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ABSTRACT
The presence of background noise in signals adversely affects the
performance of many speech-based algorithms. Accurate estima-
tion of signal-to-noise-ratio (SNR), as a measure of noise level in
a signal, can help in compensating for noise effects. Most existing
SNR estimation methods have been developed for normal speech
and might not provide accurate estimation for special speech types
such as whispered or disordered voices, particularly, when they are
corrupted by non-stationary noises. In this paper, we first investigate
the impact of stationary and non-stationary noise on the behavior of
mel-frequency cepstral coefficients (MFCCs) extracted from normal,
whispered and pathological voices. We demonstrate that, regardless
of the speech type, the mean and the covariance of MFCCs are pre-
dictably modified by additive noise and the amount of change is re-
lated to the noise level. Then, we propose a new supervised method
for SNR estimation which is based on a regression model trained
on MFCCs of the noisy signals. Experimental results show that the
proposed approach provides accurate estimation and consistent per-
formance for various speech types under different noise conditions.

Index Terms— Global SNR estimation, pathological voice,
whispered speech, MFCC, support vector regression

1. INTRODUCTION

The performance of many speech-based systems is degraded by
acoustical background noise in signals. Information about the noise
level can help in compensating for its effects. The signal-to-noise
ratio (SNR), which measures the level of noise in a speech signal, is
defined as the ratio of signal power to noise power, typically in deci-
bels (dB). In practice, the speech SNR should be estimated since we
only have access to the noisy signals. This estimation is, however,
challenging since speech, which is a highly non-stationary signal, is
typically corrupted by a variety of unknown noise.

The speech SNR, in a broad sense, can be classified into two
categories, namely segmental and global SNR. Techniques calcula-
ting the segmental SNR estimate the noise level at short frames of
approximately 30 ms in which the signal is assumed to be stationary.
This type of SNR has attracted more attention in decades due to its
direct application in speech enhancement, noise estimation and noise
suppression [1, 2]. Global SNR estimation algorithms, on the other
hand, consider the entire signal and provide information about the
effect of noise on the whole recording. In this study we focus on the
global SNR estimation which is beneficial in many SNR-specific ap-
plications such as environmental sniffing [3], speech recognition [4]
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Fig. 1: The normalized histograms of estimated SNR values for three
different clean databases using the NIST algorithm [7].

and speaker verification [5] in which the noise level at the entire sig-
nal affects the model selection process.

Most existing global SNR estimation algorithms are based on
measuring the energy content of speech and non-speech regions in
a signal. These regions can be identified by a variety of techniques
such as speech activity detection [6], sequential Gaussian mixture
estimation [7], Gaussian mixture modeling in the log-power domain
[8], ideal binary masks [9–12], and long-term acoustic features [13].
Kim and Stern have proposed an approach, called waveform ampli-
tude distribution analysis (WADA), to estimate the SNR from the
value of the shaping parameter of a Gamma distribution fitted to a
noisy speech [14]. However, these methods have difficulties dealing
with some speech types such as sustained vowels (in which there
is no regular pauses), whispered speech (from which it is difficult to
accurately identify speech and non-speech regions), and pathological
voice (in which the distortion due to vocal disorder is considered as
noise even if it is recorded in a noise-free environment). Fig.1 shows
the normalized histograms of estimated SNR values for three clean
databases, namely normal speech, whispered speech and Parkinson’s
voice (described in Section 4.1) using the NIST algorithm [7]. Since
the signals of these databases have been recorded in noise-free envi-
ronments, we expect high SNR values for the recordings. However,
we can observe from the plots that the NIST SNR estimation al-
gorithm has failed to correctly estimate the global SNR for a large
amount of whispered and disordered recordings. Therefore, a more
robust algorithm is required to deal with various speech types.

In this study, we consider mel-frequency cepstral coefficients
(MFCCs), which are known to be very sensitive to a small change
in signal characteristics due to noise and other variabilities [15],
and investigate the effect of stationary and non-stationary noise at
different levels on the behavior of MFCCs extracted from normal
speech, whispered speech and disordered voice recordings. We show
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through the experimental analysis that the mean and the covariance
of MFCCs are predictably modified by additive noise and the amount
of change is related to the level of noise in a speech signal. Motiva-
ted by the experimental observations, a new supervised approach to
estimate the global SNR is then developed. In this method, instead
of identifying speech and non-speech regions in a signal, MFCCs
extracted from noisy recordings are utilized to train a regression mo-
del. The SNR value for an unseen recording is then estimated using
the trained model. This is useful, for example, in SNR-specific ap-
plications in which the train-test SNR conditions should be matched.

2. IMPACT OF ADDITIVE NOISE ON MFCCS

MFCCs are based on the source-filter theory of speech production
[16]. To compute MFCCs, we take the discrete Fourier transform
(DFT) of the speech frames. Then, the power spectrum is compu-
ted and passed through a set of triangular filter banks, linearly spa-
ced on the mel-frequency scale. The log-energy output of the filter
bank, which is sensitive to small changes in signal characteristics due
to noise or articulatory movements, is then passed through the dis-
crete cosine transform (DCT). The MFCCs are the amplitudes of the
DCT coefficients. The effects of additive noise on MFCCs are com-
plex since MFCC calculations involve several nonlinear functions.
In [17], the effect of additive white Gaussian noise on the MFCC pa-
rameters is studied. It has been shown that the variance of the error
in MFCC computation due to adding white Gaussian noise is related
to the variance of the noise.

In this section, we investigate the effect of stationary and non-
stationary noises on normal, whispered and disordered speech re-
cordings. Specifically, for normal voices, we take 100 clean speech
recordings of the LibriSpeech database [18]. For whispered speech,
we take 36 clean recordings from the CHAINS database [19]. For
pathological voice, we take clean recordings of the sustained vowel
/a/ produced by 100 PD patients. We then corrupt them by white
Gaussian and babble noises under different SNR conditions ranging
from -20 dB to 60 dB in 1 dB steps. Using a Hamming window,
recordings are segmented into frames of 30 ms. For each frame of
a signal, 12 MFCCs together with the log energy are calculated al-
ong with delta and double-delta coefficients. They are concatenated
to produce a 39-dimensional vector. We then evaluate the shift in
the sample mean and covariances of the MFCCs computed from the
noisy signals. Specifically, the mean shift can be defined as:

ξ(i) =
1

M

M∑
m=1

‖ µni
m − µc

n ‖2, (1)

where M is the number of speakers, ‖ · ‖2 represents the 2-norm,
and µc

m and µni
n are the means of the MFCCs computed respectively

from the clean and noisy signals from the mth speaker subject to the
ith noise level. The larger the value of ξ, the farther the MFCC vector
is moved with respect to the clean one. The change in the covariance
matrix of the MFCC under the ith noise level is measured as:

δ(i) =
1

M

M∑
m=1

‖ Σni
m −Σc

m ‖F
‖ Σc

m ‖F
, (2)

where ‖ ·‖F is the Frobenius norm which, for an arbitrary matrix

A with elements apq , is defined as ‖A‖F=
√∑P

p=1

∑Q
q=1 |apq|2

which maps a matrix to a single real number, and Σc
n and Σni

n are re-
spectively the covariance matrices of the MFCCs extracted from the
clean and the noisy utterances of the mth speaker. δ = 0 represents
no change in covariance. A value of δ < 1 indicates a reduction in
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Fig. 2: Impact of stationary and non-stationary noises at different le-
vels on the mean and the covariance matrix of MFCCs of the normal,
whispered and pathological voices. The left vertical axes represent
the amount of mean shift defined in (1). The right vertical axes re-
present the relative change in the covariance matrix defined in (2).

covariance with respect to the covariance of the clean MFCC. That
is, the MFCCs become more compact in the feature space.

Fig.2 shows the impact of the stationary and non-stationary noi-
ses at different levels on the mean and the covariance matrix of
MFCCs. The left vertical axes represent the amount of mean shift
as defined in (1) and the right vertical axes represent the relative
change in the covariance matrix as defined in (2). The plots sug-
gest that variable noise levels shift the mean of MFCCs to different,
but predictable, regions in the feature space. It can be noticed that
the amount of shift monotonically increases as the noise level incre-
ases and it has a linear relation with the noise level for the SNRs
almost below 30 dB, except for the Parkinson’s voices corrupted by
the babble noise where it is below 15 dB. Notice that, for the tes-
ted conditions, the covariance of the noisy MFCCs is always smaller
than that of the clean one. A linear relation between the noise level
and the covariance change can be observed when the noise level is
almost between 0 dB and 40 dB.

3. THE PROPOSED SNR ESTIMATION APPROACH

The experimental analysis above illustrates similar trends for the be-
havior of MFCCs of various speech types under different noise con-
ditions. Motivated by this observation, we develop a new method
for global speech SNR estimation based on the MFCCs. In this ap-
proach, instead of identifying speech and non-speech regions in a
signal, we create a regression model for each speech type based on
the MFCCs extracted from noisy signals under different SNR condi-
tions. The SNR value for an unseen recording is then estimated using
the trained regression model. This section briefly describes the main
components of the proposed global SNR estimation approach.

3.1. Feature Extraction

Each recording in the database is segmented into frames of 30 ms
(with 10 ms overlap) using a Hamming window. Setting the DFT
size equal to 512 and using 27 mel filters, 12 MFCCs are extrac-
ted for each frame and appended with the frame energy and conca-
tenated with delta and double-delta coefficients, resulting in a 39-
dimensional feature vector. Finally, to have a fixed-length vector per
recording, the feature vectors of each utterance are averaged.

3.2. Support Vector Regression (SVR)

In this study, the support vector regression (SVR) is used as a
function approximation to estimate the speech SNR. Developed as
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Fig. 3: Block diagram of the proposed method for global speech
SNR estimation in training and testing phases.

the regression version of the support vector machines, SVRs perform
the regression task by finding the optimal regression hyperplane in
which most of training observations lie within an ε-margin around
this hyperplane. In the ε-SVR [20], we are given a set of training
data, Str = {xj , yj}Jj=1, where xj denotes a feature vector of the
jth sample and yj is the corresponding target value. The goal is
to determine a function g(xj), so that for all the training data, the
outputs have at most ε deviation from the actual outputs. In the SVR
framework, we consider the following relation for g:

g(xj) = ν
T f(xj) + c , j = 1, · · · , J, (3)

where f(xj) is a mapping function in the feature space, ν is a row
vector of the same dimension as f(xj), c is a real-valued constant,
and T represents the transpose operator. The estimation of ν and c
is formulated as the following optimization problem [20]:

minimize
1

2
‖ν‖2 + γ

J∑
j=1

(κj + κ∗
j )

subject to


yj − νT f(xj)− c ≤ ε+ κj ,

νT f(xj) + c− yj ≤ ε+ κ∗
j ,

κj , κ
∗
j ≥ 0

(4)

where κj and κ∗
j are slack variables, ε > 0 controls the ε-insensitive

zone used for fitting the training data and γ > 0 determines the
trade-off between the flatness of g and the amount up to which devi-
ations larger than ε are tolerated. Since the optimization problem is
convex, a unique optimal solution can be found [21].

In this study, the LIBSVM toolbox [22] is used to implement
SVR models. We select the kernel type and tune the hyper-
parameters of the model, namely the ε and γ using the 5-fold
cross-validation (CV).

3.3. Training and Testing

The block diagram of the proposed approach in training and testing
phases is shown in Fig.3. During the training phase, the recordings
in the training subset are converted into fixed-length feature vectors
using the approach described in Section 3.1. The obtained vectors
along with their corresponding SNR values are then used to train a
regression model. In the testing phase, the feature extraction appro-
ach, applied in the training phase, is used to extract a feature vector
from an unseen test recording from which the trained regression mo-
del estimates the SNR of the signal.

4. EXPERIMENTAL SETUP

4.1. Database

The proposed SNR estimation system has been developed and vali-
dated using three different databases, namely the LibriSpeech data-

base [18] for normal speech, the CHAINS database [19] for whis-
pered speech, and the Parkinson’s voice database for pathological
voice. The LibriSpeech database consists of 1000 hours of read En-
glish speech based on LibriVox’s audio books. The recordings are
sampled at 16 kHz. From this database, we have chosen 426 recor-
dings of 10 s average duration range from 2 s to 28 s uttered by 142
speakers of both genders. The CHAINS database contains speech
recordings of 36 speakers reading a text in a whisper in two diffe-
rent environments, namely a sound-proof booth and a quiet office,
and sampled at 44.1 kHz. From this database, we have chosen 8 re-
cordings per each speaker, selected equally from both environments,
to form a data set of 288 whispered speech samples of 20 s average
duration range from 2 s to 76 s. To evaluate the proposed system on
the pathological voice signals, we used the Parkinson’s voice data-
base since the wast majority of people with Parkinson’s disease (PD)
exhibit some form of vocal disorder [23]. This database is generated
through collaboration between Sage Bionetworks, PatientsLikeMe
and Dr. Max Little as part of the Patient Voice Analysis study1, and
contains telephone recordings of the sustained vowels /a/ uttered by
750 patients of both genders, sampled at 8 kHz and range from 3 s
to 30 s long with 16 s average duration. The last two databases are
challenging since most existing speech SNR estimation algorithms
have been developed based on the normal and healthy voices.

The voice recordings in each database are divided into non-
overlapping training and test subsets consisting of 80% and 20% of
the speakers, respectively. To create databases for SNR estimation,
we corrupted all clean recordings by adding stationary and non-
stationary noises at different SNRs, ranging from -5 dB to 30 dB in
1 dB steps, and appended them to the databases. Specifically, for
stationary noise we used white Gaussian and car engine noises, and
for non-stationary one we used babble, street and keyboard noises.
Therefore, the training subsets of the extended normal speech, whis-
pered speech and Parkinson’s voice databases for each noise type
respectively contain 12180, 5816 and 18576 recordings. The test
subsets of the extended databases for each noise type contain 3045,
1454 and 4644 recordings, respectively.

4.2. Performance Metric

In order to evaluate the effectiveness of the proposed method, we
use the mean-absolute-error (MAE) of the estimated SNRs which is
defined as:

EMA =
1

L

L∑
l=1

|ŷl − yl| (5)

where ŷl is the lth estimated SNR, yl is the lth actual SNR and L is
the total number of test samples.

5. RESULTS

In this study, we compare our proposed approach with the NIST SNR
measurement method [7] and the WADA method [14]. We used 5-
fold CV to evaluate the performance of different methods in terms of
the MAE,EMA, of the estimated SNR (in dB). First, we assume that
the noise type is known. In this case, we train different regression
models for each noise and speech type and use the corresponding
noise-dependent model to estimate the SNR. In the next step, assu-
ming that the noise type is unknown, we train a noise-independent
regression model using the recordings corrupted by all five mentio-
ned noise types. To this aim, we have randomly selected 20% of the

1Obtained through Synapse ID [syn2321745]



 

 

 

N
o

rm
a

l 
S

p
e

e
ch

 

W
h

it
e

 N
o

is
e

 

N
o

rm
a

l 
S

p
e

e
ch

 

C
a

r 
N

o
is

e
 

N
o

rm
a

l 
S

p
e

e
ch

 

B
a

b
b

le
 N

o
is

e
 

N
o

rm
a

l 
S

p
e

e
ch

 

S
tr

e
e

t 
N

o
is

e
 

N
o

rm
a

l 
S

p
e

e
ch

 

K
e

y
b

o
a

rd
 N

o
is

e
 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

W
h

it
e

 N
o

is
e

 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

C
a

r 
E

n
g

in
e

 N
o

is
e

 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

B
a

b
b

le
 N

o
is

e
 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

S
tr

e
e

t 
N

o
is

e
 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

K
e

y
b

o
a

rd
 N

o
is

e
 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

W
h

it
e

 N
o

is
e

 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

C
a

r 
E

n
g

in
e

 N
o

is
e

 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

B
a

b
b

le
 N

o
is

e
 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

S
tr

e
e

t 
N

o
is

e
 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

K
e

y
b

o
a

rd
 N

o
is

e
 

W
h

is
p

e
re

d
 S

p
e

e
ch

 

A
ll

 N
o

is
e

s 

P
a

rk
in

so
n

’s
 V

o
ic

e
 

A
ll

 N
o

is
e

s 

N
o

rm
a

l 
S

p
e

e
ch

 

A
ll

 N
o

is
e

s 

E
M

A
(d

B
)

Proposed Method
WADA Method
NIST Method
95% Confidence Interval

20

15

10

5

0
Normal
Speech
White
Noise

Normal
Speech

Car
Noise

Normal
Speech
Babble
Noise

Normal
Speech
Street
Noise

Normal
Speech

Keyboard
Noise

Normal
Speech

All
Noises

Whispered
Speech
White
Noise

Whispered
Speech

Car
Noise

Whispered
Speech
Babble
Noise

Whispered
Speech
Street
Noise

Whispered
Speech

Keyboard
Noise

Whispered
Speech

All
Noises

Parkinson’s
Voice
White
Noise

Parkinson’s
Voice

Car
Noise

Parkinson’s
Voice
Babble
Noise

Parkinson’s
Voice
Street
Noise

Parkinson’s
Voice

Keyboard
Noise

Parkinson’s
Voice

All
Noises

1
.9

5
2
.4

1
6
.3

6

1
.7

9
2
.5

1
6
.1

6

2
.7

2 4
.4

7 6
.6

4

2
.9

1
7
.5

3 9
.4

4

4
.6

1

1
7
.2

1
5
.0

8

4
.4

4

6
.7

4 8
.7

3

1
.8

8
3
.7

2 6
.0

8

1
.8

3
3
.7

5
6
.2

0

1
.7

8
4
.6

2 6
.5

1

2
.8

7

5
.9

2 7
.9

6

3
.3

3
1
0
.2

7
1
0
.0

1

3
.4

5

5
.6

5 7
.3

1

1
.7

9
6
.7

4

6
.4

8

2
.4

8
7
.0

1
6
.4

9

3
.8

2
6
.3

7
6
.6

7

3
.1

6
7
.6

8 9
.5

7

4
.4

3
1
5
.9

1
1
6
.3

1

5
.0

1

8
.7

3
9
.0

3

Fig. 4: Comparison of the MAE, EMA, (in dB) of the proposed method and the baseline systems for speech SNR estimation using three
different speech types under various noise conditions, along with 95% confidence intervals.
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Fig. 5: Performance of every trained regression model (represented
in rows) on every other noise and speech conditions (represented in
columns) in terms of EMA (in dB).

noisy recordings from each noise class to have the same number of
samples as the noise-dependent experiments. In both cases, we use
SVR models with a linear kernel.

The results of the baseline systems and the proposed approach
using normal, whispered and Parkinson’s voices under different sta-
tionary and non-stationary noise conditions over all CV repetitions
along with 95% confidence intervals are presented in Fig.4. The re-
sults show that the proposed approach outperforms baseline methods
for all the cases we tested and it provides consistent and accurate es-
timation for different speech types under various noise conditions. It
can be noticed that WADA gives a comparable performance to the
proposed method in the case where normal speech recordings are
corrupted by stationary noises since the Gaussian and gamma dis-
tribution assumptions respectively for background noise and speech
signals are satisfied. However, both baseline methods have failed to
provide accurate estimation when they are applied to the whispered
and disordered voices. It is probably due to the fact that these ty-
pes of speech do not satisfy the underlying assumptions in the algo-
rithms. Moreover, the poor SNR estimation for Parkinson’s voices
using the baseline methods might also be due to the fact that they
consider distortion in pathological voices, due to vocal disorders, as
noise even if they are recorded in a noise-free environment. Notice
that as the non-stationarity of the noise increases, the performance
of all tested methods degrades. Furthermore, when signals are cor-
rupted by the keyboard noise, which has impulsive characteristics,
the baseline systems fail to estimate the SNR, while the proposed

method still exhibits a good performance. The results suggest that
if the noise type is unknown, the proposed method can still provide
a satisfactory accuracy if the noise-independent regression model is
trained with a variety of noise types.

To investigate the generalization of the proposed method in di-
verse conditions, we compare, in Fig.5, the performance of every
trained regression model (represented in each row) on every other
noise and speech condition (denoted in each column). It can be no-
ticed that noise-dependent regression models in matched train-test
conditions provide the best performance. Moreover, there are some
noise-dependent models in each speech class that can be utilized to
estimate SNR for other noise conditions. For example, the models
trained with street noise, car noise, and babble noise respectively in
normal speech, whispered speech and Parkinson’s voice classes, can
provide good estimations for other noise types within those classes,
except the keyboard noise. Notice that the keyboard models fail to
accurately estimate SNR for other noise conditions in both within
and between speech classes. We observe that the white Gaussian
models give satisfactory results when they are applied to the recor-
dings of other speech types corrupted by white Gaussian noise. We
notice that the noise-independent models can provide a good perfor-
mance in all noise conditions within each speech class. It means that
they can be utilized for both known and unknown noise conditions,
resulting in avoiding the need for noise-type classification prior to
SNR estimation.

6. CONCLUSION

In this study, we investigated the impact of stationary and non-
stationary noises on the behavior of MFCCs of normal, whispered
and pathological voices. It has been demonstrated experimentally
that, regardless of the speech type, introducing additive noise to the
recordings results in predictable modification in mean and covari-
ance matrix of the MFCCs and the amount of change is related to
the level of noise. Motivated by this observation, we proposed a
new supervised method to estimate the global speech SNR which
uses MFCCs of the noisy signals to train a regression model for
each speech type. The proposed approach avoids the need for iden-
tification of speech and non-speech regions in signals facilitating
dealing with special speech signals such as sustained vowels, whis-
pered speech and pathological voices. Experimental results show
the consistent performance of the proposed approach in accurately
estimating SNR for various speech types under different known and
unknown noise conditions.
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