows that the same matrix represents
the matroid over any field of any characteristic. Indeed, a well-known result [19, Theorem
6.6.3] characterizes regular matroids as precisely those that are representable over every field.

Let A and A′ be matrices over some field K, with columns labelled by a finite set E.
We say A and A′ are row-equivalent if their row spaces are equal, and projectively equivalent
if their row spaces are related by a diagonal automorphism of KE. Projectively equivalent
matrices represent the same matroid, but in general the converse need not hold.

Proposition 3.1. Let K be a field and M be a matroid. If M is regular, all matrices
representing M over K are projectively equivalent.

Proof. Follows from [19, Proposition 6.6.5].

This property is usually referred to as “unique representability”, though it is worth noting
that over any field larger than F2, there is no canonical choice of diagonal automorphism to
witness the projective equivalence.

If M is represented by A and e is an element of the ground set, the matroid M \ e is
represented by the matrix obtained by deleting column e of M , and the matroid M / e is
obtained by pivoting on some entry in column e (i.e. applying the “obvious” row operations to
make that the only nonzero entry) and then deleting both the column and the corresponding
row. We will refer to these as the canonical representations1 of M \ e and M/e respectively,
and will always assume that these are the representations used for them.

It is clear that deleting a row or column preserves total unimodularity, and by it can
be shown [19, Lemma 2.2.20] that pivoting does as well. Thus if we begin with a totally
unimodular representation, all canonical representations of minors will be totally unimodular
as well.

1In the case of the contraction, it is only “canonical” up to row-equivalence, but this will be good enough
since we really only care about the row space and nullspace rather than the entries.
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The signed incidence matrix of an oriented graph is totally unimodular. Thus all graphic
matroids, and by duality all cographic matroids, are regular. Not all regular matroids fall
into one of these classes; the matroid R10 represented by the totally unimodular matrix

A10 =


1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1


is a counterexample of smallest possible size. (See [19, Section 6.6] for details.)

3.2 Flows

Let M be a regular matroid on ground set E of size m. Let A be a k×m totally unimodular
integer matrix (with columns indexed by E) representing M . Then we can think of A as a
linear map QE → Qk. The (rational) flow space2 of M , which we denote as Flow(M), is the
kernel of this map. We refer to its elements as flows. These are Q-valued functions on E
satisfying a system of linear equations which we can think of as the “circuit law” of M .

The flow space, of course, strictly speaking depends on the representing matrix A, not
just the matroid M . However, the unique representation property of regular matroids means
we do not get into too much trouble by thinking of it as a matroid invariant: a diagonal
automorphism of QE which preserves the row space will also preserve the kernel, and all
properties we care about are invariant under such automorphisms.

Example 3.1. Suppose M is the cycle matroid of a graph Γ. In this case, we can choose
A as the signed incidence matrix of Γ with respect to some orientation, and flows on M
are flows on Γ in the usual graph-theoretic sense. The circuit law of the cycle matroid is
Kirchhoff’s current law for an electrical network with underlying graph Γ.

Recall that when a matrix A represents a matroid M , a representation for the dual
matroid M∗ is given by choosing any matrix A′ with the property that the row space of A′

is the kernel of A or equivalently, the kernel of A′ is the row space of A. Thus Flow(M∗) is
simply the orthogonal complement of Flow(M), or equivalently the row space of the matrix
A.

Example 3.2. Continuing from the previous example, the dual M∗ is the bond matroid of
Γ. Flows on M∗ are functions on the edges which are linear combinations of the rows of the
incidence matrix. These are coboundaries on Γ in the sense of algebraic topology.

The circuit law of the bond matroid is Kirchhoff’s voltage law for an electrical network
with underlying graph Γ. As in the electrical case, an element θ ∈ Flow(M∗) can be rep-
resented as the “difference in potential” between its two endpoints, where the potential of
a vertex is simply the coefficient on the corresponding row of the incidence matrix in the
expansion of θ. This is not uniquely defined, since the rows of the incidence matrix are
not linearly independent, reflecting the fact (familiar from physics) that electric potential is
defined only relative to an arbitrarily chosen “ground” reference point.

2Also known as the rational cycle space.
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Thus the study of flows is interesting for both graphic and cographic matroids, making
regular matroids a natural setting in which to study them.

Proposition 3.2. Let A be a matrix with columns indexed by E and M the matroid it
represents. The minimal subsets of E supported by nonzero elements of KerA are precisely
the circuits of M .

Proof. See [19, Proposition 9.2.4], which is equivalent by duality to our statement.

The space of flows supported on a particular circuit is 1-dimensional: if we could find two
linearly independent flows supported on the same circuit we could find a linear combination
supported on a proper subset, contradicting minimality. In fact, since the matroid is regular
we can do slightly better than this.

Proposition 3.3. For any circuit C of M , there exists a flow ζ supported on C such that
ζ(e) = ±1 for all e ∈ C.

Proof. Choose e0 ∈ C arbitrarily. Let ζ be the unique flow supported on C such that
ζ(e0) = 1.

The set C \ {e0} is independent, so there exists a basis B containing it. For S ⊆ E
write A[S] for the submatrix of A with all rows and only the columns indexed by S. The
restriction of ζ is the unique solution in QB∪{e0} to the system of linear equations

A[B ∪ {e0}]ζ = 0

ζ(e0) = 1

and hence by Cramer’s rule, for e ∈ C we have

ζ(e) =
detA[B ∪ {e0} \ {e}]

detA[B]

which is ±1 by the total unimodularity of A.

We will call a flow supported on a circuit which takes only the values ±1 on that circuit
simple. Clearly there are exactly two simple flows supported on any given circuit, which are
negatives of one another.

For a basis B of M and an element e /∈ B, the basic flow of e with respect to B is the
unique (simple) flow βB,e supported on the fundamental circuit CB,e such that βB,e(e) = 1.
These flows can be used to construct a basis for Flow(M). This result is classical, the graphic
case appearing in Kirchhoff’s work on electrical networks and the general case in Whitney’s
original paper [30] introducing matroids.3

Proposition 3.4. Let M be a regular matroid and B a basis of M . The flows βB,e for e /∈ B
form a basis for Flow(M).

Proof. By the rank-nullity equation, Flow(M) has dimension |E| − r(M) = |E \ B|. For
e, f /∈ B we have βB,e(f) = δe,f by construction, so these flows are linearly independent.
Thus they also span the space.

3It is obtained by combining his theorems 9 and 29.
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For an element E, we can think of a function on E \ e as a function on E which vanishes
when evaluated at e; this gives an inclusion QE\e ↪→ QE. On the other hand, we can also
take a function on E and restrict it to E \ e, which gives a projection map QE � QE\e.
These operations correspond to deletion and contraction.

Proposition 3.5. Let e be an element of M .

(i) The inclusion QE\e ↪→ QE maps Flow(M \ e) into Flow(M). This is an isomorphism
if and only if e is a coloop.

(ii) The projection QE � QE\e maps Flow(M) surjectively onto Flow(M / e). This is an
isomorphism if and only if e is not a loop.

Proof. Let A′ be the canonical representation of M \ e obtained by deleting column e. For
θ ∈ QE\e, we clearly have Aθ = A′θ, since column e simply does not contribute. In particular
the one vanishes if and only if the other does. The map is an isomorphism precisely when
every flow vanishes at e; by Proposition 3.2 this is the same as e being a coloop.

Let A′′ be the canonical representation of M / e. Suppose θ ∈ Flow(M) and let θ be the
image in QE\e. The construction of A′′ makes it clear that A′′θ = 0, as Aξ = 0 and the
deleted column contributes only to the value in the deleted row. So the image of Flow(M)
lies in Flow(M/e). Now suppose ξ ∈ Flow(M/e). Let r ∈ QE be the row which was deleted
to obtain A′′; then we can define

θ(f) =

{
ξ(f), e 6= f

− 1
r(e)

∑
g∈E\e r(g)ξ(g), e = f

and it is clear that this is a flow. Thus the map is surjective.
Finally, we have

dim Flow(M / e) = |E \ e| − r(M \ e)
= m− 1− r(M) + rM({e})
= dim Flow(M / e) + rM({e})− 1

so the dimensions match if and only if e is not a loop.

3.3 Reconstructing a matroid from its space of flows

Proposition 3.2 shows exactly how the structure of the matroid M is encoded in the structure
of Flow(M) as a space of functions on E. On the other hand, clearly Flow(M) as an abstract
vector space does not determine M , since the only invariant of a vector space is its dimension.
The next question we address is: how much extra structure on Flow(M) is necessary to
reconstruct M?

We denote the support of a function θ by Supp θ, and write

ν(θ) = | Supp θ|.
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The (nonlinear) map ν : Flow(M) → Q will be referred to as the support functional. It is
not obviously clear that ν carries much useful information, but in fact, we will see that it
is indeed sufficient to reconstruct the matroid M provided it has no coloops. The fact that
the support functional determines the matroid up to isomorphism is not a new result: it is
implicit in the proof of [28, Theorem 2.9]. However we give a new proof which is somewhat
more constructive.

Lemma 3.6. Suppose θ, ξ ∈ QE. For all q ∈ Q,

Supp(qθ + ξ) ⊆ Supp θ ∪ Supp ξ

with equality holding for all but finitely many values of q.

Proof. We clearly have
Supp(qθ + ξ) ⊆ Supp θ ∪ Supp ξ

for any q, since if θ(e) = ξ(e) = 0 we certainly have qθ(e)+ξ(e) = 0. Moreover, if e ∈ Supp ξ
but e /∈ Supp θ, then we certainly have e ∈ Supp(qθ + ξ) since no cancellation is possible.
Finally, for e ∈ Supp θ, we have e ∈ Supp(qθ + ξ) unless

q = −ξ(e)
θ(e)

so there are at most ν(θ) values of q for which Supp(qθ + ξ) 6= Supp θ ∪ Supp ξ.

A consequence of this is that any set which is a union of circuits is the support of some
flow. This also appears as [19, Corollary 9.2.5]. We can now prove the reconstruction result.

Theorem 3.7. A regular matroid M without coloops can be reconstructed from the data of
the vector space Flow(M) equipped with the support functional ν.

Proof. Define a relation ≺ on Flow(M) as follows: θ ≺ ξ if ν(qθ + ξ) ≤ ν(ξ) for all q ∈ Q.
We make the following observation: if θ and ξ are flows, and if Supp θ ⊆ Supp ξ, then
Supp(qθ + ξ) ⊆ Supp ξ for all q, so θ ≺ ξ. On the other hand, by Lemma 3.6, if θ ≺ ξ then

| Supp θ ∪ Supp ξ| = ν(qθ + ξ) for some q

≤ ν(ξ)

= | Supp ξ|

which is possible only if Supp θ ⊆ Supp ξ. Thus this relation, defined only in terms of ν,
encodes the inclusions between supports of flows. An immediate consequence is that ≺ is
a reflexive and transitive relation. Write θ ∼ ξ if θ ≺ ξ and ξ ≺ θ; this is an equivalence
relation, and ≺ descends to a partial order on the set of equivalence classes. Denote this
poset by P . By the preceding argument, P is isomorphic to the poset of subsets of E which
are unions of circuits. In particular, P has a unique maximal element, corresponding to the
union of all circuits; since M has no coloops this is the full ground set E. Thus we have

|E| = ν(θ)
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for any θ in this maximal equivalence class.
The poset P contains much information about the matroid structure. Recall that a

subset of E is co-closed (i.e. closed in M∗) if and only if it can be written as an intersection
of complements of circuits. Thus the opposite poset P op is isomorphic to the lattice of flats
of M∗. If M lacks not only coloops but also “coparallel elements” (i.e. cocircuits of size 2),
then M∗ is simple and hence can be reconstructed from its lattice of flats. (See [19, Section
1.7].) Of course, M and M∗ determine one another. So under this additional hypothesis we
can reconstruct M from the poset P alone.

Thus it remains to show that we can recover the sizes of coparallel classes. These corre-
spond to the minimal nonempty elements of P op, equivalently the maximal nonfull elements
of P . Since the correspondence is by taking complements, it follows that the size of this
coparallel class is precisely |E| − ν(ξ) where ξ is any flow in the corresponding equivalence
class.

Nothing about this argument was really special to regular matroids; indeed, what we
really showed is that a matroid can be reconstructed from the kernel of any representing
matrix over Q (or, indeed, any infinite field) as a vector space equipped with the support
functional. What is special about regular matroids is that unique representability allows
us to state this as an “if and only if” result: diagonal automorphisms of QE preserve the
support of any function, and hence preserve ν. We summarize this as follows.

Corollary 3.8. Let M and M ′ be regular matroids without coloops. Then M ∼= M ′ if and
only if there exists a ν-preserving linear isomorphism Flow(M)

∼−→ Flow(M ′).

Corollary 3.8 does not nicely generalize to non-regular matroids. For instance, consider
the matrices

A =

[
1 0 1 1
0 1 1 −1

]
and

A′ =

[
1 0 1 1
0 1 1 3

]
which both represent U2,4 over Q. These representations are inequivalent, and indeed, we
have the following.

Proposition 3.9. There is no ν-preserving isomorphism between KerA and KerA′.

Proof. Write ei for the ith standard basis vector of Q4 and let

θ = e1 + e2 − e3,

ξ = e1 − e2 − e4,

ξ′ = e1 + 3e2 − e4.

Then KerA is spanned by θ and ξ, and KerA′ is spanned by θ and ξ′. Suppose P : KerA→
KerA′ is a linear isomorphism. If P is to preserve ν, we must have

ν(Pθ) = ν(Pξ) = ν(P (θ + ξ)) = ν(P (θ − ξ)) = 3.
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Up to scaling, the set of vectors of support size 3 in KerA′ is {θ, ξ′, θ− ξ′, 3θ− ξ′}. Without
loss of generality Pθ is exactly equal to one of these four, and Pξ is a scalar multiple of one
of the other three. Suppose Pθ = θ and Pξ = qξ′. If P is ν-preserving we must have that
P (θ + ξ) and P (θ − ξ) are scalar multiples of the other two. Replacing q with its negative
will swap the two, so we may assume

θ + qξ′ = r1(θ − ξ′)

and
θ − qξ′ = r2(3θ − ξ′)

for some scalars r1 and r2. Since θ and ξ′ are linearly independent, we must have r1 = 1 and
r2 = 1/3. Then solving the former equation gives q = −1 and the latter gives q = 1/3, so
P cannot be ν-preserving. The other eleven cases can be ruled out by the same method; we
omit the details.
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Chapter 4

Ordinary Circulation Algebras

4.1 Introduction

Theorem 3.7 gives a nice answer to the question of how much structure on the flow space is
necessary to encode the matroid structure, but has the deficiency that the support functional
is a somewhat strange invariant, most obviously seen in its nonlinear nature. We thus seek
a more “natural” object that encodes the same information. The circulation algebra is just
such a thing.

Let R(E) denote the quotient of the polynomial algebra Q[xe : e ∈ E] by the squares of
the indeterminates. As a quotient by a homogeneous ideal, R(E) is a graded Q-algebra. We
naturally identify an element θ ∈ QE with the linear form∑

e∈E

θ(e)xe

and hence can think of Flow(M) as a linear subspace of the degree-1 piece R1(E). The
(ordinary) circulation algebra Φ(M) is the (graded) subalgebra of R(E) generated by flows.
We refer to its homogeneous elements (of degree k) as k-circulations on M . In the next
section we will study the structure of this algebra in more detail, but for now we make only
the following straightforward observation.1

Proposition 4.1. Let θ be a flow on M , thought of as a 1-circulation. Then θk 6= 0 if and
only if k ≤ ν(θ).

Proof. By the multinomial theorem and the fact that squares vanish, we have

θk = k!
∑
S

(∏
e∈S

θ(e)

)
xS

where S ranges over k-element subsets of E. The term for S is nonzero precisely when
S ⊆ Supp θ, so θk = 0 when k > ν(θ). On the other hand, since the monomials xS

for distinct S are linearly independent, the sum is nonzero as long as at least one of the

1This holds only in characteristic zero, making this the first (but not the last) time that the choice to
work over Q is really essential.
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coefficients is nonzero, which happens as long as there are k elements on which θ does not
vanish, i.e. ν(θ) ≤ k.

We can therefore reconstruct the support functional from the structure of Φ(M) as a
graded algebra. In fact, its structure as an abstract algebra ignoring grading is good enough;
see Lemma A.1 in the appendix.

Theorem 4.2 ([28, Theorem 2.9]). Let M and M ′ be regular matroids without coloops. Then
M and M ′ are isomorphic if and only if Φ(M) and Φ(M ′) are isomorphic as algebras.

Proof. Suppose Φ(M) ∼= Φ(M ′). Let P be a grade-preserving isomorphism. Such an iso-
morphism descends to an isomorphism Flow(M)

∼−→ Flow(M ′), and by Proposition 4.1, it
preserves ν. The result follows from Corollary 3.8.

We close this section with a few remarks. First, we note that yet again, the essential use
of regularity in Theorem 4.2 is to allow Φ(M) to be a matroid invariant at all: a matroid
which is non-uniquely representable over Q will have several different “circulation algebras”
that need not be isomorphic. (Indeed, [28] works in this more general context, and hence the
theorem stated there is in terms of equivalence of representations, rather than isomorphism
of matroids.)

Second, we observe that the algebra Φ(M) is equivalent information to the support func-
tional. This is of course trivially true in the sense that Φ(M) determines ν, which determines
the matroid structure of M , which determines Φ(M). In Section 4.3, after studying the struc-
ture of circulation algebras in more detail, we will show that it is true in the more interesting
sense that Proposition 4.1 gives a complete set of relations among a natural set of genera-
tors for Φ(M). Thus one can construct Φ(M) “directly” from Flow(M) equipped with the
support functional, without going through Theorem 3.7.

4.2 Structure of circulation algebras

We now study the algebraic structure of Φ(M) in more detail. As a first observation, we
note that since Φ(M) is defined in terms of the flow space, coloops (which are not supported
by any flow) are irrelevant: the circulation algebra is unaffected by deleting (equivalently,
contracting) all coloops. Thus our examples will largely be coloopless.

Example 4.1. Suppose M consists only of loops. Then any function at all is a flow, so we
simply have Φ(M) = R(E).

Example 4.2. Suppose M = Um−1,m, the matroid consisting of a single circuit of size m.
The flow space is one-dimensional, spanned by either of the two simple flows. This flow is
supported on the entire ground set, so its mth power is nonzero and its (m + 1)st power is
zero. Thus Φ(M) ∼= Q[z]/(zm+1).

Example 4.3. Suppose M = U1,m, the matroid consisting of m parallel elements. It has
rank 1, so its flow space has codimension 1 in QE. Since any two-element set in this matroid
is a circuit, it follows that for distinct elements e, f ∈ E, either xe − xf or xe + xf is a
1-circulation. Thus xexf is a 2-circulation, and similarly any squarefree monomial of degree
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greater than 1 is in Φ(M). So Φ(M) has codimension 1 in R(E), with the only “missing
piece” being in degree 1.

If M is a matroid on E and S ⊆ E, we can consider the restriction M |S. If A is a matrix
representing M then M |S is represented by the matrix A[S]. Thus any flow on M |S extends
to a flow on M by simply having it vanish on the complement of S. It follows that the
linear inclusion QS ↪→ QE restricts to an inclusion Flow(M |S) ↪→ Flow(M), and thus the
subalgebra inclusion R(S) ↪→ R(E) restricts to a subalgebra inclusion Φ(M |A) ↪→ Φ(M).

If a matroid decomposes as a direct sum, the algebra has a corresponding decomposition.

Theorem 4.3. Let M and N be regular matroids. Then Φ(M ⊕N) ∼= Φ(M)⊗ Φ(N).

Proof. M and N are restrictions of M⊕N , so Φ(M) and Φ(N) are subalgebras of Φ(M⊕N).
Thus there is a multiplication map Φ(M)⊗Φ(N)→ Φ(M⊕N). The image of this map is the
subalgebra generated by Φ(M) and Φ(N). Since Φ(M ⊕N) is generated by Flow(M ⊕N) =
Flow(M)⊕Flow(N), this subalgebra is the entirety of Φ(M ⊕N), so the multiplication map
is surjective. To show it is an isomorphism we must show that ϕψ 6= 0 when ϕ ∈ Φ(M) and
ψ ∈ Φ(N) are nonzero. This follows from the fact that since the ground sets are disjoint, no
variable xe can appear in the expansion of both ϕ and ψ into squarefree monomials. Thus
no x2

e can appear in the product.

We can also decompose Φ(M) by deletion and contraction. Let e be an element of M
which is not a coloop. We will write R(E / e) for the quotient R(E)/ 〈xe〉. (This is the same
as R(E \ e) as a Q-algebra, but expressing it as a quotient makes it into an R(E)-algebra.)
We define a map ∂e : R(E)→ R(E / e) by

∂eρ =
∂ρ

∂xe
+ 〈xe〉 .

We remark that this is a slight abuse of notation as the partial derivative is not well-defined
as an operator on R(E), since it sends x2

e to 2xe which is nonzero in R(E). Since the quotient
map annihilates xe, however, the composite ∂e has no such definition problem. The map ∂e
is an R(E \ e)-linear derivation which reduces degree by 1. We also observe that for a flow
θ, we simply have ∂eθ = θ(e).

Proposition 4.4. For any regular matroid M and element e which is not a coloop, ∂eΦ(M) =
Φ(M / e). In particular, Φ(M / e) is a Φ(M \ e)-submodule of R(E / e).

Proof. Since e is not a coloop, there exists a basis B of M with e /∈ B. For brevity, let
{f1, . . . , fd} = E \ B with fd = e; and let θi = βB,fi for each i. By Proposition 3.4, these
elements generate Φ(M), and by Proposition 3.5 their classes in R(E /e) generate Φ(M/e).

Suppose ϕ ∈ Φ(M). We can write

ϕ =
m∑
k=0

fk(θ1, . . . , θd−1)θkd
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for some polynomials fi, so

∂eϕ =
m∑
k=0

fk(θ1, . . . , θd−1)∂e(θ
k
d)

=
m∑
k=1

kfk(θ1, . . . , θd−1)θk−1
d + 〈xe〉

which is in Φ(M / e). Thus we have ∂eΦ(M) ⊆ Φ(M / e).
Conversely, for any ψ ∈ Φ(M / e), we can write

ψ =
m−1∑
k=0

gk(θ1, . . . , θd−1)θkd + 〈xe〉.

Let

ϕ =
m−1∑
k=0

1

k + 1
gk(θ1, . . . , θd−1)θk+1

d ∈ Φ(M).

Then by the computation above we have ∂eϕ = ψ. Therefore ∂eΦ(M) ⊇ Φ(M / e) also and
we are done.

Using Proposition 4.4 gives a way to interpret the circulation algebra: a 2-circulation on
M determines a flow on M /e for each element e. More generally a k-circulation determines
a (k − 1)-circulation on M / e for each e. Thus a circulation is something like a family of
flows on contractions of M .

Theorem 4.5 (Wagner [27, 28]). Let M be a regular matroid and e an element of M which
is not a coloop. The sequence

0→ Φ(M \ e) ↪→ Φ(M)
∂e−→ Φ(M / e)(−1)→ 0

of graded Φ(M \ e)-modules is exact.

Proof. Exactness at Φ(M \e) is trivial as the map Φ(M \E)→ Φ(M) is just the inclusion of
a subalgebra. Exactness at Φ(M / e)(−1) follows from Proposition 4.4. Thus we need only
show exactness in the middle.

For ϕ ∈ Φ(M) we can write

ϕ =
∑
S⊆E

aSxS

for some coefficients aS. Then

∂eϕ =
∑
S3e

aSxS\e + 〈xe〉

which vanishes if and only if [xS]ϕ = 0 for all sets S containing e. But this is the same as
saying ϕ ∈ Φ(M \ e).
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Corollary 4.6. The Poincaré polynomial of Φ(M) is given by

P (Φ(M); t) = tr(M)T (M ; t−1, 1 + t).

Proof. It follows from Theorem 4.3 that the Poincaré polynomial satisfies

P (Φ(M ⊕N); t) = P (Φ(M); t)P (Φ(N); t)

and from the exact sequence that it satisfies

P (Φ(M); t) = P (Φ(M \ e); t) + tP (Φ(M / e); t)

whenever e is not a coloop. Thus it is a generalized Tutte–Grothendieck invariant. The base
cases

P (Φ(U0,1); t) = 1 + t

and
P (Φ(U1,1); t) = 1

follow from the discussion about loops and coloops at the beginning of this section. The
result follows from the universal property (Proposition 2.3) of the Tutte polynomial.

4.3 Generators and relations

We now give a presentation of Φ(M) as the quotient of a polynomial algebra by powers
of linear forms. As indicated earlier, the relations in this presentation will be those given
by Proposition 4.1. Explicitly, let M be a regular matroid and for brevity write S(M) =
Sym Flow(M). Note that, for this section only, multiplication of flows should be interpreted
as taking place in S(M) rather than Φ(M).

Let I(M) be the ideal

I(M) = 〈θ1+ν(θ) : θ a simple flow on M〉

in S(M). Since Φ(M) is generated by Flow(M), there is an obvious surjective map S(M)→
Φ(M). Moreover, by Proposition 4.1, the kernel of this map contains I(M). We will ulti-
mately prove the following.

Theorem 4.7 (Wagner [27, 28], Postnikov–Shapiro–Shapiro [22]). The natural map from
S(M)/I(M) to Φ(M) is an isomorphism.

For the moment, we write A(M) for S(M)/I(M). To show A(M) ∼= Φ(M), we will
make use of the exact sequence of Theorem 4.5 to give an inductive proof. To do this, we
first need to see how to relate A(M) to A(M \ e) and A(M / e) for an element e. Deletion
is straightforward: the inclusion Flow(M \ e) ↪→ Flow(M) gives an inclusion S(M \ e) ↪→
S(M). Since the inclusion takes simple flows to simple flows and does not alter the size
of the support, we see that I(M \ e) = S(M \ e) ∩ I(M), so this descends to an inclusion
A(M \ e) ↪→ A(M).
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For contraction, we wish to find a map A(M)→ A(M/e) that corresponds to ∂e. To do
this, observe that the inclusion Flow(M) ↪→ QE gives an embedding S(M) ↪→ Q[xe : e ∈ E].
Since S(M) is a subalgebra generated by linear forms, it is closed under differentiation: if
θ1, . . . , θN are flows then

∂

∂xe
(θ1 · · · θN) =

N∑
i=1

θi(e)θ1 · · · θ̂i · · · θN

by the product rule. Thus any linear combination of products of flows is taken to a linear
combination of products of flows. Write De for the operator on S(M) given by restricting
this partial derivative operator.

Lemma 4.8. The map De : S(M)→ S(M) is surjective, and its kernel is precisely S(M \e).

Proof. Clearly, S(M \ e) is in the kernel of De, as the variable xe will not appear in the
expansion of any element. Since De is a derivation, this implies that it is S(M / e)-linear.

Since Flow(M) has dimension 1 higher than Flow(M \ e), it follows that S(M) is iso-
morphic (as a graded algebra) to S(M \ e)[y], where the isomorphism is given by sending y
to any flow that does not vanish on e.

Standard results from commutative algebra (see for instance [9, Proposition 16.1]) imply
that the space of A-linear derivations on A[y] is generated as an A-module by ∂

∂y
. Moreover,

since ∂
∂y

and De both decrease degree by 1, De must be a scalar multiple of this operator,
as multiplying by a positive-degree element would destroy this property. Since the partial
derivative operator has the required properties, so does De.

Let Pe : S(M) → S(M / e) be the extension of the natural surjection Flow(M) →
Flow(M / e) given by Proposition 3.5.

Lemma 4.9. PeDeI(M) = I(M / e).

Proof. First we show PeDeI(M) ⊆ I(M/e). By additivity, it is sufficient to show PeDe(θ
1+ν(θ)f) ∈

I(M / e) when θ is a simple flow and f is an arbitrary element of S(M). We have

De(θ
1+ν(θ)f) = De(θ

1+ν(θ)) · f + θ1+ν(θ) ·Def

= (1 + ν(θ))θν(θ)Deθ · f + θ1+ν(θ) ·Def.

Since Pe takes simple flows to simple flows and does not increase the size of the support, we
have

Pe(θ
1+ν(θ) ·Def) = (Peθ)

1+ν(θ) · PeDef ∈ I(M / e).

On the other hand, since De is S(M \ e)-linear, we have Deθ = 0 unless θ(e) 6= 0. In this
case, we have ν(Peθ) = ν(θ)− 1, so

Pe((1 + ν(θ))θν(θ)Deθ · f) = (1 + ν(θ))(Peθ)
1+ν(Peθ)Pe(Deθ · f) ∈ I(M / e).

Next we show PeDeI(M) ⊇ I(M / e). Again it is sufficient to show that the image
contains elements of the form ξ1+ν(ξ)g for simple flows ξ and arbitrary g. Given such an
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element, choose θ such that Peθ = ξ. First, we consider the case θ(e) = 0. In this case,
ν(θ) = ν(ξ). Choose some f such that PeDef = g; then

PeDe(θ
1+ν(θ)f) = ξ1+ν(ξ)g.

On the other hand, if θ(e) 6= 0, we have ν(θ) = 1 + ν(ξ). Choose some f ′ such that
Pef

′ = g. Then, viewing S(M) as a subalgebra of Q[xe : e ∈ E], we let f be the antiderivative
of θν(θ)f ′ with zero constant term, so PeDef = ξ1+ν(ξ)g. Integrating by parts gives

f =

∫
θν(θ)f ′ dxe =

1

(1 + ν(θ))θ(e)

(
θ1+ν(θ)f ′ −

∫
θ1+ν(θ)De(f

′) dxe

)
(where integrals are always taken with zero constant term) and repeatedly integrating by
parts will give all terms of the form θ1+ν(θ) multiplied by some other element.

It follows from this that PeDe descends to a derivation D̃e : A(M)→ A(M / e).

Theorem 4.10. For any edge e which is not a coloop,

0→ A(M \ e) ↪→ A(M)
D̃e−→ A(M / e)(−1)→ 0

is an exact sequence of graded vector spaces.

Proof. The diagram

0 0 0

0 I(M \ e) I(M) I(M / e)(−1) 0

0 S(M \ e) S(M) S(M / e)(−1) 0

0 A(M \ e) A(M) A(M / e)(−1) 0

0 0 0

PeDe

PeDe

D̃e

of graded vector spaces clearly commutes. The columns are exact by definition. By Lemma 4.8,
the middle row is exact. By the fact that I(M \ e) = I(M)∩ S(M \ e), the top row is exact
as well. By the nine lemma (Lemma 2.9), the bottom row is exact.

Proof of Theorem 4.7. If M consists only of coloops, both algebras are 1-dimensional and
the result is trivial. Otherwise, let e be an element which is not a coloop and suppose the
result holds for M \ e and M / e. Let QM denote the map A(M)→ Φ(M) and consider the
diagram

0 A(M \ e) A(M) A(M / e)(−1) 0

0 Φ(M \ e) Φ(M) Φ(M / e)(−1) 0

QM\e QM

D̃e

QM/e

∂e
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of graded vector spaces. The left square clearly commutes, as in both spaces the subalgebra
corresponding to M \e is simply the one generated by Flow(M \e), and the downward maps
restrict to the identity on flow spaces. To see the right square commutes, let ζ be a flow
such that ζ(e) = 1. Then A(M / e) is generated as an A(M \ e)-module by the powers of ζ,
so it is sufficient to check commutativity for these. We compute:

QM/eD̃e(ζ
k) = QM/e(k(ζ / e)k−1)

= k

∑
f∈E/e

ζ(f)xf

k−1

and

∂eQM(ζk) = ∂e

(∑
f∈E

ζ(e)xe

)k

= k

∑
f∈E/e

ζ(f)xf

k−1

as wanted.
The rows are exact, by Theorem 4.10 and Theorem 4.5 respectively. The result follows

from the induction hypothesis and the five lemma (Lemma 2.8).

4.4 A basis

Suppose M is a matroid on a totally ordered ground set. Using Proposition 2.5 along with
Corollary 4.6, we can write the Poincaré polynomial of Φ(M) as a sum over bases of the
matroid M :

P (Φ(M); t) = tr(M)
∑
B

t−|IA(B)|(1 + t)|EA(B)|

=
∑
B

∑
S⊆EA(B)

t|IP(B)|+|S|.

This suggests we ought to be able to find, for each pair (B, S), a homogeneous element of
degree |IP(B)| + |S|, such that the collection of these elements form a Q-basis for Φ(M).
Such a basis does indeed exist; the construction is due to Wagner but has not previously
been published. Let B be a basis of M and e ∈ IP(B). We define a flow αB,e as follows:

αB,e = βB,minC∗B,e
.

Then for B a basis of M and S ⊆ EA(B) define

ϕB,S =

( ∏
e∈IP(B)

αB,e

)(∏
e∈S

βB,e

)
. (4.1)

We will ultimately show the following.
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Figure 4.1: Bugle graph.

Theorem 4.11. Let M be a matroid on totally ordered ground set E. The elements ϕB,S,
for B a basis of M and S ⊆ EA(B), form a Q-basis for Φ(M).

Before doing so, we give some examples of this construction. Let M be the matroid on
ground set {1, 2, 3, 4} represented by the matrix[

1 −1 0 0
0 1 −1 −1

]
which is equivalently the cycle matroid of the three-vertex “bugle” graph. In Table 4.1, the
ten basis vectors of Φ(M) are listed together with the data from which they were computed.

As a second example, we look at the contraction M / 4 of the previous example. This
has canonical representation [

1 −1 0
]

and is isomorphic to U1,2 ⊕ U0,1. Its basis is listed in Table 4.2. We observe that this
demonstrates that the basis does not behave the way one might näıvely hope with respect
to contraction: ∂e does not in general take the basis elements for M to those for M / e, at
least in the case that e is last in the total ordering. Comparing Tables 4.1 and 4.2, we see a
number of cases where differentiating with respect to x4 takes a basis element in the former
to a scalar multiple of one in the latter. This would not be so bad, but in the case of the
ϕ{1,4},{3} and ϕ{2,4},{3} even this does not happen and the images are linear combinations of
multiple basis elements.

This counterexample dashes the hope that Theorem 4.11 might follow easily from Theo-
rem 4.5; we instead proceed in a different fashion. We will need a couple of lemmas.

B IP(B) S ϕB,S
{1, 2} ∅ ∅ 1
{1, 3} {3} ∅ x1 + x2 + x3

{1, 4} {4} ∅ x1 + x2 + x4

{3} x1x3 − x1x4 + x2x3 − x2x4 + x3x4

{2, 3} {2, 3} ∅ 2x1x2 + 2x1x3 + 2x2x3

{1} 6x1x2x3

{2, 4} {2, 4} ∅ 2x1x2 + 2x1x4 + 2x2x4

{1} 6x1x2x4

{3} 2x1x2x3 − 2x1x2x4 − 2x1x3x4 − 2x2x3x4

{1, 3} 6x1x2x3x4

Table 4.1: Basis for the ordinary circulation algebra of the bugle graph.
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B IP(B) S ϕB,S
{1} ∅ ∅ 1

{3} x3

{2} {2} ∅ x1 + x2

{1} 2x1x2

{3} x1x3 + x2x3

{1, 3} 2x1x2x3

Table 4.2: Basis for the ordinary circulation algebra of U1,2 ⊕ U0,1.

Lemma 4.12. The squarefree monomial xIP(B)∪S appears with a nonzero coefficient in ϕB,S.

Proof. We show this by induction on |S|. For S = ∅, we can write the coefficient as a sum
over permutations w of IP(B):

[xIP(B)]ϕB,∅ =
∑
w

∏
e∈IP(B)

αB,w(e)(e). (4.2)

The product is equal to ±1 if w is the identity permutation, so it is sufficient to show there
is no cancellation in the sum.

Let w be a permutation and let (e1, . . . , ek) be a cycle of w. Write fi = minC∗B,ei . If the
fi are not all equal, there must be a descent, i.e. there must be some i such that fi > fi+1

where the subscript is taken mod k. Then fi+1 /∈ C∗B,ei since fi is the minimum, so ei /∈ CB,fi .
Thus

αB,w(ei)(ei) = βB,fi+1
(ei) = 0

and so the term corresponding to w in (4.2) vanishes.
Thus if w is a permutation such that the corresponding term is nonzero, we have

minC∗B,w(e) = minC∗B,e and hence αB,w(e) = αB,e for all e ∈ IP(B). Thus the term for
w is equal to the term for the identity. It follows that the coefficient is, up to sign, the
number of such permutations.

Now suppose S 6= ∅ and e ∈ S. Let S ′ = S \ e and suppose the result holds for S ′. Since
(4.1) expresses the basis elements as products of basic flows, we can write

ϕB,S = βkB,eψ

for some k ≥ 1 and some circulation ψ ∈ Φ(M \ e). Thus

ϕB,S′ = βk−1
B,e ψ

so
[xIP(B)∪S]ϕB,S = k[xIP(B)∪S′ ]ϕB,S′ 6= 0

as wanted.

Our goal is to show that this “canonical” monomial is the largest one which appears, in
some total ordering on the monomials. We will do this combinatorially. Suppose {Ai}i∈I is
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a family of sets indexed by some set I. By a partial transversal we mean a set T ⊆
⋃
i∈I Ai

such that there exists a X ⊆ I and a bijection b : X → T with b(i) ∈ Ai for all i ∈ X. If
this exists with X = I then T is a (full) transversal. By [19, Theorem 1.6.2] the partial
transversals are the independent sets of a matroid; if a full transversal exists then the full
transversals are the bases of this matroid.

Fixing some B and S ⊆ EA(B), for e ∈ IP(B) ∪ S let

Ae =

{
SuppαB,e, e ∈ IP(B)

Supp βB,e, e ∈ S.

Clearly, IP(B) ∪ S is itself a transversal of this set family. Moreover, any monomial which
appears in the expansion of ϕB,S is of the form xT where T is a transversal of the set family
{Ae}e∈IP(B)∪S.

Lemma 4.13. IP(B) ∪ S ≥G T for any transversal T .

Proof. Since a transversal exists, the transversals form a bases of a matroid, so by Propo-
sition 2.1 there exists a unique Gale-maximal transversal T?. To show T? = IP(B) ∪ S it is
sufficient to show T? ⊇ IP(B) ∪ S, since they must have the same cardinality.

Suppose e ∈ IP(B) ∪ S, and let

U = {f ∈ T? : f > e}.

Clearly U is a partial transversal. By the greedy algorithm, e ∈ T? if and only if U ∪ {e}
is a partial transversal. Since U is a partial transversal, there exists a set X ⊂ IP(B) ∪ S
and a bijection b : X → U such that b(f) ∈ Af for all f ∈ X. We must find a set X ′ and a
bijection b′ : X ′ → U ∪ {e} with the same property. Clearly if e /∈ X we can do this.

Suppose e ∈ X. Then we have b(e) ∈ Ae and b(e) > e. We observe that this implies
b(e) ∈ IP(B). To see this, note that if e ∈ IP(B) we have Ae = CB,f where f < e. Since
b(e) > e > f we have b(e) ∈ B, and f ∈ C∗B,b(e). If e ∈ S then Ae = CB,e and thus b(e) ∈ B
and e ∈ C∗B,b(e). Either way, b(e) is not the smallest element of its fundamental cut. Thus

we can again ask the question of whether b(e) ∈ X. Repeating this process, we obtain a
sequence e = e1, . . . , ek of elements of X where b(ei) = ei+1 for 1 ≤ i < k and b(ek) /∈ X.
There are two cases, depending on whether or not b(ek) ∈ IP(B) ∪ S.

First suppose b(ek) /∈ IP(B) ∪ S. For 1 ≤ i ≤ k let

fi =

{
minC∗B,ei , ei ∈ IP(B)

ei, ei ∈ S

so Aei = CB,fi . Thus we have ei+1 ∈ CB,fi for 1 ≤ i < k. If ei+1 ∈ IP(B), this implies fi ∈
C∗B,ei+1

and hence fi+1 ≤ fi. On the other hand, if ei+1 ∈ S we must have ei+1 = fi+1 = fi,
as fi is the only element CB,fi which is not in B. Thus

e ≥ f1 ≥ · · · ≥ fk.

Now, we have b(ek) ∈ Aek = CB,fk . Since b(ek) /∈ IP(B), we either have b(ek) = fk or
b(ek) ∈ IA(B). In the latter case we have fk ∈ C∗B,b(ek) so b(ek) < fk. Thus in either case

b(ek) ≤ fk, but this is a contradiction, as by hypothesis b(ek) ∈ U and hence b(ek) > e ≥ fk.
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Thus we must have b(ek) ∈ IP(B). Then we may take

X ′ = X ∪ {b(ek)}

and define b′ by

b′(f) =

{
f, f ∈ {e1, . . . , ek, b(ek)}
b(f), otherwise

which is clearly a bijection U ∪ {e} → X ′ with the property that b′(f) ∈ Af for all f . Thus
U ∪ {e} is indeed a partial transversal, so e ∈ T?. Since this holds for all e ∈ IP(B) ∪ S we
have T? = IP(B) ∪ S as wanted.

Combining these essentially gives the desired result.

Proof of Theorem 4.11. We have already observed that we have the right number of elements
to form a basis, so it is sufficient to show that they are linearly independent. List the elements
ϕB,S according to IP(B) ∪ S, first by size and then by some total extension of Gale order.
By Proposition 2.4, the monomials xIP(B)∪S are distinct (and hence linearly independent)
for different choices of B and S, and by Lemmas 4.12 and 4.13 this monomial first appears
in in ϕB,S. Thus the latter are also linearly independent.

The results of this section allow us to easily re-prove part of a result of Ardila and
Postnikov.

Corollary 4.14 ([1, Proposition 4.21]). The coefficient extraction operators [xIP(B)∪S] for
B ∈ B(M) and S ⊆ EA(B) form a basis for the linear dual of Φ(M).

Proof. Again order pairs (B, S) first by size and then by a total extension of Gale order on
IP(B)∪S. By Lemmas 4.12 and 4.13 the expansion of these coefficient-extraction operators
in terms of the dual basis to the ϕB,S is lower triangular with nonzero diagonal entries.

4.5 Filtration by nullity

Corollary 4.6 has a two-variable refinement. This is a variation2 of a construction of Berget
[3], which is itself a variation on one due to Orlik and Terao [18]. For a subset S of a matroid
M , the nullity of S is

null(S) = |S| − r(S).

Fixing a matroid M on ground set E, we put a bigrading on R(E) by setting

Ri,j = Span{xA : |A| = i, null(A) = j}.

Clearly we have

R(E) =
⊕
i,j≥0

Ri,j.

2The equivalence between his result and ours is given by applying each of the following commuting
involutions: matroid duality, linear duality, turning both gradings upside down, reversing the order of
subscripts, and finally inverting the polynomial identity.
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Note that this does not however make R(E) into a bigraded algebra. The submodular
inequality for rank implies that null(S ∪ T ) ≥ null(S) + null(T ) when S and T are disjoint,
but this inequality can certainly be strict. If S has nullity j and T has nullity j′, we thus have
xS ∈ Ri,j and xT ∈ Ri′,j′ but we need not have xSxT ∈ Ri+i′,j+j′ . However, the inequality
does imply that multiplication respects the filtration by nullity.

Define Φi,j(M) = Φ(M)∩Ri,j. We would like this to give a decomposition of Φ(M); the
discussion above means this is not completely obvious. Fortunately, it is nonetheless true.

Theorem 4.15 (Berget [3, Theorem 1.1]). As a vector space, Φ(M) decomposes as a direct
sum

Φ(M) =
⊕
i,j≥0

Φi,j(A).

With respect to this decomposition, the Poincaré polynomial of Φ(M) is given by

P (Φ(M); t, u) = tr(M)T (M ; t−1, 1 + tu).

Proof. If M consists of only loops and coloops we have Φi(M) = Φi,i(M). Thus the decom-
position part is obviously true, and we have

P (Φ(M); t, u) = P (Φ(M); tu) = (1 + tu)`

where ` is the number of loops, which agrees with the formula.
Otherwise, suppose e is an element which is neither a loop nor a coloop. Recall the

formula [19, Proposition 3.1.6] for the rank function of a contraction. Since e is not a loop,
it gives for all S ⊆ E \ e,

rM/e(S) = rM(S ∪ {e})− 1.

Thus
nullM/e(S) = nullM(S ∪ {e}).

Since ∂e annihilates monomials corresponding to subsets which don’t contain e, and simply
removes e from the ones that do, it follows that ∂e preserves the grading by nullity: ∂eRi,j ⊆
Ri−1,j. Thus Theorem 4.5 breaks up into graded pieces

0→ Φi,j(M \ e) ↪→ Φi,j(M)
∂e−→ Φi−1,j(M / e)→ 0 (4.3)

which remain exact. Adding these up gives exactness of the first row of the commuting
diagram

0
⊕
i,j≥0

Φi,j(M \ e)
⊕
i,j≥0

Φi,j(M)
⊕
i,j≥0

Φi,j(M / e) 0

0 Φ(M \ e) Φ(M) Φ(M / e) 0

∂e

∂e

(where the downward maps are the obvious inclusions). Thus by the Lemma 2.8, if the
decomposition result holds for M \ e and M / e it holds for M . The exact sequences (4.3)
give the recurrence

P (Φ(M); t, u) = P (Φ(M \ e); t, u) + tP (Φ(M / e), t, u)

and the formula follows from Proposition 2.3.
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As observed by Berget, one interesting property of the expression in Theorem 4.15 is that
it is invertible; we can rearrange it to get

T (M ;x, y) = xr(M)P (Φ(M);x−1, xy − x).

Thus, while Theorem 4.2 showed that the structure of Φ(M) as an algebra essentially encodes
all information about the matroid M , Theorem 4.15 says that its structure as a bigraded
vector space encodes “Tutte–Grothendieck” information.

The basis of Theorem 4.11 is not in general homogeneous with respect to the nullity
filtration. The example of the bugle graph demonstrates this; referring to Table 4.1, consider
the basis element

ϕ{1,4},{2} = x1x3 − x1x4 + x2x3 − x2x4 + x3x4.

The edges 3 and 4 are parallel, so the set {3, 4} has nullity 1. On the other hand, all other
2-element sets in this matroid are independent, as there is no other pair of parallel edges.
Thus this circulation is not nullity-homogeneous. To remedy this, we can modify the basis
to get one which is homogeneous with respect to both gradings. Define ϕ̃B,S to be the sum
of the monomials in ϕB,S with nullity |S|.

Theorem 4.16. The elements ϕ̃B,S for B ∈ B(M) and S ⊆ EA(B) with |IP(B)| = i − j
and |S| = j form a Q-basis for Φi,j(M).

Proof. By Theorem 4.15, we do in fact have ϕ̃B,S ∈ Φ(M). We have

null(IP(B) ∪ S) = |S|

so it follows from Lemma 4.12 that xIP(B)∪S appears with a nonzero coefficient in ϕ̃B,S. Since
the monomials which appear in ϕ̃B,S are a subset of those that appear in ϕB,S, Lemma 4.13
implies that this monomial is the largest in Gale order; the result follows by the same
argument used to prove Theorem 4.11.

Since nullity gives a filtration, we can consider the ideals

I
[k]
null(M) =

⊕
i≥0

⊕
j≥k

Φi,j(M).

The quotient algebras Φ(M)/I
[k]
null(M) share some properties with the circulation algebra

itself. For instance, since ∂e preserves nullity when e is not a loop, we automatically get
an analogue of Theorem 4.5. We have also done the necessary work to get an analogue of
Theorem 4.11.

Theorem 4.17. The images of the elements ϕB,S for B ∈ B(M) and S ⊆ IP(B) with

|S| ≤ k give a Q-basis for Φ(M)/I
[k]
null(M).

Proof. This is obviously true for if ϕB,S is replaced with ϕ̃B,S, since the latter are homoge-

neous and the ones with |S| ≤ k are precisely those that don’t vanish modulo I
[k]
null(M). But

since multiplication respects the filtration by nullity, we have

ϕB,S ≡ ϕ̃B,S (mod I
[k]
null(M))

and so the stated result is also true.
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The case k = 1 is especially interesting. Denote the quotient Φ(M)/I
[1]
null(M) by Φ̃(M).

An immediate consequence of Theorem 4.15 is that

P (Φ̃(M); t) = tr(M)T (M ; t−1, 1).

Of course, the graded dimension can be computed from the Tutte polynomial for any value
of k, but only in this case can it be done by simply making a substitution for the variables.
We can also generalize Theorem 4.7 to this algebra in a natural way.

Theorem 4.18. Φ̃(M) is naturally isomorphic to the quotient

Sym Flow(M) /
〈
θν(θ) : θ a simple flow on M

〉
.

Proof. The minimal sets of nonzero nullity are precisely the circuits. For C a circuit, the
monomial xC is, up to a scalar, equal to ζ |C| where ζ is a flow supported on C. Thus I

[1]
null(M)

is precisely the ideal in Φ(M) generated by elements of the form θν(θ). By Theorem 4.7, Φ̃(M)
is isomorphic to the quotient of Sym Flow(M) first by elements of the form θ1+ν(θ) and then
by elements of the form θν(θ). Since the latter divide the former, we can skip the first step.

The analogy between Φ(M) and Φ̃(M) is a particular case of the theory of power ideals
developed by Ardila and Postnikov. They are respectively dual to the k = 0 and k = −1
cases of the objects considered in [1, Section 4].
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Chapter 5

Generalized Circulation Algebras

5.1 Introduction

We now introduce a family of algebras associated to a regular matroid M , of which Φ(M)
is one member. For a finite set E and σ : E → N, consider the algebra

R(σ)(E) = Q[xe : e ∈ E]/
〈
x1+σ(e)
e : e ∈ E

〉
.

As in the construction of Φ(M), we think of QE as the degree-1 part of this graded algebra,
and consider the subalgebra generated by Flow(M). Denote this subalgebra by Φ(σ)(M).
We will call such an algebra a generalized circulation algebra of M . Of course, in the case
that σ identically equals 1, this is simply Φ(M). In general, when σ identically equals some
constant s, we will denote the generalized circulation algebra by Φ(s)(M). We note that
algebras of the form Φ(s)(M) for M a cographic matroid have previously been studied by
Nenashev [16, Section 3].

In fact, as a class of algebras, generalized circulation algebras are not really any more
general than ordinary circulation algebras: Φ(σ)(M) is isomorphic the ordinary circulation
algebra of a matroid constructed from M by an operation we will call σ-subdivision.1 In
Section 5.2 we introduce this operation and prove its relationship to generalized circulation
algebras. In Section 5.3, we derive a number of generalizations of results from Chapter 4 using
the subdivision isomorphism. Finally in Section 5.4 we give a family of short exact sequences
generalizing Theorem 4.5, which do not directly follow from the subdivision construction.

5.2 Subdivisions

For S a finite set and σ : S → N, write

S(σ) =
⋃
e∈S

{e} × {1, . . . , σ(e)}.

Proposition 5.1. Let E be a finite set and M a matroid on ground set E. For any σ : E →
N, there exists a matroid M (σ) on E(σ) whose circuits are precisely those sets of the form
C(σ) for C ∈ C(M).

1This result also essentially appears in Nenashev’s work, as part of the proof of [16, Theorem 3.1].
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Proof. We must show that the set {C(σ) : C ∈ C(M)} satisfies the definition given in Sec-

tion 2.1. Clearly we have C(σ) 6= ∅ if C 6= ∅, and C
(σ)
1 ⊂ C

(σ)
2 if and only if C1 ⊂ C2, so

the first two properties for M (σ) follow from those for M . For the third property, let C1

and C2 be circuits of M , and (e, i) ∈ C(σ)
1 ∩ C(σ)

2 . Then e ∈ C1 ∩ C2, so there is a circuit

C ⊆ (C1 ∩ C2) \ e. Clearly we have C(σ) ⊆ C
(σ)
1 ∩ C(σ)

2 \ (e, i).

We call the matroid M (σ) the σ-subdivision of M . If M is the cycle matroid of a graph
then M (σ) is the cycle matroid of the graph obtained by replacing each edge e with a path of
length σ(e). This is a subdivision in the usual graph-theoretic sense, at least if σ(e) > 0 for
all e. We also observe any matroid, if σ takes on only the values 0 and 1, then S(σ) simply
looks like the set obtained by discarding the elements e such that σ(e) = 0. Thus there is
an isomorphism

M (σ) ∼= M/{e : σ(e) = 0}

by the usual characterization of circuits in contractions. We can also generalize the usual
characterization of bases in contractions. We will say σ is proper if the set {e ∈ E : σ(e) = 0}
is independent.

Lemma 5.2. Let M be a matroid on ground set E and σ : E → N be proper. Suppose B is
a basis of M and µ : E \B → N is a function such that 1 ≤ µ(e) ≤ σ(e) for each e /∈ B. Let

Bµ = {(e, i) : e ∈ B or i 6= µ(e)} ⊆ E(σ).

Then Bµ is a basis of M (σ). Moreover, every basis is of this form.

Proof. For any C ∈ C(M), there is some e ∈ C with e /∈ B. Then (e, µ(e)) /∈ Bµ, so
C(σ) 6⊆ Bµ. Thus Bµ is independent. On the other hand, adding any element (e, µ(e)) would

complete the circuit C
(σ)
B,e, so no proper superset of Bµ is independent. Note that since σ is

proper, there exist a B and µ satisfying the hypotheses. Thus every basis of M (σ) excludes
exactly |E| − r(M) elements.

To show every basis is of this form, let B′ be any basis. We choose

B = {e : (e, i) ∈ B′ for 1 ≤ i ≤ σ(e)}.

In other words, B is the largest subset of E such that B(σ) ⊆ B′. Clearly B is independent
in M . Since the number of elements of E(σ) that are not in B′ is |E| − r(M), it follows
that there are at most this many elements of E that are not in B. Since B is independent
and contains at least r(M) elements, B is a basis of M . Thus there are exactly |E| − r(M)
elements which are not in B. For each e /∈ E \B, there is some i such that (e, i) /∈ B′. Since
|E \B| = |B(σ) \B′|, it follows that there is exactly one such i for each e ∈ E \B. Defining
µ(e) to be this value of i for each such e, we have B′ = Bµ.

Corollary 5.3. If σ is proper,

r(M (σ)) = r(M)− |E|+
∑
e∈E

σ(e).
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To relate subdivisions to circulation algebras, we will need to understand representations
of subdivisions. We will assume that σ(e) > 0 for all e; if not, we can first contract the edges
on which σ vanishes. Let A be a matrix with k rows representing A. For e ∈ E, let A′e be
the block matrix

A′e =
[
ae 0 · · · 0

]
where ae is the column of A corresponding to e. For n ∈ N let ∆n be the (n− 1)× n matrix

∆n =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0

. . .

0 0 0 · · · 1 −1

 .
Proposition 5.4. Let E = {e1, . . . , em}, and σ : E → N be a function such that σ(e) > 0
for all e. The matroid M (σ) is represented by the block matrix

A(σ) =


A′e1 · · · A′em

∆σ(e1)

. . .

∆σ(em)

 .
Proof. Suppose θ ∈ QE(σ)

. Let θ̃ ∈ QE be given by

θ̃(e) = θ(e, 1)

which is well-defined since σ(e) > 1. For 1 ≤ i ≤ m let θi ∈ Qσ(ei) be given by

θi(j) = θ(ei, j).

Then, thinking of θ as a column vector, we can write A(σ)θ in block form as

A(σ)θ =


Aθ̃

∆σ(e1)θ1
...

∆σ(em)θm

 .
This vanishes precisely when θ̃ ∈ KerA and θi is constant for each i. Thus if θ ∈ KerA(σ)

we have

Supp θ =
(

Supp θ̃
)(σ)

and in particular, by Proposition 3.2, the circuits of the matroid represented by A(σ) are
precisely the sets C(σ) for C a circuit of M , as wanted.

Theorem 5.5. For any regular matroid M , Φ(σ)(M) ∼= Φ(M (σ)).
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Proof. We compute that in R(E(σ)), for any e ∈ E we haveσ(e)∑
i=1

xe,i

1+σ(e)

= 0.

Thus there is a well-defined algebra homomorphism P : R(σ)(E)→ R(E(σ)) given by

P (xe) =

σ(e)∑
i=1

xe,i.

Using the matrix representation of Proposition 5.4, flows on M (σ) are the same as flows
on M , with each subdivided element being given the same value. Thus P maps Flow(M)
isomorphically to Flow(M (σ)) and hence maps Φ(σ)(M) onto Φ(M (σ)).

5.3 Consequences of Theorem 5.5

Theorem 5.5 means that every theorem about ordinary circulation algebras also gives a
theorem about generalized circulation algebras. In some cases (in particular, Theorem 4.5)
one does not obtain the most natural generalization of the result this way. However, in many
cases one does ; we examine some of these in this section.

Theorem 5.6. Let M and M ′ be regular matroids without coloops. For any s > 0, M ∼= M ′

if and only if Φ(s)(M) ∼= Φ(s)(M ′).

Proof. It is clearly the case that M (s) ∼= (M ′)(s) if and only if M ∼= M ′. The result is
immediate from Theorem 4.2 and Theorem 5.5.

Note that no such reconstruction result exists for non-constant σ. Of course, a bijection
between the ground sets of the matroids must be specified in order to even make sense of
using “the same” σ for two different matroids. Once this has been done, however, one can
find isomorphic matroids with non-isomorphic σ-subdivisions. For instance, the two graphs
of Fig. 5.1 have non-isomorphic cycle matroids, but the graphs (and hence also the matroids)
become isomorphic when the edge labelled e is subdivided in each of them.

e
e

Figure 5.1: A pair of non-isomorphic graphs with an isomorphic subdivision.
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Theorem 5.7. Let M and N be regular matroids and E be the disjoint union of their ground
sets. For any function σ : E → N,

Φ(σ)(M ⊕N) ∼= Φ(σ)(M)⊗ Φ(σ)(N)

Proof. We clearly have (M ⊕N)(σ) = M (σ)⊕N (σ). The result follows from Theorem 4.3 and
Theorem 5.5.

To generalize Theorem 4.7 this way, fix a regular matroid M on ground set E and a
function σ : E → N. For θ ∈ Flow(M), write

ν(θ, σ) =
∑

e∈Supp θ

σ(e).

Of course, if σ is identically equal to 1 then ν(θ, σ) = ν(θ). Let I(M,σ) be the ideal in
Sym Flow(M) given by

I(M,σ) =
〈
θ1+ν(θ,σ) : θ a simple flow on M

〉
.

Theorem 5.8. Φ(σ)(M) is naturally isomorphic to the quotient of Sym Flow(M) by I(M,σ).

Proof. Let P : Flow(M)
∼−→ Flow(M (σ)) be given by

(Pθ)(e, i) = θ(e).

Thus for each e ∈ Supp θ, we have σ(e) elements in SuppPθ corresponding to it. Thus

ν(Pθ) = ν(θ, σ)

so P takes I(M,σ) isomorphically to the ideal I(M (σ)) considered in Section 4.3. The result
then follows from Theorem 4.7.

Next we construct a basis for Φ(σ)(M), analogous to the basis from Theorem 4.11 for
ordinary circulation algebras. Fix a total order on E, and for a basis B of M say a function
λ : E \ B → N is admissible if λ(e) ≤ σ(e) for e ∈ EA(B) and λ(e) < σ(e) for e ∈ EP(B).
For an admissible function λ let

ϕB,λ =

 ∏
e∈IP(B)

α
σ(e)
B,e

 ∏
e∈E\B

β
λ(e)
B,e

 .

Note that in the case that σ is identically 1, an admissible function is simply the characteristic
function of a subset of EA(B), so this does generalize the earlier result.

Theorem 5.9. Let M be a matroid on totally ordered ground set E. The elements ϕB,λ for
B ∈ B(M) and λ admissible, form a Q-basis for Φ(σ)(M).
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Proof. Suppose B ∈ B(M) and λ is admissible. Define µ : E \B → N by

µ(e) = max(σ(e)− λ(e), 1)

and consider the basis Bµ of M (σ) from Lemma 5.2. For any f /∈ B we clearly have

CBµ,f,µ(f) = C
(σ)
B,f .

From this it follows that

C∗Bµ,e,i = {(e, i)} ∪ {(f, µ(f)) : (e, i) ∈ CBµ,f,µ(f)}
= {(e, i)} ∪ {(f, µ(f)) : e ∈ CB,f}.

Thus if e ∈ B we have

C∗Bµ,e,i = {(e, i)} ∪ {(f, µ(f)) : f ∈ C∗B,e}

and if e /∈ B then
C∗Bµ,e,i = {(e, i), (e, µ(e))}

since e is not contained in the fundamental cycle of any element except itself.
Order the elements of E(σ) lexicographically, i.e. (e, i) < (e′, i′) if e < e′ or e = e′ and

i < i′. With respect to this ordering, the above description of the fundamental circuits and
cocircuits clearly gives

IP(Bµ) = {(e, i) : e ∈ IP(B) or e /∈ B and µ(e) < i}

and
EA(Bµ) = {(e, 1) : e ∈ EA(B) and µ(e) = 1}.

since (e, 1) ∈ CBµ,e,µ(e) always.
Note that we may have µ(e) = 1 either when λ(e) = σ(e) or λ(e) = σ(e)− 1. Let

S = {(e, 1) : λ(e) = σ(e)} ⊆ EA(Bµ).

Let P : Φ(σ)(M) → Φ(M (σ)) be the isomorphism of Theorem 5.5. Then we have for
e ∈ IP(B) and 1 ≤ i ≤ σ(e)

P (αB,e) = αBµ,e,i

and for e /∈ B
P (βB,e) = βBµ,e,µ(e) = αBµ,e,j

for any j > µ(e). Thus

P (ϕB,λ) =

 ∏
e∈IP(B)

P (αB,e)
σ(e)

 ∏
e∈E\B

P (βB,e)
λ(e)


=

 ∏
e∈IP(B)

σ(e)∏
i=1

αBµ,e,i

 ∏
e∈E\B

σ(e)∏
j=µ(e)

βBµ,e,j

(∏
e∈S

βBµ,e,1

)
= ϕBµ,S.
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By Lemma 5.2, every basis is of the form Bµ for some µ. Given a pair (Bµ, S) for
S ⊆ EA(Bµ), write χS for the characteristic function and define

λ = σ − µ+ χS.

Then we have P (ϕB,λ) = ϕBµ,S. Thus the image of the ϕB,λ is the entirety of Φ(M (σ)), and
since P is an isomorphism this implies that they form a basis.

Summing over all basis vectors immediately gives a formula for the Poincaré polynomial.
This is a slight generalization of [16, Theorem 3.2].

Corollary 5.10. The Poincaré polynomial of Φ(σ)(M) is given by

P (Φ(σ)(M); t) =
∑

B∈B(M)

t|IP(B)|

 ∏
e∈EP(B)

1− tσ(e)

1− t

 ∏
e∈EA(B)

1− t1+σ(e)

1− t

 .

In the case of constant s, this can be expressed in terms of the Tutte polynomial.

Corollary 5.11. For s > 0, the Poincaré polynomial of Φ(s)(M) is given by

P (Φ(s)(M); t) = tsr(M)

(
1− ts

1− t

)|M |−r(M)

T

(
M ;

1

ts
,
1− ts+1

1− ts

)
.

Proof. Immediate from Proposition 2.5.

This Tutte polynomial formula implies that the Poincaré polynomial, at least when σ
is a constant, satisfies a deletion-contraction recurrence. It is natural to expect that this
recurrence reflects a short exact sequence analogous to Theorem 4.5. This we do in the next
section.

5.4 Exact sequences for generalized circulation alge-

bras

The formula of Corollary 5.11 gives a recurrence

P (Φ(s)(M); t) = (1 + · · ·+ ts−1)P (Φ(s)(M \ e); t) + tsP (Φ(s)(M / e); t)

for which we would like to find a corresponding exact sequence. The formula suggests that

0→
s−1⊕
i=0

Φ(s)(M \ e)(−i)→ Φ(s)(M)→ Φ(s)(M)(−s)→ 0

should be exact for some choice of maps. We would expect that for s = 1, these should
reduce to the maps that appear in Theorem 4.5.

The first term of the exact sequence is, ignoring the grading, simply the free Φ(s)(M \ e)-
module of rank s. Thus if we expect the maps to be Φ(s)(M \ e)-linear as they are in the
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ordinary case, then ι is determined by a list (ψ0, . . . , ψs−1) of elements of Φ(s)(M). To make
the grading work, we want ψi to be homogeneous of degree i. The most straightforward
thing to do then is to take ψi = ξi for some flow ξ. The map will certainly not be injective
if ξ ∈ Φ(s)(M \ e), so we insist that ξ(e) 6= 0. There is no obvious canonical choice of ξ, so
we will remain flexible and avoid making any further demands. Explicitly we work with the
map ιsξ given by

ιsξ(ϕ0, . . . , ϕs−1) =
s−1∑
j=0

ϕjξ
j.

We then need the appropriate substitute for the ∂e map. For any e ∈ E, define δe : E → N
by

δe(f) =

{
1, e = f

0, otherwise.

Then, so long as σ(e) > 0, we can consider the generalized circulation algebra Φ(σ−δe)(M).

We can naturally identify R(σ−δe)(E) with R(σ)(E)/〈xσ(e)
e 〉. We define a map ∂e : R(σ)(E)→

R(σ−δe)(E) by
∂ρ

∂xe
+
〈
xσ(e)
e

〉
.

This is a R(σ)(E \ e)-linear derivation.

Lemma 5.12. For any regular matroid M and any element e which is not a coloop, ∂eΦ
(σ)(M) =

Φ(σ−δe)(M). In particular, Φ(σ−δe)(M) is a Φ(σ)(M \ e)-submodule of R(σ−δe)(E).

Proof. Analogous to Proposition 4.4.

More generally, for 1 ≤ k ≤ σ(e), we define

∂ke =
∂kρ

∂xke
+
〈
x1+σ(e)−k
e

〉
.

Proposition 5.13. For any regular matroid M , non-coloop element e, and 1 ≤ k ≤
σ(e), ∂keΦ(σ)(M) = Φ(σ−kδe)(M). In particular, Φ(σ−kδe)(M) is a Φ(σ)(M \ e)-submodule
of R(σ−kδe)(E).

Proof. Follows by applying Lemma 5.12 repeatedly.

In the case that k = σ(e), we identify Φ(σ−kδe)(M) with Φ(σ)(M / e). This allows us to
finally write down the appropriate exact sequence.

Theorem 5.14. Let M be a regular matroid, let e be an element of M which is not a coloop,
and let ξ be a flow on M with ξ(e) 6= 0. The sequence

0→
s−1⊕
i=0

Φ(s)(M \ e)(−j)
ιsξ−→ Φ(s)(M)

∂se−→ Φ(s)(M / e)(−s)→ 0

of graded Φ(s)(M \ e)-modules is exact.
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In fact, this is a special case of the following more general result, which also encompasses
the exact sequence obtained by applying the subdivision construction to Theorem 4.5. We
extend the ιs notation slightly by defining, for any fixed σ, element e, and 1 ≤ k ≤ σ(e), the
map

ιkξ :
k−1⊕
i=1

Φ(σ)(M / e)(−i)→ Φ(σ)(M)

by

ιk(ϕ0, . . . , ϕk−1) =
k−1∑
j=0

ϕjξ
j.

We have the following very general family of short exact sequences.

Theorem 5.15. Let M be a regular matroid and let e an element of M which is not a coloop.
Suppose 1 ≤ k ≤ σ(e). The sequence

0→
k−1⊕
j=0

Φ(σ)(M \ e)(−j)
ιkξ−→ Φ(σ)(M)

∂ke−→ Φ(σ−kδe)(M)(−k)→ 0

of graded Φ(s)(M \ e)-modules is exact.

Proof. Injectivity of ιkξ is equivalent to the set {1, ξ, . . . , ξk−1} being linearly independent

over Φ(s)(M \ e), which follows immediately from the independence of {1, xe, . . . , xk−1
e }.

Surjectivity of ∂se follows from Proposition 5.13, so we need only show exactness in the
middle.

Let {θ1, . . . , θd} be a basis for Flow(M \ e), so {θ1, . . . , θd, ξ} is a basis for Flow(M). Any
element ψ ∈ Φ(σ)(M) can be written as

ψ = F (θ1, . . . , θd, ξ)

for some polynomial F . Splitting this up by the exponent on the last variable, we get

ψ =

σ(e)∑
i=0

ϕiξ
i

for some coefficients ϕi ∈ Φ(s)(M \ e). Then

∂se = s!ξ(e)ϕs

which vanishes if and only if ϕs = 0, since ξ(e) 6= 0. Thus ψ is in the kernel of ∂se if and only
if it is a Φ(s)(M \ e)-linear combination of 1, ξ, . . . , ξs−1, i.e. it is in the image of ιξ.

Taking k = σ(e) recovers a deletion-contraction sequence like Theorem 5.14, while taking
k = 1 gives the sequence obtained by combining Theorem 4.5 with Theorem 5.5.

This sequence gives a formula for the Poincaré polynomial in terms of the multivariate
Tutte polynomial.
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Theorem 5.16. The Poincaré polynomial of Φ(σ)(M) is given by

P (Φ(σ)(M); t) = (1− t)r(M)

(∏
e∈E

1− tσ(e)

1− t

)
Z̃

(
M ; 1− t,

(
tσ(e) − t1+σ(e)

1− tσ(e)

)
e∈E

)
.

Proof. We will show both sides satisfy the same recurrence relation with the same initial
conditions. The base case is when M consists of a single element e with σ(e) = s. The
element is either a loop or a coloop. If it is a loop then

P (Φ(σ)(M); t) = 1 + · · ·+ ts

(easily seen by Theorem 5.5 for instance) and using the initial conditions for the multivariate
Tutte polynomial given after Proposition 2.6, the right-hand side is

1− ts

1− t
Z̃

(
M ; 1− t, t

s − t1+s

1− ts

)
=

1− ts

1− t

(
1 +

ts − t1+s

1− ts

)
=

1− ts+1

1− t

which matches.
If e is instead a coloop then

P (Φ(σ)(M); t) = 1

and the right-hand side is

(1− t)1− ts

1− t
Z̃

(
M ; 1− t, t

s − t1+s

1− ts

)
= (1− ts)

(
1 +

ts − t1+s

(1− t)(1− ts)

)
= (1− ts)

(
1 +

ts

1− ts

)
= 1.

By Theorem 5.7 and Proposition 2.7 both sides multiply over direct sums, so they agree
for all matroids consisting of only loops and coloops.

When e is neither a loop nor a coloop, Theorem 5.15 gives

P (Φ(σ)(M); t) =
1− tσ(e)

1− t
P (Φ(σ)(M \ e); t) + tσ(e)P (Φ(σ)(M / e); t)

and Proposition 2.6 gives the same recurrence for the right-hand side. Thus the two are
equal.
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Chapter 6

Open Problem: Logarithmic
Concavity

Recall that a sequence (a0, a1, . . . , am) of real numbers is logarithmically concave if

a2
i ≥ ai−1ai+1

for 0 < i < m.
In [27], Wagner conjectured that the Poincaré polynomial for the ordinary circulation

algebra of any graphic matroid has logarithmically concave coefficients. Ghislain McKay has
verified that logarithmic concavity holds for both the cycle and bond matroids of all graphs
on up to nine vertices. Less calculation has been done for regular matroids which are neither
graphic nor cographic, but no counterexamples are known, and in [28] the conjecture was
made that logarithmic concavity holds for this specialization of the Tutte polynomial for all
matroids representable over a field of characteristic zero.

Of course, by Theorem 5.5, the result for arbitrary ordinary circulation algebras would
also imply it for generalized circulation algebras.

Conjecture 6.1. P (Φ(σ)(M); t) has logarithmically concave coefficients for all regular ma-
troids M and all σ.

6.1 One possible approach

One approach to solving this problem, outlined in [29], uses the representation theory of the
Lie algebra sl2(C). In brief, to prove the logarithmic concavity of the graded dimension of a
graded complex vector space A, it suffices to construct linear operators X and Y on A⊗ A
such that for all i and j,

• X(Ai ⊗ Aj) ⊆ Ai−1 ⊗ Aj+1,

• Y (Ai ⊗ Aj) ⊆ Ai+1 ⊗ Aj−1, and

• XY − Y X acts on Ai ⊗ Aj as scaling by j − i.
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Thus we could prove Conjecture 6.1 by constructing a pair of such operators on A = Φ(M)⊗
C, for an arbitrary regular matroid M .

Some very weak partial progress in this direction has been made. Let E be a finite set
and equip R(E) ⊗ C with the inner product for which the square-free monomials form an
orthonormal basis. Let M be a matroid on E, and A = Φ(M) ⊗ C. Then for each e ∈ E,
we can define an operator µe on A by defining µe(ϕ) to be the orthogonal projection of xeϕ
onto Φ(M). If we set

X =
∑
e∈E

µ∨e ⊗ µe,

Y =
∑
e∈E

µe ⊗ µ∨e ,

where µ∨e is the adjoint operator to µe, then it is clear that X and Y satisfy the first
two of the needed three properties. It can be verified that in the case M = Un−1,n, the
matroid consisting of a single circuit, the third property holds as well. (Of course, the
graded dimension of Φ(Un−1,n) is constant, so trivially log-concave.) Unfortunately, this fails
miserably in the next-simplest case of U1,3, with XY − Y X failing even to be diagonal in a
homogeneous basis.

6.2 Another possible approach

Another method of proving logarithmic concavity results, which has been successfully applied
to a number of graph and matroid polynomials, is to make use of homological identities from
algebraic geometry, or combinatorial analogues thereof. (See [12] for a survey.) For our
purposes, one particularly relevant example due to Huh [13] is the following: the h-vector of
a d-dimensional simplicial complex ∆ is defined by

hi(∆) = [td+1−i]f(∆; t− 1)

where f(∆; t) is the polynomial with the property that [td−i]f(∆; t) counts the number of
i-dimensional simplices in ∆. In the case ∆ is the simplicial complex whose simplices are
the independent subsets of a matroid M , it can be shown [4] that∑

i

hi(∆)ti = tr(M)T (M ; t−1, 1).

We observe that the right-hand side is the Poincaré polynomial of the algebra Φ̃(M) con-
sidered in Section 4.5. Huh [13, Theorem 3] proved logarithmic concavity of the h-vector
for matroids representable over fields of characteristic zero, which implies in particular the
following.

Theorem 6.2. P (Φ̃(M); t) has logarithmically concave coefficients for all regular matroids
M .
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It is not clear whether Huh’s methods could be extended to Φ(M). To make the analogy
stronger, we offer the following construction of a simplicial complex whose h-vector coincides
with the graded dimension of Φ(M). Given a matroid M on ground set E, let

E ′ = E t {c1, . . . , c|E|−r(M)}

and let ∆′ be the simplicial complex on E ′ with facets all sets of the form

FS = S t {c1, . . . , c|E|−|S|}

for S a spanning set of M , i.e. r(S) = r(M). Then each face consists of a subset of E
together with some of the ci. A minimal spanning set containing a set X ⊆ E has size
|X|+ r(M)− r(S), with corresponding facet containing {c1, . . . , c|E|−|X|−r(M)+r(S)} so these
are the ones that can be included with X. Thus we have

f(∆′; t) =
∑
X⊆E

t|E|−|X|(1 + t−1)|E|−|X|−r(M)+r(S)

= (1 + t)|E|−r(M)T (M ; 1 + t, 1 + (1 + t)−1)

by (2.1). Thus

hi(∆
′) = [t|E|−i]f(∆′; t− 1)

= [t|E|−i]T (M ; t, 1 + t−1)

= [ti]P (Φ(M); t).

In general, ∆′ is not of the kind for which Huh proved logarithmic concavity of the h-
vector.1 It could be hoped that it is “close enough” to attempt to apply similar methods,
though to directly apply these methods one would need to find an algebraic variety that
relates to this complex in a way analogous to the variety of critical points considered by
Huh. It is unclear how this could be done.

1In the case of Un−1,n it is of the correct kind, giving yet another proof that constant sequences are
logarithmically concave.
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Appendix A

Isomorphisms of Graded Algebras

We now give a proof of the lemma necessary to fully justify the statement of Theorem 4.2.
While straightforward, this result does seem to appear in the commutative algebra literature.
A more general version appears in the relatively recent paper [2] but the case that we actually
use is easier to prove.

Lemma A.1. Let A and B be finite-dimensional graded algebras which are generated by
homogeneous elements of degree 1 (i.e. no proper subalgebra of A contains the graded piece
A1, and analogously for B). Then A and B are isomorphic as algebras if and only if they
are isomorphic as graded algebras.

Proof. Suppose {a1, . . . , ad} is a basis for A1. Then by hypothesis it is also a generating set
for A as an algebra. Indeed, it must be a minimal generating set for A, as any proper subset
does not span A1, and there is no way to obtain elements of A1 as products in a nontrivial
way. Let P : A → B be an isomorphism. We wish to modify P in order to construct an
isomorphism that preserves the grading.

First, observe that P (ai) ∈ B+ for each i. This is because, since A is finite-dimensional, ai
must be nilpotent. Thus P (ai) is nilpotent also. Since B is generated by degree-1 elements,
it follows that B0 = K, so all nilpotent elements lie in B+.

Now for each i, let bi be the projection of P (ai) onto B1. We observe that these elements
must span B1: any element of B can be written as some polynomial in the P (ai), and since
P (ai) ∈ B+ only the degree-1 term can contribute to a degree-1 element.

For any k1, . . . , kd we have

P (ak11 · · · a
kd
d ) = bk11 · · · b

kd
d + (higher-degree terms).

Thus if F is a homogeneous polynomial, we have

P (F (a1, . . . , ad)) = F (b1, . . . , bd) + (higher-degree terms)

and hence if F (a1, . . . , ad) = 0 then F (b1, . . . , bd) = 0. It follows that there is a well-defined
algebra homomorphism P̂ : A→ B given by ai 7→ bi. Since its image clearly contains B1, it is
surjective. Since A and B are isomorphic, they have the same dimension, so a surjective map
is necessarily an isomorphism. Finally, since P̂ maps A1 to B1 it is grade-preserving.
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