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Two related three�membered series of nonlinear aminophenylferrocene and 

diphenylaminoferrocene complexes were prepared and characterized by 1H and 13C 

NMR spectroscopy. The first series consists of 4�(diphenylamino)phenylferrocene 

(TPA�Fc, ��), its dimethoxy�substituted tetraphenylphenylenediamine derivative 

(M2TPPD�Fc, ��), and the triphenylamine�bridged bis(ferrocenyl) complex 

(Fc�TPA�Fc, ��). The second series involves bis(4�methoxyphenyl)aminoferrocene 

(M2DPA�Fc, ��), 4�methoxyphenylaminoferrocene (MPA�Fc) with 

N�phenyl�appended terminal TPA (�
), and the corresponding bis(MPA�Fc) complex 

with bridging TPA (��). The structure of complex �� was further confirmed by single 

crystal X�ray diffraction. Combined investigations, based on anodic voltammetry, 

UV�vis�NIR spectroelectrochemistry and density functional theory (DFT) calculations, 

were conducted to illustrate the influence of the integration of multiple redox�active 

components on the sequential oxidation of these complexes. The first anodic steps in 
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��–�� are localized preferentially on the ferrocenyl units, followed by oxidation of the 

TPA or TPPD moieties (absent in ��). Irreversible oxidation of the 

ferrocene�appended strong donor DPA/MPA units in ����� terminates the anodic 

series. The one�electron oxidation of the triphenylamine�bridged diferrocenyl (��) 

and bis(phenylaminoferrocenyl) (��) complexes triggers their facile redox 

disproportionation to dicationic bis(ferrocenium) products.�

�

�
��������Arylamine bridge; Ferrocene; Oxidation; Spectroelectrochemistry; DFT 

Calculations 

 

������������ 

Ferrocene (Fc) and triphenylamine (TPA) have been considered as ideal redox 

centers to study the intramolecular electron transfer processes in mixed�valence (MV) 

systems due to the favorable reversibility of their anodic reactions and stability of the 

oxidized forms.1�4 In the realm of MV species, numerous studies focused in the past 

decades on π�conjugated bridging ligands, such as heterocycles, oligoene, oligoyne, 

phenylene, phenylene�yne, thienyl ethynyl, and oligoacene units.5,6 However, studies 

of the MV behavior with compounds featuring the TPA unit as the non�innocent 

bridging ligand, and ferrocene as the terminal redox�active center, are relatively 

limited,4a,7 let alone the scarcer diphenylaminoferrocene (DPA�Fc) systems, where the 

donor nitrogen is directly bound to one of the ferrocene cyclopentadienyl rings, both 

constituting “electron�rich” units.8 According to our survey,  the DPA�Fc systems 

appending diphenylamino groups to the ferrocene core are excellent p�type materials 

with good electrochemical stability and high hole mobility.8,9 These excellent 

properties are most likely due to the incorporation of the DPA groups that enhance 

intermolecular interactions and thus increase the hole transport properties and stability 

of the system. Pertinent reports on the DPA�Fc complexes however mainly focus on 

the exploration of synthetic methods to prepare some simple systems,8,9 and detailed 

studies on their electronic properties, or involvement of more complex species 
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featuring multiple redox�active components, are sporadic. From this perspective, an 

interesting research aspect is a comparative exploration of a series of similar 

phenylamino�ferrocene systems to clarify their electron�transfer nature and further 

facilitate their applications. Based on this point, we have been interested in exploring 

a/ the electronic properties of the linked mono� and dinuclear TPA�ferrocene systems 

(��,� ��), b/ the redox�asymmetry of dimethoxy�substituted 

tetraphenylphenylenediamino�ferrocene (M2TPPD�Fc, ��), and c/ the 

methoxy�substituted DPA�Fc derivatives (��–��) with TPA in the terminal (�
) and 

bridging (��) positions, see Chart 1. The synthetic routes toward ������featuring the 

integrated multiple redox�active components are based on a range of Pd�catalyzed 

coupling reactions (see Scheme 1). We have aimed to elucidate how the redox, 

spectroscopic, and electronic properties of the two investigated ferrocenyl series are 

affected by the variation of the ancillary redox�active oligoamino groups. The data 

sets evaluated in the discussion have been obtained by using controlled�potential 

voltammetry and UV�vis�NIR spectroelectrochemistry combined with density 

functional theory calculations. 
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The synthetic routes to complexes ��–��� are outlined in Scheme 1. The 

precursors )�,�)
�and�)� were obtained in moderate yields ranging from 40% to 70%, 

by having exploited Pd�catalyzed Buchwald–Hartwig coupling reactions of 

4�bromophenylaniline ()�) and 4�bromo�N�(4�bromophenyl)�N�phenylaniline ()�) 

with bis(4�methoxyphenyl)amine, and aminoferrocene (#�). Subsequently, 

bromo�substituted arylamine precursors )�–)� were reacted with ferrocenylboronic 

acid by the Pd�catalyzed Suzuki�Miyaura coupling to obtain the corresponding target 

complexes, �����, respectively. The DPA�Fc series, ��–��, was synthesized using the 

Pd�catalyzed Buchwald–Hartwig coupling between the arylaminoferrocene precursors, 

)�–)�, and 1�bromo�4�methoxybenzene. Notably, no apparent differences have been 

observed in comparative 1H NMR spectra of complexes ��–��, viz. the ‒OCH3 and 

Cp signals (see Supporting Information). 
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The molecular structure of solid complex �� (Figure 1) has been resolved by 

single crystal X�ray diffraction. Suitable crystals of the complex were grown by slow 

evaporation of its dichloromethane solution at room temperature. Pertinent diffraction 

parameters are given in Tables 1 and S1 (see the Supporting Information). The pairs 

Page 6 of 119Dalton Transactions



6 
 

of C1(ferrocenyl)‒N1‒C18, C1(ferrocenyl)‒N1‒C11 and C11‒N1‒C18 angles are 

124.0 (2)°, 114.3 (2)° and 117.4 (2)°, respectively. Notably, some conjugation exists 

between the nitrogen atom and ferrocene, as indicated by the shorter C1‒N1 bond of 

1.411 (3) Å compared to the N1‒C11 and N1‒C18 bonds of 1.439 (3), and 1.425 (3) 

Å, respectively, as observed for other substituted triphenylamine systems.8c, 10�13 The 

above trend and crystal data are consistent with the corresponding theoretical results 

obtained for the DFT (G09�B3LYP)�optimized structure presented in Table 1. �

  

$�6��
� �% Thermal�ellipsoid plot of the X�ray structure of complex� �� (50% probability). 

Hydrogen atoms have been omitted for clarity.  

 

7��	
� �. Selected bond lengths (Å) and angles (deg) in the crystal structure and DFT 

(G09�B3LYP)�optimized structure of complex ��.  

Parameter Crystal Calculated 

C1‒C2 1.422 (4) 1.435 

C2‒C3 1.416 (4) 1.430 

C3‒C4 1.405 (4) 1.425 

C4‒C5 1.421 (4) 1.430 

C1‒N1 1.411 (3) 1.402 

N1‒C11 1.439 (3) 1.429 

N1‒C18 1.425 (3) 1.424 

C11‒C12 1.383 (3) 1.398 

C12‒C13 1.376 (4) 1.397 

C13‒C14 1.378 (4) 1.399 

C14‒O1 1.372 (3) 1.366 

O1‒C17 1.408 (4) 1.417 
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C1‒Fe1 2.072 (2) 2.163 

C1‒N1‒C11 114.3 (2) 119.1 

C1‒N1‒C18 124.0 (2) 122.5 

�

�

�	
�����

����	�+���
���
��

The anodic behavior of complexes���–���was investigated by cyclic voltammetry 

(CV) and square�wave voltammetry (SWV) in deaerated dichloromethane containing 

10�1 M n�Bu4NPF6 as the supporting electrolyte (Figure 2). The relevant 

electrochemical data are summarized in Table 2.  

The TPA�bridged bis(ferrocenyl) compound� -��)�exhibits two reversible anodic 

waves, similarly to the voltammetric response of related monoferrocenyl�TPA (��). 

However, the first anodic wave of �� is relatively broad, consisting of two poorly 

resolved one�electron steps. The reference anodic potentials of free ferrocene and TPA 

(Figure S1, top) indicate that the initial oxidation process of both �� and �� is 

associated with the ferrocenyl units. The small separation of ca. 80 mV between the 

two oxidations encompassed in the first anodic wave of �� has been estimated as 

described in the literature.14 The two Fe(II) centers in �� are oxidized nearly 

synchronously, reflecting a very weak electron communication between the ferrocenyl 

termini. This localized behavior closely resembles the initial two�electron oxidation 

reported for a TPA�bridged diethynyl diiron complex.4a  

The anodic voltammetric response of the M2TPPD�ferrocene complex, ��, 

shows three reversible one�electron waves. We presume that only the first anodic step 

belongs to the oxidation of the ferrocenyl unit while the two subsequent oxidation 

processes are diamine�based, in agreement with outcomes of UV�vis�NIR 

spectroelectrochemistry and DFT calculations (vide infra). The second and third 

oxidation potentials of ��� are positively shifted compared to the symmetric 

methoxy�substituted TPPD (M4TPPD)4g
�reference (Figure S1, bottom), reflecting the 

presence of the oxidized ferrocenium unit in [��]+.  

The DPA�Fc series, ��–��, is characterized by the first anodic process shifted 

negatively on the Fc/Fc+ potential scale to ca. �0.30 V, which corresponds to the 
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oxidation of the Fe(II) centers as reported8c for (di�p�tolylamino)ferrocene. The 

negative potential shifts compared to ������ reflect the donor capacity of the 

diphenylamino (DPA) substituent.�Comparison with the literature8c also facilitates the 

assignment of the irreversible anodic waves of complexes ������around �0.8 V to the 

oxidation of DPA, generating a reactive Fe(III)Cp�aminium diradical site in [��]2+. 

The preceding one�electron anodic steps seen in the voltammetric responses of �
�and 

���around 0.45 V correspond to the reversible oxidation of terminal and bridging TPA, 

respectively, being shifted less positively compared to ��� and �� due to the donor 

DPA separating them from the pre�oxidized ferrocenium termini. This assignment is 

in line with the roughly 2:1 ratio of the anodic currents marking the initial 

ferrocene�based and subsequent TPA�based oxidations of dinuclear �� (Figure 2). In 

summary, the anodic behavior of the ferrocenyl, DPA and TPA segments in ��–�� can 

be classified as largely independent, with Cp�linked DPA acting as an effective donor 

substituent.  

 

7��	
�). Electrochemical data for complexes ��–��.a 

Complex 
E1/2(1) /V  

(VEp)/mV 

E1/2(2) /V 

(VEp)/mV 

E1/2(3) /V 

(VEp)/mV 

E1/2(4)/V   

(VEp)/mV 

Ep,a(5) (V) 

b 

��� �0.06(75) 

�0.08c 

0.06(60) 

�0.32(75) 

�0.32(70) 

�0.33d  

�� 

�� 

�� 0.60(80) �� �� 

��
 �0.00c 0.67(70) �� �� 

��� �� 0.21(60) 0.65(85) �� 

��� �� �� �� 0.77 

�
� �� 0.45(70) �� 0.84 

��� �0.33d  0.49(65) �� 0.83 

7+�� �� 0.54(90) �� �� 

�17++�
4g
� �� �0.06 0.45 �� 

a
 The anodic potentials and VEp values are referenced against the standard ferrocene/ferrocenium 

(Fc/Fc+) redox couple. Under the experimental conditions used in this work, E1/2 (Fc/Fc+) = +0.49 

V vs Ag/Ag+. bIrreversible anodic wave. cBased on the evaluation procedure described in ref.14 

The measured Ep value (SWV, Figure 2) was �0.8 V and the bandwidth was 130 mV. dUnresolved 

two�electron anodic wave (VE1/2 < 50 mV). 
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$�6��
�). Left: cyclic voltammograms (CV) of complexes���–�� in CH2Cl2/n�Bu4NPF6 at v = 50 

mV s�1. Right: corresponding square�wave voltammograms (SWV) of complexes ��–�� at f = 10 

Hz and tp = 25 mV. The curtailed two�anodic�step CV of ��� is shown separately in Figure S2 

(Supporting Information). 

�

89�:��� �&�'�
����
	
�����

�������

UV�vis�NIR electronic absorption spectra of complexes ��–�� in their different 

oxidation states were recorded by means of rapid in situ spectroelectrochemistry, as 

shown in Figures 3�5, and in Supporting Information, Figures S3�S6. The relevant 

wavenumbers and molar absorptivity at the absorption maxima are collected in Table 

3.  
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Smooth oxidation of (diphenylamino)phenylferrocene �� to stable cationic 

species [��]+ was accompanied by the appearance of two intense absorption bands 

between 25000 and 15000 cm�1 and a weaker NIR absorption around 7500 cm�1, along 

with a blue shift of the strong UV absorption (Figure 3, top). Not surprisingly, very 

similar changes in the electronic absorption were encountered during the initial 

two�electron oxidation of dinuclear �� (Figure S3). The mixed�valence intermediate, 

[��]+, which is thermodynamically forced to disproportionate, appears in the 

potential�dependent spectral profile to absorb in the visible�NIR region at a slightly 

lower energy than the ultimate bis(ferrocenium) product, [��]2+. The subsequent 

oxidation of terminal TPA in [��]+ (Figure 3, bottom) and bridging TPA in [��]2+ was 

hard to compare due to poor solubility of [��]3+.  

The products of the well�resolved stepwise one�electron oxidation of ���to [��]3+ 

could be assigned straightforwardly with the aid of the spectrolectroelectrochemical 

monitoring. The second and third anodic steps (Figure 4, middle and bottom spectra, 

respectively) reside on the ancillary diamine group, as revealed by the very similar 

spectral changes accompanying oxidation of reference M4TTPD4g to the 

corresponding mono� and dianion (Figure S4). The initial anodic conversion of �� to 

[��]+ therefore involves the ferrocenyl Fe(II) center, similar to ��. Accordingly, both 

[��]+ and [��]+ exhibit three pronounced absorption bands in the visible�NIR spectral 

region (Table 3), which can be assigned to the same kind of charge transfer electronic 

transitions (Table 4 in the following DFT section). 

The primary anodic steps in the DPAF series, ��–��, are accompanied by similar 

absorption changes in the visible�NIR region as encountered for the oxidation of ���to 

[��]+, or dinuclear ���to [��]2+. Thus, also [��]+ (Figure S5), [�
]+ (Figure 5, top) and 

dinuclear [��]2+ (Figure S6) feature a low�lying weak absorption band between 

10000�7000 cm�1 and a more intense one between 22000�20000 cm�1, in line with the 

generation of the aminoferrocenium moiety. The subsequent reversible oxidation of 

[�
]+ to [�
]2+ (Figure 5, bottom) involves admittedly the terminal TPA unit, the 

product resembling [1�]2+ (Figure 3, bottom) by the diminished NIR absorption and 

slightly blue�shifted absorption in the green spectral region.  
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7��	
�#. UV�vis�NIR electronic absorption of complexes���–�� and their stable oxidized formsa in 

dichloromethane/n�Bu4NPF6. 

Complex νmax (cm�1) (εmax (dm3 mol�1 cm�1)) 

��� 31330 (20536) 

[��]+ 33620 (20880), 23970 (5040), 19250 (7870), 7740 (3050) 

[��]2+
� 33690, 19540, 13680b 

��� 30180 (39220) 

[��]2+
� 33230 (38510), 24390 (11370), 19450 (17260), 8140 (7460) 

��� 30190 (37800) 

[��]+ 33790, 23530, 17280, 10220
c, 6680 

[��]2+
� 23970 (21380), 16460 (7120), 9960 (26200) 

[��]3+
� 13800 (37920) 

M4TPPD�d� 32100 (13420) 

[M4TPPD]+ d 24150 (7180), 16950 (2210), 10360 (8110) 

[M4TPPD]2+ d 14410 (24160) 

��� 35200 (21360), 21700 (5270) 

[��]+
� 35270 (23930), 27700 (8330), 21450 (7840), 19500 (sh), 9280 (2210) 

�
 33410 (39360) 

[�
]+
� 32790 (43130), 20310 (7050), 8510 (2290) 

[�
]2+ 33340 (38510), 20990 (6910) 

�� 31140 (21750) 

[��]2+
� 33750 (18880), 20920 (2980), 8840 (1090) 

aThe spectroelectrochemical results obtained for TPA�oxidized dinuclear species [��]3+ and [��]3+ 

were affected by low solubility of the trications in the electrolyte used, and, therefore, are not 

presented here.  bThe molar absorptivity of [��]2+ was not determined due to low�solubility issues 

at the end of the anodic electrolysis. c This absorption band most likely belongs to [��]2+ generated 

by partial redox disproportionation during the thin�layer electrolysis. The molar absorptivity of 

[��]+ is not reported here. d Ref. 4g. 

 

Page 12 of 119Dalton Transactions



12 
 

1//// #;/// #//// );/// )//// �;/// �//// ;///

/

1///

<///

�)///

�=///

)////

)1///
0��2

)>

 

εε εε
 / /  / /
��
�
#
�
�
	�
�
��

��

?�:
����
��@���
��

0��2
>

1//// #;/// #//// );/// )//// �;/// �//// ;///

/

1///

<///

�)///

�=///

)////

)1///

 

εε εε
 / /  / /
��
�
#
�
�
	�
�
�
�
��

?�:
����
��@���
��

0��2
>

��

 

$�6��
�#. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex �� 

to [��]+ (top) and [��]2+
�(bottom)�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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$�6��
�1. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex �� 

to [��]+ (a), [��]2+ (b) and [��]3+
�(c)�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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$�6��
�;. Changes in UV�vis�NIR absorption spectra recorded during the reversible oxidation�of 

complex �
 to [�
]+ (top) and [�
]2+
� (bottom)� in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an 

OTTLE cell. 

 

7
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Density functional theory (DFT) calculations, using the B3LYP or CAM�B3LYP 

functionals, were performed to gain insight into the electronic structure of the 

one�electron�oxidized species [��]+�[��]+ and selected mononuclear biradical 

dications [��]2+, [��]2+ (unstable; Figure 2) and [�
]2+. The basis set employed here is 

6�31G* (Lanl2DZ for the Fe atom). To account for solvent effects, the conductor 

polarizable continuum model (CPCM) in CH2Cl2 was employed for the ground�state 

structural optimization and analyses, as well as in the TD�DFT calculations of the 

electronic excitation energies. The pertinent data are presented in Figures 6�8 and 

Table 4, and in Supporting Information, Figures S7�S12. 

The geometry�optimized DPAF derivatives, ��–��, (Figure S7) exhibit much 
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shorter N‒C(Cp ring) bonds (1.401�1.403 Å) compared to the adjacent N‒C(phenyl) 

bonds (1.424 � 1.429 Å) and the normal N‒C bonds (1.421 Å) in the TPA unit in �
, 

in agreement with the crystal data for ��� (Table 1). These results indicate some 

conjugation between the redox�active ferrocenyl and DPA units, affecting the Fe(II) 

oxidation potential but not integrating them into one redox�active unit, in agreement 

with the preceding electrochemical section.  

The spin density distribution in one�electron�oxidized [��]+–[��]+ obtained with 

DFT is visualized in Figure 6. Importantly, in all these radical complexes, the spin 

density completely resides on (one of) the iron center(s), confirming the 

ferrocenyl�dominated initial oxidation steps, as indicated by the experimental 

voltammetric and spectroelectrochemical results. Regarding the dicationic dinuclear 

species, ��]2+ and [��]2+, the symmetric bis(ferrocenium) biradical character is very 

clear from their electrochemical (Figure 2) and UV�vis�NIR absorption (Figure S3) 

characteristics. 

The calculated distribution of the spin density in asymmetric mononuclear 

biradicals [��]2+, [��]2+ and [�
]2+ in their lowest�energy triplet ground states is 

shown in Figure 7. The data obtained for [��]2+ and [�
]2+ prove the sequential 

ferrocenyl� and TAP�localized anodic steps deduced convincingly from the analysis of 

their voltammetric and spectroelectrochemical responses. The irreversible oxidation 

of [��]+
�to the reactive dication takes place, indeed, at the DPA site. Accordingly, the 

DPA site remains neutral in [�
]2+, bridging between the energetically more accessible 

ferrocenium and TAP+ sites. It becomes oxidized in the irreversible third anodic step, 

similar to the oxidation of [��]+ (Figure 2).    
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$�6��
�=%�Calculated spin density distribution in [��]+–[��]+. Contour values: ±0.02 (e/bohr3)1/2. 

B3LYP/6�31G*(Fe: Lanl2DZ) /CPCM /CH2Cl2. CAM�B3LYP was used for [��]+. 

 

 

 

$�6��
� A%�Calculated spin density distribution in biradicals [��]2+, [��]2+ and [�
]2+. Contour 

values: ±0.02 (e/bohr3)1/2. B3LYP/6�31G*/CPCM /CH2Cl2.�

 

TD�DFT calculations were carried out to reproduce the low�energy absorption 

features in the experimental UV�vis�NIR spectra of the one� and 

two�electron�oxidized monoferrocenyl species, and to facilitate their assignment in 
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support of the spin�localized bonding situation (Figures 6 and 7}. The significant 

low�energy electronic transitions are presented in Table 4. According to the TD�DFT 

results, the characteristic absorption band of the monocationic species [��]+–[��]+ 

below 10000 cm�1 has been well reproduced, being consistently assigned to an 

electronic excitation within the amino�substituted ferrocenium site.15 This NIR band 

disappears upon further oxidation. The higher�energy visible absorptions of the 

monocations generally correspond to a charge transfer between the donor (di)amine 

(TPA, TPPD) and acceptor ferrocenium sites. The main B3LYP spin orbitals 

contributing to these electronic transitions in the stable mononuclear species are 

depicted in Figures S8 ([��]+) and S9 ([��]+), and Figure 8 (right; [�
]+). The 

β�HOSO is correctly localized on the TPA site in [��]+ and [�
]+, and the DPA site in 

[��]+. Notably, the B3LYP method indicated TPPD�dominated one�electron oxidation 

of ��, which proved inconsistent with the spectro�electrochemical results. The 

alternative CAM�B3LYP method was applied successfully in this case. As a result, 

both the α� and β�LUSO of [��]+
�are ferrocenyl�localized whilst the β�HOSO resides 

on DTTP oxidizing in the following step to [��]2+. The spin orbitals participating in 

the low�energy optical excitation of [��]+ are visualized in Figure 8 (left). The 

characteristic ferrocenium�based electronic transition around 7000 cm�1 (Table 4)15 

can be spotted in the experimental spectra in Figure 4 (a, b) due to its disappearance 

upon the oxidation of [��]+ to the corresponding dication. The absorption band at 

10220 cm�1, not reproduced by the TD DFT calculations of [��]+, may reflect an 

early�stage partial redox disproportionation of the monocation to [��]2+ absorbing in 

this region (Figure 4b). The anodic potential difference between the initial two 

oxidations of �� is indeed small (Figure 2), becoming less resolved at the higher 

concentration used for the spectroelectrochemical experiment.      

The visible electronic excitation of stable triplet biradical [��]2+ involves 

occupied and empty frontier spin orbitals of TPA+ with a variable subordinate 

contribution from phenylferrocenium; the excitation at ca 500 nm is exceptional, 

featuring a strong TPA+�to�phenylferrocenium charge transfer character (Figure S10). 

In contrast, the electronic absorption of [�
]2+ in the visible region is dominated by 
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the charge transfer from the non�oxidized donor (Cp)DPA bridge to the TPA+ moiety. 

Importantly, also the β�HOSO of [�
]2+ is dominantly DPA�localized (Figure S12), in 

agreement with the irreversible oxidation to [�
]3+. Finally, unstable [��]2+ was also 

calculated to confirm the DPA�based (irreversible) oxidation of the cationic precursor 

(Figure S11). Its electronic excitation has been predicted (a) in the NIR region (ca 950 

nm), having a strong DPA+ intra�ligand character, with a subordinate contribution 

from a charge transfer to the N‒CpFe+ part, and (b) in the visible region (ca 600 nm) 

featuring a mixed DPA+�to�ferrocenium charge transfer and DPA+ intraligand 

absorption.   

�

7��	
� 1% Major electronic excitations in complexes [��]+�[��]+ and [��]2+, [��]2+, [�
]2+ 

determined by the TD�DFT method.a 

Complex 
Excited 

State 

ν (cm�1) 

[λ (nm)] 

Osc. 

Strength 

(ƒ) 

Major Contributions Assignment 

νexp 

(cm�1)b 

 

[��]+
�

D2 
8530 

[1172] 
0.071 

β�HOSO�6→β�LUSO 

(84%) 
Fe→Fc+‒Ph 7740 

D4 
14180 

[705] 
0.2908 

α�HOSO→α�LUSO 

(56%) 

β�HOSO→β�LUSO 

(26%) 

TPA→Fc+‒Ph 19250 

D10 
21050 

[475] 
0.2707 

β�HOSO→β�LUSO+1 

(70%) 
TPA→Fc+‒Ph 23970 

[��]2+ 

(biradical)�

D3 
13990 

[715] 
0.1024 

β�HOSO→β�LUSO 

(64%) 

β�HOSO�2→β�LUSO 

(36%) 

Fc+/TPA+→TPA+  

 

TPA+ localized 

13680 

D6 
17010 

[588] 
0.1361 

β�HOSO�3→β�LUSO 

(67%) 
TPA+ localized 19540c 

D12 
20160 

[496] 
0.1375 

α�HOSO→α�LUSO 

(64%) 
TPA+→Fc+‒Ph 19540c 

[��]+ 

D2 
8500 

[1177] 
0.0108 

β�HOSO�13→β�LUSO 

(72%) 

β�HOSO�12→β�LUSO 

(15%) 

Fe→Fc+‒Ph 

 

Fc�TPA→Fc+‒Ph 

 7450d 

D8 
13530 

[739] 
0.2971 

α�HOSO→α�LUSO 

(48%) 

Fc�TPA→Fc+‒Ph 

LMCT/ILCT 
18160d 

Page 19 of 119 Dalton Transactions



19 
 

β�HOSO→β�LUSO 

(29%) 

[��]+ 

D2 
6460 

[1548] 
0.0005 

β�HOSO�12→β�LUSO 

(57%) 

β�HOSO�13→β�LUSO 

(27%) 

Fe→Fc+‒Ph 6680 

D3 
15270 

[655] 
0.0840 

β�HOSO→β�LUSO 

(29%) 

β�HOSO�1→β�LUSO 

(43%) 

M2TPPD→Fc+‒Ph 17280 

D6 
21280 

[470] 
0.1292 

α�HOSO→α�LUSO 

(16%) 

α�HOSO�1→α�LUSO 

(25%) 

M2TPPD→Fc+‒Ph 23530 

[��]+ 

D2 
9030 

[1107] 
0.0016 

β�HOSO�5→β�LUSO 

(86%) 
Fe→Fc+(N) 9280 

D5 
16560 

[604] 
0.1010 

α�HOSO→α�LUSO 

(40%) 

β�HOSO→β�LUSO 

(27%) 

(MeOPh)2N→Fc+(N) 19500 

(sh) 

D11 
23419 

[427] 
0.0645 

α�HOSO→α�LUSO 

(48%) 

β�HOSO→β�LUSO+1 

(48%) 

(MeOPh)2N→Fc+(N) 
21450  

[��]2+ 

(biradical) 

D3 
10500 

[952] 
0.2698 

β�HOSO→β�LUSO 

(89%) 

 

(MeOPh)2N+→(MeOPh

)2N�CpFe+  

 

Not 

measur

ed. 

D9 
16580 

[603] 
0.1414 

α�HOSO→α�LUSO+1 

(25%) 

β�HOSO�3→β�LUSO 

(25%) 

(MeOPh)2N+→Fc+ 

 

Ph2(DPA+)→CpFe+ 
 

[�
]+ 

D2 
9170 

[1091] 
0.0029 

β�HOSO�9→β�LUSO 

(82%) 
Fe→Fc+(N) 

8510 

D4 
14560 

[687] 
0.1578 

α�HOSO→α�LUSO 

(47%) 

β�HOSO→β�LUSO 

(37%) 

TPA→Fc+(N) 
20310 

[�
]2+ 

(biradical) 
D4 

13530 

[739] 
0.1435 

β�HOSO�1→β�LUSO 

(67%) 
Fe�N(PhOMe)2 →TPA+ 

20990 

a B3LYP/6�31G*(Fe: Lanl2DZ) /CPCM /CH2Cl2. CAM�B3LYP was used for [��]+. b Taken from 

Table 3. c Asymmetric broad band encompassing the two calculated electronic transitions. d [��]+ 

Page 20 of 119Dalton Transactions



20 
 

undergoes redox disproportionation (Table 2) and the absorption maxima listed in Table 4 

correspond to the initial phase of the anodic electrolysis. 

 

αααα �38'!

αααα �"!'!

αααα �"!'!��

0��2>

ββββ �"!'!��)

ββββ �38'!

ββββ �38'!>�

  

$�6��
�<% Spin orbitals involved in the major electronic excitations of [��]+ (left) and [�
]+ (right) 

presented in Table 4. CAM�B3LYP ([��]+) or B3LYP ([�
]+)/6�31G* (Fe: 

Lanl2DZ)/CPCM/CH2Cl2. 

�

����	�������

This work presents a series of mono� and bis(ferrocenyl)�substituted TPA (��,�

��), TPPD (��), and Cp�DPA (��–��) derivatives depicted in Chart 1. The 

electrochemical and UV�vis�NIR spectroelectrochemical results have consistently 

revealed that the first anodic steps for ��–�� is associated with one�electron oxidation 

of the ferrocenyl units, being followed by donor TPA substituents (absent in ��) and, 

finally, Cp�bound DPA (or diphenylferrocenyl amine). The latter donor segments 

oxidize irreversibly and facilitate the preceding ferrocenyl oxidation. TD�DFT 

calculations at the B3LYP or CAM�B3LYP levels (successfully applied for reference 

phenylferrocenium) have disclosed that the characteristic absorption bands of the 

monocationic radical species [��]+�[�
]+ in the near�IR region involve excitation 

within the oxidized ferrocenium site; the anticipated amine�to�ferrocenium 
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charge�transfer absorption has been encountered in the visible spectral region. 

Mononuclear biradicals [��]2+, [��]2+ (unstable) and [�
]2+ reside in a triplet ground 

state. The symmetric TPA�bridged diferrocenyl, ��, and bis(phenylaminoferrocenyl), 

��, complexes behave as localized redox systems with minimal interaction between 

the iron centres, undergoing facile redox disproportionation in the 

one�electron�oxidized state. We trust that new insights obtained from detailed studies 

of such systems containing multiple redox�responsive components will further 

advance rational design, understanding and exploration of new systems in materials 

chemistry based on electron�rich substituted ferrocenes. 

�

���
���
���	�'
������

�������	 
��������%� All manipulations were carried out under a dry argon gas 

atmosphere by using standard Schlenk techniques, unless stated otherwise. Solvents 

were pre�dried and distilled under argon prior to use, except those used directly for 

spectroscopic measurements, which were of spectroscopic grade. The starting 

materials (4�bromophenyl)diphenylamine ()�)16, bis(4�bromophenyl)phenylamine 

()�)16, bis(4�methoxyphenyl)amine17, N�ferrocenyl�4�methoxyaniline ()�)18 and 

aminoferrocene (#�)19 were prepared by the procedures described in the literatures. 

Target complexes ��–���were prepared along the synthetic route presented in Scheme 

1. Other reagents were purchased and used as received.�

 


���������	Intermediate ��.�Bis(4�methoxyphenyl)amine (200 mg, 0.87 mmol)， 

bis(4�bromophenyl)phenylamine (1.06 g, 2.60 mmol), t�BuONa (126 mg, 1.30 mmol), 

Pd(OAc)2 (3.9 mg, 0.017 mmol), and 1,1'�bis(diphenylphosphino)ferrocene (dppf) (24 

mg, 0.04 mmol) were suspended in 5 mL of toluene. The resulting reaction mixture 

was stirred at 100 °C under nitrogen atmosphere for 36 h. After the reaction mixture 

was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate, 20/1). After recrystallization 

from methanol, the product was obtained as light yellow solid. Yield: 336 mg (70%). 
1H NMR (400 MHz, CDCl3): δ 3.75 (s, 6H, OCH3�H), 6.79�7.25 (m, 21H, Ar�H). 13C 

NMR (100 MHz, CDCl3): δ 55.5 (OCH3), 114.5, 121.5�121.8, 122.4, 123.5�124.3, 
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126.2, 129.0, 131.7, 131.9, 139.7, 139.9, 147.0, 155.5 (Ar). Anal. Calcd for 

C32H27BrN2O2: C, 69.69; H, 4.94; N, 5.08. Found: C, 69.85; H, 4.89; N, 5.13. 

Intermediate ��.� Aminoferrocene (173 mg, 0.90 mmol), 

(4�bromophenyl)diphenylamine (279 mg, 0.90 mmol), t�BuONa (248 mg, 2.60 mmol), 

Pd2(dba)3 (32 mg, 0.030 mmol), and (+/�)�2,2'�bis(diphenylphosphino)�1,1'�binaphthyl 

(BINAP) (19 mg, 0.030 mmol) were suspended in 5 mL of toluene. The resulting 

reaction mixture was stirred at 100 °C under nitrogen atmosphere for 72 h. After the 

reaction mixture was cooled to ambient temperature, the crude product was purified 

by column chromatography (eluent: petroleum ether/ethyl acetate, 60/1). The pure 

product was obtained as yellow solid. Yield: 172 mg (45%). 1H NMR (400 MHz, 

CDCl3): δ 4.13 (s, 2H, Fc�H), 4.22 (s, 5H, Fc�H), 4.31 (s, 2H, Fc�H), 6.69 (s, 1H, 

N�H), 6.87�6.90 (t, J = 12 Hz, 2H, Ar�H), 7.00�7.02 (d, J = 8 Hz, 6H, Ar�H), 

7.16�7.22 (m, 6H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 61.7, 64.5, 68.8 (Fc), 100.6, 

115.6, 121.4, 122.5, 127.0, 128.8, 138.8, 142.2, 147.9 (Ar). Anal. Calcd for 

C28H24FeN2: C, 75.68; H, 5.44; N, 6.30. Found: C, 75.43; H, 5.37; N, 6.22. 

Intermediate ��.� Aminoferrocene (201 mg, 1.00 mmol), 

bis(4�bromophenyl)phenylamine (202 mg, 0.50 mmol), t�BuONa (144 mg, 1.50 

mmol), Pd2(dba)3 (18 mg, 0.02 mmol), and BINAP (13mg, 0.02 mmol) were 

suspended in 5 mL of toluene. The resulting reaction mixture was stirred at 100 °C 

under nitrogen atmosphere for 55 h. After the reaction mixture was cooled to ambient 

temperature, the crude product was purified by column chromatography (eluent: 

petroleum ether/ethyl acetate, 10/1). After recrystallization from hexane, the product 

was obtained as yellow solid. Yield: 128 mg (40%). 1H NMR (600 MHz, CDCl3): δ 

4.07 (s, 4H, Fc�H), 4.20 (s, 10H, Fc�H), 4.26 (s, 4H, Fc�H), 4.45 (s, 2H, N�H), 

6.97�7.16 (m, 13H, Ar�H). 13C NMR (100 MHz, DMSO�d6): δ 59.3, 63.4, 68.3 (Fc), 

101.4, 115.1, 118.1, 126.3, 128.6, 137.2, 142.0, 148.7 (Ar). Anal. Calcd for 

C38H33Fe2N3: C, 70.94; H, 5.17; N, 6.53. Found: C, 70.65; H, 5.08; N, 6.58. 

Target complexes ��–�� were prepared along the synthetic route presented in 

Scheme�1. 

Preparation of 48(diphenylamino)phenylferrocene,	 ��.�

-4�Bromophenyl)diphenylamine (235 mg, 0.73 mmol), ferrocenylboronic acid (200 

mg, 0.87 mmol), K3PO4 (462 mg, 2.20 mmol), Pd(OAc)2 (1.6 mg, 0.007 mmol), and 

2�(dicyclohexylphosphino)biphenyl (5 mg, 0.015 mmol) were suspended in 5 mL of 
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toluene. The resulting reaction mixture was stirred at 110 °C under nitrogen 

atmosphere for 36 h. After the reaction mixture was cooled to ambient temperature, 

the crude product was purified by column chromatography (eluent: 

dichloromethane/petroleum ether 3:10 (v/v)). After recrystallization from methanol, 

the product was obtained as yellow solid. Yield: 177 mg (56%). 1H NMR (600 MHz, 

CDCl3): δ 4.06 (s, 5H, Fc�H), 4.28 (s, 2H, Fc�H), 4.58 (s, 2H, Fc�H), 7.01 (t, J = 12 

Hz, 4H, Ar�H), 7.11 (d, J = 6 Hz, 4H, Ar�H), 7.24�7.27 (m, 4H, Ar�H), 7.34�7.35 (d, J 

= 6 Hz, 2H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 66.2, 68.6, 69.5, 85.5 (Fc), 122.4, 

123.9, 126.7, 127.0, 129.0, 133.2, 145.4, 147.5 (Ar). Anal. Calcd for C28H23FeN: C, 

78.33; H, 5.40; N, 3.26. Found: C, 78.56; H, 5.29; N, 3.31. 

Preparation of	 ��.� 4,4’�(Dibromo)triphenylamine (353 mg, 0.88 mmol), 

ferrocenylboronic acid (483 mg, 2.00 mmol), K3PO4 (558 mg, 2.60 mmol), Pd(OAc)2 

(4 mg, 0.018 mmol), and 2�(dicyclohexylphosphino)biphenyl (12 mg, 0.035 mmol) 

were suspended in 6 mL of toluene. The resulting reaction mixture was stirred at 

110 °C under nitrogen atmosphere for 48 h. After the reaction mixture was cooled to 

ambient temperature, the crude product was purified by column chromatography 

(eluent: dichloromethane/petroleum ether 1:4 (v/v)). After recrystallization from 

methanol, the product was obtained as yellow solid. Yield: 216 mg (40%). 1H NMR 

(400 MHz, CDCl3): δ 4.05 (s, 10H, Fc�H), 4.26 (s, 4H, Fc�H), 4.56 (s, 4H, Fc�H), 

7.00 (d, J = 4 Hz, 4H, Ar�H), 7.10 (d, J = 4 Hz, 2H, Ar�H), 7.22 (d, J = 8 Hz, 2H, 

Ar�H), 7.32 (d, J = 8 Hz, 4H, Ar�H), 7.42 (d, J = 8 Hz, 1H, Ar�H). 13C NMR (100 

MHz, CDCl3): δ 66.1, 68.6, 69.4, 85.4 (Fc), 122.3, 123.7, 126.6, 127.0, 128.9, 133.1, 

145.3, 147.4 (Ar). Anal. Calcd for C38H31Fe2N: C, 74.41; H, 5.09; N, 2.28. Found: C, 

74.17; H, 4.98; N, 2.30. 

Preparation of	��.�)� (108 mg, 0.20 mmol), ferrocenylboronic acid (54 mg, 0.24 

mmol), K2CO3 (82 mg, 0.60 mmol), Pd(OAc)2 (0.9 mg, 0.004 mmol), and 

1,1'�bis(diphenylphosphino)ferrocene (6 mg, 0.01 mmol) were suspended in 5 mL of 

toluene. The resulting reaction mixture was stirred at 100 °C under nitrogen 

atmosphere for 48 h. After the reaction mixture was cooled to ambient temperature, 

the crude product was purified by column chromatography (eluent: petroleum 

ether/ethyl acetate 32:3 (v/v)). After recrystallization from methanol, the product was 

obtained as yellow solid 78mg. Yield: 61%. 1H NMR (400 MHz, CDCl3): δ 3.78 (s, 

6H, OMe�H), 4.04 (s, 5H, Fc�H), 4.26 (s, 2H, Fc�H ), 4.55 (s, 2H, Fc�H ), 6.79�6.85 

(m, 6H, Ar�H), 6.91�6.97 (m, 5H, Ar�H), 7.02�7.07 (m, 6H, Ar�H), 7.19�7.21 (d, J = 8 
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Hz, 2H, Ar�H), 7.29�7.31 (d, J = 8 Hz, 2H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 

55.5 (OMe), 66.2, 68.6, 69.5 (Fc), 85.8, 114.5, 121.8, 122.1, 123.0, 125.8, 126.7, 

128.9, 132.5, 140.6, 141.1, 144.2, 145.7, 147.7, 155.3 (Ar). Anal. Calcd for 

C42H36FeN2O2: C, 76.83; H, 5.53; N, 4.27;. Found: C, 76.97; H, 5.48; N, 4.18. 

Preparation of bis(48methoxy1phenyl)aminoferrocene,	 ��.�

N�Ferrocenyl�4�methoxyaniline (87 mg, 0.28 mmol), 4�bromoanisole (0.07 ml, 0.57 

mmol), t�BuONa (81 mg, 0.84 mmol), Pd2(dba)3 (10 mg, 0.01 mmol), and BINAP (7 

mg, 0.01 mmol) were suspended in 4 mL of toluene. The resulting reaction mixture 

was stirred at 100 °C for under nitrogen atmosphere 60 h. After the reaction mixture 

was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate 300:1 (v/v)). The pure product 

was obtained as yellow solid. Yield: 60 mg (52%). 1H NMR (400 MHz, CDCl3): δ 

3.79 (s, 5H, Fc�H), 3.88 (s, 2H, Fc�H), 3.94 (s, 2H, Fc�H), 4.17 (s, 6H, OMe�H), 

6.83�6.85 (d, J = 8 Hz, 4H, Ar�H), 7.20�7.22(d, J = 8 Hz, 4H, Ar�H). 13C NMR (100 

MHz, CDCl3): δ 55.5 (OMe), 58.1, 63.4, 68.63 (Fc), 109.0, 114.2, 125.9, 140.7, 155.3 

(Ar). Anal. Calcd for C24H23FeNO2: C, 69.75; H, 5.61; N, 3.39. Found: C, 69.58; H, 

5.43; N, 3.43. 

Preparation of	 ��.� )
 (163 mg, 0.40 mmol), 4�bromoanisole (0.09 ml, 0.80 

mmol), t�BuONa (115 mg, 1.20 mmol), Pd2(dba)3 (18 mg, 0.02 mmol), and BINAP 

(12 mg, 0.02 mmol) were suspended in 5 mL of toluene. The resulting reaction 

mixture was stirred at 100 °C under nitrogen atmosphere for 50 h. After the reaction 

mixture was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate 100:1 (v/v)). After 

recrystallization from methanol, the product was obtained as yellow solid. Yield: 90 

mg (45%). 1H NMR (400 MHz, CDCl3): δ 3.82 (s, 3H, OMe�H), 3.96 (s, 4H, Fc�H), 

4.14 (s, 5H, Fc�H), 6.89�6.97 (m, 6H, Ar�H), 7.04�7.11 (m, 6H, Ar�H), 7.18�7.23 (m, 

6H, Ar�H).  13C NMR (100 MHz, CDCl3): δ 55.5 (OMe), 59.4, 63.7, 68.7 (Fc), 107.9, 

114.4, 121.9, 122.4, 123.2, 125.3, 127.9, 128.9, 140.2, 141.0, 143.3, 147.7, 156.3 (Ar). 

Anal. Calcd for C35H30FeN2O: C, 76.37; H, 5.49; N, 5.09. Found: C, 76.11; H, 5.44; N, 

5.07. 

Preparation of	��.�Compound )� (94 mg, 0.15 mmol), 4�bromoanisole (0.08 ml, 

0.60 mmol), t�BuONa (43 mg, 0.45 mmol), Pd2(dba)3 (6 mg, 0.006 mmol), and 

BINAP (4 mg, 0.006 mmol) were suspended in 5 mL of toluene. The resulting 

reaction mixture was stirred at 100 °C under nitrogen atmosphere for 72 h. After the 
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reaction mixture was cooled to ambient temperature, the crude product was purified 

by column chromatography (eluent: petroleum ether/ethyl acetate 40:1 (v/v)). The 

pure product was obtained as yellow solid. Yield: 58 mg (45%). 1H NMR (400 MHz, 

CDCl3): δ 3.79 (s, 6H, OMe�H), 3.95 (s, 8H, Fc�H), 4.13 (s, 10H, Fc�H), 6.87�6.89 (d, 

J = 8 Hz, 4H, Ar�H), 6.95�6.97 (d, J = 8 Hz, 4H, Ar�H), 7.02�7.10 (m, 8H, Ar�H), 

7.15�7.22 (m, 5H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 55.5 (OMe), 59.2, 63.7, 

68.7 (Fc), 108.0, 114.4, 121.3, 122.3, 122.7, 124.0, 127.8, 128.8, 140.2, 141.3, 142.9, 

148.0, 156.3 (Ar). Anal. Calcd for C52H45Fe2N3O2: C, 72.99; H, 5.30; N, 4.91. Found: 

C, 72.75; H, 5.41; N, 4.95. 
 

X8ray Crystallography  

Single crystals of complex �� suitable for X�ray analysis were grown from a 

solution in dichloromethane by slow solvent evaporation at room temperature. A 

selected crystal with approximate dimensions of 0.20×0.10×0.10 mm3 was mounted 

on a glass fiber for diffraction experiments. Intensity data were collected on a Nonius 

Kappa CCD diffractometer with Mo Kα radiation (0.71073 Å) at room temperature. 

The crystal structure was determined by a combination of direct methods 

(SHELXS�97)20 and Fourier difference techniques and refined by full matrix least 

squares (SHELXL�97)21. All non�H atoms were refined anisotropically. The hydrogen 

atoms were placed in ideal positions and refined as riding atoms. The partial solvent 

molecules have been omitted. Selected bond distances and angles are given in Table 1. 

Further crystal data and details of the data collection are summarized in Table S1. 

Crystallographic data for the structure have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication CCDC 1564068. 

 

Physical Measurements 
 

1H and 13C NMR spectra (Figures S13 – S30, Supporting Information) were 

collected on a Varian Mercury Plus 400 spectrometer (400 MHz). 1H and 13C NMR 

chemical shifts are given relative to Si(CH3)4. Elemental analyses (C, H, N) were 

performed with a Vario ElIII Chnso instrument. The electrochemical measurements 

were performed on a CHI 660C potentiostat. A three�electrode single�compartment 
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cell was used for the solution of complexes and supporting electrolyte in dry CH2Cl2. 

The solution was deaerated by bubbling with dry argon on a frit for about 10 min 

before the measurement. The analyte (complex, ligand) and electrolyte (n�Bu4NPF6) 

concentrations were typically 10�3 and 10�1 mol dm�3, respectively. A pre�polished 

500�dm diameter platinum disk working electrode, a platinum wire counter electrode, 

and an Ag wire pseudoreference electrode were used. Ferrocene was used as the 

internal potential reference. Spectroelectrochemical experiments at room temperature 

were performed with an airtight optically transparent thin�layer electrochemical 

(OTTLE) cell (optical path length of ca. 200 dm) equipped with a Pt minigrid 

working electrode and CaF2 windows.22 The cell was positioned in the sample 

compartment of a Shimadzu UV�3600 UV�vis�NIR spectrophotometer. The 

controlled�potential electrolyses were carried out with a CHI 660C potentiostat. The 

concentration of analyte samples was ca 2×10�3 mol dm�3. Dry 3×10�1 M n�Bu4NPF6 

was used as the supporting electrolyte.  

 

Computational Details 

DFT calculations were performed with the Gaussian 09 program23, at the 

B3LYP24 or CAM�B3LYP25/6�31G*26 level of theory. The basis set employed was 

6�31G* (Lanl2DZ for Fe atom). Geometry optimization was performed without any 

symmetry constraints. Electronic transitions were calculated by the time�dependent 

DFT (TD�DFT) method. The MO contributions were generated using the Multiwfn 

package and plotted using GaussView 5.0. The solvation effects in dichloromethane 

are included for a part of the calculations with the conductor�like polarizable 

continuum model (CPCM).27  
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The multistep anodic behavior of two series of nonlinear 

(di)aminophenylferrocene, and diphenylaminoferrocene complexes is 

reported. The influence of the integration of diverse redox�active components 

on the sequential oxidation of these complexes has been explored. The first 

anodic steps all take place uniformly on the ferrocenyl units, followed by 

oxidation of the triphenylamine and Cp�diphenylamine moieties. The 

assignment of the anodic steps has been supported by DFT calculations.  
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���	
���. Crystal data and parameters of data collection and refinement for complex ��. 

Complex ���

Formula C24H23FeNO2 

Formula weight 413.28 

Temperature (K)  296 (2)  

Crystal system Monoclinic 

Space group P2(1)/c 

a (Å) 17.7696 (18) 

b(Å) 9.6825 (10) 

c(Å) 22.947 (2) 

α (°) 90 

β (°) 92.595 (2) 

γ (°) 90 

V (Å3) 3944.1 (7) 

Z 8 

Density (calculated) (Mg/m3) 1.392 

Absorption coefficient (mm�1) 0.784 

F(000) 1728 

Crystal size (mm3) 0.20 × 0.10 × 0.10 

Theta range for data collection (°) 1.78 to 27.45 

Index ranges �23≤h≤23, �12≤k≤12, �29≤l≤29 

Reflections collected 32836 

Independent reflections 8967 [R(int) = 0.0562] 

Max. and min. transmission 0.9257 and 0.9118 

Data / restraints / parameters 8967 / 0 / 510 

Goodness�of�fit on F2 0.997 

Final R indices [I>2σ(I)] R1 = 0.0443, wR2 = 0.1093 

R indices (all data) R1 = 0.0826, wR2 = 0.1266 

Largest diff. peak and hole (e.�3) 0.279 and �0.336  
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���	
���. Bond lengths [Å] and angles [deg] for complex ��. 

Bond lengths [Å] 

Fe1—C3 2.028 (3) C7—C8 1.410 (4) 

Fe1—C2 2.034 (2) C11—C16 1.369 (4) 

Fe1—C10 2.036 (3) C11—C12 1.383 (3) 

Fe1—C4 2.038 (3) O1—C14 1.372 (3) 

Fe1—C9 2.038 (3) O1—C17 1.408 (4) 

Fe1—C7 2.040 (3) C19—C20 1.369 (4) 

Fe1—C6 2.040 (3) C2—C3 1.416 (4) 

Fe1—C8 2.044 (3) C21—C22 1.382 (4) 

Fe1—C5 2.061 (3) C21—C20 1.386 (4) 

Fe1—C1 2.072 (2) C9—C8 1.403 (4) 

N1—C1 1.411 (3) C9—C10 1.408 (4) 

N1—C18 1.425 (3) C10—C6 1.415 (4) 

N1—C11 1.439 (3) C13—C12 1.376 (4) 

O2—C21 1.373 (3) C13—C14 1.378 (4) 

O2—C24 1.421 (3) C22—C23 1.383 (4) 

C18—C23 1.387 (3) C16—C15 1.387 (4) 

C18—C19 1.394 (3) C15—C14 1.379 (4) 

C1—C2 1.422 (4) C4—C3 1.405 (4) 

C1—C5 1.425 (4) C4—C5 1.421 (4) 

C7—C6 1.403 (4) C7—C8 1.410 (4) 

Bond angles [deg] 

C3—Fe1—C2 40.79 (10) C8—Fe1—C1 152.56 (11) 

C3—Fe1—C10 153.66 (13) C5—Fe1—C1 40.34 (10) 

C2—Fe1—C10 164.75 (12) C1—N1—C18 124.0 (2) 

C3—Fe1—C4 40.45 (12) C1—N1—C11 114.3 (2) 

C2—Fe1—C4 68.27 (11) C18—N1—C11 117.4 (2) 

C10—Fe1—C4 120.30 (13) C21—O2—C24 117.2 (2) 

C3—Fe1—C9 119.25 (12) C23—C18—C19 117.4 (2) 

C2—Fe1—C9 152.74 (13) C23—C18—N1 124.1 (2) 
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C10—Fe1—C9 40.45 (13) C19—C18—N1 118.5 (2) 

C4—Fe1—C9 109.02 (12) N1—C1—C2 123.4 (2) 

C3—Fe1—C7 126.54 (12) N1—C1—C5 129.1 (2) 

C2—Fe1—C7 107.12 (11) C2—C1—C5 107.4 (2) 

C10—Fe1—C7 67.95 (12) N1—C1—Fe1 130.19 (17) 

C4—Fe1—C7 164.45 (13) C2—C1—Fe1 68.32 (14) 

C9—Fe1—C7 67.84 (12) C5—C1—Fe1 69.40 (15) 

C3—Fe1—C6 163.97 (12) C6—C7—C8 108.2 (3) 

C2—Fe1—C6 126.45 (11) C6—C7—Fe1 69.89 (16) 

C10—Fe1—C6 40.64 (12) C8—C7—Fe1 69.96 (17) 

C4—Fe1—C6 154.30 (13) C16—C11—C12 119.5 (2) 

C9—Fe1—C6 68.03 (12) C16—C11—N1 120.4 (2) 

C7—Fe1—C6 40.23 (11) C12—C11—N1 119.9 (2) 

C3—Fe1—C8 107.69 (13) C14—O1—C17 116.8 (3) 

C2—Fe1—C8 118.47 (11) C9—C10—Fe1 69.86 (17) 

C10—Fe1—C8 67.85 (12) C6—C10—Fe1 69.82 (16) 

C4—Fe1—C8 127.47 (12) C12—C13—C14 119.6 (2) 

C9—Fe1—C8 40.20 (12) C19—C20—C21 120.9 (3) 

C7—Fe1—C8 40.41 (11) C13—C12—C11 120.5 (3) 

C6—Fe1—C8 67.84 (12) C21—C22—C23 120.4 (2) 

C3—Fe1—C5 68.16 (12) C9—C8—C7 108.0 (3) 

C2—Fe1—C5 68.13 (11) C9—C8—Fe1 69.68 (17) 

C10—Fe1—C5 109.30 (12) C7—C8—Fe1 69.63 (16) 

C4—Fe1—C5 40.57 (11) C11—C16—C15 120.6 (3) 

C9—Fe1—C5 128.55 (12) C14—C15—C16 119.3 (3) 

C7—Fe1—C5 153.13 (12) C3—C4—C5 108.3 (2) 

C6—Fe1—C5 119.96 (12) C3—C4—Fe1 69.41 (16) 

C8—Fe1—C5 165.55 (12) C5—C4—Fe1 70.59 (15) 

C3—Fe1—C1 68.23 (11) C22—C23—C18 121.3 (2) 

C2—Fe1—C1 40.51 (10) O1—C14—C13 115.3 (3) 

C10—Fe1—C1 127.92 (12) C8—Fe1—C1 152.56 (11) 

C4—Fe1—C1 68.06 (11) C5—Fe1—C1 40.34 (10) 

C9—Fe1—C1 165.82 (12) C1—N1—C18 124.0 (2) 
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C7—Fe1—C1 118.78 (11) C1—N1—C11 114.3 (2) 

C6—Fe1—C1 108.18 (11)   

 

 

  

�� ��
� ��. Cyclic voltammograms (CV, at v = 50 mV s�1; black line) and corresponding 

square�wave voltammograms (SWV, at f = 10 Hz and tp = 25 mV; red line) of TPA (top, with 

ferrocene present as the internal standard), and M4TPPD (bottom) in CH2Cl2/n�Bu4NPF6. 

 

 

 

 

 

��
��!

 �"!
�#�

�$%& �$%� $%$ $%� $%& $%' $%( �%$

��

��

$

�

�

)

&

*

'

+

�

�

�
�
��


�
��
,�
�
$
�+
��

��-!.�/����,��
0

��%$ �$%* $%$ $%* �%$

��%$

�$%*

$%$

$%*

�%$

�%*

�%$

�

�
�
��

�

��
,�
�
$
�+
�

��-!.�/����,��
0

��!

��"!

Page 38 of 119Dalton Transactions



 

�� ��
���. The curtailed two�anodic�step cyclic voltammogram (CV) of �� in CH2Cl2/n�Bu4NPF6 

at v = 50 mV s�1. 
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�� ��
��). Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex 

�� to [��]2+ in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. The intermediate 

absorption of [��]+ is poorly resolved due to pronounced redox disproportionation of the 

monocation. 
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�� ��
��&. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of reference  

compound ��##� to [��##�]+ (top) and [��##�]2+
�(bottom)�in CH2Cl2/10�1 M n�Bu4NPF6 

at 298 K within an OTTLE cell. 
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�� ��
��*. UV�vis�NIR spectral changes recorded during the reversible Fc�localized oxidation�of 

complex �� to [��]+
�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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�� ��
� �'. Changes in UV�vis�NIR absorption recorded during the unresolved bielectronic 

oxidation� of dinuclear complex �� to [��]2+ in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an 

OTTLE cell. The subsequent oxidation to [��]3+ was complicated by low solubility of the ultimate 

product. 
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�� ��
��+. The DFT�optimized geometric structures of �� (a), �
 (b)�and ���(c). 

 

 

 

�� ��
��(% Spin orbitals involved in the major electronic excitations of [��]+. B3LYP /6�31G* (Fe: 

Lanl2DZ) /CPCM /CH2Cl2. 
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�� ��
��3% Spin orbitals involved in the major electronic excitations of [��]+. B3LYP /6�31G* (Fe: 

Lanl2DZ) /CPCM /CH2Cl2. 
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�� ��
���$% Spin orbitals involved in the major electronic excitations of [��]2+ (biradical state). 

B3LYP /6�31G* (Fe: Lanl2DZ) /CPCM /CH2Cl2. 

 

 

�� ��
����% Spin orbitals involved in the major electronic excitations of [��]2+ (biradical state). 
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B3LYP /6�31G* (Fe: Lanl2DZ) /CPCM /CH2Cl2. 

 

 

�� ��
� ���% Frontier spin orbitals of [�
]2+ (biradical state). B3LYP /6�31G* (Fe: Lanl2DZ) 

/CPCM /CH2Cl2.  
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�� ��
���). The cyclic voltammogram (CV, black line; v = 50 mV s�1) and the corresponding 

square�wave voltammogram (SWV, red line; at f = 10 Hz and tp = 25 mV) of reference 

phenylferrocene, Ph�Fc, in CH2Cl2/n�Bu4NPF6. The oxidation potential of Ph�Fc is E1/2 = +0.04 V 

vs ferrocene/ferrocenium (Fc/Fc+). The electronic absorption of [Ph�Fc]+ is presented in Figure 

S14. 
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�� ��
���&% Electronic absorption spectra of 10�2 M Ph�Fc (black line) and [Ph�Fc]+ (red line) 

obtained by chemical oxidation with AgPF6 in CH2Cl2 at 298 K. The simulated spectra of [Ph�Fc]+ 

and corresponding electronic transitions obtained with TD�DFT methods are depicted in Figures 

S15�S17. 

Page 46 of 119Dalton Transactions



 

�� ��
���*% Simulated electronic absorption of [Ph�Fc]+. B3LYP/6�31G*/CPCM /CH2Cl2. 

�

 

 

�� ��
���'%�Simulated electronic absorption of [Ph�Fc]+; CAM�B3LYP/6�31G*/CPCM /CH2Cl2. 
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�

�� ��
���+% Spin orbitals involved in the plausible calculated visible electronic excitations of 

[Ph�Fc]+ (see Figures S15 and S16). A better agreement with the experimental visible absorption 

of the cationic complex has been reached with the B3LYP method. 

 

 

9�:���
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�� ��
���(% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

�� ��
���3% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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�� ��
���$% 1H NMR spectrum (400 MHz, CDCl3) of �
. 

 

�� ��
����% 13C NMR spectrum (100 MHz, CDCl3) of �
. 
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�� ��
����% 1H NMR spectrum (600 MHz, CDCl3) of ��. 
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�� ��
���)% 13C NMR spectrum (100 MHz, DMSO�d6) of ��. 
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�� ��
���&% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

�

�� ��
���*% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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�� ��
���'% 1H NMR spectrum (400 MHz, CDCl3) of ��.  

 

 

�� ��
���+% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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� �� ��
���(% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

 

�� ��
���3% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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� �� ��
��)$% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

 

�� ��
��)�% 13C NMR spectrum (100 MHz, CDCl3) of ��. 

�
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�� ��
��)�% 1H NMR spectrum (400 MHz, CDCl3) of �
. 

 

 

�� ��
��))% 13C NMR spectrum (100 MHz, CDCl3) of �
. 

�
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� �� ��
��)&% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

� �� ��
��)*% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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�����������

Comments to the Author 

This paper from Liu, Hartl and colleagues reports the synthesis and (spectro)electrochemical 

characterisation of some very nice 'mixed' ferrocene / triarylamine compounds. The experimental 

work seems to have been very competently carried out, although I have some reservations about 

the (TD)DFT and interpretation of the low energy bands in the electronic spectra. The paper, in the 

introduction, conclusion and cover letter, misses an opportunity to convey the wider significance 

of the study. What can we learn from these studies that will help us to move an area forward? 

There are some broad aspirational statements in the cover letter, but the Introduction seems to 

simply be about study these compounds for their own sake. I have no problem with a purely 

fundamental study (and indeed encourage such work), but I would suggest a clearer expression of 

'why' in the introduction and a stronger conclusion to improve the impact of the paper. 

��	
��	�
��he reviewer is gratefully acknowledged for the overall positive judgement and careful 

reading of the manuscript. The recommendation to extend the background information in the 

Introduction, and to focus on the reliability of the TD DFT data is gratefully acknowledged. The 

details on the latter issue follow hereinafter. 

 

My major concern with the paper lies in the interpretation of the UV‐vis‐NIR spectra based on 

the TD DFT results. The B3LYP functional is really not appropriate for calculating charge transfer 

energies and although one compound was calculated with CAM‐B3LYP I think there needs to be 

a 'health check' on the assignments. In the absence of the TD DFT I think it is fair to suggest that 

the low energy bands in compounds like [��]
+
 with extinction coefficients of >5000 M

‐1
 cm

‐1
 

would be assigned to a TPA‐to‐Fc
+
 charge transfer (beta‐HOSO‐to‐beta‐LUSO) and the 

higher energy visible bands would (likely) be the alpha analogues. I find it very unusual to 

consider the assignments given in Table 4. Now, of course there is always a case to be made that 

chemical intuition is not correct and that is of course how we make advances, but if the TD DFT 

(from a functional that is known to be unsuitable for these sorts of calculations) tells me 

something at odds with expectation, I would like to see that result robustly tested. It would seem 

that a quick SEC experiment with phenylferrocene would be enough to either prove the unusual 

Fe‐Fc
+
 assignment by demonstrating the ca. 6000 M

‐1
 cm

‐1
 band near 7000 cm

‐1
, or support 

assignment as TPA‐to‐Fc
+
. I strongly advise this check to be made. If this proves the amine‐

to‐ferrocenium charge transfer character, then the TD DFT will need to reconsidered, and perhaps 

re‐performed with a more suitable functional consistently. 

��	
��	�
�We cordially thank the reviewer for the above valuable suggestions. We have indeed 

used phenylferrocene (PhBFc) as the suited reference compound and oxidized it smoothly to 

[PhBFc]
+
 with AgPF6 (�1/2 = +0.04 V vs Fc/Fc

+
). The electronic absorption spectra of the 

ferrocenium product (Figure S14 below) do not show any obvious new absorption in the NIR 
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region, which may indicate the amine‐to‐ferrocenium charge transfer character of the 

lowestBenergy electronic transition for all the monocationic states we have described, as was 

suspected by the reviewer. However, we still believe that our original assignment is correct. For, 

we have also simulated the electronic absorption of [PhBFc]
+
 by using the B3LYP and 

CAMBB3LYP methods and the results are well consistent with the experimental data (Figures S15 

and S16). Especially B3LYP has reproduced well energies the relatively weak absorption in the 

600B800 nm region, which shows a limited chargeBtransfer (PhBtoBFc
+
) character. Notably, 

CAMBB3LYP reveals the peculiar FeBtoBFc
+
 lowestBenergy transition also for the reference. It also 

needs to be noted that the NIR absorption of the studied monocations is also far from being strong, 

with the molar absorptivity between 2000B3000 M
B1

cm
B1

 (see Table 3), i.e., not above 5000 

M
B1

cm
B1

 (?) as argued above by the reviewer. We therefore consider these two methods to be 

suitable also for our monocationic radical systems. The simulated lowBenergy absorption bands are 

basically consistent with the SEC results. Even though the charge transfer energies obtained may 

not be completely coincident, in our opinion the predicted nature of the transitions should be 

reasonable. In addition, especially CAMBB3LYP has generally been accepted to perform well for 

chargeBtransfer excitation (T. Yanai et al., Chemical Physics Letters 393 (2004) 51–57). We have 

employed this hybrid functional successfully for [��]
+
, with similar results as obtained with 

B3LYP for the rest of the monocationic series. 
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)�$����*��� Electronic absorption spectra of 10
B2

 M PhBFc (black line) and [PhBFc]
+
 (red line) 

obtained by chemical oxidation with AgPF6 in CH2Cl2 at 298 K. The simulated spectra of [PhBFc]
+
 

and corresponding electronic transitions obtained with TDBDFT methods are depicted in Figures 

S15BS17. 
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)�$����*��� Simulated electronic absorption of [PhBFc]
+
. B3LYP/6B31G*/CPCM /CH2Cl2. 

�

 

 

)�$����*����Simulated electronic absorption of [PhBFc]
+
; CAMBB3LYP/6B31G*/CPCM /CH2Cl2. 
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�

)�$����*�+� Spin orbitals involved in the plausible calculated visible electronic excitations of 

[PhBFc]
+
 (see Figures S15 and S16). A better agreement with the experimental visible absorption 

of the cationic complex has been reached with the B3LYP method. 

 

 

Other small points: 

�� Re‐write the Abstract so it can be appreciated without knowing the identity of 

compounds by number but not formula. 

��	
��	�
� We thank the reviewer for this suggestion! We have rewritten the Abstract and 

identified all the complexes accordingly so that the inspection of the main text is not needed 

anymore to obtain quick orientation. The changes have been highlighted by yellow boxes. 

�� Give esd's in the discussion of the crystallographically determined molecular structure.  

��	
��	�
� Our apologies for having omitted esd’s in the original manuscript. This has been 

rectified in the revised manuscript version. 

�� The atoms are labelled in Figure 1 ‐ the color commentary is not necessary. 

��	
��	�
�We have deleted the color commentary in Figure 1 accordingly. 

�� pg 6 ‐ the authors should be well aware of the limitations of using electrochemical waves 

to assign Robin‐Day class. Please make these comments with a little more commentary 
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about the underlying assumptions.  

��	
��	�
�For the sake of clarity we have dropped the RobinBDay classification from the original 

sentence that reads now as “This localized behavior closely resembles the initial twoBelectron 

oxidation reported for a TPABbridged diethynyl diiron complex.”. We are of course aware of the 

limitations of cyclic voltammetry and the value of Kc value based thereupon (also affected by the 

electron transfer kinetics and the stability of the redox couple components) for discussing the 

degree of interaction between the bridged redox centres. Here, however, the case is clear (Class I) 

as also evidenced by the calculated spin density for [�"]
+
 and the very similar electronic 

absorption of [�"]
+
 and [�"]

2+
 (Figure S3), and is not worth of a deeper discussion. In Conclusions 

we have modified the summarizing sentence: The symmetric TPABbridged diferrocenyl, �", and 

bis(phenylaminoferrocenyl), ��, complexes "�%���� �	� ������,� � �� ��� 	-	��'	� ���%� '���'���

������������ "������� �%�� ����� ������	, undergoing facile redox disproportionation in the 

oneBelectronBoxidized state. 

�� The data in Table 4 concerns me ‐ especially given the rather poor agreement of 

extinction coefficients and oscillator strengths and the peculiar assignment of the low 

energy bands (as described above). Please use a reference compound or two to verify the 

assignment and give greater confidence in the calculations. 

��	
��	�
�This critical point raised by the reviewer has already been dealt with in some detail 

above. Strictly speaking, theoretical calculation is an auxiliary means to better clarify 

experimental results and we believe our basic purpose has been achieved. Actually, the 

B3LYPBcalculated oscillator strength of the lowest electronic transition in the most straightforward 

case of [��]
+
 is not that low (0.07) compared to the visible electronic absorption. [��]

+
 has been 

calculated with CAMBB3LYP (showing similar results); we wish to underline that with this hybrid 

functional we have achieved recently very satisfactory results even in cases that remained 

unresolved for years (e.g., triosmium carbonyl diamine clusters with a variable degree of 

(de)localization of frontier orbitals involved in optical electron transfer). We are grateful to the 

reviewer for his wellBformulated concerns but our data, including the phenylferrocene reference, 

do not disqualify the hybrid functionals used. We have to conclude that the amineBtoBferrocenium 

CT in the monocationic species is encountered in the visible region and the lowest electronic 

transition most likely features the peculiar intraBferrocenium character.  

Actually, we have recently reported a similar type of electronic transition in the NIR region, 

having a partial interconfigurational (IC) character typically observed for similar dominant Fe(III) 

systems, for the monocation [{Cp*Fe
II/III

(dppe)}2{µ(‒C≡C)2TPA}]
+
: Multistep oxidation od 

diethynyl oligophenylamineBbridged diruthenium and diiron complexes. J. Zhang, S.BZ. Guo, Y.BB. 

Dong, L. Rao, J. Yin, G.BA. Yu, F. Hartl, S. H. Liu, Inorg. Chem. 2017, 56, 1001B1015. The donor 

TPA bridge core also did not contribute by a charge transfer in that redoxBlocalized case. 

�

�
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�����������

Comments to the Author 

This is a nice manuscript that deals with the sythesis of various molecules containing ferrocene 

and amine types of donors. The authors have carried out a thorough investigation of their 

complexes through electrochemistry and UV‐vis‐NIR spectroelectrochemistry, and DFT 

calculations. The results presented here will be benefial to the community working on ferrocene 

containing compounds and in general redox active complexes. I do not have any adverse criticism 

and can recommend the publication of this work. 

��	
��	�
�The positive evaluation is warmly appreciated. 

 

At this point, we do hope to have addressed all the concerns raised by Reviewer 1 in a satisfactory 

manner and look forward to receiving the Editorial decision.  

 

On behalf of all the coBauthors, 

 

With kind regards, 

 

Dr Frantisek Hartl   (Reading, 4
th

 April 2018) 
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Two related three�membered series of nonlinear aminophenylferrocene and 

diphenylaminoferrocene complexes were prepared and characterized by 1H and 13C 

NMR spectroscopy. The first series consists of 4�(diphenylamino)phenylferrocene 

(TPA�Fc, ��), its dimethoxy�substituted tetraphenylphenylenediamine derivative 

(M2TPPD�Fc, ��), and the triphenylamine�bridged bis(ferrocenyl) complex 

(Fc�TPA�Fc, ��). The second series involves bis(4�methoxyphenyl)aminoferrocene 

(M2DPA�Fc, ��), 4�methoxyphenylaminoferrocene (MPA�Fc) with 

N�phenyl�appended terminal TPA (�
), and the corresponding bis(MPA�Fc) complex 

with bridging TPA (��). The structure of complex �� was further confirmed by single 

crystal X�ray diffraction. Combined investigations, based on anodic voltammetry, 

UV�vis�NIR spectroelectrochemistry and density functional theory (DFT) calculations, 

were conducted to illustrate the influence of the integration of multiple redox�active 

components on the sequential oxidation of these complexes. The first anodic steps in 
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2 
 

��–�� are localized preferentially on the ferrocenyl units, followed by oxidation of the 

TPA or TPPD moieties (absent in ��). Irreversible oxidation of the 

ferrocene�appended strong donor DPA/MPA units in ����� terminates the anodic 

series. The one�electron oxidation of the triphenylamine�bridged diferrocenyl (��) 

and bis(phenylaminoferrocenyl) (��) complexes triggers their facile redox 

disproportionation to dicationic bis(ferrocenium) products.�

�

�
��������Arylamine bridge; Ferrocene; Oxidation; Spectroelectrochemistry; DFT 

Calculations 

 

������������ 

Ferrocene (Fc) and triphenylamine (TPA) have been considered as ideal redox 

centers to study the intramolecular electron transfer processes in mixed�valence (MV) 

systems due to the favorable reversibility of their anodic reactions and stability of the 

oxidized forms.1�4 In the realm of MV species, numerous studies focused in the past 

decades on π�conjugated bridging ligands, such as heterocycles, oligoene, oligoyne, 

phenylene, phenylene�yne, thienyl ethynyl, and oligoacene units.5,6 However, studies 

of the MV behavior with compounds featuring the TPA unit as the non�innocent 

bridging ligand, and ferrocene as the terminal redox�active center, are relatively 

limited,4a,7 let alone the scarcer diphenylaminoferrocene (DPA�Fc) systems, where the 

donor nitrogen is directly bound to one of the ferrocene cyclopentadienyl rings, both 

constituting “electron�rich” units.8 According to our survey,  the DPA�Fc systems 

appending diphenylamino groups to the ferrocene core are excellent p�type materials 

with good electrochemical stability and high hole mobility.8,9 These excellent 

properties are most likely due to the incorporation of the DPA groups that enhance 

intermolecular interactions and thus increase the hole transport properties and stability 

of the system. Pertinent reports on the DPA�Fc complexes however mainly focus on 

the exploration of synthetic methods to prepare some simple systems,8,9 and detailed 

studies on their electronic properties, or involvement of more complex species 
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featuring multiple redox�active components, are sporadic. From this perspective, an 

interesting research aspect is a comparative exploration of a series of similar 

phenylamino�ferrocene systems to clarify their electron�transfer nature and further 

facilitate their applications. Based on this point, we have been interested in exploring 

a/ the electronic properties of the linked mono� and dinuclear TPA�ferrocene systems 

(��,� ��), b/ the redox�asymmetry of dimethoxy�substituted 

tetraphenylphenylenediamino�ferrocene (M2TPPD�Fc, ��), and c/ the 

methoxy�substituted DPA�Fc derivatives (��–��) with TPA in the terminal (�
) and 

bridging (��) positions, see Chart 1. The synthetic routes toward ������featuring the 

integrated multiple redox�active components are based on a range of Pd�catalyzed 

coupling reactions (see Scheme 1). We have aimed to elucidate how the redox, 

spectroscopic, and electronic properties of the two investigated ferrocenyl series are 

affected by the variation of the ancillary redox�active oligoamino groups. The data 

sets evaluated in the discussion have been obtained by using controlled�potential 

voltammetry and UV�vis�NIR spectroelectrochemistry combined with density 

functional theory calculations. 
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and diphenylaminoferrocene (DPA�Fc) derivatives (��–��). 
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The synthetic routes to complexes ��–��� are outlined in Scheme 1. The 

precursors )�,�)
�and�)� were obtained in moderate yields ranging from 40% to 70%, 

by having exploited Pd�catalyzed Buchwald–Hartwig coupling reactions of 

4�bromophenylaniline ()�) and 4�bromo�N�(4�bromophenyl)�N�phenylaniline ()�) 

with bis(4�methoxyphenyl)amine, and aminoferrocene (#�). Subsequently, 

bromo�substituted arylamine precursors )�–)� were reacted with ferrocenylboronic 

acid by the Pd�catalyzed Suzuki�Miyaura coupling to obtain the corresponding target 

complexes, �����, respectively. The DPA�Fc series, ��–��, was synthesized using the 

Pd�catalyzed Buchwald–Hartwig coupling between the arylaminoferrocene precursors, 

)�–)�, and 1�bromo�4�methoxybenzene. Notably, no apparent differences have been 

observed in comparative 1H NMR spectra of complexes ��–��, viz. the ‒OCH3 and 

Cp signals (see Supporting Information). 
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The molecular structure of solid complex �� (Figure 1) has been resolved by 

single crystal X�ray diffraction. Suitable crystals of the complex were grown by slow 

evaporation of its dichloromethane solution at room temperature. Pertinent diffraction 

parameters are given in Tables 1 and S1 (see the Supporting Information). The pairs 
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of C1(ferrocenyl)‒N1‒C18, C1(ferrocenyl)‒N1‒C11 and C11‒N1‒C18 angles are 

124.0 (2)°, 114.3 (2)° and 117.4 (2)°, respectively. Notably, some conjugation exists 

between the nitrogen atom and ferrocene, as indicated by the shorter C1‒N1 bond of 

1.411 (3) Å compared to the N1‒C11 and N1‒C18 bonds of 1.439 (3), and 1.425 (3) 

Å, respectively, as observed for other substituted triphenylamine systems.8c, 10�13 The 

above trend and crystal data are consistent with the corresponding theoretical results 

obtained for the DFT (G09�B3LYP)�optimized structure presented in Table 1. �

  

$�6��
� �% Thermal�ellipsoid plot of the X�ray structure of complex� �� (50% probability). 

Hydrogen atoms have been omitted for clarity.  

 

7��	
� �. Selected bond lengths (Å) and angles (deg) in the crystal structure and DFT 

(G09�B3LYP)�optimized structure of complex ��.  

Parameter Crystal Calculated 

C1‒C2 1.422 (4) 1.435 

C2‒C3 1.416 (4) 1.430 

C3‒C4 1.405 (4) 1.425 

C4‒C5 1.421 (4) 1.430 

C1‒N1 1.411 (3) 1.402 

N1‒C11 1.439 (3) 1.429 

N1‒C18 1.425 (3) 1.424 

C11‒C12 1.383 (3) 1.398 

C12‒C13 1.376 (4) 1.397 

C13‒C14 1.378 (4) 1.399 

C14‒O1 1.372 (3) 1.366 

O1‒C17 1.408 (4) 1.417 
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C1‒Fe1 2.072 (2) 2.163 

C1‒N1‒C11 114.3 (2) 119.1 

C1‒N1‒C18 124.0 (2) 122.5 

�

�

�	
�����

����	�+���
���
��

The anodic behavior of complexes���–���was investigated by cyclic voltammetry 

(CV) and square�wave voltammetry (SWV) in deaerated dichloromethane containing 

10�1 M n�Bu4NPF6 as the supporting electrolyte (Figure 2). The relevant 

electrochemical data are summarized in Table 2.  

The TPA�bridged bis(ferrocenyl) compound� -��)�exhibits two reversible anodic 

waves, similarly to the voltammetric response of related monoferrocenyl�TPA (��). 

However, the first anodic wave of �� is relatively broad, consisting of two poorly 

resolved one�electron steps. The reference anodic potentials of free ferrocene and TPA 

(Figure S1, top) indicate that the initial oxidation process of both �� and �� is 

associated with the ferrocenyl units. The small separation of ca. 80 mV between the 

two oxidations encompassed in the first anodic wave of �� has been estimated as 

described in the literature.14 The two Fe(II) centers in �� are oxidized nearly 

synchronously, reflecting a very weak electron communication between the ferrocenyl 

termini. This localized behavior closely resembles the initial two�electron oxidation 

reported for a TPA�bridged diethynyl diiron complex.4a  

The anodic voltammetric response of the M2TPPD�ferrocene complex, ��, 

shows three reversible one�electron waves. We presume that only the first anodic step 

belongs to the oxidation of the ferrocenyl unit while the two subsequent oxidation 

processes are diamine�based, in agreement with outcomes of UV�vis�NIR 

spectroelectrochemistry and DFT calculations (vide infra). The second and third 

oxidation potentials of ��� are positively shifted compared to the symmetric 

methoxy�substituted TPPD (M4TPPD)4g
�reference (Figure S1, bottom), reflecting the 

presence of the oxidized ferrocenium unit in [��]+.  

The DPA�Fc series, ��–��, is characterized by the first anodic process shifted 

negatively on the Fc/Fc+ potential scale to ca. �0.30 V, which corresponds to the 
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oxidation of the Fe(II) centers as reported8c for (di�p�tolylamino)ferrocene. The 

negative potential shifts compared to ������ reflect the donor capacity of the 

diphenylamino (DPA) substituent.�Comparison with the literature8c also facilitates the 

assignment of the irreversible anodic waves of complexes ������around �0.8 V to the 

oxidation of DPA, generating a reactive Fe(III)Cp�aminium diradical site in [��]2+. 

The preceding one�electron anodic steps seen in the voltammetric responses of �
�and 

���around 0.45 V correspond to the reversible oxidation of terminal and bridging TPA, 

respectively, being shifted less positively compared to ��� and �� due to the donor 

DPA separating them from the pre�oxidized ferrocenium termini. This assignment is 

in line with the roughly 2:1 ratio of the anodic currents marking the initial 

ferrocene�based and subsequent TPA�based oxidations of dinuclear �� (Figure 2). In 

summary, the anodic behavior of the ferrocenyl, DPA and TPA segments in ��–�� can 

be classified as largely independent, with Cp�linked DPA acting as an effective donor 

substituent.  

 

7��	
�). Electrochemical data for complexes ��–��.a 

Complex 
E1/2(1) /V  

(VEp)/mV 

E1/2(2) /V 

(VEp)/mV 

E1/2(3) /V 

(VEp)/mV 

E1/2(4)/V   

(VEp)/mV 

Ep,a(5) (V) 

b 

��� �0.06(75) 

�0.08c 

0.06(60) 

�0.32(75) 

�0.32(70) 

�0.33d  

�� 

�� 

�� 0.60(80) �� �� 

��
 �0.00c 0.67(70) �� �� 

��� �� 0.21(60) 0.65(85) �� 

��� �� �� �� 0.77 

�
� �� 0.45(70) �� 0.84 

��� �0.33d  0.49(65) �� 0.83 

7+�� �� 0.54(90) �� �� 

�17++�
4g
� �� �0.06 0.45 �� 

a
 The anodic potentials and VEp values are referenced against the standard ferrocene/ferrocenium 

(Fc/Fc+) redox couple. Under the experimental conditions used in this work, E1/2 (Fc/Fc+) = +0.49 

V vs Ag/Ag+. bIrreversible anodic wave. cBased on the evaluation procedure described in ref.14 

The measured Ep value (SWV, Figure 2) was �0.8 V and the bandwidth was 130 mV. dUnresolved 

two�electron anodic wave (VE1/2 < 50 mV). 
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$�6��
�). Left: cyclic voltammograms (CV) of complexes���–�� in CH2Cl2/n�Bu4NPF6 at v = 50 

mV s�1. Right: corresponding square�wave voltammograms (SWV) of complexes ��–�� at f = 10 

Hz and tp = 25 mV. The curtailed two�anodic�step CV of ��� is shown separately in Figure S2 

(Supporting Information). 

�

89�:��� �&�'�
����
	
�����

�������

UV�vis�NIR electronic absorption spectra of complexes ��–�� in their different 

oxidation states were recorded by means of rapid in situ spectroelectrochemistry, as 

shown in Figures 3�5, and in Supporting Information, Figures S3�S6. The relevant 

wavenumbers and molar absorptivity at the absorption maxima are collected in Table 

3.  
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Smooth oxidation of (diphenylamino)phenylferrocene �� to stable cationic 

species [��]+ was accompanied by the appearance of two intense absorption bands 

between 25000 and 15000 cm�1 and a weaker NIR absorption around 7500 cm�1, along 

with a blue shift of the strong UV absorption (Figure 3, top). Not surprisingly, very 

similar changes in the electronic absorption were encountered during the initial 

two�electron oxidation of dinuclear �� (Figure S3). The mixed�valence intermediate, 

[��]+, which is thermodynamically forced to disproportionate, appears in the 

potential�dependent spectral profile to absorb in the visible�NIR region at a slightly 

lower energy than the ultimate bis(ferrocenium) product, [��]2+. The subsequent 

oxidation of terminal TPA in [��]+ (Figure 3, bottom) and bridging TPA in [��]2+ was 

hard to compare due to poor solubility of [��]3+.  

The products of the well�resolved stepwise one�electron oxidation of ���to [��]3+ 

could be assigned straightforwardly with the aid of the spectrolectroelectrochemical 

monitoring. The second and third anodic steps (Figure 4, middle and bottom spectra, 

respectively) reside on the ancillary diamine group, as revealed by the very similar 

spectral changes accompanying oxidation of reference M4TTPD4g to the 

corresponding mono� and dianion (Figure S4). The initial anodic conversion of �� to 

[��]+ therefore involves the ferrocenyl Fe(II) center, similar to ��. Accordingly, both 

[��]+ and [��]+ exhibit three pronounced absorption bands in the visible�NIR spectral 

region (Table 3), which can be assigned to the same kind of charge transfer electronic 

transitions (Table 4 in the following DFT section). 

The primary anodic steps in the DPAF series, ��–��, are accompanied by similar 

absorption changes in the visible�NIR region as encountered for the oxidation of ���to 

[��]+, or dinuclear ���to [��]2+. Thus, also [��]+ (Figure S5), [�
]+ (Figure 5, top) and 

dinuclear [��]2+ (Figure S6) feature a low�lying weak absorption band between 

10000�7000 cm�1 and a more intense one between 22000�20000 cm�1, in line with the 

generation of the aminoferrocenium moiety. The subsequent reversible oxidation of 

[�
]+ to [�
]2+ (Figure 5, bottom) involves admittedly the terminal TPA unit, the 

product resembling [1�]2+ (Figure 3, bottom) by the diminished NIR absorption and 

slightly blue�shifted absorption in the green spectral region.  
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7��	
�#. UV�vis�NIR electronic absorption of complexes���–�� and their stable oxidized formsa in 

dichloromethane/n�Bu4NPF6. 

Complex νmax (cm�1) (εmax (dm3 mol�1 cm�1)) 

��� 31330 (20536) 

[��]+ 33620 (20880), 23970 (5040), 19250 (7870), 7740 (3050) 

[��]2+
� 33690, 19540, 13680b 

��� 30180 (39220) 

[��]2+
� 33230 (38510), 24390 (11370), 19450 (17260), 8140 (7460) 

��� 30190 (37800) 

[��]+ 33790, 23530, 17280, 10220
c, 6680 

[��]2+
� 23970 (21380), 16460 (7120), 9960 (26200) 

[��]3+
� 13800 (37920) 

M4TPPD�d� 32100 (13420) 

[M4TPPD]+ d 24150 (7180), 16950 (2210), 10360 (8110) 

[M4TPPD]2+ d 14410 (24160) 

��� 35200 (21360), 21700 (5270) 

[��]+
� 35270 (23930), 27700 (8330), 21450 (7840), 19500 (sh), 9280 (2210) 

�
 33410 (39360) 

[�
]+
� 32790 (43130), 20310 (7050), 8510 (2290) 

[�
]2+ 33340 (38510), 20990 (6910) 

�� 31140 (21750) 

[��]2+
� 33750 (18880), 20920 (2980), 8840 (1090) 

aThe spectroelectrochemical results obtained for TPA�oxidized dinuclear species [��]3+ and [��]3+ 

were affected by low solubility of the trications in the electrolyte used, and, therefore, are not 

presented here.  bThe molar absorptivity of [��]2+ was not determined due to low�solubility issues 

at the end of the anodic electrolysis. c This absorption band most likely belongs to [��]2+ generated 

by partial redox disproportionation during the thin�layer electrolysis. The molar absorptivity of 

[��]+ is not reported here. d Ref. 4g. 

 

Page 74 of 119Dalton Transactions



12 
 

1//// #;/// #//// );/// )//// �;/// �//// ;///

/

1///

<///

�)///

�=///

)////

)1///
0��2

)>

 

εε εε
 / /  / /
��
�
#
�
�
	�
�
��

��

?�:
����
��@���
��

0��2
>

1//// #;/// #//// );/// )//// �;/// �//// ;///

/

1///

<///

�)///

�=///

)////

)1///

 

εε εε
 / /  / /
��
�
#
�
�
	�
�
�
�
��

?�:
����
��@���
��

0��2
>

��

 

$�6��
�#. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex �� 

to [��]+ (top) and [��]2+
�(bottom)�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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$�6��
�1. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex �� 

to [��]+ (a), [��]2+ (b) and [��]3+
�(c)�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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$�6��
�;. Changes in UV�vis�NIR absorption spectra recorded during the reversible oxidation�of 

complex �
 to [�
]+ (top) and [�
]2+
� (bottom)� in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an 

OTTLE cell. 
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Density functional theory (DFT) calculations, using the B3LYP or CAM�B3LYP 

functionals, were performed to gain insight into the electronic structure of the 

one�electron�oxidized species [��]+�[��]+ and selected mononuclear biradical 

dications [��]2+, [��]2+ (unstable; Figure 2) and [�
]2+. The basis set employed here is 

6�31G* (Lanl2DZ for the Fe atom). To account for solvent effects, the conductor 

polarizable continuum model (CPCM) in CH2Cl2 was employed for the ground�state 

structural optimization and analyses, as well as in the TD�DFT calculations of the 

electronic excitation energies. The pertinent data are presented in Figures 6�8 and 

Table 4, and in Supporting Information, Figures S7�S12. 

The geometry�optimized DPAF derivatives, ��–��, (Figure S7) exhibit much 
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shorter N‒C(Cp ring) bonds (1.401�1.403 Å) compared to the adjacent N‒C(phenyl) 

bonds (1.424 � 1.429 Å) and the normal N‒C bonds (1.421 Å) in the TPA unit in �
, 

in agreement with the crystal data for ��� (Table 1). These results indicate some 

conjugation between the redox�active ferrocenyl and DPA units, affecting the Fe(II) 

oxidation potential but not integrating them into one redox�active unit, in agreement 

with the preceding electrochemical section.  

The spin density distribution in one�electron�oxidized [��]+–[��]+ obtained with 

DFT is visualized in Figure 6. Importantly, in all these radical complexes, the spin 

density completely resides on (one of) the iron center(s), confirming the 

ferrocenyl�dominated initial oxidation steps, as indicated by the experimental 

voltammetric and spectroelectrochemical results. Regarding the dicationic dinuclear 

species, ��]2+ and [��]2+, the symmetric bis(ferrocenium) biradical character is very 

clear from their electrochemical (Figure 2) and UV�vis�NIR absorption (Figure S3) 

characteristics. 

The calculated distribution of the spin density in asymmetric mononuclear 

biradicals [��]2+, [��]2+ and [�
]2+ in their lowest�energy triplet ground states is 

shown in Figure 7. The data obtained for [��]2+ and [�
]2+ prove the sequential 

ferrocenyl� and TAP�localized anodic steps deduced convincingly from the analysis of 

their voltammetric and spectroelectrochemical responses. The irreversible oxidation 

of [��]+
�to the reactive dication takes place, indeed, at the DPA site. Accordingly, the 

DPA site remains neutral in [�
]2+, bridging between the energetically more accessible 

ferrocenium and TAP+ sites. It becomes oxidized in the irreversible third anodic step, 

similar to the oxidation of [��]+ (Figure 2).    
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$�6��
�=%�Calculated spin density distribution in [��]+–[��]+. Contour values: ±0.02 (e/bohr3)1/2. 

B3LYP/6�31G*(Fe: Lanl2DZ) /CPCM /CH2Cl2. CAM�B3LYP was used for [��]+. 

 

 

 

$�6��
� A%�Calculated spin density distribution in biradicals [��]2+, [��]2+ and [�
]2+. Contour 

values: ±0.02 (e/bohr3)1/2. B3LYP/6�31G*/CPCM /CH2Cl2.�

 

TD�DFT calculations were carried out to reproduce the low�energy absorption 

features in the experimental UV�vis�NIR spectra of the one� and 

two�electron�oxidized monoferrocenyl species, and to facilitate their assignment in 
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support of the spin�localized bonding situation (Figures 6 and 7}. The significant 

low�energy electronic transitions are presented in Table 4. According to the TD�DFT 

results, the characteristic absorption band of the monocationic species [��]+–[��]+ 

below 10000 cm�1 has been well reproduced, being consistently assigned to an 

electronic excitation within the amino�substituted ferrocenium site.15 This NIR band 

disappears upon further oxidation. The higher�energy visible absorptions of the 

monocations generally correspond to a charge transfer between the donor (di)amine 

(TPA, TPPD) and acceptor ferrocenium sites. The main B3LYP spin orbitals 

contributing to these electronic transitions in the stable mononuclear species are 

depicted in Figures S8 ([��]+) and S9 ([��]+), and Figure 8 (right; [�
]+). The 

β�HOSO is correctly localized on the TPA site in [��]+ and [�
]+, and the DPA site in 

[��]+. Notably, the B3LYP method indicated TPPD�dominated one�electron oxidation 

of ��, which proved inconsistent with the spectro�electrochemical results. The 

alternative CAM�B3LYP method was applied successfully in this case. As a result, 

both the α� and β�LUSO of [��]+
�are ferrocenyl�localized whilst the β�HOSO resides 

on DTTP oxidizing in the following step to [��]2+. The spin orbitals participating in 

the low�energy optical excitation of [��]+ are visualized in Figure 8 (left). The 

characteristic ferrocenium�based electronic transition around 7000 cm�1 (Table 4)15 

can be spotted in the experimental spectra in Figure 4 (a, b) due to its disappearance 

upon the oxidation of [��]+ to the corresponding dication. The absorption band at 

10220 cm�1, not reproduced by the TD DFT calculations of [��]+, may reflect an 

early�stage partial redox disproportionation of the monocation to [��]2+ absorbing in 

this region (Figure 4b). The anodic potential difference between the initial two 

oxidations of �� is indeed small (Figure 2), becoming less resolved at the higher 

concentration used for the spectroelectrochemical experiment.      

The visible electronic excitation of stable triplet biradical [��]2+ involves 

occupied and empty frontier spin orbitals of TPA+ with a variable subordinate 

contribution from phenylferrocenium; the excitation at ca 500 nm is exceptional, 

featuring a strong TPA+�to�phenylferrocenium charge transfer character (Figure S10). 

In contrast, the electronic absorption of [�
]2+ in the visible region is dominated by 
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the charge transfer from the non�oxidized donor (Cp)DPA bridge to the TPA+ moiety. 

Importantly, also the β�HOSO of [�
]2+ is dominantly DPA�localized (Figure S12), in 

agreement with the irreversible oxidation to [�
]3+. Finally, unstable [��]2+ was also 

calculated to confirm the DPA�based (irreversible) oxidation of the cationic precursor 

(Figure S11). Its electronic excitation has been predicted (a) in the NIR region (ca 950 

nm), having a strong DPA+ intra�ligand character, with a subordinate contribution 

from a charge transfer to the N‒CpFe+ part, and (b) in the visible region (ca 600 nm) 

featuring a mixed DPA+�to�ferrocenium charge transfer and DPA+ intraligand 

absorption.   

�

7��	
� 1% Major electronic excitations in complexes [��]+�[��]+ and [��]2+, [��]2+, [�
]2+ 

determined by the TD�DFT method.a 

Complex 
Excited 

State 

ν (cm�1) 

[λ (nm)] 

Osc. 

Strength 

(ƒ) 

Major Contributions Assignment 

νexp 

(cm�1)b 

 

[��]+
�

D2 
8530 

[1172] 
0.071 

β�HOSO�6→β�LUSO 

(84%) 
Fe→Fc+‒Ph 7740 

D4 
14180 

[705] 
0.2908 

α�HOSO→α�LUSO 

(56%) 

β�HOSO→β�LUSO 

(26%) 

TPA→Fc+‒Ph 19250 

D10 
21050 

[475] 
0.2707 

β�HOSO→β�LUSO+1 

(70%) 
TPA→Fc+‒Ph 23970 

[��]2+ 

(biradical)�

D3 
13990 

[715] 
0.1024 

β�HOSO→β�LUSO 

(64%) 

β�HOSO�2→β�LUSO 

(36%) 

Fc+/TPA+→TPA+  

 

TPA+ localized 

13680 

D6 
17010 

[588] 
0.1361 

β�HOSO�3→β�LUSO 

(67%) 
TPA+ localized 19540c 

D12 
20160 

[496] 
0.1375 

α�HOSO→α�LUSO 

(64%) 
TPA+→Fc+‒Ph 19540c 

[��]+ 

D2 
8500 

[1177] 
0.0108 

β�HOSO�13→β�LUSO 

(72%) 

β�HOSO�12→β�LUSO 

(15%) 

Fe→Fc+‒Ph 

 

Fc�TPA→Fc+‒Ph 

 7450d 

D8 
13530 

[739] 
0.2971 

α�HOSO→α�LUSO 

(48%) 

Fc�TPA→Fc+‒Ph 

LMCT/ILCT 
18160d 
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β�HOSO→β�LUSO 

(29%) 

[��]+ 

D2 
6460 

[1548] 
0.0005 

β�HOSO�12→β�LUSO 

(57%) 

β�HOSO�13→β�LUSO 

(27%) 

Fe→Fc+‒Ph 6680 

D3 
15270 

[655] 
0.0840 

β�HOSO→β�LUSO 

(29%) 

β�HOSO�1→β�LUSO 

(43%) 

M2TPPD→Fc+‒Ph 17280 

D6 
21280 

[470] 
0.1292 

α�HOSO→α�LUSO 

(16%) 

α�HOSO�1→α�LUSO 

(25%) 

M2TPPD→Fc+‒Ph 23530 

[��]+ 

D2 
9030 

[1107] 
0.0016 

β�HOSO�5→β�LUSO 

(86%) 
Fe→Fc+(N) 9280 

D5 
16560 

[604] 
0.1010 

α�HOSO→α�LUSO 

(40%) 

β�HOSO→β�LUSO 

(27%) 

(MeOPh)2N→Fc+(N) 19500 

(sh) 

D11 
23419 

[427] 
0.0645 

α�HOSO→α�LUSO 

(48%) 

β�HOSO→β�LUSO+1 

(48%) 

(MeOPh)2N→Fc+(N) 
21450  

[��]2+ 

(biradical) 

D3 
10500 

[952] 
0.2698 

β�HOSO→β�LUSO 

(89%) 

 

(MeOPh)2N+→(MeOPh

)2N�CpFe+  

 

Not 

measur

ed. 

D9 
16580 

[603] 
0.1414 

α�HOSO→α�LUSO+1 

(25%) 

β�HOSO�3→β�LUSO 

(25%) 

(MeOPh)2N+→Fc+ 

 

Ph2(DPA+)→CpFe+ 
 

[�
]+ 

D2 
9170 

[1091] 
0.0029 

β�HOSO�9→β�LUSO 

(82%) 
Fe→Fc+(N) 

8510 

D4 
14560 

[687] 
0.1578 

α�HOSO→α�LUSO 

(47%) 

β�HOSO→β�LUSO 

(37%) 

TPA→Fc+(N) 
20310 

[�
]2+ 

(biradical) 
D4 

13530 

[739] 
0.1435 

β�HOSO�1→β�LUSO 

(67%) 
Fe�N(PhOMe)2 →TPA+ 

20990 

a B3LYP/6�31G*(Fe: Lanl2DZ) /CPCM /CH2Cl2. CAM�B3LYP was used for [��]+. b Taken from 

Table 3. c Asymmetric broad band encompassing the two calculated electronic transitions. d [��]+ 
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undergoes redox disproportionation (Table 2) and the absorption maxima listed in Table 4 

correspond to the initial phase of the anodic electrolysis. 

 

αααα �38'!

αααα �"!'!

αααα �"!'!��

0��2>

ββββ �"!'!��)

ββββ �38'!

ββββ �38'!>�

  

$�6��
�<% Spin orbitals involved in the major electronic excitations of [��]+ (left) and [�
]+ (right) 

presented in Table 4. CAM�B3LYP ([��]+) or B3LYP ([�
]+)/6�31G* (Fe: 

Lanl2DZ)/CPCM/CH2Cl2. 

�

����	�������

This work presents a series of mono� and bis(ferrocenyl)�substituted TPA (��,�

��), TPPD (��), and Cp�DPA (��–��) derivatives depicted in Chart 1. The 

electrochemical and UV�vis�NIR spectroelectrochemical results have consistently 

revealed that the first anodic steps for ��–�� is associated with one�electron oxidation 

of the ferrocenyl units, being followed by donor TPA substituents (absent in ��) and, 

finally, Cp�bound DPA (or diphenylferrocenyl amine). The latter donor segments 

oxidize irreversibly and facilitate the preceding ferrocenyl oxidation. TD�DFT 

calculations at the B3LYP or CAM�B3LYP levels (successfully applied for reference 

phenylferrocenium) have disclosed that the characteristic absorption bands of the 

monocationic radical species [��]+�[�
]+ in the near�IR region involve excitation 

within the oxidized ferrocenium site; the anticipated amine�to�ferrocenium 
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charge�transfer absorption has been encountered in the visible spectral region. 

Mononuclear biradicals [��]2+, [��]2+ (unstable) and [�
]2+ reside in a triplet ground 

state. The symmetric TPA�bridged diferrocenyl, ��, and bis(phenylaminoferrocenyl), 

��, complexes behave as localized redox systems with minimal interaction between 

the iron centres, undergoing facile redox disproportionation in the 

one�electron�oxidized state. We trust that new insights obtained from detailed studies 

of such systems containing multiple redox�responsive components will further 

advance rational design, understanding and exploration of new systems in materials 

chemistry based on electron�rich substituted ferrocenes. 

�

���
���
���	�'
������

�������	 
��������%� All manipulations were carried out under a dry argon gas 

atmosphere by using standard Schlenk techniques, unless stated otherwise. Solvents 

were pre�dried and distilled under argon prior to use, except those used directly for 

spectroscopic measurements, which were of spectroscopic grade. The starting 

materials (4�bromophenyl)diphenylamine ()�)16, bis(4�bromophenyl)phenylamine 

()�)16, bis(4�methoxyphenyl)amine17, N�ferrocenyl�4�methoxyaniline ()�)18 and 

aminoferrocene (#�)19 were prepared by the procedures described in the literatures. 

Target complexes ��–���were prepared along the synthetic route presented in Scheme 

1. Other reagents were purchased and used as received.�

 


���������	Intermediate ��.�Bis(4�methoxyphenyl)amine (200 mg, 0.87 mmol)， 

bis(4�bromophenyl)phenylamine (1.06 g, 2.60 mmol), t�BuONa (126 mg, 1.30 mmol), 

Pd(OAc)2 (3.9 mg, 0.017 mmol), and 1,1'�bis(diphenylphosphino)ferrocene (dppf) (24 

mg, 0.04 mmol) were suspended in 5 mL of toluene. The resulting reaction mixture 

was stirred at 100 °C under nitrogen atmosphere for 36 h. After the reaction mixture 

was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate, 20/1). After recrystallization 

from methanol, the product was obtained as light yellow solid. Yield: 336 mg (70%). 
1H NMR (400 MHz, CDCl3): δ 3.75 (s, 6H, OCH3�H), 6.79�7.25 (m, 21H, Ar�H). 13C 

NMR (100 MHz, CDCl3): δ 55.5 (OCH3), 114.5, 121.5�121.8, 122.4, 123.5�124.3, 
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126.2, 129.0, 131.7, 131.9, 139.7, 139.9, 147.0, 155.5 (Ar). Anal. Calcd for 

C32H27BrN2O2: C, 69.69; H, 4.94; N, 5.08. Found: C, 69.85; H, 4.89; N, 5.13. 

Intermediate ��.� Aminoferrocene (173 mg, 0.90 mmol), 

(4�bromophenyl)diphenylamine (279 mg, 0.90 mmol), t�BuONa (248 mg, 2.60 mmol), 

Pd2(dba)3 (32 mg, 0.030 mmol), and (+/�)�2,2'�bis(diphenylphosphino)�1,1'�binaphthyl 

(BINAP) (19 mg, 0.030 mmol) were suspended in 5 mL of toluene. The resulting 

reaction mixture was stirred at 100 °C under nitrogen atmosphere for 72 h. After the 

reaction mixture was cooled to ambient temperature, the crude product was purified 

by column chromatography (eluent: petroleum ether/ethyl acetate, 60/1). The pure 

product was obtained as yellow solid. Yield: 172 mg (45%). 1H NMR (400 MHz, 

CDCl3): δ 4.13 (s, 2H, Fc�H), 4.22 (s, 5H, Fc�H), 4.31 (s, 2H, Fc�H), 6.69 (s, 1H, 

N�H), 6.87�6.90 (t, J = 12 Hz, 2H, Ar�H), 7.00�7.02 (d, J = 8 Hz, 6H, Ar�H), 

7.16�7.22 (m, 6H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 61.7, 64.5, 68.8 (Fc), 100.6, 

115.6, 121.4, 122.5, 127.0, 128.8, 138.8, 142.2, 147.9 (Ar). Anal. Calcd for 

C28H24FeN2: C, 75.68; H, 5.44; N, 6.30. Found: C, 75.43; H, 5.37; N, 6.22. 

Intermediate ��.� Aminoferrocene (201 mg, 1.00 mmol), 

bis(4�bromophenyl)phenylamine (202 mg, 0.50 mmol), t�BuONa (144 mg, 1.50 

mmol), Pd2(dba)3 (18 mg, 0.02 mmol), and BINAP (13mg, 0.02 mmol) were 

suspended in 5 mL of toluene. The resulting reaction mixture was stirred at 100 °C 

under nitrogen atmosphere for 55 h. After the reaction mixture was cooled to ambient 

temperature, the crude product was purified by column chromatography (eluent: 

petroleum ether/ethyl acetate, 10/1). After recrystallization from hexane, the product 

was obtained as yellow solid. Yield: 128 mg (40%). 1H NMR (600 MHz, CDCl3): δ 

4.07 (s, 4H, Fc�H), 4.20 (s, 10H, Fc�H), 4.26 (s, 4H, Fc�H), 4.45 (s, 2H, N�H), 

6.97�7.16 (m, 13H, Ar�H). 13C NMR (100 MHz, DMSO�d6): δ 59.3, 63.4, 68.3 (Fc), 

101.4, 115.1, 118.1, 126.3, 128.6, 137.2, 142.0, 148.7 (Ar). Anal. Calcd for 

C38H33Fe2N3: C, 70.94; H, 5.17; N, 6.53. Found: C, 70.65; H, 5.08; N, 6.58. 

Target complexes ��–�� were prepared along the synthetic route presented in 

Scheme�1. 

Preparation of 48(diphenylamino)phenylferrocene,	 ��.�

-4�Bromophenyl)diphenylamine (235 mg, 0.73 mmol), ferrocenylboronic acid (200 

mg, 0.87 mmol), K3PO4 (462 mg, 2.20 mmol), Pd(OAc)2 (1.6 mg, 0.007 mmol), and 

2�(dicyclohexylphosphino)biphenyl (5 mg, 0.015 mmol) were suspended in 5 mL of 
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toluene. The resulting reaction mixture was stirred at 110 °C under nitrogen 

atmosphere for 36 h. After the reaction mixture was cooled to ambient temperature, 

the crude product was purified by column chromatography (eluent: 

dichloromethane/petroleum ether 3:10 (v/v)). After recrystallization from methanol, 

the product was obtained as yellow solid. Yield: 177 mg (56%). 1H NMR (600 MHz, 

CDCl3): δ 4.06 (s, 5H, Fc�H), 4.28 (s, 2H, Fc�H), 4.58 (s, 2H, Fc�H), 7.01 (t, J = 12 

Hz, 4H, Ar�H), 7.11 (d, J = 6 Hz, 4H, Ar�H), 7.24�7.27 (m, 4H, Ar�H), 7.34�7.35 (d, J 

= 6 Hz, 2H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 66.2, 68.6, 69.5, 85.5 (Fc), 122.4, 

123.9, 126.7, 127.0, 129.0, 133.2, 145.4, 147.5 (Ar). Anal. Calcd for C28H23FeN: C, 

78.33; H, 5.40; N, 3.26. Found: C, 78.56; H, 5.29; N, 3.31. 

Preparation of	 ��.� 4,4’�(Dibromo)triphenylamine (353 mg, 0.88 mmol), 

ferrocenylboronic acid (483 mg, 2.00 mmol), K3PO4 (558 mg, 2.60 mmol), Pd(OAc)2 

(4 mg, 0.018 mmol), and 2�(dicyclohexylphosphino)biphenyl (12 mg, 0.035 mmol) 

were suspended in 6 mL of toluene. The resulting reaction mixture was stirred at 

110 °C under nitrogen atmosphere for 48 h. After the reaction mixture was cooled to 

ambient temperature, the crude product was purified by column chromatography 

(eluent: dichloromethane/petroleum ether 1:4 (v/v)). After recrystallization from 

methanol, the product was obtained as yellow solid. Yield: 216 mg (40%). 1H NMR 

(400 MHz, CDCl3): δ 4.05 (s, 10H, Fc�H), 4.26 (s, 4H, Fc�H), 4.56 (s, 4H, Fc�H), 

7.00 (d, J = 4 Hz, 4H, Ar�H), 7.10 (d, J = 4 Hz, 2H, Ar�H), 7.22 (d, J = 8 Hz, 2H, 

Ar�H), 7.32 (d, J = 8 Hz, 4H, Ar�H), 7.42 (d, J = 8 Hz, 1H, Ar�H). 13C NMR (100 

MHz, CDCl3): δ 66.1, 68.6, 69.4, 85.4 (Fc), 122.3, 123.7, 126.6, 127.0, 128.9, 133.1, 

145.3, 147.4 (Ar). Anal. Calcd for C38H31Fe2N: C, 74.41; H, 5.09; N, 2.28. Found: C, 

74.17; H, 4.98; N, 2.30. 

Preparation of	��.�)� (108 mg, 0.20 mmol), ferrocenylboronic acid (54 mg, 0.24 

mmol), K2CO3 (82 mg, 0.60 mmol), Pd(OAc)2 (0.9 mg, 0.004 mmol), and 

1,1'�bis(diphenylphosphino)ferrocene (6 mg, 0.01 mmol) were suspended in 5 mL of 

toluene. The resulting reaction mixture was stirred at 100 °C under nitrogen 

atmosphere for 48 h. After the reaction mixture was cooled to ambient temperature, 

the crude product was purified by column chromatography (eluent: petroleum 

ether/ethyl acetate 32:3 (v/v)). After recrystallization from methanol, the product was 

obtained as yellow solid 78mg. Yield: 61%. 1H NMR (400 MHz, CDCl3): δ 3.78 (s, 

6H, OMe�H), 4.04 (s, 5H, Fc�H), 4.26 (s, 2H, Fc�H ), 4.55 (s, 2H, Fc�H ), 6.79�6.85 

(m, 6H, Ar�H), 6.91�6.97 (m, 5H, Ar�H), 7.02�7.07 (m, 6H, Ar�H), 7.19�7.21 (d, J = 8 
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Hz, 2H, Ar�H), 7.29�7.31 (d, J = 8 Hz, 2H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 

55.5 (OMe), 66.2, 68.6, 69.5 (Fc), 85.8, 114.5, 121.8, 122.1, 123.0, 125.8, 126.7, 

128.9, 132.5, 140.6, 141.1, 144.2, 145.7, 147.7, 155.3 (Ar). Anal. Calcd for 

C42H36FeN2O2: C, 76.83; H, 5.53; N, 4.27;. Found: C, 76.97; H, 5.48; N, 4.18. 

Preparation of bis(48methoxy1phenyl)aminoferrocene,	 ��.�

N�Ferrocenyl�4�methoxyaniline (87 mg, 0.28 mmol), 4�bromoanisole (0.07 ml, 0.57 

mmol), t�BuONa (81 mg, 0.84 mmol), Pd2(dba)3 (10 mg, 0.01 mmol), and BINAP (7 

mg, 0.01 mmol) were suspended in 4 mL of toluene. The resulting reaction mixture 

was stirred at 100 °C for under nitrogen atmosphere 60 h. After the reaction mixture 

was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate 300:1 (v/v)). The pure product 

was obtained as yellow solid. Yield: 60 mg (52%). 1H NMR (400 MHz, CDCl3): δ 

3.79 (s, 5H, Fc�H), 3.88 (s, 2H, Fc�H), 3.94 (s, 2H, Fc�H), 4.17 (s, 6H, OMe�H), 

6.83�6.85 (d, J = 8 Hz, 4H, Ar�H), 7.20�7.22(d, J = 8 Hz, 4H, Ar�H). 13C NMR (100 

MHz, CDCl3): δ 55.5 (OMe), 58.1, 63.4, 68.63 (Fc), 109.0, 114.2, 125.9, 140.7, 155.3 

(Ar). Anal. Calcd for C24H23FeNO2: C, 69.75; H, 5.61; N, 3.39. Found: C, 69.58; H, 

5.43; N, 3.43. 

Preparation of	 ��.� )
 (163 mg, 0.40 mmol), 4�bromoanisole (0.09 ml, 0.80 

mmol), t�BuONa (115 mg, 1.20 mmol), Pd2(dba)3 (18 mg, 0.02 mmol), and BINAP 

(12 mg, 0.02 mmol) were suspended in 5 mL of toluene. The resulting reaction 

mixture was stirred at 100 °C under nitrogen atmosphere for 50 h. After the reaction 

mixture was cooled to ambient temperature, the crude product was purified by column 

chromatography (eluent: petroleum ether/ethyl acetate 100:1 (v/v)). After 

recrystallization from methanol, the product was obtained as yellow solid. Yield: 90 

mg (45%). 1H NMR (400 MHz, CDCl3): δ 3.82 (s, 3H, OMe�H), 3.96 (s, 4H, Fc�H), 

4.14 (s, 5H, Fc�H), 6.89�6.97 (m, 6H, Ar�H), 7.04�7.11 (m, 6H, Ar�H), 7.18�7.23 (m, 

6H, Ar�H).  13C NMR (100 MHz, CDCl3): δ 55.5 (OMe), 59.4, 63.7, 68.7 (Fc), 107.9, 

114.4, 121.9, 122.4, 123.2, 125.3, 127.9, 128.9, 140.2, 141.0, 143.3, 147.7, 156.3 (Ar). 

Anal. Calcd for C35H30FeN2O: C, 76.37; H, 5.49; N, 5.09. Found: C, 76.11; H, 5.44; N, 

5.07. 

Preparation of	��.�Compound )� (94 mg, 0.15 mmol), 4�bromoanisole (0.08 ml, 

0.60 mmol), t�BuONa (43 mg, 0.45 mmol), Pd2(dba)3 (6 mg, 0.006 mmol), and 

BINAP (4 mg, 0.006 mmol) were suspended in 5 mL of toluene. The resulting 

reaction mixture was stirred at 100 °C under nitrogen atmosphere for 72 h. After the 
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reaction mixture was cooled to ambient temperature, the crude product was purified 

by column chromatography (eluent: petroleum ether/ethyl acetate 40:1 (v/v)). The 

pure product was obtained as yellow solid. Yield: 58 mg (45%). 1H NMR (400 MHz, 

CDCl3): δ 3.79 (s, 6H, OMe�H), 3.95 (s, 8H, Fc�H), 4.13 (s, 10H, Fc�H), 6.87�6.89 (d, 

J = 8 Hz, 4H, Ar�H), 6.95�6.97 (d, J = 8 Hz, 4H, Ar�H), 7.02�7.10 (m, 8H, Ar�H), 

7.15�7.22 (m, 5H, Ar�H). 13C NMR (100 MHz, CDCl3): δ 55.5 (OMe), 59.2, 63.7, 

68.7 (Fc), 108.0, 114.4, 121.3, 122.3, 122.7, 124.0, 127.8, 128.8, 140.2, 141.3, 142.9, 

148.0, 156.3 (Ar). Anal. Calcd for C52H45Fe2N3O2: C, 72.99; H, 5.30; N, 4.91. Found: 

C, 72.75; H, 5.41; N, 4.95. 
 

X8ray Crystallography  

Single crystals of complex �� suitable for X�ray analysis were grown from a 

solution in dichloromethane by slow solvent evaporation at room temperature. A 

selected crystal with approximate dimensions of 0.20×0.10×0.10 mm3 was mounted 

on a glass fiber for diffraction experiments. Intensity data were collected on a Nonius 

Kappa CCD diffractometer with Mo Kα radiation (0.71073 Å) at room temperature. 

The crystal structure was determined by a combination of direct methods 

(SHELXS�97)20 and Fourier difference techniques and refined by full matrix least 

squares (SHELXL�97)21. All non�H atoms were refined anisotropically. The hydrogen 

atoms were placed in ideal positions and refined as riding atoms. The partial solvent 

molecules have been omitted. Selected bond distances and angles are given in Table 1. 

Further crystal data and details of the data collection are summarized in Table S1. 

Crystallographic data for the structure have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication CCDC 1564068. 

 

Physical Measurements 
 

1H and 13C NMR spectra (Figures S13 – S30, Supporting Information) were 

collected on a Varian Mercury Plus 400 spectrometer (400 MHz). 1H and 13C NMR 

chemical shifts are given relative to Si(CH3)4. Elemental analyses (C, H, N) were 

performed with a Vario ElIII Chnso instrument. The electrochemical measurements 

were performed on a CHI 660C potentiostat. A three�electrode single�compartment 
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cell was used for the solution of complexes and supporting electrolyte in dry CH2Cl2. 

The solution was deaerated by bubbling with dry argon on a frit for about 10 min 

before the measurement. The analyte (complex, ligand) and electrolyte (n�Bu4NPF6) 

concentrations were typically 10�3 and 10�1 mol dm�3, respectively. A pre�polished 

500�dm diameter platinum disk working electrode, a platinum wire counter electrode, 

and an Ag wire pseudoreference electrode were used. Ferrocene was used as the 

internal potential reference. Spectroelectrochemical experiments at room temperature 

were performed with an airtight optically transparent thin�layer electrochemical 

(OTTLE) cell (optical path length of ca. 200 dm) equipped with a Pt minigrid 

working electrode and CaF2 windows.22 The cell was positioned in the sample 

compartment of a Shimadzu UV�3600 UV�vis�NIR spectrophotometer. The 

controlled�potential electrolyses were carried out with a CHI 660C potentiostat. The 

concentration of analyte samples was ca 2×10�3 mol dm�3. Dry 3×10�1 M n�Bu4NPF6 

was used as the supporting electrolyte.  

 

Computational Details 

DFT calculations were performed with the Gaussian 09 program23, at the 

B3LYP24 or CAM�B3LYP25/6�31G*26 level of theory. The basis set employed was 

6�31G* (Lanl2DZ for Fe atom). Geometry optimization was performed without any 

symmetry constraints. Electronic transitions were calculated by the time�dependent 

DFT (TD�DFT) method. The MO contributions were generated using the Multiwfn 

package and plotted using GaussView 5.0. The solvation effects in dichloromethane 

are included for a part of the calculations with the conductor�like polarizable 

continuum model (CPCM).27  
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The multistep anodic behavior of two series of nonlinear 

(di)aminophenylferrocene, and diphenylaminoferrocene complexes is 

reported. The influence of the integration of diverse redox�active components 

on the sequential oxidation of these complexes has been explored. The first 

anodic steps all take place uniformly on the ferrocenyl units, followed by 

oxidation of the triphenylamine and Cp�diphenylamine moieties. The 

assignment of the anodic steps has been supported by DFT calculations.  
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���	
���. Crystal data and parameters of data collection and refinement for complex ��. 

Complex ���

Formula C24H23FeNO2 

Formula weight 413.28 

Temperature (K)  296 (2)  

Crystal system Monoclinic 

Space group P2(1)/c 

a (Å) 17.7696 (18) 

b(Å) 9.6825 (10) 

c(Å) 22.947 (2) 

α (°) 90 

β (°) 92.595 (2) 

γ (°) 90 

V (Å3) 3944.1 (7) 

Z 8 

Density (calculated) (Mg/m3) 1.392 

Absorption coefficient (mm�1) 0.784 

F(000) 1728 

Crystal size (mm3) 0.20 × 0.10 × 0.10 

Theta range for data collection (°) 1.78 to 27.45 

Index ranges �23≤h≤23, �12≤k≤12, �29≤l≤29 

Reflections collected 32836 

Independent reflections 8967 [R(int) = 0.0562] 

Max. and min. transmission 0.9257 and 0.9118 

Data / restraints / parameters 8967 / 0 / 510 

Goodness�of�fit on F2 0.997 

Final R indices [I>2σ(I)] R1 = 0.0443, wR2 = 0.1093 

R indices (all data) R1 = 0.0826, wR2 = 0.1266 

Largest diff. peak and hole (e.�3) 0.279 and �0.336  
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���	
���. Bond lengths [Å] and angles [deg] for complex ��. 

Bond lengths [Å] 

Fe1—C3 2.028 (3) C7—C8 1.410 (4) 

Fe1—C2 2.034 (2) C11—C16 1.369 (4) 

Fe1—C10 2.036 (3) C11—C12 1.383 (3) 

Fe1—C4 2.038 (3) O1—C14 1.372 (3) 

Fe1—C9 2.038 (3) O1—C17 1.408 (4) 

Fe1—C7 2.040 (3) C19—C20 1.369 (4) 

Fe1—C6 2.040 (3) C2—C3 1.416 (4) 

Fe1—C8 2.044 (3) C21—C22 1.382 (4) 

Fe1—C5 2.061 (3) C21—C20 1.386 (4) 

Fe1—C1 2.072 (2) C9—C8 1.403 (4) 

N1—C1 1.411 (3) C9—C10 1.408 (4) 

N1—C18 1.425 (3) C10—C6 1.415 (4) 

N1—C11 1.439 (3) C13—C12 1.376 (4) 

O2—C21 1.373 (3) C13—C14 1.378 (4) 

O2—C24 1.421 (3) C22—C23 1.383 (4) 

C18—C23 1.387 (3) C16—C15 1.387 (4) 

C18—C19 1.394 (3) C15—C14 1.379 (4) 

C1—C2 1.422 (4) C4—C3 1.405 (4) 

C1—C5 1.425 (4) C4—C5 1.421 (4) 

C7—C6 1.403 (4) C7—C8 1.410 (4) 

Bond angles [deg] 

C3—Fe1—C2 40.79 (10) C8—Fe1—C1 152.56 (11) 

C3—Fe1—C10 153.66 (13) C5—Fe1—C1 40.34 (10) 

C2—Fe1—C10 164.75 (12) C1—N1—C18 124.0 (2) 

C3—Fe1—C4 40.45 (12) C1—N1—C11 114.3 (2) 

C2—Fe1—C4 68.27 (11) C18—N1—C11 117.4 (2) 

C10—Fe1—C4 120.30 (13) C21—O2—C24 117.2 (2) 

C3—Fe1—C9 119.25 (12) C23—C18—C19 117.4 (2) 

C2—Fe1—C9 152.74 (13) C23—C18—N1 124.1 (2) 
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C10—Fe1—C9 40.45 (13) C19—C18—N1 118.5 (2) 

C4—Fe1—C9 109.02 (12) N1—C1—C2 123.4 (2) 

C3—Fe1—C7 126.54 (12) N1—C1—C5 129.1 (2) 

C2—Fe1—C7 107.12 (11) C2—C1—C5 107.4 (2) 

C10—Fe1—C7 67.95 (12) N1—C1—Fe1 130.19 (17) 

C4—Fe1—C7 164.45 (13) C2—C1—Fe1 68.32 (14) 

C9—Fe1—C7 67.84 (12) C5—C1—Fe1 69.40 (15) 

C3—Fe1—C6 163.97 (12) C6—C7—C8 108.2 (3) 

C2—Fe1—C6 126.45 (11) C6—C7—Fe1 69.89 (16) 

C10—Fe1—C6 40.64 (12) C8—C7—Fe1 69.96 (17) 

C4—Fe1—C6 154.30 (13) C16—C11—C12 119.5 (2) 

C9—Fe1—C6 68.03 (12) C16—C11—N1 120.4 (2) 

C7—Fe1—C6 40.23 (11) C12—C11—N1 119.9 (2) 

C3—Fe1—C8 107.69 (13) C14—O1—C17 116.8 (3) 

C2—Fe1—C8 118.47 (11) C9—C10—Fe1 69.86 (17) 

C10—Fe1—C8 67.85 (12) C6—C10—Fe1 69.82 (16) 

C4—Fe1—C8 127.47 (12) C12—C13—C14 119.6 (2) 

C9—Fe1—C8 40.20 (12) C19—C20—C21 120.9 (3) 

C7—Fe1—C8 40.41 (11) C13—C12—C11 120.5 (3) 

C6—Fe1—C8 67.84 (12) C21—C22—C23 120.4 (2) 

C3—Fe1—C5 68.16 (12) C9—C8—C7 108.0 (3) 

C2—Fe1—C5 68.13 (11) C9—C8—Fe1 69.68 (17) 

C10—Fe1—C5 109.30 (12) C7—C8—Fe1 69.63 (16) 

C4—Fe1—C5 40.57 (11) C11—C16—C15 120.6 (3) 

C9—Fe1—C5 128.55 (12) C14—C15—C16 119.3 (3) 

C7—Fe1—C5 153.13 (12) C3—C4—C5 108.3 (2) 

C6—Fe1—C5 119.96 (12) C3—C4—Fe1 69.41 (16) 

C8—Fe1—C5 165.55 (12) C5—C4—Fe1 70.59 (15) 

C3—Fe1—C1 68.23 (11) C22—C23—C18 121.3 (2) 

C2—Fe1—C1 40.51 (10) O1—C14—C13 115.3 (3) 

C10—Fe1—C1 127.92 (12) C8—Fe1—C1 152.56 (11) 

C4—Fe1—C1 68.06 (11) C5—Fe1—C1 40.34 (10) 

C9—Fe1—C1 165.82 (12) C1—N1—C18 124.0 (2) 
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C7—Fe1—C1 118.78 (11) C1—N1—C11 114.3 (2) 

C6—Fe1—C1 108.18 (11)   

 

 

  

�� ��
� ��. Cyclic voltammograms (CV, at v = 50 mV s�1; black line) and corresponding 

square�wave voltammograms (SWV, at f = 10 Hz and tp = 25 mV; red line) of TPA (top, with 

ferrocene present as the internal standard), and M4TPPD (bottom) in CH2Cl2/n�Bu4NPF6. 
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�� ��
���. The curtailed two�anodic�step cyclic voltammogram (CV) of �� in CH2Cl2/n�Bu4NPF6 

at v = 50 mV s�1. 
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�� ��
��). Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of complex 

�� to [��]2+ in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. The intermediate 

absorption of [��]+ is poorly resolved due to pronounced redox disproportionation of the 

monocation. 
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�� ��
��&. Changes in UV�vis�NIR absorption spectra recorded during the oxidation�of reference  

compound ��##� to [��##�]+ (top) and [��##�]2+
�(bottom)�in CH2Cl2/10�1 M n�Bu4NPF6 

at 298 K within an OTTLE cell. 
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�� ��
��*. UV�vis�NIR spectral changes recorded during the reversible Fc�localized oxidation�of 

complex �� to [��]+
�in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an OTTLE cell. 
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�� ��
� �'. Changes in UV�vis�NIR absorption recorded during the unresolved bielectronic 

oxidation� of dinuclear complex �� to [��]2+ in CH2Cl2/10�1 M n�Bu4NPF6 at 298 K within an 

OTTLE cell. The subsequent oxidation to [��]3+ was complicated by low solubility of the ultimate 

product. 
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�� ��
��+. The DFT�optimized geometric structures of �� (a), �
 (b)�and ���(c). 

 

 

 

�� ��
��(% Spin orbitals involved in the major electronic excitations of [��]+. B3LYP /6�31G* (Fe: 

Lanl2DZ) /CPCM /CH2Cl2. 
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�� ��
��3% Spin orbitals involved in the major electronic excitations of [��]+. B3LYP /6�31G* (Fe: 

Lanl2DZ) /CPCM /CH2Cl2. 
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�� ��
���$% Spin orbitals involved in the major electronic excitations of [��]2+ (biradical state). 

B3LYP /6�31G* (Fe: Lanl2DZ) /CPCM /CH2Cl2. 

 

 

�� ��
����% Spin orbitals involved in the major electronic excitations of [��]2+ (biradical state). 
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B3LYP /6�31G* (Fe: Lanl2DZ) /CPCM /CH2Cl2. 

 

 

�� ��
� ���% Frontier spin orbitals of [�
]2+ (biradical state). B3LYP /6�31G* (Fe: Lanl2DZ) 

/CPCM /CH2Cl2.  
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�� ��
���). The cyclic voltammogram (CV, black line; v = 50 mV s�1) and the corresponding 

square�wave voltammogram (SWV, red line; at f = 10 Hz and tp = 25 mV) of reference 

phenylferrocene, Ph�Fc, in CH2Cl2/n�Bu4NPF6. The oxidation potential of Ph�Fc is E1/2 = +0.04 V 

vs ferrocene/ferrocenium (Fc/Fc+). The electronic absorption of [Ph�Fc]+ is presented in Figure 

S14. 
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�� ��
���&% Electronic absorption spectra of 10�2 M Ph�Fc (black line) and [Ph�Fc]+ (red line) 

obtained by chemical oxidation with AgPF6 in CH2Cl2 at 298 K. The simulated spectra of [Ph�Fc]+ 

and corresponding electronic transitions obtained with TD�DFT methods are depicted in Figures 

S15�S17. 
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�� ��
���*% Simulated electronic absorption of [Ph�Fc]+. B3LYP/6�31G*/CPCM /CH2Cl2. 

�

 

 

�� ��
���'%�Simulated electronic absorption of [Ph�Fc]+; CAM�B3LYP/6�31G*/CPCM /CH2Cl2. 
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�

�� ��
���+% Spin orbitals involved in the plausible calculated visible electronic excitations of 

[Ph�Fc]+ (see Figures S15 and S16). A better agreement with the experimental visible absorption 

of the cationic complex has been reached with the B3LYP method. 
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�� ��
���(% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

�� ��
���3% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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�� ��
���$% 1H NMR spectrum (400 MHz, CDCl3) of �
. 

 

�� ��
����% 13C NMR spectrum (100 MHz, CDCl3) of �
. 
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�� ��
����% 1H NMR spectrum (600 MHz, CDCl3) of ��. 
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�� ��
���)% 13C NMR spectrum (100 MHz, DMSO�d6) of ��. 
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�� ��
���&% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

�

�� ��
���*% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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�� ��
���'% 1H NMR spectrum (400 MHz, CDCl3) of ��.  

 

 

�� ��
���+% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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� �� ��
���(% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

 

�� ��
���3% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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� �� ��
��)$% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

 

�� ��
��)�% 13C NMR spectrum (100 MHz, CDCl3) of ��. 

�
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�� ��
��)�% 1H NMR spectrum (400 MHz, CDCl3) of �
. 

 

 

�� ��
��))% 13C NMR spectrum (100 MHz, CDCl3) of �
. 

�
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� �� ��
��)&% 1H NMR spectrum (400 MHz, CDCl3) of ��. 

 

� �� ��
��)*% 13C NMR spectrum (100 MHz, CDCl3) of ��. 
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