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Abstract 10 

The increasing environmental concerns and the significant growth of the waste to energy market 11 

calls for innovative and flexible technology that can effectively process and convert municipal solid 12 

waste into fuels and power at high efficiencies. To ensure the technical and economic feasibility of  13 

new technology, a sound understanding of the characteristics of the integrated energy system is 14 

essential. In this work, a comprehensive techno-economic analysis of a waste to power and heat plant 15 

based on integrated intermediate pyrolysis and CHP (Pyro-CHP) system was performed. The overall 16 

plant CHP efficiency was found to be nearly 60% defined as heat and power output compared to 17 

feedstock fuel input. By using an established economic evaluation model, the capital investment of a 18 

5 tonne per hour plant was calculated to be £27.64 million and the Levelised Cost of Electricity was 19 

£0.063/kWh. This agrees the range of cost given by the UK government. To maximise project 20 

viability, technology developers should endeavour to seek ways to reduce the energy production 21 

cost. Particular attention should be given to the factors with the greatest influence on the 22 

profitability, such as feedstock cost (or gate fee for waste), maintaining plant availability, improving 23 

energy productivity and reducing capital cost.  24 
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1. Introduction 34 

 35 

Municipal solid waste (MSW) consists mainly of household black bin waste, which is typically 36 

treated or disposed of by waste treatment plants on behalf of local authorities in various ways. Over 37 

the past twenty years, the focal point of UK waste management has shifted from disposal to 38 

recycling or recovery, which has led to a significant reduction in the quantity of MSW sent to 39 

landfill. In 2016, a total of 9.96 million tonnes of the organic fraction of solid waste and refuse 40 

derived fuel (RDF) was processed at UK Energy-from-Waste (EfW) facilities, which generated a 41 

total of 6.15 GWh electrical power but the amount of heat was not reported [1]. As shown in Figure 42 

1, the input to EfW plants increased by 18% in 2016 compared to the previous year and nearly twice 43 

the amount as a decade ago. Meanwhile, in 2016 total EfW power production increased by 2.5 times 44 

the equivalent number in 2006. This is due to the increase in generation efficiency over the past ten 45 

years. A forecast based on analysis of past data indicates that the levels of EfW input and power 46 

production in 2026 could increase by 1.7 and 1.9 times respectively compared to 2016 values, 47 

suggesting further improvements in efficiency. According to the statistics from WasteDataFlow (a 48 

web-based system for municipal waste data reporting by UK local authorities to the government), 49 

over 85% of the UK EfW inputs are derived from local authority collected waste with up to 15% is 50 

from commercial and industrial waste [1,2]. 51 

 52 

With over 130 year’s history, direct combustion/incineration has been the most widely employed 53 

technology in waste management and the energy recovery industry. A modern incineration system 54 

can process kilo tonnes per day that combust all the organic fraction in the MSW feedstock to raise 55 

steam for large-scale steam turbine generators; however, the overall electrical efficiency of the plant 56 

is typically around 20% [3,4]. Following increasing concerns over environmental issues and strong 57 
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growth in the future EfW market, it is increasingly important that more efficient and flexible 58 

technologies with high standards of emission control are developed. 59 

 60 

 61 

Figure 1. Industrial development of Energy from Waste in the UK 62 

 63 

Alternative thermal EfW processes proposed by researchers frequently involve advanced conversion 64 

technology (ACT), namely pyrolysis [4] and gasification [5]. Pyrolysis is the thermal decomposition 65 

of organic materials in the absence of oxygen at elevated temperatures of around 500 °C. The 66 

feedstock is converted to liquid, gaseous and solid products in varying proportions with potential in 67 

biofuel applications. Gasification involves a partial combustion process at over 800 °C with the 68 

controlled presence of air/oxygen, and it converts solid organics into a fuel gas containing mainly 69 

CO, CH4, H2 and CO2. Industrial development and commercialisation of ACT in waste energy 70 

recovery began in the 1960s. For example, the Norwegian company ENERGOS has established over 71 

10 EfW plants based on gasification and steam turbine generator across Europe [6], including the Isle 72 

of Wight gasification plant, which was operational from 2009 to 2017 with a processing capacity of 73 

30,000 tonne MSW per year and an electrical power output of 1.8 MW [7]. The company claims the 74 

plant availability can reach as high as 8000 hours per year. Nevertheless, a recent report from 75 
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UKWIN described that there has been a series of failures in the ACT based EfW projects or 76 

companies due to different technical and economic issues in the plant operation [8]. 77 

 78 

Along with industrial EfW development, there have been a number of research studies that have 79 

addressed technical novelties in different aspects of the thermochemical conversion of different 80 

waste materials for EfW.  These include co-processing of different types of feedstock, for example, 81 

co-gasification of waste with coal [9], co-pyrolysis of waste with biomass and other wastes [10,11] 82 

and application and integration of advanced technologies, for example study of thermal catalytic 83 

reforming [12]  and integrations of advanced pre-treatment system [13] and plasma gasification 84 

reactors [14]. For any novel energy system, a sound understanding of the technical and economic 85 

performance at industrial scale is essential, as it provides key information about the project and helps 86 

the project developer to identify the direction that can ensure the effort and investment are targeted at 87 

the areas of most significant impact. However, not much work has been carried out in this respect. 88 

Ledon et al. [15] carried out an exergo-economic analysis of a hypothetical MSW gasification 89 

system integrated with a combined cycle power system in Chile. It was found that the energy loss in 90 

the gasifier accounted for nearly 60% of the total energy loss.  Use of a higher gasification 91 

temperature and/or lower equivalence ratio could result in better overall system performance. The 92 

author claimed that the power production through the proposed process could be economically 93 

viable, comparing performance to the current Chilean energy market. Salman et al. [16] performed a 94 

techno-economic analysis on a new process with coupled anaerobic digestion of MSW and pyrolysis 95 

of digestate that gave high-efficiency bio-methane production. In this process, char obtained from 96 

pyrolysis was added to the digester as a medium for toxic chemical/micro-organism adsorption and 97 

development of a stable microbial community. The pyrolysis liquid and gas produced in the 98 

pyrolysis process were steam reformed into syngas and converted to bio-methane through the 99 

methanation process. The economic analysis on a 23,000 tonne per year plant indicated a positive 100 
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result with a payback period of about six years. Sensitivity analysis on the project indicated the 101 

change in product price is the major influencing factor for the project profitability. Luz et al. [17] 102 

carried out a techno-economic analysis on MSW gasification for power generation in Brazilian 103 

municipalities. Net present value (NPV) and the internal rate of return (IRR) were selected as 104 

economic indicators for the evaluation. The technical analysis indicated that the gasification and 105 

engine plant would have electricity production of between 794 and 1065kWe per tonne MSW input. 106 

The authors concluded that large plants with high installed power tend to be more economically 107 

viable, but without incentives from governments, such plants are unlikely to be built. Arena et al. 108 

[18] evaluated the techno-economic performance of a fluidised bed gasification and steam turbine 109 

system for processing mixed plastic waste (MPW) for power generation at 2-6 MW capacity. Based 110 

on the results from a pilot-scale system, the plant would have a total energy conversion efficiency of 111 

23.7% for electricity. With a total plant investment at €4.79 million per megawatt capacity, the plant 112 

would generate an internal rate of return of 8.3%. The authors recommended that further 113 

governmental incentives for renewable energy are required to enable the project to be economically 114 

attractive to investors. Rezaei et al. [19] conducted an economic assessment for power generation 115 

from MSW under different scenarios in Iran. They found that gasification based EfW systems would 116 

be economically viable when the MSW feedstock could attract a gate fee of US$126 per tonne and 117 

the power was sold under a purchase agreement of US$0.276/kWh. In the 2016 Arup/DECC’s 118 

publication on UK electricity generation cost [20], it was stated that the 2016 LCOE of ACT-based 119 

EfW system with CHP was between £89 and £189 per MWh, and the capital cost of such systems 120 

was up to 16.53 million per MW. The capital cost of EfW with CHP in 2016 was 6.2 million per 121 

MW, as indicated in Parsons Brinckerhoff’s report on electricity generation costs model [21].  122 

 123 

While several references have addressed the techno-economic performance of various EfW 124 

processes based on gasification and pyrolysis technology, less focus has been given to the integration 125 
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of ACT and CHP systems for energy recovery from municipal waste. This aim of this work is to 126 

study the technical aspects of a MSW energy recovery plant (therein referenced as the Pyro-CHP 127 

system) consisting of an intermediate pyrolysis reactor and engine system for combined heat and 128 

power generation and presents the economic feasibility and the parameters that affect the plant’s 129 

performance and viability (Comprehensive information about the intermediate pyrolysis system can 130 

be found in previously published work [22–24]). The overall mass and energy balances of the 131 

pyrolysis process were developed from real experimental data obtained in pilot scale tests, and the 132 

data for the engine system was carefully selected from the literature (details can be found in Section 133 

2.3). All of the process streams ranging from feedstock delivery to waste disposal have been 134 

considered. The results of system performance and efficiency were used in an economic evaluation 135 

model to study the Levelised Cost of Electricity (LCOE) and its sensitivity to the variation of a range 136 

of factors. Finally, the Internal Rate of Return (IRR) was analysed to understand the potential return 137 

on investing in such a Pyro-CHP system. 138 

 139 

2. The Process Model 140 

 141 

2.1. Feedstock 142 

The feedstock evaluated in this work was the organic fraction of MSW material provided by a local 143 

municipal waste treatment plant in Leicester UK in winter. The original waste was collected from 144 

local households. After mechanical removal of the majority of metals, paper/cardboard, glass and 145 

plastics, the raw material mainly consisted of the organic fraction of MSW, which comprised small 146 

pieces of biomass (wood and grass), plastics, decomposed materials (such as from food waste and 147 

paper) and inorganics including metal, ceramics, sand etc. This material usually has high moisture 148 

content due to the presence of biologically degraded food waste, and a high ash content due to the 149 

presence of small inorganic material pieces that were unable to be removed in the sorting stage. 150 
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Table 1 presents the characteristics of the organic fraction of MSW feedstock evaluated in this work. 151 

The methods used for the proximate and ultimate analyses are presented in the previous work 152 

[24,25].  153 

 154 

Table 1. Characterisation of the organic fraction of MSW feedstock (on a dry basis) evaluated 155 

in this work  156 

Proximate Analysis Unit Content (wt.%) 

Moisture wt.%  42.9 

Volatiles wt.%  51.6 

Fixed Carbon wt.%  4.1 

Ash wt.%  44.3 

Ultimate Analysis  
 

Carbon wt.%  34.5 

Hydrogen wt.%  4.7 

Nitrogen wt.%  1.6 

Sulphur wt.%  0.4 

Oxygen * wt.%  14.4 

Composition   

Biodegraded material (paper/food etc.) wt.%  57.6 

Coated paper wt.%  0.2 

Plastics wt.%  6.5 

Glass wt.%  5.9 

Green waste wt.%  1.9 

Metal wt.%  4.2 

Textiles wt.%  1.0 

Stones/sand/ceramic wt.%  5.2 

Other (unidentified) wt.%  17.5 
                * calculated by difference; 157 

 158 

2.2. The integrated Pyro-CHP system 159 

The Pyro-CHP system comprises five major subsystems, namely feedstock handling and pre-160 

treatment, pyrolysis processing and product separation, char combustion, engine generators and 161 

waste treatment and disposal. Figure 2 illustrates the schematic of the proposed process. 162 

 163 

The system boundary of the process model includes all processing steps from feedstock reception to 164 

the energy production and waste disposal. The starting point of the model is the entry of the received 165 
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feedstock into the feedstock storage units. The two endpoints of the model are: (1) the output of the 166 

electrical power and heat from the CHP system and (2) the output of ash and pyrolysis water for 167 

disposal.  168 

 169 

 170 

Figure 2. Schematic diagram of the overall EfW process based on pyrolysis and CHP 171 

 172 

As shown in Figure 2: upon reception, the feedstock is weighed and then stored in the feedstock 173 

storage units until sent for pre-treatment. After pre-treatment, the processed feed is sent to the 174 

intermediate pyrolysis reactor to produce pyrolysis liquid, gas and char products. The organic liquid 175 

(pyrolysis oil) is separated from the aqueous product and stored in liquid storage units. After 176 

blending with biodiesel, the liquid fuel blend will be burnt in a diesel engine based CHP system for 177 

energy production. The fuel gas from pyrolysis is cleaned and directly combusted in a gas engine 178 

CHP system. The pyrolysis char is burned in a combustor to provide the process heat for the 179 

pyrolysis reactor. The ash from char combustion is the process waste for disposal. The detailed 180 

processing in the five subsystems is described in the following sections. 181 
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 182 

2.2.1. Feedstock handling and pre-treatment 183 

A series of handling and pre-treatment steps are required to process the received feedstock to ensure 184 

the characteristics of the feedstock for the feeder and pyrolysis reactor Upon delivery, all the 185 

received waste is weighed on a 50-tonne weighbridge and then stored in an 18,000 m3 concrete 186 

storage unit, which is capable of storing four weeks feedstock supply. Before feeding to the 187 

pyrolyser, the received MSW is shredded in a ball mill to reduce particle size to no larger than 20 188 

mm. The shredded material undergoes trommel screening to ensure material particle sizes fall within 189 

appropriate limits. This step is also used to eliminate about 5% of feedstock moisture and 20% of the 190 

solid inert material in the feed such as metal, stones, glass etc. The oversize organic fraction is 191 

recycled to the shredder, and the separated inert material is sent offsite for disposal or recycling. The 192 

pre-treated feed is temporarily stored in bunker storage and then sent to the pyrolysis reactor’s 193 

feeding screws by a discharge floor. A feed rate of 5 tonnes (wet) per hour was selected for this 194 

work.  195 

 196 

2.2.2. The intermediate pyrolysis system 197 

The intermediate pyrolysis reactor is an auger screw reactor, comprising a horizontal carbon steel 198 

vessel containing two co-axial rotating screws, which transports the feed and recycle the char inside 199 

of the reactor. The reactor has one inlet for the feed, one outlet for the solid product (char) and one 200 

outlet for pyrolysis vapours. The heating is provided externally through a heating jacket, and the 201 

pyrolysis temperature can be maintained up to 600°C. The novel feature of this reactor is the use of 202 

co-axial screws for internal char recycling. The hot recycled char acts both as heat transfer medium 203 

and as a catalytic cracking medium, thereby maintaining the desired temperature inside of the reactor 204 

and enhancing the secondary cracking reactions for pyrolysis vapours, so as to produce a higher 205 

fraction of permanent fuel gases (H2 and CO) and lower molecular weight condensable organics and 206 
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less heavy tars. The pyrolysis liquid is usually produced with clear phase separation under gravity. 207 

The liquid will be separated under gravity in the collection tank into two phases, i.e. an organic 208 

fraction (pyrolysis oil) and an aqueous fraction (pyrolysis water). The pyrolysis oil has a lower 209 

density than water, whilst the pyrolysis water remains in the bottom phase and can, therefore, be 210 

drained and pumped to a different storage tank. In this work, a heating temperature of 500 °C and a 211 

solid residence time of 10 minutes was selected for the reactor operating conditions. The detailed 212 

process mass balance is presented in Section 2.3 and the characteristics of the liquid, solid and 213 

gaseous products can be found in the previous related works [24,25].  214 

 215 

The industrial intermediate pyrolysis reactor is coupled to a quench column for scrubbing and 216 

condensing the pyrolysis vapour at room temperature to form the whole pyrolysis liquid. After the 217 

separation of the organic fraction and aqueous fraction, the organic fraction (pyrolysis oil) is sent to 218 

fuel storage. A stream of the aqueous fraction is recirculated back to the quench column for 219 

condensing and scrubbing the hot pyrolysis vapour. The permanent gas then passes through a 220 

dehydration column for moisture removal before it is sent to the gas engine. Both pyrolysis oil and 221 

biodiesel are stored in oil tanks prior to being utilised downstream. In the industrial scale system, it 222 

was estimated that process losses for liquid, gaseous and char products were 2%, 2% and 1%, 223 

respectively. These values were provided by an experienced technician based on experience in the 224 

long-term operation of a fast pyrolysis plant. After the scrubbing column, the pyrolysis gas (fuel gas) 225 

passes through a dehydration column for gas moisture removal.  226 

 227 

2.2.3. Char combustion 228 

The solid char product is collected in a char vessel as interim storage and then directly burnt in a char 229 

combustor at 1000 °C to generate hot gases to meet the heat requirement of the pyrolysis reactor. A 230 

controlled stream of hot combustion flue gas (at around 700°C) is pumped into the heating jacket 231 
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located within the reactor skin to maintain the pyrolysis temperature at approximately 550 °C, which 232 

is slightly higher than the demanded heating temperature. The waste-derived char may be unsaleable 233 

in the market, as it usually has a high ash content and can contain contaminants. Therefore, all the 234 

char product is combusted onsite to minimise the solid waste for disposal. The high-temperature flue 235 

gas with (at around 300 °C) from the pyrolysis heating jacket will enter a heat exchanger for further 236 

heat recovery before being emitted to atmosphere.  237 

 238 

2.2.4. Energy generation  239 

The proposed plant contains two CHP engine generator sets: a diesel engine based generator fuelled 240 

by pyrolysis oil and biodiesel blends, and a gas engine based generator fuelled by fuel gas (pyrolysis 241 

gas). Both engine generators produce heat and power that is sold to generate plant revenue. A dual 242 

fuel engine was not considered in this work for two reasons. Firstly, typical dual fuel engines require 243 

a fixed ratio of gaseous and liquid fuels, which may be different from the ratio of the pyrolysis gas 244 

and oil produced from the reactor; secondly, the compatibility of a dual fuel engine operating with 245 

both pyrolysis oil and gas is not proven. Pyrolysis oil and gas produced in the pyrolysis system are 246 

used to generate electrical power and heat in the form of hot water. The electricity will be sold 247 

through the grid to a utility company for further distribution. All the hot streams pass through a set of 248 

heat exchanges which will heat water up from 40 to 70 °C for supplying to a local district heating 249 

network. It was assumed that all the infrastructure is in place and can be connected when the plant is 250 

ready to output power and heat.  251 

 252 

2.2.5. Waste disposal 253 

A significant waste stream generated in the plant is pyrolysis water, which is obtained as the aqueous 254 

fraction of the pyrolysis liquid separated from the pyrolysis oil. The aqueous liquid from pyrolysis 255 

typically contains various water-miscible chemicals produced during pyrolysis, such as alcohols, 256 
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organic acids and ketones. This liquid is disposed of to industrial sewage works at a high cost due to 257 

the high chemical oxygen demand (COD) value. The ash from the char combustor is another waste 258 

stream, which is sent offsite and disposed of by landfill. 259 

 260 

2.3. Process mass and energy balances 261 

A spreadsheet-based technical process model was created to represent the complete process flow as 262 

presented in Figure 2. The overall model was developed with individual linked worksheets 263 

containing sub-models of the system components described in Section 2.2. The primary input data of 264 

the pyrolysis system was based on real experimental data from a pilot scale reactor as shown in 265 

Table 2. The methods used for obtaining the process mass balance and determining the product 266 

composition and characteristics were presented in the previous related work [25]. 267 

 268 

The energy consumption of the pyrolysis system is critical since it plays a significant role in the 269 

efficiency and economics of the whole process. The pyrolysis reactor is a major energy consumer 270 

within the plant, as the reactor needs to be maintained at 500 °C in the continuous processing of the 271 

wet MSW raw material. The continuous heat supply is achieved by burning the by-product char, 272 

which is a conventional approach used in most industrial pyrolysis systems [26]. It is estimated that 273 

the heat requirement of the reactor to process the chosen feedstock is 2168 kJ per kilogram of as 274 

received MSW feedstock. This value is calculated based on the heat required for raising the 275 

temperature of the moisture/vapour and thermal decomposition of the organic fraction of the 276 

feedstock [27]. 277 

 278 

 279 

 280 

 281 
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Table 2. The process mass balance and product information for model input source 282 

Process Mass Balance (dry feed basis) Unit Mass Balance 

Pyrolysis Oil % 11.3 

Pyrolysis Water (reaction water) % 8.2 

Pyrolysis Water (feedstock moisture) % 42.9 

Fuel Gas (Pyrolysis Gas) % 24.9 

Char % 55.5 

   

Pyrolysis Gas Composition Unit Volume Distribution 

H2 % 17.4 

CH4 % 8.9 

CO % 14.8 

CO2 % 58.9 

   

Energy Content Unit Heating Value 

Feedstock (dry) MJ/kg 15.4 

Pyrolysis Oil MJ/kg 28.0 

Pyrolysis Water MJ/kg 1.4 

Pyrolysis Gas MJ/kg 10.5 

Char MJ/kg 5.4 

Biodiesel MJ/kg 35.0 

 283 

The efficiencies of the CHP generators used in this work were obtained from the modern engine 284 

efficiency chart developed by Lantz [28]. For the diesel engine generator, the electrical and heat 285 

efficiencies were taken to be 44% and 40% respectively. For the gas engine generator, the electrical 286 

and heat efficiencies were taken to be 39% and 45% respectively.  287 

 288 

The process efficiencies were calculated based on the relation of the total energy input from the 289 

feedstock plus fuel, and the output of heat and power from the engine systems. The overall electrical 290 

efficiency and overall heat efficiency were calculated as: 291 

 292 

𝜂 𝑒𝑙𝑒𝑐 =
𝑃1+𝑃2

𝐸𝑓𝑒𝑒𝑑+𝐸𝐵𝐷
× 100%             (1) 293 

 294 

𝜂 ℎ𝑒𝑎𝑡 =
𝑄1+𝑄2+𝑄3−𝑄𝑅

𝐸𝑓𝑒𝑒𝑑+𝐸𝐵𝐷
× 100% (2) 295 
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 296 

Where Efeed and EBD are the energy contents of feedstock and biodiesel fuel (shown in Table 2); P1 297 

and P2 are the net power outputs from the diesel engine and gas engine systems, respectively; Q1 and 298 

Q2 are the net heat outputs from the diesel engine and gas engine systems, respectively; Q3 is the net 299 

heat output from the char combustor and QR is the heat required by the pyrolysis reactor. The CHP 300 

efficiency is the energy output divided by the energy content of the fuels. The overall Pyro-CHP 301 

system efficiency is the sum of equations (1) and (2). 302 

 303 

3. Economic Evaluation  304 

 305 

3.1. General assumptions 306 

The base year of this study was selected to be 2016. All cost data was updated by using an inflation 307 

rate of 3% to the present cost in 2016 Great British Pound Sterling (GBP) [26]. All the equipment 308 

cost values collected before 2016 have been adjusted to 2016 values by using the Chemical 309 

Engineering Plant Cost Index (CEPCI) [29]. These Chemical Engineering Economic Indicators (EI) 310 

are EI2010= 550.8; EI2011= 585.7; EI2012= 584.6; EI2013= 567.3; EI2014= 567.1; EI2015= 556.8 and 311 

EI2016= 541.7. Some cost data was collected in the currencies of EUR and USD. They were 312 

converted at the rates of EUR: GBP=1: 0.8187 and USD: GBP= 1: 0.7402 (average exchange rates in 313 

2016) [30].  314 

 315 

The interest rate for the capital loan was taken to be 9.3%, which was an average interest rate taken 316 

from some relevant economic studies about MSW treatment facilities or EfW projects [16,22,31–33]. 317 

It was assumed that the plant technology meets the criteria of the UK’s Renewable Obligations 318 

Certificates (ROC) at the ACT band with CHP and is eligible to an incentive at 1.9 ROC per 319 

megawatt hour of renewable electricity generated (the rate in early 2016) [34].  320 
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 321 

The processing plant operates 335 days per year and will be shut down for 30 days for plant 322 

maintenance. During the operational time, it is assumed that the plant availability is 95% giving 7638 323 

hours per annum. The large-scale intermediate pyrolysis process is evaluated as a first of a kind 324 

technology, since there is no commercial experience in the UK, excluding demonstration projects. 325 

The plant life was taken to be 20 years. At the end of plant life, all the equipment will have a salvage 326 

value of 10%. It is assumed that the plant was located close to an established industrial area where 327 

the electricity and district heating infrastructure were in place and can be connected to the plant 328 

directly. It is also assumed that the consumers were willing and able to purchase all of the products 329 

(including all the electricity and heat produced) when they are available in the market. The engine 330 

fuels used satisfy the criteria of the UK Renewable Obligation (RO). 331 

 332 

3.2. Capital cost 333 

In this work, the total capital requirement for the Pyro-CHP plant was calculated by using the 334 

economic analysis model developed by Bridgwater et al. in the early 2000s [26]. The total plant cost 335 

(TPC) was used as the measurement of the project capital cost, which is the total amount of capital 336 

required to finance the whole system to the point at which it is ready to operate. This includes the 337 

costs incurred in pre-development and during the construction stage. The calculation of TPC starts 338 

with the summation of the equipment cost (EC), which is the cost of purchasing brand new 339 

equipment for all the components in the subsystems and delivered to the plant gate. The ECs used in 340 

this work were collected from quotations provided by suppliers when available, otherwise were taken 341 

from published data in the literature. Incremental factors were included for erection, instrumentation, 342 

piping and ducting, associated electrical equipment, structures and buildings, civil works and 343 

lagging, to give a direct plant cost (DPC). Costs of engineering design and management overheads 344 

are then added to give an installed plant cost (IPC), and finally commissioning costs, contractor’s 345 
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fees, interest during construction and a contingency element are added to give the TPC. These 346 

increments are less specific to system modules, being usually approximated as fixed percentages of 347 

direct plant cost. According to a study for a similar system, the TPC was chosen to be 1.69 times the 348 

DPC, which was the production of the EC and a number of multiplication factors [26,35]. The 349 

breakdown of the ECs and calculated TPC are presented in Table 3. 350 

 351 

Table 3. List of equipment and associated costs for a 5 t/h plant 352 

Equipment or type of cost Capacity No. Cost Source of 

reference 

Pre-treatment Section 
 

 
 

 

Weighbridge 50 t 1 £19,432 * 

Feedstock store  3,500 t 2 26,509 [36,37] 

Belt conveyers 60 m 2 20,000 * 

Mill/shredder 5 t/h 2 38,412 [38] 

Trommel screen with conveyers 5 t/h 1 90,000 * 

Bunker 5 t/h 1 50,000 Estimation 

Waste store 1,500 t 1 10,604 [36] 

Loading shovels 2 t 1 45,000 * 

Excavator 2 t 1 45,000 * 

Pyrolysis 
 

 
 

 

Pyrolysis system with liquid collection 5 t/h 1 3,995,224 [22] 

Gas dehydration column 2,000 m3/h 1 15,000 [39] 

Liquid storage organic 672 t 2 69,000 * 

Liquid storage aqueous 672 t 2 69,000 * 

Biodiesel store 1,400 t 1 138,000 * 

Screw conveyers 30 m 2 10,000 * 

Generation 
 

 
 

 

Fuel Gas CHP Engine 3,800 kWe 1 3,062,818 * 

Diesel CHP Engine 660 kWe 1 835,275 * 

Char combustion with heat recovery 4,800 kWh 1 1,165,969 [38] 

     

DPC   16,206,912  

IPC   20,258,640  

TPC   27,641,751  

    * denote the data was obtained by the quotations from equipment suppliers 353 
 354 

The Annual Cost of Capital (ACC) is the annual levelised repayment over the lifetime of the project 355 

and assumes that the full capital amount (or TPC) is loaned at the start of the project at a specified 356 

real interest rate. The ACC is calculated as follows: 357 
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 358 

𝐴𝐶𝐶 = 𝑇𝑃𝐶 
𝑖(1+𝑖)𝑛

𝑖(1+𝑖)𝑛−1
  (3) 359 

 360 

Where n is the project lifetime in years, and i is the interest rate for the capital loan.  361 

 362 

3.3. Operational cost 363 

3.3.1. Feedstock and gate fee 364 

Treating and disposing of waste can attract a gate fee from the local authorities. This fee is levied on 365 

each tonne of waste taken into the treatment plant for offsetting the plant’s capital and operation 366 

costs [31], hence receiving feedstock is considered as a revenue stream. The gate fee is generally 367 

specific to site, process and scale. The WRAP UK reported the median value of gate fee paid to the 368 

EfW facilities in 2015/16 as £95 per tonne, and this was used in this work [40].  369 

 370 

3.3.2. Fuel 371 

A blend of biodiesel and pyrolysis oil on 50/50 volumetric ratio is required to ensure smooth 372 

operation of a CHP engine running pyrolysis oil. The biodiesel price used here was £0.65/l (or 373 

£0.73/kg), as agreed by local a supplier. The biodiesel is considered as a consumable of the plant, 374 

and hence the cost and energy required for the biodiesel production are not considered in this work. 375 

It is worth noting that value-added tax and road fuel duty is not applicable to UK commercial 376 

stationary generators.  377 

 378 

3.3.3. Utility  379 

Utility costs include electricity and water usage in the plant. In this work, electricity is consumed 380 

within the general plant site, office/laboratory usage and the parasitic load of the plant. The 381 
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electricity is imported from the grid to ensure stable operation of the plant The majority of the water 382 

usage is for pyrolysis process cooling.  383 

 384 

The electricity consumption rate was estimated to be 28 kWh per tonne of wet MSW treated. This 385 

was converted from the data quoted by Bridgwater et al. [26] and Diebold et al. [41] based on 386 

processing dried biomass in a pyrolysis plant. The average 2016 electricity price for UK medium 387 

industrial consumer was taken to be £0.1084 per kWh [42]. The water usage was estimated to be 13 388 

m3 per tonne of wet MSW treated. The water utility cost includes the cost of water usage and 389 

sewerage surcharges. According to a UK water supplier, the water cost for a plant at the proposed 390 

scale in 2016 should consist of a fixed annual charge of £1724 and a unit price of £0.2609/m3. The 391 

sewerage charge should consist of a fixed annual charge of £5,673 and a unit price of £1.2347/m3 392 

[43].  393 

 394 

3.3.4. Waste disposal 395 

Waste disposal includes the disposal of aqueous liquid along with pyrolysis oils and ash from the 396 

combustion of pyrolysis char. UK water companies charge a “trade effluent” when industrial 397 

wastewater is disposed of in the sewers. The following equation calculated the cost of trade effluent 398 

based on the characteristics  of the liquid discharged to the sewage [43]: 399 

 400 

𝐶 = 𝑅 + 𝑉𝐵 + (
𝑂𝑡

𝑂𝑠
× 𝐵) + (

𝑆𝑡

𝑆𝑠
× 𝑆)  (4) 401 

 402 

Where R is reception and conveyance at a fee of £0.1813/m3; VB is volumetric and primary 403 

treatment for £0.3305/m3; Ot is the chemical oxygen demand (COD) of the trade effluent after one-404 

hour quiescent settlement, determined by milligram of COD per litre liquid; Os is the mean strength 405 

of settled sewage at a wastewater plant taken to be 489 COD mg /l; B is a biological treatment for 406 
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£0.2698/m3; St is total suspended solids of the trade effluent, determined by milligram of solid 407 

content per litre liquid; Ss: the mean suspended solids content at a wastewater plant, taken to be 408 

415mg/l; S is the sludge treatment and disposal for £0.2032/m3. In this work, the COD of the 409 

untreated aqueous liquid is 94g/L, and total suspended solid content is less than 5mg/l. This gives a 410 

calculated cost of trade effluent of £52.38 per tonne of aqueous liquid discharged.  411 

 412 

Ash produced in the char combustion unit is sent to landfill. The cost of ash landfill includes a 413 

landfill fee and a landfill tax, at rates of £19/t and £80/t in 2016 [40]. 414 

 415 

3.3.5. Labour 416 

The staffing levels of the plant were estimated to be 18 working staff per day. This includes a day 417 

team formed of one plant manager, one administrator and one technical manager and a shift team 418 

formed of one supervisor and four operators in three rotations. The annual average cost of 419 

employment per staff was estimated to be £47,004 per year. This was calculated from the 2013 UK 420 

average weekly labour wage in energy sector- £715 [44], the ratio of 2016 and 2013 UK Labour 421 

Costs Index Points - 1.022 [45] and an increment (123.7%) to staff wage that covers the employer’s 422 

national insurance (11%), pension contribution (5%), and training (2.7%) and administration charges 423 

(5%) [35].  424 

 425 

3.3.6. Plant maintenance and overheads  426 

Annual maintenance costs and overhead costs (including insurance, rent, taxes etc.) were calculated 427 

as a percentage of TPC per annum. The present study used 2.5% of TPC for plant maintenance and 428 

2.0% of TPC for plant overheads costs, in line with previous comparable work [26]. 429 

 430 
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3.4. Energy product sales 431 

3.4.1. Electricity and heat sales 432 

In this work, three different electricity selling scenarios with different target customers were 433 

considered to measure the profitability of the CHP plant. These included exporting the electricity 434 

directly to the national grid at a rate of £0.055/kWh and selling to domestic consumers at a rate of 435 

£0.1541/kWh or industrial customers at a rate of £0.1054/kWh [22,42]. The heat price was taken to 436 

be £0.0403/kWh, in line with previous research [22], which allows for an assumed 10% transmission 437 

loss.  It is worth noting that there are always electrical power losses of approximately 2% in the 438 

distribution and transmission and heat transmission losses of approximately 10% [46,47]. However, 439 

within the economic evaluations, these losses were not taken from the total saleable energy units, 440 

since costs like these are typically passed on to the consumers through the selling price. It was also 441 

assumed that the customers were willing and able to purchase all of the heat and power products 442 

when they were available in the market.  443 

 444 

3.4.2. Renewable energy incentives 445 

Renewable Obligation (RO) was introduced by the UK government in 2002 to support the national 446 

renewable energy deployment. The Renewable Obligation Certificates (ROCs) generated by the 447 

licenced renewable generators can be traded under the RO scheme and hence produce revenue for 448 

the plant (detailed policy can be found in the official document [48]). It was assumed that the current 449 

CHP scheme satisfies the quality assessment defined by the UK authority, which was recognised as 450 

Good Quality CHP) [49]. The pyrolysis oil used satisfied the criteria of the UK Renewable 451 

Obligation and fully qualified for the incentive payments. The renewable generator accredited in 452 

early 2016 can receive 1.9 ROCs per kWh electrical power generated. The average trade value was 453 

£44.33/ROC in 2016 [50]. 454 

 455 
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It is important to note that the ROC payment will only be issued to the proportion of energy 456 

generated from the renewable sources with an accredited renewable system. The pyrolysis oil is 457 

produced from MSW, which is recognised as a renewable feedstock. However, the biodiesel used is 458 

generally produced via transesterification process of vegetable oil (or used cooking oil) with 459 

methanol, which is primarily produced from natural gas by steam reforming and associated reactions. 460 

It is, therefore, highly likely that the liquid fuel used in the liquid CHP engine will contain a fossil 461 

part that is ineligible for claiming the ROC payment. The Fuel Measurement and Sampling (FMS) 462 

method [51] issued by the UK Ofgem has clearly explained the method to calculate the mass and 463 

energy shares of the different types of biodiesel. Assuming the biodiesel assessed in this work was 464 

derived from used (soybean) cooking oil. It is reported that this type of biodiesel contains an average 465 

mass share of 10.64% methoxy group (fossil-derived part), which is equivalent to an energy share of 466 

3.92% of the total biodiesel energy content. This means 96.08% of the fuel energy in the biodiesel 467 

eligible for ROC claim. Considering the blending ratio of the pyrolysis oil and biodiesel and their 468 

heating values, a total of 97.80% of the energy in the fuel blend is eligible for ROC credit.  469 

 470 

The Climate Change Levy (CCL) is a tax introduced by the UK government on energy delivered to 471 

non-domestic users. It aims to provide an incentive to increase energy efficiency and to reduce 472 

carbon emissions. The renewable or CHP generators are exempt from paying CCL, which was 473 

£5.59/MWh in 2016 [52]. 474 

 475 

3.5. Levelised cost of electricity (LCOE) 476 

The LCOE is the minimum selling price of the product, which covers the costs of energy production 477 

[32]. It is often cited as an effective measure of the overall competitiveness of different energy 478 

generating technologies by the authorities [53]. In this work, the proposed system produces 479 
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combined electricity and heat. The calculation of LCOE assumes the customers can purchase the 480 

heat at its market price and the associated government incentive subsidies have been paid. 481 

 482 

The LCOE is calculated as: 483 

 484 

𝐿𝐶𝑂𝐸 =
(𝐴𝐶𝐶+𝑂𝑃)−𝑆ℎ𝑒𝑎𝑡

𝑄𝑒𝑙𝑒𝑐.
− 𝑄𝑒𝑙𝑒𝑐. × 𝑅𝑒𝑙𝑒𝑐.  (5) 485 

 486 

Where, ACC is the annual cost of capital, in £/a; OP is the annual operating cost, in £/a; Q is the 487 

quantity of energy product produced, in kWh/a; S is the annual sale of the product, in £/a; R is the 488 

rate of incentive subsidy, in £/kWh, i.e. ROC trade value for electricity. 489 

 490 

3.6. Internal rate of return (IRR) 491 

In this work, the internal rate of return (IRR) is employed to measure and evaluate the profitability of 492 

the proposed project investments. The IRR is a discounted cash flow rate of return that makes the net 493 

present value (NPV) of cash flows equal to zero. The NPV is the summation of the present values 494 

(PVs) of the individual annual net cash flows. The PV is the cash flow in future that has been 495 

discounted to reflect its present value as if it existed today. It is a characteristic of money referred to 496 

as its time value. The present value of money is always less than its future value as it has interest-497 

earning potential. 498 

 499 

The following formula is used to calculate the NPV:  500 

 501 

𝑁𝑃𝑉 = −𝐶0 + ∑
𝐶𝑡

(1+𝑟)𝑡
𝑇
𝑡=1 + 𝐶𝑆𝑉  (6) 502 

 503 
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Where C0 is the initial investment; C is the cash flow; r is the discount rate; t is the year; T is the 504 

project lifetime, and CSV is the PV of the salvage value of the equipment at the end of plant life.  505 

 506 

When the NPV equals zero, the value of discount rate r is the IRR of the project. The IRR can be 507 

used as an indicator of the potential probability of the project, by comparing with the target IRR. For 508 

a novel technology with a high risk associated, the target IRR may be up to 25% [54]. The 509 

Corporation Tax rate for the company profits was taken to be 20%, as the actual 2016 rate in the UK 510 

[21]. 511 

 512 

4. Results and Discussion 513 

 514 

4.1. Overall process efficiencies  515 

Table 4 presents the process mass and energy balances of the overall EfW plant and the overall 516 

system efficiencies calculated by the model as described in Section 2.3 [22,55]. Further illustration 517 

of the process energy conversion is presented in Figure 3. 518 

 519 

Table 4. Process Mass and Energy Balances and System Efficiencies (base case) 520 

 Description Mass 

(kg/h) 

Energy 

(kW) 

Feedstock Pre-treatment 

Raw Feed (wet) Input to pre-treatment 5,000.0 11,527.8 

Processed Feed Pre-treatment product and feed to 

pyrolysis 

4,217.5 10,895.2 

Pre-treatment Reject Waste to offsite 782.5 632.6 

Pyrolysis 
   

Feed Feed for pyrolysis 4,217.5 10,895.2 

Pyrolysis Oil Pyrolysis product and fuel for engine 491.2 3,825.6 

Aqueous Liquid Pyrolysis product for Energy Recovery 

or  disposal 

1,350.5 526.1 

Char Pyrolysis product and fuel for char 

combustor 

1,643.8 4,794.7 

Fuel Gas Pyrolysis product and fuel for engine 732.0 1,748.9 

Energy Generation 
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Biodiesel Engine fuel 491.2 4,775.5 

Biodiesel + Pyrolysis oil Fuel blend to engine 977.5 8,562.8 

Power  Energy product from diesel engine 
 

3,767.6 

Heat Energy product from diesel engine 
 

3,425.1 

Fuel Gas Input to gas engine 717.3 1,713.9 

Power Energy product from gas engine 
 

668.4 

Heat Energy product from gas engine 
 

771.2 

Char to Combustor Input to combustor 1,627.4 4,746.7 

Heat Energy product from char combustor 
 

3,322.7 

Total Plant Output 

Power Output as a final product 
 

4,436.03 

Heat Output as a final product 
 

5,296.55 

    

Process Waste 

Solid Rejects and Waste Waste to offsite 1,383.9 
 

Aqueous Liquid Waste to disposal 1,350.5 
 

    

Process Efficiency 

Electrical Efficiency Efficiency of the overall electrical 

output 

 
27.2% 

Heat Efficiency Efficiency of the overall heat output 
 

32.5% 

The Pyro-CHP System Efficiency of the overall energy output 
 

59.7% 

 521 

During the pre-treatment stage (shredding and screening), approximately 20% of the inert 522 

components and 5% of organic components in the feed was screened out, along with 25% of the 523 

moisture in the MSW. The solid rejects are sent out of the plant as solid waste at a rate of 782.5 kg/h. 524 

Therefore, 4217.5 kg of a pre-treated organic fraction of MSW was fed into the pyrolysis reactor per 525 

hour, which is equivalent to 94.5% of feedstock energy input (11,527.8 kW). As described in Section 526 

2.3, the intermediate pyrolysis system converts the wet solid feed into 11.6% organic liquid 527 

(pyrolysis oil), 32.0% aqueous liquid (pyrolysis water), 17.4% fuel gas and 39.0% char. After 528 

separation from the aqueous fraction/ pyrolysis water, the pyrolysis oil (491.2 kg/h and 3,825.6 kW) 529 

was stored in the oil tank for engine use. The total energy content of the pyrolysis oil accounted for 530 

33.2% of the feedstock energy input. The char production rate was 1,643.8 kg/h, accounting for 531 

41.6% of the feedstock energy. All the char was combusted on site, and this was used to generate 532 

4,794.7 kW heat to meet the minimum heat requirement of the pyrolyser, which was 2,222.5 kW. 533 

The fuel gas consisted of nearly 40 vol. % combustible fraction with a production rate of 732.0 kg/h 534 
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giving an energy input of 1,713.9 kW to the gas CHP engine. The pyrolysis oil was blended with 535 

biodiesel at 50/50 to fuel the liquid CHP engine. This, in total, was able to generate 4,436 kW 536 

electrical power and 5,297 kW heat in the form of hot water. The system can achieve an electrical 537 

efficiency of 27.2%, a CHP efficiency of 84% and an overall heat and power efficiency of 59.7%.  538 

 539 

 (Footnote: The colours presented in the Sankey diagram are only for distinguishing different energy streams. All values 540 

given are the proportion of energy contained in each stream, referencing to the base value of 100 for the MSW feedstock) 541 

Figure 3. Process energy flow 542 

 543 

It can be observed that most of the energy losses occurred during the pyrolysis stage, where all the 544 

char product was burnt to meet the heat demand of the pyrolysis reactor. In addition, hot pyrolysis 545 

vapour was condensed to form liquid products, and char was cooled in the collecting vessel before 546 

being sent to the burner. Heat was therefore transferred into the cooling water and air and eventually 547 

ended up in the environment and became system heat losses. In real industrial applications, these 548 

parts should be designed and integrated carefully to gain an optimised overall system efficiency. 549 
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 550 

4.2. Levelised cost of electricity  551 

Figure 4 illustrates the calculated LCOE and its breakdown of contributions including the project 552 

costs and incomes from incentive payment and product sales. Bars with positive values indicate the 553 

direct cost incurred in the project investment and the plant operation, while the bar with negative 554 

values represents the sales revenues from the heat, as well as the government incentive payments for 555 

the electricity and heat. Combining all the contributing values, the LCOE value for the proposed 556 

plant is £0.063 per kilowatt-hour. This value fits well in the range of the UK EfW generation cost as 557 

evaluated by the BEIS, which is £0.045-0.083/kWh [56]. 558 

 559 

 560 

Figure 4. Levelised Energy Cost (LCOE) and its Breakdown 561 

 562 

The capital investment of the proposed project was calculated as £6.23 million per megawatt. This is 563 

close to the lower end of the range (£5.33-£16.41/MW) of the UK bioenergy capital requirement 564 

according to the Arup’s recent estimation (the range was derived after deduction of general 565 

infrastructure cost from the original data quoted in the report, which accounts for 20% of the total 566 
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cost but was not considered in this work) [20]. As shown in Figure 4, this is the most significant 567 

contributing factor in the LCOE. Following this is the  cost of using biodiesel to blend with the 568 

pyrolysis oil for energy production, which is the highest cost in the operating cost category. Disposal 569 

costs incurred, the char/ash to landfill (62% of the total) and wastewater disposal (38% of the total), 570 

is the second highest cost during the plant operation. However, it is worth noting that this work did 571 

not consider the opportunity in selling ash to cement businesses, which otherwise may avoid a cost 572 

but attract an additional revenue stream. There is also a possibility of investing in additional 573 

wastewater treatment facilities, which can reduce the COD of the pyrolysis water and consequently 574 

reduce the cost of trade effluent. The labour and plant utility costs are at a similar level. The cost of 575 

plant maintenance and overheads are insignificant compared to the other factors.  576 

 577 

In the revenue stream, the waste gate-fee has become the most significant factor, which can 578 

completely offset the sum of labour and biodiesel fuel costs. The renewable energy and 579 

environmental incentive payments are also critical in offsetting the plant costs, and the total value is 580 

almost twice the income attracted by the sales of heat. Both of the revenues from gate fees and 581 

incentive payments reflect the importance of the government’s role in the deployment of sustainable 582 

waste treatment and renewable energy. From the analysis, it can be understood that the sustainability 583 

policies largely determine the probability of these technologies being developed at an industrial 584 

scale.  585 

 586 

4.3. Sensitivity analysis 587 

Figure 5 presents the effects of input parameter variation on the LCOE, which takes into account the 588 

uncertainties in these single variables. Fourteen key input parameters related to the project capital 589 

cost, operating costs and productivities are analysed in turn with ± 20% changes to their baseline 590 
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data. This can be used to determine how variation in key variables can impact the LCOE and 591 

consequently help the project developer to identify strategies for reducing production cost.  592 

 593 

 594 

Figure 5 Sensitivity analysis for calculated LCOE 595 

 596 

It can be observed from the chart that the plant availability has the highest impact on the LCOE. A 597 

20% decrease of the current plant availability can increase the production cost by 64.2%, indicating 598 

the importance of maintaining the highest possible plant availability. The power production rate of 599 

the Pyro-CHP system has the second highest impact on the LCOE. A 20% increase can reduce the 600 

LCOE by nearly 40%, and a 20% decrease can increase the LCOE by nearly 60%. Since the thermal 601 

efficiencies of modern engine systems are relatively fixed, it is important to consider any 602 

improvement that could increase the pyrolysis oil yield or the energy content (heating value) of 603 

pyrolysis oil.  604 

 605 
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The capital cost of the project, along with the interest rate charged to the capital loan, is the next 606 

important influencing factor. Decreasing capital cost and interest rate by 20% can result in a 607 

reduction in the production cost by 42.9% and 19.5% respectively. In real industrial development, it 608 

is widely accepted that the costs of a novel process reduce as more units are built, and experience 609 

accumulates. The learning effect is a factor that can be applied to the plant construction cost and 610 

national electric grid and heat network connection [20]. In novel thermal energy system deployment, 611 

a learning factor of 20% has frequently been applied, which can correspond to a resulted 50% 612 

reduction in capital costs after ten installations of a novel process [22,26].  613 

 614 

The changes in feedstock gate fee and ROC values earned from the electricity sales also contribute to 615 

the variation of production cost considerably. Increasing the feedstock gate fee and ROC value by 616 

20% can decrease the LCOE by 34.0% and 26.2% respectively. The gate fee for municipal waste is 617 

expected to continually increase in the long-term, along with the increase of landfill tax and cost of 618 

waste treatment due to the growing concerns over the environment and sustainability issues. A 619 

similar tendency is expected in the future ROC prices, but it is important to note that the ROC can be 620 

only issued for a maximum of 20 years and cannot be issued beyond 31 March 2037 [48]. The 621 

effects of heat production and price and costs of labour, waste disposal, utility, maintenance and 622 

overhead are relatively insignificant compared to other factors, which have been discussed.  623 

 624 

4.4.  Internal rate of return 625 

Figure 6 shows the IRR of the proposed project, which was calculated based on the cost of 626 

generation, products sales (at purchase rates as described in Section 3.4.1) and gross and net profits 627 

of the plant over a 20-year project lifetime. It is worth noting that this calculation did not include the 628 

costs on the use of grid network for transmission and balancing service which is covered by the 629 

network operator [57]. It can clearly be seen that selling the electrical power to the grid 630 
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(£0.055/kWh) can result in an IRR of -7.2%. This means that the net annual profit rates during the 631 

project lifetime are eventually unable to cover the initial capital investment, even if the capital were 632 

obtained at a zero interest rate.  633 

 634 

 635 

Figure 6. Internal rate of return 636 

 637 

In the cases of selling electricity to industrial and domestic customers, the project can generate 638 

positive IRR and consequently make the project profitable. However, this requires the generator to 639 

arrange additional retail contracts with relevant customers and play a role as a network distributor. 640 

Selling electricity at a domestic rate (£0.1541/kWh) can allow the project to have an IRR of 10.1%, 641 

which is 7.5% higher than selling at an industrial rate (£0.1054/kWh). Nevertheless, it is also 642 

important to notice the significant differences in managing the bulk business contracts and individual 643 

domestic contracts. Achieving an IRR of just over 10% is considered barely satisfactory in general 644 

investment. As discussed in Section 3.6, for a novel technology with a high risk associated, a target 645 

IRR up to 25% can be expected. Therefore, the economic performance of the baseline case seems 646 

relatively unattractive for investors in terms of investment return.  647 
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5. Conclusions 649 

 650 

This work has presented the results of a techno-economic analysis on a conceptual proposed Pyro-651 

CHP plant based on an intermediate pyrolysis system and CHP generator in the UK context. 652 

According to the result of mass balances from pilot scale tests and literature data, a plant having 5 t/h 653 

feedstock processing capacity could produce and supply 4.4 MW electrical power and 5.3 MW 654 

thermal energy with an overall electrical efficiency of 27.2% and overall CHP efficiency of 59.7%. 655 

The most significant heat loss occurred in the pyrolysis process, where a considerable heat was 656 

required to maintain the reaction temperature of the pyrolyser.  657 

 658 

The economic analysis indicated that the levelised electricity cost of the plant was £0.063/kWh, 659 

which agree the range of UK EfW cost as evaluated by the UK government. The capital investment 660 

was calculated to be £6.23 million per megawatt for the specific plant evaluated. The breakdown 661 

analysis of the production cost showed that the capital cost was the largest part of the LCOE. 662 

Following that were the costs of biodiesel fuel, waste disposal, labour, utility and plant maintenance 663 

and overheads. Compared to the product sales, the income from feedstock gate fee and the renewable 664 

incentive payment played a more significant role in offsetting the production cost. This implied the 665 

importance of the government’s and policymakers’ role in the economic viability of such projects. 666 

To maximise the feasibility of a project, the technology developer should endeavour to seek the 667 

routes to reduce electricity production cost and identify the target customers that can pay electricity 668 

at a high rate. Special attention should be given to the most influential factors as indicated in the 669 

sensitivity analysis, such as feedstock cost (or gate fee for waste), enhancing the plant availability, 670 

increasing the productivities of the fuels and electric power, reducing equipment costs and ensuring 671 

the heat sales can meet the target level. 672 

 673 
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