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Abstract. The use of hyper-heuristics is increasing in the multi-objective
optimisation domain, and the next logical advance in such methods is
to use them in the solution of many-objective problems. Such problems
comprise four or more objectives and are known to present a significant
challenge to standard dominance-based evolutionary algorithms. We in-
corporate three comparison operators as alternatives to dominance and
investigate their potential to optimise many-objective problems with a
hyper-heuristic from the literature. We discover that the best results are
obtained using either the favour relation or hypervolume, but conclude
that changing the comparison operator alone will not allow for the gen-
eration of estimated Pareto fronts that are both close to and fully cover
the true Pareto front.

1 Introduction

As the field of hyper-heuristic research matures, attention is moving from solving
problems requiring the optimisation of a single objective to those comprising two
or more objectives. A recent paper [14] proposed a multi-objective extension of a
single-objective algorithm that identifies good sequences of heuristics to apply to
a given problem. The original single-objective algorithm updates the transition
probabilities that govern the selection of the next heuristic using the raw fitness
value, and in the multi-objective extension this was replaced with a dominance-
based approach.

Though such multi-objective problems are prevalent, it is well known that
optimisation problems often comprise a large set of objectives that must be si-
multaneously optimised [10]. Problems with four or more objectives are often
called many-objective problems. Using dominance-based multi-objective algo-
rithms to solve many-objective problems is generally problematic, as the domi-
nance relation does not scale well to even relatively small numbers of objectives;
solutions quickly become incomparable, as they are considered equivalent under
dominance. A considerable amount of research in the evolutionary computation
field has been devoted to the investigation of evolutionary algorithms that are
capable of solving many-objective problems. These generally take one of two
approaches: either some of the problem objectives must be discarded so that a
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standard multi-objective EA can be employed, or an alternative to the domi-
nance relation must be found. To our knowledge, no work in the hyper-heuristic
field has considered many-objective problems. In this paper, we begin to investi-
gate many-objective test problems [4], considering problems comprising four, five
and six objectives. We take inspiration from work on dominance alternatives and
consider indicators to investigate how useful they are when incorporated into a
recent multi-objective hyper-heuristic, such that the indicator replaces the dom-
inance relation for comparing solutions.

The remainder of this paper is organised as follows. Some relevant background
material is presented in Section 2 before the indicators we examine are introduced
in Section 3. Section 4 presents our experimental setup, and results are discussed
in Section 5. We discuss our conclusions and future work in Section 6

2 Background

2.1 Many-objective Optimisation

In the last decade research on many-objective optimisation has increased rapidly.
A solution x to an arbitrary many-objective optimisation problem is described
by an M -dimensional objective vector y, such that M ≥ 4:

y = (f1(x), . . . , fM (x)). (1)

Evolutionary algorithms are known to generate good solution sets to multi-
objective problems. Such algorithms often use the dominance relation to com-
pare the relative quality of two solutions. With the advent of research into many-
objective optimisation it has been known that dominance does not scale well to
compare many-objective solutions. As the number of objectives increases, so does
the likelihood that two solutions will be equivalent; given just a 5-objective prob-
lem, and a uniform distribution of solutions, solutions residing in approximately
95% of objective space will be incomparable under dominance.

Various approaches have been taken to address the inability of dominance-
based MOEAs to optimise many-objective problems. Generally, these approaches
either involve finding an approach that can compare solutions described by a
large number of objectives [3] or identifying redundant objectives that can be
discarded so that a standard dominance-based MOEA can be used. This work
takes the former option, and we consider three approaches to comparing many-
objective solutions; these are described in Section 3.

2.2 Hyper-heuristics

Hyper-heuristics are techniques that identify low-level heuristics that generate
good solutions to optimisation problems. They operate above the domain barrier,
meaning that they optimise the heuristics, rather than the solutions to a given
optimisation problem, and require no problem-specific information to function.



They have been applied in a wide range of problem domains, often solving com-
binatoric problems but also in the continuous domain, to great success. Hyper-
heuristics are either generative or selection-based. A generative hyper-heuristic
creates novel low-level heuristics, such as mutation or crossover operators, that
are tailored to work on a specific type of problem. In this work we only con-
sider selection-based methods, which operate with a pre-defined pool of low-level
heuristics and identify those that are well suited to a specific problem domain.

A central part of a selection hyper-heuristic is the mechanism by which the
next low-level heuristic to apply is chosen. Common methods are random selec-
tion, selection with choice function, and more recently Markov-based methods.
In this work we employ an algorithm based on a hidden Markov model [14], which
is described later. A recent survey of hyper-heuristic approaches is provided in
[2].

The use of hyper-heuristics within many-objective optimisation has received
very little attention. Some studies have used them to solve multi-objective prob-
lems. One recent example was [13], which employed a reinforcement learning-
based Markov chain approach to solving continuous multi-objective problems.
Another approach incorporated the hypervolume indicator [8] into the move ac-
ceptance strategy of a hyper-heuristic and applied it to solve multi-objective
test problems [11] [12]. [9] presented a multi-objective hyper-heuristic designed
to operate in the realm of search-based software engineering; their algorithm was
based on NSGA-II, and used choice function in concert with a multi-armed ban-
dit to select low-level heuristics. With the exception of the hypervolume example,
these methods rely heavily on dominance; as discussed earlier, we hypothesise
that these approaches will not scale well to deal with many-objective problems,
and we discuss potential ways of addressing this issue in the next section.

3 Indicators

Since the discovery that standard, dominance-based, evolutionary optimisers do
not provide sufficient selective pressure to locate an acceptable estimate of a
many-objective problem’s Pareto front [7] significant research efforts have been
spent investigating alternatives to dominance. Three that are considered in this
study are hypervolume [8], the favour relation [5], and an indicator based on the
average rank method [1].

3.1 Hypervolume

An early contribution, which remains one of the principle indicators of solution
quality is the hypervolume [8]. The hypervolume is the dominated space between
a solution (or solutions) and a pre-defined reference point. Hypervolume has
been used as an indicator in a range of studies, including a recent work in
which it was incorporated into the acceptance strategy of a hyper-heuristic [11].
That work considered continuous multi-objective test problems, however was
restricted to 2-objective problems only. Though the hypervolume scales to any



number of objectives, it is often restricted to problems with low numbers of
objectives because of its computational complexity when calculated exactly for
a population (though it can be estimated accurately with Monte Carlo sampling
[6]). This work is not hindered by such complexity issues, as the calculation is
trivial for a single solution.

3.2 Favour relation

Given two solutions yi and yj , the favour relation [5] determines which is the
fitter solution in terms of which is dominant on the most objectives. More for-
mally:

yi <f yj ⇔ |{m : yim < yjm}| > |{m : yjm < yim}|. (2)

We incorporate the favour relation as a direct replacement for dominance, such
that transition probabilities and the parent solution for the next generation are
updated if the current parent solution does not favour its child.

3.3 Average Rank

Many of the dominance alternatives that have been proposed in the literature
are based on population ranking. The MOSSHH algorithm is a point-based ap-
proach, and thus has no population that can be ranked. That said, it does have
an external archive of non-dominated solutions that can be ranked, we use it in
combination with the average rank method [1].

Given a population Y = {yi}Ni=1 of solutions, the solutions are ranked M
times, once according to each objective such that rim is the rank of the i-th
solution on the m-th objective. The average rank r̄i is then computed with:

r̄i =
1

M
rim. (3)

In order to use this formulation as an indicator we calculate the average rank
of the elite archive. The indicator returns 1 if the rank of the new solution is
superior to its parent, and 0 otherwise. It is necessary to ensure that the child
has been added to the archive, however due to the formulation of the algorithm
described shortly, it is not possible to evaluate the indicator if the child has not
been added to the archive.

4 Experiments

In order to determine the usefulness of the indicators outlined in Section
3 we now incorporate them into a hyper-heuristic to compare them against
the dominance-based approaches that has been shown to work well for multi-
objective problems comprising two or three objectives. We employ a selection
hyper-heuristic called MOSSHH [14], in which sequences of low-level heuris-
tics that lead to good solutions are identified. A transition probability matrix is



Algorithm 1 MOSSHH

1: x, hc, A,B = initialise()

2: E = initialise archive() Initialise the archive.
3: repeat
4: hp = hc

5: hc = select(A, hp) Choose the next heuristic
6: AS = select(B, hc) Set the acceptance strategy
7: record(hp, hc, AS) Record the current heuristic
8: x′ = apply(x, hc) Apply the heuristic to the current solution
9: if AS == 1 then

10: E = update archive(E, f(x′)) If acceptance strategy was met update archive
11: if ¬I(f(x), f(x′)) then
12: x = x′ If the indicator is true replace the parent with the child
13: if archived(f(x′)) then
14: update probabilities()

15: end if
16: end if
17: clear records()

18: end if
19: until termination criterion met

maintained, which governs the transition from one low-level heuristic to another,
and each heuristic has an acceptance strategy, which determines the likelihood
that the solution generated by a given heuristic will be accepted. Both transi-
tion probabilities and acceptance strategies are learned using an online learning
process.

The indicator-based multi-objective sequence-based hyper-heuristic (MOSSHH)
[14] algorithm is described in Algorithm 1. The algorithm begins by initialising
a random parent solution, choosing a starting low-level heuristic, and initialising
the transition probability and acceptance strategy matrices uniformly (Line 1).
An empty elite archive is initialised (Line 2). The first stage in each iteration
of the iterative process is to select the next low-level heuristic and acceptance
strategy using the current low-level heuristic (Lines 4-6). The chosen values are
recorded (Line 7), in case the current sequence of low-level heuristics is iden-
tified as being useful, and the new low-level heuristic is applied to generate a
new solution (Line 8). If the acceptance strategy is met (AS == 1) then the
solution’s objective values are evaluated and the archive is updated. Any solu-
tions dominated by the new solution are discarded, and if the solution itself is
not dominated by the archive then it is added to it (Line 10). At this point,
the parent and child solutions are compared using one of the indicators. If the
indicator deems that the child is superior to the parent, then the child solution
succeeds the parent solution as the parent in the next generation. Otherwise,
the current parent solution is retained. If the solution was added to the archive,
then the sequence of low-level heuristics that led to it is complete, and transition
probability and acceptance strategies are updated accordingly (Line 14).
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Fig. 1: Generational distance results for 6-objective instances of DTLZ1, DTLZ2
and DTLZ6.

The problems we examine are drawn from the DTLZ suite of test problems
[4]. Specifically, we investigate 4-, 5- and 6-objective instances of the DTLZ1,
DTLZ2 and DTLZ6 test problems. Each problem has been selected to demon-
strate the hyper-heuristic’s ability to cope with specific problem features (such as
deceptive fronts and a discontinuous Pareto front). The problems are parametrised
as suggested in [4]. In the case of DTLZ1 and DTLZ6, the algorithm is run for
50,000 function evaluations. DTLZ2 is known to be a easier problem, and as such
is run for just 5,000 function evaluations due to computational time constraints.

The following set of low-level heuristics is employed:

Ruin and recreate two versions; in the first, the entire solution is destroyed
and replaced with a random feasible solution. In the second, a single param-
eter is chosen and replaced.

Mutation three additive mutation operators. In each, a parameter is chosen at
random and mutated with an additive mutation drawn from one of three
probability distributions (uniform, in the region (−0.05, 0.05); Gaussian,
with 0 mean and standard deviation 0.1; beta, in the region (−0.05, 0.05)).

Archive selection two versions; one in which the entire solution is replaced
with a solution drawn at random from the archive, and a second in which a
parameter is replaced with an archived solution’s corresponding parameter.

In total, H = 7 low-level heuristics are employed. To begin with, each has an
equal probability of selection (transition probabilities are initialised to 1/H).

Each problem is optimised with MOSSHH using each of the four indicators. In
order to analyse the results, each instance of the problem is optimised 30 times
for each of the four problems. We compare the results using the generational
distance to examine the convergence properties of the algorithm, as well as using
inverted generational distance to consider diversity.

5 Results

Figure 1 illustrates the generational distance results for 6-objective instances of
DTLZ1, DTLZ2 and DTLZ6, while Figure 2 shows the corresponding inverted
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Fig. 2: Inverted generational distance results for 6-objective instances of DTLZ1,
DTLZ2 and DTLZ6.

generational distance results. The corresponding 4- and 5-objective results are
omitted for space. The results were generated by computing the mean distance
from the final archive of solutions for each run to a set of Pareto optimal samples,
in the case of generational distance, and the corresponding distance from the
sample sets to the optimised solution sets, in the case of inverted generational
distance.

In the case of DTLZ1, the results show that the dominance-based indicator
has failed to converge to the Pareto front. Both the favour and hypervolume
indicators have performed significantly better, converging much closer to the
Pareto front, and covering it more extensively as can be seen from the IGD
results. The rank-based indicator has not performed well, with at best compara-
ble performance to that of the dominance indicator. The difference is less clear
in the DTLZ2 case; though the favour and hypervolume indicators have again
converged closer to the Pareto front, the difference is less significant. In terms
of diversity, there is little to chose between the four alternatives; this is not
surprising, as DTLZ2 is designed to be an easier problem for optimisers to solve.

Figure 3 shows representative estimated Pareto fronts obtained by optimising
a 6-objective instance of DTLZ2 using the four indicators. To colour the solu-
tions, the population was ranked to identify the objective on which each solution
has the best rank. This information is used to colour the line representing each
solution. As can be seen, the dominance and rank indicators have a spread of
preferred objectives, whereas the favour and hypervolume indicators have opti-
mised a specific objective (objective 6). The improved performance of these two
indicators can be explained by this, as large numbers of solutions that optimise
this objective (and objective 5) have been included in the estimated Pareto set,
which means the overall mean distance between the estimated front and the true
front is reduced.

The algorithm has managed to optimise DTLZ6, though, interestingly, the
generational distance results are the reverse of those for DTLZ1 and DTLZ2.
This is likely to be because of the available heuristics; given the propensity for
the indicators to optimise specific regions of the Pareto front, as discussed above,



1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

(a) Dominance

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

(b) Favour

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

(c) Hypervolume

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

(d) Rank

Fig. 3: Parallel coordinate plots showing the estimated Pareto front obtained by
optimising a 6-objective instance of DTLZ2 with various indicators.

a problem with discontinuities will present difficulties for an optimiser that does
not have crossover heuristics available to it. Once the algorithm has converged to
a specific region of the Pareto front, the mutation heuristics used herein appear
to lack the ability to cross discontinuities and, though the archive heuristics
were intended to ameliorate this lack of crossover, they only allow the algorithm
to return to areas of the space that have previously been explored. Crossover
heuristics will be required to make this algorithm scale to problem features such
as discontinuous Pareto fronts.

Figure 4 presents the transition probability matrices for the 6-objective in-
stances of DTLZ1. In each case, the transition probability matrices from the
thirty runs have been averaged. As can be seen, in the case of the dominance
and rank-based indicators, which performed less well, there is a higher propensity
to use the ruin and recreate and archive heuristics. In contrast, the more suc-
cessful favour and hypervolume indicators have preferred mutational heuristics;
this aligns with known results for multi-objective instances of these problems
[14].

6 Conclusion

This paper has presented an analysis of the use of a selection hyper-heuristic to
solve many-objective optimisation problems. This is, as far as we are aware, the
first study of its type, and as such have evaluated the algorithm’s performance
on a small number of test problems with relatively small numbers of objectives;
future work will expand this approach to a wider range of problems and con-
sider many more objectives. The work presented three approaches to comparing
many-objective solutions. Of the three, we consider the favour and hypervolume
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Fig. 4: Transition probability matrices for 6-objective instances of DTLZ1 (top).
Key to low-level heuristics (bottom-top) – grey: ruin and recreate (solution);
red: ruin and recreate (parameter); green: uniform mutation; blue: Gaussian
mutation; cyan: beta mutation; magenta: archive replacement (solution); yellow:
archive replacement (parameter). A large block indicates a large probability of
transitioning to that heuristic from the current heuristic.

indicators to be the most successful, though we note that these were less useful
when optimising discontinuous Pareto fronts. A wider range of low-level heuris-
tics, including crossover heuristics, would likely address this issue, though that
would require conversion to a population-based approach.

As we move toward optimising problems comprising larger numbers of ob-
jectives, we expect the conditions experienced in this work to become more
pronounced. The dominance relation will become less able to provide selection
pressure, and the favour and hypervolume indicators will likely continue to opti-
mise specific regions of the Pareto front well, at the expense of other regions. It
is therefore unlikely that considering alternative comparison methods alone will
allow us to successfully optimise many-objective problems, and as such we are
currently investigating additional ways in which hyper-heuristics can be modified
so that they can be used to optimise such problems.
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