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1 Introduction
One of the primary challenges faced when calibrating a simulator using ABC
is overcoming the computational constraints posed by working with limited
resource. The requirement to repeatedly simulate from a model can make
inference extremely computationally expensive. Consequently, much of the
methodological development in ABC has focused on improving computa-
tional efficiency, either through the use of more efficient Monte Carlo algo-
rithms, or through the use of statistical methods to ameliorate the effect of
using a large tolerance.

The difficulty of dealing with limited computer power is felt more keenly
in climate science than in most other disciplines. A major focus of climate
research concerns the construction of ever more accurate and comprehensive
simulators of the climate system. Since the 1970’s, global climate models
have evolved from representing only the large-scale circulation of the global
atmosphere (e.g., Holloway Jr and Manabe, 1971) to models that incorporate
complex dynamic representations of land surface, ocean, sea ice, atmospheric
aerosols, ocean biogeochemistry, vegetation, soils and atmospheric chemistry
(Flato et al., 2013). Separate Earth system components are coupled through
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the exchange of fluxes, which describe the flow of some quantity between them
(e.g. energy, moisture, CO2), and by passing any state variables that are
needed to define boundary conditions (e.g. land surface albedo, sea surface
temperature). “Intermediate complexity” models (which use simplified model
components and lower resolution in return for a more complete description
of the Earth system and higher computational efficiency) may also include
dynamic representations of other important elements, such as ice sheets,
permafrost, ocean sediments and weathering (Flato et al., 2013), but these
additional, long-timescale components require orders of magnitude longer
simulations to reach equilibrium. Modern climate models are generally, and
more accurately, described as “Earth system models” or ESMs.

This evolution in complexity has been accompanied by a 5-fold increase
in spatial resolution, allowing the resolution of important finer scale pro-
cesses. This increased resolution (combined with shorter time-steps that are
required for numerical stability at higher spatial resolution) has alone led to
an O(1000)-fold increase in computational demands since the 1970’s. In gen-
eral higher resolution allows more direct and more realistic representation of
smaller-scale processes, although this does not guarantee better projections,
in part because more complex models are more challenging to calibrate. A
feature of climate modelling is that multi-decadal climate projections must
be used before data are available to validate them, while past data give only
approximate clues to the expected behaviour of model discrepancy because
expected changes greatly exceed the range of variability in the instrumental
period.

It is perhaps inevitable, given the continual striving for more complex
models and the highest possible resolution, that state-of-the-art ESMs will
always be at the limits of what is practicable with available computing power.
The UK Met Office Hadley Centre’s computer comprises eight ‘supernodes’
of IBM Power775 supercomputer servers, which were installed in 2012 at a
cost of more than £11 million. The ESMs run at the Hadley Center and
at equivalent climate modelling institutions in other countries are extremely
computationally expensive, requiring months of such supercomputing to per-
form a single simulation of order 100 years. Even the intermediate complexity
model GENIE-1 (Holden et al., 2013a) used in our case study (Section 4) re-
quires several days (on a single CPU node) to perform each O(10 kyear)
“spin-up” simulation to reach equilibrium, so that simulation ensembles re-
quire implementation on multi-node computing clusters. The simulated cli-
mates are large complex datasets which comprise temporally-resolved three-
dimensional spatial arrays of up to ∼ 100 state variables. These outputs, in
particular the outputs of carefully designed model inter-comparison projects,
are often analysed in great detail, in a comparable way to how scientists in
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other fields analyse the outputs from empirical studies; model projections are
the best, and only predictions we have of future climate.

An ESM configuration is determined by the settings of many 100’s of
model parameters. These include switches (which determine the precise nu-
merical schemes applied), physical constants that are approximately known
but vary spatially in the real world (such as the reflectivity of ice) and pa-
rameterisations of “sub-gridscale” processes such as cloud formation, which
have “tuned” values that are known to result in reasonable model behaviour.
This complexity (many weakly constrained inputs, high dimensional outputs
and expensive simulators) has meant that careful statistical calibration (ei-
ther with Bayesian or frequentist approaches) does not have a long history
in climate science. Often different modules of an Earth system simulator
are separately “tuned” before being bolted together. For example, the atmo-
spheric component can be tuned independently of the ocean component by
prescribing sea-surface temperatures with observational values. The compo-
nents may all be tuned independently before being coupled, with no guaran-
tee that what was a good tuning in an isolated module will work well in the
coupled model. After coupling, a small subset of model parameters are ad-
justed so that the coupled model is consistent with large-scale observational
constraints. It has been shown, perhaps unsurprisingly, that such a tuning
process does not produce a unique solution, so that different combinations of
parameters can lead to equally plausible model realisations (Mauritsen et al.,
2012).

As statistical methodology develops, scientists are beginning to perform
more careful parameter estimation in their models. More rigorous parameter
estimation methods are often developed with (relatively fast) intermediate
complexity models, e.g., Annan et al. (2005), thereby informing application
to higher-complexity models, e.g., Marquis et al. (2014). We can view climate
simulators as black boxes which map from parameter values θ ∈ Θ, to climate
states f(θ) = Csim. The aim of a Bayesian calibration, is to find the posterior
distribution

π(θ|Cobs) ∝
∫
π(Cobs|Csim)π(Csim|θ)dCsimπ(θ), (1)

where Cobs is a set of observations of the climate system (Kennedy and
O’Hagan, 2001; Rougier, 2007). Here, π(θ) is the prior distribution for θ,
π(Csim|θ) is the simulator likelihood function (which is typically unknown)
and π(Cobs|Csim) is the statistical model relating the simulator to physical cli-
mate. This calculation, however, is typically far too ambitious to perform in
practice. Computational restrictions generally limit us to an ensemble of N
simulator runs {θ(i), C(i)

sim}Ni=1. Typically, N is small, ruling out most Monte
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Carlo based calibration approaches. We are left needing to estimate π(θ|Cobs)
as best we can, often by adding further approximation.

A further problem faced by climate scientists is that simulator discrepancy
(often called model error) can be considerable (Murphy et al., 2004). And
whilst the physical models of climate, π(Csim|θ), are well developed, statistical
models of the simulator discrepancy relating simulated to observed climate,
π(Cobs|Csim), have only begun to be developed relatively recently (Rougier and
Goldstein, 2014). The large simulator discrepancy makes most simulators
incapable of reproducing all aspects of the climate record simultaneously and
can mean that the simulator parameters are no longer directly comparable
to their physical namesakes, making prior specification challenging.

So what is possible? We know that ABC, given infinite computational
resource and a perfect simulator, can in theory produce arbitrarily accurate
posteriors (i.e., the ABC posterior can be made arbitrarily close to the true
posterior). But for many problems, computational resource is often severely
constrained and simulator discrepancy can be significant and largely unmod-
elled. Climate science is interesting for the statistician as it presents extreme
cases of both these issues.

A key idea allowing calibration in many of these expensive simulators
is the idea of replacing the simulator with an emulator (or meta-model),
which is a cheap statistical surrogate used in place of the simulator (Sacks
et al., 1989; Santner et al., 2003; O’Hagan, 2006). Emulation techniques
are attracting considerable interest in the climate community. They are
used, for instance, to approximate probabilistic model outputs (Sansó et al.,
2008; Rougier et al., 2009; Harris et al., 2013), for parameter estimation
(Sham Bhat et al., 2012; Olson et al., 2012), to facilitate model understanding
(Lee et al., 2012; Holden et al., in press) and to provide numerically efficient
model surrogates for coupling applications (Castruccio et al., 2014; Holden
et al., 2014; Oyebamiji et al., 2015). The application we will describe here is
in the ABC design of “plausible” simulation ensembles (Holden et al., 2010;
Edwards et al., 2011), using emulation in order to overcome the prohibitive
limitations imposed by simulator cost.

2 History-matching and ABC
Climate science presents the double whammy of computationally expensive
simulators, and simulator discrepancy that is too large to ignore but which
is not well understood or modelled. Both of these issues make a careful
Bayesian calibration (as described by Equation 1) difficult. What can be
achieved? Our aim is to compare observations of Earth’s climate Cobs, with
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simulator predictions Csim = f(θ), in order to learn about the parameter θ.
ABC is an approach for obtaining a probabilistic calibration, and seeks to
match simulator output to observations, approximating the distribution

πABC(θ|Cobs) ∝
∫

I(ρ(Cobs, Csim) ≤ ε)π(Csim|θ)dCsimπ(θ). (2)

The acceptance kernel I(ρ(Csim, Cobs) ≤ ε) implicitly implies a uniform distri-
bution for the simulator discrepancy (Wilkinson, 2013), but this is usually
viewed as a pragmatic compromise, rather than a modelling decision.

An alternative to a probabilistic calibration, is to do a history match
(Williamson et al., 2013), which has been used in studies involving complex
computer models, such as oil reservoir modelling (Craig et al., 1997), cos-
mology (Vernon et al., 2010), epidemiology (Andrianakis et al., 2015), and
climate science (Edwards et al., 2011). History matching, like calibration,
seeks to identify regions of the input space that give acceptable matches be-
tween simulator output, Csim, and observed data, Cobs. But instead of finding
a probability distribution over Θ, we instead seek merely to rule out implau-
sible regions of input space, i.e., those θ that the simulator suggests could
not have lead to Cobs, even after having accounted for the simulator discrep-
ancy. Often large parts of the input space give simulated climates that are
very different from the observed data, and which can hence be ruled to be
physically implausible and removed from further consideration.

We define PC to be a set of plausible climate states that represent an
acceptable match between simulation and observation. We define Pθ to be
the subset of the parameter space that leads to plausible simulated climates,
i.e.,

Pθ = {θ ∈ Θ : f(θ) ∈ PC}.
Often, the vast majority of the input space gives rise to unacceptable matches
to the observed data (sometimes Pθ = ∅), and it is these regions that we
are trying to rule out as implausible. For example, for an ESM, we might
define PC to be any simulated climate that has global surface air temperature
(SAT) within 2◦C of the observed value, the maximum value of Atlantic
Meridional Overturning Circulation (AMOC), a measure of the large-scale
circulation of the ocean, within 5 Sv (1 Sv = 106m3s−1) of observations, and
the global mass of vegetation to be within 200 giga-tonnes carbon (GTC) of
observations, though clearly the choice of appropriate metrics and acceptance
ranges is highly simulator-dependent. Pθ is then the set of model parameters
that would generate plausible climates for the ESM in question.

Note the similarity to ABC here. If the prior distribution for θ is uniform
on Θ, i.e., π(θ) ∝ Iθ∈Θ, if f(θ) is deterministic (as is often, at least ap-
proximately, the case in climate science), and if we use If(θ)∈PC as the ABC
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acceptance kernel, then

πABC(θ|C) ∝

{
1 if θ ∈ Pθ
0 otherwise.

If we interpret a posterior probability of zero, as the statement that θ is
implausible, then history matching and ABC are thus the same. Note also
the direct relationship between the discrepancy considerations built into PC,
and the way ABC performs ‘Monte Carlo’ exact inference for the model that
has a discrepancy defined by the acceptance kernel (Wilkinson, 2013).

History matching and ABC have in common that they do not use a de-
tailed model of the discrepancy, but instead characterise it using simple cri-
teria. A philosophical difference between the two approaches perhaps lies in
the degree of thought given to the plausible set PC. In history matching,
the plausibility criteria are often based on measurement error variances and
the expected magnitude of the simulator discrepancy (Vernon et al., 2010).
Consequently, Pθ consists of those parameter values θ that have not yet been
ruled out as implausible by our knowledge of the simulator and its discrep-
ancy, and the observed data and measurement error. The result is usually
not interpreted probabilistically, but only as values that we can not yet rule
to be implausible given our current state of knowledge. In contrast, in ABC
the choice of metric ρ and tolerance ε are usually based pragmatically on
the characteristics of the algorithm, rather than on physical aspects of the
underlying problem. Often, ε is chosen to generate a specified number of ac-
ceptances. For example, if the computational budget allows for 108 simulator
runs, and we want 104 accepted values in order to approximate the posterior,
we set ε to the value that leads to 0.01% of simulations being accepted (for
example, Biau et al., 2015, interpret ABC as a nearest neighbour algorithm).

A further difference lies in the choice of information to include in PC (i.e.,
what summary statistics to use). Climate simulators provide a large variety
of outputs, and some of these are better able to reproduce observed climate
than others. For example, temperatures are generally better reproduced than
precipitation, consequently, it is more common to calibrate to the former than
the latter. In contrast, ABC has its roots in genetics, where perhaps the
simulator output is less varied, and consequently, more focus is given to the
automatic selection of summary statistics, often chosen on the basis of what
is most informative for θ (Blum et al., 2013). This approach is unlikely to be
suitable in climate science. Some outputs for which the simulator discrepancy
is particularly large (precipitation say) may well be very ‘informative’ about θ
if we do not allow for discrepancy, but this would only misguide and may lead
us to incorrectly rule out large swathes of parameter space as implausible.
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Variables which are not well simulated are often included in ESMs, either
because they improve the overall simulation through the representation of
important feedbacks, or because they are considered important outputs in
their own right in spite of higher discrepancy associated with the outputs.
Whether a weak calibration constraint on these ouputs is appropriate will
depend on the details of the discrepancy. Where a known missing process
gives a significant contribution to regional error for instance, such as large
precipitation errors in monsoon regions as a result of unresolved topographic
variation, using a too precise calibration constraint (equivalently too small a
model discrepancy) would distort the rest of the solution.

A key question for any simulator is whether given a set of plausibility
conditions, the simulator is capable of producing any plausible simulated cli-
mates. That is, is Pθ empty? If Pθ is empty, it is an indication that we
understand less than we thought about the simulator and system. Either
there is an error in our implementation of the simulator, or we have under-
estimated the magnitude of the simulator discrepancy or measurement error.
The fact that the result of a history-match can be to find there are no plausi-
ble parameter values should not be seen as a negative aspect of the approach,
as it forces us to confront the cold reality that something is missing from our
understanding of the system. In contrast, likelihood based techniques such
as MCMC (and pragmatic ABC applications where ε is chosen to guarantee
a particular acceptance rate), result in a posterior distribution π(θ|Cobs) re-
gardless of how close the simulated climates are to real climate. It is thus
sensible when using these techniques, to carefully check that the calibrated
simulator does indeed produce acceptable fits. While it can often be useful
to find the distribution π(θ|Cobs) (or an approximation to it) regardless of
the simulator quality, note that if discrepancy is ignored, π(θ|Csim) can often
be more constrained, or equivalently |Pθ| smaller, than is justified (Brynjars-
dóttir and O’Hagan, 2014).

Note that even if a probabilistic calibration is required, a history match
can be performed first in order to rule out regions of space which are clearly
implausible. This can dramatically reduce the area needed to be explored
during the more challenging probabilistic calibration. If using a stochastic
simulator, for which θ may never be completely ruled as implausible (as
π(θ|Csim) > 0 for all θ say), this can still be advantageous. We can rule out
parameter regions for which the likelihood is considerably smaller than at
the MLE with only a small increase in the approximation error (Wilkinson,
2014), again making a subsequent probabilistic calibration easier.

Assuming that Pθ is not empty, the question then becomes, can we find
elements of Pθ, and better still, can we characterise all of Pθ? The complexity
of climate science is such that even incomplete specifications of Pθ are useful,
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as discussed in Section 4. This is because interest lies not in Pθ, but in what
it implies about future climate, i.e., in the implied calibrated distribution for
other aspects of the climate system

π(Cfuture|Cobs) =

∫
π(Cfuture|θ)π(θ|Cobs)dθ.

and so even partial descriptions of Pθ are useful in constraining our beliefs
about future climate behaviour. Our aim is thus, given a limited computa-
tional budget of N simulator evaluations, can we find Pθ and the correspond-
ing set of plausible future climates? ABC applications usually use millions
of simulator evaluations. What can we do if instead we can only afford 100
or 1000 simulator evaluations? The answer is going to be even more approx-
imate than in ABC, and furthermore, we will necessarily have to make some
modelling assumptions if we wish to make progress. The key tool that has
arisen for doing this is the emulator, or meta-model.

3 Emulation
If the simulator, f(θ), is expensive to evaluate, we can instead try to find
an approximation, f̃(θ), called an emulator or meta-model, which provides
a good approximation to f(θ), but which is computationally cheap (Sacks
et al., 1989; O’Hagan, 2006). We can then either use f̃ to answer the question
of interest (e.g., calibrating the simulator), or use it to guide the choice of
the next parameter value at which to evaluate f .

We start by generating an ensemble of simulator evaluationsD = {θi, f(θi)}Ni=1,
which we then use to build f̃ . Building an emulator is a regression problem,
and consequently a myriad of different techniques have been used, including
linear regression and its variants, neural networks, and Gaussian processes
(GPs, also known as Kriging), with GPs proving the most popular class of
model thus far. The functional form of the simulator is not known a priori,
and so neither is the best regression model, but a reasonable approximation
can usually be found using GPs, as long as the response is a smooth con-
tinuous function of θ. For the purposes of calibration, the key properties
of any emulator are predictive accuracy, quantification of uncertainty in the
predictions, and speed of prediction. In climate science, where the output
fields being modelled are often spatio-temporal fields, the regression model
is usually combined with a dimension reduction technique, to project the
output onto a lower dimensional manifold (Higdon et al., 2008; Holden and
Edwards, 2010; Wilkinson, 2010).
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3.1 Sequential history matching

For many problems, the plausible set Pθ may constitute only a small fraction
of the prior space Θ. Furthermore, Pθ may consist of multiple disconnected
regions. For Monte Carlo methods, this can make designing an effective sam-
pler difficult, as MCMC chains (or particles) can fail to explore all plausible
regions. For emulator methods, the difficulty lies in building a model that can
approximate the simulator in all regions of space. For example, stationary
covariance functions that assume a constant length-scale throughout space
are commonly used in GPs, and may be inappropriate. Other problems arise
if f(θ) varies over too wide a range, which is common if f(θ) is a likelihood
function (Wilkinson, 2014). If we need to an emulator of f(θ) that is valid
in all of Θ, then we can look to use a non-stationary covariance function or a
more flexible model such as a treed-GP (Gramacy and Lee, 2008). However,
for calibration, we only need approximate the simulator when f(θ) is close
to being plausible. In other parts of parameter space, it is only necessary to
say θ is implausible with a high degree of confidence. It does not matter if
an estimate of f(θ) is poor, as long as we are correct in saying f(θ) 6∈ PC.

GP predictions are more accurate in regions rich in data. Thus, the key
issue when building a GP emulator is the choice of the design points, Dθ =
{θi}ni=1, at which we evaluate the simulator. Space filling designs, such as
maximin Latin hypercubes (McKay et al., 2000) or low discrepancy sequences
(such as Sobol sequences, Morokoff and Caflisch, 1994) are the default choice
of design, and usually lead to reasonable global approximations. But they
are less well suited to calibration problems, in which we usually want to focus
on just a small region of parameter space.

Instead of a space filling design, we can seek to build the design sequen-
tially: given the current design, we build an emulator that describes our
current knowledge of f(θ). We then use the emulator to decide where next
to run the simulator, and so on. The basic idea is as follows:

1. Start with an a priori plausible set P(0)
θ = Θ.

2. Choose design D(1)
θ = {θi ∈ Θ : i = 1, . . . , n1}, and run the simulator,

to get ensemble D(1) = {(θi, Ci = f(θi) : θi ∈ D(1)
θ }.

3. Build emulator f̃(1) and use it to predict the plausible set P̃(1)
θ .

4. Choose new design points D(2)
θ , and run the simulator to get D(2).

5. Build emulator f̃ (2) and use it to predict the plausible set P̃(2)
θ .

6. Etc.
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The details of each step vary in each problem. The plausibility crite-
ria are usually defined so that they become more stringent at each iter-
ation. The first plausibility condition P(1)

C may be relatively weak, with
P(1)
C ,P(2)

C , . . . ,P(W )
C slowly approaching the final desired criterion P(W )

C . If
the difference between P(i)

θ and P(i+1)
θ is too large, we may find the emula-

tor accuracy is insufficient, causing us to incorrectly rule-out some regions of
space (type-I errors). The plausibility criteria can be relaxed by changing the
number of measurements we need to match, and the closeness of the required
match. Note the superficial similarity to SMC-ABC approaches, in that the
approximation is iteratively improved as we learn.

The emulator used at each stage may be based upon all the previous
simulator runs, adding new data points in important regions (see below for
details), or it can be built from scratch. For example, in Vernon et al. (2010)
they build an emulator, f̃ (i), to predict f(θ) for θ ∈ P(i−1)

θ , the estimated
plausible region from the previous iteration. The emulator is not required
to predict for θ 6∈ P(i−1)

θ . The benefit of this is that the simulator response
is likely to be less variable within P(i−1)

θ than in Θ, making it easier to
model. The disadvantage is that if some regions are incorrectly ruled to be
implausible in iteration i− 1, this mistake can never be rectified.

The most important algorithmic decision is the choice of design, D(i)
θ , at

each iteration, i.e., given an emulator, how should we choose locations θ at
which to run the simulator? If we only wish the emulator to predict well in
P(i−1)
θ , then we only need a design in P(i−1)

θ . Vernon et al. (2010) take the
approach of seeking to use a space filling design on P(i−1)

θ , such as a Latin
hypercube. To do this, they create a large design on Θ and then reject any
point not predicted to lie in P(i−1)

θ by f̃ (i), which is also the approach we
describe in Section 4. If we instead seek a global emulator valid for all θ ∈ Θ,
but which is accurate in the important regions, then it can be beneficial to
add simulator runs to the design one at a time. The critical regions are
those where the emulator is most uncertain about whether θ ∈ Pθ. This is
typically either in regions for which we have no data, or near the edge of
the plausible region where we are unsure if θ ∈ Pθ or not given the accuracy
of the emulator. If we use a GP emulator, then our prediction of f(θ) is
Gaussian:

f(θ) ∼ N(µ(i)(θ),Σ(i)(θ))

where µ(i) and Σ(i) are the mean and covariance function of f̃ (i). This allows
us to calculate the probability that θ ∈ Pθ. For example, if our criterion is
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that θ is plausible if D− ≤ f(θ) ≤ D+, then

p(θ) = Pf̃ (i)(θ ∈ Pθ) = Φ

(
D+ − µ(θ)

Σ(θ)
1
2

)
− Φ

(
D− − µ(θ)

Σ(θ)
1
2

)
.

In some regions p(θ) will be close to zero, indicating that we are confident
that θ is implausible, and in others close to one, indicating the converse. It
is regions in which we are most uncertain, that we wish to target, as these
represent parameter values that we can neither rule in nor out. One approach
to selecting new design points is to choose points to minimize the entropy of
this surface (Hennig and Schuler, 2012; Chevalier et al., 2014). The entropy
represents how close to certain knowledge we are. If we let H̄ be the average
entropy of the emulator prediction of the plausibility surface:

H̄ =

∫
−p(θ) log p(θ)− (1− p(θ)) log(1− p(θ))dθ

then we can ask, if we were to add a simulator evaluation at θ, what is the
expected value of H̄ given the expected resulting information? We can then
add θ to the design in order to minimize E(H̄|D(i−1) ∪ {θ}). This approach
places new points in regions that most quickly reduce the uncertainty about
the plausible region Pθ.

3.2 A simple climate example

As an illustration of the potential benefit of these techniques, we consider a
relatively simple two-box climate simulator (Emanuel, 2002), which models
atmospheric and ocean heat transport and storage, with water vapour as a
positive feedback. The simulator is useful for the purposes of demonstration,
as 10 years of model time takes approximately 5 seconds of CPU time, allow-
ing a large number of model runs to be done. Matlab code for this simulator
is available online.

We present the results of a simple history-matching task, calibrating two
parameters: DTcrit_conv, the critical vertical temperature gradient that
triggers convection, which we allowed to vary in the range [30, 50]; and
GAMMA, the emissivity parameter for water vapour, which we varied in the
range [1, 2]. We try to find the parameter values that give a global surface
temperature between 294.5K and 295.5K once the model is in equilibrium.
The CO2 concentration was set to 560ppm, and all other parameters were
set to their default values (EPm, 2010). These choices are arbitrary and only
intended for illustration of the methodology.
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Applying a simple ABC rejection algorithm and allowing for 1000 sim-
ulator evaluations gave us 106 accepted parameter values, which are shown
in the left-hand plot in Figure 1, with the red points showing the 10 values
accepted after only 100 simulator evaluations. In contrast, the middle and
right-hand plots shows the result of using a GP emulator with a maximin
Latin hyper-cube (MLH) design of 10 and 30 simulator evaluations. After
10 simulator evaluations, the emulator has some idea of where the plausible
region is, but with errors for example in the bottom right hand corner. After
30 simulator evaluations it has accurately found all of the plausible region,
with just a little uncertainty at the edge of the region (shown by the grey
shading).

This approach, however, relies upon finding a good design. If an accurate
emulator results, then it will do well at predicting the plausible region. Here
we can see, in the case where we had only 10 design points, that no informa-
tion is available about the bottom right hand corner of the parameter space,
and consequently the model does less well there. As the design is chosen
in advance of the simulations being run, finding a good design involves an
element of luck.

If we instead use a sequential design and add design points one at a time
in order to minimize the expected average entropy of the resulting history-
match, then we can significantly improve the speed with which we find Pθ.
The two plots in Figure 2 show the resulting history match after 4 and 10
simulator evaluations. After only 10 simulator evaluations, we have found
Pθ with superior accuracy to that found after 30 simulator evaluations using
the MLH design.

Note that the acceptance rate in the ABC algorithm was approximately
10%, considerably higher than in most problems (we had a 1% acceptance
rate in the case study described in Section 4). As the acceptance rate de-
creases, the value of using an emulator to predict Pθ increases, as the emu-
lator is able to predict where the plausible region is, whereas ABC can only
find the region by chance, as it uses no information about the shape of the
underlying surface. In contrast, the major advantage of the Monte Carlo
approach is that it is less prone to errors (although mixing errors commonly
occur in practice), unlike the emulator approach, which can mislead if the
fitted model is inaccurate, and thus requires careful supervision.

12



4 Climate model case study

4.1 The global carbon cycle

Human emissions of CO2 into the atmosphere are a principal cause of cli-
mate change. However, this “anthropogenic” CO2 does not remain in the
atmosphere indefinitely. It is taken up by vegetation and by the oceans, and
eventually (after many thousands of years) it is deposited as carbonate sedi-
ments at the ocean floor. Understanding these processes is crucial for future
climate projections. Climate change is driven by changes in CO2 concentra-
tion and it is therefore determined by the interplay between anthropogenic
emissions and the carbon cycle. Many carbon cycle processes are highly un-
certain. Projections of year 2100 CO2 concentrations from different Earth
System Models (ESMs) driven by the same assumption of future emissions
typically vary by ±100 ppm (Friedlingstein et al., 2006). This uncertainty
range is greater than the total increase to date (2015) due to all historical
anthropogenic emissions (∼ 120 ppm)

To investigate uncertainties in the global carbon cycle we need a model of
appropriate complexity that is capable of resolving the important processes
but which is sufficiently numerically efficient. The GENIE-1 intermediate
complexity ESM (Holden et al., 2013a) is one such model. The computa-
tional speed of GENIE-1 comes mainly from the use of a very simple 2D
model of the atmosphere and relatively coarse model resolution (grid cells of
∼ 1,000 x 1,000 km). The carbon cycle of GENIE-1 comprises a terrestrial
carbon model, a 3D dynamic ocean, dynamic sea ice, ocean biogeochemistry
and ocean sediments. Given appropriate model parameter choices, GENIE-1
simulates realistic spatial distributions of carbon storage in vegetation, soil,
ocean and carbonate sediment. However, the future response of the climate
cycle to ongoing emissions depends upon the specific parameter choices, and
will vary even amongst parameter sets that have been constrained to produce
similar (and reasonable) modern climate states. To quantify this uncertain
response we require an ensemble of simulations that samples widely from
plausible input parameter space.

The timescales for different carbon cycle processes vary considerably.
Equilibrium timescales are ∼ 10’s years for vegetation, ∼ 100’s years for
soil, ∼ 1, 000’s years for the ocean and ∼ 10, 000’s years for carbonate sed-
iments. In order to simulate an Earth with a carbon cycle in approximate
equilibrium (i.e. prior to human interference), a simulation of at least 10,000
years is required1. Although several orders of magnitude faster than than

1Shorter spin-ups are sufficient for models that neglect sediments.
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state-of-the-art ESMs, GENIE-1 requires ∼ 4 CPU days to simulate 10,000
real years. The exploration of high-dimensional input space and identifica-
tion of plausible subspaces is therefore a highly demanding computational
problem, which we address through emulator-informed ABC.

4.2 Emulator-informed ABC design

The philosophy of the design approach is to vary key model parameters over
the entire range of plausible values and to accept those parameter combina-
tions that lead to climate states that cannot be uncontroversially ruled out
as implausible (Edwards et al., 2011). We are seeking to explore all plausi-
ble simulator realisations in order to capture the range of possible feedback
strengths. The input ranges we apply, Θ, are generally broader than ranges
that are applied in model tuning exercises. This is in part to enable us to
fully quantify model behaviour over plausible parameter space, Pθ, and in
part to improve the validity of the ensemble for application to diverse climate
states, such as the Last Glacial Maximum.

The experimental set-up is described in Holden et al. (2013b). We varied
24 model parameters in the ensemble. The choice of parameters was gov-
erned by consideration of the processes that are thought to contribute to
the natural variability of atmospheric CO2 on glacial-interglacial timescales
(Kohfeld and Ridgwell, 2009) and hence to which the distribution of car-
bon may be sensitive in general. Five atmospheric parameters were varied.
These parameters control the spatial distribution of simulated temperature
and precipitation, and hence drive changes in vegetation, sea-ice coverage
and ocean circulation. Five parameters were varied in the vegetation model,
controlling photosynthesis and respiration rates. Five ocean parameters were
varied. These control ocean circulation, and hence the spatial distribution
of carbon, alkalinity, dissolved oxygen and nutrients in the ocean. Sea-ice
diffusivity was varied, primarily because of its effect on ocean circulation by
altering the transport of freshwater. Nine ocean biogeochemistry parameters
were varied. These parameters drive changes in the rates of atmosphere-
ocean gas exchange, plankton photosynthesis and the remineralisation of the
organic products of this photosynthesis. The rate of remineralisation controls
the transport of carbon from the surface of the ocean to the deep.

A 500-member ensemble of 25,000-year simulations was first performed
using a maximin Latin hypercube (MLH) design2. The plausibility of each

2We note that while efficiencies can be gained in certain applications by initialising each
ensemble member with output from an existing equilibrium simulation, such an approach
is not likely to be useful here as our approach is designed to sample widely differing Earth
system states.
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simulator run was evaluated using eight different output quantities, usually
termed metrics in the climate literature. These simple metrics impose no
constraints on the spatial distribution of modelled outputs. They instead
provide global-scale constraints on atmosphere (global average temperature),
ocean (strength of North Atlantic overturning and Antarctic Deep Water
formation), Antarctic sea-ice coverage, global vegetation carbon, global soil
carbon, ocean biogeochemistry (average dissolved oxygen concentration in
the global ocean) and ocean sediments (the average percentage of CaCO3 in
the surface sediment). Only four of the 500 MLH simulations were found
to satisfy all eight plausibility constraints, which given that dim θ = 24, is
insufficient for any meaningful statistical analysis. The MLH ensemble took
more than ten years of computing to complete, demonstrating that a naive
application of ABC is infeasible for this application.

As described in Section 3, we can use emulators to guide the search to find
plausible regions of parameter space. Regression-based emulators, including
linear and quadratic terms, were built for each of the eight metrics (outputs)
specified above. Prior to fitting, variables were linearly mapped onto the
range [-1,1] so that odd and even terms were orthogonal, aiding variable
selection. The models were built using a stepwise model selection scheme,
initially using the Akaike Information Criterion as the selection criterion,
and then subsequently shrunk further by applying the more stringent Bayes
Information Criterion. This procedure of first growing the model beyond
the BIC constraint and then shrinking helps to avoid local minima in the
stepwise search.

Parameters were then sampled uniformly from the a prior plausible region
and the emulators used to predict if they would lead to plausible simulations.
Parameters were accepted as potentially plausible when the emulators pre-
dicted plausible values for all eight metrics. The plausibility ranges used
were based on the observed climate record, the simulator discrepancy, and
the emulator accuracy. Each accepted parameter combination was then used
as a design point in a further simulation.

As simulations completed, the emulators were rebuilt using the addition-
ally available data. This process progressively improved the success rate of
the emulator predictions (i.e. the percentage of emulator predicted plausible
parameters that led to plausible simulations) from 24% to 65%. In total,
the simulator was run for 1,000 parameter values predicted to be plausible
by the emulator. This produced 885 completed simulations of which 471
were plausible (the remaining 115 simulations terminated before completion,
a common occurrence with climate simulators). This 471-member plausible
set forms the Emulator Filtered Plausibility Constrained (EFPC) ensemble.
The generation of these simulations required a further 25 years of computing

15



time. Without the ∼ 50-fold increase in efficiency gained by using an emu-
lator to predict the plausible region, this would have required an infeasible
amount (more than 1000 years) of CPU time.

While it is clear that ABC strongly constrains the outputs (metrics) that
are explicitly filtered for, it is worth noting that it indirectly constrains all
aspects of the Earth system and leads to improved simulated magnitudes
and spatial distributions of state variables generally. Figure 3 provides an
illustrative output of the EFPC ensemble, and of the benefits of the ABC
filtering. The figure illustrates cross-sections of ocean alkalinity through the
Atlantic and Pacific oceans, comparing ensemble means of the unfiltered
MLH simulations (left) and filtered EFPC simulations (centre) with observa-
tional data (right). Ocean alkalinity exerts a strong control on atmospheric
carbon dioxide by determining the degree to which dissolved carbon diox-
ide is dissociated into bicarbonate and carbonate ions, in turn determining
the rates of exchange of dissolved carbon in the ocean with the atmosphere
(carbon dioxide) and the sediments (calcium carbonate). Alkalinity is not
directly constrained by the ABC metrics, but its distribution is influenced
by them, for instance through the constraints imposed on ocean circulation
strength and the sediment carbonate concentration. Relative to the MLH en-
semble, the EFPC ensemble shows elevated surface concentrations, decreased
concentrations in the deep Atlantic (apparently associated with the Atlantic
overturning circulation in the unfiltered ensemble) and increased penetration
of high alkalinity towards Southern latitudes in the deep Pacific. Although
discrepancies with observations remain, which may reflect structural deficien-
cies in the simulator, each of these trends produces better ensemble-averaged
agreement with the observed distribution.

4.3 Applications

Although the use of ABC to derive a posterior distribution is useful in itself,
our primary motivation is to identify a set of plausible parameters for appli-
cation to diverse simulation problems. The EFPC parameter set has been
used in a range of experiments, considering both past and future climate
change. For clarity, it is worth emphasising that while these experiments
did not use ABC directly, they were all rendered tractable by the use of
emulator-informed ABC to design the underlying simulation ensemble. A
selection of these experiments are summarised below, each with a focus on a
different category of application.
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4.3.1 Probabilistic simulation outputs: the uncertain response of
the carbon cycle to anthropogenic CO2 emissions

We (PBH and NRE) contributed a suite of carbon cycle experiments for the
Fifth Assessment Report (AR5) of the Intergovernmental Report on Climate
Change (IPCC). Fifteen Intermediate Complexity ESMs from around the
world performed these experiments. The focus was on historical change (Eby
et al., 2013) and long-term future change (Zickfeld et al., 2013), considering
long timescale problems that are not tractable by state-of-the-art ESMs, thus
requiring the use of reduced complexity models such as GENIE-1. Forty seven
experiments were performed.

We applied a subset of the EFPC parameter set, in part to aid compu-
tational tractability, in view of the 47 separate experiments required, and in
part to eliminate a bias in the transient response of the ensemble. The EFPC
parameter set is constrained to simulate a plausible preindustrial climate,
but no constraint was imposed upon the dynamic response to anthropogenic
emissions. Four important model parameters were not constrained by prein-
dustrial plausibility, two relating to cultivated vegetation (deforestation for
agriculture was neglected in the preindustrial simulations), a parameter con-
trolling the direct effect of CO2 on photosynthesis (“CO2 fertilisation”, see
following section) and a parameter controlling the uncertain effect of clouds
on the Earth’s radiation budget in a warmer planet. The dynamic response
was therefore filtered through a historical forcing experiment, which imposed
anthropogenic forcing, including CO2 emissions, since preindustrial times in
an EFPC ensemble of transient simulations. Twenty parameter sets, selected
at random from the EFPC parameter sets, but constrained to approximately
reproduce the present day atmospheric CO2 concentration, were accepted
and applied to the IPCC experiments.

We do not attempt to summarise the results of these extensive multi-
model comparisons here, but note that the GENIE-1 perturbed-parameter
ensemble was found to provide an unbiased representation of the multi-model
ensemble, being approximately centred on the mean of the fifteen models and
with comparable uncertainty. These uncertainties were presented in a related
model intercomparison paper (Joos et al., 2013).

4.3.2 Calibrating model parameters: the strength of the terres-
trial carbon sink

The IPCC experiments revealed a general tendency of intermediate com-
plexity ESMs to understate the magnitude of the terrestrial carbon sink (the
anthropogenic CO2 taken up by vegetation on land). The major uncertainty
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in the terrestrial sink relates to CO2 fertilisation. Experimental evidence
almost without exception shows a stimulation of leaf photosynthesis when
plants are exposed to elevated CO2 (Körner, 2006). In addition to this direct
affect on photosynthesis, the short time-scale physiological effect of reduced
stomatal opening increases water-use efficiency and additionally increases the
efficiency of photosynthesis (Field et al., 1995). However, the strength of the
fertilisation effect is poorly quantified, especially under natural conditions.
Some studies have failed to detect a measurable effect in nature, while others
suggest that any effects may be short term, as CO2 is only one of a number
of potentially limiting factors on plant growth (Körner, 2006).

We addressed this calibration problem in Holden et al. (2013a). Using
output from a 671-member ensemble of transient GENIE-1 simulations de-
rived from the EFPC parameter sets we built an emulator of the change in
atmospheric CO2 concentration change since the preindustrial period. We
then applied this emulator to sample the 28-dimensional input parameter
space. A Bayesian calibration suggests that the increase in gross primary
productivity (GPP) in response to a doubling of CO2 from preindustrial val-
ues is very likely (90% confidence) to exceed 20%, with a most likely value
of 40-60%.

4.3.3 Model understanding: what determines the spatial distri-
bution of dissolved carbon in the ocean?

In Holden et al. (2013b) we applied the EFPC ensemble to a transient ex-
periment over the recent industrial era (1858 to 2008 AD). The temporal
evolution of atmospheric CO2 and its isotopic composition are known from
observational data, and these simulated quantities were made to follow the
observations through a relaxation term. The objective of the experiment
was to better understand the mechanisms by which the anthropogenic CO2

emissions are taken up by the ocean.
To achieve this, we analysed the change in distributions of ocean concen-

trations of dissolved inorganic carbon (DIC) and its stable isotope δ13C, con-
sidering two-dimensional latitudinal-vertical transects through the Atlantic
and Pacific. These two transects were combined into a single vector for each
simulation (to ensure inter-basin effects were consistently represented), and
these vectors were combined into an ensemble matrix. Singular vector de-
composition was applied to the DIC and δ13C matrices in order to extract
the dominant modes of their spatial variability across the ensemble. Emula-
tors of the component scores elicited further understanding of these modes
by identifying which model parameters were driving each mode of variability.

This, together with physical interpretation of the spatial patterns of each
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mode, enabled us to identify the principal processes driving them, on the
assumption that the dominant parameters governing uncertainty in the re-
sponse of each mode could be identified with the most important parame-
terised processes controlling the respective modes. We showed that the main
processes governing the uptake of anthropogenic CO2 and δ13C are quite
distinct: an important conclusion because observations of the isotopic com-
position are used to infer rates of ocean CO2 uptake. Uncertainty in anthro-
pogenic δ13C uptake is dominated by air-sea gas exchange, which explains
63% of modelled variance. This mode of variability is largely absent from the
ensemble variability in CO2 uptake, which is instead driven by uncertainties
in mixing rates between the surface and deep oceans.

4.3.4 Coupling applications: coupling climate models and climate
change impact models

The evaluation of climate impacts requires coupling climate models, im-
pact models and economic models together within an “Integrated Assessment
Model” (IAM) framework. In such couplings, climate data (e.g. regional tem-
perature, precipitation) are passed to the IAM for computation of climate
impact functions, and the IAM passes back anthropogenic forcing (such as
CO2 emissions or land use change). Computational demands mean that it
is generally infeasible to couple complex climate models into IAMs. Various
approaches are taken to address this, using either simplified models or statis-
tical representations of more complex models. Recently, effort has focussed
on the use of emulators of climate models as surrogates for the simulator in
these coupling applications.

Economic models provide projections of CO2 emissions. They typically
convert emissions into concentrations through the use of simple “box-models”,
describing rates of carbon transfer between the atmospheric, terrestrial and
oceanic reservoirs. We have recently applied the EFPC parameter set to
build an emulator of the GENIE-1 carbon cycle model for incorporation
into integrated assessment models (Foley et al., in prep). An 86-member
subset of the EFPC parameter set was used to generate an ensemble of
future climate-carbon cycle experiments, with future emissions prescribed as
modified Chebyshev polynomials.

The emulation approach followed the “1-step” dimensionally-reduced em-
ulation methodology of Holden et al. (in press), emulating a singular value
decomposition of the ensemble outputs. Emulators of the first four com-
ponent scores were derived as functions of the 28 model parameters and
the 6 concentration profile coefficients. The emulator outputs are, unsur-
prisingly, dominated by the Chebyshev coefficients. However, uncertainty
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for a given forcing scenario is generated through emulator dependencies on
GENIE-1 parameters. The resulting carbon cycle emulator has been coupled
into an integrated assessment framework that also includes a macroeconomet-
ric model of the global economy E3MG (Mercure et al., 2014), an agent-based
model of technology substitution dynamics FTT-power (Mercure, 2012) and
a spatiotemporally resolved emulator of the climate system (Holden et al.,
2014). We have applied the framework to assess the impact on the climate
of emissions reduction policies in the electricity sector (Mercure et al., 2014),
addressing the cascade of uncertainty through the coupled system.

5 Future applications
It may never be possible to apply statistical approaches to robustly calibrate
a truly state-of-the-art climate simulator. They are defined by the limits of
available computing power, and consequently very few simulations are pos-
sible with these models. This begs the important question of how far could
one go with simulator complexity and still be able apply these methods. We
have demonstrated the application of emulator-informed ABC to generate a
471-member ensemble of a model that takes ∼ 10 days to perform each simu-
lation. The computational constraints ultimately determined the number of
parameters we could vary; a rule of thumb dictates that we use a minimum of
10 ensemble members for each varied active input (Loeppky et al., 2009). It
is worth noting that a useful ensemble varying only, say, 5 parameters would
need ∼ 50 simulations, and could have been achieved for a 10-fold slower
model.

The improvements in methodology demonstrated in Section 3.2, suggest
efficiencies that should significantly extend the applicability of the approach.
The use of GP emulation generally allows a better statistical model than lin-
ear regression, and therefore would be expected to improve the success rate
of the emulator filtering. This will certainly be the case when a parametric
mean function is used and the GP is applied only to emulate the residual.
The uncertainty estimates provided by the GP should also improve the suc-
cess rate of the emulator filtering, for instance, by only accepting parameters
for which there is a high probability of plausibility. Furthermore, a signifi-
cant improvement arises from the use of a sequential design process, which
was shown to yield a 3-fold increase in efficiency in our example. For more
complex simulators, we will want to make use of parallel computation. The
sequential approach then changes from adding one design point at a time, to
adding d, where d is the number of available cores. Finding the d optimal
points that minimize the expected entropy is difficult, and is an area of ac-
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tive research, but even suboptimal designs can give significant improvements
over the default space-fillings designs. For stochastic simulators, many of the
same techniques can be applied. The likelihood function now needs to be
estimated, significantly increasing the difficulty, but progress is being made
in this direction (Oakley and Youngman, 2014; Meeds and Welling, 2014;
Wilkinson, 2014; Gutmann and Corander, 2015).

These improvements in efficiency should render application to “previous-
generation” ESMs such as HadCM33 tractable on multi-node computing clus-
ters, certainly so on distributed computing systems such as climatepredic-
tion.net, which last year facilitated more than 7,500 years of climate mod-
elling on the personal computers of the general public.
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Figure 1: Left: Accepted samples from the rejection ABC algorithm after
100 (red) and 1000 (green) simulator evaluations. Middle and right: The
estimated plausible region using an emulator trained with a maximin Latin
hypercube design (points shown in blue) with 10 (middle) and 30 (right)
simulator evaluations. The shading indicates the estimated value of P(θ ∈
Pθ). The contour lines are the estimated response surface f(θ).
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Figure 2: Results from using an entropy based sequential design. The left-
hand column shows the estimated response surface (contours) and P(θ ∈ Pθ)
(shading), with the design points overlaid. The large red point is the most
recently added point. The right-hand column shows the entropy surface.
The top row uses four simulator evaluations, and the bottom row uses 10
simulator evaluations, all added according to the entropy criterion.
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Figure 3: Cross-sections of ocean alkalinity through the Atlantic (25◦W) and
Pacific (155◦W) oceans. The figure compares the mean of the training MLH
ensemble (left panels) and the plausibility filtered EFPC ensemble (centre
panels) with observations (right panels).
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