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Abstract

Cerebral aneurysm is a weakness in a blood vessel that may enlarge and bleed

into the surrounding area, which is a life-threatening condition. Therefore, early

and accurate diagnosis of aneurysm is highly required to help doctors to decide

the right treatment. This work aims to implement a real-time automated seg-

mentation technique for cerebral aneurysm on the Zynq system-on-chip (SoC),

and virtualise the results on a 3D plane, utilizing virtual reality (VR) facilities,

such as Oculus Rift, to create an interactive environment for training purposes.

The segmentation algorithm is designed based on hard thresholding and Haar

wavelet transformation. The system is tested on six subjects, for each consists

512×512 DICOM slices, of 16 bits 3D rotational angiography. The quantitative

and subjective evaluation show that the segmented masks and 3D generated

volumes have admitted results. In addition, the hardware implement results

show that the proposed implementation is capable to process an image using

Zynq SoC in an average time of 5.2 ms.
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1. Introduction

An aneurysm is a swelling on the side of a blood vessel wall and it can burst

and lead to bleeding. It looks like a thin balloon or weak spot on an inner tube.

The aneurysm in the brain is called cerebral aneurysm [1]. Statistics show that

between 1.5% and 5% of the population have or will develop cerebral aneurysm5

[2]. Annually, almost from 0.5% to 3% of patients with a brain aneurysm may

suffer from bleeding [1].

When an aneurysm ruptures, blood leaks into the subarachnoid space called

subarachnoid hemorrhage (SAH). SAH represents one of the most prevalent

and devastating diseases among adults worldwide. Endovascular approaches to10

treatment of intracranial aneurysms (ICAs) are more effective than other meth-

ods in terms of reducing operative risk, hospital stay, pains and indirectly cost

[3]. These approaches, which are centered around the use of intra-aneurysmal

coils, may sometimes fail because of incomplete occlusion of the defect, which

could be due to the miscalculation of the aneurysm anatomy. Therefore, ap-15

propriate segmentation of cerebral aneurysm is always desired for an effective

treatment planning (i.e. deciding the right size and type of the first coil) [4].

Since the result after applying the automated aneurysm segmentation al-

gorithm is a 3D volume that contains features from the aneurysm, this helps

doctors in diagnosing and deciding the right treatment, because knowing some20

parameter about the aneurysm is crucial for such purposes. Manual segmenta-

tion is typically utilized to get these parameters, nevertheless, it is not precise

because it heavily depends on inter-observer variability. Hence, employing an

automatic segmentation technique will be more accurate and reliable.

While image segmentation is a general field and has many applications, an-25

giography also includes a wide range of anatomical applications (e.g. cerebral,

retinal, hepatic, peripheral, pulmonary, cardiac, etc.) and modalities (e.g. X-

ray, computed tomography angiography (CTA), Magnetic resonance angiogra-

phy (MRA), ultrasound, 2D or 3D, etc.) [5, 6, 7]. Therefore, there are many

methods in literature for vascular segmentation. The segmentation algorithms30
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of Cerebrovascular MRA medical images can be categorized into the following

four methods. The deformation model, the statistical model, the Hessian matrix

and the region growing [8, 9]. Well known deformation models are parametric

and geometric in which usually exploits several internal and external forces to

find connected curves in the images [10, 11]. Statistical algorithms aim to fit a35

statistical model to the distribution of the intensities of the images and com-

pute the parameters of model. Usually, they assume that brain MRA images

consists of three different regions with different intensity margins and therefore

try to determine these regions on the intensity histogram. The first region has

the lowest intensities and consists of cerebrospinal fluid, cerebral bones, air and40

other organizations. The second region with medium intensity has cerebral gray

and white matter. The third region with higher intensity includes cerebral ves-

sels and subcutaneous fat [9, 11]. Cerebral vessels are worm and tube like and

therefore have typical characteristics of tubes. Some of these characteristics are

the eigenvalues and eigenvectors of the Hessian matrix. These method mostly45

used for vessel enhancement as a preprocessing step for segmentation [12, 13].

Alternatively, optimally oriented flux (OOF) was introduced by Law and Chung

to overcome the shortcomings of Hessian-based filters. OOF and its anisotropic

variations have gained attention for the segmentation of different anatomical

structures including vessels [14, 15]. The region growing methods are a con-50

ventional algorithms for angiography and other applications of segmentation.

Typically, there is a good connectivity and a complete topological structure for

resulting vessel voxels [16, 17].

There are few other methods have been designed for the vascular aneurysm

segmentation problem. Wilson et. al proposed a fully automatic, statistically55

based algorithm for segmenting the three-dimensional vessel information from

time of flight (TOF) MRA data [18]. They introduced a mixture distribution

for the data, motivated by a physical model of blood flow, that is used in a

two stage segmentation algorithm. In the first stage they use a variant of the

traditional EM algorithm to classify vessel voxels, on the assumption that all60

voxels are independent. Based on this initial segmentation, they then estimate
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the two thresholds to perform hysteresis thresholding. An algorithm based

on a geometric deformable model with energy functional along with a non-

parametric statistical framework which exploits high-order multiscale features

is presented in [19]. The method is based on a geometric deformable model that65

uses also information from the image gradient and statistics of the different

tissue regions. Cross-validation and feature selection techniques are used to

determine the non-parametric statistical model and fit the model to the specific

application and achieve the best tissue classification. In [20] an evaluation study

is reported to evaluate the suitability of their automatic segmentation method70

based on geodesic active regions (GAR) for segmenting cerebral vasculature with

aneurysms. Three aspects of the GAR method have been improved: execution

time, robustness to variability in imaging protocols and robustness to variability

in image spatial resolutions. They evaluate their method on 3D X-ray rotational

angiography (3DRA) and time of flight magnetic resonance angiography (TOF-75

MRA) images. Similarly, the work presented in [21] introduce a new cerebral

aneurysm segmentation approach, which is based on geodesic active contours

(GAC). In this method, the wall of the aneurysm in 3D has been considered

as the zero level set, and the convergence of the embedding function is used

to define the surface of the extracted aneurysm. The results show that the80

prior de-noising shows slight improvement in the segmentation results, but the

algorithm needs to initiate a seed point manually where the segmentation starts.

In [22], a new method has been proposed for CTA, where the segmenta-

tion is based on region growing and level set approaches. In the first stage,

CTA scans are smoothed with the use of a median filter, and then, the region85

growing-based approach is used to segment the area of interest. Finally, the

selection criteria of the connectivity of the points is applied to recognize the

artery range. The proposed method demonstrates good results, however, it still

needs the user to initiate a seed point to guide where the segmentation should

be started. Authors in [23] proposes a threshold-based level segmentation (TLS)90

method for segmenting the cerebral aneurysm. The approach uses the Geodesic

active contours and Chan-vese segmentation model. The proposed method com-
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bines the region and boundary information to decide the global threshold and

gradient magnitude to be used in the segmentation. The threshold keeps up-

dating through the segmentation process until the boundary of the aneurysm95

is reached. The TLS allowed promising results and more accurate results than

other methods mentioned previously, and it does not require an initial seed

point or intensity threshold. the segmentation of brain vascular from low con-

trast MRA is presented in [4], where the segmentation algorithm is based on

principle component analysis (PCA). The PCA is used to filter the unwanted100

elements from the image and keep the details of the variation of the width of

the vessels. However, since there is no prior noise filter used in the algorithm,

the achieved results are not significant and de-noising has been suggested to

improve the segmentation results further.

Field programmable gate array (FPGA) has been widely used to accelerate105

the image processing algorithms in biomedical imaging area. Although there

are some implementations of image segmentation targeted on FPGAs, there

is no FPGA implementation for automated cerebral aneurysm segmentation

[24, 25, 26, 27]. In this paper, we design and implement an automated aneurysm

segmentation algorithm on Zynq SoC. The segmented results are visualised on110

a 3D plane using virtual reality (VR) facilities to create an interactive envi-

ronment for training purposes. The aneurysm segmentation approach is first

implemented and simulated in MATLAB as a proof of concept, and then the

appropriate C/C++ codes of the algorithm are written and implemented on

hardware using Vivado HLS. The system is tested on six subjects, each subject115

consists of 512× 512 16 Bit DICOM slices of Computed tomography angiogra-

phy while the total number of images is 451. The main contributions of this

paper can be summarized as follows:

• A novel SoC solution for real-time automated segmentation technique is

introduced. In addition, a hardware friendly aneurysm segmentation al-120

gorithm has been proposed for hardware implementation. Finally, the

segmented results are visualised on a 3D plane using virtual reality (VR)
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facilities to create an interactive environment for effective treatment plan-

ning and training purpose.

• The proposed approach introduces a way to integrate the aneurysm seg-125

mentation and processing unit into heterogeneous reconfigurable hard-

ware. This allows the implementation of a high-performance state-of-the-

art data processing system which is also highly adaptive. The communi-

cation, visualization, segmentation and flow simulation can be realized on

one piece of hardware without making the compromise of resource sharing130

and time-consuming sequential execution of tasks.

The rest of the paper is organized as follows. Section 2 introduces the

aneurysm segmentation algorithm. The corresponding software and hardware

implementations are presented in Section 3. The experiment results are dis-

cussed in Section 4. Finally, Section 5 concludes the paper and highlights some135

perspectives of future work.

2. Proposed Method

The proposed aneurysm segmentation algorithm is based on wavelet trans-

form [28] and hard thresholding [29] algorithms. The overall diagram of the

proposed method is illustrated in Figure 1 and consists of the following six140

steps, described later with more details.

1. Intensity normalization: The intensity propagation of DICOM images is

normalized to [0− 255] for each subject.

2. Haar wavelet decomposition: The Haar wavelet transform scheme is ap-

plied on each normalized slice image.145

3. Hard thresholding: After applying the wavelet transform, hard threshold-

ing is applied on the approximated coefficients.

4. Haar wavelet reconstruction: In this step, each slice is reconstructed by

wavelet detail and thresholded approximation coefficients.
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Figure 1: The chart of proposed method for segmentation and aneurysm treatment.

5. Creating segmentation masks: In this step a threshold is used to convert150

the reconstructed slice to binary segmented mask. After that, a dilation

operation may be implemented based on a proposed criterion.

6. Volume reconstruction and visualization: In this step, the segmented

masks of slices are concatenated and processed to build the volume of

vessels.155

2.1. Intensity normalization

At the first step, since the range of intensities in DICOM images is variant for

different subjects and different imaging devices, the intensity normalization is

required. In this step, all of the DICOM images of a subject are imported and

the maximum/minimum intensity of the subject will be normalized to 0/255160

respectively. Suppose that the size of each DICOM slice (Si, i = 1, 2, · · · , I)

is N × N and the subject has I images. Therefore we have all the images in

a matrix S ∈ RN×N×I and the minimum and maximum intensities of S are

minS and maxS . The Normalized version of S which is denoted as X can be

computed by equation (1) where X ∈ RN×N×I contains normalized slices, Xi165

for i = 1, 2, · · · , I.

X = 255× S −minS
maxS −minS

(1)

2.2. Haar wavelet decomposition

The Haar wavelet transform is used to decompose the image into an approxi-

mated image as well as three detailed sub-band images, where the approximation
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image shows an approximated overview of the original image. The approximated170

image (LL) is produced as a result of applying a low pass filter on the rows fol-

lowed by a low pass filter on the columns. The vertical detail (LH) results from

applying low pass filter on the rows followed by a high pass filter on the columns.

A high pass filter on the rows is followed by a low pass filter on the columns

to produce the horizontal detail. Finally, a high pass filter is applied on the175

rows followed by a high pass filter on the columns producing the diagonal detail

(HH). The results of applying wavelet transform on an original testing image is

shown in Figure 2 in which a blood vessel and aneurysm is present.

For this paper, two different approaches of implementing the Haar wavelet

were tested, using filter banks [28] and using running average/differencing [30].180

Based on the testing results, the averaging and differencing techniques were

chosen for their hardware implementation suitability to avoid memory issues.

Haar wavelet using averaging and differencing:

There are two steps in this approach [30], 1) apply running average and differenc-

ing on all the rows. 2) apply running average and differencing on all the columns.185

Lets consider a one dimensional example. Suppose that Am and Dm denote the

running average and running difference for f = (f1, f2, f3, f4, · · · , fN ) where

m = 1, 2, 3, · · · , N/2. The running average and difference can be computed by

equations (2) and (3) respectively.

Am = (
f2m−1 + f2m

2
)×
√

2 =
f2m−1 + f2m√

2
(2)

Dm = (
f2m−1 − f2m

2
)×
√

2 =
f2m−1 − f2m√

2
(3)

For example, Figures 3 and 4 show the process of applying the averaging190

and differencing on the rows and columns of a 8 × 8 image. Used notations in

these Figures are as follow. f(i, j) is the intensity of the element in ith row and

jth column. Suppose that each Tij is the computed element of type T in the ith

row and jth column of result matrix. e.g. XAij is the approximated coefficient

in ith row and jth column.195
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Figure 2: The results of applying wavelet transform on an original image.

2.3. Hard thresholding

In this step, hard thresholding is applied on the approximated coefficients.

The hard thresholding was chosen as it does not affect the remained values,

unlike the soft thresholding that either kills the values or shrink it based on the

threshold.200

Generally, the hard thresholding either keeps the value XAij which has an

absolute value greater than or equal the threshold (T ), or it sets values lower
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Figure 3: Applying averaging and differencing on the rows.
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Figure 4: Applying averaging and differencing on the columns.
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than the threshold to zero. Equation (4) illustrates this calculation:

(XAij)t =

XAij |XAij | ≥ T

0 |XAij | < T
(4)

The threshold value is chosen based on following facts. The fact is that, since

the intensities are normalized in range [0−255] and the blood segments have the

highest intensity values in angiography, the value of interest in the normalized

images will be [128 − 255]. On the other side, by considering running average

equation, it can be inferred that each approximation coefficient (XA) is related

to the value of interest. For example, equation (5) shows the relations of the

first approximation coefficient (XA11). Therefore, it has been decided to use

the threshold value T as 240 in which 240 ≈ 2 × 128 − ε and this value brings

the appropriate results.

XA11 =
A11 +A21√

2
=

f(1,1)+f(1,2)√
2

+ f(2,1)+f(2,2)√
2√

2

=
f(1, 1) + f(1, 2) + f(2, 1) + f(2, 2)

2
∝ 2× f(., .) (5)

2.4. Haar wavelet reconstruction

In this step, wavelet reconstruction is performed where the result of the205

thresholding step is used with the other detailed sub-bands. For wavelet re-

construction, generally the four decomposed images are used to reconstruct the

original image. First, a low pass filter is applied on columns of the approx-

imated image (LL) then its rows are passed through another low pass filter.

The columns of the vertical detailed image (LH) pass through a high pass fil-210

ter then its rows pass through a low pass filter. A low pass filter is applied

on columns of the horizontal detailed image (HL) then its rows pass through a

high pass filter. Finally, both the rows and the columns of the detailed diagonal

image (HH) pass through a high pass filter. Haar wavelet reconstruction can be

implemented simply by averaging and differencing too.215

Inverse Haar wavelet using averaging and differencing:

suppose that the outputs of this step are X ′i for i = 1, 2, · · · , I. This process is
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similar to the processes in the Haar transform, it starts by the columns then the

rows, where the running average and differencing processes are firstly applied

to each column and then each row respectively [30]. Pseudocode 2 describes the220

method with more details and step by step.

2.5. Creating segmentation masks

In this step, the binary mask of segmented object in each slice is created.

For this reason another threshold, T2 = T/3 is selected and applied on the

reconstructed slices (X ′is) to generate binary segmentation masks (Bis) using225

(6).

Bi(k, j) =

255 |X ′i(k, j)| ≥ T/3

0 |X ′i(k, j)| < T/3
(6)

In addition, since the proposed scheme is based on the thresholding on the

approximate coefficients which are intrinsically related to the sum of intensities

in a neighborhood, it is expected that the border of the objects can be affected

in the reconstructed image.230

In theory, dilation can be implemented either on grayscale reconstructed

image (X ′i) or on binary mask version (Bi). Both of them have been evaluated

and it was found that there is no significant difference. Therefore, it was decided

to dilate the object in the binary mask slices, Bis. The structure element is a

2× 2 square and the mask will be dilated only if the maximum intensity value235

of the original normalized slice (Xi ∈ X) is under the threshold T as shown in

equation (7).

B′i =

 Bi max(Xi) ≥ T

Dilate Bi max(Xi) < T
(7)

2.6. Volume reconstruction and visualization

When all the slices of a subject are segmented, the segmented slices should be

concatenated and construct the volume of vessel. Suppose that B′ ∈ RN×N×I
240

includes all of the B′is for i = 1, 2, · · · , I where B′is are the segmented slices

12
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Figure 5: Design flow of the virtual reality scheme.

(binary masks, the output of step 5). First, the smoothed matrix is produced

by using a 3D smoothing operation on B′. The type and size of the convolution

kernel is Box and 3× 3× 3, respectively. Next the isosurfaces of the smoothed

matrix are generated by using isovalue IV = 200. The isosurfaces are finally245

displayed.

Alternatively, in order to display 3D vessels on a virtual reality headset, the

generated 3D volume of vessel are converted to vertices and faces and saved in

STL file format. The STL files used by unity 3D to display interactively on a

VR headset. The HTC Vive is used to visualize the results of the aneurysm250

segmentation, and the user can interact with the visualization via zooming and

rotation. The diagram of the VR design is shown in Figure 5.

3. Hardware Implementation

The Zedboard is used for the hardware implementation of the proposed seg-

mentation algorithm. The board is equipped with a Zynq SoC, which contains255

two subsystems: programmable logic (PL) and processing systems (PS) [31].

An SD card was used to store DICOM images and the aneurysm segmentation

is performed in Zynq SoC. The segmented results are displayed on the moni-

tor via HDMI interface. Alternatively, the segmentation results are sent to the

PC and the generated 3D volumes of extracted vessels are displayed on a VR260
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headset. Figure 6 illustrates the architecture of the overall hardware system.

3.1. Hardware implementation of segmentation algorithm

The proposed segmentation algorithm is implemented in C++ using Vivado

HLS, and then synthesised and translated to a hardware description language

(HDL). A set of pragma directives are used to optimise the codes for hard-265

ware implementation, where the overall goal of the optimisation is to achieve

the high throughput architecture with minima usage of hardware recourses. As

mentioned before, in order to minimise memory usage of implementing the seg-

mentation algorithm, the averaging and differencing approach is chosen for the

hardware implementation. The following pseudocode 1 and 2 show the entire270

process of the Haar decomposition, hard thresholding and reconstruction.

In order to reduce the dimensions of the input array and to be compatible

with the data bus, the input array is reshaped to one dimension array with size

of r×p = q, where r and l are number of rows and columns of the original input

14



Pseudocode 1: Haar transform and hard thresholding

1 Input: Xi is the input array of an image.

2 Output: Xout is the output array of the processed image.

3 for (row = 0; row <maximum number of rows; row++ ){

4 for (col = 0; col <maximum number of columns; col = col + 2){

5 Xout [row][col] = (Xi[row][col] + Xi[row][col+1]) / 21/2;

6 Xout [row][col + 1] = (Xi[row][col] - Xi[row][col+1]) / 21/2;

7 }

8 }

9 for (col = 0; col <maximum number of columns; col++ ){

10 for ( row = 0; row <maximum number of rows; row = row + 2 ){

11 m = Xout[row][col];

12 n = Xout[row + 1][col];

13 Xout [row][col] = (m + n) / 21/2 ;

14 Xout [row + 1][col] = (m - n) / 21/2;

15 if (row % 2 == 0 && col % 2 == 0 ){

16 if(|Xout[row][col]| <= T)

17 Xout[row][col] = 0;

18 }

19 }

20 }
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Pseudocode 2: Haar inverse transform

1 Input: Xout is the input array of a Haar Transformed image

2 Output: X ′i is the output array of a Haar Inverse Transformed image

3 for (col = 0; col <maximum number of columns; col++ ){

4 for (row = 0; row <maximum number of rows; row = row + 2 ){

5 m = Xout [row][col];

6 n = Xout [row + 1][col];

7 X ′i [row][col] = (m + n) / 21/2;

8 X ′i [row + 1][col] = (m - n) /21/2;

9 }

10 }

11 for (row = 0; row <maximum number of rows; row++ ){

12 for (col = 0; col <maximum number of cols; col = col + 2 ){

13 m = X ′i[row][col];

14 n = X ′i[row][col + 1];

15 X ′i [row][col] = (m + n) / 21/2 ;

16 X ′i [row][col + 1] = (m - n) / 21/2;

17 }

18 }
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array.275

A set of computation optimization pragmas has been used to guide high-

level synthesis (HLS) compiler to fully utilize all the computational resources

provided by the on-chip hardware in order to achieve higher overall performance.

Loop Pipelining: loop pipelining is the key optimization techniques in

HLS to improve the throughput of the loop, where the execution of operations280

from different loop iterations are overlapped in an organized way. The inner

loop will be unrolled where it is possible. The maximum throughput achieved

is limited by resource constraints and data dependency in the loop.

Array Partition: array partition is one of the key optimization techniques

in HLS to improve the bandwidth of memory. Since arrays are implemented285

as memory, and it only has a maximum of two data ports, which limit the

throughput of a read/write (or load/store) within the pipeline. One of the way

to improve the throughput is to split the array into multiple smaller arrays that

utilize multiple memory elements. Therefore, the array xi[q] can be partitioned

into f small arrays, where each array has size of q/f using #pragma HLS290

ARRAY PARTITION cyclic factor = f . The element 0 is assigned to the

first new array, element 1 to the second new array, element 2 is assigned to the

third new array and then element 3 is assigned to the first new array again,

until the f − 1 element is assigned to the f th new array. In other word, these

array can be running in parallel within the pipeline, which could significantly295

improve the pipeline throughput.

The proposed hardware implementation of the aneurysm segmentation accel-

erator uses 32-bit floating point arithmetic, and the accelerator is implemented

with Vivado HLS (v2016.3) [32]. C/RTL simulation is performed before ex-

porting the RTL as a Vivados IP core. The RTL is exported as IP core to300

be synthesized and implemented in Vivado (v2016.3) using a Xilinx Zynq-7000

XC7Z020 all programmable SoC [33]. The aneurysm segmentation accelerator

is connected via an AXI4 interface to the Accelerator Coherency Port (ACP) of

the ARM CPU in the Zynq-7000 SoC device. The solution is then exported as

an IP core connected with AXI4-Stream interface to the ACP on AP SoC PS.305
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The connection is made through a Direct Memory Access (DMA) core in the PL

subsystem. SDSoC (v2016.3) is used to interface the AP SoC PL hardware, the

peripheral, the DMA engine, an AXI timer as well as other data mover logics

[34]. The SDSoC is also used to design the AP SoC PS software to manage the

peripherals and loading the testing data from external SD card.310

3.2. SDSoC platform

An SDSoC platform consists of a Vivado Design Suite hardware project and

software libraries. Figure 7 illustrates the blocks of hardware design. The main

block in this design is the ZYNQ Processing System (processing system7 0)

where there are three main interfaces through which the PS 7 core can access315

the PL side peripherals and vice versa. For this experiment, the interfaces used

for interconnections are AXI GP and AXI HP and the processor also contains

external memory and serial port (UART or USBUART). Moreover, there are

two video related clocks for AXI4Stream based interconnect and IP cores and

the HDMI output interface as well as another separate HDMI output inter-320

face clock to change the different video resolution without having to change the

AXI4-Stream clock. Once the embedded processor design is created, an I2C con-

troller is implemented with the following Xilinx IP core. The latter core allows

the processor to configure the HDMI output hardware peripheral. After that

the ZED HDMI display sub-modules (zed hdmi display) is added that contains325

minimal logic for the 16 bit video data sent to the HDMI output device.

4. Results and Analysis

In order to evaluate the proposed method, 512 × 512, 16-bit slices from six

subjects, totally 451 images have been used.

The Vivado tool is used to complete the placement and routing of the pro-330

posed implementation on aneurysm segmentation. The resources utilization of

the proposed implementations are reported in Table 1, where the non-optimized

implementation contains architectures without using pipeline and array parti-
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Figure 7: The hardware design and included blocks.

tion pragmas. In contrast, the optimized implementation uses both pipeline and

array partition pragmas to reduce the latency of the design.335

As it can be seen from Table 1, the hardware resource utilization of both non-

optimized and optimized implementations is similar. The reason for that is that

in order to reduce the memory usage, only the inner loops of Pseudocode 1 and

2 are unrolled, and pipelined. As result of this, there are no duplicated memory

arrays are generated. Since the input and output arrays both contain large340

elements, they are implemented in the external memory and mapped to AXI

bus addresses, therefore the on-chip architecture can access them via AXI data

stream. In addition, the hardware utilization of both optimized implementations

are also similar, only a slightly increase on the last implementation results, this

is due to the extra the registers and instance are used for array partition.345

Table 2 shows the different implementation results in terms of latency. As

it can be seen from Table 2, the non-optimized implementation needs signifi-

cant more clock cycles to complete the computations. Using pipeline pragmas

in the implementation, the latency of the implementation has be dramatically

reduced 917609 clock cycles, which is 5.6% of the latency in the non-optimized350

implementation. Finally, using both pipeline and array partition pragmas, the

achieved the latency has further reduced to 524391 clock cycles, which further
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Table 1: PL resource utilization of the proposed implementations.

Resources DSP BRAM FF LUT

Non-Optimized

Used 4 0 3439 5362

Available 220 280 106400 53200

Utilization (%) 1 0 3 10

Optimized (Pipeline)

Used 4 0 3568 5554

Available 220 280 106400 53200

Utilization (%) 1 0 3 10

Optimized

(Pipeline &

Array Partition)

Used 4 0 3615 5694

Available 220 280 106400 53200

Utilization (%) 1 0 3 10

Table 2: Performance estimates in terms of latency.

Performance Metrics
Latency

(Clock Cycles)
Timing (ns) FF LUT

Non-Optimized 16257028 8.42 3439 5362

Optimized (Pipeline) 917609 8.42 3568 5554

Optimized

(Pipeline + Array Position)
524391 8.31 3615 5694
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(a) (b)

Figure 8: A comparison between the segmented volumes resulting from MATLAB and Zed-

board. (a) MATLAB 3D volume. (b) Zedboard 3D volume.

improves the latency by 42.9%. In addition, the timings of clock periods are

also slightly improved 1.3%, which means that it can run up to 120.3 MHz.

However, the required hardware resources are not significantly increased as re-355

ported in both Table 1 and Table 2. The processing speed for the hardware

implementation is about 5.2 ms.

4.1. Testing

In Figure 8, the segmentation results from MATLAB and Zedboard are

illustrated and compared. It can be seen that the results of implementing the360

algorithm on the Zedboard is same as the MATLAB on the PC. The runtime

of the algorithm by MATLAB on PC is almost 9 seconds which is significant

compared to mili-seconds of the Zedboad.

4.1.1. Quantitative segmentation performance

Since the brain aneurysm is a very patient specific study and the brain365

aneurysm data are not publicly available, the doctors have carefully chosen 451

images of six subjects of 3D rotational angiography (3DRA) from the Hamad

medical corporation (HMC). The ground-truth for two subjects were determined

by green contours where the region of interest is around aneurysm. The ground-

truth for the other three subjects were STereoLithography (STL) files which370

contain the 3D shapes of brain vessels in standard triangle language. Figure 9

shows an example of the two types available ground-truths, green contour and

STL file respectively.

21



(a) (b)

Figure 9: Ground truth examples. a) A Green contour segmented by surgeon. b) A 3D STL

file showing the vessel in brain.

In order to access the performance of the proposed segmentation we use

four different similarity metrics as follow. Dice similarity coefficient (DSC),375

Jaccard index, false positive rate (FPR) and false negative rate (FNR) [35].

Suppose that AS is the vessel area extracted by automatic segmentation and

GT is the vessel area dedicated by manual segmentation in ground truth. DSC

and Jaccard measure the similarity between AS and GT and range from 0 to

1, where 0 indicates no overlap between the results derived from the two areas380

and 1 corresponds to the best agreement between the two segmented areas. The

Jaccard coefficient measures similarity between finite sample sets, and is defined

as the size of the intersection divided by the size of the union of the sample

sets. Jaccard and dice are similar in concept but Jaccard only considers the

true positives. FPR and FNR measure the ratios of false positive (AS∩!GT )385

and false negative (!AS ∩ GT ) with respect to the ground truth (GT ). The

corresponding definitions are stated in equation (8).
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Table 3: Segmentation performance metrics for 5 different subjects.

Ground truth STL 3D Green Contour

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

# 100 130 110 51 36 24

Jaccard 0.61 0.61 0.70 0.76 0.72 0.77

Dice 0.74 0.75 0.82 0.86 0.84 0.83

FPR 0.05 0.12 0.16 0.31 0.37 0.39

FNR 0.35 0.31 0.18 0.006 0.009 0.004

Jaccard =
AS ∩GT
AS ∪GT

DSC =
2× (AS ∩GT )

AS +GT
(8)

FPR =
AS ∩ !GT

GT

FNR =
!AS ∩ GT

GT

The segmentation performance for 5 subjects are reported in Table 3. The

# in the table is the number of DICOM images for each subject. It can be seen

that the segmentation performance for our proposed simple algorithm which is390

exploited on the SoC is moderate and acceptable. Notice that, the region of

interest for aneurysm detection and finding dangerous ones is the elementary

branches of cerebral vessels (i.e. SAH) which are segmented correctly by our

method. The extracted volumes for two different subjects via proposed seg-

mentation algorithm are shown in Figure 10. One subject has aneurysm and395

another subject is without aneurysm.

4.1.2. Subjective segmentation performance

The segmentation algorithm was tested on the three subjects which have

lowest dice and highest false negative rates. To evaluate the algorithm, sub-

jective evaluation was carried where the resulted 3D volumes were compared400
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(a)
(b)

Figure 10: Extracted 3D volumes of vessels for two subjects via proposed segmentation

method. a) Subject 1 b) Subject 4

with the Ground truth. Six evaluators participated in this process in which

two of them are medicine graduates. They were given the results of the pro-

posed segmentation and asked to assess the results on a scale from 5 (good)

to 1 (bad), Table 4 shows the results of the subjective evaluation. The overall

subjective evaluation was 3.81 out of 5 for this system. This shows that with405

some improvements, better results will definitely be accomplished.

The hard and soft thresholding techniques are tested with the same threshold

value on the same subject. Figure 11 shows a comparison between the two

techniques. As it can be seen in Figure 11, the soft thresholding technique

caused a significant change in the results due to set pixels to zero or changes it410

according to the threshold. Therefore, the soft thresholding techniques would

produce inaccurate results compared to the hard thresholding.

5. Conclusion

In this paper, a system for automatic aneurysm segmentation is developed

and implemented on the Zynq SoC for different subjects with DICOM slices415

of Magngmetic Resonance Angiography. The segmentation algorithm is based

on Haar wavelet and hard thresholding along with some additional steps and
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Table 4: Subjective Evaluation for 3 different subjects.

Evaluation Score. (5 is best)

Subject 1 Subject 2 Subject 3

Evaluator 1 3.5 3.5 4.5

Evaluator 2 3.75 4 4.5

Evaluator 3 3.5 3 4.5

Evaluator 4 3 3 4.5

Evaluator 5 4 3 5

Evaluator 6 3.5 4 3.75

Average 3.54 3.42 4.46

(a) Hard thresholding. (b) Soft thresholding.

Figure 11: Comparison between the result by Hard and Soft Thresholding Techniques for a

region.
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criteria such as normalizing and correcting. The results show the proposed seg-

mentation method and hardware implementation has an acceptable accuracy

on the region of interest for aneurysm detection. The test data are from six420

subjects, each consisting 512×512, 16 bit DICOM slices of 3D rotational an-

giography. Comparison between the evaluator’s ground-truth and automatic

segmentation shows the dice score is above 70%. The mean of subjective scores

which are assessed by the evaluators is 3.8 out of 5. Also, it was shown that, the

proposed implementation is area-efficient and meet the real-time data process-425

ing requirements, where the Zynq SoC implementation is capable to process an

image in an average time of 5.2 ms that is significantly faster than the runtime

on a normal PC. In our next implementation phase, the automated aneurysm

segmentation system on Zynq would be integrated with virtual reality facili-

ties to create an interactive environment for effective treatment planning and430

training purpose.

Acknowledgement

This paper was made possible by National Priorities Research Program

(NPRP) grant No. 5-792-2-328 from the Qatar National Research Fund (a

member of Qatar Foundation). The statements made herein are solely the re-435

sponsibility of the authors. We would also like to thank Mr. R.A.Y. Ayeshk

and Mr. M.A. Hammami from the virtual reality Lab at Qatar University, for

their assistance during the testing phase.

References

[1] R. T. Higashida, What you should know about cerebral aneurysms, Pam-440

phlet. American Heart Association Cardiovascular Council.

[2] T. Mashiko, K. Otani, R. Kawano, T. Konno, N. Kaneko, Y. Ito, E. Watan-

abe, Development of three-dimensional hollow elastic model for cerebral

aneurysm clipping simulation enabling rapid and low cost prototyping,

World neurosurgery 83 (3) (2015) 351–361.445

26



[3] A. Molyneux, I. S. A. T. I. C. Group, et al., International subarachnoid

aneurysm trial (isat) of neurosurgical clipping versus endovascular coiling

in 2143 patients with ruptured intracranial aneurysms: a randomised trial,

The Lancet 360 (9342) (2002) 1267–1274.

[4] S. P. Dakua, J. Abinahed, A. Al-Ansari, A pca-based approach for brain450

aneurysm segmentation, Multidimensional Systems and Signal Processing

(2016) 1–21.

[5] D. Lesage, E. D. Angelini, I. Bloch, G. Funka-Lea, A review of 3d vessel

lumen segmentation techniques: Models, features and extraction schemes,

Medical image analysis 13 (6) (2009) 819–845.455

[6] C. Kirbas, F. Quek, A review of vessel extraction techniques and algo-

rithms, ACM Computing Surveys (CSUR) 36 (2) (2004) 81–121.

[7] R. D. Rudyanto, S. Kerkstra, E. M. Van Rikxoort, C. Fetita, P.-Y. Brillet,

C. Lefevre, W. Xue, X. Zhu, J. Liang, İ. Öksüz, et al., Comparing algo-
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[20] H. Bogunović, J. M. Pozo, M. C. Villa-Uriol, C. B. Majoie, R. van den Berg,

H. A. Gratama van Andel, J. M. Macho, J. Blasco, L. San Román, A. F.

Frangi, Automated segmentation of cerebral vasculature with aneurysms500

28



in 3dra and tof-mra using geodesic active regions: An evaluation study,

Medical physics 38 (1) (2011) 210–222.

[21] A. Firouzian, R. Manniesing, Z. H. Flach, R. Risselada, F. van Kooten,

M. C. Sturkenboom, A. van der Lugt, W. J. Niessen, Intracranial aneurysm

segmentation in 3d ct angiography: Method and quantitative validation505

with and without prior noise filtering, European journal of radiology 79 (2)

(2011) 299–304.

[22] A. Nikravanshalmani, M. Karamimohammdi, J. Dehmeshki, Segmentation

and separation of cerebral aneurysms: A multi-phase approach, in: Image

and Signal Processing and Analysis (ISPA), 2013 8th International Sym-510

posium on, IEEE, 2013, pp. 505–510.

[23] Y. Sen, Y. Qian, A. Avolio, M. Morgan, Development of image segmenta-

tion methods for intracranial aneurysms, Computational and mathematical

methods in medicine 2013.

[24] R. Hemalatha, N. Santhiyakumari, S. Suresh, Implementation of medical515

image segmentation using virtex fpga kit, in: Signal Processing And Com-

munication Engineering Systems (SPACES), 2015 International Conference

on, IEEE, 2015, pp. 358–362.

[25] N. Sudha, N. Santhiyakumari, B. Lay, Segmentation of bowel images and its

implementation using virtex fpga kit, in: Electrical, Computer and Com-520

munication Technologies (ICECCT), 2015 IEEE International Conference

on, IEEE, 2015, pp. 1–5.

[26] P. Dillinger, J. Vogelbruch, J. Leinen, S. Suslov, R. Patzak, H. Winkler,

K. Schwan, Fpga based real-time image segmentation for medical systems

and data processing, in: Real Time Conference, 2005. 14th IEEE-NPSS,525

IEEE, 2005, pp. 5–pp.

[27] X. Zhai, A. A. S. Ali, A. Amira, F. Bensaali, Mlp neural network based gas

classification system on zynq soc, IEEE Access 4 (2016) 8138–8146.

29



[28] M. Vetterli, C. Herley, Wavelets and filter banks: Theory and design, IEEE

transactions on signal processing 40 (9) (1992) 2207–2232.530

[29] D. L. Donoho, J. M. Johnstone, Ideal spatial adaptation by wavelet shrink-

age, biometrika 81 (3) (1994) 425–455.

[30] P. Morton, A. Petersen, Image compression using the haar wavelet trans-

form, College of the Redwoods.

[31] X. Zhai, A. A. S. Ali, A. Amira, F. Bensaali, Ecg encryption and identifica-535

tion based security solution on the zynq soc for connected health systems,

Journal of Parallel and Distributed Computing 106 (2017) 143–152.

[32] Vivado hls user guide, www.xilinx.com, accessed: April, 2017.

[33] Zynq-7000 all programmable soc, www.xilinx.com, accessed: April, 2017.

[34] Sdsoc design guide, www.xilinx.com, accessed: April, 2017.540

[35] A. A. Taha, A. Hanbury, Metrics for evaluating 3d medical image segmen-

tation: analysis, selection, and tool, BMC medical imaging 15 (1) (2015)

29.

30

www.xilinx.com
www.xilinx.com
www.xilinx.com

	Introduction
	Proposed Method
	Intensity normalization
	Haar wavelet decomposition 
	Hard thresholding
	Haar wavelet reconstruction
	Creating segmentation masks
	Volume reconstruction and visualization

	Hardware Implementation
	Hardware implementation of segmentation algorithm
	SDSoC platform

	Results and Analysis
	Testing
	Quantitative segmentation performance
	Subjective segmentation performance


	Conclusion

