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Abstract: It is estimated that 30% of all genes in the mammalian cells are regulated by microRNA
(miRNAs). The most relevant miRNAs in a cellular context are not necessarily those with the greatest
change in expression levels between healthy and diseased tissue. Differentially expressed (DE)
miRNAs that modulate a large number of messenger RNA (mRNA) transcripts ultimately have
a greater influence in determining phenotypic outcomes and are more important in a global biological
context than miRNAs that modulate just a few mRNA transcripts. Here, we describe the development
of a tool, “miRmapper”, which identifies the most dominant miRNAs in a miRNA–mRNA network
and recognizes similarities between miRNAs based on commonly regulated mRNAs. Using a list of
miRNA–target gene interactions and a list of DE transcripts, miRmapper provides several outputs:
(1) an adjacency matrix that is used to calculate miRNA similarity utilizing the Jaccard distance;
(2) a dendrogram and (3) an identity heatmap displaying miRNA clusters based on their effect on
mRNA expression; (4) a miRNA impact table and (5) a barplot that provides a visual illustration
of this impact. We tested this tool using nonmetastatic and metastatic bladder cancer cell lines
and demonstrated that the most relevant miRNAs in a cellular context are not necessarily those
with the greatest fold change. Additionally, by exploiting the Jaccard distance, we unraveled novel
cooperative interactions between miRNAs from independent families in regulating common target
mRNAs; i.e., five of the top 10 miRNAs act in synergy.

Keywords: bioinformatics pipelines; algorithm development for network integration; miRNA–gene
expression networks; multiomics integration; network topology analysis

1. Introduction

Mature microRNAs (miRNAs) are ~22-nucleotide-long single-stranded noncoding RNAs which
function as translational repressors in all known animal and plant genomes [1,2]. It is estimated that
30% of all genes in the mammalian cells are regulated by miRNAs [3]. Each miRNA can regulate
the expression of hundreds of messenger RNAs (mRNAs), and each mRNA can be targeted by
various miRNAs, with multiple miRNA-binding sites being required for the efficient repression of
a target mRNA [2,3].
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The traditional paradigm regarding the mode of silencing of miRNAs is that (1) most animal
miRNAs bind their target mRNAs with mismatches, promoting repression of mRNA translation
with little or no influence on mRNA abundance; and that (2) most plant miRNAs bind their targets
with near-perfect complementarity, allowing Ago-catalyzed cleavage and degradation of the mRNA
strand [4]. The scientific dogma was that perfect complementarity excluded translational repression
because it enabled cleavage, and this contributed to the notion that plant and animal miRNAs behaved
in fundamentally different ways. However, several reports have demonstrated that animal miRNAs
induce significant degradation of target mRNAs [5–8] and that translational repression also occurs
in plants [9].

These studies initiated a debate regarding the mode of action of miRNAs, a discourse that remains
active in the scientific community [10–12], highlighting the complexity of miRNA-induced translational
repression and degradation. This sparked yet more unanswered questions such as “is degradation an
independent mechanism by which silencing is accomplished?”, or “is it a consequence of a primary
effect on translation?” In 2008, Brodersen et al. suggested that translational repression is the default
mechanism by which miRNAs repress gene expression in both animals and plants [9], a study that was
followed by a contradicting study by Guo et al. [13] stating that mammalian micRNAs predominantly
act to decrease target mRNA levels. This work was based on the fact that only a small fraction of
repression observed by ribosome profiling (11–16%) is attributable to reduced translational efficiency,
whereas at least 84% of the repression is attributable instead to decreased mRNA levels [13].

Several studies have made important advances in elucidating the relative contributions
of translational repression and mRNA degradation by animal microRNAs and have further
characterized how translational repression is accomplished: inhibition of translation initiation;
inhibition of translation elongation; cotranslational protein degradation; and premature termination
of translation [14]. Regarding miRNA-induced mRNA degradation, it appears that the extent of
degradation is specified by the mRNA target, and not by the miRNA itself, because the same miRNA
can either repress translation or induce mRNA decay in a target-specific manner [6]. It remains
unclear why some targets are degraded and others are not. It has been suggested that the number,
type, and position of mismatches in the miRNA/mRNA duplex plays an important role in triggering
degradation or translational arrest [15]. Although defining how miRNAs mediate their repressive
effects has been a controversial subject over the past two decades, current evidence suggests that
target mRNA degradation contributes largely to the miRNA-induced silencing effects. Given, however,
that many of these studies were conducted in vitro with cultured mammalian cells rapidly dividing,
it is necessary to confirm this shift in paradigm using other cell types and in in vivo studies.

In studying networks, including miRNA–mRNA interaction networks, one of the most relevant
metrics is “centrality”. Simply described, centrality is a measure of the degree, i.e., the number of
edges connected to a vertex (Figure 1a) [16]; the assumption is that vertices with the highest degrees
(with the most connections) play important roles in the functioning of the system, making the degree
of centrality a useful guide for focusing attention on the system’s most crucial elements. In directional
networks, vertices have two different degrees, an “in-degree” and an “out-degree”, corresponding
to the number of edges pointing inward to and outward from these vertices [16]. In the context of
social networks, individuals who have connections to many others may be perceived as having greater
influence, more access to information, or higher prestige than those who have fewer connections [17,18].
The same can be applied to the evaluation of scientific publications: the count of how many times
a paper has been cited, equivalent to the “in-degree” in the citation network (Figure 1b), provides
a measure of whether the paper has been influential or not. This is widely used as a metric for judging
the impact of scientific research [19,20]. Centrality, when applied to miRNA–mRNA interaction
networks, can highlight which miRNAs are more important than others in a specific context such
as disease or biological processes by defining how many in-degrees and out-degrees each miRNA
possesses [21,22]; as an example, the number of transcription factors (TF) regulating an miRNA
characterizes the “in-degree”, and the number of mRNA targets of this miRNA for silencing is the
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“out-degree” (Figure 1c), and both metrics can greatly contribute to the determination of the importance
of a specific miRNA in a given system [23].

In a network, vertices with an unusually high degree of centrality become “hubs”. Even if few hubs
exist within a network, they can be very informative and play a central role in the functioning of the
system. For example, social networks often contain a few central individuals with many acquaintances.
Few websites exist, for instance, with an extraordinarily large number of links. In a cellular context,
there are few metabolites that take part in almost all metabolic processes.

Another important metric in network analysis is that of “structural equivalence” between vertices,
i.e., a measure of similarity [16]; two vertices in a network are structurally equivalent if they share many
of the same network neighbors (Figure 1d). Online dating sites compute similarity measures to match
users to one another by using descriptions of people’s interests, background, likes, and dislikes [24,25].
In the context of miRNA–mRNA interaction networks, measuring structural equivalence could
help in identifying groups of collaborative miRNAs based on the number of similar mRNA targets
they share [26,27].
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Figure 1. (a) The degree of centrality defines the number of edges (black lines) connected to a vertex
(blue dots). The number inside the dots represents the centrality degree of each vertex; (b) The in-degree of
a scientific publication is the number of other papers citing it (citations in grey boxes); (c) In a microRNA
(miRNA)–messenger RNA (mRNA) interaction network, the number of transcription factors (TF) regulating
an miRNA characterizes the in-degree, and the number of mRNA targets of this miRNA for silencing is
the out-degree; (d) Structural equivalence between 3 vertices, A, B, and C: A and B share, in this case, 3 of
the same neighbors (black dots), although both also have other neighbors that are not shared (white dots).
Vertex C is not similar to A and B because it does not share any neighbors with them.

Comparison with Available Tools

According to the increasing experimental evidence supporting target mRNA degradation rather
than translational repression as the main silencing mechanism used by miRNAs, the integration of
target predictions with miRNA and gene expression profiles based on high-throughput sequencing
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(HTS) analyses from the same sample would greatly improve the characterization of functional
miRNA–mRNA relationships. Several online tools that aim to identify miRNA–mRNA interactions
exist: (1) MicroRNA and mRNA integrated analysis (MMIA) [28] is a versatile web server that permits
query of miRNA–mRNA interactions. It applies systems level analysis to identify pathways and
diseases in which the miRNAs of interest may be involved. However, MMIA ignores the network
of collaborative miRNAs that work together to silence genes; (2) miRror-Suite [29] uses a list of
miRNAs in a contextual manner to predict the most likely set of regulated genes in a cell line or
tissue, or from a list of genes. However, the input is either a miRNA list or a gene list, but cannot
be both. Additionally, it relies only on public datasets, does not let users provide their own paired
miRNA–gene expression datasets, and fails to provide a metric in which miRNA is the most important
variable; (3) DIANA-mirExTra [30] uses repository information to build a network with miRNA–gene
targets from miRNA and gene expression datasets. However, it does not classify the importance of the
miRNA based on interaction (it only considers fold change) and the networks do not provide a metric
of miRNA similarity; (4) miRGator [31] is a mining data and hypothesis generating tool that uses
big data from public datasets combined with data from miRNA–target repositories and a negative
correlation algorithm to define miRNA regulatory networks. It allows enquiries regarding where
the expression of the miRNAs is more relevant and the most commonly affected biological functions.
However, it does not let users input their own data and lacks biological contextual information for
tissue-specific miRNAs; (5) In 2010, the web tool MAGIA (miRNA and genes integrated analysis)
was designed, allowing integration of target predictions with gene expression profiles using different
relatedness measures for matched and unmatched expression profiles, using miRNA–mRNA bipartite
network reconstruction, gene functional enrichment, and pathway annotations for browsing results [32].
In 2012, it was updated to MAGIA2, which now focuses on mixed regulatory circuits involving
miRNAs, transcription factors (TFs, in-degree measure), and mRNA targets (out-degree measure) [23].
Nevertheless, MAGIA and MAGIA2 do not calculate network metrics as degrees of centrality and
structural similarity. (6) NetworkAnalyzer [33] is a software plug-in that assesses several network
topological parameters, including centrality, and represents them graphically. However, this tool
was designed with protein–protein interactions in mind, not miRNA–mRNA networks. Additionally,
the shared neighbor measure is not suited to define similarity in miRNA–mRNA networks, and the
graphs generated focus on the network parameters and not on the importance, or identification, of each
node—i.e., miRNA—in the network. (7) A more recent tool, SpidermiR, allows evaluation of the degree
of centrality of miRNA–gene target networks and capabilities that resemble the structural equivalence
analysis [34]. Although the graphical output of SpidermiR helps in simplifying network interpretation,
the tool is focused on the analysis of public available data, principally from The Cancer Genome Atlas
(TCGA) repository, and does not allow the researcher to input locally generated data [34]. None of
these tools mentioned above offer a measure for centrality and structural equivalence combined
with out-degrees that represent useful metrics to determine the system’s most crucial miRNAs and
collaborations between miRNAs. Finally none provide output graphs that help the user focus on these
important conclusions (Table 1).

Here, we present miRmapper, an open-source application that researchers can use to identify
the most important miRNA and mRNAs, identified in their own experimental design or produced
by publicly available data, in a miRNA–mRNA interaction network by leveraging the centrality and
similarity metrics. Based on the assumption that miRNAs with the highest number of target genes
are probably the most important ones, and that the genes being targeted by numerous miRNAs
are probably the most crucial ones, miRmapper users can easily visualize collaborative miRNAs in
relation to their mRNA targets as a result of graphical outputs such as dendrograms and heatmaps.
This ultimately allows the user to focus their attention on the system’s most crucial elements. Note that
miRmapper is designed for miRNA–mRNA interactions in the context of mRNA degradation and
measures the centrality, similarity, and out-degree of each miRNA based on the topology of the
miRNA–mRNA interaction network created from same-sample miRNA-seq and mRNA-seq datasets.
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This novel tool will provide information that can drive further research by uncovering potential
biomarkers and drug targets.

Table 1. Tool comparison. Each column represents a feature and each row represents a software tool.
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miRmapper X X X X X X X

MMIA - - - - - - -

miRror-Suite X X - - - - -

DIANA-mirExTra X X - - - - -

miRGator - - - - - - -

MAGIA X X - - - X -

MAGIA2 X X - - - X -

NetworkAnalyzer X X X X - - -

SpidermiR - - X X - X -

MMIA: MicroRNA and mRNA integrated analysis

2. Materials and Methods

The method presented here is based on the following assumptions: (1) miRNAs tend to act
via the downregulation of their gene targets, in an inverse correlation relationship (i.e., miRNA
canonical function) [35]; (2) the regulatory effect of miRNAs is dependent on the cellular context [35,36];
(3) miRNAs regulating the greatest number of targets have a greater impact on the phenotype (network
centrality) [16,37]; (4) in a given context, the list of common targets of two miRNAs can be used to infer
how similar their effects are, independent of their nucleotide sequence similarity (network similarity
by structural equivalence) [16,38]; and (5) a gene being regulated by the greatest number of miRNAs is
probably a key gene in the system studied [16,39].

This package was conceived to be used downstream of paired miRNA and differential gene
expression analyses, and it also requires a list of interactions of the DE miRNAs and target genes.
For sequencing experiments, DE analysis can be performed using DESeq2, EdgeR, and Limma
programs for mRNA sequencing [40,41]. DE results for miRNA sequencing can be obtained from the
CAP-miRSeq pipeline, mirPRo, and miARma-Seq [42–44]. Any form of DE analysis that permits the
acquisition of a list of DE mRNAs and DE miRNAs—such as high-throughput sequencing, microarray
technology, quantitative PCR (qPCR) arrays, etc.—can be used as input. Predicted targets of miRNA can
be collected from databases such as microRNA.org, TargetScan, and the multiMiR R Package [45–47].
The user needs to be aware that repositories provide the entire list of predicted genes and that only
those that are in the DE gene list are of interest. Packages such as multiMiR have functionalities to
select only the appropriate interactions [47]. Consequently, users using an interaction list directly from
other repositories will have to use the intersection of genes between the interaction list and the list of
DE genes in their experiment. Taking into account our first assumption, we considered the analysis
to be more insightful if only downregulated mRNAs are selected as possible targets for upregulated
miRNAs and vice versa.

miRmapper provides simple and effective metrics to analyze the predicted influence of miRNAs
on gene expression; a workflow of the method is shown in Figure 2. Starting with the postulate that
DE miRNAs that impact a larger number of DE genes are of greater importance for gene regulation



Genes 2018, 9, 458 6 of 18

in the context of the experiment [16], the percentage of predicted target genes over the total targets
is calculated for each miRNA to indicate its level of centrality (Equation (1)). Similarly, we calculate
the proportion of predicted targets for each miRNA relative to all differentially expressed genes
(Equation (2)); this second calculation not only provides us with the information about miRNA
centrality, but adds the overall impact of the miRNA expression in the regulation of a given gene’s
expression. The package also provides as output the degrees of centrality for each gene target.

These calculations are provided in both a tabular form and a bar plot of publication quality.
The proportions are given by the following formulas, where t is the number of predicted target genes
for miRNA m, T is the number of total gene targets, and G is the number of total DE genes:

In f luencem
DE =

t
T

(1)

In f luencem
Total =

t
G

(2)

We represent the predicted interactions in the form of an adjacency matrix. The adjacency matrix
is a convenient data structure for detecting miRNAs that target the same genes. We then apply the
Jaccard distance formula to measure dissimilarity between miRNAs (Equation (3)) [48,49]. With this
metric, we calculate and visualize miRNA clustering with an identity plot and dendrogram for
a hierarchical representation, i.e., network similarity. The Jaccard distance is given by the following
formula, where Dij, also known as the Jaccard distance, is the proportion of gene targets that are not
shared between miRNAs i and j relative to the total number of genes targeted by these two miRNAs:

Dij = 1−
∣∣ti ∩ tj

∣∣∣∣ti ∪ tj
∣∣ , (3)

where ti and tj are the genes targeted by miRNAs i and j, |ti ∩ tj| is the shared gene targets of ti and
tj, and

∣∣ti ∪ tj
∣∣ is the total gene targets of ti and tj.

The Jaccard index has the advantage in that it only counts the mutual presence of gene targets in
its calculations [49]. In the context of multiple DE miRNAs with large and non-overlapping lists of
interactions, a method that takes into consideration only the presence of the interactions in a list will
be the one with the greater biological meaning. Methods such as the simple matching coefficient and
the chi-square statistic will consider two miRNA as being highly similar if they have no common gene
target, but have a large list of genes that both do not target [50].

The software is implemented as an R package, “miRmapper”. As input, the package requires
a table with miRNAs and their targets and an optional list of the total differentially expressed
genes. The tool then produces an adjacency matrix describing all miRNA–target interactions and the
additional information of the number of miRNAs regulating each gene, i.e., degree of centrality for the
genes. From this matrix is calculated the impact that each miRNA has on the list of genes, i.e., degree
of centrality for the miRNAs, and the results are depicted as a boxplot ordered by miRNAs with
the greatest centrality. Also from the matrix, the Jaccard distance is calculated between the miRNAs
based on their targets, i.e., similarity, and a dendrogram and an identity plot are generated to identify
how closely related the miRNAs in the study are. More details about the package installation and
dependencies can be found in the package vignette.

To illustrate the usefulness of our method to interpret miRNA–target interactions in a biological
application, we used transcriptomic (i.e., mRNA and miRNA) data from the human bladder cancer
cell lines T24 (poorly metastatic) and FL4 (its metastatic derivative) [47]. Both datasets are available
at the ArrayExpress repository and can be found under the accession numbers E-MTAB-2610 and
E-MTAB-2611, for mRNA and miRNA respectively. The processed data and probe-to-gene annotation
were downloaded from the ArrayExpress repository, probe IDs were annotated to gene symbols as
designated by the Human Genome Organization (HUGO) Gene Nomenclature Committee, and where
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multiple probes were present for a given gene the highest expression value was selected; finally,
differential expression (DE) analysis was performed using Limma [51] Bioconductor R Package
version 3.32.10, and a p value of 0.05 and a linear fold change of two were used as the threshold for
statistical significance. The correlation of miRNA–gene targets for the upregulated DE miRNAs and
downregulated DE genes were acquired using the multiMiR [47] Bioconductor R Package, considering
only the top 35% of predicted interactions.
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Figure 2. The miRmapper workflow. An miRNA-gene interaction data frame is the required input for
the tool (Input 1), additionally a list of total differentially expressed (DE) genes can be used in conjunction
(Input 2). The use of the miRmapper functions will provide an adjacency matrix of the miRNA-genes
interactions with gene centrality (Output 1), from this a table is generated with the miRNA impact on gene
expression (Output 2) and the graphical representation of that impact (Output 3). Also from Output 1,
the structural similarity of miRNAs networks is calculated and graphically represented as an identity plot
(Output 4) and as a dendogram (Output 5).
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3. Results

In this section, we demonstrate the usage of miRmapper when applied to biological data and
discuss the functionalities of the software and its outputs. We analyzed differential transcriptomic
data—miRNA and gene expression—from cell lines T24 and FL4 and built the table with the
miRNA–target interaction and DE genes (Tables 2 and 3 and Supplementary Tables S1 and S2).

Table 2. miRmapper input. miRNA-gene interaction data frame, no headers.

hsa-miR-107 N4BP1
hsa-let-7e-5p FNDC3A
hsa-let-7e-5p HAND1
hsa-let-7e-5p IGF1R
hsa-let-7e-5p OSBPL3
hsa-let-7e-5p RRM2
hsa-let-7e-5p STX3
hsa-miR-107 ASH1L
hsa-miR-107 CAPZA2
hsa-miR-107 YWHAH
hsa-miR-421 AFF4

. . . . . .

Table 3. miRmapper inputs. List of total differentially expressed genes; this is an optional input.

IFI16
COL5A2

GJA1
ALCAM
TXNIP
PLS3

CXCL8
SPARC
FBN1
CDH2

TMEM158
. . .

Two data frames containing these data are available within the package. The template data are
loaded into an R environment as follows:

R > data (“interaction.matrix.miR.up”)
R > interact <- (interaction.matrix.miR.up)
R > data (“DE.gene.dn”)
R > DEgene <- (“DE.gene.dn”)

The input tables, as they contain all the information of the miRNA–gene target network,
have a size that do not allow the researcher to interpret it. It is necessary first to organize it in
a way that enable it to be read. We first generate a mirMapper object, as described below:

R > miRm <- miRmapper (interactions = interact, DEgenes = DEgene)

The next step is to generate an adjacent matrix (Table 4 and Supplementary Table S3) using
Supplementary Table S1 as input, as described below:
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Table 4. Adjacency matrix of top 10 regulated genes.

hsa-miR-107 hsa-let-7e-5p hsa-miR-421 hsa-miR-1297 . . . Sums

TCF4 1 1 1 1 . . . 12
FNDC3A 1 1 1 1 . . . 10
ZFHX4 1 1 0 1 . . . 10
IGF1R 1 1 1 0 . . . 9

RPS6KA3 1 1 1 0 . . . 9
PDE4D 1 0 1 1 . . . 9

ELL2 1 1 1 1 . . . 9
MAPK1 1 1 0 1 . . . 9
EXOC5 1 1 0 1 . . . 9
CCDC6 1 0 1 1 . . . 8

The interaction between a miRNA and gene is depicted as binary: “1” means the gene is a target for the miRNA;
“0” means it is not.

R > adjMat(miRm)
The adjacency matrix provides two results: first, the data organization allows the user to perform

downstream analysis; second, it defines the gene targets with the greatest degree of centrality; in this
case, the gene Transcription Factor 4 (TCF4). TCF4 (log 2-fold change =−1.22, p = 0.001, Supplementary
Table S2) has a greater degree of centrality than the serglycin gene, SRGN (log 2-fold change = −6.0,
p = 4.68 × 10−5, Supplementary Table S2), the most downregulated transcript that has a degree of
centrality = 2 (Supplementary Table S3).

This matrix is used as input to also define the centrality of the miRNA itself, depicting it as a table
(Table 5 and Supplementary Table S4) and graphically in a bar plot (Figure 3a).

Table 5. miRNA impact on the gene expression; upregulated miRNA affecting downregulated genes.

miRNA Predicted_Genes_Found Percentage_of_Targets Percentage_of_DE_Genes

hsa-miR-107 373 38.4 29.2
hsa-miR-1290 357 36.8 28
hsa-miR-421 320 33 25.1

hsa-miR-1297 310 31.9 24.3
hsa-miR-128 309 31.8 24.2
hsa-miR-375 281 28.9 22
hsa-let-7e-5p 274 28.2 21.5

hsa-miR-194-5p 205 21.1 16.1
hsa-miR-1246 189 19.5 14.8
hsa-miR-190b 156 16.1 12.2

DE: Differentially expressed

The miRNA hsa-miR-146a (log 2-fold change = 4.7, DE p = 6.39 × 10−5, Supplementary Table S5),
with the greatest fold change, had no impact on its targets, whereas hsa-miR-107 (log 2-fold change = 1.4,
p = 0.007), with a linear expression 8 times smaller than miR-146a, has an impact on 29.21% of all
downregulated genes and regulates 38.41% of all the genes being targeted by a miRNA in the dataset
(Table 5).

The miRNA impact matrix (Table 5 and Supplementary Table S4) can be made using the command:

R > getImpact(miRm);
and the barplot (Figure 3) with the command:
R > barPlot(miRm).
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The miRmapper approach allows the user to rapidly identify those miRNAs which are working
synergistically (Figures 4 and 5), as it is normally necessary for more than one miRNA to act on
a target to cause a significant impact in the transcript levels [52]. In our case, we found that
hsa-miR-107, hsa-miR-1290, hsa-miR-421, hsa-miR-1297, and hsa-miR-375 were clustered as having
similarly modulated mRNA targets, which allows us to infer that they are working cooperatively.
These five miRNAs belong to five distinct miRNA families [53], and we would not be able to infer that
they are working together with their sequence analysis only.
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The dendrogram (Figure 4) can be made using the command:

R > dendrogram(miRm);
and the identity plot (Figure 5) with the command:
R > identityPlot(miRm).

The package has the capability of running all of the above functions at the same time and saves
the outputs in the working directory using the function below:

R > runAnalysis(miRm).

4. Discussion

When changes occur in a transcriptional network, it is not only important to know which genes are
changed the most with regard to the level of their gene expression, but also which are the most relevant
changes in the context of the network [39]. A miRNA that exhibits greatly upregulated expression between
two biological conditions, but with none of its transcribed targets being downregulated, can be seen as
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a potential biomarker on its own, but this isolationist approach does not demonstrate far-reaching biological
relevance. On the other hand, a miRNA that is mildly upregulated, yet causes a deep impact in the
downregulation of its targets, would be of global relevance for the cell. In our miRNA DE analysis and
miRmapper analyses, we found 31 upregulated miRNAs (Supplementary Table S5), but only 14 of them
showed an impact in the downregulation of their targets (Supplementary Table S4).

Our analysis recognized miR-107 as the most important DE miRNA, based on the number
of affected targets. miR-107 was shown to promote migration and invasion in osteosarcoma,
hepatocellular carcinoma, and pancreatic ductal adenocarcinoma [54–56]. There is no report in the
literature about the role of miR-107 in bladder cancer; the original analysis of the dataset elected
mir-146a as a possible metastasis inducer, and although data of mir-146a in bladder cancer is also
scarce, mir-146a overexpression has been reported to inhibit migration, invasion, and metastasis in
bladder cancer [57]. The lack of downregulated mir-146a targets in our analysis agrees with the
report and provides more support for the hypothesis that miR-146 can have different roles in different
tissue types [58].

Similarly, our analysis recognized TCF4 as the most regulated gene. Although TCF4 was reported
to promote cancer cell stemness and metastasis in breast cancer patients [59,60] and in clear cell renal
cell carcinoma [61], its role in invasive bladder cancer was described to be beneficial, participating in
the inhibition of tumor growth [62]. This can be an indication that, as with miR-146a, the roles of TCF4
are tissue-specific.

We also identified hsa-miR-107, hsa-miR-375, hsa-miR-421, hsa-miR-1290, and hsa-miR-1297 as
working synergistically. Although hsa-miR-375, hsa-miR-1290, and hsa-miR-1297 were identified to
target the same transcription factor cluster [63], the literature has no report of these five miRNAs
influencing gene expression together and of their roles in bladder cancer. miR-375 was shown to play
a role in epithelial-to-mesenchymal transition and in the recurrence of breast cancer [64,65]. miR-421
was found to induce cell migration and metastasis in neuroblastoma, osteosarcoma, and gastric
cancer [66–68]. In the context of breast cancer, both were described as capable of inducing and
inhibiting metastasis [69,70], emphasizing again the context-dependent role of regulatory elements
in gene expression. hsa-miR-1290 was demonstrated to have a role in cancer stem cell formation
and metastasis in non-small cell lung cancer [71], to promote metastasis in esophageal squamous cell
carcinoma [72], and as a prognostic marker for a poor outcome in colorectal cancer [73]. As with
miR-421, miR-1297 was reported to induce migration and invasion of colorectal cancer cells [74], but to
inhibit invasion in prostate and hepatocellular carcinoma [75,76].

Both miR-107 and TCF4 are part of the Wnt signaling pathway [62,77]. The Wnt pathway plays
a key role in regulating development and stemness and pathway members are typically altered in
aggressive cancers, including bladder cancer [78,79]. Considering also the description of the synergistic
properties of hsa-miR-107, hsa-miR-1290, hsa-miR-421, hsa-miR-1297, and hsa-miR-375, we, for the
first time, identified a possible pivotal axis in the development of bladder cancer metastasis that
can be tested in the laboratory. This discovery was only made possible through the use of our tool,
miRmapper, which allowed evaluation of network topographic properties of miRNA–mRNA target
networks in a simple and visual way.

5. Conclusions

The miRmapper tool identifies the most dominant miRNAs in a miRNA–mRNA network and
recognizes functional similarities between miRNAs based on their commonly regulated mRNAs.

The miRmapper software uncovers novel cooperative interactions between miRNAs from
independent families in regulating common target mRNAs. We showed here that miRmapper
identified miRNAs and regulated mRNAs involved in a known pathway for cancer metastasis,
i.e., the Wnt signaling pathway. This highlights the utility of miRmapper to interpret miRNA–gene
networks and to identify key elements and possible biomarkers and drug targets. Future improvements
of the methodology will address noncanonical miRNA functions. The source code of the package and
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the tutorials are available on GitHub at http://github.com/ MUSC-CGM/miRmapper. Installation
documentation and a detailed vignette are provided.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/9/458/s1:
Supplementary Table S1: input list of miRNA–DE gene target, Supplementary Table S2: input complete list of DE
genes, Supplementary Table S3: complete output of adjacency matrix, Supplementary Table S4: complete miRNA
impact on the gene expression, Supplementary Table S5: complete upregulated DE miRNA.
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