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Abstract 

Data envelopment analysis (DEA) has been widely applied in measuring the efficiency 

of homogeneous decision-making units. Network DEA, as an important branch of DEA, 

was built to examine the internal structure of a system, whereas traditional DEA models 

regard a system as a “black box”. However, only a few previous studies on parallel 

systems has considered the interdependent relationship between system components. In 

recent years, parallel interdependent processes systems commonly exist in production 

systems because of serious competition among organizations. Thus, an approach to 

measure the efficiency of such systems should be proposed. This paper builds an 

additive DEA model to measure a parallel interdependent processes system with two 

components which have an interdependent relationship. Then, the model is applied to 

analyse the “985 Project” universities in China, and certain policy implications are 

explained. 
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1. Introduction 

With the increasingly fierce competition, many production systems are becoming 

more complex than before to ensure operation efficiency, thereby lowering costs and 

improving competitiveness. The structure of a production system is no longer a mere 

chain but a network in which the relationship between two entities is generally not 

unidirectional but interdependent due to the development of information technology 

and transformation. In such a production system, one component provides some of its 

outputs to several other components, who also offer some of their outputs for the former 

component. For example, in a large organisation, each department in the system is 

connected with others by providing or consuming products or services. In 2007, the 

information transmission, computer services and software industry of China provided 

the financial industry with products and services worth approximately 4943.905 million 

RMB. The financial industry simultaneously offered the information transmission, 

computer services and software industry with products and services worth 

approximately 1388.203 million RMB. Another example is outsourcing. To maintain 

core competitiveness, a company may outsource its non-core business to an external 

company whilst the former company provides the external company financial or 

material support. In return, the external company supplies the corresponding products 

or services to the outsourcing company. This mutual activity can help a company use 

the external resources for its internal production and management services and 

consequently improve its performance. A company or even an industry must improve 

its performance to adapt to strong market competition. Measuring the performance 

(efficiency) of the system is important to realising this goal. 

Data envelopment analysis (DEA) is a linear programming technique for 

measuring the relative efficiency of a set of homogeneous decision-making units 

(DMUs), especially with multiple inputs and outputs (Charnes et al. 1978). DEA has 

been applied to many areas, such as banks, hospitals and schools (Cook and Seiford 

2009; Cooper et al. 2011; Kao 2009a; Wu et al. 2016a; Li et al. 2017; Lozano et al. 

2017). Traditional DEA models, such as CCR model and BCC model, treat DMUs’ 
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internal structure as a “black box”. To investigate internal structure systems and 

evaluate the relative efficiency of network systems, several network DEA models have 

been proposed, including serial and parallel systems, especially two-stage systems in 

which the outputs from the first stage are utilised as inputs for the second stage to 

produce the final outputs. 

The independent two-stage DEA approach is a classic method of evaluating two-

stage systems. In this category, the two stages are treated independently (Seiford and 

Zhu, 1999). Other approaches are also used to measure the efficiency of two-stage 

structure systems (Cook et al., 2010a; Halkos et al., 2014). In summary, works on two-

stage systems can be classified broadly into four categories: i) standard two-stage DEA 

approach proposed by Wang et al. (1997) and Seiford and Zhu (1999); ii) network DEA 

approach recommended by Färe and Grosskopf (1996), which considers the connection 

between two stages by treating intermediate measures as unknown decision variables 

in optimising the overall efficiency of the evaluated DMU; iii) rational two-stage DEA 

approach proposed by Kao and Kwang (2008) and Chen et al. (2009), which assumes 

a multiplicative or additive relationship between the overall and divisional efficiencies; 

and iv) game-theoretic two-stage DEA approach suggested by Liang, Cook and Zhu 

(2008), which considers the two stages as two players in a game. According to system 

structure, these two-stage network structure models can be classified into three 

categories: (a) serial structure models, (b) parallel structure models and (c) mixed 

structure models. In serial structure models, two or more internal stages are linked by 

intermediate measures (Tone and Tsutsui 2009; Lozano, 2011, 2015, 2016; Kao 2012a; 

Khalili-Damghani et al. 2015; An et al. 2016, 2018). In parallel structure models, the 

individual stages operate similarly to each other. This category is the focus of the 

current work. Färe and Primont (1984) discussed the efficiency of firms with multiple 

parallel plants. Kao (1998) applied his methodology to measure the efficiency of forest 

districts in Taiwan with multiple working circles, where the components are absolutely 

independent. In addition, in an extension of the independent parallel system, certain 

resources are shared by several processes. Kao (2009b) evaluated the efficiency of 

http://scholar.g363.com/citations?user=fGHx1kYAAAAJ&hl=zh-CN&oi=sra
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parallel production systems, which are composed of independent production units. Zuo 

and Guan (2017) proposed a parallel DEA model to measure the R&D efficiency of 

each region which has multiple independent sub-processes. An extension of this type 

of model is the shared flow system, in which the inputs are shared among individual 

stages (Kao 2010). The authors also stated that a parallel model can be considered a 

special case of a serial model without intermediate measures. Kao (2012b) studied 

efficiency decomposition for parallel production systems, regarding chemistry 

departments in the UK as an example. Amirteimoori (2013) suggested a general parallel 

structure in which several inputs are shared among the individual stages whilst certain 

inputs are individually used by one stage. Du et al. (2015) recommended a series of 

DEA models to accommodate settings where non-homogeneous sub-units operate in 

parallel network structures with intermediate measures. Avkiran (2015) used a dynamic 

network DEA for analysing commercial banking with a parallel structure in China from 

2008 to 2010. Xiong et al. (2017) examined the resource allocation issue in a parallel 

system according to relationships between two components and applied the related 

DEA model to the Chinese input–output table. Gong et al. (2018) studied Chinese 

manufacturers with parallel network structures, where each input or output of the 

system is not the sum of those of all its components. In mixed structure models, systems 

with serial and parallel processes are analysed (Lewis and Sexton 2004; Yu and Fan 

2009; Avrikan 2009; Moreno and Lozano 2014; Wu et al. 2016b). 

The above-mentioned DEA models have been widely applied in supply chain 

systems and similar structure systems and can help managers identify inefficiencies in 

network systems. However, previous studies mostly assumed the relationship between 

stages (subDMUs) in network systems to be unidirectional or independent. Few studies 

considered the interdependent relationship between the members of a system despite 

the current prevalence of this relationship (e.g. two production departments in a factory 

may provide their products, such as parts, to each other.). This paper focuses on a simple 

but representative parallel interdependent processes system. In such a production 

system, two subDMUs (stages) provide certain outputs or resources (intermediate 
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products) for each other. In this work, we present a new parallel DEA approach to 

measuring the individual and overall efficiencies of such a parallel interdependent 

processes system. Unlike authors of previous models, we build an additive DEA model, 

which considers the overall efficiency to be the weighted average of divisional 

efficiencies. Moreover, we transfer the original non-linear additive DEA model into a 

linear one and then decompose the overall efficiency of the system into two divisional 

efficiencies by setting a priority to one stage of the system. According to these results, 

each system can detect the weakness in its components to guarantee that proper 

measures can be implemented to improve system performance. 

The rest of this paper is organised as follows. Section 2 builds the approach to the 

efficiency evaluation of parallel interdependent processes systems. In Section 3, the 

proposed approach is applied to analyse and identify differences among the Chinese 

‘985 Project’ universities. Finally, Section 4 provides the conclusions and future 

directions of this study. 

2. Additive models for the parallel interdependent processes systems  

In the parallel system considered in this study, parallel stages are not operated 

independently but interact with each other. One stage invests some of its outputs to 

another stage and also consumes some of the outputs of another stage. In this system, 

non-homogenous sub-units operate in parallel network structures with intermediate 

measures, similar to that in the work of Du et al. (2015). A simple structure with two 

parallel stages is illustrated in Figure 1. 

 
Figure 1. Parallel interdependent processes systems with two subDMUs. 
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n DMUs are to be evaluated, where each DMU contains two parallel stages, 

namely, SubDMU 1 and SubDMU 2. For DMUj, SubDMU 1 uses input 
1

jX  and 

outputs from SubDMU 2 
21

jZ  to produce the outputs 
12

jZ  and 
1

jY , whereas 

SubDMU 2 utilises input 
2

jX  and outputs from SubDMU 1 
12

jZ  to generate outputs 

21

jZ  and 
2

jY . 
12

jZ  and 
21

jZ  are denoted as the intermediate measures of DMUj. 

1

jX  0 , 
2

jX  0 , 
21

jZ  0 , 
12

jZ  0 , 
1

jY  0 , 
2

jY  0 , and each vector must have at 

least one positive element. ‘0’ should be noted to be zero vector and differently decided 

by the dimension of left vectors in the corresponding inequality.  

This system slightly resembles to that in Liang et al. (2011) but still distinct from 

the latter because the two processes in our system work simultaneously, whilst the two 

processes in the latter have a precedence relationship, in which a feedback connects the 

second process to the first. 

On the basis of the constant returns to scale (CRS) model of Charnes et al. (1978), 

the CRS efficiency scores for DMU0 in SubDMU 1 and SubDMU 2 can be calculated 

by Models (1) and (2), respectively. 

1 12 1
1 0 0

0 1 1 21

0 0

1 12 1

1 1 21

1 1

. . 1, 1, , ,

, , , .

j j

j j

v Z uY
e Max

wX Z

v Z uY
s t j n

wX Z

v u w







+
=

+

+
 =

+

 0

                  (1) 

2 21 2
2 0 0

0 2 2 12

0 0

2 21 2

2 2 12

2 2

. . 1, 1, , ,

, , , .

j j

j j

Z Y
e Max

X v Z

Z Y
s t j n

X v Z

v

 



 



  

+
=

+

+
 =

+

 0

                  (2) 

where 1v , u , w  and 1  are the multipliers of intermediate measure 
12

jZ , output 
1

jY , 

input 
1

jX  and intermediate measure 
21

jZ , respectively. 2v ,  ,   and 2  are the 
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multipliers of intermediate measure 
12

jZ , output 
2

jY , input 
2

jX  and intermediate 

measure 
21

jZ , respectively. 
1

0e  and 
2

0e  are the individual efficiencies of SubDMU 1 

and SubDMU 2, respectively.  

In a two-stage system, where the link from SubDMU 2 to SubDMU 1, i.e. 
21

jZ , 

does not exist, Liang, Cook and Zhu (2008) and Kao and Huwang (2008) stated that 

applying different DEA models for the two stages separately does not accurately 

describe the relationship between the entire processes and the two sub-processes. 

Analogously, Models (1) and (2) cannot be applied separately because doing so will 

disregard the relationship between the two SubDMUs, which are connected by 

intermediate measures 
12

jZ  and 
21

jZ . Model (1) attempts to increase 
12

jZ  and 

reduce 
21

jZ , whilst Model (2) attempts to reduce 
12

jZ  and increase 
21

jZ . An 

alternative approach to evaluating the performance of the two-stage network is to view 

the two stages from a centralised perspective and determine a set of optimal weights on 

the intermediate factors to maximise their efficiency scores (as in a supply chain where 

the manufacturer and retailer jointly determine the price and order quantity, among 

others, to achieve maximum profit) (Huang and Li 2001). 

Therefore, similar to Kao and Hwang’s (2008) assumption on the multipliers of 

intermediate measures, the assumptions of 
1 2 1 2,v v v   = = = =  in Models (1) and (2) 

are used to link the two subDMUs with the entire processes. Under this assumption, we 

define the efficiencies of SubDMU 1 and SubDMU 2 by 
1

0E  and 
2

0E , respectively, 

and denote 
* * * *, , ,v u   by the optimal solution of the above models. The two stages 

are proposed to be combined in a weighted average of the efficiency scores of SubDMU 

1 and SubDMU 2 as follows: 

* 12 * 1 * 21 * 2
1 2 0 0 0 0

0 1 0 2 0 1 2* 1 * 21 * 2 * 12

0 0 0 0

v Z u Y Z Y
E wei E wei E wei wei

w X Z X v Z

 

 

+ +
=  +  =  + 

+ +
,      (3) 
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where 1wei  and 2wei  denote the weights of the subDMUs in the first and second 

stages, respectively, such that 1 2 1wei wei+ = .  

Definition 1. DMU0 is deemed overall efficient if and only if 0 1E = . The 

SubDMU 1 (SubDMU 2) of DMU0 is assumed efficient if and only if 
1

0 1E =  (
2

0 1E = ).  

According to Definition 1, we have the following theorem about the efficiency of 

a DMU and its subDMUs. 

Theorem 1. DMU0 with two subDMUs is overall efficient if and only if its two 

subDMUs are efficient, i.e. 
1 2

0 0 1E E= = .  

Proof. Firstly, we prove the condition 
1 2

0 0 1E E= =  is necessary. According to 

Definition 1, if DMUo is overall efficient, then 0 1E = ; and also because 

1 2

0 1 0 2 0E wei E wei E=  +   and 
1 2

0 00 1,0 1E E    , we can obtain 
1 2

0 0 1E E= = . 

Then, we prove that the condition 
1 2

0 0 1E E= =  is sufficient. If its two subDMUs 

are efficient, i.e. 
1 2

0 1oE E= = , then we have 
1 2

0 1 0 2 0 1E wei E wei E=  +  = . 

According to Definition 1, DMUo is overall efficient.  

To sum up, DMUo considering the sub-DMUs in Stages 1 and 2 is overall efficient 

if and only if its two subDMUs are efficient.                               □ 

In Formula (3), 1wei  and 2wei  signify the relative importance or contribution 

of the efficiency of each stage to the overall performance of the provided DMU in the 

entire process. A reasonable weight choice of each stage is the proportion of the total 

resources devoted to each stage; this weight choice reflects the relative size and 

importance of a stage (Amirteimoori 2013; Chen et al. 2009, 2008; Cook et al. 2010b). 

Therefore, the weights are defined as follows: 

* 1 * 21

0 0
1 * 1 * 21 * 2 * 12

0 0 0 0

w X Z
wei

w X Z X v Z



 

+
=

+ + +
, 

* 2 * 12

0 0
2 * 1 * 21 * 2 * 12

0 0 0 0

X v Z
wei

w X Z X v Z



 

+
=

+ + +
,   (4) 
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where 
* 1 * 21 * 2 * 12

0 0 0 0w X Z X v Z + + +  represents the total amount of input resources 

consumed by the entire two-stage network processes and 
* 1 * 21

00w X Z+  and 

* 2 * 12

0 0X v Z +  denote the sizes of the first and second stages, respectively. With the 

expression of 1wei  and 2wei , 
0E =  

* 12 * 1 * 21 * 2

0 0 0 0

* 1 * 21 * 2 * 12

0 0 0 0

v Z u Y Z Y

w X Z X v Z

 

 

+ + +

+ + +
 is given. 

Thus, the overall efficiency of the entire two-stage parallel interdependent 

processes systems for a common DMU0 can be evaluated by solving the following 

fractional model (Model (5)) under CRS. 

12 1 21 2

0 0 0 0
0 1 21 2 12

0 0 0 0

12 1

1 21

21 2

2 12

1 21

0 0

1 21 2 12

0 0 0 0

2 12

0 0

1 21 2 12

0 0 0 0

   

. .    1, 1,..., ,

         1, 1,..., ,

,

j j

j j

j j

j j

vZ uY Z Y
E max

wX Z X vZ

vZ uY
s t j n

wX Z

Z Y
j n

X vZ

wX Z

wX Z X vZ

X vZ

wX Z X vZ

 

 



 






 



 

+ + +
=

+ + +

+
 =

+

+
 =

+

+


+ + +

+


+ + +
,

         , , , , , .w v u



    0

                 (5) 

where   and   represent the minimum weights for SubDMU 1 and SubDMU 2, 

respectively, in calculating the overall efficiency of a DMU. Model (5) is a nonlinear 

program that needs to be transformed into a standard linear program (6) through 

Charnes–Cooper transformation. 

Let 
1 21 2 12

0 0 0 0

1
t

wX Z X vZ 
=

+ + +
, 'w wt= , ' t = , 'u ut= , ' t = , 

'v vt=  and ' t = ; the above-mentioned model can be transformed into the following 

linear program: 
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12 1 21 2

0 0 0 0 0

12 1 1 21

21 2 2 12

1 21 2 12

0 0 0 0

1 21

0 0

   ' ' '

   ' ' ( ' ' ) 0, 1,..., ,

        ' ' ( ' ' ) 0, 1,..., ,

         ' ' ' ' 1,

         ' ' ,

         

j j j j

j j j j

E max v Z u Y Z Y

s.t. v Z u Y w X Z j n

Z Y X v Z j n

w X Z X v Z

w X Z

 



  

 

 

= + + +

+ − +  =

+ − +  =

+ + + =

+ 

2 12

0 0' ' ,

         ', ', ', ', ', ' .

X v Z

w v u

 

  

+ 

 0

.         (6) 

Once an optimal solution of Model (6) is obtained, the additive efficiency score 

for the two-stage parallel interdependent processes systems can be calculated 

accordingly. Model (6) is different from the work of Kao (2009b) in that the subDMUs 

are independent of each other and the overall efficiency is measured by only 

maximising the weighted final outputs. We extend the above model to include the 

interrelationship of subDMUs as follows:  

1 2

0 0 0

12 1 1 21

21 2 2 12

12 1 1 21 1

0 0 0 0 0

21 2 2 12 2

0

   ' '

   ' ' ( ' ' ) 0, 1,..., ,

        ' ' ( ' ' ) 0, 1,..., ,

         ' ' ( ' ' ) =0,

         ' ' ( ' ' ) =

j j j j

j j j j

j j j j

E max u Y Y

s.t. v Z u Y w X Z j n

Z Y X v Z j n

v Z u Y w X Z s

Z Y X v Z s





  



  

= +

+ − +  =

+ − +  =

+ − + +

+ − + +

1 2

0 0

1 21

0 0

2 12

0 0

1 2

0 0

0,

         ' ' 1,

         ' ' ,

         ' ' ,

         ', ', ', ', ', ', , .

w X X

w X Z

X v Z

w v u s s



 

 

  

+ =

+ 

+ 

 0

           (6’) 

Kao’s model differs from the proposed one (Model (6)). Hence, the overall and 

divisional efficiencies should also be distinct. A disadvantage of Kao’s (2009b) model 

is it considers the initial inputs and the final outputs only, thereby ignoring the potential 

effect of each (sub) DMU on the calculation of the overall efficiency (because in Kao’s 

model, each system’s efficiency is regarded as an efficiency constraint only). In other 

words, Kao’s (2009b) model, similar to traditional DEA models, considers the network 

system as a ‘black box’ when calculating this system’s overall efficiency.  
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Assume that (
* * * * * * 1* 2*

0 0' , ' ' ' , ' , ' , ,w v u s s  , , ), the divisional efficiency of the 

first stage is 1-
1* * 1 * 21

0 0 0/ ( ' ' )s w X Z+ , the efficiency of the second stage is 1-

2* * 2 * 12

0 / ( ' ' )j js X v Z + and the overall efficiency is 
* 1 * 2

0 0' 'u Y Y+ . With the 

application of Kao’s (2009b) model, the overall efficiency of a system does not have a 

clear relationship with the divisional efficiencies. In the proposed model (Model (6’)), 

the overall efficiency is defined as the weighted sum of the two divisional efficiencies, 

which can be seen in Formula (3) and Model (6) (where 𝐸0 = 𝑤𝑒𝑖1 ∗ 𝐸0
1 + 𝑤𝑒𝑖2 ∗ 𝐸0

2).  

Model (6) may have multiple optimal solutions. Thus, the respective efficiencies 

of the subDMUs may not be unique. A unique set of multipliers can be identified by 

following Kao and Hwang’s (2008) approach; this set produces the highest efficiency 

score of SubDMU 1 or SubDMU 2 whilst maintaining the overall efficiency score on 

the entire network processes. Denote 0E  by the overall efficiency of DMU0, which is 

the optimal objective value of Model (6). 
1 21 2 12

0 0 0 0 1w X Z X v Z       + + + =  is 

satisfied for any optimal solution of model (6); thus, 
1 21

1 0 0wei w X Z  = +  and 

2 11wei wei= −  can be obtained. 

A procedure for obtaining the unique solution is to maximise the achievable 

efficiency value of SubDMU 1 whilst retaining the overall efficiency score. The value 

can be determined by the following: 

1 12 1

0 0 0

12 1 1 21

21 2 2 12

1 21

0 0

12 1 21 2 1 21

0 0 0 0 0 0 0

   '' ''

. . '' '' ( '' '' ) 0, 1,..., ,

     '' '' ( '' '' ) 0, 1,..., ,

     '' '' 1,

      '' '' '' '' ( '' '' ''

j j j j

j j j j

E max v Z u Y

s t v Z u Y w X Z j n

Z Y X v Z j n

w X Z

v Z u Y Z Y E w X Z



  



   

= +

+ − +  =

+ − +  =

+ =

+ + + − + + 2 12

0 0

1 21 2 12 1 21

0 0 0 0 0 0

1 21 2 12 2 12

0 0 0 0 0 0

'' ) 0, (7)

      ( '' '' '' '' ) ( '' '' ) 0,

      ( '' '' '' '' ) ( '' '' ) 0,

      '', '', '', '', '', '' .

X v Z

w X Z X v Z w X Z

w X Z X v Z X v Z

w v u

   

   

  

+ =

+ + + − + 

+ + + − + 

 0
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SubDMU 2’s efficiency score for DMU0 can then be calculated as 

1
2 ' 0 1 0
0

2

E wei E
E

wei

−
= , where 1wei  and 2wei  are the optimal weights based on Model 

(6) and 
1

0E  is the optimal efficiency reached whilst the overall efficiency in Model (7) 

is maintained.  

Analogously, the following linear program can be established to maximise the 

efficiency score of SubDMU 2, i.e. 
2

0E , whilst maintaining the overall efficiency score 

of 0E . 

2 21 2

0 0 0

12 1 1 21

21 2 1 12

1 12

0 0

12 1 21 2

0 0 0 0 0

   ' '

   ' ' ( ' ' ) 0, 1,..., ,

               ' ' ( ' ' ) 0, 1,..., ,

               ' ' 1,

               ( '

j j j j

j j j j

E max Z Y

subject to v Z u Y w X Z j n

Z Y X v Z j n

X v Z

vZ uY Z Y E w

 



  



 

= +

+ − +  =

+ − +  =

+ =

+ + + − 1 21 2 12

0 0 0 0

1 21 2 12 1 21

0 0 0 0 0 0

1 21 2 12 2 12

0 0 0 0 0 0

' ' ' ) 0, (8)

               ( ' ' ' ' ) ( ' ' ) 0,

               ( ' ' ' ' ) ( ' ' ) 0,

               ', ', ', ', ', ' .

X Z X v Z

w X Z X v Z w X Z

w X Z X v Z X v Z

w v u

 

   

   

  

+ + + =

+ + + − + 

+ + + − + 

 0

 

The first-stage efficiency score for DMU0 can be computed as 

2
1' 0 2 0
0

1

E wei E
E

wei

−
= , where 1wei  and 2wei  are the optimal weights of Model (6). 

2

0E  

represents the optimal efficiency reached whilst the overall efficiency in Model (8) is 

maintained. 

On the basis of the illustrations in the preceding paragraphs, the divisional 

efficiencies 
1

0E , 
2 '

0E  and 
1'

0E , 
2

0E  can be obtained in two scenarios through Models 

(7) and (8). When the aforementioned results satisfy 
1 1'

0 0E E=  or 
2 2'

0 0E E= , a unique 

efficiency decomposition of the overall efficiency can be concluded. 

In a traditional parallel system, each parallel stage operates independently. Hence, 

DEA models can be developed without considering the interaction between the parallel 

stages. By contrast, this study explores a new parallel system by considering the 
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interaction between parallel stages, the structure of which is universal in many 

production processes. To be precise, each parallel stage produces an immediate output 

into another parallel stage. Therefore, the proposed DEA model in this study considers 

the different immediate outputs between parallel stages.  

3. Application to ‘985 Project’ universities in China 

In this section, the newly developed approach is applied to evaluate the 2012 

performance of the Chinese universities in the ‘985 Project’, a constructive project 

conducted by the government of the People’s Republic of China. This project was 

introduced by the former General Secretary of the Communist Party of China and 

former President Jiang Zemin at the Centenary Celebration of Peking University on 

May 4, 1998 to promote the development and reputation of the Chinese higher 

education system by founding world-class universities in the 21st century. It was 

eponymously named after the date of the announcement, May 1998 or 98/5, according 

to the Chinese date format. The project involves national and local governments, 

allocating large amounts of funding to certain universities to build new research centres, 

improve facilities, hold international conferences, attract world-renowned faculty and 

visiting scholars and help Chinese faculty attend conferences abroad. In the initial phase, 

nine universities were included in the project. Thirty-nine universities (commonly 

accepted as first-class Chinese universities) were sponsored by the end of the project’s 

second phase. The project stopped accepting new schools in 2011 (Zhang et al. 2013). 

Data from the National University of Defense Technology were not announced because 

of security concerns and are therefore not included in our analysis of the ‘985 Project’ 

universities.  

The ‘985 Project’ is a critical component of one of the largest sustained increases 

of investment in university research in human history. During 2009 and 2013, China’s 

total university research funds increased to 264.769 billion RMB, 52.7% of which was 

for the ‘985 Project’ universities. The effects of the project were also evident. 

According to data from the Institute of Scientific and Technical Information of China, 

http://en.wikipedia.org/wiki/Jiang_Zemin
http://en.wikipedia.org/wiki/Higher_education_in_China
http://en.wikipedia.org/wiki/Higher_education_in_China
http://en.wikipedia.org/wiki/Calendar_date#Date_format
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the number of international Science Citation Index (SCI) publications was 231.4 

thousand in 2013, which ranked second worldwide, followed by America. In 2009 and 

2013, papers from the ‘985 Project’ universities accounted for approximately 47% of 

all high-quality papers, including SCI publications and national high-level publications. 

To evaluate the results of the ‘985 Project’, the universities’ research performance must 

be investigated. 

Figure 2 shows that the researchers and sizes of a university are the inputs of the 

research development process of each university. Corresponding outputs are the 

numbers of high-quality papers (HQP), scientific books (SB) and national scientific 

awards (NSA), which become the inputs of the research application process. The 

research development (RD) process for obtaining high-quality papers, scientific books 

and national scientific awards can directly reflect the research development capability 

of a university. In addition, the number of first-level disciplines authorised to offer a 

doctorate degree (FLDD) is an input of the research application process, whereas the 

research funds and technology transfer incomes (TTI) are the outputs of the research 

application process. The research funds (RF) flow is an output from the research 

application process to the research development process. FLDD is selected as an input 

of the research application process because it can reflect the comprehensive strength of 

the disciplines of a university, which highly determines the success of the institution’s 

fund application and technology transfer. Technology transfer incomes refer to the cost 

that the user pays to the university when a university transfers its technology to others 

or provides its technology to others for use. The research application (RA) process 

reflects the research application capability of a university, i.e. the capacity to apply its 

research achievements to real production scenarios. According to the above illustrations, 

high-quality papers, scientific books and research funds can be deemed intermediate 

products of the universities, which are the major inputs to one subDMU (RD or RA) 

and major outputs to other subDMUs (RA or RD). 
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Figure 2. Structure of research outcome in universities. 

The 38 universities are institutions of higher learning that are directly under the 

Ministry of Education of China or Chinese Academy of Sciences. Several important 

inputs or outputs are as follows. Researchers include all teachers, research scientists 

and engineers related to R&D activities. National scientific awards refer to the total 

number of National Natural Science Prizes, National Invention Awards and National 

Science and Technology Progress Awards that a university garnered in the year. High-

quality papers comprise publications in the science citation indexed journal and Chinese 

comprehensive core journals. The data are collected from the ‘2013 Statistics for 

Colleges and Universities Directly under the Ministry of Education’, ‘2013 China 

Science and Technology Statistics and Analysis Report’ and ‘2013 Statistics Assembly 

of Higher School Science and Technology Statistics’. The size of the university is in 

10,000 m2, and technology transfer incomes and research funds are in 1,000 RMB. 

Descriptive statistics of these universities are shown in Table 1.  

Table 1. Descriptive statistics on 38 universities in China 

Universities Researchers Size NSA SB HQP FLDD TTI RF 

Mean 2421.132 318.636 39.684 20.316 2491.737 29.39 37049.55 1466592 

Median 1722 319.1 34 16 1951.5 27 4180 1330057 

S.D. 1948.052 146.634 30.708 15.068 1741.313 11.317 99273.01 923955.9 

Max. 8501 611 122 56 6730 58 554753 3930860 

Min 124 37.80 0 0 101 5 0 10756 

 

Research 

Development 

Research 

Application 

R&D researchers 

Size 

FLDD 

Papers 

 Scientific books 
Research funds 

National scientific awards 

Technology transfer income 
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The efficiency of the research development process reflects the performance in 

winning national scientific awards and publishing scientific books and papers, whereas 

the efficiency of the research application process reflects the performance in generating 

research funds and technology transfer incomes. To avoid assigning extreme weights 

for the two stages, the weights of each subDMU’s efficiency to the overall efficiency 

are set to be not smaller than 0.1, i.e. 𝛼 = 𝛽 = 0.1. We check all values of  𝛼 and  𝛽 

when they are between [0.05, 0.25] and find only several slight differences. Through 

Model (6), the overall efficiencies of these universities can be calculated, and these 

results are shown in column 2 of Table 2. In this case, we investigate the divisional 

efficiencies after acquiring the overall efficiencies of Model (6) and find no differences 

between the two divisional efficiencies regardless of which process is prioritised. Here, 

the efficiency of the research development process, 
1

0E , is selected to be measured first, 

followed by the research application process, 
2

0E . 
1

0E  can be obtained with the 

adoption of Model (7), and the efficiency of the research development process can be 

acquired with use of 
2 1

0 0 1 0 2( ) /E E wei E wei= − . The efficiencies of the two stages of 

all the universities are given in columns 3 and 4 of Table 2. 

Table 2. Efficiencies of universities 

Universities Overall efficiency SubDMU 1’s efficiency SubDMU 2’s efficiency 

PKU 0.616 0.930 0.205 

RUC 0.404 0.465 0.188 

TSU 1.000 1.000 1.000 

BUAA 1.000 1.000 1.000 

BIT 0.548 0.240 0.793 

CAU 0.612 0.650 0.271 

BNU 0.591 1.000 0.152 

CUN 0.507 1.000 0.015 

NKU 0.430 0.544 0.210 

TU 0.786 0.814 0.542 

DUST 0.570 0.687 0.252 

NEU 0.973 1.000 0.738 

JLU 0.363 0.508 0.317 

HIT 0.635 1.000 0.439 

FDU 0.637 0.948 0.433 

TJU 0.664 0.659 0.702 
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SJTU 0.912 0.885 0.958 

ECNU 0.436 0.604 0.132 

NJU 0.539 0.871 0.143 

SEU 0.866 0.929 0.497 

ZJU 0.728 0.783 0.239 

USTC 0.508 0.587 0.350 

XMU 0.932 1.000 0.322 

SDU 0.400 0.465 0.288 

OUC 0.602 1.000 0.156 

WHU 0.928 1.000 0.276 

HUST 0.488 0.577 0.424 

HNU 0.495 0.526 0.369 

CSU 0.724 0.766 0.343 

SYSU 0.393 0.515 0.307 

SCUT 0.515 0.554 0.370 

CQU 0.824 0.888 0.279 

SCU 0.529 0.755 0.151 

UESTC 0.546 0.405 0.638 

XJTU 0.697 0.751 0.212 

NPU 0.571 0.151 0.983 

NAFU 0.367 0.207 0.441 

LZU 0.551 0.592 0.179 

Average 0.629 0.717 0.403 

Table 2 shows that Tsinghua University (TSU) and Beihang University (BUAA) 

were overall efficient. The average overall efficiency of all universities is 0.616. In 

addition, given that all the ‘985 Project’ universities are considered the best in China, 

the increasing support may be intensifying the competition amongst the elite 

universities. Furthermore, the enhanced competition and cooperation between the ‘985 

Project’ universities resulted in the creation of a vibrant national university research 

ecosystem, which might have led to the good average performance of these universities. 

The average efficiency of the research development process is also higher than that of 

the research application process, which indicates that these universities performed 

relatively well in generating various scientific papers and books and in garnering 

numerous national scientific awards but did not considerably attract technology transfer 

incomes and research funds.  
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Table 2 denotes that most of the universities performed well in the research 

development process. These universities focused more and allocated more resources to 

the research development stage than to the research application stage because a high 

research publication score meant that they could acquire increased government 

financial support and attract good students. This approach is common amongst 

universities in China. To comprehensively improve overall efficiency, these 

universities should extend the transformation of scientific and technological 

achievements to real production in a variety of forms and promote their scientific 

resource superiority into realistic productivity. The Central University for Nationalities 

(CUN) should be noted as a special case by these universities. CUN had minimal 

efficiency in the research application process because it is an institution of nationalities 

that have no industrial technologies for transformation. Table 2 illustrates that few 

universities performed well in the research application process, such as Beijing Institute 

of Technology (BIT) and Northwestern Polytechnical University (NPU), which belong 

to the same organisation as does the Ministry of Industry and Information Technology. 

The relatively good performance in the research application process was probably due 

to these institutions’ specialisation in navigation, engineering and materials science, 

whose technologies are easily adopted into industrial processes.  

An efficiency map of these provinces is drawn in Figure 3 according to the location 

of these universities. An efficiency of 0.8–1 is regarded as high, 0.7–0.8 as relatively 

high, 0.6–0.7 as median, 0.5–0.6 as relatively low and below 0.5 as low. The white 

regions in the map have no ‘985 Project’ universities and thus have no data. This 

efficiency map indicates that the universities’ efficiencies had evident regional 

characteristics. These universities are divided into three categories on the basis of their 

location: east, central and west universities. East universities are those in Beijing, 

Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong 

and Hainan. Central universities are those in Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei and Hunan. West universities are those in Chongqing, Sichuan, Shaanxi, 
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Gansu and other regions. The details of the universities in each category are shown in 

Table 3. 

Table 3. Universities in three areas 

Area Universities 

East 
PKU, RUC, TSU, BUAA, BIT, CAU, BNU, CUN, NKU, TU, DUST, NEU, 

FDU, TJU, SJTU, ECNU, NJU, SEU, ZJU, XMU, SDU, OUC, SYSU, SCUT, 

Central JLU, HIT, USTC, WHU, HUST, HNU, CSU 

West CQU, SCU, UESTC, XJTU, NPU, NAFU, LZU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Overall efficiency of universities in China’s provinces. 
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The overall and divisional efficiencies of the three areas can be obtained by 

averaging each efficiency listed in Table 2. The results are given in Table 4.  

Table 4. Efficiencies of three areas 

Area Overall efficiency Research development Research application 

East 0.653 0.773 0.413 

Central 0.592 0.709 0.360 

West 0.583 0.535 0.412 

 

Table 4 shows that the east universities had the best overall efficiency in the research 

development and research application processes amongst the three groups. The overall 

efficiencies of the central universities were similar to those of the west universities. 

However, the central universities performed better in research development than did 

the west universities, whilst the latter performed better in research application than did 

the former. A comparison between the efficiencies of research development and 

research application of each area indicates that the former process was higher than the 

latter process, implying that the ‘985 Project’ universities had, on average, a good 

capability to write books, publish papers and win national scientific awards. However, 

they had a weak capability for bringing technology transfer incomes and research funds, 

especially the central universities. This phenomenon might be due to the heightened 

emphasis that these universities dedicated to research achievement, which involved 

writing books and papers and winning awards, because these factors are directly related 

to the promotion of researchers (teachers). Technology transformation was first 

implemented in China’s universities in the late 1980s. For example, the University of 

Science and Technology of China (USTC) established the Scientific and Technological 

Development Corporation and Institution in 1988, whilst the Huazhong University of 

Science and Technology (HUST) founded a technology transformation office in 1989. 

Subsequently, new universities began to build institutions related to technology transfer 

and incubation. This task has not been the main focus of universities until now. The 

east, central and west areas substantially differ in economy. The performance of the 
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universities in these regions might be related to their economic levels. To validate this 

hypothesis, the correlation coefficient between the efficiencies and the local economy 

(represented by per capita income) is computed. The correlation coefficients are shown 

in Table 5. 

Table 5. Correlation coefficient between per capita GDP and efficiencies 

 Per capita GDP 

Overall 

efficiency 

Research 

development’s 

efficiency 

Research 

application’s 

efficiency 

Per capita GDP 1    
Overall efficiency 0.1631 1   

Research development’s 

efficiency 

0.2482 0.6807 1 

 

Research application’s 

efficiency 

0.1533 0.4967 −0.1024 1 

Table 5 illustrates that the correlation coefficient between the per capita GDP and 

overall efficiency, research development process’ efficiency and research development 

application process’ efficiency are 0.1631, 0.22482 and 0.1533, respectively. This 

finding implies that the universities’ research performance had a minimal relation with 

the economy. A university in a region with a low economic level probably had high 

efficiency, such as Wuhan University (WHU), Central South University (CSU) and 

Chongqing University (CQU). Moreover, the correlation coefficient between the 

overall efficiency and research development process’ efficiency was 0.6807, and that 

between the overall efficiency and research application process efficiency was 0.4967. 

These results reveal that the average overall efficiency of the Chinese ‘985 Project’ 

universities was mainly decided by the research development process efficiency in the 

current situation possibly due to the universities’ increased focus on research 

development process performance. However, from another viewpoint, most 

inefficiencies were caused by the research application process. This finding can be 

verified by the results in Table 2, in which the average efficiency of the research 

application process of these universities is merely 0.403. Thus, a university should 
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improve not only the performance of its research development process (research 

development capability) but also that of the research application process (research 

application capability) to be overall efficient.  

4. Conclusions and future directions 

Efficiency evaluation is an important issue for an organisation in gauging its own 

performance, especially its weakness. Many conventional DEA and two-stage models 

have been built to measure the efficiency of a system. However, these models are 

deficient in that the efficiencies of the entire processes and the two sub-processes are 

calculated independently or without considering the interdependent relationship 

amongst the system. In the current work, a new structure of a two-stage parallel system 

is proposed, where the interdependent relationship between the two subDMUs is 

considered. An additive DEA approach is provided to measure the overall and 

divisional efficiencies of the parallel system. The overall efficiency of DMU and 

divisional efficiency are defined in this new structure, and the necessary and sufficient 

conditions of being an overall efficiency of DMU are provided. On the basis of the 

approach used in this study, the source, which causes the inefficiency of a system, can 

be detected to enable appropriate efforts to be dedicated specifically to improving 

performance. 

The ‘985 Project’ universities in China are analysed in this study by dividing a 

university’s research performance into two parallel subDMUs that provide products or 

funds to each other to support their operations. Results show that the approach can fully 

measure the inefficiencies in the parallel interdependent processes system and find the 

relationship between the overall efficiency and divisional efficiencies. These 

universities are known to perform better in publishing papers and books and winning 

national scientific awards than in transferring their technology into real-life production 

in firms. The results are consistent with the common sense of Chinese people with 

regard to these universities, which focus more on research development than on 
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research application. This application verifies the effectiveness of the proposed 

approach. 

The relationship between the system and process efficiencies, which holds for the 

case of constant returns to scale, can be extended to the case of variable returns to scale. 

Besides, this study points to future theoretical research in three interesting directions: 

(1) developing a model that measure this parallel system when two subDMUs compete 

or cooperate; (2) building a general model for a system with more than two subDMUs 

and (3) extending the additive DEA model proposed in this work to other DEA models, 

including slack-based measures.  
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