
Kinodynamic Planning with µ-Calculus
Specifications

by

Luc Larocque

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2018

c© Luc Larocque 2018

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Stephen Smith
Associate Professor, Dept. of Electrical and Computer Engineering

Supervisor: Jun Liu
Associate Professor, Dept. of Applied Mathematics

Internal Member: Brian Ingalls
Associate Professor, Dept. of Applied Mathematics

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Motion planning problems involve determining appropriate control inputs to guide a system
towards a desired endpoint. Sampling-based motion planning was developed as a technique
for discretizing the state space of systems with complex environments. This makes the
sampling-based method especially useful in robotics, where robots are expected to perform
tasks in unknown, changing, or cluttered environments. On the other hand, temporal
logic presents a means of prescribing the desired behaviour of a system. In the area
of formal methods, researchers seek to solve problems in such a way that synthesized
solutions provably satisfy a given temporal logic specification. In this thesis, we investigate
combining the flexibility of sampling-based planning with the ability to specify the high-
level behaviour of an autonomous system with the temporal logic known as µ-calculus.

While using temporal logic specifications with motion planning has been heavily
researched, reliance on an available steering function is often impractical and suited only
to basic problems with linear dynamics. This is because a steering function is a solution to
an optimal two-point boundary value problem (OBVP); thus far, mathematicians have yet
to find analytic solutions to such problems in all but the simplest of cases. Addressing this
issue, we have developed a means of using the motion planning algorithm SST* in combi-
nation with a local model checking procedure to solve kinodynamic planning problems with
deterministic µ-calculus specifications without using a steering function. The procedure
involves combining only the most pertinent information from multiple Kripke structures
in order to create one abstracted Kripke structure storing the best paths to all possible
proposition regions of the state-space. A linear-quadratic regulator (LQR) feedback control
policy is then used to track these best paths, effectively connecting the trajectories found
from multiple Kripke structures. Simulations demonstrate that it is possible to satisfy a
complex liveness specification involving infinitely often reaching specified regions of state-
space using only forward propagation of the system dynamics.

We proceed to repurpose this tool for real-time quadrotor motion planning with
temporal logic specifications. The dynamical system is derived, and a real-time plan-
ning framework is presented based on a variant of the FMT* planning algorithm. Despite
requiring a steering function, an argument is presented which allows finding OBVP solu-
tions only for an approximation of the full dynamics. The notion of an abstracted Kripke
structure is then applied in the context of quadrotor kinodynamic planning, allowing for
rapid model checking and ensuring high-quality feasible solutions satisfying a given deter-
ministic µ-calculus specification.

iv

Acknowledgments

Many thanks to my ever-supportive and helpful supervisor, Jun Liu. Your positivity and
guidance gave me the motivation I needed to succeed, while allowing me the independence
to follow the research path that suited me best. Thank you also to all of the members of
the Hybrid Systems Lab. Yinan Li, Milad Farsi, Chuanzheng Wang, Riley Brooks, and
Kevin Church, you have all contributed so much to my Master’s experience with insightful
conversation, interesting presentations, and utmost kindness. Lastly, to Stephen Smith
and Brian Ingalls, I am very grateful for the time you dedicated and the comments you
provided as members of my defence committee.

v

Dedication

This is dedicated to my officially-expanded family and to Maša: you have made my
journey through graduate studies an absolute pleasure.

vi

Table of Contents

List of Figures ix

Abbreviations x

1 Introduction 1

1.1 Motion Planning . 1

1.1.1 Examples . 2

1.1.2 Sampling-Based Kinodynamic Planning 3

1.2 Temporal Logic . 5

1.3 Contributions . 6

1.4 Overview . 7

2 Preliminaries 8

2.1 µ-Calculus . 8

2.1.1 Modal µ-Calculus . 8

2.1.2 Deterministic µ-Calculus . 13

2.1.3 Tarski-Knaster Theorem . 13

2.1.4 Specification Examples . 16

2.2 SST* . 19

2.3 FMT* . 24

vii

3 Sampling-Based Motion Planning with µ-Calculus Specifications without
Steering 28

3.1 Introduction . 28

3.2 Problem Formulation . 29

3.2.1 Problem Statement . 30

3.3 Kripke Structures and Model Checking . 30

3.3.1 Model Checking with µ-Calculus Specifications 31

3.3.2 Abstracted Kripke Structure and Planning 31

3.3.3 LQR Tracking . 34

3.4 Example . 35

4 Quadrotor Motion Planning 39

4.1 Quadrotor Model . 39

4.1.1 Background . 40

4.1.2 Dynamics . 42

4.2 Real-Time Motion Planning . 46

4.2.1 Framework Overview . 46

4.2.2 Differential Flatness . 48

4.2.3 Quadrotor Dynamics Approximation 49

4.2.4 Reachable Set Approximation . 51

4.2.5 Trajectory Smoothing . 52

4.2.6 Tracking Controller . 59

4.2.7 Simulations . 63

4.3 Abstracted Kripke Structures for Online Planning 70

4.3.1 Algorithm . 70

5 Conclusions 73

5.1 Future Work . 74

References 76

viii

List of Figures

1.1 RRT sampling and connection procedure 4

2.1 Example of a Kripke structure . 9

2.2 µ-Calculus semantics example . 12

2.3 SST Flappy Bird Example . 23

2.4 FMT* Example . 25

2.5 FMT* Diagram . 27

3.1 Abstracted Kripke Structure . 36

3.2 Double Integrator Example — Three Trees using SST* 37

3.3 Double Integrator Example — Simulation Results 38

4.1 Inertial and body-fixed frames . 41

4.2 Quadrotor simulation tree . 65

4.3 Quadrotor simulation waypoints . 66

4.4 Quadrotor simulation smooth trajectory 66

4.5 Quadrotor step-response . 67

4.6 Quadrotor tracking errors . 68

4.7 Quadrotor smooth path tracking . 69

4.8 Quadrotor planning with temporal logic specifications 71

4.9 Abstracted Kripke structure for quadrotor paths 72

ix

Abbreviations

CTL Computation Tree Logic 5, 18, 28

EST Expansive Space Trees 19

FMT* Fast Marching Tree 6–8, 24–27, 40, 71, 73

LQR Linear Quadratic Regulator 6, 7

LTL Linear Temporal Logic 5, 13, 18, 28, 29, 31

NED North-East-Down 40, 62

OBVP optimal boundary value problem 6, 19, 30, 46–51, 53, 64, 71

PRM Probabilistic Roadmap 19, 24

QP quadratic program 54

RRT Rapidly-exploring Random Tree 4, 19, 24

SLAM simultaneous localization and mapping 3

SST Stable Sparse RRT 6–8, 19, 20, 22–24, 30, 31, 33–37, 40, 49, 52, 70, 73, 74

SVM Support Vector Machine 47, 51, 52

UAV unmanned aerial vehicle 2, 3, 42

x

Chapter 1

Introduction

1.1 Motion Planning

Planning is a fundamental problem in robotics: mobile robots must be able to determine
how to move in order to perform tasks. According to LaValle in his titular book on planning
algorithms, converting high-level specifications into low-level descriptions of how a robot
ought to move is what is generally referred to as motion planning [26]. He further states
motion planning, in modern control theory literature, refers to the generation of inputs to
a dynamical system which drive it from an initial state to a specified goal state (or set).

In general, motion planning solves problems involving a state space, which is the set of
all possible states in which a system could find itself. Such a space could be finite, like in
the case of Rubik’s cube with finitely many configurations, or infinite, such as train with
both a position and velocity that can vary continuously in the domain of real numbers.
Note that time also plays a crucial role in both of these examples: the Rubik’s cube allows
moves in succession, in some order, and the train’s location and current velocity depend
on its past position and velocity. Lastly, in order to plan, one must be able to affect the
system, i.e., change the state, in the some way. Some systems, like the train, abide by a
set of dynamics which govern how the system changes. A train on a steep hill will roll
down the hill if it does not have sufficient momentum to crest over the top. However, if we
allow the system to accept an input or control, then the system can be altered to act in a
desirable way. Being able to set the engine to full-throttle may make the difference between
getting to the destination and ending up stuck at the foot of the hill. For continuous time
systems, the dynamics are modeled with ordinary differential equations. Even for systems
without dynamics, like with the Rubik’s cube (assuming we are not concerned with how

1

the faces of the cube are rotated), there must be a way to specify exactly how an action
affects the state of the system.

This thesis will focus only on continuous-time motion planning problems, where the
dynamics are modeled by a control system that consists of a set of ordinary differential
equations modeling the dynamics of the system, an initial condition, a set of allowed
states, and a set of admissible controls. Note that this does not rule out the possibility of
uncertainties. Dynamical systems model reality but do not necessarily do so with complete
accuracy, and disturbances in the environment may have an effect on the behaviour of a
system. A well-designed motion planning algorithm is robust under uncertainties, using
feedback control to reject disturbances.

1.1.1 Examples

Motion planning has an immense variety of applications in both virtual and robotic
systems. Moreover, the potential for autonomous robots to improve human living condi-
tions is vast, and as yet not fully understood. One especially disruptive emerging tech-
nology is autonomous vehicles: cars and trucks that are able to drive from an initial position
to a goal location with minimal or no human input [42]. These autonomous vehicles have
been gaining popularity in recent years, especially with the media hype of Google and Tesla
bringing self-driving cars into the public eye; however, the first research on this topic began
in the 20th century. By 1995, Todd Jochem and Dean Pomerleau completed a 2,797 mile
journey across America in a van using neural networks to design a vision-based partially
automated driving system1 [18]. This accomplishment demonstrated level 2 automation
under the SAE International Standard J3106 [15], which falls short of being described as an
“automated driving system” as a human driver is still essential. More recent advances have
brought autonomous vehicles to level 3 with Google’s self-driving car having over 500,000
miles of autonomous driving in 2012 [32]. Level 3 is labeled as “conditional automation”,
meaning for certain driving modes the automated driving system can control all aspects
of driving with the caveat that a human driver be on standby to respond to requests to
intervene. In jumping from level 2 to level 3, a human driver becomes non-essential to the
driving task, except as a fallback.

Another practical example of motion planning is controlling an unmanned aerial vehicle
(UAV) system, such as a quadrotor. Due to their scalable size and high maneuverability,
quadrotors are used for an ever-increasing range of tasks, from aerial photography, to

1The trip was titled “No Hands Across America” since the only human input involved braking and
accelerating; steering was performed completely autonomously.

2

mapping dangerous, cluttered, or unexplored regions with simultaneous localization and
mapping (SLAM), to light shows from a fleet of Intel’s quadrotors, and even for quickly
delivering small parcels [49, 36]. Each of these tasks requires a means of determining
where and how the quadrotor should move, and advances in motion planning will allow for
even more complex and intricate maneuvers, and therefore more applications. However,
planning for quadrotors can be quite difficult because, like cars, they are non-holonomic
and subject to differential constraints. Since they can maneuver in 3D space instead of
being restricted to a 2D surface, as is the case for ground vehicles, quadrotors are described
by a 12-dimensional state space (position, velocity, orientation, and rotational velocity).
This often means that much computational effort is involved in motion planning for UAV
systems. Furthermore, given that the dynamics governing quadrotor motion are highly
nonlinear, motion planning is all the more difficult, from path generation to trajectory
tracking. Many of these issues will be addressed in Chapter 4, which presents a framework
for real-time motion planning of quadrotors, based on work by Allen et al. [2].

Overall, the field of robotics is continuing to grow, and with it, motion planning is
becoming all the more relevant and important in day-to-day life. Forklifts are being auto-
mated to move merchandise around in warehouses, and vacuum cleaners have become small
disks that roam around the home like robotic pets. In the field of agriculture, robots are
improving the lives of farmers by autonomously targeting and removing weeds that nega-
tively impact crops [45]. The recurring theme in all of these examples is that automation,
along with the essential component of motion planning, is leading the way in reducing the
need for human labour. Robots are becoming increasingly capable of performing complex
tasks, especially with the concurrent rise of machine learning and artificial intelligence, and
advances in motion planning are leading to improved performance [11], online reactivity
to dynamic obstacles [2], and better guarantees [30] in all areas of robotics.

1.1.2 Sampling-Based Kinodynamic Planning

The sampling-based approach to motion planning has become particularly popular in
robotics applications since it avoids having to explicitly represent the environment and
its obstacles. In essence, the strategy is to discretize the state space by sampling, thereby
constructing a graph which explores a representative portion of the space. Such problems
can be solved geometrically, meaning solutions only find a collision-free path in space and
do not take into account feasibility, or using kinodynamic planning, which considers the
system dynamics and differential constraints to ensure the robot can feasibly accomplish
the planned task. In this thesis, emphasis is placed on kinodynamic planning.

3

sample

new

sample

a)

b)

nearest

nearest

Figure 1.1: RRT sampling and connection procedure. The existing tree is shown with
black nodes and solid edges. a) A node is randomly sampled from the state space, and the
nearest existing node is found. b) A new node and edge are added to the tree along the
line connecting the nearest and sampled nodes, but at a maximum distance δmax from the
nearest node.

The general approach to sampling-based motion planning begins with choosing a
sampling scheme; that is, samples of the state space are to be taken either deterministically,
or according to some probability distribution. These samples are then used to generate
new nodes on a graph, where the details involved in connecting each new node to the
existing graph vary based on the sampling-based algorithm being applied. For example, as
depicted in Figure 1.1, the popular motion planning algorithm Rapidly-exploring Random
Tree (RRT) samples a random point in state space, finds the nearest existing point of
the tree, and steers from said nearest point towards the sample up to some maximum
distance, δmax. The result is a newly added edge (transition from one state to another)
and node (state) in the tree. The fact that steering is required means there must exist a
function which optimally connects two states. This requirement is is quite strict, and will
be discussed in Chapter 2 and Chapter 3.

4

An important concept in motion planning literature is completeness, and we say that
an algorithm is complete if, for any input, it correctly returns in finite time whether or not
there exists a solution to the path planning problem [26]. Clearly, due to the nature of
sampling-based algorithms, completeness cannot be achieved. There are, however, weaker
notions of completeness which can be useful to study. One common alternative when using
a random sampling scheme is the the notion of probabilistic completeness, which means that
the probability that the algorithm finds a solution — if one exists — converges to 1 as the
number of samples tends to infinity. Similarly, we say that a motion planning algorithm is
asymptotically optimal if the probability of finding an optimal solution (based on a chosen
cost function) approaches one as the number of samples approaches infinity [20].

1.2 Temporal Logic

Motion planning occurs on various levels of abstraction. A hierarchical control structure
would typically have some “vague”, high-level description of what the robot or system
is supposed to do, guiding the desired behaviour. Below that there is a model, usually
encompassing system dynamics, with a control architecture that prescribes how information
is passed along in a series of inputs and outputs, which ultimately generates a motion plan
to be followed. At the lowest levels, algorithms are used to put the motion plan in action,
using a tracking controller — with some form of feedback to improve robustness — that
determines exactly what inputs ought to be applied to maneuver along the planned path
trajectory.

Temporal logics are the language used to express the high-level specifications that
preside over the control hierarchy, dictating the user-desired behaviour. Most instances
of motion planning seek simply to move from one location to another, without any other
instructions (except to avoid obstacles). This goal is often hard-coded into the algorithms
designed for solving motion planning problems. However, there exists a much broader realm
of possibility that uses model checking to determine whether a solution satisfies a given
specification. Allowing users to specify the high-level expectations of robot behaviour opens
many avenues for real-world applications, not to mention the benefit of having performance
guarantees from the use of formal methods [30]. We choose to work with µ-calculus, a highly
expressive temporal logic which permits more diverse and complex specifications than the
most widely used temporal logics, including Linear Temporal Logic (LTL), Computation
Tree Logic (CTL), and extensions thereof [19]. One further advantage proffered by the
use of (deterministic) µ-calculus is the relative ease and elegance of model checking that it
permits. An in-depth background on µ-calculus is provided Chapter 2.

5

1.3 Contributions

Summarizing the contributions of this thesis, we have successfully solved a kinodynamic
planning problem with temporal logic specifications without the need for a solution to an
optimal boundary value problem (OBVP), also called a steering function. While using
temporal logic specifications with motion planning has been heavily researched, e.g., [3, 4,
19, 30, 47], it is often difficult or impossible to find a steering function, allowing motion
planning only for simple dynamical systems. Addressing this issue, we have combined the
probabilistically complete and asymptotically optimal variant of the kinodynamic planning
algorithm Stable Sparse RRT (SST), called SST*, (see Section 2.2) from [28] with the model
checking procedure from [19] to create a motion planning algorithm with deterministic µ-
calculus specifications that does not rely on a steering function. We further introduce
the notion of an abstracted Kripke structure which stores the most cost-efficient paths
reaching the desired proposition regions as a single edge in a relatively small graph. This is
achieved by merging information obtained from multiple Kripke structures, containing all
of the relevant detail, into a single simplified structure. The solution trajectories necessary
in satisfying the given specification are then combined and tracked using Linear Quadratic
Regulator (LQR) feedback controller.

Furthermore, we use the same notion of an abstracted Kripke structure to solve the
highly nonlinear quadrotor planning problem with temporal logic specifications. A similar
approach to the above is used, however we leverage the real-time framework proposed in [2]
which uses Fast Marching Tree (FMT*) to open the possibility of generating trajectories
satisfying a deterministic µ-calculus specification while online. This is important because
online motion planning is not feasible with the incremental SST* method.

Further contributions are made in providing much-needed detail and educationally
significant clarifications to some literature in this field. An introductory overview of µ-
calculus is conducted in Chapter 2 which is intended to be both detailed and understand-
able. Many early developments on the subject, e.g., [9, 7, 5, 8], are amalgamated into
one section providing readers with a deep intuition on the subject of temporal logic using
µ-calculus. In addition, an original example is included to illustrate the semantics of µ-
calculus specifications.

We also provide further detail regarding quadrotor motion planning, including quadrotor
dynamics [34], real-time planning [2], and geometric control methods [27], in Chapter 4.
We take a deeper look at the mathematics involved in deriving many of the equations that
arise in kinodynamic planning for quadrotors, deriving and justifying many equations that
appear without explanation in the above cited works. Moreover, the provided descrip-

6

tions should be sufficient in guiding the implementation of the algorithms and frameworks
discussed herein.

1.4 Overview

The rest of this thesis is structured as follows. Chapter 2 introduces many of the important
and recurring concepts discussed throughout. The syntax and semantics of µ-calculus
are provided, and a crucial theorem used in model checking is stated with proof. Then,
the fragment of µ-calculus we will use, called deterministic µ-calculus, is defined. Many
common specifications are described in detail to provide the foundations of the language
of our temporal logic specifications. We then move to a description of the kinodynamic
planning algorithm SST* which we will use in Chapter 3. The final section of this chapter
provides a detailed look at the FMT* algorithm, which we use for quadrotor motion
planning.

In Chapter 3, we present novel research on solving kinodynamic planning problems while
satisfying deterministic µ-calculus specifications without requiring a steering function. A
problem statement is provided along with a detailed description of the meta-algorithm
KinoSpecPlan which combines using SST* with a local deterministic model checking algo-
rithm as well as LQR tracking. A complex liveness specification is then shown to be
satisfied in an example that uses this method.

Chapter 4 focuses on the application of kinodynamic planning to quadrotors. The
dynamics of a quadrotor system are derived, and the problem of planning with deterministic
µ-calculus specifications is stated. We then outline all of the necessary components for a
real-time motion planning framework and demonstrate some simulation results for the
task of transiting from an initial state to a goal state. Lastly, the ideas from Chapter 3
are used in the context of quadrotor planning to produce trajectories satisfying temporal
logic specifications.

Lastly, Chapter 5 offers closing remarks as well as directions for future work.

7

Chapter 2

Preliminaries

In this chapter, we introduce some core background concepts that arise throughout the
thesis. First, we detail the notation and specify the semantics of a our choice of temporal
logic, µ-calculus, and provide the model checking tools necessary to use it. A description
of the incremental kinodynamic planning algorithm SST* follows, along with a description
of the various functions used to implement the planning algorithm. This is contrasted with
FMT*, which is another motion planning algorithm that is not incremental.

2.1 µ-Calculus

We begin by defining the syntax and semantics of the full, modal µ-calculus. A simple
example Kripke structure is provided to build some intuition surrounding the notation and
meaning of some common µ-calculus formulas. We then describe a fragment of µ-calculus
called deterministic µ-calculus, which we will be using for the motion planning procedure in
Chapter 3. Finally, we present many examples of typical deterministic µ-calculus formulas,
describing how to parse and thoroughly understand each one.

2.1.1 Modal µ-Calculus

First, an atomic proposition is a declarative statement that is either true or false, and which
cannot be further split into smaller statements. An example of an atomic proposition might
be “in free space”, where a state satisfies the atomic proposition if and only if it lies in the
defined free space for a problem. On the other hand, the statement “in free space AND

8

not in goal region” is not an atomic proposition, as it can be further deconstructed into
the simpler statements “in free space” and “in goal region”. As this example demonstrates,
more complex statements use logical connectives such as conjunction (∧, logical AND),
disjunction (∨, logical OR), and negation (¬, logical NOT). We will also be using the
modal operators ♦ and �, representing the existential and universal successor operators,
respectively. Lastly, we use the symbols µ and ν as least and greatest fixed point operators,
respectively.

Figure 2.1: Example of a Kripke structure, with obstacles shown in red, free space shown
in white, and the goal set shown in green.

Let Π be the set of atomic propositions, and let Var be the set of variables, where a
variable is a placeholder that often appears bound to a fixed point operator. We define the
following structure as in [19].

Definition 1. A Kripke structure K over the set of atomic propositions Π is a tuple
(S, S0, R,L) where S is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S is
a binary relation which indicates a means of transiting from one state to another (usually

9

represented as the edges in a directed graph), and L : S → 2Π is a labeling function,
mapping each state to the subset of propositions that it satisfies.

In essence, a Kripke structure is a graph with edges representing available transitions
between nodes, which represent states that have been added to the graph via some sampling
scheme. The distinction to be made between a Kripke structure and any other graph
representation is that every node on the graph has an associated label which defines which
atomic propositions that node satisfies. Figure 2.1 is an example of a graph that could
represent a Kripke structure. Here, the set of states, S, is represented by the nodes of the
graph, the set of initial states is given by the singleton containing the bottom-left node,
and the set of relations is represented by the edges. Define πf to be the atomic proposition
“in free space”, πg to mean “in goal”, and πo to mean “in obstacle”. The labeling function
would then simply specify, for every node, the subset of Π = {πf , πg, πo} that it satisfies.
Define the set of valid µ-calculus formulas (Lµ) inductively, as follows:

• the symbols True and False are formulas;

• every p ∈ Π and X ∈ Var is a formula;

• if φ, ψ are formulas, then ¬φ, φ ∧ ψ, and φ ∨ ψ are also formulas;

• if φ is a formula then ♦φ and �φ are formulas;

• if φ[X] is a formula where φ[X] is syntactically monotone in X, then µX.φ and νX.φ
are formulas.

As in [12], we write φ[X] to indicate that φ contains an occurrence of X, i.e., the
variable X appears in formula φ. In the last bullet above, µX.φ (similarly, νX.φ) binds
the variable X in φ to the fixed point operator. Note that the notation for fixed point
operators always takes the form σX.φ, where σ is one of µorν, X is any variable name, and
a dot separates the operator from the formula on which it acts. In this general case, the
formula φ = φ[X] is a mu-calculus formula that is syntactically monotone in the variable
X. We define syntactic monotonicity using the following definitions.

Definition 2. Given a µ-calculus specification, φ, we say that a variable X is positive
(respectively, negative) if it occurs under the scope of an even (respectively, odd) number
of negations in formula φ.

Definition 3. A subformula X is pure in µ-calculus specification φ if all of its occurrences
have the same polarity (i.e., all occurrences of X are positive or all occurrences of X are
negative).

10

Definition 4. The formula φ[X] is syntactically monotone in X if and only if X occurs
with pure polarity in φ.

µ-calculus formulas are interpreted with respect to a Kripke structure K = (S, S0, R,L)
and an environment (also called an evaluation), e : Var → 2S, which initializes (i.e.,
assigns a subset of S to) each free variable, where a free variable is defined in the usual
sense and a variable is otherwise said to be bound by a fixed point operator. For every
Lµ formula φ, given a Kripke structure, K, define JφKeK ⊆ S to be the set of states of
S satisfying proposition φ (note that the subscript K is often omitted when the Kripke
structure being used is clear, and the superscript e is omitted when φ contains no free
variables). The semantics of the formulas is determined inductively by the following, where
p ∈ Π, X ∈ Var, and φ, ψ ∈ Lµ are arbitrary formulas [46].

JFalseKK = ∅
JTrueKK = S
JpKK = {s ∈ S : p ∈ L(s)}
J¬pKK = S \ JpK
Jφ ∨ ψKeK = JφKeK ∪ JψKeK
Jφ ∧ ψKeK = JφKeK ∩ JψKeK
J♦φKeK = PreeK,∃(φ)
J�φKeK = PreeK,∀(φ)

JµX.φKeK =
⋂
{A ⊆ S : JφKe[X←A]

K ⊆ A}
JνX.φKeK =

⋃
{A ⊆ S : JφKe[X←A]

K ⊇ A}

The existential and universal predecessor functions PreeK, · : Lµ → S map a µ-calculus
formula to the set of states which immediately precede (i.e., have transitions to) states
satisfying said formula in the Kripke structure K and under evaluation e:

PreeK,∃(φ) := {s ∈ S : ∃s′ ∈ S s.t. (s, s′) ∈ R ∧ s′ ∈ JφKeK}
PreeK,∀(φ) := {s ∈ S : ∀s′ ∈ S, (s, s′) ∈ R =⇒ s′ ∈ JφKeK}.

In words, True = (p ∨ ¬p) holds for all states in S, and False = (p ∧ ¬p) does
not hold for any state in S; disjunction and conjunction of formulas is equivalent to the
union and intersection of the sets which satisfy them, respectively; ♦ is the existential
successor (or “next”) operator, and � is the universal successor operator; lastly, µ and ν
are the least and greatest fixed-point operators, respectively, where e[X ← A] is a modified
evaluation function which maps X to A, i.e., e[X ← A](X) = A. To help build a more
intuitive understanding of these last four semantic definitions, a simple example is provided
(Example 1).

11

Example 1. This example illustrates the semantics presented above. Refer to Figure 2.2.
Define atomic proposition p to be the boolean value corresponding to “in gray region”. We
can specify the labeling function for each node, writing L(sp) = {p} for nodes sp ∈ {a, b, c},
and L(s) = ∅ for nodes s ∈ {d, e, f, g}. Note that the environment superscript e is
omitted as we are not using any free variables, and we use the generic Kripke structure
K = (S, S0, R,L).

JpKK = {s ∈ S : p ∈ L(s)} = {a, b, c}
J¬pKK = S \ JpK = {d, e, f, g }
J♦pKK = PreeK,∃(p) = {a, c, d, f}
J�pKK = PreeK,∀(p) = {a, c}
JµX.(p ∨ ♦X)KK =

⋂
{A ⊆ S : Jp ∨ ♦XKe[X←A]

K ⊆ A} = {a, b, c, d, f}
JνX.(p ∧ ♦X)KK =

⋃
{A ⊆ S : Jp ∧ ♦XKe[X←A]

K ⊇ A} = {a, c}

• JpKK is the set of nodes satisfying p (nodes in the gray region).

• J¬pKK is the complement of JpKK in S (nodes that are not in the gray region).

• J♦pKK contains those nodes that have a transition to a node in the gray region.

• J�pKK contains only nodes such that every transition leads to a node in the gray
region.

a

b
c

d

e

f

g

Figure 2.2: µ-Calculus semantics Example 1.

12

• JµX.(p ∨ ♦X)KK is the reachability specification which determines whether there
exists a sequence of transitions reaching a state satisfying p (see Section 2.1.4). In
this case, the resulting set consists of the nodes that are in the gray region or that
can follow transitions to eventually reach a node in the gray region.

• JνX.(p ∧ ♦X)KK is the safety specification which determines whether there exists
a sequence of transitions guaranteeing that proposition p is always satisfied (see
Section 2.1.4). In this case, the resulting set consists of the nodes that are in the
gray region and can always take a transition to a node that is also in the gray region.

In order to develop a means of evaluating expressions containing fixed-point operators,
we rely on the Tarski-Knaster theorem from set theory. The next sections introduce a
fragment of modal µ-calculus called deterministic µ-calculus, which we will use in the
formulation of the required theorem.

2.1.2 Deterministic µ-Calculus

We will focus our efforts on deterministic µ-calculus, which admits efficient model checking
algorithms and is more expressive than the commonly used temporal logic LTL [19, 8].
Deterministic µ-calculus imposes some restrictions on syntax, notably that only atomic
propositions may be negated, conjunction can only occur between a formula and an atomic
proposition, and the universal successor operator � is omitted. We may write this syntax
succinctly in Backus-Naur form as follows:

φ := p | ¬p | X | p ∧ φ | ¬p ∧ φ | φ ∨ φ | ♦φ | µX.φ | νX.φ

where p ∈ Π and X ∈ Var. We denote the set of all deterministic µ-calculus formulas by
L1. Note that by restricting negation to atomic propositions only, we ensure that every
formula in L1 is syntactically monotone in its variables. Furthermore, this fragment of
µ-calculus does not express any temporal branching; all found solutions flow forward in
time, as is necessary for a motion planning trajectory.

2.1.3 Tarski-Knaster Theorem

The Tarski-Knaster fixed point theorem (Theorem 1) we introduce in this section makes
an important statement about complete lattices and their fixed-points [40]. We make
use of this theorem to formulate an algorithm which computes the least or greatest fixed

13

points for the set of states satisfying a µ-calculus proposition containing a least or greatest
fixed point operator. Note that if a proposition does not contain fixed point operators or
the existential successor operator, it is easy to evaluate whether any given state satisfies
the proposition. Formulas including the existential successor operator are not much more
difficult, although they do require searching for successor states along the set of relations.
However, what is truly interesting is the fact that we can use the Tarski-Knaster theorem
to easily perform model checking for specifications that involve fixed point operators [19].
We begin by defining the necessary concepts.

Definition 5. Let (X,≤) be a partially ordered set, and let A ⊆ X. Then
∨
A (
∧
A)

denotes the least upper bound (respectively, greatest lower bound) of A with respect to ≤,
if it exists. We say that X is a complete lattice if, for every A ⊆ X, then both

∨
A and∧

A exist in X.

Example 2. Consider (P(X),⊆) for any set X, where P(X) denotes the power set of X.
Note that ∀A ⊆ P(X),

∨
A =

⋃
A, since the union of all the elements of A gives the

smallest set which completely contains the elements of each subset in A, and this union
must be an element of P(X). Similarly,

∧
A =

⋂
A ∈ P(X). Thus, (P(X),⊆) is a

complete lattice.

Definition 6. Let (A,≤A) and (B,≤B) be partially ordered sets. A function f : A → B
is monotone if a1 ≤A a2 =⇒ f(a1) ≤B f(a2).
A point a ∈ A is a fixed point of a function f : A→ B if f(a) = a, and we denote the set
of all fixed points of f by fix(f).

Theorem 1. (Tarski-Knaster Fixed Point Theorem)
Let L be a complete lattice and let F : L→ L be monotone. Then

1.
∨
{x ∈ L | x ≤ F (x)} ∈ fix(F),

2.
∧
{x ∈ L | F (x) ≤ x} ∈ fix(F), and

3. fix(F) is a complete lattice.

Proof.
Let µF := {u ∈ L | u ≤ F (u)}, and let ζ =

∨
µF (ζ exists since µF ⊆ L, a complete

lattice). For all u ∈ µF , u ≤ ζ, so u ≤ F (u) ≤ F (ζ), by monotonicity. Thus, F (ζ) is
an upper bound for µF , and ζ is the least upper bound, so ζ ≤ F (ζ). By monotonicity,
F (ζ) ≤ F (F (ζ)), so F (ζ) ∈ µF . This implies that that F (ζ) ≤ ζ. Therefore, ζ = F (ζ) ∈
fix(F). A similar argument can be made for

∧
{u ∈ L | F (u) ≤ u}.

14

Now we show that an arbitrary subset A ⊆ fix(F) has a least upper bound and a
greatest lower bound, thereby proving fix(F) is a complete lattice. Define a :=

∨
A, and

1L =
∨

L. Consider the interval [a, 1L] := {x ∈ L | a ≤ x ≤ 1L}, which is a complete
lattice. Then if A has a least upper bound in fix(F), it must lie in [a, 1L]. Note that it
suffices to show that F can be restricted to act as a monotone function F : [a, 1L]→ [a, 1L],
so that we may apply the first result: a monotone function on the complete lattice [a, 1L]
has a least fixed point, and this point is therefore the least upper bound of A ⊆ fix(F).
Let x ∈ A. Then x ≤ a and x = F (x) ≤ F (a) = a by monotonicity, so a ≤ F (a). Letting
y ∈ [a, 1L], we can see that a ≤ y and a = F (a) ≤ F (y) ≤ 1L by monotonicity. This implies
F (y) ∈ [a, 1L], so we conclude that F ([a, 1L]) ⊆ [a, 1L] which further implies that we may
restrict the domain and co-domain, F : [a, 1L] → [a, 1L]. We have thus shown that an
arbitrary subset A ⊆ fix(F) has a least upper bound in fix(F). It is true for all lattices
L that if every sublattice S ⊆ L has a least upper bound

∨
S, then S has a greatest lower

bound defined by ∧
S =

∨(⋂
s∈S

{x ∈ L : x ≤ s}

)
.

Therefore, fix(F) is a complete lattice.

We will use this theorem to perform model checking over a Kripke structure on propo-
sitions with a fixed point operator, φ = σX.ψ, where σ is used as a generic symbol repre-
senting one of µ or ν.

Corollary 2 presents an intuitive algorithm for finding the least and greatest fixed
points satisfying a given deterministic µ-calculus proposition with fixed point operators.
Note that the complete lattice in question is the power set of the set of states ordered by
set inclusion, (P(S),⊆), as in Example 2. The proof relies on the fact that deterministic
µ-calculus propositions are inherently syntactically monotone and therefore monotone in
their variables [12], as negation is allowed only on atomic propositions. This implies that
for any formula of the form σX.ψ[X], A ⊆ B implies JψKe[X←A]

K ⊆ JψKe[X←B]
K .

Corollary 2. Let K = (S, S0, R,L) be a Kripke structure, e : Var→ 2S be an evaluation,
and φ ∈ L1 be a deterministic µ-calculus formula. Define Qµ

i and Qν
i recursively as follows:

Qµ
0 = ∅ Qν

0 = S

Qµ
i = JφK

e[X←Qµi−1]

K Qν
i = JφKe[X←Q

ν
i−1]

K

then

15

(i) ∀i ∈ N, Qµ
i−1 ⊆ Qµ

i and Qν
i ⊆ Qν

i−1,

(ii) ∃n,m ∈ N such that Qµ
n−1 = Qµ

n, Qν
m−1 = Qν

m, and

(iii) Qµ
n = JµX.φKeK, Qν

m = JνX.φKeK.

Summarizing the algorithm, to evaluate JµX.ψKeK , it suffices to set Qµ
1 to be the set

of states satisfying the formula ψ where X = Qµ
0 is initialized to be the empty set. We

then proceed inductively, letting each subsequent Qµ
i be the result of finding the states

which satisfy ψ where X is replaced by Qµ
i−1. After a finite number n of iterations

(since the set of states S of a Kripke structure is finite, see Definition 1), a fixed point
Qn−1 = Qn = JµX.ψKeK will be reached. An analogous algorithm is applied when we wish
to evaluate JνX.φKeK , where Qν

0 = X is initialized to be S.

2.1.4 Specification Examples

This section will introduce several examples of commonly used deterministic µ-calculus
specifications. Each example is named, described, and explained in detail to provide some
intuition to the reader [19].

(i) Reachability: φ = µX.(p ∨ ♦X)
The reachability specification is used to ensure that the system eventually reaches a
state which satisfies atomic proposition p. The resulting set JφKeK is the winning set,
that is, the set of all initial states for which the proposition φ holds. In this case,
the winning set consists of states which satisfy p or for which there exists a sequence
of transitions in R which lead to a state satisfying p. In the context of the Kripke
structure K = (S, S0, R,L), we seek only to show that S0 is contained in the winning
set JφKeK .

In this example, we look for the least fixed point because we will start with the
empty set and grow through all states that satisfy p or that can reach JpKK with
one transition, then two transitions, and so on until the entire winning set is found.
This process is guaranteed to terminate since the formula (p∨♦X) is monotone (φ is
a deterministic µ-calculus formula), and since the Kripke structure contains finitely

16

many states. Let us apply the algorithm from Corollary 2 to elucidate the procedure:

Qµ
0 = ∅

Qµ
1 = Jp ∨ ♦XKe[X←Q

µ
0]

K

= JpKK ∪ J♦XKe[X←∅]K

= JpKK ∪ Pree[X←∅]K,∃ (X)

= JpKK ∪ {s ∈ S : ∃s′ ∈ S s.t. (s, s′) ∈ R ∧ s′ ∈ ∅}
= JpKK

Qµ
2 = Jp ∨ ♦XKe[X←Q

µ
1]

K

= JpKK ∪ {s ∈ S : ∃s′ ∈ S s.t. (s, s′) ∈ R ∧ s′ ∈ JpKK}.

This process continues until the least fixed point is reached. See Example 1 for a
concrete illustration of the reachability specification.

(ii) Safety: φ = νX.(p ∧ ♦X)
We use the the term “safety” as this specification guarantees that a given atomic
proposition will hold on some state trajectory; the atomic proposition may be
concerned with being in an obstacle-free space, or it may ensure that constraints
on speed or acceleration are observed, for instance. The formula φ will hold for all
states which satisfy p and which have transitions to states which will themselves
satisfy p and in turn have transitions to other states that will satisfy this same condi-
tion. For this reason, we start with the entire set of states, S, and repeatedly find
intersections to narrow down the states until the greatest fixed point is reached.

Qν
0 = S

Qν
1 = Jp ∧ ♦XKe[X←Q

ν
0]

K

= JpKK ∩ J♦XKe[X←S]
K

= JpKK ∩ {s ∈ S : ∃s′ ∈ S s.t. (s, s′) ∈ R ∧ s′ ∈ S}
= JpKK

Qν
2 = Jp ∧ ♦XKe[X←Q

ν
1]

K

= JpKK ∩ {s ∈ S : ∃s′ ∈ S s.t. (s, s′) ∈ R ∧ s′ ∈ JpKK}
...

See Example 1 for a concrete illustration of the safety specification.

17

(iii) Reaching a Region Safely: φ = µX.(¬q ∧ (p ∨ ♦X))
One way of combining the above two specifications is to ensure that a safety condition
is met while trying to reach an objective. This specification is commonly used for
motion planning problems, wherein a planner searches for a trajectory which avoids
obstacles (represented by states satisfying q), and reaches a given goal (represented
by states satisfying p). Obstacle avoidance is guaranteed by the conjunction of the
usual reachability subformula with ¬q so that at each iteration, we keep only those
states which satisfy the reachability criterion and are not obstacles.

(iv) Reaching a Safe Region: φ = µX.((νY.(p ∧ ♦Y)) ∨ ♦X)
Another way to combine safety and reachability is the specification to reach a region
whose states always satisfy a property p. The subformula ψ = νY.(p ∧ ♦Y) is iden-
tical to the safety specification listed above; ψ is satisfied by all initial states which
give rise to trajectories that always satisfy p. This safety specification is wrapped
in the reachability specification µX.(ψ ∨ ♦X), meaning states which satisfy φ are
either in the safe region already, or can reach the safe region using a finite number
of transitions.

(v) Ordering: φ = µX.(q ∨ (p ∧ ♦X))
In both LTL and CTL, there is a temporal operator U denoting “until”, so that pUq
is satisfied provided p holds at least until q holds; that is, after a finite number of
transitions, q must hold, and p may or may not continue to hold. In µ-calculus,
we can formulate this specification by building up a set of states where either q is
already satisfied, or p is satisfied and there exists a transition to a state satisfying
q ∨ (p ∧ ♦X). Another way to interpret the formula is to distribute the disjunction to
obtain µX.((q ∨ p) ∧ (q ∨ ♦X)). In this form, we observe the reachability subformula
q ∨ ♦X (in the scope of a least fixed point operator, as usual), so we may conclude
that the winning set contains states which eventually satisfy q, and along the way
must satisfy p (otherwise q is already satisfied, so p may or may not be satisfied).

(vi) Liveness: φ = νY.µX.((p ∧ ♦Y) ∨ ♦X)

Liveness, is a specification which guarantees that atomic proposition p is satisfied
infinitely often. This example is the first with an alternation depth greater than one,
where alternation depth refers to the level of mutually recursive least and greatest
fixed point operators [46]. A more formal definition of alternation depth is presented
in [5], though the definition seen here is sufficient for our purposes.

Consider the largest proper subformula of φ, ψ = µX.((p ∧ ♦Y) ∨ ♦X). This can
be seen as a reachability specification where the goal is to eventually reach states

18

satisfying η = p ∧ ♦Y , which itself looks like a safety specification, remarking that
η is in the scope of a greatest fixed point operator. We may parse the liveness
specification φ = νY.ψ = νY.µX.(η ∨ ♦X) as follows: ψ ensures that a region
satisfying η = p ∧ ♦Y is reached, and η ensures that p is satisfied and that there is a
transition to a state satisfying ψ. Having mutually recursive greatest and least fixed
point operators in this way allows for this more complex combination of reachability
and safety, where φ is satisfied by all states which have paths that always eventually
reach JpKK . Note that liveness is also sometimes called the Büchi objective in the
context of infinite parity games, a topic closely related to µ-calculus [7, 21, 46].

2.2 SST*

In this section, we discuss a probabilistically complete sampling-based kinodynamic motion
planning algorithm called SST along with its asymptotically optimal variant, SST*1. For
completeness, the planner is summarized in this section, although further details and proofs
can be found in [28].

One very useful property of SST is that it does not rely on having the solution to
an OBVP for the relevant system. Such a solution is called a steering function2 in the
literature, and many motion planning algorithms are contingent upon its availability.
For example, some planning algorithms that necessitate using a steering function include
RRT* [20] and PRM [22]. The steering function provides, as the name suggests, optimal
inputs to control or steer the system from one given state to another; for many planners,
the necessity of such a function arises when sampled states (nodes) must be connected
together with directed edges, representing that there is a known set of inputs to control
the system between such states. The problem is, just as finding analytic solutions to
nonlinear differential equations is very difficult or impossible, so too is finding the related
solution to an associated OBVP.

Although scarce, there are a small number of sampling-based planning algorithms that
do not require a steering function, most notably RRT-Extend [25] and Expansive Space
Trees (EST). While EST has been shown to be asymptotically optimal (RRT-Extend is
not), the rate of convergence to the (near-) optimal solution is logarithmic, making it

1Note that motion planning algorithms whose acronyms end with an asterisk (*) are usually asymptot-
ically optimal variants of their associated algorithm.

2Some authors use different terminology for the steering/OBVP problem. For instance, in their paper
on Probabilistic Roadmap (PRM), Kavraki et al. refer to a “local planner” which is used to connect
neighbouring nodes in the case of holonomic robots.

19

impractical at reliably finding high-quality paths. On the other hand, the advantages
offered by SST* include being provably asymptotically optimal as well as having good
(linear) convergence to high-quality solutions. SST* is further improved by its use of a
sparse data structure, where a pruning operation is used to accelerate nearest neighbours
searches, thereby ameliorating computational efficiency.

We will now describe the implementation details of the SST* sampling-based planning
algorithm. SST* employs MonteCarlo_Prop which, as the name suggests, forward prop-
agates a selected node, xselected, using random sampling. Specifically, a random control
vector is sampled from the allowed control-space, U, and supplied as input to the system
dynamics for a random duration, up to some specified maximum time, Tprop, resulting in
trajectories with piecewise constant control inputs (see Algorithm 1).

Algorithm 1 MonteCarlo_Prop(xselected,U, Tprop)
1: t← Sample([0, Tprop])
2: Υ← Sample(U)
3: return xnew ← xselected +

∫ t
0
f(x(τ),Υ)dτ

SST* also uses a best-first selection strategy to forward integrate from the least-cost
node found within a specified radius of the sampled state, thereby improving convergence
to high-quality solutions. To elaborate, we use Algorithm 2 called Best_First_Selection
to sample a random state, xrand, from the state space, X. Then, the set of all states within
a δBN radius of xrand is stored in Xnear. If Xnear is empty, we simply return the nearest
node to xrand in the set of all nodes, V. Otherwise, the state in Xnear with the least cost is
selected. In either case, the selected state, xselected, is the state from which we propagate
and grow the tree using MonteCarlo_Prop.

Algorithm 2 Best_First_Selection(X,V, δBN)

1: xrand ← Sample(X)
2: Xnear ← Near(V, xrand, δBN)
3: if Xnear == ∅ then
4: return Nearest(V, xrand)
5: else
6: return arg minx∈Xnear Cost(x)

Furthermore, SST* applies a pruning operation to maintain a sparse data structure.
Pruning removes high-cost nodes to improve run-time by accelerating nearest neighbour
searches. With this in mind, a graph of witness nodes is maintained, where each witness

20

Algorithm 3 Is_Locally_Best(xnew, S, δs)

1: snew ← Nearest(S, xnew)
2: if dist(xnew, snew) > δs then
3: S ← S ∪ {xnew}
4: snew ← xnew
5: snew.rep← NULL
6: xpeer ← snew.rep
7: if xpeer == NULL or Cost(xnew) < Cost(xpeer) then
8: return True
9: return False

keeps track of an optimal-cost representative node within a δs-radius of the witness. Corre-
spondingly, we must determine whether a new node is the “best” in its neighbourhood in
order to decide whether or not to keep it. For this purpose, we use Is_Locally_Best
presented in Algorithm 3. The algorithm finds the nearest witness state, snew, to the
newly propagated state xnew. If snew is not within distance δs of xnew, xnew is deemed
locally best by default and becomes a new witness node. In this way, xnew is added to
the set of witness nodes, S. If xnew does have a neighbour within a δs radius, the chosen
cost function, Cost, is used to check whether the new state is better than the locally best
representative of the witness node.

Algorithm 4 Prune(xnew,Vactive,Vinactive,E)

1: snew ← Nearest(S, xnew)
2: xpeer ← snew.rep
3: if xpeer 6= NULL then
4: Vactive ← Vactive \ {xpeer}
5: Vinactive ← Vinactive ∪ {xpeer}
6: snew.rep← xnew
7: while IsLeaf(xpeer) and xpeer ∈ Vinactive do
8: xparent ← xpeer.parent
9: E← E \ {xparent → xpeer}
10: Vinactive ← Vinactive \ {xpeer}
11: xpeer ← xparent

Now that there is a means of determining whether a state is locally best, we are ready
to define the algorithm which enforces sparsity, Prune (Algorithm 4). First, the nearest

21

witness state, snew, to the newly propagated state, xnew, is found. We want to set xnew to
be the representative of snew since it has been deemed locally best if the SST* algorithm has
reached this point (see Algorithm 5), but first we must check whether or not snew already
has a representative. Since Prune is only executed if Is_Locally_Best returns True, then
if snew has a representative, it must have higher cost than xnew, and it must now be moved
from Vactive to Vinactive. The next step is to remove inactive leaf nodes recursively, so that
if the previous representative of snew is an inactive leaf node, it is removed entirely from
the set of all nodes, V, and the check is preformed again with the parent of the removed
leaf node.

Algorithm 5 SST*(X,U, x0, Tprop, N, δBN , δs, ξ)

1: Vactive ← {x0}; Vinactive ← ∅
2: E← ∅
3: s0 ← x0; s0.rep = x0; S ← {s0}
4: j ← 0
5: while True do
6: for N iterations do
7: xselected ← Best_First_Selection(X,Vactive, δBN)
8: xnew ← MonteCarlo_Prop(xselected,U, Tprop)
9: if CollisionFree(xselected → xnew) then
10: if Is_Locally_Best(xnew, S, δs) then
11: Vactive ← Vactive ∪ {xnew}
12: E← E ∪ {xselected → xnew}
13: Prune(xnew,Vactive,Vinactive,E)

14: δs ← ξ · δs; δBN ← ξ · δBN
15: j ← j + 1
16: N ← N(1 + log(j))ξ−j(d+l+1)

17: V← Vactive ∪ Vinactive

18: return (V,E)

With the necessary helper functions defined, the pseudocode for SST* is outlined in
Algorithm 5. Note that the nested for-loop constitutes the core of SST, and the addition
of the update step for δs and deltaBN is all that is necessary to make the algorithm asymp-
totically optimal instead of being merely asymptotically near-optimal. This is because, if
these two parameters do not tend to zero as the number of iterations goes to infinity, then
there will always be some degree of sparsity, which means that not every possible solution
is explored. In terms of notation, the overline indicates an edge (trajectory from one state

22

to another), and d, l denote the number of dimensions of the state space and the control
space, respectively.

It is important to note that proper tuning of the parameters used in SST* is crucial
for effective path planning. The most significant parameters are δBN and δs, which are
the radii for selecting low-cost nearby nodes and for pruning in the vicinity of witness
nodes, respectively. Choosing a large value of δs can decrease the time it takes to find
an initial solution at the cost of solution quality, while choosing a large value of δBN
can improve initial solution quality while increasing the time it takes to find an initial
solution. Moreover, the SST* algorithm is incremental, meaning states are not sampled
all at once, rather during each iteration a new state is sampled to incrementally grow a
tree. A consequence of the incremental nature of SST* is that there is no clear way to
precompute solution trajectories for online use unless (necessarily static) obstacles and the
initial state are specified exactly.

Figure 2.3: An example of a tree produced by SST for the flappy bird problem. The
initial state is in the top-left, the point travels at a constant horizontal velocity, and the
control-space is a set containing only two options: “do nothing”, or “accelerate up”, each
for a random duration. The least-cost solution for this execution is highlighted in pink.

23

2.3 FMT*

FMT* is an asymptotically optimal sampling-based motion planning algorithm that was
specifically developed for use in high-dimensional systems [16]. In simulations, Janson et
al. consistently found that FMT* converges to high-quality solutions faster than PRM*
and RRT* for systems with dimension from 2D to 7D. The improvements were more
noticeable in higher dimensions, making FMT* a very promising algorithm for complex
motion planning problems such as for those involving quadrotors, which operate in a 12D
state space. Note that, unlike SST*, FMT* is not an incremental algorithm. This means
that the set of samples is fixed (as opposed to constantly growing), which allows for the
possibility of precomputing useful information on the set of samples while offline.

Algorithm 6 kinoFMT(xinit, Xgoal,X, n, Jth)
1: V← {xinit} ∪ Sample(n,X)
2: E← ∅
3: W ← V \ {xinit};H ← {xinit}
4: z ← xinit
5: while z /∈ Xgoal do
6: N out

z ← Near_Forward(z, V \ {z}, Jth)
7: Xnear = N out

z ∩W
8: for x ∈ Xnear do
9: N in

x ← Near_Backward(x, V \ {x}, Jth)
10: Ynear ← N in

x ∩H
11: ymin ← arg miny∈Ynear{y.cost+ Cost(y → x)}
12: if CollisionFree(ymin → x) then
13: E← E ∪ {ymin → x}
14: x.cost← ymin.cost+ Cost(ymin → x)
15: H ← H ∪ {x}
16: W ← W \ {x}
17: H ← H \ {z}
18: if H == ∅ then
19: return Failure
20: z ← arg miny∈H{y.cost}
21: return Path(z,V,E)

We consider the kinodynamic variant of FMT* by Ross Allen and Marco Pavone
called kinoFMT. The primary distinction lies in the fact that, due to considerations of

24

differential constraints, there is a fundamental difference between searching for nearest
backward-reachable and forward-reachable states. In the case of backward reachability,
Near_Backward(x, V, Jth) finds states in V that can reach state x without exceeding a
threshold cost, Jth. In contrast, Near_Forward(x, V, Jth) finds states in V that can be
reached by x itself without exceeding Jth. See Section 4.2.4 for further details. In fact,
using a cost threshold is another deviation from the standard FMT* algorithm, which
uses a distance threshold. Since kinodynamic planning is concerned with feasibility under
kinematic and dynamic constraints, a simple distance metric is insufficient for determining
which states are easily reachable from another state. Algorithm 6 presents the pseudocode
of kinoFMT which is similar to the algorithm shown in [2] except for some slight changes
for clarity and implementational simplicity.

Figure 2.4: Example of a tree generated by FMT* using 2000 nodes. The initial state is
shown at the top center as a green hexagon, the goal region lies in the bottom left and
is shown in green, and obstacles are represented by red rectangles. The optimal path is
highlighted in blue. This example does not use any dynamic model, so the cost function
is simply the Euclidean distance.

25

The main idea behind FMT* and kinoFMT is to use forward dynamic programming on
a predetermined number of sampled states. The algorithms perform graph construction
and graph search simultaneously, thus the final least-cost node lying in the goal region
is already known when the algorithm terminates. In other words, by the nature of the
expansion of the tree structure, the least-cost nodes on the frontier of expansion are always
tracked, so that when the goal is reached, it is not necessary to search the entire tree for
the optimal terminal node. Moreover, since tree structures contain no cycles, there exists
a unique path from the starting node to the terminal node. Figure 2.4 demonstrates an
example of a solution path found via FMT*.

In more detail, kinoFMT takes as input an initial state, xinit, and goal region, Xgoal,
the state space, X, the number of nodes to sample, and a cost threshold, Jth. The Sample
function uniformly samples the entire state space3 (usually with some samples selected
directly from the goal region) and stores these sampled states in V along with xinit (line 1).
The setW contains unexplored nodes, and the setH contains the nodes forming the frontier
of expansion of the tree, which initially includes only xinit (line 3). Every iteration, the
least-cost node z ∈ H becomes the pivot about which expansion occurs (lines 6, 20). With
the pivot known, we define Xnear to be the set of unexplored nearest nodes in the forward-
reachable set of z (lines 5–7). Then, for each element x ∈ Xnear, define Ynear to be the set
of nodes in the frontier that are also in the backward-reachable set of x (lines 8–10). The
least-cost state ymin is then found from the set of all y ∈ Ynear, where the cost is determined
to be the sum of the cost of reaching y (along its unique path from xinit) and the cost to
travel from y to x, recalling that y is in the backward-reachable set of x (line 11). This is
the dynamic programming step, where we try to minimize the cost-to-come and the cost-
to-go. Once the cost minimizer is found, a collision check is performed (line 12), and if a
collision is detected along the transition from ymin to x, then the algorithm simply discards
this iteration and proceeds to the next. Otherwise, the edge (transition) is added to the
tree, the newly connected node’s cost is updated and the node is added to the frontier set,
H, and it is simultaneously removed from the set of unexplored nodes, W (lines 13–16).
Once the for-loop has iterated through the entire set of forward-reachable nodes, Xnear, the
pivot, z, is removed from the frontier and the procedure repeats until either the frontier
is empty, at which point “Failure” is returned (lines 18–19), or until z lies within the goal
region, at which point the algorithm terminates. The Path function simply returns the
optimal path, that is, the unique path from xinit to the final least-cost goal state, z.

A diagram illustrating the addition of a single transition using FMT* is provided in
3The FMT* algorithm specifies that samples are taken only from the free space (i.e., not including

obstacles,) however, sampling from the entire state space allows for a much more general motion planning
framework, as discussed in Section 4.2.

26

a)
z

x

 H

 Xnear

 Nx

in

 Ynear

b)
z

x

z

x

c)

Jth

ymin

Figure 2.5: Illustration of the FMT* algorithm.

Figure 2.5. In part a) of the diagram, of the two nodes in the frontier, H, the one with
least cost is selected as z. For this simple example, distance is used as the cost with a
search radius of Jth, and three unvisited nodes are found to lie within this distance from
z. These are the nodes belonging to Xnear. The algorithm will iterate through all three
nodes in Xnear, but we focus on one for this example. In b), we add all nodes whose search
radius includes node x to N in

x . This set is not necessarily equivalent to the set of all nodes
within the search radius of x; for non-symmetric cost functions, this distinction could have
a significant impact (e.g., the kinoFMT algorithm). In c), of the nodes in N in

x , only those
that are also in H are included in the set Ynear. For each node y ∈ Ynear, the cost of each,
y.cost+ Cost(y → x), is computed and the least-cost node, ymin, is determined. Provided
there is no collision when connecting ymin to x, the edge is added to the tree and x is added
to the set H. Once this entire process is repeated for every x ∈ Xnear, the next iteration
begins with a new least-cost frontier node z, or returns “Failure” if H is empty.

27

Chapter 3

Sampling-Based Motion Planning with
µ-Calculus Specifications without
Steering

This chapter presents the work published by the author of this thesis in [24].

3.1 Introduction

Motion planning in complex environments has seen a shift towards using sampling-based
planning algorithms. By using a predetermined sampling scheme, a random snapshot of the
workspace can be taken and incrementally improved upon without any prior knowledge of
the environment. Furthermore, combining sampling-based motion planning with temporal
logic specifications grants users a much more sophisticated toolbox of high-level behaviors
that can be specified.

Temporal logics present a means of formally expressing high-level specifications for
use in various problems in mathematics, robotics, and computer science. In particular,
temporal logic specifications are well-suited for motion planning problems, allowing a
user-defined specification to describe the desired behavior of an autonomous vehicle or
robot(e.g., [30, 47, 6]). The modal µ-calculus is a highly expressive temporal logic which
permits more diverse and complex specifications than the most widely used temporal logics,
including LTL, CTL, and extensions thereof. On the other hand, it is typically much
easier to understand LTL specifications at a glance, whereas µ-calculus formulas can be

28

much more difficult to intuit. For example, the LTL formula for reachability is ♦p, which
is equivalent to the more complicated µ-calculus expression µX.(p ∨ ♦X). The added
complexity of µ-calculus formulas is not without benefit, however, as a major advantage lies
in its predisposition for simple model checking. While LTL specifications are a useful tool
for high-level planning, they must usually be translated into automata for the purposes of
model checking. The equivalent µ-calculus specification, however, can be checked directly
without any intermediate steps via the Tarski-Knaster fixed point theorem [8, 40].

In this work, a fragment of the full µ-calculus called deterministic µ-calculus [19] is
used, allowing for efficient model checking while maintaining the ability to specify complex
tasks. Some such specifications include reaching a goal while avoiding obstacles, and a
property known as liveness, which involves satisfying one or many propositions infinitely
often. Furthermore, using the model checking algorithm discussed in Section 3.3, it is
possible to formally synthesize a control policy that provably satisfies a given deterministic
µ-calculus specification.

3.2 Problem Formulation

Consider a time-invariant continuous dynamical control system given by the differential
equation

ẋ(t) = f(x(t), u(t)), x(0) = x0 (3.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and f : Rn ×Rm → Rn is a locally
Lipschitz function. Let Π be a set of atomic propositions, which are the simplest form of
declarative statements that are either true or false. Lastly, let L : Rn → 2Π be a labeling
function which assigns to a state all of the atomic propositions that it satisfies.

The goal is to design a controller such that the possibly infinite state trajectory x(t)
satisfies a given temporal logic specification, Φ. We choose to work with deterministic µ-
calculus for reasons discussed in Section 2.1.2. It is important to note that model checking
of the temporal logic specification must be performed on a finite model of the dynamical
system. To this end, a sampling-based motion planner is used to generate a discretization
of the set of possible trajectories from the initial condition in the form of a Kripke structure.

Definition 7. A Kripke structureK = (S, {s0}, R,L) models the dynamical control system
(3.1) with initial state x(0) if (i) S ⊆ Rn; (ii) s0 = x(0) ∈ S; (iii) (s, s′) ∈ R only if there
exist t0, t1 ∈ R, t1 > t0, and a control signal u : [t0, t1]→ Rm such that s = x(t0) ∈ Rn and
s′ = x(t1) = x(t0) +

∫ t1
t0
f(x(t), u(t))dt; (iv) L(s) = L(s) for all s ∈ S.

29

This definition provides a concrete way of evaluating whether or not a Kripke structure
sufficiently models any given dynamical system. We use this definition in the problem
statement that follows.

3.2.1 Problem Statement

A precise formulation of the problem to be solved can now be made. We seek to use a
dynamical control system together with the notions of Kripke structures and determin-
istic µ-calculus specifications, the aim being to determine whether a given specification is
satisfied by a Kripke structure that models the dynamical control system.

Definition 8. A continuous-time dynamical control system of the form (3.1) is said to
satisfy a deterministic µ-calculus specification Φ at some initial state x0 if and only if
there exists a Kripke structure K∗ = (S∗, {x0}, R∗,L∗) modeling the system, and such
that x0 ∈ JΦKK∗ .

In contrast to [19], we allow the dynamical control system to be continuous in time.
The problem statement is as follows:

Problem Statement. Given a continuous-time dynamical control system (3.1) with initial
state x0 and a deterministic µ-calculus formula Φ, return a control policy u which gives
rise to a trajectory satisfying Φ obtained from a Kripke structure that models the system,
or return failure if such a trajectory is not found.

3.3 Kripke Structures and Model Checking

The main goal of this work is to design an algorithm that finds near-optimal trajectories
satisfying a given temporal logic specification without relying on an OBVP (steering func-
tion). The motivation for such an algorithm is that in a differentially constrained system,
finding an optimal trajectory between two states is difficult in general. Some research has
been done to first linearize system dynamics to find a solution to the BVP [44], while
others have found some success in numerical solutions to BVPs with nonlinear dynamics
using sequential quadratic programming [48]. However, neither approach fully addresses
the crux of the problem: some planning problems, such as systems simulated on a physics
engine, allow only forward propagation. We opt to use the asymptotically optimal variant
of SST called SST* by Li et al. [28] which does not require a steering function to plan
high-quality trajectories.

30

3.3.1 Model Checking with µ-Calculus Specifications

It is necessary to determine whether or not the µ-calculus specification Φ is satisfied during
the incremental tree expansion (refining the discretized state space) with SST*. To perform
such a verification, we will use a local model checking algorithm tailored specifically to run
efficiently for deterministic µ-calculus. The procedure requires as input a Kripke structure,
K, the µ-calculus specification, Φ, an initial state, s, and the subformula to be checked in
the current execution, φ. We further require a function succ(s), which returns all states in
K which may be reached from s via one relation (edge of the tree), and BoundFormula(X),
which maps the input variable X to the subformula of Φ of the form σX.ψ, that is, the
smallest subformula that binds the variable X to a least or greatest fixed-point operator.
Note that the first two arguments of ModelCheck are omitted in recursive calls for brevity
as they remain unchanged. The local model checking algorithm presented here is based on
Algorithm 3 presented in [19].

Algorithm 7 is a recursive function which returns a boolean value without having to
create any intermediary graphs unlike the proposed incremental model checking algorithms
from [8] and [19], and also without the need for generating an automaton on which to
perform model checking, unlike when using LTL. Since model checking will be performed on
a very small abstracted Kripke structure, using the local, non-incremental model checking
algorithm is sufficient. The algorithm presented here is based on a similar algorithm
from [38], wherein correctness is proved.

3.3.2 Abstracted Kripke Structure and Planning

The primary contribution we make is to simplify model checking over several data struc-
tures by creating an abstracted Kripke structure. We generate this new abstracted
structure K̃Π+(Φ) = (S̃, {s̃0}, R̃,L) from p = |Π+(Φ)| Kripke structures of the form
Ki = (Si, {si0}, Ri,L), i = {1, . . . , p}, generated via SST*, where Π+(Φ) ⊆ Π is the set of
atomic propositions which appear positively in specification Φ. The reason for restricting
the abstracted Kripke structure to use only the positively-appearing atomic propositions
is that these are the specifications we explicitly want to fulfill (e.g., reach a certain goal),
as opposed to something we do not want our system to do (e.g., run into obstacles). In
this way, a directed edge is added to the abstracted Kripke structure only if a trajectory in
one of the Ki is found to initially satisfy one atomic proposition, and reaches a state satis-
fying another atomic proposition, all the while ensuring any negatively-appearing atomic
propositions are respected so that the associated regions of state space are avoided.

31

Algorithm 7 ModelCheck(K,Φ, s, φ)

1: switch φ do
2: case p where p ∈ Π
3: return p ∈ L(s)

4: case ¬p where p ∈ Π
5: return p /∈ L(s)

6: case p ∧ ϕ
7: return p ∧ ModelCheck(s, ϕ)

8: case ¬p ∧ ϕ
9: return ¬p ∧ ModelCheck(s, ϕ)

10: case ψ ∨ ϕ
11: return ModelCheck(s, ψ) ∨ ModelCheck(s, ϕ)

12: case ♦ϕ
13: for s′ ∈ succ(s) do
14: if ModelCheck(s′, ϕ) then
15: return True
16: return False
17: case σX.ϕ where σ ∈ {µ, ν}
18: set← set ∪ {(s, ϕ)}
19: value← ModelCheck(s, ϕ)
20: set← set \ {(s, ϕ)}
21: return value
22: case X where X ∈ Var
23: if (s, BoundFormula(X)) ∈ set then
24: switch BoundFormula(X) do
25: case µX.ϕ
26: return False
27: case νX.ϕ
28: return True
29: else
30: return ModelCheck(s, BoundFormula(X))

32

Algorithm 8 KinoSpecPlan(f, x0,Φ, regions,L)

1: K̃ ← ({x0}, {x0}, ∅,L)
2: K ← ∅
3: p← length(regions)
4: for i ∈ {1, . . . , p} do
5: si0 ← ChooseInit(regions[i], x0)
6: Ki ← ({si0}, {si0}, ∅,L)
7: K ← K ∪ {Ki}
8: while ¬ModelCheck(K̃,Φ, x0,Φ) do
9: for i ∈ {1, . . . , p} do
10: Ki ← SST*(Ki)

11: K̃ ← AbstractUpdate(K̃,K)

12: return ConstructPath(K̃,K)

The KinoSpecPlan algorithm takes as input the dynamics f from (3.1), the initial condi-
tion x0, the deterministic µ-calculus specification Φ, an array called regions containing p
subsets of the state space (one for each positively-appearing atomic proposition in Φ), and
the labeling function L. The function ChooseInit samples a state from the input region
to use as the initial state for Kripke structure Ki, or x0 if it exists in the given region.
SST* takes a Kripke structure and incrementally grows the structure using forward prop-
agation, thereby updating its set of states and relations. AbstractUpdate verifies the
existence of any paths spanning from one region to another in the list K of all Kripke
structures. If so, the corresponding relation is added to the list of relations maintained in
the abstracted Kripke structure K̃. Furthermore, the first time it is run, AbstractUpdate
adds the necessary states from the initial states of each of the Ki to its own set of states.
Using the abstracted Kripke structure and the list of all Kripke structures, ConstructPath
creates a single time-parameterized state trajectory along the least-cost path satisfying Φ,
where each individual candidate path from the Kripke structures is combined head-to-tail
as necessary.

In essence, the algorithm works as follows. First, the abstracted Kripke structure K̃
is initialized with only the initial condition and an empty set of relations, and K, the
list of Kripke structures, is initialized to be empty (lines 1–3). In lines 4–7, the for-loop
initializes each Kripke structure Ki, i ∈ {1, . . . , p}, to be the trivial graph consisting only
of the initial condition si0, which is chosen from among any of the states in the proposition
region JπiK associated with atomic proposition πi ∈ Π+; that is, the initial node si0 of Ki

satisfies πi ∈ L(si0).

33

Next, each Kripke structure is expanded in parallel using the SST* motion planning
algorithm (lines 8–10). The abstracted Kripke structure K̃Π+ is then updated in line 11
so that each of its p nodes s̃i ∈ S̃ corresponds to a positively-appearing atomic propo-
sition, so πi ∈ L(s̃i), i ∈ {1, . . . , p} (this particular procedure only occurs the first time
AbstractUpdate is executed). The crucial aspect of this step is that the relations in R̃ are
also updated, and relation (s̃a, s̃b) is added if and only if there exists a path in the Kripke
structure Ka from sa0 ∈ Sa to a node sb ∈ Sa satisfying πb ∈ L(sb).

The deterministic µ-calculus model checking algorithm ModelCheck verifies whether
the abstracted Kripke structure K̃ satisfies the given specification, Φ. If the specification
is not satisfied, the while-loop repeats lines 8–11. Once the specification is found to be
satisfied by the abstracted Kripke structure K̃, a time-parameterized trajectory is created
from the combination of the best paths found among the relevant Kripke structures Ki

(line 12).

Note that in order to use the path returned by Algorithm 8, we track it using an LQR
controller obtained by linearizing the dynamical system (3.1) at the current state. The
state error can then be obtained and the appropriate feedback control can be applied until
the next time step, at which point the LQR algorithm must be run again.

3.3.3 LQR Tracking

Once the abstracted Kripke structure K̃Π+(Φ) is generated and the model checking algo-
rithm confirms the satisfaction of the µ-calculus specification Φ, it is necessary to connect
the candidate trajectories from the various Ki structures. Accordingly, for all paths in
K̃Π+(Φ) satisfying Φ, the corresponding candidate trajectories in the Ki structures are
bridged together within the appropriate proposition region, i.e., the region in state space
where every state x satisfies a particular proposition p ∈ Π+(Φ). To do so, we apply an
LQR controller as in [41].

First, the dynamical system is linearized to be of the form ẋ = Ax + Bu. We then
define the quadratic cost function over the time interval [t0, t1] to be

J =

∫ t1

t0

(
x̄>Qx̄+ ū>Rū

)
dt (3.2)

where Q is a symmetric positive semi-definite state cost matrix, R is a symmetric posi-
tive definite control cost matrix, the tracking error is x̄ = x − xc where xc is the time-
parameterized total candidate trajectory found by patching together the individual candi-
date trajectories in sequence, and ū = u− uc where uc is the corresponding control signal

34

for xc. To proceed, the steady-state solution P to the continuous algebraic Ricatti equation
(CARE)

A>P + PA− PBR−1B>P +Q = 0 (3.3)

must be found. The feedback control is then given by u = uc −Kx̄, where K = R−1B>P .

3.4 Example

To demonstrate the effectiveness of our method, we provide the following pertinent
example. We use continuous double integrator dynamics on two spatial dimensions,
resulting in a 4D state space. State and control vectors take the form

~x =

x
y
ẋ
ẏ

 , ~u =

[
ux
uy

]
(3.4)

and the dynamical system is given by

~̇x =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ~x+

0 0
0 0
1 0
0 1

 ~u, (3.5)

with initial condition ~x0 = [100, 400, 0, 0]. We choose the cost function for SST* to be the
duration of the trajectory, T, along with a control cost term, with cost matrix Rsst:

JSST =

∫ >
0

(
1 + u>Rsstu

)
dt. (3.6)

The specification we wish to satisfy is to visit three distinct regions of the state space,
Ra, Rb, and Rc infinitely often while avoiding the obstacle regions collectively called Ro.
Define atomic propositions pi, i ∈ {a, b, c, o}, such that pi ∈ L(s) if and only if s ∈ Ri. We
write the deterministic µ-calculus formula Φ as follows

µM.[(¬o ∧ ♦M)∨
νW.{(a ∧ µX.[¬o ∧ (((b ∨ c) ∧W) ∨ ♦X)])∨

(b ∧ µY.[¬o ∧ (((a ∨ c) ∧W) ∨ ♦Y)])∨
(c ∧ µZ.[¬o ∧ (((a ∨ b) ∧W) ∨ ♦Z)])}].

35

Figure 3.1: Representation of the abstracted Kripke structure of the provided example.
This structure is verified with the local model checking algorithm (Algorithm 7) to ensure
satisfaction of the deterministic µ-calculus specification.

Upon running SST* in three parallel instances starting in the center of each propo-
sition’s associated region in state space, we obtained Figure 3.2. Note that there are
six candidate trajectories, each representing the best path from one region to another in
terms of the cost, JSST . In general, for p positively-appearing atomic propositions in the
µ-calculus specification, p trees are incrementally updated in parallel, and we search for
p− 1 candidate trajectories for each tree.

The model checking algorithm ensures that at least one cycle of length three may be
formed in the abstracted Kripke structure, which itself is constructed with three nodes (one
for each proposition region), and whose directed edges represent the candidate trajectories
that begin in one proposition region and end in another one. The procedure was run until all
six candidate trajectories successfully reached their appropriate goal regions, allowing for
the abstracted Kripke structure to be fully connected1. The resulting structure contains two
infinite paths satisfying proposition Φ above, noting that the initial condition is situated in
the blue region: (i) head to the green region first, then the burgundy region, and returning
to the blue region to repeat, or (ii) head to the burgundy region first, then the green region,
and repeating upon returning to the blue region.

In order to determine which of the cycles to take, a simulation is run using the LQR
controller discussed in Section 3.3.3, tracking each of the proposed paths and bridging the
gap between the end of one trajectory and the beginning of another. The state-cost matrix
Q was set to diag(25, 25, 25, 25) and the control-cost matrix U was chosen to be diag(1, 1).
Using total cost to determine the better of the two proposed solutions, it is found that

1This was done in order to compare the cost associated with each direction of the possible 3-cycle,
although Algorithm 8 as it is written would return as soon as any satisfactory path is found.

36

Figure 3.2: SST* is performed three times, producing a Kripke structure for each of
the regions shown here in blue (left), burgundy (bottom center), and green (top right).
Obstacles are represented as pink rectangles. The color of each line matches the color
of the region of the Kripke structure to which it belongs, and the bolded curves are the
lowest-cost trajectories that reach another region.

option (i) results in a faster circuit between the three regions. See Figure 3.3.

37

Figure 3.3: The six candidate trajectories are shown, where curves of the same color
are selected from the same Kripke structure. The solution trajectory is shown in yellow,
starting in the center of the blue region and tracking the infinite path with least cost that
satisfies specification Φ.

38

Chapter 4

Quadrotor Motion Planning

4.1 Quadrotor Model

Quadrotors, as discussed in Chapter 1, are growing in popularity for their many uses.
Autonomous navigation for quadrotors is still in the early stages of development, although
there are already some basic autonomous behaviours in use commercially; for example,
many drones now support following a moving person to capture video footage. What makes
quadrotor motion planning a truly interesting challenge is the fact that they occupy a 12D
state space, and they are non-holonomic vehicles that are governed by nonlinear dynamics.
The combination of high-dimensionality and nonlinearity render many current methods
ineffective in the context of motion planning, for example the interval method [17, 29],
which discretizes the state and control space with intervals, and suffers from the curse of
dimensionality [14].

Before proceeding to the mathematics involved, it may be of interest to the reader to
discuss our choice to use the term “quadrotor”. But first, we begin by seeing that the word
“helicopter” can be broken down into “helico”, which is itself a combining form of “helix”
(screw), and “pter” meaning “wing”. Some people have referred to four-rotor helicopter
UAVs as “quadcopters”, but this terminology is ignorant of the Ancient Greek etymology
of such words, as “heli/copter” is not the correct partitioning of the English word. So, the
term “quadrotor” avoids the issue altogether, and its meaning is self-evident.

Now, in order to overcome the hurdles inherent in motion planning for such a complex
system as a quadrotor, Ross Allen and Marco Pavone put forth a “full-stack approach” for
real-time kinodynamic planning of such aerial vehicles [2]. First and foremost, a sampling-
based planning approach was deemed necessary to deal with unknown environments online,

39

and while SST* can handle the high-dimensionality and nonlinearity of the quadrotor
system without needing a steering function, the incremental nature cripples its ability to
plan effectively in an online setting. On the other hand, FMT*, with its pre-sampled states
and its flexibility in allowing to perform much of the necessary pre-computation offline, is
much more suited to online planning. For this reason, the authors centre their planning
framework around a variant of FMT* called kinoFMT, introduced in Chapter 2. Once an
approximate trajectory is found using this planning algorithm, trajectory smoothing is
applied, and due the differentially flat nature of the quadrotor dynamics, it is then feasible
to track the smooth trajectory with the proposed controller.

This chapter begins by analyzing the dynamical system that models quadrotor
dynamics. Then, much of the work from [2] is described in various levels of detail, and
conclusions are drawn from the efficacy of this approach. Finally, the main idea of using
high-level temporal logic specifications using an abstracted Kripke structure, presented in
Chapter 3, is applied to quadrotor kinodynamic planning with steering under the afore-
mentioned real-time planning framework.

4.1.1 Background

Before delving into the laws of motion for quadrotor systems, we begin by defining the
underlying coordinate systems used in our analysis. In order to describe the position and
velocity of the quadrotor, we need a fixed inertial reference frame (sometimes called the
world frame) where Newton’s laws hold. We will use the usual x, y, z coordinates with
basis vectors {e1, e2, e3}, where e1 = [1, 0, 0]>, e2 = [0, 1, 0]>, and e3 = [0, 0, 1]>. It is worth
noting that much of the aviation/aeronautics literature uses the North-East-Down (NED)
configuration, so equations of motion found in that frame will differ slightly from those
that we will present here. Along with the inertial frame, we define a body-fixed frame
with basis {b1, b2, b3} whose origin coincides with the centre of mass of the quadrotor. The
vectors b1 and b2 lie in the plane formed by the four rotors, and b3 points in the direction
opposite the applied thrust. See Figure 4.1.

Controlling a quadrotor involves adjusting the thrust applied to each of the four rotors.
Note that opposite rotors rotate in the same direction, and adjacent rotors rotate in
opposite directions; consequently, if all four rotors apply the same amount of thrust, the
quadrotor will fly directly upward, and the angular momentum contributed by each rotor
cancels so that there is zero rotational motion. Quadrotor motion is described in the space
of all rigid body transformations, namely the special Euclidean group SE(3). This space
has six degrees of freedom: translation in three dimensions, and rotation about each of the

40

Figure 4.1: The inertial frame and the body-fixed frame are shown, where the origin of the
body-fixed frame is placed at the centre of mass of the quadrotor, which is represented as
a flattened rectangular prism.

three body-fixed axes. It bears mentioning that, since there are only four control inputs
compared with six degrees of freedom, the quadrotor system is underactuated.

Rotational motion is often described by the Euler angles measuring yaw (about b3),
pitch (about b2), and roll (about b1). The use of Euler angles as state variables is not
ideal, though, as singularities and jump-discontinuities arise as a result of restricting the
domain of such angles. Recent work by Taeyoung Lee et al. instead takes a geometric
control approach with a globally defined model to avoid many of the issues inherent to
Euler angles [27], and we will make use of their work in modeling quadrotor dynamics.
The important change they make is to replace the three Euler angle state variables with a
single 3× 3 matrix in the special orthogonal group, SO(3), defined as follows:

SO(3) = {R ∈ R3×3 | R>R = I, det(R) = 1}. (4.1)

The elements R ∈ SO(3) are called rotation matrices, and they are orthogonal matrices
that describe the attitude of the quadrotor. Note that the restriction on the determinant
of the matrices excludes orthogonal matrices with determinant equal to −1, which have

41

the effect of transforming via reflection as opposed to rotation. As we are concerned only
with physically possible transformations, reflections are removed from the set of allowed
transformation matrices, and the qualifier “special” is prepended to the orthogonal group.

The rotation matrices in SO(3) are linear transformations that act on vectors via
multiplication to produce a rotated vector. Given a vector ~v ∈ R3 in the inertial frame
(i.e., v = ae1 +be2 +ce3 for some a, b, c ∈ R) and rotation matrix R ∈ SO(3), w = Rv is the
result of rotating v by R, where w is expressed in the inertial frame. A useful interpretation
of such rotation matrices is that the matrix R represents the current orientation of a rigid
body. That is to say, the body-fixed axes are obtained, as above, by applying the rotation R
to each of the basis vectors e1, e2, and e3. In this way, we need not consider the rotation an
active change in the quadrotor’s orientation, but rather as the current orientation obtained
by rotating the axes of the inertial frame.

4.1.2 Dynamics

We are now sufficiently equipped to outline the equations of motion of a quadrotor UAV.
The first equation states the relationship between the position of the centre of mass,
x = [x1, x2, x3]> ∈ R3, and the velocity of the centre of mass, v = [v1, v2, v3]> ∈ R3, together
constituting the first six state variables. The equation is simply

ẋ = v. (4.2)

To develop the next, more interesting, equation, we begin by noticing that b3 = Re3. If
we express the magnitude of the thrust generated by the ith propeller as fi, i ∈ {1, 2, 3, 4},
then the total thrust in the body-fixed frame is given by fb3, where f =

∑4
i=1 fi. Therefore,

in the inertial frame, the total thrust is written as fRe3. The only other force acting on
the quadrotor (ignoring disturbances) is the force of gravity, which pulls along the −e3

axis, and we write the force as −mge3, where m is the mass of the quadrotor, and g is the
magnitude of the force of gravity (g ≈ 9.8 on the surface of the Earth). Using Newton’s
Second Law, we may now put these forces together to write our second equation of motion,

mv̇ = fRe3 −mge3. (4.3)

The final two equations of motion for the quadrotor system describe the rotational
dynamics. Define Ω ∈ R3 to be the angular velocity of the quadrotor in the body-fixed
frame. R and Ω constitute the remaining state variables, and they appear together in

42

an interesting way in the third equation of motion, which describes the rate at which the
rotation matrix changes with time.

Before proceeding, let us first introduce so(3), the Lie algebra associated with the Lie
group SO(3). A Lie algebra contains the elements of the tangent space of the Lie group
at the identity, and in this case, we have that so(3) is simply the set of skew-symmetric
matrices,

so(3) = {X ∈ R3×3 | X> +X = 0}. (4.4)

The skew-symmetric matrices represent infinitesimal rotations. Consider rotating a vector
x about some unit vector, v, by angle θ in the counterclockwise direction. In the limit as
θ approaches 0, the rotation occurs normal to the plane containing both vectors, in the
direction v×x. This motivates the definition of the hat map, ·̂ : R3 → so(3) which satisfies
âb = a× b for all a, b ∈ R3.

â =

̂a1

a2

a3

 =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (4.5)

Tying these concepts together, the infinitesimal generator of rotation in the given scenario
is the matrix v̂, since v̂x yields the direction of the rotation of x about v by an infinitesimal
angle.

Recall that an element v̂ ∈ so(3) is in the tangent space of SO(3) at the identity. In
order to produce an infinitesimal rotation at an arbitrary element R ∈ SO(3), we simply
left-multiply the appropriate infinitesimal rotation (element of so(3)) by R. In this case,
Ω̂ is the appropriate element of so(3) since Ω describes the rotational motion, and thus
the axis of rotation, of the quadrotor. Therefore, we conclude that the third equation of
motion is:

Ṙ = RΩ̂. (4.6)

Finally, the last equation of motion governs how Ω changes over time. Given the
moment of inertia matrix, J ∈ R3×3, of our quadrotor, we can write an equation for the
total torque in the body-fixed frame, τ ∈ R3×3 (the rotational analog to the second equation
of motion, Eq. (4.3)). Following the same line of reasoning in deriving Eq. (4.6), we can
see that the rate of change of any one body-fixed frame basis vector, u ∈ {b1, b2, b3}, due
to the angular velocity is given by

du

dt
= Ω× u = Ω̂u. (4.7)

43

For any differentiable vector-valued function f(t) = fx(t)b1 + fy(t)b2 + fz(t)b3, we can use
Eq. (4.7) to find the time-derivative of f as follows [23]:

df

dt
=
dfx
dt
b1 + fx

db1

dt
+
dfy
dt
b2 + fy

db2

dt
+
dfz
dt
b3 + fz

db3

dt

=
dfx
dt
b1 +

dfy
dt
b2 +

dfz
dt
b3 + Ω× (fx(t)b1 + fy(t)b2 + fz(t)b3)

=

(
df

dt

)
b

+ Ω× f(t),

where
(
df
dt

)
b
indicates the derivative of f as seen in the body-fixed frame. Note that an

observer in the body-fixed frame does not perceive The last remaining concept that needs to
be defined to obtain the remaining equation of motion is the angular momentum, L, which
satisfies L = JΩ. The time-derivative of angular momentum is equal to the total torque,
τ = [τ1, τ2, τ3]> (in the body-fixed frame), which is exactly what we use to determine an
equation for Ω̇.

τ =
dL

dt

=
d

dt
JΩ

=

(
d

dt
JΩ

)
b

+ Ω× JΩ

= JΩ̇ + Ω× JΩ

Note that in the last step, since the derivative is taken in the body-fixed frame, the moment
of inertia, J , does not change, so the term J̇Ω resulting from the product rule vanishes.
Rearranging, we obtain our final equation of motion:

JΩ̇ = τ − Ω× JΩ. (4.8)

We summarize the nonlinear dynamics of the deterministic model for quadrotor motion
below [33].

ẋ = v

v̇ =
f

m
Re3 − ge3

Ṙ = RΩ̂

Ω̇ = J−1(τ − Ω× JΩ)

(4.9)

44

The inputs to this system are u = [f, τ1, τ2, τ3]> ∈ Rm with dimension m = 4, and the
state vector is given by X = [x, v, R,Ω]> ∈ R3 × R3 × SO(3)× R3.

Note that the low-level quadrotor controller must convert the input values to the indi-
vidual torques to be applied to each propeller. We assume that the first and third propellers
rotate clockwise, the second and fourth propellers rotate counterclockwise, and that the
torque is directly proportional to the thrust generated by a propeller, with proportionality
constant cτ . Recall that fi, i ∈ {1, 2, 3, 4} denote the thrusts generated, and define d to
be the distance in the b1b2-plane from the centre of mass to the centre of each propeller.
Then, we can write the inputs as follows [27, 33]:

f
τ1

τ2

τ3

 =

1 1 1 1
0 −d 0 d
d 0 −d 0
−cτ cτ −cτ cτ

f1

f2

f3

f4

 . (4.10)

Since this matrix is invertible provided d, cτ 6= 0, it suffices to invert the matrix and
multiply by the vector of inputs, u, in order to obtain the necessary thrusts, and therefore
torques, for the individual propellers.

The remainder of this chapter solves the following problem, as similarly stated in [2],
with the addition of satisfying a temporal logic specification.

Problem Statement.
Let Xfree ⊆ R3 × R3 × SO(3)× R3 be the subset of state space that is unobstructed, and
let U ⊆ R4 be the set of admissible control inputs. Furthermore, let Φ be a deterministic
µ-calculus specification. Then, given the continuous-time quadrotor dynamical system,

Ẋ(t) = f(X(t), u(t)), X(0) = X0, (4.11)

where f is given by the equations of motion in Eq. (4.9), determine a control signal,

u(t) = [f(t), τ1(t), τ2(t), τ3(t)]> ∈ U , (4.12)

and corresponding state trajectory,

X(t) = [x(t), v(t), R(t),Ω(t)]> ∈ Xfree (4.13)

that satisfies specification Φ, or return failure if such a trajectory is not found.

45

4.2 Real-Time Motion Planning

As discussed in Chapter 2 and Chapter 3, many motion planning algorithms require knowl-
edge of a steering function. kinoFMT (Algorithm 6) is one such algorithm, but as previously
noted, the nonlinear quadrotor dynamics make it difficult (or perhaps impossible) to find
an analytic solution to the OBVP. In order to apply the kinoFMT algorithm to the problem
of kinodynamic planning for a quadrotor, we must therefore use an approximation to the
12D nonlinear system that has a known steering function. The crucial property involved in
using an approximation to the full dynamics is called differential flatness, which allows any
sufficiently smooth path to be tracked. The method employed by Allen et al. [2] involves
two further important steps: reachable set approximation, and trajectory smoothing. To
elaborate, the reachable set approximation is arguably the key step that allows for online
planning, as it is used to rapidly connect the initial state and goal states to the preexisting
tree that is to be computed beforehand offline. Once a path is planned between the newly
added initial state and goal states, a smooth path is generated called a minimum-snap
trajectory, and we leverage the differential flatness property of the quadrotor dynamics to
be able to track this smooth path in the full dynamics. The details involved in tracking are
provided, and simulations are performed to demonstrate the effectiveness of this method.

4.2.1 Framework Overview

We now outline the high-level real-time planning framework proposed in [2]. The entire
process is broken down into two parts: the offline precomputation phase, where as much
information as possible is gathered before knowing any of the specific details that will
become clear during real-time trials, and the online planning phase, which takes into
account the actual initial position and goal region and performs the various planning steps
described in later sections.

Offline Phase

Before online planning can begin, it is desirable to perform as much precomputation as
possible to minimize the computational effort, and therefore the time, required when
online. With this in mind, there are three steps to perform offline:sampling the state-space,
constructing a cost roadmap, and training a classifier that determines nearest nodes.

The sampling step simply stores a user-defined number of samples, N , in a set, V .
The samples are drawn uniformly from the unobstructed state-space of the approximated

46

system, without any regard for potential obstacles (as such information is as yet unknown).
This manner of sampling is a boon to the flexibility of the proposed method, as it can be
applied online in a very general setting.

Next, for every pair of states in V , the OBVP is solved. The optimal time and cost
are then stored as values in a look-up table (or dictionary), called Cost, associated with
the corresponding pair of states. In this way, no computation for cost is required while
running kinoFMT online, except when it comes to pairs involving the states known only
when online: the initial state and sampled goal states. This issue is addressed in the final
step of the offline phase.

Note that as N gets large, the number of pairs grows quadratically as N(N−1), and the
bisection optimization method used to compute the optimal time for each pair converges
linearly. For N > 2000, this can be rather expensive, so one could choose to instead
sample some number of pairs on which to perform the precomputation. Furthermore, the
ordering of the pairs matters, so one cannot use a symmetry argument to halve the number
of computations. To illustrate this point, consider two states in one dimension (with 2D
state-space: position and velocity), each with some positive velocity. The state that is
behind has a fairly straightforward means of reaching the other state, whereas the state
that is ahead would be forced to change direction, get to the appropriate position and
accelerate in the positive direction once again to reach the desired positive velocity.

In order to avoid having to compute the cost between each of the initial or goal states
and the existing N samples, which would involve solving the OBVP O(N) times, a machine
learning approach is implemented. A Support Vector Machine (SVM) is used, learning
from the data in the Cost look-up table to rapidly classify a pair of points as “near” or
“not near” in terms of the cost incurred by traveling from one state to the other. As such,
the OBVP must be solved only for those points that are estimated to fall within a certain
cost threshold.

Online Planning

Upon beginning a trial with a quadrotor, the first step is to sample Ngoal states from
the now-known goal region. Then, given the initial state of the quadrotor, we determine
the outgoing nearest neighbours from the initial state using the trained SVM and store
them in N out

init, and we similarly determine the incoming neighbours for each of the goal
states, storing them in N in

goal. At this point, the OBVP is solved between the initial state
(goal states) and the states in its neighbourhood, N out

init (N in
goal), and the appropriate entries

are added to the cost roadmap, Cost. Note that using the SVM to estimate cost-limited

47

reachable sets provides an immense reduction in the number of online OBVP solutions
required, from O(N) down to O(1).

Now that the Cost look-up table is complete, the kinoFMT algorithm (Algorithm 6) is
run on the set of samples, V along with the initial and goal states. The algorithm quickly
returns the optimal path from start to goal, excluding any paths that are found to collide
with obstacles. However, given that the path is found using an approximated linear model,
it must be smoothed so that it may be tracked by leveraging the differential flatness of
the quadrotor system. With this aim, a smoothing algorithm takes the waypoints (states)
from the path outputted by kinoFMT and produces a set of four high-degree polynomials
in the flat output variables that are smooth up to fourth order. Finally, all that remains
is to track the smooth path using an appropriately tuned feedback controller.

4.2.2 Differential Flatness

We say of a system that it is differentially flat if the states and the inputs can be written as
functions of the system’s flat outputs and their derivatives. We state the definition more
precisely as follows [11]:

Definition 9. Consider a continuous-time nonlinear system ẋ(t) = f(x(t), u(t)), x(0) = x0

where t ∈ R, x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and f is a smooth function.
This nonlinear system is differentially flat if there exists ζ(t) ∈ Rm, whose components are
differentially independent, such that the following hold [10]:

ζ = Λ(x, u, u̇, . . . , u(δ))

x = Φ(ζ, ζ̇, . . . , ζ(ρ−1))

u = Ψ−1(ζ, ζ̇, . . . , ζ(ρ))

where Λ,Φ,Ψ−1 are smooth functions, ζ = [ζ1, . . . , ζm]> is the vector of flat outputs, and δ
and ρ are the maximum orders of the derivatives of ζ and u necessary in defining the flat
outputs and their relation to x and u.

The concept of differential flatness is useful for many reasons, although two in particular
seem eminently popular in the field of motion planning. The first is that differential
flatness can be used in the process of feedforward (or feedback) linearization to separate
a nonlinear system into a linear flat model and a nonlinear transformation, so that is
possible to consider the control problem only on the linear part, and the resulting flat
states and flat inputs can be used to correct for the nonlinear part via inversion of the

48

nonlinear transformation [11, 43]. The second consequence of differential flatness, and the
one we focus on here, is that any smooth trajectory in the flat output space, subject to
reasonably bounded derivatives, can be tracked [34]. The significance of this fact is not to
be understated, as even the underactuated quadrotor can track a sufficiently smooth path
generated from the flat outputs of the system.

In the case of quadrotors, the flat outputs can be chosen to be the position of the centre
of mass in the inertial frame and the yaw angle, ζ = [x1, x2, x3, ψ]>. Mellinger and Kumar
prove that this choice of flat outputs does indeed admit a way to write the state and input
as a function of ζ and its derivatives up to fourth order.

4.2.3 Quadrotor Dynamics Approximation

There exist many known approaches to handling nonlinear dynamics when solving motion
planning problems, such as using a planner that avoids the steering problem altogether
(e.g., SST). Another approach, when dealing with differentially flat nonlinear systems, is
to use feedforward linearization, as mentioned in Section 4.2.2. In the method presented
here, as in [2], the quadrotor system is first approximated as a linear double integrator
system (Eq. (4.14)). The approximation assumes the quadrotor can accelerate in any
direction at any time, which, while crude, is sufficient to generate high-quality trajectories
from an initial state to a goal region. The issue of sampling from a 12D system is also
greatly reduced, as samples are instead taken from the approximated 6D system. The main
idea is that, upon using kinoFMT to generate an ordered set of waypoints on this simplified
system, a smooth trajectory in the flat outputs can be generated and tracked in the full
dynamics.

˙̃x(t) =

[
03×3 I3×3

03×3 03×3

]
︸ ︷︷ ︸

A

x̃(t) +

[
03×3

I3×3

]
︸ ︷︷ ︸

B

ũ(t)−
[
05×1

g

]
︸ ︷︷ ︸

c

(4.14)

Here, x̃ = [x1, x2, x3, ẋ1, ẋ2, ẋ3]> ∈ R6 is simply a truncated representation of the full
state including only position and velocity, and ũ = [ẍ1, ẍ2, ẍ3]> ∈ R3 is the new control.
We denote the matrix multiplying x̃(t) by A, the matrix multiplying ũ(t) by B, and the
constant vector by c.

Now that we are working with a linear system, we solve the OBVP as in [37]. Given
any two (sampled) states, we seek an analytic solution to the problem of finding an optimal
path between them, as well as the optimal control signal used to generate such a path. We

49

begin by defining the cost function

J (ũ, tf) =

∫ tf

0

1 + ũ(t)>Ruũ(t)dt (4.15)

where Ru ∈ R3×3 is symmetric positive definite, and tf is the fixed final time. This cost
function prioritizes minimum-time solutions while also penalizing control effort. A suitable
choice for the control penalty weighting matrix is Ru = wRI3×3, for some wR ∈ R.

Without derivation, the optimal cost for the double integrator OBVP from initial state
x̃0 at time t = 0 to x̃1 at time t = tf is given by [37, 2]

J ∗(tf) = tf + (x̃1 − x(tf))
>G(tf)

−1(x̃1 − x(tf)). (4.16)

The state and control trajectories which achieve this optimal cost are given by

x̃(t) = x(t) +G(t) exp(A>[tf − t])G(tf)
−1(x̃1 − x(tf)) (4.17)

ũ(t) = R−1
u B> exp(A>[tf − t])G(tf)

−1(x̃1 − x(tf)) (4.18)

where

x(t) = exp(At)x0 +

∫ t

0

exp(As)c ds (4.19)

= exp(At)x0 −

0
0

gt2/2
0
0
gt

 (4.20)

G(t) =

∫ t

0

exp(As)BR−1
u B> exp(A>s) ds (4.21)

=
1

wR

t3/3 0 0 t2/2 0 0

0 t3/3 0 0 t2/2 0
0 0 t3/3 0 0 t2/2
t2/2 0 0 t 0 0

0 t2/2 0 0 t 0
0 0 t2/2 0 0 t

 . (4.22)

The only remaining unknown is the final time tf = arg mint>0 J ∗(t), which can be
found via the bisection method performed on the derivative of the convex function J ∗.

50

This involves choosing an initial interval [a, b] in which to check for an optimal solution
(e.g., [0.0001, 100]) as well as some error tolerance, ε. The bisection method is a recursive
algorithm that checks to see whether the derivative of the function at a has the same
sign as the derivative of the function at the midpoint of the interval, q. If it is not the
same, recurse on the interval [a, q] since a turning point (i.e., a minimum) exists therein.
Similarly, if the derivative at q has a different sign from the derivative at b, recurse on [q, b].
The algorithm terminates and returns the midpoint once the length of the interval, b− a,
is less than ε, or when the derivative at the midpoint is zero.

4.2.4 Reachable Set Approximation

The problem of finding a state x̃b that is nearest to state x̃a in a kinodynamic framework
is not as simple as finding the state x̃b which minimizes the Euclidean distance between x̃a
and x̃b. Due to the issue of drift, including the consideration of momentum and angular
momentum, distance is insufficient in determining the actual difficulty involved in transiting
from one state to another. Instead, the cost is given by Eq. (4.15), used as the optimality
condition for the OBVP. In the same vein, while geometric planners may use some maximal,
distance-based search radius, our kinodynamic planner instead uses a cost-limited reachable
set when looking for nearby states. We define such a reachable set from a state x̃a with
maximum cost Jth, in the subset of unobstructed state space of the approximate dynamics,
X̃free, and given the set of admissible input signals, Ũ , as follows [1]:

R(x̃a, Ũ , Jth) = {x̃b ∈ X̃free | ∃ũ ∈ Ũ , t ∈ [0, tf] s.t. x̃(t) = x̃b and J (ũ, t) ≤ Jth}. (4.23)

In words, the cost-limited reachable set contains all unobstructed states that can be reached
before the final time, tf , using admissible controls and without exceeding the cost threshold.

The issue posed by real-time planning is that solving the OBVP from the previously
unknown initial state to each of the N sampled states is computationally expensive. This
would then have to be repeated for each of the newly sampled goal states, rendering the
task of online kinodynamic planning practically infeasible. Even worse, if the number
of samples is large and the look-up table Cost does not include the cost between every
pair of the N samples, then querying for nearby states requires even more OBVP solu-
tions. What has been proposed in [2] is to use an SVM classifier to estimate whether
any given state lies within the cost threshold, Jth, of another state. That is, when calling
Near_Forward(x, V, Jth) from Algorithm 6, the SVM is used to estimate, for each v ∈ V ,
whether or not v ∈ R(x, Ũ , Jth). Similarly, Near_Backward(x, V, Jth) returns the set of
states v such that x ∈ R(v, Ũ , Jth).

51

An SVM works by consuming a large array of training data, arr_train, with ntrain
entries called feature vectors, as well as an array of ntrain labels. The idea is to train the
supervised learning algorithm on the correct labels to be able to partition the space of
feature vectors in such a way as to be able to accurately classify new feature vectors. This
partitioning can be accomplished in many ways, such as using a simple linear hyperplane
as a boundary, or creating more complex nonlinear boundaries. The boundary that is used
is determined by the chosen kernel function.

Our implementation uses the scikit-learn package “svm” for Python. We begin by
determining what should be included in the feature vector. One simple choice for the
feature vector that is sufficient for our purposes is to concatenate the pair of states. Given
a pair of states (x̃a, x̃b), x̃a, x̃b ∈ X̃free ⊆ R6 (in the approximate dynamics), let the ith

feature vector of arr_train be pi = [x̃>a , x̃
>
b]
>. The corresponding label yi is equal to 1

if the actual optimal cost from x̃a to x̃b is less than Jth, and 0 otherwise. In our work,
we found the most success using a polynomial kernel of degree 3. All that remains is to
choose an error penalty parameter, C, as input to the SVC function from the scikit-learn
svm package. As with many machine learning techniques, this step is subject to trial and
error. Once chosen, the SVC function can be used to train a classifier. Given a new pair
of vectors, one can then construct the appropriate feature vector and run it through the
trained classifier to check whether or not the pair satisfies the cost-limited reachability
condition.

We encourage interested readers to refer to [39] for further details regarding SVMs.

4.2.5 Trajectory Smoothing

The path generated by kinoFMT cannot be used directly as it is based on the double
integrator dynamics approximation1. To use the generated path, we must first create a
smooth trajectory in each of the four flat outputs: the three components of position and the
yaw angle. We opt to use polynomial interpolation on the waypoints of the path generated
by our planning algorithm. This section is primarily based on the work of Richter et al. [36],
though many details that are missing from these papers are provided.

To accomplish the task of smoothing, we will use M polynomials of order Np for each
of the four flat output variables. To introduce the topic, we will begin by analyzing how
the interpolation task is accomplished for one polynomial segment between two waypoints

1Note that if we were to apply a different method that could plan on the full nonlinear dynamics, such
as with SST (Chapter 3), smoothing would not be a necessary step, although it can be useful in improving
trajectory quality.

52

for a single flat output variable. We will then extend the result to create M polynomials,
and the procedure may be repeated for each of the other flat output variables.

Based on the proof that the quadrotor system is differentially flat [34], it is shown that
four derivatives of the flat outputs are required to express the state and the input. For
this reason, we require that each polynomial we construct is continuous up to the fourth
derivative. Furthermore, each polynomial must have equal derivatives at shared interme-
diate waypoints to ensure smoothness of the full trajectory. Despite these restrictions, there
remain infinitely many possible polynomials that join successive waypoints. We choose the
“best” option which we define to be the unique polynomial that minimizes the integral of
the square of the snap (fourth derivative) of the polynomial, as shown in Eq. (4.24).

Jsnap(T) =

∫ T

0

P (4)(t)dt = p>Q(T)p (4.24)

Here, T is the fixed final time for the given polynomial segment, which was found when
solving the OBVP and subsequently recording the optimal duration and cost in the Cost
roadmap, and Q is the Hessian matrix for the integral expression with respect to the vector
of polynomial coefficients, p. P (t) is given by

P (t) =

Np∑
i=0

pit
i , p = [p0, p1, . . . , pNp]

>. (4.25)

Considering a generic polynomial of order Np, we can take four derivatives and compute
the integral of the square of the result to determine an expression for Q from Eq. (4.24),
as in [2]:

Qij(T) =

{
2
(

i!j!
(i−4)!(j−4)!

T i+j−7

i+j−7

)
, i ≥ 4 ∧ j ≥ 4

0 , otherwise.
(4.26)

Note that the indexing used in this section will follow the computer science convention, so
the top-left entry of a matrix has index (i, j) = (0, 0).

Interpolation requires the trajectory to pass through its terminal endpoints. Let d be
a vector of the derivatives at the initial waypoint (d0) concatenated with the derivatives
at the following waypoint (dT). Some of the derivative values may not be known, however,
particularly at intermediate waypoints. Let β represent the number of unknown derivatives,
and let δ be the total number of derivatives kept in each of d0, dT . We will determine an
appropriate value for δ when working on the extended problem involving allM polynomial
segments. Note that the unknown derivatives can be left free so that our procedure assigns

53

them optimal values, but they must still satisfy continuity. We can encode the continuity
constraints as follows:

Ap = d, with A =

[
A0

AT

]
, d =

[
d0

dT

]
(4.27)

where

A0ij =

{
j! , i = j

0 , otherwise
d0i = P (i)(0)

ATij =

{
j!

(j−i)!T
j−i , j ≥ i

0 , j < i
dTi = P (i)(T).

(4.28)

The expressions for A0 and AT are simply the result of differentiating P (t) and evaluating
at t = 0 and t = T , respectively, to determine the appropriate coefficients by which to
multiply each of the polynomial coefficients in p.

Now, we are left with the problem of minimizing Jsnap subject to the constraint given
in Eq. (4.27). This is called a constrained quadratic program (QP), and the one we are
working with here tends to be numerically unstable when the problem is extended to
multiple segments. However, it is possible to reformulate the problem as an unconstrained
QP by optimizing over the vector of derivatives instead of the polynomial coefficients. All
that is required is to invert Eq. (4.27) to obtain p = A−1d, so that we can rewrite Eq. (4.24)
as

Jsnap(T) = d>A−>Q(T)A−1d (4.29)

where we use the notation A−> to denote the transpose of the inverse of matrix A.
The unconstrained problem does not suffer from the same numerical instability as the
constrained problem, so we proceed by extending the optimization over M polynomials
with this reformulated problem.

Define A1..M and Q1..M to be block diagonal matrices containing the A and Q matrices
(respectively) corresponding to the appropriate polynomial segment; that is, the first block
in A1..M (Q1..M) contains the matrix A (Q) for the polynomial between the initial waypoint
and the second waypoint, then the next block on the diagonal corresponds to the polynomial
between the second and third waypoint, and so on.

We could proceed in a similar fashion for vector d, concatenating all of the derivative
vectors to obtain d1..M , but this results in a vector with an unorganized mix of known and
free derivative values. Instead, we will reorder the vector such that the all of the fixed

54

(known) derivative values appear first, followed by all of the free derivatives that remain
to be optimized,

dorder =

[
dfix
dfree

]
, dorder = Cd1..M , (4.30)

where C is a pseudo-ordering matrix that also encodes continuity. Reordering of the
concatenated vector, d1..M , works by letting C be the identity matrix with appropriately
swapped rows. Encoding continuity involves carefully choosing some entries in C to have
value −1, so that pairs of elements of d1..M that ought to be equal are subtracted. The
difference is forced to evaluate to 0 by placing half of the free derivatives in the vector of
fixed derivatives, dfix, with value 0, since the derivatives at the end point of one polynomial
must be equal to the derivatives of the starting point of the next polynomial. See Eq. (4.31).
Without loss of generality, we can assume that the unknown values of dT for polynomial
segment j are “known” and set to be 0 in dfix, while the corresponding unknown elements
in d0 for polynomial j + 1 remain as unknown values in dfree.

djTi − d
j+1
0i

= 0, since AjTp
j = Aj+1

0 pj+1 (4.31)

where the subscript i denotes the ith component of the vector, and the superscript j denotes
the polynomial segment to which the matrix or vector corresponds, j ∈ {0, . . . ,M − 1}.

We now return to the question: what is δ, the number of derivatives that we keep in
each dj0, d

j
T ? Consider the extended constraint equation,

A1..Mp1..M = d1..M , (4.32)

where p1..M is the vector that results from concatenating all of the polynomials coefficients
for each of the M polynomials. Eq. (4.32) is a system of 2δM equations, since each
dj = [dj0, d

j
T]
>

contains 2δ derivatives of the jth polynomial, Pj(t). We assume we know
all derivatives at the initial and final waypoint, and that we know β derivatives at every
intermediate waypoint. There are a total of M + 1 waypoints, and we know all derivatives
for two of them, leaving (M −1) ·2(δ−β) unknown derivatives. As discussed, half of these
unknowns are identical to the other half, so in total there are in fact only (M − 1)(δ − β)
unknown derivatives. Moreover, there are M(Np + 1) unknown polynomial coefficients.
Ensuring the problem is never over-constrained, we use the number of equations and the
total number of unknown values to solve for δ, yielding the inequality:

δ ≤
⌊
M(N + 1)− β(M − 1)

M + 1

⌋
. (4.33)

55

Continuing, we may rewrite Jsnap in this extended form,

Jsnap(T) =

[
dfix
dfree

]>
C−>A−>1..MQ1..M(T)A−1

1..MC
−1

[
dfix
dfree

]
, (4.34)

and we note that, since C is not strictly a permutation matrix, C> 6= C−1 in general.

DefiningH = C−>A−>1..MQ1..M(T)A−1
1..MC

−1, we can write an expression for Jsnap in block
matrix form:

Jsnap =

[
dfix
dfree

]> [
H00 H01

H10 H11

] [
dfix
dfree

]
(4.35)

= d>fixH00dfix + d>fixH01dfree + d>freeH10dfix + d>freeH11dfree (4.36)
dJsnap
d(dfree)

= d>fixH01 + d>fixH
>
10 + 2d>freeH

>
11. (4.37)

Since each Qj is symmetric by its definition (Eq. (4.26)), Q1..M is symmetric, so H is also
symmetric. Setting Eq. (4.37) to 0, we can then simplify to obtain an expression for the
optimized values of the free derivatives,

d∗free = −H−1
11 H

>
01dfix. (4.38)

All that remains is to invert the extended constraint equation to solve for theM(Np+1)
polynomial coefficients:

p1..M = A−1
1..Md

∗
1..M , where d∗1..M = C−1

[
dfix
d∗free

]
. (4.39)

Smoothing Example

Consider smoothing a trajectory over three waypoints (M = 2 polynomials): the initial
state, the final state, and one intermediate state. Suppose we want to interpolate with
polynomials of degree Np = 3, and assume that we know β = 1 derivatives (i.e., only
the actual value; we have no knowledge of the first or any subsequent derivatives) at the
intermediate state. Using Eq. (4.33), we determine δ = 2. Then, Eq. (4.32) becomes,[

A0 0
0 A1

] [
p0

p1

]
=

[
d0

d1

]
(4.40)

56

A0 =

1 0 0 0
0 1 0 0

1 T0 T 2
0 T 3

0

0 1 2T0 3T 2
0

A0

0

A0
T

, A1 =

1 0 0 0
0 1 0 0

1 T1 T 2
1 T 3

1

0 1 2T1 3T 2
1

A1

0

A1
T

p0 =

p0
0

p0
1

p0
2

p0
3

, p1 =

p1
0

p1
1

p1
2

p1
3

, d0 =

d0
00

d0
01

d0
T0

d0
T1

d0

0

d0
T

, d1 =

d1
00

d1
01

d1
T0

d1
T1

d1

0

d1
T

where T0, T1 are the final times for the first and second segments, respectively, and we
start the clock back at t = 0 for each new segment. The polynomials we seek to find are
of the form Pj(t) =

∑Np
i=0 p

j
i t
i, for j ∈ {0, 1}. Please note that the subscripts T0, T1 of the

derivative values do not refer to the final times, but rather to the indices of vectors d0
T and

d1
T .

Determining the reordering matrix involves first deciding how to order d1..M into a vector
of the form [dfix, dfree]

>. Recalling that β = 1, and since there is only one intermediate
waypoint, only two values are unknown (but equal): d0

T1
and d1

01
. As discussed, we can set

d0
T1

to be a “known” value, 0, so that

dorder =
dfix

dfree

[]
=

d0
00

d0
01

d0
T0

d0
T1

d1
00

d1
T0

d1
T1

d1
01

dfix

dfree

(4.41)

57

and the corresponding pseudo-ordering matrix is given by,

C =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0

(4.42)

which satisfies Eq. (4.30). The −1 entry corresponds to the single unknown, d1
01
, which

must be equal to d0
T1
. Upon multiplying Cd1..M , the two values are subtracted, and the

corresponding value in dfix is chosen to be 0 to enforce the continuity constraint. This
same method can be applied for any number of unknown but equal pairs at intermediate
waypoints.

We could then proceed to apply Eq. (4.38) to compute d∗free, which ultimately allows us
to find the polynomial coefficients, p1..M , using Eq. (4.39). Given that this is a toy example,
however, the small degree of polynomials used (Np = 3) implies that the snap, i.e., fourth
derivative, is always zero, so there is nothing meaningful to minimize. The purpose of this
example is to elucidate the method used. On the other hand, larger problems, while more
pertinent, lead to unwieldy matrix equations best left for a programming environment.

A reasonable concern is that the new smooth trajectory may now intersect with obsta-
cles. During the original path planning performed by kinoFMT, any transitions that would
lead to a collision were discarded, meaning there must exist a path that successfully navi-
gates the obstacles. To handle the issue of possible collisions, we can therefore successively
add waypoints at the midpoints of the segment in which a collision is detected, and the
smoothing operation is performed every time a new waypoint is added. In this way, the
smooth trajectory can lie as close as is necessary to the path found using kinoFMT [36].

As a final remark, recall that the smoothing procedure must produce a set of polyno-
mials for each of the flat outputs: xd = [x1d , x2d , x3d]

>, the desired x, y, z position, and ψd,
the desired yaw angle. While the position of the waypoints is contained directly in the
waypoint states of the approximated system, the yaw angle is not. In practice, the yaw
angle can be specified by the user. Some common choices include maintaining a constant
heading, ψd = ψ0 ∈ R, or facing in the direction of travel, using ψd = arctan(ẋ2d/ẋ1d).

58

4.2.6 Tracking Controller

Leveraging the differential flatness of the quadrotor system, we can use a feedback controller
to track any smooth path with reasonably bounded derivatives, such as the path generated
using the trajectory smoothing technique above. In this section, the geometric tracking
controller developed in [27] is presented along with some clarifying details.

Tracking Errors

The first step involved in designing our tracking controller is to define the tracking errors.
Recall that the full state of the quadrotor dynamical system is given by X = [x, v, R,Ω]>.
The errors for the position and velocity are simply:

ex = x− xd, (4.43)
ev = v − vd, (4.44)

where the vector xd = [x1d , x2d , x3d]
> is the desired position, as determined by the polyno-

mial trajectories generated in the smoothing step, and vd = ẋd is the desired velocity.

Determining an error vector for the orientation, R, requires more careful consideration
due to the nonlinear nature of the spaces in which R and Rd evolve, where Rd represents
the desired rotation matrix, i.e., the desired orientation of the quadrotor. Consider the
following error function on SO(3),

Ψ(R,Rd) =
1

2
tr(I −R>d R). (4.45)

Let us investigate some properties of this function in order to provide some guarantees
about the derivation of the tracking controller that follows. Let S = R>d R ∈ SO(3). Then
by orthogonality, all eigenvalues of S lie on the complex unit circle, and since S is real,
any complex eigenvalues come as conjugate pairs. In the case that all eigenvalues are
real, since det(S) = 1 and since, for any matrix, the determinant is the product of the
eigenvalues, it must be that λi = 1 or −1, i ∈ {1, 2, 3}, where λi are the eigenvalues of
S. Since tr(S) = λ1 + λ2 + λ3, and because there must be an even number of negative
eigenvalues to ensure the determinant is positive, we therefore have that −1 ≤ tr(S) ≤ 3.
Now consider the case where there is a pair of complex conjugate eigenvalues, λ2 = λ̄1.
Then 1 = det(S)= λ1λ2λ3= |λ1|2 λ3= λ3. Thus, tr(S) = 2R(λ1) + λ3 which implies −1 ≤
tr(S) ≤ 3 [13]. In both cases, we obtain the same conclusion, and this result implies that
the error function provided in Eq. (4.45) satisfies 0 ≤ Ψ(R,Rd) ≤ 2. From this we can glean

59

that Ψ(R,Rd) is always positive if R 6= Rd. In the other extreme, when tr(R>d R) = −1
so that Ψ(R,Rd) = 2, we can see that R,Rd must differ by a rotation angle of 180◦. The
tracking controller developed in [27] guarantees that the zero equilibrium of the tracking
errors is exponentially attractive provided that, initially, Ψ(R,Rd) < 2.

Our goal is to find an expression for R that minimizes the error, Ψ(R,Rd). We begin
by defining the Frobenius inner product for real matrices A,B of equal dimension:

〈A,B〉F = tr(A>B). (4.46)

This inner product satisfies the product rule from differential calculus, and we use it to
rewrite Ψ(R,Rd) as

Ψ(R,Rd) =
1

2
(3− 〈Rd, R〉F), (4.47)

by linearity of the trace. Then, proceeding with the usual calculus procedure of minimiza-
tion, with dR = Rη̂ for arbitrary unit vector η ∈ R3 (η̂ ∈ so(3)) as the axis of rotation, as
discussed in Section 4.1.2, we compute the infinitesimal element of Ψ with respect to R:

DRΨ(R,Rd) = −1

2
(〈0, R,+〉F 〈Rd, dR〉F) (4.48)

= −1

2
tr(R>d Rη̂) (4.49)

= −1

2
tr(η̂>R>Rd), tr(A) = tr(A>) (4.50)

=
1

2
tr(η̂R>Rd), η̂> = −η̂ (4.51)

=
1

2
tr(R>Rdη̂), trABC = trBCA. (4.52)

By the equality of Eq. (4.49) and Eq. (4.52), we proceed to obtain

DRΨ(R,Rd) = −1

4
[tr(RT

dR−R>Rd︸ ︷︷ ︸
êR

)η̂] (4.53)

=
1

2
〈êR, η̂〉F , −1

2
tr(x̂ŷ) = x>y (4.54)

where we defined the quantity
êR = RT

dR−R>Rd, (4.55)

which is necessarily an element of so(3) since ê>R = −êR. Setting DRΨ(R,Rd) = 0, and
since η is an arbitrary axis of rotation, we see that eR is an appropriate choice of error

60

vector for the attitude of the quadrotor [27]. In defining eR, we use the inverse of the hat
map, the vee map, ·∨ : so(3)→ R3, which acts on a skew symmetric matrix and returns a
vector, a, satisfying âb = a× b, for all b ∈ R3.

eR = (RT
dR−R>Rd)

∨ (4.56)

Lastly, we seek an error vector for the angular velocity. Begin by noticing that
Ṙ ∈ TRSO(3) and Ṙd ∈ TRdSO(3) lie in different tangent spaces. Left-multiplying an
element of TRdSO(3) by the inverse of the element at which we centre the tangent bundle,
RT
d , results in an element of the tangent space at the identity, TISO(3). Left-multiplying

this result by R, we obtain an element of TRSO(3). So, in order to compare Ṙ and Ṙd in
the same tangent space, we proceed as follows:

Ṙ−RR>d Ṙd = RΩ̂−RR>d RdΩ̂d, Ṙ = RΩ̂ (4.57)

= R(Ω̂− Ω̂d), R>d Rd = I (4.58)
= R(Ω− Ωd)

∧ (4.59)

where the last line follows from the fact that the hat map is distributive. From this, we
can see that the expression is 0 if the vector Ω − R>RdΩd = 0, so this becomes the error
vector for the angular velocity:

eΩ = Ω− Ωd (4.60)

Note that, while this seems like the obvious choice, some subtlety is involved in ensuring
it is sensible. This same procedure is used by Lee et al. in [27], except that the authors
converted Rd to the tangent space centered at R using right-multiplication, resulting in a
slightly more complex expression for eΩ.

Control Laws

Now that the tracking errors have been defined, we begin to formulate the the tracking
controller as in [27, 33]. We define the desired thrust vector using the second equation
of motion of the dynamical system, Eq. (4.3), which we solve for the total thrust term
(with the desired acceleration). In designing the full desired thrust vector, we include the
position and velocity errors, as the thrust vector is directly responsible for correcting the
translational position and velocity. This yields:

F = fRe3 = mẍd +mge3, total (desired) thrust (4.61)
Fd = F −Kxex −Kvev, desired thrust with error (4.62)

61

where kx, kv are positive definite control gain matrices. Assuming ‖Fd‖ 6= 0, we can find
the desired third body-fixed axis, b3,d, as the unit vector in the direction of Fd,

b3d =
Fd
‖Fd‖

. (4.63)

Since we also have access to the desired yaw angle, ψd, as it is a flat output for which we
constructed a polynomial trajectory, we can write:

b1c = [cos(ψd), sin(ψd), 0]>. (4.64)

This is an intermediate value that we use to define the desired second body-fixed axis,
relying on the right-handedness of our coordinate systems:

b2d =
b3d × b1c

‖b3d × b1c‖
. (4.65)

The desired first body-fixed axis can then be defined similarly as

b1d = b2d × b3d , (4.66)

and the desired rotation matrix can simply be expressed by placing these three basis vectors
into a 3× 3 matrix,

Rd = [b1d , b2d , b3d]. (4.67)

Next, we must find an expression for the desired angular velocity. The result is derived
in [34] and reiterated in the NED frame in [2]. We include the pertinent results here for
completeness.

Ωd = Ω1db1d + Ω2db2d + Ω3db3d (4.68)

where we define the following useful quantities

u1ff = F ·Re3 (4.69)

hΩ =
m

u1ff

[(x
(3)
d · b3d)b3d − x

(3)
d]. (4.70)

The feedforward thrust, u1ff , projects the total desired thrust onto the current third body-
fixed axis. Note that if the actual orientation is 90◦ from the total desired thrust (without
the correcting error terms), u1ff is zero as the body must be rotated before the thrust can

62

be used to correct the error. We use hΩ to define the components of the desired angular
velocity as follows:

Ω1d = −hΩ · b2d

Ω2d = hΩ · b1d

Ω3d = ψ̇d(e3 · b3d).

(4.71)

The tracking controller we present here is almost identical to the one developed by
Mellinger et al. [34]. Some small differences exist due to our choice of tracking error
vectors and minor sign changes in some definitions above. We choose the control torque,
τ , used by Mellinger et al. as it omits some complexity from [27], which was found to
be unnecessary in practice2. Instead, the control torque vector relies exclusively on the
attitude and angular velocity tracking errors and their respective gain matrices, KR, KΩ.

f = −(mẍd +mge3 −Kxex −Kvev) ·Re3 (4.72)
τ = KReR +KΩeΩ. (4.73)

Recall that these four components of the controller, u = [f, τ>]
>, can be converted into

the necessary rotor torques via inversion of Eq. (4.10).

Since the orientation error, eR, is not based on problematic Euler angles, no small angle
approximation is used and singularities are avoided. This means that tracking is feasible
even for very large deviations in orientation, except when the quadrotor body is completely
inverted (exactly 180◦ from the desired orientation). Proof of almost global exponential
attractiveness of a similar controller is provided in [27], given that:

‖eΩ(0)‖2 <
2

λmin(J)
kR

(
1− 1

2
tr[I −R>d (0)R(0)]

)
(4.74)

where KR = krI.

4.2.7 Simulations

Now that the method has been introduced in detail, we are ready to present simulation
results.

2All examples we have tried perform excellently with the simple expression for the control torque,
although this does not necessarily imply that the complexity of the controller in [27] is never useful. Large
errors may benefit from the feedforward terms involving angular acceleration as well as the consideration
of a non-diagonal moment of inertia matrix.

63

First, we perform all of the necessary offline computation on four 10 × 10 × 10
environments, where we choose Np = 200, 200, 1000, 2000 samples, and cost threshold
Jth = 300, 260, 200, 150, respectively. We choose decreasing values of Jth as the number of
samples increases since more samples implies a higher probability of reachable states; as
such, we attempt to keep the number of online OBVP computations to a minimum while
still connecting to a sufficient number of points in the tree. Note that we have precomputed
the entire Cost look-up table for each configuration, so that the solution to the OBVP for
every pair of sampled points is known before online initiation.

When online, we choose the initial state to be x0 = (1.5, 1, 0, 0, 0, 0) (starting from
rest) and the goal region is defined as the 1× 1× 2 rectangular prism whose front-bottom-
left corner is positioned at (6,9,8). Moreover, each goal region is explicitly sampled m = 5
times to ensure a variety of possible goal states. We also include two large obstacles, shown
in red, which the quadrotor must avoid. The quadrotor is constrained to stay within the
bounding box, and aims to reach the goal, shown in cyan.

Upon running the online planning framework, and before smoothing is applied, we see
the result of running kinoFMT in Figure 4.3. Each is the minimum cost path from initial
state to goal region for the provided set of random samples. The case withNp = 200 and the
lower cost threshold, Jth = 260 was the fastest, taking 3.98 seconds, 0.58 seconds of which
was incurred due to expensive collision checks which are considerably faster in physical
experiments (sensors can be queried very rapidly). Interestingly, the path incurring the
least cost resulted from the Np = 200, Jth = 300 case, although it was nearly identical in
cost to the path produced on the configuration over 2000 samples.

Trajectory smoothing is run on the same configurations to obtain Figure 4.4.

Finally, we demonstrate the effectiveness of the tracking controller presented in
Section 4.2.6. The implementation of the tracking controller involves defining a func-
tion for the system dynamics from Eq. (4.9). Doing so allows us to forward integrate
from the initial state using the control law from Eq. (4.73). Numerical integration is
performed using the scipy.integrate.ode class with method set to “vode” which is the real-
valued variable-coefficient ordinary differential equation solver. As we demonstrate only a
simulation, the control inputs f and τ can be used directly, so the actual rotor torques
need not be computed.

The physical parameters are chosen to closely approximate a very small quadrotor, such
as the one used in [31]. As such, the mass is set to m = 0.3 kilograms, and the moment
of inertia matrix is diagonal, letting J = 0.00002I, with units Kg ·m2. Upon tuning the
controller with appropriate gain matrices Kx, Kv, KR, KΩ, we are able to track a sequence
including a unit step, a linear ramp, and a quadratic curve. Note that all subsequent

64

simulations in this section are performed on the set of 200 samples with Jth = 260.
The tracking quality can be seen in Figure 4.5, and the tracking errors are displayed
in Figure 4.6. It is clear that the controller successfully guides the controller toward the
desired trajectory very rapidly, maintaining very small tracking errors except when the
desired trajectory changes suddenly. We further demonstrate the efficacy of the tracking
controller on a smooth path from the initial state to the goal in Figure 4.7.

Figure 4.2: Shown here are the tree structures generated for four different configurations.
Starting from the top-left and reading across, we list the pairs (Np, Jth) used: (200, 300),
(200, 260), (1000, 200), (2000, 150). Edges represent collision-free paths between pairs of
waypoints. Note that the visualization software displays an unobstructed view of at least
one object, giving the false impression that no edges exist in front of the clearly visible
obstacle.

65

Figure 4.3: Here we see the best-path waypoints as seen before smoothing is applied.
kinoFMT returns a piecewise-linear path connecting the waypoints returned, shown in blue.
The four configurations appear in the same order as in Figure 4.2.

Figure 4.4: Upon running the trajectory smoothing algorithm, we obtain the green curves
shown here. Note that the curve always intersects the piecewise linear path (blue) at the
waypoints.

66

Figure 4.5: The x, y, z positions resulting from tracking the dashed green reference trajec-
tory are plotted. Response to a unit step, linear ramp, and quadratic curve are shown.

67

Figure 4.6: The norm of each of the error vectors is plotted. These error vectors arise from
tracking the piecewise reference of Figure 4.5.

68

Figure 4.7: Tracking the polynomial trajectory generated for the Np = 200, Jth = 260
configuration (top-right instance of Figure 4.4). The nominal trajectory is shown as a
dashed green line, though it is obscured by the simulated trajectory obtained using the
tracking controller (black).

69

4.3 Abstracted Kripke Structures for Online Planning

In Chapter 3, we introduced the notion of an abstracted Kripke structure which acts as
a simplified map, describing how the state-space can be traversed to reach various goal
regions. It was shown that the motion planning algorithm SST* could be used to incre-
mentally generate trajectories to multiple proposition regions3. These solutions could then
each be stored as a directed edge in the abstracted Kripke structure, so that the details of
the trajectory could be ignored while model checking, thereby greatly improving efficiency.
The primary benefit, however, is being able to determine a sequence of trajectories that
together can be used to satisfy a temporal logic specification.

This section will use the same concept of an abstracted Kripke structure to construct
solution trajectories for a quadrotor system. Deviating from the method using the Monte-
Carlo approach with SST*, we instead use the kinoFMT planner with path smoothing to
quickly determine a high-quality trajectory satisfying a given µ-calculus specification, Φ.

4.3.1 Algorithm

The meta-algorithm we propose is similar to KinoSpecPlan (Algorithm 8). Differences arise
due to the fact that kinoFMT is not an incremental algorithm; instead, samples are drawn
during the offline phase so that the Cost look-up table can be precomputed. Another key
difference is that, unlike SST*, the use of kinoFMT assumes there is a way to locally steer
between points, and the smoothing polynomials can be used to exactly traverse desired
waypoints. Since it is only possible to reach sampled states with this method, there are a
finite number of possible goal states for any given proposition region. We will use this fact
to our advantage, reducing some of the uncertainty arising from tracking in the method
presented in Chapter 3.

To begin, states are sampled from each of the proposition regions of state space until
each such region contains exactly m samples. We first plan trajectories from the initial
state to each of the proposition regions. Then, for each of the proposition regions, repeat
this process, planning from each of the m samples of the region to every other proposition
region. In the end, there will be at mostmn(n−1) trajectories between proposition regions,
and n possible trajectories from the initial state. See Figure 4.8 for an illustrative example.

Next, we construct the abstracted Kripke structure (Figure 4.9). A directed edge
is added between proposition regions JπiK, JπjK only if each of the m samples in JπiK

3Recall that a proposition region consists of the set of states JπiK, where πi ∈ |Π+(Φ)|, as defined in
Section 3.3

70

successfully finds a trajectory to JπjK. In this way, we guarantee that no matter which
sample we start from in JπiK, there will always be a path to JπjK.

The idea remains the same whether the proposition regions are known online or offline,
although repeating the entire real-time framework can become costly as the number of
required OBVP solutions grows. If the proposition regions are known beforehand, the m
samples of each region can be added to the existing tree, and all of the necessary OBVP
solutions can be found offline. In this way, the online planner need only connect the initial
state to the existing graph without having to connect all of the proposition region states
as well. However, not all computation can be done offline as obstacles remain unknown.
The bottleneck while online is then caused by running kinoFMT up to n+mn(n−1) times.
Janson et al. showed in [16] that FMT* has time complexity O(n log(n)), and by the
same arguments, kinoFMT has the same computational complexity. Altogether, the time
complexity contributed by calls of kinoFMT in this new framework is O(mn3 log(n)), which
can be expensive if there are many positively-appearing propositions in specification Φ.
Note that path smoothing is required only for those paths which are required in satisfying
the specification.

Figure 4.8: This diagram illustrates the set of solution trajectories found when attempting
to reach from every sampled node of each proposition region (and initial state xinit) to all
other proposition regions. We use m = 2 samples in this example.

71

Figure 4.9: Shown here is the abstracted Kripke structure based on the trajectories found
in Figure 4.8. Note that an edge is only included when a solution is found from all samples
of a given region to another particular region.

It remains to determine whether or not the abstracted Kripke structure satisfies the
given deterministic µ-calculus specification. To this end, we once again use the local
model checking algorithm from Chapter 3 (Algorithm 7). Once the appropriate set of
transitions is determined, path smoothing can be applied. As we have not discussed how
to generate smooth closed curves, which arise when any cycles are required in satisfying the
specification, it suffices to plan each segment of the plan individually. At this point, the
tracking controller from Eq. (4.73) can be used to follow the proposed (possibly infinite)
path. The quadrotor travels to the first proposition region, arriving at one of m samples,
and since each is guaranteed to have a known trajectory to the next destination, the
quadrotor simply tracks the appropriate smooth path, and the process repeats as necessary.
Note that this algorithm is reactive, and any newly appearing obstacles may necessitate
finding new sets of waypoints to avoid collisions.

72

Chapter 5

Conclusions

In this thesis, we offered motivation in the form of real-world applications for the study
of motion planning and the use of temporal logic. Upon delving into the mathematical
background of µ-calculus and outlining the key features and uses of the motion planning
algorithms SST* and FMT*, we proposed two frameworks for kinodynamic planning with
temporal logic specifications.

The method presented in Chapter 3 is a novel use of SST*, a kinodynamic planning
algorithm that avoids reliance on a steering function, and µ-calculus model checking. We
proceed to develop the idea of an abstracted Kripke structure to determine satisfaction
of deterministic µ-calculus specifications. Notably, construction of the abstracted Kripke
structure is performed by creating multiple Kripke structures and merging the most cost-
efficient solutions into one structure, and the appropriate trajectories satisfying the given
specification are tracked using an LQR feedback control policy. Altogether, this is a general
approach for generating trajectories satisfying a deterministic µ-calculus proposition.

Meanwhile, the second approach is tailored to the application of quadrotor motion
planning, although in theory a very similar methodology could be applied to any differen-
tially flat system. Upon determining a set of flat output variables, we use double-integrator
dynamics as an approximation on which to precompute approximate optimal cost and flight
durations on a fixed set of random samples of the configuration space. This information
is then stored in a look-up table for use online, where the kinoFMT planning algorithm is
used to determine least-cost waypoints along which the quadrotor can travel to reach the
goal. Finally, minimum-snap polynomial trajectories are calculated to construct a smooth
path, and the result is tracked with feedback controller. Using an abstracted Kripke struc-
ture, we can store smooth trajectories between pairs of proposition regions and use a local

73

model checker to determine the paths necessary to satisfy a given deterministic µ-calculus
specification. The result can then be tracked using the proposed controller. One significant
advantage of this approach is that planning time is reduced to mere seconds, especially if
the proposition regions are known a priori so that much of the time-consuming computation
may be done offline.

5.1 Future Work

This research opens many avenues for future work. Investigation into other types of
feedback controllers may help to improve tracking when applying the SST method from
Chapter 3, especially for nonlinear systems. Tracking also poses a problem for collision
avoidance, since despite guaranteeing a collision-free trajectory with an appropriate µ-
calculus specification, tracking errors may yet cause collisions. This issue is partially
addressed with the real-time framework for quadrotor kinodynamic planning in Chapter 4
which can detect collisions and plan a new trajectory. However, the time complexity for
planning grows quadratically with the number of proposition regions, rendering the real-
time planning task infeasible for specifications involving many atomic propositions.

Further on the topic of quadrotor kinodynamic planning with temporal logic specifica-
tions, we recognize that the proposed method is very conservative. We require that every
sample of a proposition region must have a solution to another given region in order to
add the corresponding directed edge to the abstracted Kripke structure. This constraint
provides the guarantee that a path will always be found, independent of the sample at which
the quadrotor arrives. On the other hand, it may be possible to locally steer towards a
sample state for which there is a solution, and proceed along the known trajectory from
there. This could conceivably be accomplished by prepending the set of waypoints from
a sample with a known solution with the state for which a solution was not found. On
the other hand, obstacles, significant differences in speed, and a number of other factors
introduce difficulties. One further improvement to this planning method lies in developing
a method for constructing closed curves when smoothing over the set of paths required to
satisfy a given specification. In this way, individual trajectories need not be tracked, and
a truly infinite-path solution can be immediately obtained.

Incidentally, Schoellig et al. at the University of Toronto tend to focus on path-following
rather than trajectory tracking [11, 35]. This is because trajectory tracking involves
maintaining pace with a time-parameterized trajectory, so that any disturbance which
cause the system to fall behind requires catching up in a potentially undesirable manner.
In path-following, only a geometric path is known, and the system merely follows along the

74

path at a prescribed velocity. With this method, disturbances merely cause the system to
return to the nearest point along the geometric path. Path-following is therefore desirable
for ensuring predictable behaviour, and seems to present a possible improvement over the
time-parameterized smooth polynomials from Chapter 4.

Lastly, completeness of our method remains to be proven given the multilayer approach,
as SST* and kinoFMT guarantee (probabilistic) completeness for each individual Kripke
structure, however it is uncertain what can be said of the use of multiple Kripke structures
in satisfying a single specification.

75

References

[1] Ross Allen, Ashley A Clark, Joseph A Starek, and Marco Pavone. A Machine Learning
Approach for Real-Time Reachability Analysis. International Conference on Intelli-
gent Robots and Systems, (Iros):2202–2208, 2014.

[2] Ross Allen and Marco Pavone. A Real-Time Framework for Kinodynamic Planning
with Application to Quadrotor Obstacle Avoidance. {AIAA} Conf. on Guidance,
Navigation and Control, pages 1–18, 2016.

[3] A. I. Medina Ayala, S. B. Andersson, and C. Belta. Temporal logic motion planning
in unknown environments. 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5279–5284, 2013.

[4] Amit Bhatia, Lydia E. Kavraki, and Moshe Y. Vardi. Sampling-based motion planning
with temporal goals. Proceedings - IEEE International Conference on Robotics and
Automation, pages 2689–2696, 2010.

[5] Rance Cleaveland and Bernhard Steffen. A linear-time model-checking algorithm for
the alternation-free modal mu-calculus. Formal Methods in System Design, 2(2):121–
147, 1993.

[6] Patrick Doherty, Fredrik Heintz, and Jonas Kvarnström. High-Level Mission Specifi-
cation and Planning for Collaborative Unmanned Aircraft Systems Using Delegation.
Unmanned Systems, 01(01):75–119, 2013.

[7] E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and deter-
minacy. [1991] Proceedings 32nd Annual Symposium of Foundations of Computer
Science, pages 368–377, 1991.

[8] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model checking for
the µ-calculus and its fragments, volume 258. 1999.

76

[9] E. Allen Emerson and Chin-Laung Lei. Efficient Model Checking in Fragments of the
Propositional Mu-Calculus. IEEE, 1986.

[10] Michel Fliess, Jean Levine, Philippe Martin, and Pierre Rouchon. Flatness and defect
of non-linear systems: Introductory theory and examples. International Journal of
Control, 61(6):1327–1361, 1995.

[11] Melissa Greeff and Angela P. Schoellig. Model Predictive Path-Following for
Constrained Differentially Flat Systems. In IEEE International Conference on
Robotics and Automation, Brisbane, Australia, 2018.

[12] Arie Gurfinkel and Marsha Chechik. Extending extended vacuity. Formal Methods in
Computer-Aided Design, pages 306–321, 2004.

[13] Copper.hat (https://math.stackexchange.com/users/27978/copper hat). Determine
the trace of a matrix in SO(3,R).

[14] Piotr Indyk and Rajeev Motwd. Approximate Nearest Neighbors: Towards Removing
the Curse of Dimensionality. Proceedings of the thirtieth annual ACM symposium on
Theory of computing. ACM, pages 604–613, 1998.

[15] SAE international. U.S. Department of Transportation’s New Policy on Automated
Vehicles Adopts SAE International’s Levels of Automation for Defining Driving
Automation in On-Road Motor Vehicles. SAE international, page 1, 2016.

[16] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching
tree: A fast marching sampling-based method for optimal motion planning in many
dimensions. International Journal of Robotics Research, 34(7):883–921, 2015.

[17] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Éric Walter. Applied Interval Analysis.
Springer London, London, 2001.

[18] T. Jochem, D. Pomerleau, B. Kumar, and J. Armstrong. PANS: a portable navigation
platform. Proceedings of the Intelligent Vehicles ’95 Symposium, pages 107–112.

[19] Sertac Karaman and Emilio Frazzoli. Sampling-based motion planning with determin-
istic mu-calculus specifications. Proceedings of the 48th IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference, (0):2222–
2229, 2009.

[20] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.

77

[21] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning with deterministic mu-calculus specifications. 2012 American Control
Conference, 2012.

[22] L.E. Kavraki, Petr Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensionalconfiguration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4):566 – 580, 1996.

[23] C. Lanczos. The Variational Principles of Mechanics. Dover Publications, 4 edition,
1986.

[24] Luc Larocque and Jun Liu. Sampling-Based Motion Planning with mu-Calculus
Specifications without Steering. In IEEE International Conference on Robotics and
Automation, Brisbane, Australia, 2018.

[25] S. M. LaValle and James J Kuffner. Randomized kinodynamic planning. International
Journal of Robotics Research, 20(5):378–400, 2001.

[26] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 1 edition, 2006.

[27] Taeyoung Lee, Melvin Leok, and N. Harris Mcclamroch. Geometric Tracking Control
of a Quadrotor UAV on SE (3). 49th IEEE Conference on Decision and Control,
(3):5420–5425, 2010.

[28] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. Asymptotically optimal sampling-
based kinodynamic planning. The International Journal of Robotics Research,
35(5):528–564, 2016.

[29] Yinan Li and Jun Liu. ROCS: A Robustly Complete Control Synthesis Tool for
Nonlinear Dynamical Systems. Proceedings of the 21st International Conference on
Hybrid Systems: Computation and Control (part of CPS Week) - HSCC ’18, pages
130–135, 2018.

[30] Hai Lin. Mission Accomplished: An Introduction to Formal Methods in Mobile Robot
Motion Planning and Control. Unmanned Systems, 02(02):201–216, 2014.

[31] Carlos Luis and Jérôme Le Ny. Design of a Trajectory Tracking Controller for a
Nanoquadcopter. 2016.

[32] Jerome M. Lutin, Alain L. Kornhauser, and Eva Lerner-Lam. The revolutionary devel-
opment of self-driving vehicles and implications for the transportation engineering
profession. ITE Journal (Institute of Transportation Engineers), 83(7):28–32, 2013.

78

[33] Daniel Mellinger. Trajectory generation and control for quadrotors. PhD thesis, 2012.

[34] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control
for quadrotors. Proceedings - IEEE International Conference on Robotics and Automa-
tion, pages 2520–2525, 2011.

[35] Chris J. Ostafew, Angela P. Schoellig, Timothy D. Barfoot, and Jack Collier. Learning-
based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path
Tracking. Journal of Field Robotics, 33(1):133–152, 2015.

[36] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Indoor Environments. In International Confer-
ence on Robotics and Automation, pages 649–666. 2016.

[37] Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal sampling-based
motion planning under differential constraints: The drift case with linear affine
dynamics. 2015 IEEE International Conference on Robotics and Automation (ICRA),
(Cdc):2368–2375, 2015.

[38] Klaus Schneider. Verification of Reactive Systems. Springer Science & Business Media,
2004.

[39] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004.

[40] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

[41] Russ Tedrake. LQR-trees: Feedback motion planning on sparse randomized trees.
Robotics: Science and Systems V, page 8, 2009.

[42] Sebastian Thrun. Toward robotic cars. Communications of the ACM, 53(4):99–106,
2010.

[43] Michiel J. Van Nieuwstadt and Richard M. Murray. Real time trajectory generation
for differentially flat systems. International Journal of Robust and Nonlinear Control,
8(11):995–1020, 1998.

[44] Dustin J. Webb and Jur Van Den Berg. Kinodynamic RRT*: Asymptotically optimal
motion planning for robots with linear dynamics. Proceedings - IEEE International
Conference on Robotics and Automation, pages 5054–5061, 2013.

79

[45] Alexander Wendel and James Underwood. Self-supervised weed detection in vegetable
crops using ground based hyperspectral imaging. 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 5128–5135, 2016.

[46] Thomas Wilke. Alternating tree automata, parity games, and modal Âţ-calculus. Bull.
Soc. Math. Belg, 8(2):2001, 2001.

[47] Eric M Wolff. Control of Dynamical Systems with Temporal Logic Specifications. PhD
thesis, California Institute of Technology, 2014.

[48] Christopher Xie, Jur van den Berg, Sachin Patil, and Pieter Abbeel. Toward Asymp-
totically Optimal Motion Planning for Kinodynamic Systems using a Two-Point
Boundary Value Problem Solver. IEEE International Conference on Robotics and
Automation, pages 4187–4194, 2015.

[49] Kwangjin Yang, Seng Keat Gan, and Salah Sukkarieh. A Gaussian process-based RRT
planner for the exploration of an unknown and cluttered environment with a UAV.
Advanced Robotics, 27(6):431–443, 2013.

80

	List of Figures
	Abbreviations
	Introduction
	Motion Planning
	Examples
	Sampling-Based Kinodynamic Planning

	Temporal Logic
	Contributions
	Overview

	Preliminaries
	mu-Calculus
	Modal mu-Calculus
	Deterministic mu-Calculus
	Tarski-Knaster Theorem
	Specification Examples

	SST*
	FMT*

	Sampling-Based Motion Planning with mu-Calculus Specifications without Steering
	Introduction
	Problem Formulation
	Problem Statement

	Kripke Structures and Model Checking
	Model Checking with mu-Calculus Specifications
	Abstracted Kripke Structure and Planning
	LQR Tracking

	Example

	Quadrotor Motion Planning
	Quadrotor Model
	Background
	Dynamics

	Real-Time Motion Planning
	Framework Overview
	Differential Flatness
	Quadrotor Dynamics Approximation
	Reachable Set Approximation
	Trajectory Smoothing
	Tracking Controller
	Simulations

	Abstracted Kripke Structures for Online Planning
	Algorithm

	Conclusions
	Future Work

	References

