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Abstract 

 

Nearest neighbour searching is a fundamental concept for many ligand-based 

virtual screening applications. The system searches for the nearest molecule by 

quantifying their similarity using various molecular representations and 

similarity coefficients. These similarity measures are the key components of the 

system where the variability and the characteristic of the components affect the 

effectiveness of the search. 

The first aim of this thesis was to investigate the effects of 2D fingerprint 

dimensionality on the effectiveness of chemoinformatics applications and the 

contributing factors were analysed. Two nearest neighbour search applications, 

similarity searching and molecular clustering were conducted. Various types of 

coefficients were used to measure the similarity and distances of the chemical 

dataset. It was observed that the effectiveness of the similarity search and 

clustering applications varied depending on the coefficient used to measure the 

degree of similarity or distances. The sparseness of the representations also 

affects the similarity measures. The second aim of the study was to quantify the 

relative importance of the components influencing 2D fingerprint similarity 

searching and this research was carried out using cross-classified modeling. 

Effectiveness values produced by different types of 2D fingerprints and 

similarity coefficients were used to model the more important component. The 

bioactivity of the molecule was the most important factor identified, followed by 

the reference structure. Evaluation between the fingerprint representation and 

the similarity coefficient revealed that the fingerprint had a greater role in 

determining the effectiveness of the similarity searching than the similarity 

coefficient. This research contributes to the knowledge of similarity measures in 

the chemoinformatics domain on the impact of high dimensional space and the 

similarity search components. This contribution provides a practical implication 

on the effectiveness of the similarity search application in particular and ligand-

based virtual screening applications. 
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Chapter 1 Introduction 

1.1 Background 

The discovery of new medications for many diseases such as depression and 

gastrointestinal disorders has increased the health, quality of life and life 

expectancy of patients. All of this was made possible through drug discovery 

processes conducted by various pharmaceutical companies for many decades. 

Drug discovery is a process that aims to identify new drug candidates for a 

disease in pharmaceutical industry. The modern drug discovery pipeline 

consists of seven steps: (1) target identification, (2) target validation, (3) hit and 

lead identification, (4) lead optimisation, (5) pre-clinical testing, (6) clinical 

testing and (7) new drug application (NDA) and food and drug administration 

(FDA) approval (Rao & Srinivas, 2011). 

The first step in this process is the target identification, which identifies and 

understands the role of a potential therapeutic drug target (i.e., a protein 

involved in a particular disease). Next step is to validate the target in order to 

make sure that the properties of the target produces the desired therapeutic 

effect. This is followed by the hit and lead identification, and lead optimisation, 

which involve the target and lead compound interactions. Hit and lead 

identification is a process of evaluating the initial screening hits assessed by 

technology-based approaches like high-throughput screening. The hits are often 

undergoing limited optimisation to identify promising lead compounds. For 

example, the limited optimisation may improve the binding affinities for 

biological target of initial screening hits (Crasto, 2016).  

The lead optimisation involves more extensive techniques such as docking to 

improve the characteristics (i.e., ADMET - structure-based absorption, 

distribution, metabolism, excretion and toxicity) and the efficacy (i.e., bioactivity 

or bioavailability) of the drug. In this process, the quantitative structure-activity 

relationship (QSAR) methods are used to study the features of molecule that 

influence the ADMET characteristics. The docking and scoring computations 

will then be applied on the three-dimensional structures resulted from the 
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QSAR study to produce drug-like lead compounds (Moroy et al., 2012). The 

result of this process is the identification of final compounds that will be 

selected for clinical trials.  

Finally, the NDA provides all information for the FDA, which approves that the 

new drug is safe and effective to be used. The drug discovery process can take 

about twelve to fifteen years and costs the pharmaceutical company about 

US$2,870 million (2013 dollars currency) per compound brought to the market 

(DiMasi et al., 2016). 

The need for screening larger compound libraries to increase the number of 

marketable drugs has encouraged the emergence of high throughput screening 

(HTS). Through HTS process, hundreds of thousands of compounds can be 

screened per drug target per year. The technology was developed in the 1980s 

and the HTS capacity evolved greatly in the 1990s. The evolution includes 

focusing on small compound libraries and expands into improving several 

fundamental technologies such as high density microplates, high performance 

microliter dispensers, imaging and laboratory automation (Carnero, 2006). 

The increase of HTS capacity has allowed thousands of compounds to be tested 

at the same time. This has led to the use of combinatorial chemistry (CC) 

technologies to produce more new compounds in a shorter time. Using this 

technology, a large array of compounds from sets of different types of building 

blocks is repeatedly produced in a systematic way (Terrett et al., 1995). 

Although there are millions of new compounds created, the drug discovery 

process could not be enhanced due to the lack of chemical diversity and drug-

like compounds in the compound libraries. Therefore, various computational 

approaches are needed to process chemical structure in order to create a highly 

diverse and drug-like chemical compound library. One of these approaches, and 

the focus of this thesis, is chemoinformatics. 

1.2 Basis of Chemoinformatics 

Chemoinformatics is known as the application of informatics methods to solve 

chemical problems (Gasteiger, 2006). As defined by Brown (1998, p. 375), 
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chemoinformatics is “the mixing of those information resources to transform data 

into information and information into knowledge for the intended purpose of 

making better decisions faster in the area of drug lead identification and 

optimization”. In simple terms, chemoinformatics can be understood as a 

computational approach and scientific discipline that interface between 

chemistry, computer science and information science to process chemical data 

structure (Vogt & Bajorath, 2012). 

The main focus of chemoinformatics is the manipulation of two-dimensional 

(2D) or three-dimensional (3D) chemical structures for searching, modeling and 

statistics (Willett, 2011a). The implementation of chemoinformatics approaches 

is not limited to research in chemistry and pharmaceutical domains. It has been 

adapted to other domains such as food sciences, agrochemicals and perfumes.  

For example, the approaches have been used to: (1) process and characterise 

the structure-property relationship of chemicals relevant to food chemistry 

(Martinez-Mayorga & Medina-Franco, 2009; (Martinez-Mayorga, Peppard, 

Ramírez-Hernández, Terrazas-Álvarez, & Medina-Franco, 2014), (2) predict the 

toxicity of aquatic pesticides (Casalegno et al., 2006) and (3) predict sensory 

characteristics of chemical structures (Keller et al., 2017).  

These studies contribute to the development of, among others, better food or 

supplements for health productivity, effective fertilizers for agricultural 

productivity and chemical agents for perfumed products. A latest review on 

chemoinformatics applications of QSAR in food and agricultural sciences was 

recently published by Kar et al., (2017). 

The rise of computational technology has improved the ways in which 

chemoinformatics analysis is conducted and can be optimised (Chen, 2006). The 

growth of big data analysis has encouraged chemoinformatics studies to 

venture into more sophisticated methods such as deep learning for analysing 

chemical information (Gawehn et al., 2016; Goh et al., 2017).  
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1.3 Aims of Research 

Molecular similarity is an important concept in chemoinformatics based on the 

“Similar Property Principle” (Johnson & Maggiora, 1990). According to this 

principle, molecules that have similar structures are likely to have similar 

properties. This principle underlies many chemoinformatics applications 

involving searching for the nearest neighbour molecule of a specified query 

molecule such as similarity searching and clustering (Willett et al., 1998).  

The search for nearest neighbour molecules involves two important 

components: (1) the molecular representations or descriptors and (2) the 

similarity or distance coefficients. The process involves a comparison between 

the representations of two molecules using one of many existing coefficients. 

These coefficients measure the degree of similarity of the two molecules, in 

which the standard coefficient for chemoinformatics applications has been the 

Tanimoto coefficient (Willett, 2014). Chapter 2 introduces different similarity 

searching techniques and reviews different molecular representations and 

coefficients that are used in chemoinformatics applications. 

One of the main obstacles of the nearest neighbour search is the “curse of 

dimensionality”, a term coined by Richard Bellman (Bellman, 1961). The 

phenomenon occurs when the performance of nearest neighbour search 

decreases as the dimensionality of the data representation increases (Agrawal 

et al., 1998; Weber et al., 1998). Beyer et al. (1999) reported that, as the 

dimensionality of the data increases, the ratio of the distance of a query point to 

its nearest neighbour and to its furthest neighbour tends to unity when 

measured by arbitrary distance measure. France et al. (2012) suggested that the 

effects of the nearest neighbour searching vary considerably, depending on the 

nature of the similarity coefficient that is used. Chapter 3 reviews issues of 

nearest neighbour search concerning high dimensionality data. It also 

introduces methods for dimensional reduction, including methods applicable to 

chemoinformatics datasets. 
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In chemoinformatics applications, a single molecule structure can be 

represented by multi-dimensional representations or descriptors (Todeschini & 

Consonni, 2000). These dimensions can be much higher than the object 

representations in most applications of pattern recognition and data mining. 

Despite the use of high dimensionality representations, nearest neighbour 

searches in the chemoinformatics domain have been found to be effective. 

Sastry et al. (2010) suggested that the use of larger bits representation is more 

effective than 1024 bits when searching for nearest neighbour using 2D binary 

fingerprints.  

Therefore, a substantial study on the effect of dimensionality on the 

effectiveness of the nearest neighbour search application involving chemical 

datasets is essential to understand the reason why the behaviour seems to 

contradict the effect observed by the curse of dimensionality. To the 

researcher’s knowledge, there has been no study conducted as such, and any 

possible behaviour to the changes of the dimensionality remains unclear.  

Hence, the first aim of this study is to investigate the effect of dimensionality on 

the effectiveness of nearest neighbour search in chemoinformatics applications. 

Chapter 4 describes the methodology of the investigations. The investigations 

were conducted on two different applications and discussed in two different 

chapters: (1) similarity search in Chapter 5 and (2) molecular clustering in 

Chapter 6. These applications can be considered as involving large numbers of 

nearest neighbour searches.  

The specific research objectives for the first aim are as follows: 

 To provide a detailed, step by step evaluation of the effects of changing 

dimensions of 2D fingerprints on the effectiveness of the applications.   

 To analyse the effects of using various types of similarity (or distance) 

coefficients on the effectiveness of the application when changing the 

dimensionality of the 2D fingerprints. 
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 To identify other potential factors contributing to the effects of changing 

the dimensionality of the 2D fingerprints on the effectiveness of the 

applications. 

Next, as mentioned earlier, the search for nearest neighbour molecules involves 

two important components, i.e., the molecular representations and the 

similarity coefficients. Many studies have evaluated the effects of using different 

types of molecular representations or different types of similarity coefficients 

by varying only a single component. Todeschini et al. (2012) compared various 

types of similarity coefficients used for comparing the similarity of 2D 

fingerprints, while Hert et al. (2004) and Riniker and Landrum (2013) evaluated 

different 2D fingerprints used as molecular representations for similarity 

measures. Sastry et al. (2010) on the other hand, compared various 

combinations of parameter settings which include both 2D fingerprints and 

similarity coefficients. The research set out to determine the most generally 

useful parameter settings for the effectiveness of the similarity searching.  

In other domains, researchers have investigated the relative importance of 

different components which contributed the performances of various 

applications (Garner & Raudenbush, 1991; Leckie, 2009; Bell et al., 2016). A 

novel method called cross-classified multilevel modeling has made it possible to 

investigate the relative importance of different sources of influences on a 

response (Goldstein, 1987; 2011). However, in the chemoinformatics domain, 

the relative importance between the similarity search components remains 

inconclusive. Despite their importance, this issue has not yet been investigated. 

The reasons above have motivated the second aim of this study, which is to use 

cross-classified multilevel modeling to model the relative importance of 

similarity measure components. Different from previous comparison studies, 

this study considers both 2D fingerprints and similarity coefficients, and uses a 

novel statistical method in order to model their relative importance in 

determining the effectiveness of similarity-based virtual screening. The findings 

are reported in Chapter 7.  

The specific research objectives for the second aim are as follows: 
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 To demonstrate the use of cross-classified multilevel modeling for the 

analysis of relative importance of various similarity search components.  

 To identify the more important component between the 2D fingerprints 

and similarity coefficients in determining the effectiveness of the 

similarity measures. 

The conclusions that can be drawn from the work conducted in this thesis are 

summarised in Chapter 8, along with suggestions for future research. 

1.4 Organisation of Thesis 

The dissertation is organised as follows:  

Chapter 2 begins by discussing the concept of virtual screening applications in 

chemoinformatics. This involves the key components of molecular similarity 

application that are molecular representation and descriptor, weighting scheme 

and similarity coefficient. It also introduces the basic concept of two other 

chemoinformatics applications, that are clustering and molecular diversity.  

Chapter 3 is concerned with nearest neighbour searching in high 

dimensionality. It discusses issues concerning high dimensionality data and 

methods for dimensional reduction.  

Chapter 4 presents the methodology of the experiments conducted in this 

thesis. This includes the introduction of the chemical datasets (i.e., MDDR, 

WOMBAT and ChEMBL), molecular representations, similarity and distance 

measures, application procedures, evaluation methods and statistical methods. 

Chapter 5 is the first experimental chapter on the investigation of the effect of 

high dimensionality on the effectiveness of the similarity search application. The 

results are analysed and discussed within this chapter. 

Chapter 6 expands the investigation in the previous chapter and looks at the 

effect of high dimensionality on the effectiveness of the clustering application. 

The results are analysed and compared between different clustering methods 

implemented. 
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Chapter 7 introduces cross-classified multilevel modeling and uses this method 

to identify the relative importance of similarity search components in 

determining the effectiveness of a similarity search. 

Finally, Chapter 8 provides the reader with the conclusions of this thesis, its 

limitations and an overview of possible future research directions. 
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Chapter 2 Similarity Searching in 
Chemoinformatics 

2.1 Virtual Screening 

Virtual screening is an in silico technique in chemoinformatics which aims to 

identify and prioritize candidate compounds for in vitro experiments. It uses 

computational methods to search large sets of chemical compounds in order to 

find compounds that are most likely to be bioactive. HTS, on the other hand, 

screens large numbers or sets of chemical compounds in the laboratory 

experiment, which involves a controlled environment and equipment. The 

increasing size of compound databases has led to the implementation of virtual 

screening using high-performance computing, which can involve advanced 

computer processors and parallel programming. This approach is more cost 

effective to drug discovery than the traditional HTS (Heikamp et al., 2013).  

The types and amounts of data that are available determine the virtual 

screening method. First, similarity-searching methods are used when only a 

single active molecule is available. Second, pharmacophore methods are used 

when there are several active molecules with associated structures available. 

Third, machine-learning methods are used when significant numbers of both 

active and inactive molecules are available. Finally, docking methods are used 

when the 3D structure of the biological target is available. Categorised into two 

groups, similarity searching, pharmacophore mapping and machine learning are 

examples of ligand-based virtual screening (Ripphausen et al., 2011), while 

docking is a structure-based virtual screening method (Lyne, 2002).  

Similarity searching identifies compounds in a database that are structurally 

similar to the target structure. The approach implements a quantitative 

comparison between the target structure with each structure in the database to 

produce a ranking of database compounds in decreasing order of similarity to 

the target, which is usually a known active structure. The top of the list are the 

nearest neighbours to the target structure, which exhibit the most structural 

resemblance. Willett (2014) summarised the main components of similarity 
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measures in similarity searching (Willett, 2014). Recent research studies have 

considered the technique of combining different approaches, i.e., data fusion to 

improve the effectiveness of similarity searching. Data fusion can be used to 

combine different similarity measures, e.g. combining different fingerprints, or 

different virtual screening methods. The approach captures different chemical 

information resulting to the highest-ranked hits from the combinations. Hence, 

this optimal search and combination may increase the performance (Cereto-

Massagué et al., 2015a). 

Pharmacophore methods aim to identify the key common features from a set of 

active molecules that bind to an identical target molecule. The common features, 

which represent the essential interactions between the ligand and a specific 

molecular target, were extracted from 3D structures of known active molecules. 

Thus, one can make an assumption that the other molecules which contain the 

similar pattern may also exhibit the same biological activities. The main 

advantage of this method is to provide better understanding on target and 

ligand interactions as well as improving the screening hit rates during in vitro 

experiments (Langer et al., 2004).  

Machine learning also aims to analyse the structural characteristics of molecules 

but for the purpose of classifying the active or inactive compounds. This method 

works by developing and training a model using machine learning methods. It 

requires input of a training set, which consists of a set of molecules that had 

previously been tested and shown to be either active or inactive. These training 

set molecules are then analysed to develop a decision rule that is used to classify 

new molecules (the test set).  Geppert et al. (2010) surveyed data mining 

approaches which are applicable to machine learning in compound 

classification. Their analysis focused on the novel algorithms and methods of 

data mining that are support vector machines, Bayesian classifiers, decision 

trees and inductive logic programming.  

Docking programs identify 3D structures that are complementary to, and are 

predicted to bind to, the 3D protein active site. Docking is performed by the 

search algorithm and the scoring function. The docking algorithm is used to 
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determine an optimal position and conformation of the ligand in the active site. 

Following this, the scoring function evaluates the conformation of the 

positioned ligand in the active site and its interactions. Several studies have 

reviewed in-depth methods and  applications of scoring and docking (Kitchen et 

al., 2004; Ghosh et al., 2006). Cheng et al. (2012) suggested a few practical 

aspects to improve docking programs while (Wójcikowski, Ballester, & 

Siedlecki, 2017) proposed a new machine-learning scoring function that 

improves the performance of virtual screening and the prediction of binding 

affinity. 

Ranking the truly active molecules as high as possible and inactive ones as low 

as possible has become one of the issues in virtual screening. This is because 

virtual screening evaluates large amounts of chemical data, in which the number 

of actives retrieved is important. A study by Scior et al. (2012) mentioned 

several drawbacks of various aspects in virtual screening methods which 

related to this issue. Among the possible solutions, as suggested, are careful 

preparations of database, correct parameter settings and good choice of 

algorithm for implementation. 

As described above, the similarity searching approach is used to rank the active 

molecules in a chemical database. Having introduced what is meant by this 

approach, the chapter will now move on to describe the similarity searching 

approach in detail and discuss its main components in the next section.  

2.2 Molecular Similarity 

The past decades have seen the rapid development of molecular similarity in 

chemical structures database research. Molecular similarity is a concept that 

aims to identify molecules which have the same bioactivity as a bioactive target 

structure. 

Molecular similarity is a concept based on the similar property principle that 

was first presented by Johnson and Maggiora (1990). The principle states 

molecules that are structurally similar are likely to have similar properties. This 

also indicates that the nearest neighbours of a bioactive target structure are also 
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likely to possess that same bioactivity. One of the exceptions to this concept is 

called the activity cliffs (Stumpfe & Bajorath, 2012). In general, an activity cliff is 

a pair of structurally similar compounds having a large difference in potency. It 

happens when a small change in molecular structure causes large changes to its 

activity. However, despite this exception, the impact of activity cliffs provides 

researchers with fundamental information to understand the underlying 

structure-activity relationship (SAR) of the datasets (Cruz-Monteagudo et al., 

2014). 

The significant contribution of the similar property principle to the lead 

generation and optimisation efforts can be the reason why the principle remains 

applicable to the development of molecular similarity applications. The most 

important application of molecular similarity is probably similarity searching as 

introduced in Section 2.1. It was developed as a way of overcoming the 

limitations of substructure searching, i.e., finding all molecules in a database 

that contain a user-defined query substructure (Leach & Gillet, 2007). 

The main component of the similarity searching approach is the measure used 

to quantify the similarity between the target structure and each database 

structure. A measure comprises these components: molecular descriptors, 

weighting scheme and similarity coefficient. Molecular descriptors are used to 

represent characteristics of molecules that are being compared in a computer 

readable format. The weighting schemes, on the other hand, prioritise the 

contributions of different parts of the representation. The similarity coefficient 

is used to quantify the degree of structural resemblance between pairs of 

molecules (Willett, 2014). 

The search starts with calculating the degree of similarity between the target 

structure and each of the molecules in the database. Following this, the database 

is ranked in order of decreasing similarity. As the principle stated, the top 

ranked molecules, which are the nearest neighbour molecules, are considered 

as the most similar to the target structure’s bioactivity. Results of this search, 

which are the top ranked molecules, are therefore selected for the subsequent 

experimental testing (Willett, 2009).  
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Stumpfe and Bajorath (2011) discussed important principles of similarity 

searching and reviewed major categories of searching methods, i.e., molecular 

representation and descriptors of similarity searching (e.g., 2D and 3D). The 

review highlighted several reasons for the development and application of 

similarity searching, e.g., similarity searching can be applied when little or 

nothing is known about compound structure-activity relationship. This view 

was mentioned earlier by Sheridan and Kearsley (2002), who pointed out the 

similar reason for the establishment of similarity methods in the 

pharmaceutical setting. It has also been suggested by Stumpfe and Bajorath 

(2011) that the chemoinformatics community needs to establish calculation 

standards and evaluation criteria that enable a meaningful comparison for 

different similarity search methods. 

The next sections focus on the detail of (a) different types of representation and 

descriptors (b) implementation of weighting schemes (c) various groups of 

similarity coefficients as the key components of the similarity measures that lie 

at the heart of the similarity searching approach.  

2.2.1 Representation and Descriptors 

A molecule’s structure is an important data for chemoinformatics applications, 

e.g., similarity searching. To enable the computer to process such applications, a 

molecule’s structure is represented by a machine-readable format, which can be 

identified by a unique compound identifier. One of the common identifiers is 

referred to as a CAS Registry Number, which is a numeric identifier designated 

by the Chemical Abstract Service (CAS) (Chemical Abstracts Service, 2015). 

Warr (2011) pointed out several limitations for these compound identifications: 

(i) complexity of the identifier for chemical structure processing and (ii) 

meaningless identifier to the chemists. 

The limitations of compound identification motivate the widespread 

implementation of encoding molecular structures into more meaningful and 

unique molecular representation. A few examples of encoded molecular 

structures are line notations (a linear string of alphanumeric symbols) and 
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connection tables (a table form of molecular graph). Simplified Molecular Input 

Line Entry System (SMILES) is one of the well-known line notations because of 

its easy implementation while connection tables are often used by common file 

formats, e.g., Structure-Data File (SDF), for describing molecule structure 

information (Weininger, 1988). 

Molecular descriptors, on the other hand, are numerical values that characterize 

properties of molecules. As stated by Brown (2009), “molecular descriptor are 

descriptions of molecules that aim to capture the salient aspects of molecules for 

application with statistical methods”.  

Molecular descriptors can be classified into 1D (whole molecule), 2D and 3D. 

Todeschini and Consonni (2000) have briefly introduced various types of 

descriptors. For implementation, a wide range of software has been developed 

for generating and calculating molecular descriptors for the use of molecular 

similarity applications (Steinbeck et al., 2003; Yap, 2011; Cao et al., 2013; 

Vasilyev et al., 2014). 

2.2.1.1 1D Descriptors 

1D descriptors define a molecule by a single value. Pipeline Pilot can be used to 

calculate (or model) a molecule’s structure or its chemical properties using 

certain mathematical (or modeling) functions to produce 1D descriptors, i.e., 

structural features or physicochemical properties. There are various examples of 

1D descriptors, i.e., simple integer counts (e.g., number of atoms, bonds and ring 

assemblies) and chemical properties that could be in either integer or real 

values (e.g., logP and molecular weight).  

LogP (octanol-water partition coefficient), for example, is a chemical property 

that quantifies molecular hydrophobicity. It determines the activity and 

transport of drugs, e.g., drug absorption, bioavailability and hydrophobic drug-

receptor interactions.  

Although 1D is the most simple and computationally fast descriptor (Leach & 

Gillet, 2007), it does suffer from a number of flaws. A single such descriptor on 
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its own is an insufficient molecular discriminant (Willett, 2014). Hence, a 

molecule will normally be represented by a vector, each element of which 

represents a single 1D descriptor. The values are calculated and normalised 

using certain mathematical functions or models to ensure that all of the 

attributes in the molecular representation are measured on the same scale (Chu 

et al., 2009). 

However because of the advantage and importance, many researches are still 

using 1D descriptors as part of their QSAR studies (Nicolotti & Carotti, 2006) as 

well as the components in rule-based approaches (Bajorath, 2001). For 

example, four physicochemical parameters, i.e., molecular weight and sum of 

nitrogen, oxygen, and hydrogen-bond acceptors were used by Lipinski et al. 

(2012) in the experiment of solubility and permeability prediction in drug 

discovery.  

2.2.1.2 2D Descriptors 

A molecular graph representation provides a useful way of organizing 

molecular structure for 2D molecular database analysis (Bemis & Murcko, 

1996). It consists of sets of nodes and edges, which represents a molecule’s 

framework. The nodes of the graph correspond to the molecule atoms, while the 

edges correspond to the chemical bonds of the atoms. This information, 

therefore, becomes the basis of many 2D descriptors. Examples of 2D 

descriptors are topological indices and structural fragments as described in this 

section. 

Topological indices or connectivity indices are single-valued 2D descriptors that 

are calculated based on the molecular graph of a chemical structure. Topological 

indices aim to characterize molecules based on size, degree of branching, 

flexibility and overall shape as a whole. A typical way to calculate a topological 

index is by multiplying the values or some function of adjacent vertices such as 

square root, and then summed across all edges (Dearden, 2017). In 1947, 

Wiener reported the first example of topological indices, i.e., the Wiener Index 

(Wiener, 1947). The Wiener Index is defined as the sum over all topological 
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distances in the molecule. It counts the number of bonds between each pair of 

atoms and sums the distances between each pair.  It can be calculated using the 

following Eq. (1), 

 𝑊 =  
1

2
∑  ∑ 𝐷𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

  (1) 

where 𝑁 is the number of  atoms in the molecules, subscripts i and j are the 

atoms and D is the shortest path distance between i and j.  

Another example is the molecular connectivity index, which is one of the well-

known topological indices that was first reported by (Randić, 1975). The 

molecular connectivity index is defined as the sum of bond contributions 

calculated from the vertex degrees (number of graph edges) of each atom in the 

hydrogen suppressed (non-hydrogen atoms) molecular graph.  

As suggested by Kier and Hall, (2001) and Estrada (2002), the molecular 

connectivity index is a good measurement for the molecular surface area (i.e. a 

measure of molecular size) and is rich in molecular structure information. The 

molecular area is useful in measuring the extension of intermolecular 

interactions.  The molecular connectivity index is also valuable in quantifying 

the relationship between structure and physical properties.  

By drawing on the concept of molecular connectivity index, a simple example of 

connectivity index calculation is described by (Livingstone, 2000). First, each 

atom in a molecule is assigned a degree of connectivity, which indicates the 

number of adjacent non-hydrogen atoms (hydrogen-suppressed). Second, the 

bond connectivity, 𝐶𝑘, for each bond in the structure is calculated by taking the 

reciprocal of the square root of the product of the connectivities of the atoms. 

The calculation is given by the following Eq. (2), 
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𝐶𝑘 =

1

√( 𝛿𝑖𝛿𝑗)

 
(2) 

where 𝛿𝑖 and 𝛿𝑗  refer to the degree of connectivity to each atom i and j. Finally, 

the molecular connectivity index, 𝜒, for a molecule is calculated by summation of 

the bond connectivities over all of its bonds given by Eq. (3), 

 𝜒 = ∑ 𝐶𝑘

𝑁

𝑘=1

 (3) 

Extended chi indices were developed to overcome one of the issues with the 

molecular connectivity index, i.e. direct representation of molecular structure, 

which require more than single index of molecular connectivity indices to 

encode structure information (Hall & Kier, 2001). They aim to provide greater 

sensitivity to structure variation by adopting an algorithm similar to the 

molecular connectivity index algorithm. Extended chi indices involve a set of chi 

indices that encode a wide range of structure features for a molecular 

characterization. 

However recently, (Randić, 2014) suggested that single topological indices may 

be suitable for molecular similarity studies. The research outlined a general 

approach for constructing ‘generalized connectivity indices’ that was used as a 

single molecular descriptor for molecular characterisation. The new topological 

descriptor is also appropriate for screening huge combinatorial libraries due to 

its conceptual and computational simplicity. 

The second example of a 2D descriptor is based on structured fragments. For 

structural fragment descriptors, a molecule is characterised by its fragment 

substructures. The occurrence of these fragment substructures is derived from 

a connection table and encoded into a 2D vector of elements called a fingerprint. 

Each 2D fingerprint element describes the presence or absence of molecular 
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features, thus two molecules are considered similar if their fingerprints share 

common values for many of the constituent elements (Willett, 2014). 

2D fingerprints became the most common descriptors used for molecular 

similarity due to their simplicity and efficiency. Many researchers have 

reviewed and studied various aspects of 2D fingerprints in molecular similarity, 

which includes 2D fingerprint comparisons and their application in similarity 

searching (Duan et al., 2010; Willett, 2014; Cereto-Massagué et al., 2015). 

There are many types of 2D fingerprints; the most common fingerprints are 

binary (Hert et al., 2004). Binary fingerprints are represented by a bit string, 

which encodes the present features by ‘1’ and ‘0’ for the absent ones (Figure 

2-1). Binary fingerprints are especially useful, as there are highly efficient 

computer science algorithms that work with binary strings. 

 

 

Figure 2-1 Example of 2D Binary Fingerprints 

 

2D binary fingerprints can be classified into fragment based dictionary 

fingerprints or hashed fingerprints. Fragment based dictionary fingerprints are 

based on pre-defined fragments. Each bit position in the fingerprint 

corresponds to a specific substructure fragment. The fragment dictionary 

contains different predefined molecular fragments (Figure 2-2). 
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Figure 2-2 Example of Fragment Dictionary in Fragment Based Dictionary Fingerprints 

 

Common examples of fragment based dictionary fingerprints are MDL MACCS 

keys (Keys, 2002) and BCI keys (Barnard & Downs, 1997). For example, MDL 

166-key structural key (known as MACCS keys) defines 166 fragments that are 

considered important in medicinal chemistry.  

A number of authors have attempted to implement fragment based dictionary 

fingerprints in their experiment. Durant et al. (2002) have demonstrated that 

reoptimised MDL fingerprints have shown an improvement in the performance 

when applied to the standard 166 and 960-bit keysets in molecular similarity 

application.  

In contrast, hashed fingerprints do not need a fragment dictionary. Each 

fragment is processed using several hash functions that each set one or more 

bits in the fingerprint (Figure 2-3). Based on a specified length of bond 

connection, each fragment in a molecule is analysed for its linear path. These 

paths are hashed to produce the bits in a fingerprint. Fragments and bits in the 

bit string are mapped by many-to-many.  
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Figure 2-3 Example of Hashed Fingerprints 

 

A common example of hashed fingerprints is the Daylight fingerprint (James et 

al., 1995). In the Daylight algorithm, the fingerprint is derived from hashing all 

possible linear paths for a given length of bond connection. The fingerprint is 

then hashed into a fixed length of bit string. Fingerprints may be folded to 

decrease the length and increase the bit density. Typical sizes for Daylight 

fingerprints are 512 or 1024 bits in length depending on the hashing algorithm. 

2.2.1.3 3D Descriptors 

In 3D similarity searching systems, the geometric patterns of functional groups 

in molecules is one of the contemporary methods used to derive 3D descriptors 

(Bajorath, 2001). These patterns are chosen based on their importance to 

specific molecule activities. Many studies have implemented the 3D descriptors 

to find the correlation between similarities of individual compounds and their 

biological activities (Kubinyi, 1997; Nicolotti & Carotti, 2006; Almeida et al., 

2014). The common examples for 3D descriptors are 3D pharmacophore, 3D 

fingerprint and electrostatic interaction fields. 

A pharmacophores is the spatial arrangement of atoms or groups in a small 

molecule that are responsible for its biological activity (Martin, 1992). The key 
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importance of pharmacophore representations is the type of features (e.g., 

hydrophobic) and distance between the features (e.g., distance matrix) (Bender 

& Glen, 2004). A pharmacophore query is searched against 3D conformations of 

database compounds. It preenumerates multiple conformations for each 

compound in the database to identify compounds that have similar chemical 

features to the query. This process requires prior knowledge (hypothesis) of the 

features, which determine the activity. The hypothesis of the features can be 

derived from the pharmacophore elucidation methods, which involve the 

preparation of data set, generation of possible pharmacophores and 

pharmacophore validation. 

3D fingerprints captures pharmacophore arrangements derived from systematic 

conformational analysis of test molecules. In 3D pharmacophore fingerprints, 

each bit position is assigned to an individual pharmacophore pattern of 

predefined feature points and inter-feature distance ranges. The bit is set to ‘1’ if 

the conformational ensemble of a molecule satisfies the features and distance 

ranges of a given pattern and vice versa (Cereto-Massagué et al., 2015b). 

Electrostatic interaction fields, which are derived from 3D grid representations, 

are another example of descriptors in 3D similarity studies. In this approach, 

interaction field energies from each grid point of query and test compound are 

calculated. Based on the result, both interaction fields are then aligned to best 

match interaction energies. Despite being time consuming, this type of 

descriptor provides a global measurement of molecular similarity and continues 

to interest many studies (Cheeseright et al., 2006). 

The 3D descriptors, which are based on molecular shapes, are also widely 

implemented in molecular shape similarity applications (Finn & Morris, 2013).  

One of the common approaches is to use a mathematical function, e.g., Gaussian 

function, to calculate the volume of a molecule as a descriptor (Grant et al., 

1996). 

The 3D descriptors provide different degree of molecular information as 

compared to the 2D descriptors that are based on molecular graphs. For 

example, the intermolecular forces that are important for ligand-receptor 
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binding are more dependent on the 3D structural properties rather than the 

presence of 2D fragments (Brown & Martin, 1997). However, 3D descriptors 

suffer from several important drawbacks, e.g. high in computational cost 

because of its intensive calculations. This also includes finding correct common 

features and ability to align molecules in a 3D similarity searching. 

2.2.1.4 Effect of Descriptor Correlations 

The selection of the descriptors has become one of the important steps in 

chemoinformatics applications. This is because the use of highly correlated 

descriptors can affect the data representation and analysis. Several reviews 

have also suggested to avoid the use of highly correlated descriptors (Xu & 

Hagler, 2002; Maldonado et al., 2006; Leach & Gillet, 2007; Clarke et al., 2008). 

Correlation methods offer an effective way to measure the degree of the linear 

correlation between two variables (descriptors). The sign and the value of the 

correlation coefficient describe the direction and the degree of the correlation. 

Pearson correlation is one of the common measures used to calculate the 

correlation (Field, 2013). The calculation for the Pearson correlation is defined 

in Eq. (4): 

 𝑟 =  
𝑐𝑜𝑣𝑥𝑦

𝜎𝑥𝜎𝑦
 (4) 

where 𝑟 is the correlation coefficient and 𝑐𝑜𝑣𝑥𝑦 is the covariance of the two 

variables divided by the product of their standard deviations. The covariance is 

calculated by multiplying the deviations of one variable by the corresponding 

deviations of a second variable. The averaged sum of combined deviations is 

then divided by the number of observation (Field, 2013). A coefficient of +1 

indicates a perfect positive correlation, while the coefficient of -1 indicates a 

perfect negative correlation. A coefficient of 0 indicates no linear correlation 

between the measured variables. 
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The correlation matrix is used to represent the pairwise correlation when 

multiple variables are being measured (Leach & Gillet, 2007). For each entry in 

the matrix, the calculation for the correlation coefficient is performed using 

another variation of Eq. (4) as defined in Eq. (5): 

 
𝑟 =  

∑ [(𝑥𝑖,𝑘 − �̅�𝑖)(𝑥𝑗,𝑘 − �̅�𝑗)]𝑁
𝑘=1

√∑ (𝑥𝑖,𝑘 − �̅�𝑖)
2

∑ (𝑥𝑗,𝑘 − �̅�𝑗)
2𝑁

𝑘=1
𝑁
𝑘=1

 
(5) 

where 𝑟 is the correlation coefficient between variables 𝑥𝑖  and 𝑥𝑗 .  

(Kümmel et al., 2011) used a correlation matrix to eliminate the highly 

correlated variables in the multivariable data analysis. This method calculates a 

pairwise correlation matrix for all of the variables. Next, it determines a pair of 

variables with the highest correlation coefficient. For these two variables, this 

method calculates the sum of all correlation coefficients to all other variables. 

The variable with the highest sum of correlation coefficients is then eliminated. 

This method was used to reduce the number of variables. Thus, it was repeated 

until the desired number of variables is reached. 

2.2.2 Weighting Scheme 

The weighting scheme is another main component in molecular similarity 

searching, which is important for prioritisation of features in molecular 

similarity (Maggiora et al., 2014). The weighting scheme aims to emphasise the 

differences between the various components of a molecular representation. It 

assigns different degrees of importance to the various components of molecular 

representations. If applied to molecular features, a certain feature in a molecule 

is considered more important than other features if it has higher weight 

assigned to it. 

There have been a few types of weighting scheme discussed in the molecular 

similarity domain. First, a weighting scheme based on the number of times that 

a fragment occurs in an individual molecule. Second, a weighting scheme based 
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on the number of times that a fragment occurs in the entire database. Third, a 

weighting scheme based on the total number of fragments within a molecule 

(Willett et al., 1986). Extensive experiments have been carried out by Arif et al. 

(2009) focusing on weighting of fragments on the basis of their frequencies of 

occurrence in molecules. The work continues with an introduction of inverse 

frequency weighting, which discussed specifically the use of weights that assign 

greatest importance to the substructural fragments that occur least frequently 

in the compound database (Arif et al., 2010). 

The next subsections describe how weighting schemes, are being implemented 

in binary and non-binary fingerprints for molecular similarity purposes. These 

sections require an understanding of the different types of fingerprints.  

2.2.2.1 Binary Fingerprints 

In 2D binary fingerprints, the weighting scheme is applied to encode merely the 

presence and absence (incidences) of topological substructures in a molecule. 

Although binary fingerprints are an extremely simple type of structural 

representation, they contain sufficient information for effective similarity 

searching to be successfully carried out. Ewing et al. (2006) have demonstrated 

the development of a set of new 2D fingerprints for virtual screening, which 

involved weighting in order to assess the range of frequencies encoded for drug-

like molecules. In another study, binary fingerprints have also been used for 

similarity coefficient analysis (Todeschini et al., 2012). 

However, binary fingerprints may not be able to describe the relative degree of 

importance of substructure fragment occurrence in a molecule. This 

disadvantage limits the identification of which fragments are making higher 

contribution to the overall degree of similarity and which are not. The weighted 

fingerprint (count fingerprint) overcomes this limitation. It is introduced and 

described in the next section.  
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2.2.2.2 Weighted Fingerprints 

The weighted fingerprint is another type of 2D fingerprint, which encodes the 

substructural fragments in a molecule based on their occurrence rather than the 

incidence. It aims to differentiate the level of contribution from each 

substructure fragment in a molecule. The weighted fingerprint, which is 

commonly referred to as the count fingerprint, yields an integer or real vector 

rather than a binary fingerprint.  

In the weighted fingerprint, a high-weighted fragment that is common to both 

target structure and database compounds determines the importance of that 

fragment, among others in both molecules. Thus, this fragment provides greater 

contribution to the overall degree of similarity than the low-weighted 

fragments.  

Arif et al. (2009) investigated the effect of weighted fingerprints using 

individual molecule fingerprints. They have concluded that the weighted 

fingerprints are more effective than the non-weighted, conventional binary 

fingerprints in molecular similarity searching. The result suggests the 

standardization of raw occurrence frequencies to maximise the effectiveness. 

They also found that small variations in weighting scheme could potentially 

affect the magnitude of the Tanimoto coefficient due to its defined mathematical 

formulation.  

Arif et al. (2010) have further investigated the inverse frequency weighting, 

which considers the occurrence of fragments within the entire database by 

assigning the greatest weights to those substructural fragments that occur least 

frequently in the screened database. The experiment found that if two 

molecules have in common a fragment that occurs only rarely in the database as 

a whole, then they should be regarded as being more similar than if they have in 

common a fragment that occurs very frequently. 
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2.2.2.3 Standardisation Method  

Standardisation is a mathematical function that is implemented in molecular 

similarity searching as well as in many other domains of data mining (Su et al., 

2009). In molecular similarity, standardisation aims to ensure that all of the 

attributes comprising a molecular representation are measured on the same 

scale. This is to avoid any variable domination in similarity calculation, which 

involves descriptors measured on different scales.  

Standardisation calculates on real-valued or integer-valued data of molecular 

representation such as different types of physicochemical attributes. Examples 

of these attributes include the logP, molecular weight and number of rotatable 

bonds. One of the most common standardisation methods in molecular 

similarity is Z standardisation (Milligan et al., 1988). It computes the mean and 

standard deviation for molecular representation attributes into zero and unity, 

respectively. To get a z-score, subtract the mean from each data value and 

divide by the standard deviation. The new set of data is then comparable for the 

similarity calculation.  

Previous research investigated the effectiveness of standardization in chemical 

clustering and similarity searching, and concluded that the choice of 

standardisation method is not a critical component of procedures for molecular 

clustering and searching. This is because there is no consistent performance 

benefit that is likely to be obtained from the use of any particular 

standardization method (Chu et al., 2009).  

2.2.3 Similarity Coefficient 

The effectiveness of measurement in molecular similarity is highly dependent 

on the third component described in this section, the similarity coefficient. The 

similarity coefficient provides the quantitative measure of the degree of 

structural relatedness between two comparable molecules. The usefulness of 

similarity coefficients has been addressed in various applications such as 

similarity, clustering and molecular diversity (Todeschini et al., 2012; 

Haranczyk et al., 2008; Matter, 1997). 
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Studies focusing on the comparative studies between similarity coefficients 

have been conducted in various methodologies. Early work by Willett et al. 

(1986) compared the effectiveness of six similarity coefficients for 

intermolecular structural similarity. Haranczyk et al. (2008) also reported the 

relative performance of association and correlation coefficients in their 

clustering and compound selection studies. Al Khalifa et al. (2009) continued 

the work by investigating the relative performance of similarity coefficients on 

non-binary data using (dis)similarity-based techniques. Todeschini et al. (2012) 

recently analysed and compared a large number of similarity coefficients for 

binary fingerprint similarity searching. 

The similarity coefficient may be divided into three main categories, which are 

based on the practical uses: (i) association coefficient, if the molecular query 

needs to measure the compound’s degree of association; (ii) correlation 

coefficient, if the molecular query requires a degree of proportionality and 

independence; (iii) distance coefficient, if the molecular query seeks for distance 

between the target compound and itself in the descriptor space (Ellis et al., 

1993; Willett et al., 1998; Holliday et al., 2002). Coefficients for each category 

are described below. 

2.2.3.1 Association Coefficient 

The Association coefficient aims to measure similarity according to the number 

of common features between the two representations. It reflects the association 

or resemblance of two molecules that are being compared.  

There are many types of association coefficient, with the Tanimoto coefficient 

being the most effective due to its simplicity and accuracy in binary similarity 

searching (Willett et al., 1998). The Tanimoto coefficient, also known as the 

Jaccard coefficient, can be used with both binary and weighted variables (Al 

Khalifa et al., 2009). The binary variant of the Tanimoto coefficient is defined by 

Eq. (6): 
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 𝑇𝐶(𝐴, 𝐵) =
𝑐

( 𝑎 +  𝑏 −  𝑐 )
 (6) 

where a is the number of set bits in fingerprint A (target compound), b is the 

number of set bits in fingerprint B (compared compound) and c is the number of 

set bits common to both fingerprints. For binary similarity measurement, the 

output value ranges between 0 to +1, where the highest similarity is indicated 

by the value +1. In a non-binary case (i.e., using non-binary descriptors), the 

Tanimoto coefficient is defined as Eq. (7): 

 𝑇𝐶(𝐴, 𝐵) =
∑ 𝑎𝑖 𝑏𝑖

 ∑  𝑎𝑖
2  + ∑ 𝑏𝑖

2  −  ∑ 𝑎𝑖 𝑏𝑖

 (7) 

where the summation of all elements in the fingerprint is divided by the 

magnitude of fingerprint A added to the magnitude of fingerprint B, minus the 

summation of all elements. For non-binary similarity measurements, the output 

value ranges between −1
3⁄  to +1.  More examples of common association 

coefficients used for binary variables in chemoinformatics are listed in Table 

2-1. 

Willett (2006) has demonstrated the effectiveness of various similarity 

coefficients when applied to binary similarity searching. The research concludes 

that Tanimoto is effective for 2D fingerprint similarity searching. However, 

research by Todeschini et al. (2012) suggest that other coefficients are 

potentially effective for the similarity searching of binary fingerprints.  

The latter outcome is similar to that experimented with non-binary descriptors. 

Likewise, Holliday et al. (2012) also found out that another coefficient, the 

Cosine coefficient, is more robust than the Tanimoto coefficient when applied to 

weighted fingerprint similarity searching. It is reported that the Cosine 

coefficient’s screening abilities are much less affected by the precise nature of 

the weights applied to the fingerprints for both target structure and database 

structures, which has become the limitation of the Tanimoto coefficient. 
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2.2.3.2 Distance Coefficient 

The Distance coefficient is also referred to as the dissimilarity coefficient. It aims 

to measure the difference between the two representations. There are many 

types of distance coefficients, which are based on simple geometric 

interpretation. The Euclidean distance coefficient is one of the examples used in 

many applications including molecular similarity and multivariate statistics 

(Champely et al., 2002). The binary variant of the Euclidean distance coefficient 

is defined as in Eq. (8): 

 𝐸𝐶(𝐴, 𝐵) = √𝑎 + 𝑏 − 2𝑐 (8) 

where a is the number of set bits in fingerprint A (target compound), b is the 

number of set bits in fingerprint B (compared compound) and c is the number of 

set bits common to both fingerprints. The output value ranges between 0 to N, 

where N is the total bit length. The minimum value of 0 indicating that two 

compounds are identical, and the maximum value of N indicating the most 

dissimilarity. In a non-binary case (i.e., using non-binary descriptors), the 

Euclidean distance coefficient is defined by Eq. (9): 

 𝐸𝐶(𝐴, 𝐵) = [∑ |𝑥𝑖 − 𝑦
𝑖
|

2
𝑛

𝑖=1

]

1
2⁄

 (9) 

where 𝑎𝑖 is the value for each fragment of fingerprint A (target compound) and 

𝑏𝑖 is the value for each fragment of fingerprint B (compared compound). For 

non-binary similarity measurements, the output value ranges between 0 to ∞, 

where the minimum of 0 indicates that two compounds are identical. More 

examples of common distance coefficients used for binary variables in 

chemoinformatics are listed in Table 2-1. 

Distance coefficients are used to measure the distance between structures in a 

molecular space. Since it is difficult to visualise the geometry of a space of M 

dimensions when M is more than 3, the validity of geometric distances between 
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objects in a hyperspace of M dimensions are said to be preserved if the 

coefficient that is used has the property of a metric. If a distance coefficient 

fulfils a few properties it can be described as a metric (Willett et al., 1998). The 

properties are: (i) distance values must be zero or positive, and the distance 

from an object to itself must be zero; (ii) distance values must be symmetric; 

(iii) distance values must obey the triangular inequality and (iv) distance 

between non-identical objects must be greater than zero. 

Interestingly, some distance coefficients are complementary to an association 

coefficient. Based on the coefficient value, subtraction from unity can be 

performed to convert between association coefficients to distance coefficients. 

An example of a coefficient complementary to the Tanimoto coefficient is the 

Soergel distance coefficient. In the case of bit vectors, the Soergel distance 

coefficient is one minus the Tanimoto coefficient (Cheng et al., 1996).  

2.2.3.3 Correlation Coefficient 

The Correlation coefficient aims to identify the correlation between the sets of 

values characterising each of a pair of molecules. It calculates the degree of 

correlation in terms of the proportionality and independence between the sets 

of values used to describe the pair of compounds. 

There are many types of correlation coefficient; the Pearson correlation 

coefficient is probably the least biased for dissimilarity analysis (Maldonado et 

al., 2006). The binary variant of the Pearson correlation coefficient is defined by 

Eq. (10): 

 𝑃𝐶(𝐴, 𝐵) =
𝑛𝑐 − 𝑎𝑏

√𝑛𝑎𝑏(𝑛 − 𝑏)(𝑛 − 𝑎)
 (10) 

where a  is the number of set bits in fingerprint A (target compound), b is the 

number of set bits in fingerprint B (compared compound) and n is the total bit 

length. The values for correlation coefficient range between -1 to +1. Results of 

the coefficient calculation determine (i) -1, anti-correlated; (ii) 0, no correlation; 
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or (iii) +1, perfectly correlated, between the database compound and the target 

structure. Like the other coefficients, the value of attributes may also rescale 

into the range of 0 to 1. More examples of common correlation coefficients used 

for binary variables in chemoinformatics are listed in Table 2-1. 

. 
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Table 2-1 Common Binary Similarity Coefficient (Holliday et al., 2003; Leach & Gillet, 2007) 

Type Name Equation Value range 

Association 
Coefficient 

Jaccard/ Tanimoto 
𝑐

𝑎 + 𝑏 − 𝑐
 0 to +1 

Cosine 
𝑐

√𝑎𝑏
 0 to +1 

Dice 
2𝑐

𝑎 + 𝑏
 0 to +1 

Russell/ Rao 
𝑐

𝑛
 0 to 1 

Forbes 
𝑐𝑛

𝑎𝑏
 0 to ∞ 

Simpson 
𝑐

𝑚𝑖𝑛(𝑎, 𝑏)
 0 to 1 

Distance 
Coefficient 

Euclidean √𝑎 + 𝑏 − 2𝑐 n to 0 

Soergel 
𝑎 + 𝑏 − 2𝑐

𝑎 + 𝑏 − 𝑐
 1 to 0 

Hamming/ Manhattan/ 

City-Block 
𝑎 + 𝑏 − 2𝑐 n to 0 

Correlation 
Coefficient 

Pearson 
𝑛𝑐 − 𝑎𝑏

√𝑛𝑎𝑏(𝑛 − 𝑏)(𝑛 − 𝑎)
 -1 to 1 

Yule 
𝑛𝑐 − 𝑎𝑏

𝑐𝑑 + (𝑎 − 𝑐)(𝑏 − 𝑐)
 -1 to 1 

Dennis 
𝑛𝑐 − 𝑎𝑏

√𝑛𝑎𝑏
 0 to ∞ 

* The definitions apply to the combination of bit-string of length n where a is the number of set bits in A 
(target string), b is the number of set bits in B (compared string), c is the number of set bits common to 
both strings and d is the number of set bits in neither string. 
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2.3 Similarity Searching Application 

Two other important applications that are developed from the molecular 

similarity approach and widely implemented in the chemoinformatics domain, 

are (i) clustering and (ii) molecular diversity. Both applications are described in 

the next section. 

2.3.1 Clustering 

Clustering provides a simple and effective overview of the range of structural 

types in a molecular database. It helps to save cost and rationalise the basis for 

molecular biological testing (Willett, 2011). A representative molecule of a 

cluster is selected for the biological testing. If the representative proves to be 

bioactive, then the other molecules in the same cluster will be tested. But if the 

representative is not bioactive, then the other molecules in the same cluster will 

be disregarded from the biological testing.  

In chemoinformatics, clustering is used as a tool for molecular database 

analysis. It aims to identify clusters of molecules that exhibit strong intra-cluster 

similarities as well as strong inter-cluster dissimilarities (Willett, 2014). The 

review by Downs and Barnard offers a comprehensive introduction to 

clustering methods in the chemoinformatics context (Downs & Barnard, 2002). 

Many comparative studies have been conducted on the performance of different 

clustering methods when applied to chemoinformatics datasets, with the first 

undertaken by Willett (1987). Clustering is also widely implemented as a 

multivariate statistical analysis tool in other domains (Di Giuseppe et al., 2014).  

For each compound in the dataset, the clustering process for compound 

selection includes: (i) generation of descriptors, (ii) calculation of similarity or 

distance, (iii) compound clustering using a cluster algorithm and (iv) selection 

of one compound from each cluster as a representative of the subset (Leach & 

Gillet, 2007). There are various methods available for molecular clustering, 

which groups compounds by means of distances in the descriptor or fingerprint 
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space. The methods can be classified into (i) hierarchical clustering or (ii) non-

hierarchical clustering methods.  

In the hierarchical clustering methods, each molecule (or cluster of molecules) 

merges with other similar molecules resulting in a cluster of two molecules or 

clusters of molecules. There are two types of this clustering, which are 

agglomerative (bottom-up) and divisive (top-down). Ward’s method is one of the 

best-known hierarchical agglomerative clustering methods (Bajorath, 2001). 

Although it is widely implemented in chemical database clustering, Ward’s 

method consumes more computational resources as compared to the non-

hierarchical clustering methods described below.   

The non-hierarchical clustering method is another approach, K-means method is 

one of the examples for a non-hierarchical clustering method. In the K-means 

clustering algorithm, the number of clusters is denoted by the value of ‘k’. First, 

the 'k' points are selected at random. The remaining molecules are assigned to 

the nearest ‘k’ point. This will give the initial sets of ‘k’ clusters. Then, the 

method calculates the centroid for each cluster. Each molecule is reassigned to 

the nearest centroid. The centroids are then recalculated for relocation and the 

procedure repeated until a cluster condition is satisfied (Leach & Gillet, 2007). 

The advantage of this method is the ability to process large databases with low 

computational demand. 

Recent reviews from MacCuish and MacCuish (2014) suggested a few potential 

research areas for molecular clustering, which include bi-clustering for feature 

selection and polypharmacology as well as determining SAR clusters. The bi-

clustering algorithm is commonly used in gene expression and bioinformatics 

applications. It uses a dataset to generate sets of: (i) samples and (ii) features. 

Bi-clustering provides better data representation and allows the molecular 

similarity based on subset of attributes. 

2.3.2 Molecular Diversity 

Molecular diversity is a technique used to maximize the diversity of the 

molecules for biological testing. This technique selects the diverse compounds 
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by calculating the (dis)similarities between pairs of molecules in the dataset. A 

diverse subset of molecules in a dataset is selected by considering their inter-

molecular structural similarities (Willett, 2005). 

The cluster-based selection method is a typical approach for selecting adverse 

subset together with a few others, which are: (i) partition-based selection, (ii) 

dissimilarity-based selection and (iii) optimisation-based selection (Maldonado 

et al., 2006).  

The partition-based selection method matches and assigns each molecule into a 

partition that was created based on a defined set of molecular properties, in 

which a compound representative is selected from each partition. This method 

can be used to find the difference between databases, but is limited to low 

dimensional datasets. 

The dissimilarity-based selection method chooses the most dissimilar molecule 

from the earlier molecule selected. This approach results in a subset that 

contains most diverse molecules. The optimisation-based selection method, on 

the other hand, predefines the diversity measurement based on optimisation 

procedure. The key importance of the optimisation procedure relies on a 

diversity function, in which the MaxMin maximum-dissimilarity algorithm was 

identified by Snarey et al. (1997), as the most effective algorithm based on its 

operation and ability to process very large datasets. 

2.4 Evaluation Measurement 

An important criterion of any similarity searching application is the ability to 

retrieve a significantly higher number of active compounds than if selected at 

random. The measurement of this criterion can be evaluated using various 

methods that are available, e.g., Enrichment Factor (EF), Receiver Operator 

Characteristic (ROC), Robust Initial Enhancement (RIE) and the Boltzmann-

Enhanced Discrimination of ROC (BEDROC). 

The enrichment factor (EF) is one of the common evaluation methods used in 

virtual screening application because of its simple calculation and 
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straightforward interpretation (Kirchmair et al., 2009). It measures the active 

compounds retrieved compared to active compounds from random selection. 

The calculation of the EF is defined in Eq. (11): 

 𝐸𝐹 =
𝐴𝑅

𝑅
 (11) 

where AR is the number of active compounds retrieved, and R is the number of 

actives expected based on random selection, for a given cut off value. The typical 

cut off values for this method are 1% and 5% (Geppert et al., 2010). 

The receiver operator characteristic (ROC) is a widely used method for 

evaluation in machine learning applications (Witten & Frank, 2000). It 

generates a detection rate between hit rate and false rate by plotting the 

percentage of the total number of true positives as the vertical axis (i.e., active 

compounds retrieved) against the percentage of total number of false positives 

as the horizontal axis (i.e., inactive compounds retrieved) (Witten & Frank, 

2000). The calculation for the percentage of true positives is defined by Eq. (12): 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 × 100% (12) 

where TP is the number of true positives and FN is the number of false negatives 

(i.e., active compounds that are not retrieved). The calculation for the 

percentage of false positives is defined by Eq. (13): 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)
 × 100% (13) 

where FP is the number of false positives and TN is the number of true negatives 

(i.e., inactive compounds that are not retrieved).  

The robust initial enhancement (RIE) is another evaluation method that was 

developed to discriminate 'early recognition' in the correct order, i.e., rank 
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actives early in an ordered list (Sheridan et al., 2001). This method uses a 

continuously decreasing exponential weight as a function of rank that places 

heavier weight on early ranked actives. The calculation of the RIE is defined in 

Eq. (14): 

 
𝑅𝐼𝐸 =

1
𝑛 ∑

𝑖=1𝑒−𝛼𝑥𝑖
𝑛

1
𝑁 [

1 − 𝑒−𝛼

𝑒
𝛼
𝑁 − 1

]

 
(14) 

where 𝑥𝑖 =
𝑟𝑖

𝑁
  is the relative rank of the 𝑖th active and 𝛼 is a tuning parameter 

(Zhao et al., 2009). 

However, this method is dependent on the exponential weight and ratio of 

actives to inactives (Riniker & Landrum, 2013). Thus, the Boltzmann-enhanced 

discrimination of ROC (BEDROC) method of evaluation is derived to avoid the 

dependency on the ratio of actives to inactives by forcing the RIE to be bounded 

by 0 and 1 (Truchon & Bayly, 2007). The calculation of the BEDROC is defined 

by Eq. (15): 

 𝐵𝐸𝐷𝑅𝑂𝐶 = 𝑅𝐼𝐸 × 

1
𝑁 sinh(𝛼

2⁄ )

cosh(𝛼
2⁄ ) − cosh (𝛼

2⁄ − 𝛼
𝑛
𝑁)

+  
1

1 − 𝑒𝛼(
𝑁−𝑛

𝑁
)
 (15) 

The focus of this research evaluation is to identify the number of actives 

retrieved from the similarity searching application rather than identifying the 

ranking order of the actives retrieved. Thus, the enrichment factor was chosen 

to evaluate the effectiveness of the proposed research method in this thesis’s 

subsequent chapters. 

2.5 Conclusion 

This chapter has introduced the key components, methods, applications and 

evaluation measurements for molecular similarity in virtual screening. It has 
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shown that molecular representation and descriptor, weighting scheme and 

similarity coefficients are the main components of any similarity searching 

system. The literature showed that the effectiveness of a similarity search relies 

on the components, which many reported as the similarity coefficients. This can 

be seen from previous comparative studies mentioned in Section 2.2.3. Taken 

together, these key components are implemented as a basis to any similarity 

search applications. 
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Chapter 3 Nearest Neighbour Searching in High 
Dimensionality 

3.1 Introduction 

The main task of an information retrieval application is to use a dataset to 

search for relevant information. The objects in the dataset are usually 

represented by a large number of variables, i.e., high dimensionality in the 

variable space. Nearest neighbour searching is one of the applications that 

involves searching for data in high dimensional datasets (Clarke et al., 2008; 

Willett et al., 1998) . However, the effects of performance in high dimensional 

datasets have become an issue for many years.  

This chapter intends to describe the concepts and issues of nearest neighbour 

searching in high dimensionality datasets. These include the possible methods 

and solutions that can be applied in chemoinformatics applications. The overall 

structure of this chapter takes the form of three sections. It starts with the 

introduction to issues in high dimensionality datasets, followed by the review of 

previous research on the effectiveness of nearest neighbour search in high 

dimensionality. The final section introduces and discusses several approaches 

for nearest neighbour search in high dimensionality. This chapter also provides 

important insights for the methodology of this research investigation.  

3.2 Issues with High Dimensionality Data 

Dimensionality refers to the number of variables used to characterise the 

objects in a dataset (Leach et al., 2007). High dimensionality involves the use of 

a large number of variables to represent a dataset. Chemoinformatics datasets 

are also known for their representation using high dimensionality descriptors 

(Todeschini & Consonni, 2000). These descriptors describe the characteristics 

of a molecular compound in many aspects as discussed in Chapter 2. 

Despite the ability to describe data in various ways, there are several issues 

inherent in high dimensionality analysis. One is the “curse of dimensionality”, 

introduced in the 1960s (Bellman, 1961). The curse of dimensionality is a 
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phenomenon that arose during the analysis of data in high dimensional space. In 

this phenomenon, the degree of compactness of a dataset becomes sparser as 

the dimensionality of the dataset increases.  

The phenomenon is often interpreted to cause the decrease in the performance 

of high dimensionality applications. Figure 3-1 illustrates an example of a 

variation of performance level for an application using n dimensional features. 

The performance increases up to the dimension of m. The performance starts 

decreasing with each continuous increment of dimension to n. Here, the optimal 

performance of the application is produced when the dimension of features is 

equal to m. 

 

 

Figure 3-1 Effect of the Curse of Dimensionality Phenomenon 

 

Clarke et al. (2008) discuss several properties of high dimensional data space in 

the context of gene data. Among the properties are: (i) the performance of 

several statistical learning techniques degrades as the dimensionality increases 

and (ii) the scalability of distance measures in Euclidean space is generally poor 

when the dimensionality is increased. 

The effect of dimensionality on the nearest neighbour search was investigated 

by Beyer et al. (1999). The study proved that as the dimensionality increases, 
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the difference of the distances between the nearest and the furthest neighbours 

to the query object becomes insignificant, while the variance of the distance 

distributions converges to zero. The experimental results showed that the 

nearest neighbour search becomes meaningless with as few as 10 to 20 

dimensions when tested on a synthetic dataset of one million data points. 

The importance of determining the nearest neighbour is illustrated in the 

following figures. In Figure 3-2, the nearest neighbour point to the query point 

can be identified more clearly compared to the scenario in Figure 3-3. Although 

the nearest neighbour point in Figure 3-3 is well-identified based on the 

location of the circle, the difference between the distance of the nearest 

neighbour and the distances of the remaining points in the dataset to the query 

point is so small. Hence, this scenario affects the confidence level when 

determining the nearest neighbour of a query point. 

 

 

Figure 3-2 Query point and its nearest neighbour (from Beyer et al. 1999) 
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Figure 3-3 Another query point and its nearest neighbour (from Beyer et al. 1999) 

 

The sparse sampling in high dimensions also creates the “empty space 

phenomenon”, that is, the density of data in a compartment of space decreases 

during a partition dimension (Rupp et al., 2009). The partition dimension 

divides each dimension into two compartments. In this process, the number of 

compartments increases exponentially as the dimensionality increases. It is 

important that each compartment contain at least one data point. Thus, a 

calculation of the maximum covered dimension can be used to estimate the 

maximum number of dimensions in a dataset. This is to ensure that each 

compartment has a minimum of one data point. The calculation can be defined 

by Eq. (16): 

 𝑑𝑚𝑎𝑥 =  [𝑙𝑜𝑔2(𝑛)] (16) 

where d is the dimensionality of the compound descriptor and n is the size of 

dataset. Rupp et al. (2009) uses an example of a common molecule dataset, 

which contains 108 = 100,000,000 molecules. The above equation is used for the 

calculation. The maximum number of dimensions is calculated to be 26 

dimensions. 

The above calculation is a general estimation that does not consider the 

distribution of the dataset. However, the estimation of a maximum number of 
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dimensions for the dataset that has an independent and uniform distribution of 

data can be measured differently. It is defined as the probability that at least one 

compartment is shared by two or more molecules. The probability can be 

calculated by Eq. (17): 

 𝑃(𝑑) =  1 −  (
𝑚
𝑛

)
𝑛!

𝑚𝑛
 (17) 

where 𝑑 is the dimensionality of the compound descriptor, 𝑛 is the size of 

dataset and 𝑚 =  2𝑑 . 

Regardless of various problems in high dimensionality, the increased size of 

data and improvements in methods and software have generated many 

interesting high dimensionality studies in a number of domains (Mikolajczyk et 

al., 2005; Palmer et al., 2013; (Audain, Sanchez, Vizcaíno, & Perez-Riverol, 

2014). In particular, a study by Godden and Bajorath (2006) supports the 

success of virtual screening methods in extremely high dimensionality chemical 

representations. The study investigated molecular similarity using a simple 

distance approach. The experiment selects a centre of a group of compounds 

with similar activity in high dimensional space. Euclidean distances were 

calculated between each compound in the dataset to the centre. This produces a 

distance-based ranking, indicating the molecular similarity ranking.  A set of 

123 descriptors was used in this experiment containing 1D, 2D and 3D 

descriptors. These descriptors were generated from the compounds in the 

Molecular Drug Data Report (MDDR) dataset. The result showed that this 

method successfully ranked compounds according to the biological activity in 

high dimensional space. 

3.3 Effectiveness of Nearest Neighbour Search in High 
Dimensionality Data 

A nearest neighbour search in high dimensional data aims to find the closest 

match to the query object in multivariable datasets. The curse of dimensionality 

affects nearest neighbour search in many applications. When dimensionality 
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increases, the nearest neighbour search tends to be meaningless when, among 

others, the data space is sparse, i.e., scattered (Weber et al., 1998; Hinneburg et 

al., 2000). As a result, the difference between the distances of nearest and 

farthest points to the query object in high dimensional space approximates to 

zero (Beyer et al., 1999). This section reviews previous studies related to the 

effectiveness of nearest neighbour search in high dimensional datasets. It 

identifies existing approaches and effectiveness criteria, which are implemented 

in the search.  

3.3.1 Distance Measure Approach 

Aggarwal et al. (2001) analysed the general behaviour and effects of using 

various distance metrics on the nearest neighbour searching in high 

dimensional data mining datasets. The investigation was conducted using 

different Lk distance metrics: fraction (k < 1), Manhattan (k = 1) and Euclidean 

(k = 2) on a uniformly distributed dataset. The effectiveness criterion measured 

for this experiment is the ratio of distance between the nearest and farthest 

neighbours. The higher ratio indicates higher effectiveness of the nearest 

neighbour search. The results of the above study showed that the fraction 

distance metric provides the highest effectiveness. This was followed by the 

Manhattan and Euclidean distance metrics.  

In a more recent study, France et al. (2012) further investigated the 

effectiveness of nearest neighbour recovery on clustering of high dimensional 

document datasets. The study was conducted using the Euclidean and 

Manhattan distance functions. Additional metrics such as cosine and correlation 

distance metrics were also used as similarity measures. The effectiveness 

criterion measured for this experiment is the number of nearest neighbours 

found. 

Similar to Aggarwal et al. (2001), the results showed that the Manhattan 

distance metric resulted in the highest effectiveness of nearest neighbour 

search. A comparison was also made between the correlation and cosine 

metrics. It was found that the correlation metric produced better results than 
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the cosine metric on the nearest neighbour search. The above study also 

recommended data standardisation to enhance the effectiveness of 

neighbourhood classification. 

3.3.2 Approximate Nearest Neighbour Approach 

Another approach to the nearest neighbour search in high dimensionality 

datasets is based on approximate nearest neighbour. This approach may return 

near optimal nearest neighbour but is more efficient than linear search in high 

dimensionality (Muja & Lowe, 2009).  

Indyk and Motwani (1998) introduced an approximate nearest neighbour 

search based on a hashing technique called the locality-sensitive hashing (LSH) 

method. This is followed by an improved LSH method on the execution time by 

Gionis et al. (1999). This approach uses a hash function in order to identify the 

nearest object to the query objects. The objects in a dataset are hashed into hash 

values and mapped into hash tables. The closest object to the query is identified 

based on the probability of their collision in the table entry, i.e., bucket. The 

experiment conducted by Gionis et al. (1999) on an image dataset showed that 

the method performed well even with more than 50 dimensions.  

A series of investigations have been conducted by Muja and Lowe (2009; 2014) 

on several tree-based algorithms for approximate nearest neighbour search in 

high dimensionality. These include multiple randomized kd-tree and hierarchical 

k-means tree algorithms, which are different based on the way that the search 

region is constructed. Multiple randomized kd-tree splits data on the dimension 

randomly from the first D dimensions, which contains data with the greatest 

variance. Hierarchical k-means tree splits the objects recursively using k-means 

clustering. The nearest neighbour searches are then performed within the 

regions that have been constructed.  

The experiments conducted on real-world image datasets by Muja and Lowe 

(2009; 2014) were evaluated based on: (1) the precision of the search, i.e., the 

percentage of exact nearest neighbours returned by the approximate method 

and (2) the performance, i.e., the search time over linear search time. The 
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performances and precisions (i.e., 81% and 85%) of the nearest neighbour 

searches have been found to increase for as high as 4,096 dimensions. 

The above studies highlight existing approaches, i.e., distance measurements 

and approximation nearest neighbour approaches. They have been used to 

investigate the effectiveness of different nearest neighbour searches in high 

dimensionality datasets of different domains. They also indicate a few 

effectiveness criteria used to measure the effectiveness of the nearest neighbour 

search. The following section introduces an approach, which involves the 

dimensional reduction of high dimensionality datasets. 

3.4 Dimensionality Reduction Approach 

The issues of high dimensional data decrease the performance of any data 

analysis, e.g., the nearest neighbour search. One of the solutions reviewed by 

Clarke et al. (2008) is to reduce the original set of variables into a new set of 

uncorrelated variables using dimensional reduction methods. The purpose of 

these methods is to reduce the high dimensional variables into a lower number 

of dimensional variables. These contain the most meaningful information to 

describe the pattern of the datasets and for better data interpretation (Howe et 

al., 2007).  

Dimensional reduction methods have been widely implemented in many areas, 

including image and text analysis (Bingham et al., 2001). Fodor (2002) reviewed 

the state-of-the-art for dimensional reduction in statistics, signal processing and 

machine learning areas. There are two main categories of dimensional 

reduction methods: (i) feature selection methods and (ii) projective methods.  

3.4.1 Feature Selection Method 

The feature selection method is an approach that reduces the feature 

dimensionality. These new, reduced features preserve the meanings of the 

features. It selects the most relevant features or subset of features from original 

high dimensional features. Advantages of this approach include (i) facilitating 

data visualization and understanding, and (ii) defying the curse of 
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dimensionality to improve prediction performance. Guyon and Elisseeff (2003) 

discussed several methods for feature selection. These include the variable 

ranking and variable subset selection.  

3.4.1.1 Variable Ranking Method 

The variable ranking method implements a ranking criterion. It measures the 

goodness of linear fit of individual features and then results in a ranking of 

features. An example of the variable ranking criterion is the coefficient of 

determination, 𝑅2, which indicates the fraction of variance explained by 

individual features. One of the advantages of this method is that it is 

computationally efficient as it only requires computation and the sorting of 

ranking scores. 

3.4.1.2 Variable Subset Selection Method 

The variable subset selection method includes a “wrapper” methodology. This 

uses the prediction performance of a given learning machine to assess the 

relative usefulness of subsets of variables. This methodology may include the 

following steps: 

Step 1 : Select a subset of features; 

Step 2 : Evaluate the performance for the selected subset using an 

objective function; 

Step 3 : Repeat Steps 1 & 2 until predefined termination condition is met; 

Step 4 : Return the subset that yields the best performance.  

One of the limitations of this method is that it is intensive in computation. 

Several strategies have been implemented to overcome this limitation. One 

example is a backward elimination approach. In 2013, Vogt and Bajorath (2013) 

implemented this strategy for the variable subset selection in fingerprint 

similarity searching. It begins by selecting all features and then evaluates 

performance of the application. The process is repeated after each feature is 
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being individually removed. This implementation produces a subset of reduced 

fingerprint representation, which is able to increase the performance of the 

similarity searching. 

3.4.2 Projective Method 

The projective method, on the other hand, reduces the dimensionality by 

combining features of all variables. There are two types of combinations: a 

linear or non-linear combination. Linear combination methods use the least-

square regression line in their computation. The linear fit minimises the sum of 

squares of the measured data. Non-linear combination methods, on the other 

hand, use the properties of data. It reproduces the distances of high dimension 

variables in the low dimension variables (Maaten et al., 2009). Linear 

combination methods are more attractive compared to non-linear combination 

methods. This is because they are simple in computation and analytically 

tractable.  

3.4.2.1 Linear Dimensional Reduction Approach 

A common method of linear dimensional reduction is the Principal Component 

Analysis (PCA). It is the most widely used linear dimensional reduction method 

and is considered the most effective in its group because of its ability to reduce 

mean-square error, i.e., the difference of squared error loss (Fodor, 2002).  

PCA aims to seek a projection that preserves as much of the data information as 

possible. It measures the multidimensional data and reduces it to lower 

dimensions. The aim is to remove the correlations between descriptors (Bayada 

et al., 1999). This method also reveals the correlations and relationships 

between data, thus providing easier interpretations (Akella & DeCaprio, 2010). 

PCA uses a covariance matrix of the multivariable descriptors to compute the 

orthogonal projections (principal components) with the least squared error. If 

dimensional reduction is needed, the original data is projected into the 

perpendicular lines (the reduced dimensions). This results in a set of data with 
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the highest variance (Wold et al., 1987). The computation of principal 

components involves a few steps (Smith, 2002; Andrew, 2015; Nimrod, 2014): 

Step 1 : Computation of the covariance matrix 

Step 2 : Computation of the eigenvectors and selection of reduced number of 

dimensions 

The eigenvectors are the uncorrelated linear combinations and are referred to as 

the principal components. These are derived from the original variables in 

decreasing order of importance. The eigenvalues are the variances of each 

eigenvector to each variable. For n variables, as many as n eigenvectors can be 

computed from the n x n matrix of variables. The calculation of eigenvectors is 

defined by Eq. (18): 

 𝑃𝐶𝑖 = ∑ 𝑐𝑖,𝑗𝑥𝑗

𝑛

𝑗=1

 (18) 

where 𝑃𝐶𝑖 is the ith eigenvector, 𝑐𝑖,𝑗 is the covariance matrix and 𝑥𝑗  is the 

eigenvalue for n variables.  

The first principal component, 𝑃𝐶1, maximises the variance in the data. It is 

represented by the largest eigenvalue. The second principal component, 𝑃𝐶2 is 

orthogonal to the first. It contains as much of the remaining variance as possible 

(i.e., second largest eigenvalue). This is followed by the rest of the principal 

components, which are ordered in decreasing eigenvalues (Leach & Gillet, 

2007).   

The eigenvalues are useful in determining the selection of the reduced number 

of principal components, k. It is based on the percentage of variance retained 

from the data. This is typically represented by the value of above 90%. It also 

indicates how well the reduced dimensions, k, approximate the original dataset.  

Step 3 : Projection of original data into the reduced dimensions 
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The reduced k dimensions form a matrix with the k eigenvectors in the rows 

and the variables in the columns. The eigenvectors are arranged in a descending 

order of corresponding eigenvalues. The original data, which is also represented 

by a matrix, has the original variables in the row and the data points in the 

column. 

The multiplication of both matrices produces the projection of the original data 

into the reduced dimensions. It represents the final data in a matrix that has the 

eigenvectors in the rows and the data points in the columns. The projection is 

defined by Eq. (19): 

 �̂�𝑖,𝑗 = 𝑃𝐶𝑖,𝑘 × 𝐷𝑘,𝑗 (19) 

where �̂�𝑖,𝑗  is the final data, which is projected by the principal components, 

𝑃𝐶𝑖,𝑘 is the reduced dimensions and 𝐷𝑘,𝑗 is the original data. 

The calculation of principal components requires the variable’s standardization 

to have a mean of zero and standard deviation of one. This is because the result 

of variance depends on the scale of the variable. Thus, it is important to have an 

equal contribution between the variables. Figure 3-4 illustrates an example of 

the projection from high dimensions (3 dimensions) to low dimensions (2 

dimensions) using PCA (Matthias, 2014).  

 

 

Figure 3-4 Example of the projection from high dimensional to low dimensional variables using 
principal component analysis 
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PCA has been used in chemoinformatics applications for molecular descriptor 

reduction. Bayada et al. (1999) implemented the PCA as a method to remove the 

descriptor’s correlations in clustering analysis. Ten principal components that 

represent 87% of the variance from a diverse database, i.e., the Available 

Chemicals Directory (ACD) database, were identified from 86 descriptors. The 

combinations of the ten principal components were used as a new set of 

descriptors for each compound. The compounds were then clustered using 

several clustering methods. The result using Ward’s algorithm and ten principal 

components was more effective in separating biological activities than random 

selection. 

The Bajorath group have implemented PCA for the reduction and combination 

of both molecular descriptors and binary fingerprints (Xue et al., 1999a; Xue et 

al., 1999b; Xue & Bajorath, 2000). However, there are more effective methods of 

molecular fingerprint reduction. These have been described elsewhere (Baldi et 

al., 2007; Swamidass & Baldi, 2007; Geppert et al., 2010). For the purpose of this 

research, these methods will be introduced and discussed in Section 3.5.3.   

Linear discriminant analysis (LDA) is another example of a linear combination 

method. This method aims to seek projections of low dimensionality. This low 

dimensionality preserves as much of the class discriminatory information that 

best separates the data. The result achieves maximum data discrimination by 

maximizing the ratio between class distances to the within-class distances 

(Balakrishnama & Ganapathiraju, 1998).  

In comparison to PCA, LDA results in the direction that maximizes the difference 

between two classes, which is more applicable for data classification. PCA on the 

other hand, results in the direction that maximizes the variance in the data and 

generates new variables that represent maximum variance in the dataset.  

3.4.2.2 Non-Linear Dimensional Reduction Approach 

An example of a common method in drug discovery for non-linear reduction is 

Multidimensional Scaling (MDS) (Xu et al., 2002).  This method aims to model the 

dissimilarity and similarity relationships between two sets of variables by 
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rescaling the distance. It reproduces approximate distances between original 

high dimension and new generated low dimension, by (i) generating projection 

of low dimension coordinates, and then (ii) modifying distance between the 

original and projected coordinates for optimization (Leach et al., 2007). The key 

component for the reproduction of the distance is the optimization procedure, 

using a stress function, e.g., Kruskal (1964). The stress function is a sum-of-

squares error function. It measures the degree of correspondence between the 

original and the projected coordinates. The output of a stress function must not 

exceed a threshold value to ensure the optimisation.  

Another example of a non-linear method is Locally Linear Embedding (LLE). It 

transforms high dimensional data to a low dimension, while retaining the 

surrounding neighbourhood. One of the advantages of this method is that it 

preserves the neighbourhood mapping. It provides the underlying structure 

identification, i.e., the small scale resembles a Euclidean space of data in a 

specific dimension (Roweis and Saul, 2000). 

3.4.3 Binary Fingerprint Dimensional Reduction Approach 

The molecular fingerprint has been the most effective molecular representation 

for many chemoinformatics applications as noted in Section 2.2.1. Molecular 

fingerprints are typically represented by a very long binary bit length, i.e., 512 

or 1024 bits. These indicate the fingerprint’s dimensions. Several methods have 

been introduced to reduce the dimensions of a molecular fingerprint. Geppert et 

al. (2010) described several methods, which include folding, hashing (James et 

al., 1995) as well as reduction based on a statistical fingerprint model (Baldi et 

al., 2007).  

One of the most common methods of binary fingerprint reduction is folding. 

This method takes the original number of fingerprint bits and folds it to a 

reduced number, using the modulo operator. Let F be the original number of 

fingerprint bits, �̂� is the reduced number of fingerprint bits and N is the length 

of bits in the reduced fingerprint. A bit in �̂� with index, j, is set to 1 if there is at 

least one bit of 𝐹𝑖  set to 1, where 𝐹𝑖  mod N is equal to index j. 
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Figure 3-5 illustrates the binary fingerprint folding steps. The original 

fingerprint bits 𝐹𝑖 , which has a size of 16-bits, is reduced to fingerprint bits �̂�𝑗 , 

where N=4 is the length of �̂�𝑗 . The bit position of �̂�1 and �̂�3 are set to 1 because 

there are bits in 𝐹𝑖  that are set to 1, when 𝐹𝑖  mod N is equal to index �̂�1 and �̂�3. 

 

 

Figure 3-5 Binary Fingerprint Folding Steps 

 

The reduced binary fingerprints can provide a rapid search in the chemical 

database. However, one limitation of this method is that it ignores the weighted 

information of the bits. This, however, can be solved by bit rearrangement, 

using a hashing algorithm or random permutation. Nevertheless, this method is 

the most effective for an application that treats all bits equally, e.g., the specific 

ordering of the bits is not important (Swamidass & Baldi, 2007). 

Bit dependency is one of the reasons for bit fingerprint reduction. This is 

because, the dependant bits can affect the similarity measurement. The bit 

dependencies are the universal presences of a bit given the presence of another. 

Chen and Golovlev (2013) analysed the bit dependencies of 881 bits structural 

keys from PubChem dataset. The study showed a method to identify and 

eliminate the dependant bits.  



Chapter 3 Nearest Neighbour Searching in High Dimensionality  

54 

First, the frequency of occurrence of each bit was tabulated from the matrix of 

bit values. The number of bits that were set for each compound was also noted. 

Next, to identify the dependencies, each of the bit positions (A) was selected and 

checked against all other bit positions (B). Positions (B) in which bits were set 

when set in the selected bit position (A) were noted. Thus, each bit position is 

not dependent upon itself. The two way dependencies were identified by 

examining all pairs of bit positions. The pairs which bits were always identically 

set are the two way dependencies bits. The dependent bits within the structural 

keys were stripped. The number for set independent bits for each compound 

was then recorded. 

Similarity searching using the Tanimoto similarity measure was then 

experimented on both the complete 881 keys and the subset of 160 non-

dependant bits. The results showed that the similarity search using the set of 

non-dependant bits affect the similarity scores. It returns a large numbers of 

nearly identical compounds. However, this does not mean that the non-

dependant set is better because the similarity searches resulted in different 

compounds as compared to the similarity searches using the complete keys. 

Further analysis on the non-dependant bits based on bit occurrence frequencies 

showed that a non-dependant bit can also be the most common bit and often 

encodes features similar to the dependant bits. 

3.5 Conclusion 

This chapter focused on the concept of nearest neighbour search in high 

dimensional datasets. It was seen that high dimensional datasets cause 

difficulties in data interpretation and visualization. This is because, as the 

dimension of data increases, the density of data decreases. As a result, this 

phenomenon degrades the performance of nearest neighbour search 

applications.  

The third section of this chapter reviewed a number of studies conducted to 

identify the effects of the nearest neighbour search as dimensionality increased. 
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One of the solutions for high dimensionality datasets is to reduce highly 

dimensional descriptors into a lower number of dimensions.  

The appropriate dimensional reduction methods are discussed in the final 

section of this chapter. This study will evaluate the effect of changing the 

dimensions of molecular representations on the effectiveness of nearest 

neighbour searching. Thus, the methods introduced in this chapter provide 

ideas on how to reduce the molecular representations and descriptors. They can 

also be used for the binary and non-binary data representation, which are the 

common molecular representations in chemoinformatics applications. 
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Chapter 4 Methodology 

4.1 Introduction 

This chapter will outline the experimental design used for the three 

investigations reported in this thesis. The three investigations are: 1. the effects 

of dimensionality on the effectiveness of similarity searching (reported in 

Chapter 5); 2. the effects of dimensionality on the effectiveness of clustering 

(reported in Chapter 6); 3. the relative importance of the fingerprint and the 

similarity coefficient components on the effectiveness of similarity searching 

using cross-classified multilevel model analysis (reported in Chapter 7). 

This chapter provides the details of methodology which are common to all three 

chapters mentioned above in terms of the databases, molecular representations, 

and similarity (and distance) coefficients. All evaluation methods will be 

introduced in this chapter together with the statistical methods. 

4.2 Dataset 

Three chemical datasets have been used within the investigations, i.e., the MDL 

Drug Data Report (MDDR) (MDL Drug Data Report, 2005), the WOrld of 

Molecular BioAcTivity (WOMBAT) (“World of Molecular Bioactivity,” 2011) and 

the ChEMBL dataset (Gaulton et al., 2012). These datasets are commonly used 

within the chemoinformatics research group at the University of Sheffield. 

Each dataset is described separately in the subsections below. Each description 

also includes a table that contains information about: (i) the activity class with 

its abbreviation, (ii) the number of active molecules in each activity class, (iii) 

the number of distinct scaffolds present in the class and (iv) the value of mean 

pairwise similarity (MPS). The distinct scaffolds describe the core structure that 

is the central component of a molecule. This is a substantial substructure that 

contains the important molecular material to ensure that the functional groups 

are in a desired geometric arrangement and therefore produce similar 

biological properties. This study used the definition of scaffold by Bemis and 

Murcko (1996). The MPS value describes the diversity of each activity class in a 
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dataset. It is measured based on the inter-molecular similarities using the 

standard UNITY 2D fingerprints and the Tanimoto coefficient. The mean intra-

set similarity is then calculated and noted. A higher MPS value means higher 

inter-molecular similarity and vice versa. 

4.2.1 MDDR 

The MDDR dataset is a commercial dataset produced by BIOVIA and Thomson 

Reuters (“BIOVIA Datasets | Sourcing Datasets: BIOVIA Available Chemicals 

Directory (ACD),” n.d.). The dataset contains molecules compiled from resources 

such as patent literature, journals, meetings and congresses. The activity data is 

qualitative, i.e., a molecule is active if it is known to exhibit a specific activity and 

assumed to be inactive if no activity has been reported.  

The MDDR dataset utilised in this study was the version from 1995, which 

contained 102,540 molecules and 11 activity classes. It was used in the previous 

studies by Todeschini et al. (2012) and Holliday et al., (2015). As shown in Table 

4-1, the Renin activity class is known to be the most homogeneous (highest MPS 

value, i.e., 0.57), while the Cyclooxygenase activity class is the most 

heterogeneous in this dataset (lowest MPS value, i.e., 0.27). 

The first investigation on the similarity search application in Chapter 5 uses a 

total of 102,540 molecules and 11 activity classes. The second investigation on 

the clustering application in Chapter 6 uses 10% of the molecules in the dataset 

that are randomly selected. This yields a dataset containing a total of 10,254 

molecules. This is because the large number of pairwise distance calculations in 

the clustering applications demands a lot of computation. As a result, the subset 

of the dataset contained between 36 and 125 active molecules, depending on 

the activity class. 

4.2.2 WOMBAT 

The WOMBAT dataset is a leading small molecule chemogenomics dataset 

released by Sunset Molecular (“World of Molecular Bioactivity,” 2011). The 

dataset contains molecules extracted from important drug-discovery journals 
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such as the Journal of Medicinal Chemistry and Bioorganic & Medicinal Chemistry. 

The activity data is quantitative, e.g., a molecule is assumed to be active if an 

associated IC50 (the half maximal inhibitory concentration) value is equal or 

more than a defined threshold value (or inactive if the activity value is less than 

the threshold value).   

The WOMBAT dataset used in this study has been described and compiled by 

Gardiner et al. (2009). A molecule is marked to be active or inactive for a 

specific activity class based on the drug potency. A threshold of pIC50 at 5.0 is 

defined. For each activity class, molecules with pIC50 >= 5.0 are marked as 

active for that class, and molecules with pIC50 < 5.0 are removed from that 

class. The resulting database contained a total of 138,127 molecules reduced 

from the original version which has 186,117 molecules by removing duplicated 

molecules. 

There are 14 activity classes used throughout the study (Chapters 5 and 6), of 

which eleven classes are similar to the MDDR and three others are the 

additional activity classes. Like the MDDR dataset, the Renin activity class is also 

known to be the most homogeneous with the highest MPS value, i.e., 0.59, while 

the Cyclooxygenase activity class is the most heterogeneous with the lowest 

MPS value, i.e., 0.32 (Table 4-2). 

The first investigation on the similarity search application in Chapter 5 uses a 

total of 138,127 molecules. For similar reason as the MDDR dataset, the second 

investigation on the clustering application in Chapter 6 uses 10% of the 

molecules in the dataset that are selected at random, yielding a dataset 

containing a total of 13,813 molecules. Hence, the subset of the dataset 

contained between 14 and 113 active molecules, depending on the activity class. 

4.2.3 ChEMBL 

The ChEMBL dataset is one of the largest publicly available Open Data datasets 

created by the European Bioinformatics Institute (EMBL-EBI). It consists of a 

large number of drug-like bioactive compounds compiled from the main 

published literature on a regular basis. The ChEMBL dataset used in this study is 
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ChEMBL 18, which was released on 2 April 2014 and available for download at 

https://www.ebi.ac.uk/chembl/. It contains a total of 1,352,681 molecules. For 

this experiment, the molecules are quantitatively selected based on three 

properties: (i) homo sapiens target organism; (ii) compounds with pIC50 >= 5.0 

and (iii) compounds with a confidence score equal to nine (Williams, 2014). The 

confidence score for the ChEMBL dataset is a score value that reflects the target 

type assigned to a particular assay and the assurance that the target assigned is 

the correct target for that assay. 

The first and third investigations in Chapters 5 and 7 used only 10% from the 

total number of molecules in this dataset that are randomly selected for two 

reasons: (1) for a comparable number of compounds used for the MDDR and 

WOMBAT datasets and (2) to avoid intensive computation as the searches 

involve repetition of very highly dimensional fingerprints. The resulting 

database contained a total of 134,362 molecules. Similar activity classes to 

MDDR and WOMBAT were used including one additional activity class resulted 

in a total of 15 activity classes. Among the 15 activity classes, Type-1 

Angiotensin II activity class is known to be the most homogeneous with the 

highest MPS value of 0.52, while Cyclooxygenase-1 activity class is the most 

heterogeneous with lowest MPS value of 0.28 (Table 4-3). 
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4.3 Molecular Representation 

The MorganR2 fingerprints (i.e., RDKit equivalent of ECFP_4-like) have been 

used as a molecular representation in all investigations. The fingerprints were 

generated using the RDKit standard Morgan fingerprints from the KNIME 

software (Landrum, 2016), which  applies the Morgan algorithm that uses the 

connectivity information similar to those used for the well-known ECFP family 

of fingerprints. The only difference is about the atom typing definition to the 

ECFP fingerprints, i.e., isotope information is added and the valance-hydrogen 

count parameter is removed. A radius of two has been chosen when generating 

the Morgan fingerprints, which is similar to the ECFP_4 fingerprint found in 

Pipeline Pilot (Rogers & Hahn, 2010). The fingerprints were folded based on the 

size of the convention power of two, which is aligned to the word sizes on 

hardware and computer libraries.  

To investigate the effect of changing the dimensionality of molecular 

representation in Chapters 5 and 6, a set of different fingerprint bit sizes was 

used. The set was prepared to avoid bit collisions, i.e., two different chemical 

features setting the same bit. Bit collisions can happen when folding the 

fingerprints to a particular size, which possibly results in a loss of information. 

In this study, meaningful information is important in assessing the effect of 

dimensionality to similarity searching. Although inevitable, the bit collisions can 

be reduced by increasing the number of fingerprint bit size to a larger number 

of bit spaces (Sastry et al., 2010).   

The thirteen different folded dimensions that were generated are: 32 (25) bits, 

64 (26) bits, 128 (27) bits, 256 (28) bits, 512 (29) bits, 1,024 (210) bits, 2,048 

(211) bits, 4,096 (212) bits, 8,192 (213) bits, 16,384 (214) bits, 32,768 (215) bits, 

65,536 (216) bits, 131,072 (217) bits. Throughout this thesis, the power of two 

convention will be used to represent the fingerprint dimensions or sizes, e.g., 

210. 

The third investigation in Chapter 7 also used MorganR2 fingerprints and nine 

other types of fingerprints in order to observe the relative importance of the 
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similarity search components. In total, ten different types of fingerprints have 

been used in the third investigation as listed in Table 4-4 Fingerprints used in 

this study (Riniker & Landrum, 2013; Landrum, 2016)4. All fingerprints were 

generated for a size of 1,024 (210) bits using the RDKit from the KNIME software 

(Landrum, 2016).  
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4.4 Similarity and Distance Measures 

4.4.1 Similarity Coefficients 

The similarity measures in Chapter 5 were initially calculated using all 51 

similarity coefficients as previously compared by Todeschini et al. (2012). The 

coefficients are those suitable for the type of binary representation used in this 

experiment. Several of the coefficients are the most common measurements 

used for binary data types, e.g., the Jaccard-Tanimoto coefficient. As noted in 

Chapter 2, the Jaccard-Tanimoto coefficient has been the most effective 

measurement in binary similarity searching.  

The formulation of the similarity coefficients used in this experiment may 

consist of the components of a, b, c, d and p. The definition of the components is 

based on Todeschini et al. (2012). Each component indicates:  

 a = the number of common presence features between molecules x 

and y  

 b = the number of features which molecule x has and molecule y lacks  

 c = the number of features which molecule y has and molecule x lacks  

 d = the number of common absence features between molecules x 

and y  

 p = the total number of features (dimensions) that is equal to the 

summation of a, b, c and d 

Table 4-5 provides the following information: ID, symbol, name, formula, two 

coefficient definitions and the metricity. The first definition was based on the 

symmetric and asymmetric definition of the Tversky index (Tversky, 1977). It 

indicates that an index (i.e., coefficient) is symmetric if 𝑆𝑥𝑦 =  𝑆𝑦𝑥 and 

asymmetric if 𝑆𝑥𝑦 ≠ 𝑆𝑦𝑥 . As such, the coefficients were denoted based on the 

formulation, i.e., symmetric if both component b and c are weighted equally, and 

asymmetric if not. This is because b and c represent unique features of 

molecules that are being compared, e.g., b is the number of unique features of 

molecule x and c is the number of unique features of molecule y. Thus, the 
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condition of 𝑆𝑥𝑦 =  𝑆𝑦𝑥 will be satisfied if the coefficient considers both unique 

features of the compared molecules. The second definition was based on 

Todeschini et al. (2012). It defines a coefficient based on the formulation as: (i) 

symmetric if components a and d are equally considered, (ii) asymmetric if only 

a is considered and (iii) intermediate if both a and d are considered, but d is 

underweighted with respect to a. The metric properties have already been 

discussed in Chapter 2. The coefficient IDs in Table 4-5 will be used to refer to 

the similarity coefficients throughout the study in Chapters 5 and 7.  

Based on the statistical test conducted in Chapter 5, 20 similarity coefficients 

were found to be monotonic with other coefficients. Therefore, these 

coefficients have been excluded from being further investigated. As a result, 

only 31 non-monotonic similarity coefficients from 51 similarity coefficients 

were used in the investigations in Chapters 5 and 7. The retained coefficients 

were marked with an asterisk in the ID column in Table 4-5.   

4.4.2 Distance Coefficients 

The clustering algorithm in Chapter 6 used the distances of the molecules as a 

basis for grouping molecules in which two molecules that are closer will be 

clustered together. Therefore, ten distance coefficients have been implemented 

in this experiment to measure the pairwise distance between the molecules in 

the clustering procedure. The distance coefficients are available in the distance 

computations package library from SciPy (Jones et al., 2001). The distance 

coefficients are listed in Table 4-6, which describes the molecules 𝑥 and 𝑦 as 

represented by an 𝑛-binary vector, i.e., dimension. The binary vector element 𝑥𝑖  

contains the presence or absence of the 𝑖-th binary in 𝑥 (and similarly for 

molecule 𝑦). 
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Table 4-6 The list of the distance coefficients (Jones et al., 2001) 

 

No. ID Symbol Name Formula 

1 D1 BC Bray-Curtis 𝐷𝐵𝐶 =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ |𝑥𝑖 + 𝑦𝑖|𝑛
𝑖=1

 

2 D2 CB City-Block 𝐷𝐶𝐵 = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑛

𝑖=1
 

3 D3 COS Cosine 𝐷𝐶𝑂𝑆 = 1 −
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

[∑ 𝑥𝑖
2𝑛

𝑖=1 ∑ 𝑦𝑖
2𝑛

𝑖=1 ]
1

2⁄
 

4 D4 EUC Euclidean 𝐷𝐸𝑈𝐶 = [∑ |𝑥𝑖 − 𝑦𝑖|2
𝑛

𝑖=1
]

1
2⁄

 

5 D5 HAM Hamming 𝐷𝐻𝐴𝑀 =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 

6 D6 JAC Jaccard 𝐷𝐽𝐴𝐶 =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ 𝑥𝑖𝑦𝑖 + ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1  𝑛

𝑖=1

 

7 D7 KUL Kulsinski 𝐷𝐾𝑈𝐿 =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1 − ∑ 𝑥𝑖𝑦𝑖  𝑛
𝑖=1 + 𝑛

∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1 + 𝑛

 

8 D8 RT 
Rogers-
Tanimoto 

𝐷𝑅𝑇

=
2 ∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ 𝑥𝑖𝑦𝑖 + (𝑛 − (∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 + ∑ |𝑥𝑖 − 𝑦𝑖|)𝑛

𝑖=1 )𝑛
𝑖=1 + 2 ∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

 

9 D9 RR Russell-Rao 𝐷𝑅𝑅 =
𝑛 − ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

𝑛
 

10 D10 SS Sokal-Sneath 𝐷𝑆𝑆 =
2 ∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ 𝑥𝑖𝑦𝑖 +𝑛
𝑖=1 2 ∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

 

The definitions describe the molecules 𝑥 and 𝑦 as represented by an 𝑛-binary vector, i.e., dimension. The 
binary vector element 𝑥𝑖  contains the presence or absence of the 𝑖-th binary in 𝑥 (and similarly for 
molecule 𝑦). 
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4.5 Experimental Procedure 

4.5.1 Procedure of Similarity Searching 

The experiment carried out in Chapter 5 replicates the virtual screening based 

similarity searching application, which calculates the similarity values between 

a reference structure and each structure in a dataset. Ten random reference 

structures from each activity class were used for the similarity searching.  

Also, each similarity search was conducted for different fingerprint dimensions 

as described in Section 4.3. The similarity values were calculated based on 

different similarity coefficients as described in section 4.4.1. The similarity 

values computed were used to rank the molecules in decreasing order. A 

threshold was applied to retrieve a fixed number of top-ranked molecules, i.e., 

top 1%. Numbers of active molecules within the retrieved list were used to 

measure the effectiveness of the search based on the enrichment factor. The 

enrichment factors were then averaged over the ten searches and the value 

denoted by the symbol 𝐸𝐹̅̅ ̅̅
1%. For the first investigation, the total number of 

similarity searches using all three datasets, thirteen fingerprint dimensions and 

fifty-one similarity coefficients was 265,200. 

A similar similarity search procedure was applied in the third experiment as 

reported in Chapter 7. The difference was that the searches were conducted 

using ten types of fingerprints which were represented by one size of dimension 

(i.e., 210 or 1,024 bits), measured by only 31 similarity coefficients and using 

only the ChEMBL dataset (which has 15 activity classes). This investigation 

yielded a total number of 46,500 similarity searches.   

4.5.2 Procedure of Clustering 

The agglomerative hierarchical non-overlapping clustering method has been 

chosen as the method for clustering the molecules in Chapter 6. Based on this 

method, each molecule (or cluster of molecules) merges bottom-up with other 

similar molecules. The merges were determined by different types of methods, 

resulting in a cluster of two molecules or clusters of several molecules. The 
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procedure is non-overlapping, which means that a molecule can occur only in 

one cluster. Two types of algorithms were implemented in the experiment, 

which are the Ward’s algorithm and the Group Average algorithm.  

Ward’s algorithm has been the most widely used clustering algorithm in 

chemoinformatics applications (Brown & Martin, 1996; Bayada et al., 1999). It 

has also been found to perform better than other non-hierarchical cluster 

algorithms in terms of its predictive ability (Downs et al., 1994). Based on 

Ward’s algorithm, the clusters are grouped so as to minimise the total variance 

for each cluster (Ward, 1963). At each process, a pair of clusters is chosen 

whose merger leads to the minimum change in total variance. The variance of a 

cluster is measured as the sum of the squared deviations from the mean of the 

cluster. For a cluster, 𝑐, of 𝑁𝑐 objects where each object 𝑗 is represented by a 

vector 𝑟𝑐,𝑗 , the mean (or centroid) of the cluster, �̅�𝑐 and the intracluster variance, 

𝑣𝑐  are determined by Eq. (20) and Eq. (21): 

 �̅�𝑐 =
1

𝑁𝑐
∑ 𝑟𝑐,𝑗

𝑁𝑐

𝑗=1
 (20) 

 𝑣𝑐 = ∑ (|𝑟𝑐,𝑗 − �̅�𝑐|)
2𝑁𝑐

𝑗=1
 (21) 

The total variance is measured as the sum of the intracluster variances for each 

cluster. For each iteration, a pair of clusters is chosen whose merger leads to the 

minimum change in total variance.  

Ward’s algorithm tends to produce spherical clusters which may not accurately 

reflect the true shape of the clusters present in the dataset (Willett, 1987). For 

this reason, further experiment has been conducted using the Group Average 

algorithm. In this algorithm, the intercluster distance is measured as the 

average of the distances between all pairs of compounds in the two clusters. As 

a result, each cluster member has a smaller average distance to the remaining 

members of that cluster than to all members of any other cluster. The results 



Chapter 4 Methodology 

77 

from both Ward’s and Group Average algorithms were considered in order to 

identify a comparable and conclusive finding about the experiment.  

4.6 Evaluation Method 

4.6.1 Enrichment Factor 

In the investigations described in Chapters 5 and 7, the enrichment factor (EF) 

was chosen to measure the effectiveness of the similarity search application. 

This method is commonly used when the number of actives retrieved is more 

important than the active ranking order. It measures the active compounds 

retrieved compared to active compounds from a random selection. The 

calculation of the EF is defined by Eq. (22): 

 𝐸𝐹 =
𝐴𝑅

𝑅
 (22) 

where AR is the number of active compounds retrieved, and R is the number of 

actives expected based on random selection, for a given cut off value. The typical 

cut off value used in these experiments is 1%. The search effectiveness for each 

representation was measured by the mean enrichment factor when averaged 

over the ten searches for each activity class. 

4.6.2 F-Measure 

The F-measure was first devised to evaluate methods for document clustering in 

information retrieval (van Rijsbergen, 1979). It evaluates the extent to which a 

method clustered together molecules that belonged to the same activity class.  

Assume that a cluster contains n molecules, that a of these are active and that 

there is a total of A molecules with the chosen activity. The precision, P, and the 

recall, R, for that cluster are then calculated by Eq. (23): 

 𝑃 =
𝑎

𝑛
          and         𝑅 =

𝑎

𝐴
 (23) 
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F is the harmonic mean of P and R that is calculated by Eq. (24): 

 𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 (24) 

This calculation is carried out for each cluster. The F-measure is the maximum 

value obtained across all clusters. This value describes the single cluster that 

provides the best combination of precision and recall for the current bioactivity 

assuming both P and R are of equal importance.  

4.6.3 QPI-Measure 

QPI-measure is a method for evaluating the clustering effectiveness that was 

developed from the QCI (Quality Clustering Index) (Varin et al., 2008). It is used 

to evaluate the performance of a clustering algorithm by measuring the 

separation between active and inactive molecules resulting from the use of a 

clustering method.  

In this approach, an active cluster is defined as a non-singleton cluster where the 

percentage of active molecules in the cluster is greater than the percentage of 

active molecules in the database as a whole. Let p be the number of active 

molecules in the active clusters, q the number of inactive molecules in the active 

clusters, r the number of active molecules in the inactive clusters (i.e., clusters 

that are not active clusters) and s the number of singletons that are active 

molecules. The quality partition index, QPI, is then calculated by Eq. (25):  

 𝑄𝑃𝐼 =
𝑝

𝑝 + 𝑞 + 𝑟 + 𝑠
 (25) 

This calculation will result in a high value when the active molecules are 

clustered tightly together and separated from the inactive molecules.  

The QPI-measure describes the entire set of clusters, while the F-measure 

describes the single best cluster. These approaches have been used to evaluate 
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the performance of molecular clustering by several previous studies in 

chemoinformatics domain (Chu et al., 2012; Gan et al., 2014). For each algorithm 

(i.e., Ward’s and Group Average), the clusters were generated for all 260 

combinations of fingerprint dimensions measured by ten distance coefficients 

for two datasets to obtain each of the six partitions of 500, 600, 700, 800, 900 

and 1000 clusters. The F and QPI values were also computed for each cluster 

partition. Both evaluation methods were implemented in the second 

investigation in this thesis as reported in Chapter 6.  

4.7 Statistical Method 

4.7.1 Spearman’s Rank Correlation 

The Spearman’s rank correlation test was used to identify monotonicity, i.e., 

when two different similarity coefficients produce the same similarity rankings, 

which is another important characteristic of a similarity coefficient. Similarity 

search results for each similarity coefficient measuring similar fingerprint size 

and reference molecule were chosen. The results were tested using the 

Spearman’s rank correlation. The monotonic coefficients were identified and 

grouped together, i.e., coefficients with correlation value = 1. This statistical test 

was implemented in the first investigation as reported in Chapter 5. 

4.7.2 Kendall’s W Test 

The Kendall’s W test was used to test the significance of the performance of each 

similarity coefficient. The test was done using IBM SPSS version 22 (IBM Corp. 

IBM SPSS Statistics for Windows, 2013) and by measuring the 𝐸𝐹̅̅ ̅̅
1% from all 

activity classes using all fingerprint dimensions. For each dataset, the mean 

𝐸𝐹̅̅ ̅̅
1% obtained from all fingerprint dimensions were averaged and the similarity 

coefficients were ranked based on their average mean 𝐸𝐹̅̅ ̅̅
1% value. The 

similarity coefficient with the largest average mean 𝐸𝐹̅̅ ̅̅
1% value would be 

ordered as the highest in the row (i.e., first in the rank position) and vice versa. 

This statistical test was also implemented in the first investigation as reported 

in Chapter 5. 
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4.7.3 Sign Test 

The Sign test was used to validate the significance of the contribution between 

the compound representations and the similarity coefficients in determining the 

performance of similarity searching using the cross classified multilevel 

modeling in Chapter 7. It was implemented to measure the contribution in order 

to make a conclusion about which factor is more important.  

The Sign test is based on the direction of the differences between the two 

components to test the following null hypothesis, 𝐻0 using Eq. (26): 

 𝑃[𝑋𝑖 >  𝑌𝑖] =  𝑃[𝑋𝑖 <  𝑌𝑖] =
1

2
 (26) 

where 𝑃 is the number of pairs which have 𝑋𝑖 or 𝑌𝑖 scores greater or less than 

the other for two different components that are to be compared, 𝑋 and 𝑌. In this 

test, the sign of the difference between each pair of 𝑋𝑖 and 𝑌𝑖 scores is noted as 

positive (+) or negative (-). 𝐻0 is true if half of the differences are negatives and 

half are positives. 𝐻0 is rejected if too few differences of one sign occur.  

In the case of “tie” occurrences, all tied pairs are dropped from the analysis and 

the sample size (i.e., number of pairs), N is reduced correspondingly. In other 

words, N is the number of pairs whose differences show a sign (+ or -). This is 

because it is not possible to discriminate between the values of a tied pair.  

Two different methods can be used to determine the probability associated with 

the occurrence of data, which depends on the sample size. For a small sample 

size of 𝑁 ≤ 35, the probability can be determined by reference to the binomial 

distribution with 𝑝 = 𝑞 =  
1

2
 . The significance of the probability values can be 

looked up by referring to the binomial distribution table (Siegel & Castellan Jr, 

1988).  

For a large sample size of 𝑁 > 35, the probability can be determined by normal 

approximation to the binomial distribution and measured using the z-score in 

Eq. (27):  
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 𝑧 =
2𝑥 ±  1 −  𝑁

√𝑁
 (27) 

where N is the number of pairs and x is the number of fewer signs, for which +1 

is used when 𝑥 <
𝑁

2
 and -1 when 𝑥 >

𝑁

2
. The significance of the obtained z value 

can be looked up by referring to the normal distribution table (Siegel & 

Castellan Jr, 1988).  

The sign test may be either one-tailed or two-tailed. In a one-tailed test, the 

alternative hypothesis states which sign (+ or -) will occur more frequently. The 

two-tailed test predicts the frequencies with which the two signs occur that will 

be significantly different.  

In the study in Chapter 7, the sign test was conducted to evaluate the differences 

of variances of the two components. Each variance acts as a judge of the 

similarity search effectiveness, where the significance of the differences is 

measured by the number of (i) fingerprint level > similarity coefficient level, (ii) 

fingerprint level = similarity coefficient level and (iii) fingerprint level < 

similarity coefficient level. The two-tailed test was considered for the sign test 

in which the probability values obtained from the lookup tables are doubled. 

The test was done using IBM SPSS version 22. Detailed explanation about the 

implementation of the test is explained separately in the corresponding sections 

in Chapter 7. 

4.7.4 The Wilcoxon Signed-rank Test 

In addition to the Sign test, the Wilcoxon signed-rank test was also implemented 

to validate the significance of the contribution between the compound 

representations and the similarity coefficients in determining the performance 

of similarity searching. The Wilcoxon signed-rank test is a more powerful test 

that can be used to compare two sets of components which not only utilises the 

direction of the preferences of a component, but also includes the relative 

magnitude of the direction in the comparison. Hence, it gives more weight to a 

pair, which shows larger difference than a smaller one. 
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In order to carry out this test, first the sign’s differences 𝑑𝑖 of each pair 𝑋𝑖 and 𝑌𝑖 

need to be determined, where 𝑑𝑖 = 𝑋𝑖 − 𝑌𝑖 . All resulting 𝑑𝑖 values will be ranked 

without regard to sign with 1 being the smallest |𝑑𝑖|. Next, the sign of the 

difference is affixed to each rank to indicate which rank is positive or negative 

from 𝑑𝑖. 

The null hypothesis 𝐻0 is true when there exist equal values of summation of 

positive 𝑑𝑖 as well as negative 𝑑𝑖. Here, N is again the number of non-zero 𝑑𝑖, 

which is used in defining these two statistics: 

𝑇+ = 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖′𝑠 𝑟𝑎𝑛𝑘𝑠 

𝑇− = 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖′𝑠 𝑟𝑎𝑛𝑘𝑠 

Since the sum of all of the ranks is 
𝑁(𝑁+1)

2
, then 𝑇− =

𝑁(𝑁+1)

2
−  𝑇+. The 𝐻0 is 

rejected when the 𝑇+or 𝑇− is too small, i.e., when either summation of the ranks 

is different from the other. 

The “tie” case may occur when the two scores of any pair are equal, i.e., 

𝑋𝑖 − 𝑌𝑖 = 𝑑𝑖 = 0. The same practice with the sign test will be followed, which 

excludes the tied pairs from the analysis and reduces the number of pairs, N 

correspondingly. Another tie case can occur when two or more differences, d’s 

are of the same magnitude. For this case, the same rank, which is the average of 

the ranks of the same d’s, will be assigned. 

For a small sample size of 𝑁 ≤ 15, the probability value is determined based on 

the sum of the positive 𝑑𝑖‘s ranks, 𝑇+ which can be looked up by referring to the 

probabilities table for critical values of 𝑇+ for the Wilcoxon signed-ranks test 

(Siegel & Castellan Jr, 1988). The one-tailed test is appropriate if the direction of 

the differences has been predicted in advance.     

For a large sample size of 𝑁 > 15, the probability of the sum of the positive 

ranks, 𝑇+ can be determined by normal approximation and measured using the 

z-score (Eq. (28)):  
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 𝑧 =
𝑇+ −  

𝑁(𝑁 +  1)
4

√𝑁(𝑁 +  1)(2𝑁 +  1)
24

 (28) 

where N is the number of pairs and the significance of the obtained z value can 

be looked up by referring to the normal distribution table (Siegel & Castellan Jr, 

1988).  

If the probability value is less than or equal to the significance level, α, then the 

𝐻0 can be rejected in favour of the alternative hypothesis by concluding that 

there is a significant difference between components 𝑋 and 𝑌 and that either X 

or Y has shown better performance than the other. 

Similar to the sign test, the two-tailed test was considered for the Wilcoxon 

signed-ranked test in the third investigation in Chapter 7. IBM SPSS version 22 

was used to compute the statistical test, making it a very useful statistical 

software for carrying out such analysis. Detailed explanation about the 

implementation of the test is explained separately in the corresponding sections 

in Chapter 7. 

4.8 Conclusion 

This chapter presented the methodologies involved in the investigations 

reported in this thesis. It introduced the datasets that have been tested, the 

experimental design involved, the evaluation and the statistical methods that 

have been implemented. The other experimental details, which vary depending 

on the investigations conducted, will be introduced separately in each 

experimental chapter. 
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Chapter 5 Investigation into the Effect of 
Dimensionality on the Effectiveness of Similarity 
Searching 

5.1 Introduction 

The effects of the curse of dimensionality have been discussed in Chapter 3. The 

previous study has reported that the effectiveness of a nearest neighbour search 

application decreases as the dimensionality increases (Donoho, 2000). This 

study will investigate the effect of changing the dimensionality of molecular 

representations on the effectiveness of virtual screening based similarity search 

applications. 

This study seeks to test the hypothesis that as the dimensionality increases, the 

effectiveness of the nearest neighbour searches decreases. In contrast, studies 

carried out in the chemoinformatics domain have shown that similarity 

searching is found to be effective using high dimensional molecular 

representation (Willett, 2011b). Thus, the aim of this study is to identify the 

characteristics of chemical datasets that contribute to the effectiveness of the 

application in high dimensionality. It also explains the observed performance 

using various molecular dimensions and similarity coefficients, which simulate 

a practical virtual screening process. 

5.2 Experimental Design 

In this investigation, the experiments simulate virtual screening experiments, 

which calculate the similarity between a reference structure and each structure 

in a dataset. The experiments were carried out for all activity classes from three 

datasets, i.e., MDDR, WOMBAT and ChEMBL. These datasets have been 

introduced in Chapter 4, along with the similarity searching procedures. 

Each compound in the datasets was represented using the binary fingerprint, 

i.e., ECFP_4-like (MorganR2) fingerprint. To investigate effect of changing the 

dimensionality of molecular representations on the effectiveness of similarity 
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search applications, thirteen different fingerprint sizes have been used in this 

study. These fingerprints have been introduced in Chapter 4. 

To observe the performance using various similarity coefficients, 51 similarity 

coefficients were implemented to measure the similarity of the compounds. 

These coefficients have been used in the previous study by Todeschini et al. 

(2012) and introduced in Chapter 4. 

5.3 Results and Discussion 

5.3.1 Analysis of Spearman’s Rank Correlation 

The Spearman’s rank correlation test has been carried out for all similarity 

coefficients used in this experiment as described in Chapter 4. Table 5-1 shows 

twenty nine coefficients that were grouped into nine monotonic groups. All 

coefficients in the same group were monotonic to each other. Twenty-two other 

coefficients are the singletons, i.e., non-monotonic coefficients. As can be seen 

from Table 4-5, several coefficients were derived by a very similar equations.  

For example, the B3 (JT) and B4 (GLE/DICE) are monotonic based on their 

formulation which differs in the weightings of the component a. 

Only one coefficient from each group, i.e., the best known coefficient, and the 

singletons were retained for the results and discussion. The total number of 

retained coefficients is 31, which are shown in bold in the Table 5-1. Several 

correlated groups are in agreement with the previous study by Todeschini et al. 

(2012), e.g., B3 (JT), B4 (GLE/DICE), B12 (SS1) and B14 (JA). 
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Table 5-1 Spearman’s rank correlations result 

Monotonic Group Correlated Similarity Coefficients p value 

1 B1, B2, B13, B39, B40, B44, B45, B47 1 

2 B3, B4, B12, B14, B27 1 

3 B5, B31, B41 1 

4 B6, B24, B32 1 

5 B10, B48 1 

6 B11, B49 1 

7 B18, B50 1 

8 B20, B21 1 

9 B26, B35 1 

Singletons 
B7, B8, B9, B15, B16, B17, B19, B22, B23, B25, B28, 

B29, B30, B33, B34, B36, B37, B38, B42, B43, B46, B51 
- 

5.3.2 Analysis of Kendall’s W Test 

The Kendall’s W tests have been carried out for the mean 𝐸𝐹̅̅ ̅̅
1% values of all 

similarity coefficients as explained in Chapter 4. For each fingerprint dimension, 

the similarity coefficient with the largest average mean 𝐸𝐹̅̅ ̅̅
1% value would be 

ordered first in the rank position. For example, in Table 5-2, the B18 coefficient 

has the largest value of average mean 𝐸𝐹̅̅ ̅̅
1%, i.e., 24.59 (refer to the second last 

column). Hence, it is ordered as the highest in the row (i.e., rank position 1). The 

B7 coefficient is ordered as the lowest in the row (i.e., rank position 31) because 

it has the smallest value of average mean 𝐸𝐹̅̅ ̅̅
1%, i.e., 3.80 (refer to the second last 

column). In addition, the table also presents the mean 𝐸𝐹̅̅ ̅̅
1% and rank position of 

the similarity coefficients obtained for each dimension. The other values, i.e., the 

W, χ2 and significant values were also recorded. 

For the MDDR average mean values, with k = 31, N = 11 and the searches with 

𝐸𝐹̅̅ ̅̅
1%, the test yields the values of W between the range of 0.433 to 0.613 and χ2 

between 142.73 to 202.38. The values are highly significant with value p ≤ 
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0.001. Thus, the results from Table 5-2 suggest the following rankings (see 

Figure 5-1): 

B18 > B38 > B34 > B3 > B19 > B37 > B8 > B29 > B42 > B30 > B51 > B22 > B33 > 

B9 > B10 > B23 > B28 > B26 > B11 > B17 > B46 > B25 > B16 > B43 > B15 > B20 

> B36 > B5 > B6 > B1 > B7 

It is interesting to see that the B3 (JT) coefficient demonstrated a good 

performance in the similarity search using seven fingerprint dimensions, i.e., 28, 

29, 210, 212, 213, 214, 215 bits. Of all seven dimensions, 214 bits dimension equals to 

the highest W value of 0.613 while the χ2 value yielded is 202.38. This has also 

been the highest W value calculated for all thirteen dimensions investigated in 

the MDDR dataset. However, the B3 coefficient was ranked the fourth in the 

final rank position because the final rank position is based on the average mean 

values. The B1 coefficient was the worst for nine out of all thirteen dimensions 

(from 29 until 217) with the highest W and χ2 values obtained from the same 

dimension, i.e., 214.  

Table 5-3 and Figure 5-2 shows results for WOMBAT dataset suggested the 

following rankings in both tabular and graphical form. With k = 31, N = 14 and 

the searches with 𝐸𝐹̅̅ ̅̅
1%, the test yields values for W between the range of 0.506 

to 0.726 and χ2 between 212.50 to 304.82 (all values have p ≤ 0.001): 

B38 > B18 > B34 > B3 > B37 > B19 > B42 > B8 > B29 > B22 > B30 > B9 = B33 > 

B51 > B10 > B23 > B26 > B28 > B11 > B17 > B46 > B25 > B15 > B16 > B43 > B5 

> B20 > B36 > B1 > B7 > B6 

For the WOMBAT dataset, the B42 coefficient demonstrated a good 

performance in the similarity search using seven fingerprint dimensions 

starting from 211 until 217 dimensions. Of all seven dimensions, 211 equals to the 

highest W value of 0.659 while the χ2 value yielded is 276.96. Similar to the 

MDDR ranking, the B1 coefficient was also the worst for the same nine 

dimensions, i.e., 29 until 217.  
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And finally, for ChEMBL with k = 31, N = 15 and the searches with 𝐸𝐹̅̅ ̅̅
1%, the test 

yields values for W between the range of 0.392 to 0.676 and χ2 between 176.50 

to 304.03 (all values have p ≤ 0.001). Results from Table 5-4 suggest the 

following rankings (see Figure 5-3): 

B38 > B42 > B3 > B18 > B34 > B37 > B19 > B26 > B22 > B29 > B9 > B33 > B8 > 

B30 = B51 = B17 > B10 > B25 > B23 > B28 > B11 > B46 > B16 > B43 > B20 > 

B15 > B5 > B36 > B6 > B1 > B7 

Both B38 and B42 coefficients demonstrated good performances in the 

similarity search using the eight high dimensions from 210 until 217 bits for the 

ChEMBL dataset. The test for bit dimension of 212 yields the highest W value of 

0.676 and the χ2 value is 304.03 which was demonstrated by the B38 

coefficient. Similar to the MDDR and WOMBAT rankings, the B1 coefficient was 

also the worst for the same nine bits dimensions, i.e., 29 until 217. 

Overall, the average Kendall’s W rankings using all thirteen dimensions as 

mentioned above seem comparable. For searches with 𝐸𝐹̅̅ ̅̅
1% across all 

fingerprint dimensions, B38 performs extremely well in all datasets, except for 

MDDR where B18 is shown to be the best performer. B7 is the worst similarity 

coefficient suggested to be used for MDDR and ChEMBL while B6 is the worst 

suggested for WOMBAT. When referring to the previous study, the best 

performance and the worst performance using the 210 bit dimension for MDDR 

is in line with the Todeschini et al.’s finding (i.e., B3 as the best performance and 

B1 as the worst performance). 
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5.3.3 Effect of Dimensionality on the Effectiveness of Similarity 
Searching  

Figure 5-4 A subset of average enrichment values using top 1% of the ranked 

dataset in searches for the eleven MDDR activity classes using various Morgan 

Radius 2 fingerprint dimensions illustrates the effectiveness of similarity 

searching over the changes of the dimensionality for the MDDR dataset . It 

presents a subset of effectiveness to show the main trends resulted from the 

experiments. Detailed values for all results are available in Table 5-5. The 

enrichment values were averaged over 10 searches for 11 activity classes. There 

was a significant trend that the effectiveness of similarity searching increases as 

the dimensionality increases. The effectiveness remains consistent for 

fingerprint dimensions from 212 until 217 bits. This behaviour was shown by 

twenty-nine similarity coefficients. It is also interesting to see that there was a 

slight drop in the effectiveness using two similarity coefficients, i.e., B1 (SM) and 

B15 (FAI). A similar trend for the similarity search results using the WOMBAT 

and ChEMBL datasets can be found in Appendix A (results in Table A-1 are 

illustrated by Figure A-1 for WOMBAT dataset and Table A-2 by Figure A-2 for 

ChEMBL dataset). 

In general, the observed behaviour showed that changing the dimensionality of 

the Morgan R2 fingerprint did not suffer from the curse of dimensionality. 

However, the results indicate that the effectiveness maybe affected by the 

similarity coefficients. 

Further analysis was carried out to investigate the reasons that contribute to 

the trends. This chapter will first discuss the increase effects followed by the 

decrease effects and the consistent effects that were obtained as the dimension 

increases. This was made either by: (i) investigating the characteristic of the 

molecule in the dataset that contribute to such effects, (ii) investigating the 

formulation of the similarity coefficients or (iii) analysing the bit collision in the 

datasets. 
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5.3.3.1 Observation of Retrieved Compounds 

In the literature, the increase of search performance in high dimensionality has 

been reported to be associated with the intrinsic (“fractal”) dimensionality of 

the data, not the dimensionality of the address space (Korn et al., 2001). In 

relation to the chemical data, fractals in the form of iterated substructures or 

fragments exist in a compound. Compounds that have similar bioactivity are 

also likely to have similar fractals (substructures) exhibited in the compounds 

(Johnson & Maggiora, 1990). Based on these relations, it would be useful to 

conduct an investigation on the molecular intrinsic structure to explain the 

characteristic of the chemical data that contribute to the increasing trend. 

The ECFP_4-like (Morgan R2) fingerprints did not give any direct information 

about the structure of the molecule. This can be because of a few reasons. First, 

it is not possible to directly decode the integer identifiers (and the bits) of the 

ECFPs to a particular feature that it represents. Second, the relationship 

between the bit fingerprint and the molecule structure may not always be one-

to-one during the generation of the ECFP fingerprints. Hence, it is difficult to 

identify the structures by analysing the bit fingerprint based on the bit position 

(Rogers & Hahn, 2010). 

There are however, other ways to identify the similar fractals in a compound. 

That is using the SMILES representation or the molecular scaffold. In 

chemoinformatics, the Murcko scaffold has been used to define the frameworks 

of a molecule (Bemis & Murcko, 1996). It can also be used to find the common 

features present in molecules. Thus, for this reason we will investigate the 

Murcko scaffold of the molecules to identify the characteristics of the chemical 

data.  

A few examples of molecules have been chosen to be analysed. These molecules 

are the active molecules retrieved from the 𝐸𝐹1% resulting from the similarity 

search using a single reference. The similarity of these molecules was measured 

using the B3 (JT) coefficient. The B3 coefficient has been chosen as an example 

of similarity measure based on three reasons: (i) it shows a resemblance of 
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increasing effectiveness, (ii) it ranks the highest in the MDDR and WOMBAT 

datasets for the commonly used 1024 bits fingerprint and (iii) it is the most 

effective similarity measure in the literature.  

The identification of similar features that exist in each increasing dimension was 

conducted. For the first dimension (i.e., 25 bits), the active molecules retrieved 

and the distinct scaffolds of the active molecules retrieved were recorded. Next, 

we identified the new active molecules retrieved for the next dimension (i.e., 26 

bits). These are the new actives which were retrieved using the 26 bits but not 

retrieved when searched using the 25 bits. The distinct scaffolds of the new 

active molecules retrieved were compared with the distinct scaffolds of the 

previous active molecules retrieved. The number of similar scaffolds was 

recorded, i.e., identical scaffolds that exist in the active molecules retrieved in 

the previous and current dimensions. The process was continued for the next 

following dimension.  

Table 5-6 Identification of identical scaffold based on the active molecules retrieved using a 
single reference from the Renin activity class of the MDDR dataset 

No. 
Morgan R2  
Dimensions 

Number of  
Actives 

Retrieved 

Number of 
Scaffolds 

Number of  
New Actives 

Retrieved 

Number of  
New Actives Retrieved 
with Identical Scaffold 

1 25 s 160 120 - - 

2 26 s 565 318 431 32 

3 27 s 769 392 236 38 

4 28 s 798 402 88 14 

5 29 s 798 404 46 17 

6 210 s 777 389 25 9 

7 211 s 790 393 21 12 

8 212 s 795 394 15 7 

9 213 s 796 395 7 2 

10 214 s 797 396 3 1 

11 215 s 797 396 1 1 

12 216 s 799 397 2 1 

13 217 s 799 397 0 0 

 

The result, as shown in Table 5-6, indicates that identical scaffolds to the 

previous active molecules retrieved exist in the new active molecules retrieved 

for each increasing dimension. For example, one of the two new active 

molecules retrieved in the higher dimension (216 bits) has the identical scaffold 
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to the existing active molecules retrieved in the lower dimension (i.e., 215 bits). 

Figure 5-5 illustrates an example of identical scaffolds that have been found. It 

provides the illustrations of the original molecule and its Murcko scaffold. The 

first two rows are the existing active molecules retrieved using the 215 

dimension. The third row is the new active molecule retrieved using the 216 

dimension.  

 

Figure 5-5 Identification of identical scaffold using Murcko scaffold between the existing active 
molecules retrieved in a lower dimension and new active molecule retrieved in a higher 

dimension 

 

As observed, the new retrieved molecule has an identical scaffold to the other 

two existing retrieved molecules. These scaffolds can be used to represent the 

intrinsic feature (substructure) of the molecules. There is, however, a single 

exception in the last dimension, i.e., 217. This is because the active molecules 

retrieved were the identical active molecules retrieved in the previous 

dimension, i.e., 216. Thus, there is no new active molecule retrieved to be 

analysed.  
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It is also worth to mention that there was a loss of the active molecules 

retrieved when searched using a higher dimension. These are the actives which 

were retrieved using the lower dimension but not retrieved when searched 

using the higher dimension. For example, there were 798 active molecules 

retrieved using the 29 dimension and 777 active molecules retrieved using the 

210 dimension. This indicates that several active molecules were not retrieved 

even when the dimension has been increased. These findings may show a 

possible behaviour of clumping effect in the database due to the analogous of 

molecular scaffolds. However, the interpretation cannot be extrapolated to all 

dimensions as the similar behaviour was not observed in a higher dimension. 

Taken together, these results suggest that there is an association between the 

increases of search performance with the intrinsic dimensionality of the data. 

The nearest neighbour search in high dimensions can still be effective for a 

chemical dataset if the molecules have similar intrinsic features (structures). 

However, these findings do not show the occurrence of the curse of 

dimensionality. It is possible, therefore, that this outcome is contrary to the 

curse of dimensionality as no evidence of decrease in the performance of high 

dimensionality was detected. 

5.3.3.2 Effect of Similarity Coefficient 

The next discussion on the decrease trends involves the understanding of the 

global and local similarity. Hence, it is worth explaining about the global and 

local similarity before discussing about the results. In general, global similarity 

measures the similarity of two objects using the complete vectors (i.e., the 

object representations). In contrast, local similarity measures the similarity of 

two objects by looking for the best internal matching region between the two 

vectors. In the former case, the similarity indicates the total percentage of match 

while the latter indicates the percentage matches of the internal region.  

The review by Maggiora et al. (2014) interpret and provide examples of global 

and local similarities in molecular similarity. The computation of global 

similarity is generally derived from structural information associated with the 
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entire compounds. On the other hand, the local similarity focuses only on 

selected fragments or functionalities of the molecules. In relation to this 

experiment, the global similarity measures the similarity of two molecules 

associated with the entire fingerprint whilst the local similarity focuses only on 

selected bits in the fingerprint. 

When focusing on the decreasing trends, it can be seen from Table 5-5 that the 

B1 (SM) coefficient resulted in a decreased effect starting at 210 bits for the 

MDDR dataset. A similar observation can be found using the WOMBAT dataset 

in Table A-1 (Appendix A). The decreasing effect for the ChEMBL dataset using 

the similar coefficient starts from 29 bits as shown in Table A-2 (Appendix A). 

This coefficient has also resulted in the lowest 𝐸𝐹̅̅ ̅̅
1% value for the last eight 

fingerprint dimensions in the MDDR and WOMBAT datasets, i.e., 210 until 217 as 

compared to the other coefficients. For the ChEMBL dataset, the B1 coefficient 

has also resulted in the lowest 𝐸𝐹̅̅ ̅̅
1% value for the last nine fingerprint 

dimensions, i.e., 29 until 217 fingerprint dimensions. This is in the agreement 

with the previous study, which ranked B1 coefficient among the lowest rank of 

similarity coefficient to be used (Todeschini et al., 2012).  

The B1 coefficient is measured according to the following formulation in Eq. 

(29): 

 𝑆𝑆𝑀 =
𝑎 + 𝑑

𝑝
 (29) 

where 𝑆𝑆𝑀 is the similarity value, a is the number of common bits set, d is the 

number of common bits unset and p is the total bits size (dimension). This 

coefficient has the components a and d in its numerator and denominator, 

which means it compares the number of matching bits (both set and unset) with 

the entire possible bits dimension. This also means that it evaluates the 

similarity between two molecules based on their similarity relative to the 

possible whole dimensions (i.e., global similarity). This is different to evaluate 

the similarity relative to the internal matching features (i.e., local similarity) 

which is effectively measured by the other coefficients, e.g., B3 (Jaccard-
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Tanimoto) and B9 (Cosine). As shown in Table 5-5, Table A-1 and Table A-2, 

these coefficients have resulted in increasing effectiveness in similarity 

searching using all three datasets, correspondingly. 

In this study, the results using the B1 coefficient did show a minor resemblance 

to the curse of dimensionality. There is however, a possible explanation for this 

effect. As the dimensionality increases, the distribution of the data becomes 

increasingly sparse with the increasing number of zero attributes, i.e., 𝑑 → 𝑝. As 

a result, a global similarity between two molecules can be increased and 

approaches to unity because of the existence of zero attributes.  

In relation to the virtual screening experiment, it is possible for an inactive 

molecule to be measured more similar to the reference molecule if it has a 

larger number of common zero bits, i.e., bits unset (due to the sparsity) although 

it was structurally different. As a result, the inactive molecules will be ranked to 

the top of the ranking while the active molecules were not. This could probably 

be the reason why there were less active molecules retrieved as the 

dimensionality increases hence the decreases of the effectiveness of similarity 

searching.  

To illustrate this effect we show in Figure 5-6 three molecules which were 

measured by the B1 coefficient in this experiment. The similarity value (SSM), 

number of common bits set (a), number of common bits unset (d), number of 

total bits (p) and the similarity ranking between the molecules are also shown. 

The inactive molecule has a larger similarity value as compared to the active 

molecule. As a result, the inactive molecule is ranked higher than the active 

molecule. One possible reason is because it has more common unset bits (d) 

which can increase the similarity value when measured using the B1 coefficient. 
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Figure 5-6 A comparison of the Simple Matching similarity values for two molecules (inactive 
and active) to illustrate the effect of global similarity measure 

 

There is also another similarity coefficient which has shown a similar result to 

the B1 coefficient, i.e., B15 (FAI). The possible reason for this behaviour is 

because of the formulation of the coefficient. The B15 coefficient is measured 

according to the following formulation in Eq. (30): 

 𝑆𝐹𝐴𝐼 =
𝑎 + 0.5𝑑

𝑝
 (30) 

The formulation of this coefficient only differs in terms of the weighting of the 

component d as compared with the formulation of the B1 coefficient, i.e., equal 

to half of the number of common unset bits. However, as the dimensionality 

increases, the inactive molecules which have more zero bits will possibly still be 

ranked higher as compared to the active molecules. This is because the 

coefficient is still measuring the similarity associated with the whole dimension. 

Hence, this produced similar trends of reduced effectiveness that can be 

observed in Figure 5-4 for the MDDR dataset, and for WOMBAT and ChEMBL in 

Appendix A (Figure A-1 and Figure A-2, correspondingly). The other two 
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coefficients, i.e., B35 (PE1) and B45 (HAM) which have similar formulation to 

the B1 coefficient have been excluded. This is because they were monotonic to 

the B1 coefficient as listed in Table 5-1. 

5.3.3.3 Effect of Fingerprint’s Bit Collision 

Finally, we further investigate the constant effects starting with the 211 bits size. 

This is done by measuring the average bit collisions of all references used in this 

experiment, across all dimensions. In general, the number of bits set will 

increase with the size of the addressable space until there are no collisions. The 

bit collision is calculated as follows in Eq. (31): 

 𝐵𝑖𝑡 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖 = �̅�𝑖 −  �̅�𝑖−1 (31) 

𝑖 = {25, 26, 27, 28, 29, 210, 211, 212, 213214, 215, 216, 217} 

𝑥 = 𝑠𝑒𝑡 𝑏𝑖𝑡𝑠 

Table 5-7 shows the bits set, average bits set and average bit collisions 

calculated from the MDDR dataset. A higher value of bit collision rate indicates a 

higher bit collision in the particular fingerprint dimension and vice versa. As can 

be seen, more collisions were particularly apparent for fingerprint sizes of 25 

until 210 bits. There were almost zero bit collisions for fingerprint sizes of 211 

until 216 bits, and zero bit collisions for 217 bits fingerprint. These results 

suggest that 217 bits is large enough to ensure that, in most cases, there will be 

no collision occurring and even 212 bits have very few collisions. This result is 

almost similar to the other two datasets used in this experiment (Table A-3 and 

Table A-4 in Appendix A). 
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It is further shown that the effect of the bit collisions and bits set to the 

similarity search values.  Figure 5-7 shows the effect of the addressable bit 

space (fingerprint dimensions) on the 𝐸𝐹̅̅ ̅̅
1% across all 11 activity classes in the 

MDDR dataset using the B3 (JT) similarity coefficient. As can be seen, there were 

constant effects to the 𝐸𝐹̅̅ ̅̅
1% from 211 bits fingerprint until the final dimensions. 

A possible reason for this is because of the similar number and the position of 

bits set starting from the 211 bit fingerprint. Hence, the similarity value 

measured will also be the same. A similar trend can also be observed in 

Figure A-3 and Figure A-4 for the WOMBAT and ChEMBL datasets. 

5.4 Conclusion 

This chapter investigates the effect of changing the dimensionality of molecular 

representations on the effectiveness of virtual screening based similarity search 

applications. Overall, the results suggest that the effectiveness of the chemical 

search was not affected by the curse of the dimensionality phenomenon. The 

effect of changing the dimension related to two possible reasons: (i) the 

molecular representation and (ii) the formulation of the similarity coefficient.  

First, the use of Morgan R2 fingerprint as the molecular representation does not 

decrease the effectiveness of the similarity search application. As defined in 

Chapter 4, the Morgan R2 representation encodes the connectivity invariants of 

circular atom environments for a molecule up to two bond radius from its 

central atom. The fingerprints were then folded into certain bit dimensions. At a 

certain number of bits, increasing the fingerprint dimensions only increases the 

bit spaces to describe the information of a molecule. The information captured 

however, is limited by the function of the Morgan algorithm, which is two bond 

radii in the case of the study. This was supported by the analysis of the bit 

collisions in Section 5.3.3. The analysis showed the possible number of bits 

required to capture the information of a sample of molecules used in this study 

and its relation with the effectiveness of the similarity search application. Other 

molecular representations or descriptors may have different effects on the 

performance of the similarity search application. The physicochemical 

descriptors for example, capture different properties of a molecule. The use of 
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high dimensionality of physicochemical descriptors may have a different effect 

to the performance of the similarity search application. 

Second, the effectiveness of the similarity search application increased as the 

dimensionality increases when measured by the similarity coefficients tested in 

this experiment. The only exception is when the similarity is measured by the 

global similarity coefficient, which measures the similarity of the molecules 

associated with the entire fingerprint, i.e., whole dimensions. As discussed in 

Section 5.3.3, as the dimensionality increases, the distribution of the data 

becomes increasingly sparse with the increasing number of zero attributes. 

Hence, the number of zero attributes will affect the global similarity measure of 

the molecules in high dimensionality fingerprint representation. 

The above conclusion was made based on the experimental work for the 

similarity search application. The following chapter will describe the effect of 

dimensionality on the effectiveness of other virtual screening applications. The 

study will allow the investigation and conclusion to be made on other common 

types of virtual screening applications, i.e., molecular clustering. 
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Chapter 6 Investigation into the Effect of 
Dimensionality on the Effectiveness of Clustering 

6.1 Introduction 

Clustering the molecular structures in a chemical database provides a way of 

identifying and viewing the groups that are present in a chemical dataset. 

Clustering helps to save costs and rationalise the basis for molecular biological 

testing. A representative molecule of a cluster is selected for the biological 

testing. If the representative proves to be bioactive, then the other molecules in 

the same cluster will be tested. But if the representative is not bioactive, then 

the other molecules in the same cluster will be disregarded from the biological 

testing (Willett, 1987; Downs & Willett, 1994; Downs & Barnard, 2002;  

MacCuish & MacCuish, 2014). 

The clustering procedure involves grouping molecules based on their distance, 

i.e., closest molecules (as most similar) will be grouped together. The pairwise 

distance approximations between the molecules can be measured using various 

distance coefficients. One of the most commonly used coefficients is the 

Euclidean distance, which measures the straight line distance between two 

molecules. The other common coefficient is the City Block (or Manhattan) 

distance that measures the distance in 𝑥 and the distance in 𝑦 in the 𝑥𝑦 

coordinates. This is similar when moving in a city where one has to move 

around the buildings instead of moving straight through the buildings to reach 

the destination. 

Different clustering methods require different types of distance (or similarity) 

coefficients to measure the distances (or similarity) between molecules. 

Therefore, in the chemoinformatics domain, many studies have been conducted 

using different types of coefficients depending on the clustering algorithms, and 

also on different types of clustering method  (Downs et al., 1994; Brown & 

Martin, 1996; Bayada et al., 1999; Chu et al., 2012; Gan et al., 2014).  

The effects of high dimensional data and distance coefficient on document 

clustering have been studied by France et al. (2012). These authors found that 
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increased dimensionality aids the clustering performance dependent upon the 

particular dataset being examined. The study also reported that different effects 

on the clustering performances were obtained using different distance 

coefficients.  

In the chemoinformatics context, many virtual screening applications have been 

successfully conducted even though the molecules are represented by very high 

dimensional representations (Willett, 2011). The cluster application, in 

particular, is a method that can be used with high dimensionality descriptors 

such as the binary fingerprint. However, the effect of the application 

performance using high dimensional data has not yet been investigated. 

Furthermore, as far as the research in chemoinformatics is concerned, there is 

no work carried out on the effect of high dimensionality in the effectiveness of 

the molecular clustering application. 

This chapter will investigate the effect of changing the dimensionality of 

molecular representations on the effectiveness of the molecular clustering 

applications. The purpose is to test the hypothesis that as the dimensionality 

increases, the effectiveness of the application decreases. The aim of this study is 

to identify the characteristics of chemical datasets that contribute to the 

effectiveness of the molecular clustering application in high dimensionality. It 

also aims to explain the observed performances using various molecular 

dimensions and distance coefficients, which simulate a practical clustering 

procedure. 

6.2 Experimental Design 

The experiments were carried out to replicate the clustering application, which 

calculates the distance between all possible pairs of molecules in the dataset. 

These distance proximities, which were measured by various distance 

coefficients were used to build an agglomerative hierarchical non-overlapping 

clustering. In a virtual screening application, a representative molecule of the 

cluster will then be selected as a sample for the biological testing. These 

experiments were carried out for subsets of data from two datasets, i.e., MDDR 
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and WOMBAT. These datasets have been introduced in Chapter 4 including the 

molecular clustering procedures. 

Similar molecular representation in Chapter 5 has been used in this study. Each 

compound in the datasets was represented using the binary fingerprint, i.e., 

ECFP_4-like (MorganR2) fingerprint, and folded into thirteen different 

fingerprint sizes as introduced in Chapter 4. 

Ten distance coefficients were used to measure the pairwise distances of the 

compounds, which allow observations on various clustering performance using 

different distance coefficients. These coefficients have been introduced in 

Chapter 4 and listed in Table 4-6.  

6.2.1 Clustering Method 

Chapter 4 has introduced the two clustering methods used in this study, i.e., 

Ward’s and Group Average algorithms. The following steps summarise the 

clustering procedures applied to this experiment: 
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Summary of clustering procedure. 

Step 1: Each molecule, x, is assigned a class label, 𝑙𝑘, identifying its activity 

class. The set of all labels for a database ᴂ is = {𝑙1, … , 𝑙𝑘}, where 𝑘 is 

the number of activity classes. For example, the MDDR dataset used 

in this experiment has 11 activity classes. Hence, the set of all labels 

for the database ᴂ is = {𝑙1, … , 𝑙11}. A similar procedure was 

performed for the WOMBAT dataset which has 14 activity classes, 

yielding a set of labels ᴂ = {𝑙1, … , 𝑙14}.  

Step 2: Each molecule, x, is converted into a specific type and length of 

fingerprint representation, i.e., Morgan R2. The fingerprint consists 

of a binary vector of 𝑛 dimensions: x = (𝑥1, … 𝑥𝑛). 

Step 3: The pairwise distance matrix of all possible pairs of molecules in the 

database is measured using the ten distance coefficients listed in 

Table 4.6. This procedure was repeated for each fingerprint 

dimension. 

Step 4: The closest molecules were clustered based on the chosen 

clustering method. The clustering is repeated until there is only a 

single cluster. This procedure was repeated for each fingerprint 

dimension. 

Step 5: The generated cluster for each fingerprint dimension was analysed 

and evaluated using two evaluation methods that were introduced 

in Chapter 4. 

 

In terms of computational resources, Ward’s agglomerative hierarchical 

algorithm consumes more computational resources compared to the non-

hierarchical clustering methods. For N molecules in a dataset, the stored-matrix 

algorithm for the procedure requires storage (or memory) space proportional 

to N2, which is written as “O(N2)“, and the time to perform the clustering is 

proportional to N3 (O(N3)). This becomes a severe restriction if the algorithm is 

to be implemented on large data sets.  
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Due to the computer intensive calculations, the Ward’s procedures in the 

current experiment were implemented on the Sheffield Advanced Research 

Computer (ShARC) cluster of the University of Sheffield. The high performance 

computing was developed and managed by the Research Software Engineering 

Group, Faculty of Engineering of the University of Sheffield. Figure 6-1 shows 

the general workflow of cluster implementation using ShARC. Each job contains 

a batch script of single or task array jobs that requests the high performance 

computing’s scheduler for CPU and execution time resources, job notification 

configuration and user environment creation, which install specific modules and 

libraries for the implementation (Figure 6-1). The application was coded using 

the Python language and the hierarchical clustering package from SciPy has 

been used to generate the Ward’s clustering (Jones et al., 2001). 

The performance of the ShARC implementation has been recorded. Figure 6-2 

shows the example of performance based on CPU memory and time usage when 

used to cluster the dataset in this experiment that contains 10,254 molecules for 

different fingerprint dimensions using the Euclidean distance coefficient. 

 

 

Figure 6-1 General workflow of high dimensional chemical data clustering implementation 
using ShARC 
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Figure 6-2 ShARC performance for various high dimensional chemical data clustering based on 
Ward’s algorithm using MDDR dataset of 10,254 molecules measured by Euclidean distance 

coefficient 

 

It is not surprising to see that the highest increase in the usage of computational 

resources is observed for the fingerprint dimensions above 215 bits. This is 

because the sizes of the dimensions are very high (65,536 and 131,072 bits). 

This requires more memory and time for the computer to convert the initial 

molecule representation into the fingerprint descriptors, measure the pairwise 

distance and clustering. However, in this implementation, the overall memory 

and time have taken much less than expected, suggesting that this is becoming 

less of a restriction for a large dataset.  

6.2.2 Cluster Analysis 

A common way to visualise the cluster for analysis is by drawing a dendrogram, 

which displays the distance level at which there was a combination of objects 

and clusters (Leach & Gillet, 2007). Figure 6-3 shows an example of a cluster 

dendrogram in which the y-axis indicates the distance level and x-axis indicates 
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the clustered molecules. The dendrogram is being read bottom up to see at 

which distance molecules have been combined. For example, in Figure 6-3, 

molecules b, c and e are combined at a distance level of 1.5 while a and d at 

distance level of 2.0. Molecules f and g are the examples of two singletons (until 

a distance level of 3.0 when f merges with a-e). 

 

Figure 6-3 Hierarchical cluster dendrogram with the red horizontal dotted line indicating the 
level of partition to define the number of clusters    

 

Cluster analysis can be performed on the cluster partitions which contain the 

number of clusters. Any desired number of clusters can be obtained by ‘cutting’ 

the dendrogram at the proper distance level. For example, the red dotted line in 

Figure 6-3 indicates such a horizontal line, resulting in four clusters. In the SciPy 

package library, the number of clusters can be determined simply by setting a 

threshold value in a function that indicates the number of clusters required 

(Jones et al., 2001). 

In this experiment, the procedures described in Section 6.2.1 yielded 520 

classifications from Ward’s and Group Average clustering methods using two 
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datasets, one type of fingerprint representation which has thirteen fingerprint 

dimensions and measured by ten distance coefficients. A partition value was 

applied to the cluster hierarchies to obtain cluster partitions that contain a set 

of 500, 600, 700, 800, 900 and 1000 clusters following the previous research by 

Chu, et al. (2012). The analysis and cluster evaluation were conducted based on 

these cluster partitions. 

Two methods have been used to evaluate the effectiveness of the clustering 

application in this experiment: (i) F-measure and (ii) QPI-measure (Quality 

Partition Index). These methods have been introduced in Chapter 4. 

 6.3 Results and Discussion 

The F-measure and the QPI-measure were used to evaluate the effectiveness of 

the molecular clustering in this experiment. The mean F and QPI values were 

averaged over the eleven activity classes in the MDDR dataset and the values 

resulted from Ward’s clustering are shown in columns (a) F-Measure and (b) 

QPI-Measure in Table 6-1. The range of standard deviation for the mean F is also 

reported above the table. The results were presented for all distance coefficients 

and fingerprint dimensions where the best-performing fingerprint dimension 

for each partition in each column of the table is italicised, bold-faced and 

marked in red. In addition, Figure 6-4 represents the results in Table 6-1, 

visualising the effects of the clustering performances over different fingerprint 

dimensions. 

As mentioned in section 6.2.1, further experiments have been conducted using 

the Group Average algorithm, the results of which are given in Table B-1 and 

Figure B-1 in Appendix B. Using similar clustering algorithms and evaluation 

methods, the results averaged over the fourteen activity classes in the WOMBAT 

dataset are listed and visualised in the tables and figures in Appendix B 

(Table B-2 and Figure B-2 for Ward's clustering, Table B-3 and Figure B-3 for 

Group Average clustering). 

 



Chapter 6 Investigation into the Effect of Dimensionality on the Effectiveness of Clustering  

119 

Table 6-1 Effectiveness value of Ward’s clustering measured by (a) F-measure and (b) QPI-
measure for the MDDR dataset using various distance coefficients and fingerprint dimensions. 
The range of the standard deviation, σ, for the mean F is between 0.022 and 0.446 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.645 0.749 0.756 0.783 0.822 0.897 0.133 0.138 0.143 0.148 0.151 0.156

2'6 0.766 0.843 0.860 0.997 0.997 0.993 0.194 0.206 0.215 0.221 0.228 0.238

2'7 1.039 1.046 1.063 1.123 1.123 1.141 0.247 0.262 0.269 0.287 0.299 0.311

2'8 1.006 0.988 1.009 1.074 1.168 1.107 0.283 0.306 0.316 0.326 0.335 0.338

2'9 1.029 1.045 1.046 1.058 1.085 1.091 0.290 0.307 0.319 0.334 0.337 0.345

2'10 0.996 1.021 1.106 1.106 1.127 1.207 0.286 0.299 0.309 0.332 0.339 0.344

2'11 1.023 1.023 1.043 1.063 1.074 1.075 0.299 0.325 0.338 0.346 0.356 0.368

2'12 0.983 1.053 1.060 1.066 1.056 1.091 0.283 0.301 0.311 0.327 0.340 0.346

2'13 1.044 1.057 1.085 1.091 1.099 1.098 0.290 0.314 0.325 0.330 0.340 0.349

2'14 1.075 1.136 1.114 1.148 1.150 1.135 0.304 0.308 0.333 0.345 0.343 0.353

2'15 1.054 1.066 1.100 1.102 1.104 1.090 0.310 0.314 0.327 0.336 0.348 0.355

2'16 1.018 1.046 1.101 1.104 1.104 1.090 0.300 0.320 0.333 0.335 0.347 0.350

2'17 1.053 1.099 1.099 1.102 1.103 1.089 0.300 0.322 0.332 0.332 0.344 0.351

2'5 0.764 0.831 0.831 0.937 0.942 0.969 0.141 0.146 0.152 0.157 0.163 0.165

2'6 1.016 0.960 1.032 1.019 1.060 1.076 0.199 0.209 0.219 0.228 0.233 0.241

2'7 1.089 1.089 1.065 1.069 1.093 1.140 0.271 0.286 0.290 0.298 0.308 0.315

2'8 0.888 0.936 0.954 0.961 0.983 0.983 0.281 0.308 0.311 0.318 0.321 0.340

2'9 0.997 1.019 1.019 1.056 1.060 1.070 0.275 0.296 0.298 0.312 0.325 0.344

2'10 0.947 0.965 1.001 1.004 1.072 1.144 0.299 0.303 0.318 0.325 0.328 0.338

2'11 0.971 1.091 1.124 1.161 1.180 1.153 0.283 0.292 0.307 0.319 0.334 0.334

2'12 0.876 0.951 1.032 1.067 1.078 1.085 0.287 0.302 0.315 0.330 0.345 0.347

2'13 0.896 0.996 1.014 1.039 1.046 1.097 0.299 0.305 0.323 0.332 0.352 0.353

2'14 0.878 0.901 0.956 1.003 1.032 1.073 0.275 0.289 0.318 0.336 0.347 0.347

2'15 0.870 0.909 0.963 1.032 1.061 1.101 0.274 0.289 0.306 0.331 0.349 0.356

2'16 0.870 0.905 0.946 1.017 1.017 1.073 0.294 0.304 0.314 0.329 0.340 0.358

2'17 0.898 0.898 0.957 1.003 1.003 1.073 0.291 0.293 0.318 0.329 0.348 0.356

2'5 0.653 0.834 0.909 0.983 0.991 1.008 0.136 0.142 0.149 0.152 0.155 0.158

2'6 0.810 0.854 0.909 0.915 0.911 0.937 0.195 0.205 0.213 0.220 0.226 0.236

2'7 1.191 1.135 1.153 1.172 1.210 1.219 0.261 0.262 0.274 0.284 0.291 0.301

2'8 1.014 1.011 1.047 1.086 1.070 1.160 0.281 0.290 0.305 0.316 0.319 0.332

2'9 1.011 1.064 1.052 1.048 1.071 1.122 0.298 0.307 0.319 0.330 0.340 0.341

2'10 1.016 1.013 1.071 1.112 1.112 1.104 0.285 0.305 0.322 0.341 0.352 0.355

2'11 1.049 1.056 1.054 1.054 1.054 1.059 0.282 0.310 0.331 0.342 0.353 0.363

2'12 1.047 1.055 1.101 1.068 1.074 1.112 0.291 0.304 0.319 0.337 0.345 0.366

2'13 1.045 1.069 1.099 1.127 1.133 1.119 0.285 0.307 0.328 0.330 0.345 0.354

2'14 1.039 1.056 1.073 1.112 1.134 1.119 0.296 0.306 0.318 0.325 0.339 0.351

2'15 1.062 1.062 1.134 1.152 1.168 1.119 0.313 0.327 0.340 0.342 0.348 0.360

2'16 1.059 1.059 1.124 1.153 1.168 1.119 0.307 0.324 0.338 0.342 0.349 0.363

2'17 1.057 1.057 1.122 1.152 1.168 1.119 0.300 0.311 0.339 0.349 0.355 0.366

2'5 0.691 0.705 0.740 0.740 0.761 0.800 0.145 0.149 0.156 0.162 0.169 0.171

2'6 0.935 1.001 1.019 1.029 1.082 1.105 0.199 0.217 0.224 0.234 0.240 0.244

2'7 0.938 1.017 1.042 1.068 1.088 1.073 0.248 0.262 0.281 0.289 0.295 0.306

2'8 0.893 1.022 1.037 1.037 1.113 1.112 0.266 0.290 0.312 0.329 0.335 0.341

2'9 1.050 1.056 1.098 1.085 1.068 1.090 0.297 0.312 0.315 0.330 0.337 0.345

2'10 0.960 1.095 1.103 1.144 1.106 1.130 0.281 0.316 0.334 0.338 0.344 0.351

2'11 0.909 1.008 1.024 1.034 1.011 0.990 0.291 0.319 0.327 0.335 0.342 0.352

2'12 0.931 1.032 1.079 1.079 1.036 1.042 0.290 0.317 0.336 0.335 0.337 0.348

2'13 0.895 1.041 1.047 1.047 1.042 1.046 0.284 0.314 0.326 0.344 0.345 0.343

2'14 0.891 1.010 1.027 1.042 1.047 0.993 0.296 0.325 0.330 0.339 0.343 0.343

2'15 0.870 0.951 1.028 1.040 1.046 1.046 0.278 0.301 0.315 0.331 0.333 0.338

2'16 0.870 0.981 1.011 1.015 1.015 0.979 0.277 0.302 0.311 0.337 0.337 0.340

2'17 0.891 0.969 1.031 1.031 1.026 0.990 0.284 0.307 0.319 0.341 0.348 0.348

[D4] Euclidean 

[D1] Bray-Curtis

[D2] City-Block

[D3] Cosine 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Table 6-1 (continued) 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.764 0.831 0.831 0.937 0.942 0.969 0.141 0.146 0.152 0.157 0.163 0.165

2'6 1.016 0.960 1.032 1.019 1.060 1.076 0.199 0.209 0.219 0.228 0.233 0.241

2'7 1.089 1.089 1.065 1.069 1.093 1.140 0.271 0.286 0.290 0.298 0.309 0.315

2'8 0.888 0.936 0.954 0.961 0.983 0.983 0.281 0.308 0.311 0.317 0.321 0.340

2'9 0.997 1.021 1.019 1.056 1.060 1.070 0.275 0.296 0.298 0.312 0.325 0.344

2'10 0.975 0.981 1.001 1.004 1.072 1.144 0.299 0.304 0.317 0.331 0.333 0.338

2'11 0.971 1.091 1.124 1.161 1.180 1.136 0.281 0.292 0.307 0.315 0.334 0.331

2'12 0.857 0.951 1.032 1.032 1.078 1.085 0.283 0.302 0.315 0.324 0.344 0.348

2'13 0.852 0.903 0.996 1.014 1.051 1.097 0.295 0.298 0.313 0.329 0.342 0.354

2'14 0.837 0.875 0.945 0.945 0.945 1.021 0.270 0.280 0.312 0.312 0.312 0.345

2'15 0.833 0.909 0.909 0.909 0.909 0.909 0.267 0.289 0.289 0.289 0.289 0.289

2'16 0.841 0.841 0.841 0.841 0.841 0.841 0.287 0.287 0.287 0.287 0.287 0.287

2'17 0.818 0.818 0.818 0.818 0.818 0.818 0.238 0.238 0.238 0.238 0.238 0.238

2'5 0.717 0.734 0.774 0.774 0.760 0.772 0.135 0.138 0.143 0.148 0.153 0.158

2'6 0.779 0.779 0.860 0.889 1.013 1.044 0.190 0.200 0.214 0.217 0.232 0.236

2'7 1.062 1.068 1.092 1.107 1.127 1.127 0.275 0.291 0.304 0.305 0.310 0.310

2'8 0.976 1.011 1.037 1.010 1.041 1.041 0.262 0.283 0.295 0.304 0.321 0.328

2'9 1.071 1.065 1.060 1.099 1.101 1.110 0.285 0.307 0.317 0.333 0.346 0.346

2'10 1.034 1.127 1.115 1.131 1.150 1.150 0.277 0.289 0.311 0.329 0.340 0.345

2'11 1.010 1.067 1.071 1.075 1.076 1.076 0.305 0.313 0.329 0.346 0.360 0.363

2'12 1.013 1.088 1.099 1.075 1.122 1.132 0.296 0.323 0.336 0.338 0.348 0.353

2'13 1.023 1.051 1.095 1.138 1.112 1.112 0.283 0.306 0.319 0.325 0.342 0.350

2'14 0.997 1.061 1.064 1.077 1.079 1.079 0.281 0.315 0.332 0.333 0.345 0.344

2'15 0.995 1.058 1.068 1.083 1.079 1.079 0.283 0.304 0.334 0.354 0.357 0.352

2'16 1.012 1.054 1.091 1.106 1.106 1.106 0.285 0.308 0.333 0.351 0.353 0.353

2'17 1.008 1.050 1.076 1.101 1.101 1.101 0.288 0.318 0.331 0.343 0.347 0.355

2'5 0.640 0.763 0.800 0.817 0.847 0.856 0.139 0.147 0.150 0.153 0.159 0.163

2'6 0.925 0.979 0.999 1.080 1.080 1.106 0.200 0.207 0.221 0.223 0.230 0.239

2'7 1.000 1.000 1.002 1.038 1.067 1.080 0.263 0.272 0.275 0.287 0.295 0.299

2'8 0.932 0.970 0.972 1.039 1.104 1.110 0.272 0.290 0.303 0.311 0.319 0.332

2'9 0.920 0.969 0.972 1.021 1.038 1.047 0.294 0.306 0.314 0.333 0.334 0.337

2'10 0.943 1.025 1.073 1.073 1.104 1.091 0.274 0.301 0.316 0.309 0.322 0.337

2'11 0.939 1.091 1.102 1.147 1.147 1.129 0.295 0.305 0.331 0.351 0.364 0.364

2'12 0.908 1.063 1.066 1.079 1.079 1.079 0.298 0.308 0.322 0.332 0.338 0.341

2'13 0.917 1.053 1.086 1.086 1.109 1.109 0.272 0.286 0.303 0.331 0.347 0.347

2'14 0.966 0.995 1.119 1.119 1.119 1.073 0.271 0.301 0.311 0.311 0.311 0.350

2'15 0.897 1.040 1.040 1.040 1.040 1.040 0.276 0.311 0.311 0.311 0.311 0.311

2'16 0.896 0.896 0.896 0.896 1.096 1.096 0.264 0.264 0.264 0.264 0.334 0.334

2'17 0.947 0.947 0.947 0.947 0.947 0.947 0.275 0.275 0.275 0.275 0.275 0.275

2'5 0.660 0.681 0.741 0.799 0.818 0.835 0.144 0.148 0.150 0.156 0.162 0.168

2'6 0.835 0.884 0.891 0.977 1.013 1.020 0.205 0.213 0.219 0.221 0.231 0.237

2'7 0.960 0.992 1.023 1.023 1.045 1.093 0.268 0.284 0.294 0.308 0.311 0.325

2'8 0.849 0.871 0.887 0.941 0.964 0.964 0.286 0.296 0.311 0.318 0.330 0.344

2'9 0.931 1.011 1.022 1.049 1.063 1.131 0.293 0.303 0.325 0.330 0.337 0.348

2'10 0.980 1.048 1.017 1.043 1.043 1.127 0.279 0.295 0.324 0.336 0.344 0.358

2'11 0.973 1.023 1.069 1.069 1.127 1.150 0.277 0.292 0.300 0.311 0.328 0.327

2'12 0.919 0.955 1.051 1.099 1.130 1.085 0.283 0.306 0.317 0.332 0.352 0.357

2'13 0.852 0.983 1.014 1.039 1.051 1.097 0.281 0.297 0.311 0.341 0.347 0.352

2'14 0.878 0.905 0.927 0.956 1.032 1.073 0.273 0.279 0.303 0.319 0.338 0.348

2'15 0.838 0.870 0.963 0.963 0.963 1.049 0.254 0.275 0.302 0.302 0.302 0.347

2'16 0.839 0.905 0.905 0.905 0.905 0.905 0.262 0.305 0.305 0.305 0.305 0.305

2'17 0.875 0.875 0.875 0.875 0.875 0.875 0.281 0.281 0.281 0.281 0.281 0.281

[D7] Kulsinski 

[D8] Rogers-
Tanimoto 

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure

[D6] Jaccard

[D5] Hamming 

Distance 
Coefficients
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Table 6-1 (continued) 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.619 0.708 0.704 0.741 0.810 0.888 0.132 0.136 0.141 0.143 0.146 0.149

2'6 0.900 0.935 0.971 0.983 1.032 1.121 0.195 0.200 0.205 0.212 0.219 0.223

2'7 1.026 1.045 1.051 1.059 1.087 1.087 0.274 0.287 0.290 0.301 0.303 0.313

2'8 0.934 0.984 0.981 0.986 0.986 1.052 0.292 0.305 0.315 0.328 0.333 0.340

2'9 0.980 0.979 1.022 1.020 1.067 1.063 0.290 0.302 0.320 0.329 0.331 0.349

2'10 0.953 0.968 1.004 1.063 1.112 1.080 0.283 0.300 0.311 0.324 0.336 0.343

2'11 0.939 1.065 1.050 1.097 1.097 1.102 0.281 0.304 0.312 0.326 0.330 0.335

2'12 0.962 1.029 1.087 1.094 1.094 1.094 0.281 0.291 0.318 0.325 0.344 0.352

2'13 0.920 1.052 1.099 1.095 1.095 1.095 0.293 0.294 0.298 0.324 0.336 0.336

2'14 0.990 1.023 1.060 1.060 1.060 1.083 0.286 0.301 0.324 0.324 0.324 0.356

2'15 0.885 1.012 1.012 1.012 1.012 1.012 0.258 0.290 0.290 0.290 0.290 0.290

2'16 1.016 1.016 1.016 1.016 1.044 1.044 0.281 0.281 0.281 0.281 0.322 0.322

2'17 0.945 0.945 0.945 0.945 0.945 0.945 0.293 0.293 0.293 0.293 0.293 0.293

2'5 0.704 0.745 0.761 0.832 0.899 0.899 0.139 0.145 0.149 0.152 0.156 0.160

2'6 1.118 1.118 1.153 1.159 1.145 1.126 0.215 0.219 0.226 0.228 0.240 0.244

2'7 0.985 1.030 1.031 1.034 1.128 1.151 0.248 0.256 0.272 0.280 0.288 0.304

2'8 1.020 1.038 1.034 1.064 1.106 1.107 0.272 0.289 0.299 0.320 0.330 0.337

2'9 1.001 1.049 1.062 1.066 1.064 1.069 0.269 0.284 0.296 0.316 0.326 0.328

2'10 1.035 1.110 1.106 1.106 1.106 1.064 0.291 0.319 0.335 0.342 0.337 0.360

2'11 1.011 1.059 1.086 1.115 1.142 1.115 0.289 0.300 0.316 0.341 0.328 0.339

2'12 1.048 1.082 1.114 1.129 1.156 1.163 0.288 0.304 0.322 0.332 0.339 0.355

2'13 1.028 1.082 1.101 1.101 1.098 1.114 0.290 0.310 0.341 0.337 0.348 0.358

2'14 0.933 1.030 1.034 1.056 1.103 1.109 0.283 0.311 0.327 0.334 0.338 0.354

2'15 0.978 1.012 1.062 1.078 1.064 1.114 0.279 0.299 0.309 0.321 0.322 0.339

2'16 0.978 1.043 1.045 1.047 1.064 1.114 0.266 0.289 0.307 0.320 0.333 0.343

2'17 0.975 1.045 1.048 1.069 1.125 1.135 0.276 0.299 0.314 0.314 0.330 0.343

[D10] 
Sokal-Sneath 

[D9] 
Russell-Rao 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Figure 6-4 Effects of dimensionality on Ward’s clustering measured by (a) F-measure and (b) 
QPI-measure for MDDR dataset using various distance coefficients
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Figure 6-4 (continued)
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Figure 6-4 (continued) 

 

6.3.1 Effects of Low Dimensionality on the Effectiveness of 
Clustering 

The inspection of Figure 6-4 shows a common general behaviour across all 

distance coefficients and hierarchical partitions. Lowest clustering performance 

was obtained from the lowest fingerprint dimension considering both 

evaluation criteria.  

The possible reason for this behaviour is the fewer bit vector spaces of the 

lowest dimension, which only has 32 (i.e., 25) bits space, and hence involves 

very large numbers of collisions when bits are being set. This is considered 

small to represent the information of 10,254 molecules belonging to the MDDR 

dataset and 13,813 molecules in the WOMBAT dataset used in this experiment. 

Hence, there is a possibility that most of the bits will be utilised to represent the 

features in the molecules or most of the molecules will have the same bit sets in 

the fingerprint. 
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The bits dimension of Morgan R2 fingerprints used in this experiment were 

analysed. Table 6-2 lists the summary statistics obtained from analysis of bits 

set for the molecules in the MDDR and WOMBAT datasets. In addition, it 

provides the bit collision rate for each dimension that was obtained by 

subtracting the average bits set of a lower dimension from the average bits set 

of a higher dimension.  

Table 6-2 Summary statistics of bits set and bit collision rate for (a) 10,254 molecules in MDDR 
dataset and (b) 13,813 molecules in WOMBAT dataset using various Morgan R2 fingerprint 
dimensions 

 

It can be seen that the lowest fingerprint dimension (i.e., 25) of both datasets has 

molecules with a maximum number of bits set of 32 bits. Similar behaviour can 

be seen from the fingerprint dimension of 26, which has a maximum number of 

bits set of 62 bits for MDDR and 63 bits for WOMBAT. In addition, the average 

number of bits set increases and the bit collision rate decreases to zero as the 

dimensionality increases.   

This indicates that the use of low fingerprint dimensions can result in a 

maximum utilisation of bits fingerprint, therefore increasing the chances of 

higher bit collisions. As a result, this will affect the pairwise distance calculation 

between the molecules since the distances between a molecule and its nearest 

and furthest molecules can be difficult to distinguish. Hence, the performance of 

the clustering using lower dimensions will also be affected, explaining the 

behaviour observed in Figure 6-4 for the MDDR dataset and similarly from the 

WOMBAT dataset in Appendix B.  

2'5 2'6 2'7 2'8 2'9 2'10 2'11 2'12 2'13 2'14 2'15 2'16 2'17

Min 8 9 9 9 10 10 10 10 10 10 10 10 10

Max 32 62 94 127 148 157 162 165 165 165 166 166 166

Average 25.62 35.60 43.31 48.18 50.61 52.00 52.68 53.37 53.50 53.58 53.61 53.62 53.63

Bit Collision Rate 9.98 7.71 4.86 2.44 1.39 0.67 0.70 0.13 0.07 0.03 0.01 0.01

Min 6 8 8 8 8 8 8 8 8 8 8 8 8

Max 32 63 114 163 192 206 220 222 222 223 223 223 223

Average 25.11 34.62 41.86 46.33 48.61 49.89 50.53 51.17 51.28 51.35 51.39 51.40 51.40

Bit Collision Rate 9.52 7.23 4.47 2.29 1.28 0.64 0.64 0.10 0.07 0.04 0.01 0.01

(a) MDDR

(b) WOMBAT

Dataset
Morgan R2 Fingerprint Dimension

Bits Set
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6.3.2 Effects of High Dimensionality on the Effectiveness of 
Clustering  

The results from the QPI measure are discussed because they provide general 

interpretations of the separation between the actives and inactives in the MDDR 

dataset. As shown in Figure 6-4, two distinct trends on the effects of 

dimensionality on the effectiveness of clustering can be observed. 

First, the effectiveness of clustering increased as the fingerprint dimension 

increases until it reached a maximum QPI value and remains thereafter. This 

behaviour can be observed by using six distance coefficients, which are Bray-

Curtis [D1], City-Block [D2], Cosine [D3], Euclidean [D4], Jaccard [D6] and Sokal-

Sneath [D10].  

Second, the cluster performance increased as the fingerprint dimension 

increases followed by a decrease after it reached a maximum QPI value, which 

can be seen by using the other four distance coefficients that are Hamming [D5], 

Kulsinski [D7], Rogers-Tanimoto [D8] and Russell-Rao [D9]. 

The trends observed varied depending on the coefficients used to measure the 

pairwise distance of the molecules in the dataset. Two distance coefficients 

were chosen as the examples in this discussion, i.e., the Euclidean [D4] and 

Hamming [D5] distance coefficients, which represent the distinct behaviours. 

As listed in Table 4-6, the Euclidean [D4] and Hamming [D5] distance 

coefficients are defined by Eq. (32) and Eq. (33): 

 𝐷𝐸𝑈𝐶 = [∑ |𝑥𝑖 − 𝑦𝑖|
2

𝑛

𝑖=1
]

1
2⁄

 (32) 

 𝐷𝐻𝐴𝑀 =
∑ |𝑥𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 (33) 

In relation to the fingerprint dimensionality, Hamming [D5] is different from 

Euclidean [D4] because it measures the differences between two molecules 
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from the overall dimensions. Based on the Hamming [D5] formulation, the 

distance between two molecules will be transformed into a much shorter 

distance in very high dimensional space compared to the distance measured in a 

lower dimensional space. These assumptions are investigated separately in the 

following Sections 6.3.2.1 and 6.3.2.2.  

6.3.2.1 Analysis of Distance Measures by Euclidean Distance Coefficient 

The pairwise distances of the molecules in the MDDR dataset measured by the 

Euclidean [D4] distance coefficient for each fingerprint dimension were 

analysed using the histogram distribution. Table 6-3 lists the statistical 

information about the distribution, which includes the mean, standard 

deviation, minimum and maximum distance values. The difference between the 

maximum and minimum distances for an extreme case is also included. In 

addition, Figure 6-5 represents the histogram distribution plot for the distance 

values against the frequency of the observations for each dimension.  

Table 6-3 Summary statistics for distribution of pairwise distance measured by  Euclidean [D4] 
distance coefficient for MDDR dataset using various fingerprint dimensions 

 

 

Distance
Coefficient

Fingerprint
Dimensions

Mean
Distance

Standard 
Deviation

Minimum
Distance

Maximum
Distance

(Maximum - Minimum) 
Distance

2'5 3.025 0.542 0.000 5.385 5.385

2'6 5.236 0.408 0.000 7.348 7.348

2'7 6.986 0.508 0.000 9.592 9.592

2'
8 8.089 0.716 0.000 11.747 11.747

2'9 8.678 0.854 0.000 14.000 14.000

2'
10 9.004 0.944 0.000 15.133 15.133

2'11 9.166 0.995 0.000 15.843 15.843

2'
12 9.283 1.018 0.000 16.248 16.248

2'13 9.318 1.027 0.000 16.371 16.371

2'
14 9.338 1.033 0.000 16.492 16.492

2'
15 9.348 1.036 0.000 16.523 16.523

2'16 9.352 1.037 0.000 16.523 16.523

2'17 9.354 1.037 0.000 16.583 16.583

[D4] Euclidean
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Figure 6-5 Distribution histograms of pairwise distances for molecules in MDDR represented by 
various fingerprint dimensions and measured by Euclidean distance coefficient 
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Figure 6-5 (continued) 
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Figure 6-5 (continued) 
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Figure 6-5 (continued) 
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Figure 6-5 (continued) 

 

Inspection of Figure 6-5 shows an overall symmetric and well spread pattern of 

distributions when measured by the Euclidean [D4] distance coefficient for all 

dimensions. The centre and variance values of the distributions can be obtained 

from the mean and standard deviation values provided in each plot. 

As listed in Table 6-3, the mean values for the distances increased from 3.025 to 

9.354 as the dimensionality increases. However, the increase of mean values is 

very small from the 210 until 217 bits dimension. This indicates that, the increase 

of bits dimension increases the average distance values until a certain 

dimension and remains constant thereafter.  

The standard deviation values have also increased from 0.542 to 1.037. This 

similar behaviour indicates that there is more variance of distances in the 

higher dimensionality space than in the lower dimensions. In this condition, a 

better separation between the molecules is likely to be seen in the dataset. As an 

effect, the clustering process will likely be effective because it can distinguish 

between the nearest and the furthest molecule in the higher dimensional space. 

Considering the effect of clustering, it is assumed that these criteria enable 

better discrimination between the molecules when Ward’s algorithm is used. 

This is because the algorithm considers distance values in determining the 
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minimal variance when performing the merger, which can be more effectively 

quantified when better discrimination is available. Therefore, these criteria 

have resulted in the first trend observed in Figure 6-4. The effectiveness of 

clustering increased as the fingerprint dimension increases until it reached a 

maximum QPI value and remains constant thereafter. 

In general, the results from the F measure show a similar pattern of 

effectiveness to the QPI measure, with the exception of being more variable due 

to the effects of different homogeneity classes when averaging the F values. The 

highest F value corresponds to the average of optimal cluster for each 

dimension in the MDDR dataset. 

Finally, similar trends can be observed by using the Bray-Curtis [D1], City-Block 

[D2], Cosine [D3], Jaccard [D6] and Sokal-Sneath [D10] distance coefficients 

suggesting similar behaviour on the distance distributions.  

The findings were also consistent for the results using the Group Average 

algorithm, suggesting the consistency of the findings using another algorithm 

that considers the distances for the merger. Similarly, results using the 

WOMBAT dataset also suggest the consistency of the findings on different 

datasets. The corresponding tables and figures can be found in Appendix B. 

6.3.2.2 Analysis of Distances Measured by Hamming Distance Coefficient 

Pairwise distance distribution measured by Hamming [D5] distance was 

analysed to quantify the second trend observed in Figure 6-4, i.e., the 

effectiveness of the clustering increased as the fingerprint dimension increases 

followed by a decrease after it reached a maximum QPI value. Table 6-4 lists the 

statistical information about the distribution and Figure 6-6 plots the histogram 

distribution. 
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Table 6-4 Summary statistics for distribution of pairwise distance measured by  Hamming [D5] 
distance coefficient for MDDR dataset using various fingerprint dimensions 

 

Figure 6-6 shows a different behaviour compared to the previous discussion in 

Section 6.3.2.1. As the dimensionality increases towards the highest dimension, 

the distribution of distances between the molecules changing from symmetric to 

relatively uniform. As listed in Table 6-4, with the exception of the 25 bits 

dimension, the mean values for the distances decrease as the dimensionality 

increases from 0.431 to 0.011. This indicates that, the increase of bits dimension 

decreases the average distance values when measured by the Hamming [D5] 

distance coefficient.  

Another important behaviour is the change of the variances of the distributions, 

which decrease from the standard deviation value of 0.100 to 0.000. This 

indicates three behaviours: (1) in general, the low standard deviation value 

means that almost most of the distances are very close to the average distance, 

(2) there were less variances of distances in the higher dimensionality spaces 

than in the lower dimensions and (3) there were zero variances in the two 

highest dimensional spaces, i.e., 216 and 217 bits. 

 

Distance

Coefficient

Fingerprint

Dimensions

Mean

Distance

Standard 

Deviation

Minimum

Distance

Maximum

Distance

(Maximum - Minimum) 

Distance

2'
5 0.295 0.100 0.000 0.906 0.906

2'6 0.431 0.066 0.000 0.844 0.844

2'
7 0.383 0.055 0.000 0.719 0.719

2'
8 0.258 0.046 0.000 0.539 0.539

2'9 0.148 0.030 0.000 0.383 0.383

2'
10 0.080 0.017 0.000 0.224 0.224

2'
11 0.042 0.009 0.000 0.123 0.123

2'
12 0.021 0.005 0.000 0.064 0.064

2'13 0.011 0.002 0.000 0.033 0.033

2'14 0.005 0.001 0.000 0.017 0.017

2'
15 0.003 0.001 0.000 0.008 0.008

2'
16 0.001 0.000 0.000 0.004 0.004

2'17 0.011 0.000 0.000 0.002 0.002

[D5] Hamming
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Figure 6-6 Distribution histograms of pairwise distances for molecules in MDDR represented by 
various fingerprint dimensions and measured by Hamming distance coefficient 
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Figure 6-6 (continued) 
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Figure 6-6 (continued) 
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Figure 6-6 (continued) 
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Figure 6-6 (continued) 

 

In this situation, no substantial separation between the molecules can be found 

in the higher dimensional space. It is expected that the relative difference of the 

distances of the closest and furthest neighbours is zero. As an effect, the 

clustering process will likely be not effective because it is almost impossible to 

distinguish between the nearest or the furthest molecule (or even the active or 

inactive molecules) because they are all approximately at the same distance 

level. 

These criteria affect the Ward’s clustering because non-discrimination between 

the molecules resulted in the difficulty to quantify the minimal variance for the 

merger. Therefore, this could be the basis for the behaviour observed in the 

second trend evaluated by both QPI and F methods in Figure 6-4.  

Finally, similar trends were observed by using the Kulsinski [D7], Rogers-

Tanimoto [D8] and Russell-Rao [D9] distance coefficients suggesting similar 

behaviour to the distance distributions. In addition, similar findings using the 

Group Average algorithm and the WOMBAT dataset can be found in Appendix B. 
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6.3.3 Effects of Clustering Partition on F Measure and QPI 
Measure 

A general observation on Figure 6-4 indicates that the effectiveness values of 

both F and QPI measures increased as the number of cluster partitions increases 

from 500 to 1000 partitions across almost all dimensions and distance 

coefficients. This can be seen by the coloured line plots, which are mostly 

plotted in a sequence of the lowest effectiveness value being from 500 partitions 

and increasing up to 1000 partitions, i.e., black (500), red (600), green (700), 

blue (800), turquoise (900) and magenta (1000). Similar behaviour can be 

observed from using the Group Average algorithm and the WOMBAT dataset in 

Appendix B. 

It can be seen that in most cases, the larger number of cluster partitions have 

resulted in the higher values of QPI and F measures. These results demonstrate 

the effectiveness of small clusters in separating the actives and inactives, and 

identifying the best cluster with a balance of precision and recall. Therefore, this 

finding suggests the use of a larger number of cluster partition to obtain 

optimum effectiveness for molecular clustering. 

6.4 Conclusion 

The molecular clustering application implements the distance between 

molecules as a basis for grouping the molecules. Many studies have been 

conducted on clustering involving the search for efficient cluster algorithms and 

effect of distance coefficient. These applications typically involved high 

dimensional descriptors as the molecular representation. However, to the 

researcher’s knowledge, there are no previous studies conducted on the effect 

of a high dimensionality dataset on the performance of the molecular clustering 

in the chemoinformatics context.   

This chapter investigated the effect of changing the dimensionality of molecular 

representations on the effectiveness of molecule clustering applications. It 

aimed to observe the performance of the clustering application using various 

descriptor dimensions and distance coefficients used in this application. 
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The findings suggest two main conclusions. First, the effectiveness of molecular 

clustering increases with the increase of the fingerprint dimension until it 

reached a certain maximum value and remains at similar levels thereafter. This 

finding suggests that the molecular cluster performance is not affected by the 

changes of the fingerprint dimension. This finding is in line with the result 

obtained in the previous experiment in Chapter 5, which investigated the 

effectiveness of the similarity search application in high dimensionality. 

Second, the findings are varying depending on the distance coefficient that is 

used to measure the distance of molecules during the clustering procedure. The 

effectiveness of molecular clustering decreases when the distance of the 

molecules is measured by the distance coefficients, which measure the distance 

of the molecules over the molecular fingerprint dimensions. This also suggests 

that, as the dimensionality increases, the ratio of distances between a molecule 

to its nearest and furthest neighbours becomes unity when measured by these 

types of distance coefficients. Hence, is it difficult to cluster molecules 

represented by very high dimensions as the distances between the molecules 

become incomparable. 

This chapter also suggests two additional conclusions. First, the need to avoid 

the use of very small fingerprint dimensions, e.g., 25 or 26 bits dimension, which 

can result in more bit collisions, hence affecting the effectiveness of the 

molecular clustering. Second, smaller clusters are more effective than larger 

clusters in separating the actives and inactives in a dataset. 
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Chapter 7 Investigation into the Relative 
Importance of the Similarity Search Components 
using a Cross-Classified Multilevel Model 

7.1 Introduction 

Previous studies have evaluated the effects of different types of compound 

representations and similarity coefficients on similarity measures (Hert et al., 

2004; Todeschini et al., 2012; Riniker and Landrum, 2013). The performance of 

a similarity measure is affected by the choice of both compound representation 

and similarity coefficient.  

The molecular fingerprints are the most effective compound representations 

that describe compound features in several different ways. The performance of 

a similarity measure depends on the ability of the molecular fingerprints to 

describe the molecules (Riniker & Landrum, 2013). The similarity coefficients, 

on the other hand, are the mathematical measures that are derived from 

different formulations. The ability to quantify the degree of similarity for the 

similarity coefficients has been evaluated in previous research (Todeschini et 

al., 2012). 

However, the measure of contribution to the overall effectiveness in similarity 

measure between the similarity components has not been investigated. Thus, 

this chapter aims to analyse the measure of contribution between the 

compound representations (i.e., molecular fingerprints) and the similarity 

coefficients to the enrichment factor. The investigation seeks to identify which 

component in the similarity measure matters more than the other. The results 

from the similarity search application will be investigated via a cross-classified 

multilevel approach to measure the contribution between the similarity 

components.  
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7.2 Cross-Classified Multilevel Modeling 

Multilevel modeling is a statistical tool that is designed to model data based on 

its influence factor (Goldstein, 1987). In this approach, the influence factors are 

treated as different levels. The initial structure of the model involves a pure 

hierarchical data structure where data is nested within the higher levels. For 

example, a student is nested within the school. Hence, the student’s 

achievement can be influenced by the school that the student attended 

(Goldstein, 2011). 

However, in many cases, data can involve other potential influence factors 

which are not purely nested in the form of a hierarchical data structure. There 

can also be more than one type of influence factor in each level. For example, a 

student who attended more than one type of school in different 

neighbourhoods. In this case, the student’s achievement can be influenced by 

the schools they attended and the neighbourhood they lived in. Incorporating 

neighbourhood as a further level is not straightforward since schools and 

neighbourhoods are not strictly nested within one another.  

Cross-classified multilevel modeling can be used to model and analyse such 

complex non-hierarchical data structures (Goldstein, 1987). It has been applied 

to investigate various potential influence factors in areas such as education 

(Garner & Raudenbush, 1991; Leckie, 2009) and sport (Bell et. al., 2016). This 

model decomposes the total variance of the response variable into separate 

components in order to estimate the variance contributed by each influence 

factor, i.e., influence variable. It measures the proportion of the observed 

response variation that lies at a given level of the model and represents the 

percentage variance explained by the levels. Hence, it allows making 

conclusions about the relative importance of different sources of influence 

(different levels) on the response (Goldstein, 2011). As well as assessing the 

overall influence of a given level, the model can estimate and rank the 

magnitude of individual random effects (i.e., different types of influence 

variables). 
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In the chemoinformatics context, each enrichment value of a similarity search 

can be produced in part by a combination of compound representation, 

similarity coefficient and weighting scheme. In this case, the effectiveness of the 

similarity searches will generally be influenced by the molecular representation, 

the similarity coefficient and the weighting scheme. Common similarity search 

applications will involve many types of molecular representations, similarity 

coefficients and weighting schemes. There are also other potential influence 

factors that have an effect on the enrichment value, such as the bioactivity of the 

molecule and the specific reference structure used.  

Since the effectiveness of a similarity search can result from many components, 

it is important to investigate which component is strongly affecting the 

effectiveness. As mentioned in Section 7.1, the measure of contribution to the 

overall effectiveness in similarity measure between the similarity components 

has not been investigated in previous studies.  

The cross-classified multilevel model can be used to identify the importance of 

these similarity measure components that contribute to the effectiveness of 

similarity-based virtual screening. The total variation in similarity search 

effectiveness (i.e., response variable) can be modelled as the sum of 

contributions from various influence variables that are the molecular 

representation, similarity coefficient, bioactivity and weighing scheme 

(Figure 7-1). 

 

Figure 7-1 Diagram illustrating the influence variables of the enrichment factor in similarity 
search application 
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However, the focus of this chapter is to evaluate the relative importance 

between the compound representation (i.e., binary fingerprint) and the 

similarity coefficient components. The weighting scheme will not be 

implemented in the similarity search as the compound representation is not 

weighted fingerprints, i.e. integer or real values fingerprints that denote the 

relative importance of the fragments. Hence, its role as an influence variable will 

not be investigated in this study. 

7.3 Model Implementation 

The cross-classified models were run in MLwiN version 2.36 (Rasbash et. al., 

2012) using the runmlwin command in Stata (Leckie & Charlton, 2013). The 

MLwiN is a software package that allows users to set up, fit and manipulate 

multilevel models. The parameter variances are estimated based on a Bayesian 

algorithm using Markov chain Monte Carlo (MCMC) estimation (Browne, 2015).  

In the Bayesian algorithm, the probability of finding a certain value for the 

unknown parameter given the data (i.e., posterior probability), is proportional to 

the probability prior to the experiment (i.e., prior probability) multiplied by the 

likelihood function. In relation to the cross-classified model, each parameter of 

the model is equivalent to the unknown parameter in the Bayesian algorithm. 

For example, a cross-classified model such as the one defined below has three 

parameters to be estimated: 

 𝑦𝑖 = 𝛽0 + 𝑢𝑗2 + 𝑢𝑗1 + 𝑒𝑖 (34) 

where 𝑦𝑖 is the response variable, 𝛽0 is the fixed parameter and 𝑢𝑗2, 𝑢𝑗1 and 𝑒𝑖 

are considered as the unknown parameters in the Bayesian algorithm. The 

algorithm measures the posterior probability distribution for each parameter 

and combines the posterior probability distributions into the joint posterior 

distribution. 
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7.3.1 MCMC Estimation 

The MCMC method is a simulation-based procedure that aims to generate 

sample points (i.e., draws) in the space defined by the joint posterior 

distribution of all the parameters. The generation of the sample point is based 

on the proposal distribution as defined by Eq. (35):  

 𝐷𝑟𝑎𝑤 𝛳𝑡~𝑁(𝛳𝑡−1, 𝜎) (35) 

where 𝐷𝑟𝑎𝑤 𝛳𝑡 is a sample point of parameter, 𝛳, for iteration, 𝑡, and 𝜎 is an 

arbitrary deviation. The sample points are generated using a user defined 

starting value, for example, 𝛳𝑡 = 1. This then makes a large number of iterated 

random estimates; each iteration produces a new estimation value that is 

dependent on the estimation value from its previous iteration, 𝛳𝑡−1.  

These random estimates form a summary of the underlying distributions. It is 

then possible to calculate the posterior means and the standard deviations of 

the complete posterior distributions. MCMC is implemented because of its 

ability to handle more complex statistical models and structures. 

In this method, the initial sample points may not be from the desired posterior 

distribution. It depends on the starting values in which the chain of iterations 

may take some time to converge. The period before a chain has converged is 

known as the burn-in. This part of the chain will be discarded. The remaining 

chain is known as the monitoring chain. The summary statistics of the 

monitoring chain provide the means and standard deviations for the model 

parameters.  

A longer monitoring period can assure that the method has fully explored the 

parameter space and the chain has converged to yield a reliable estimate, that is, 

the chain is not trending in a particular direction. In MLwiN, the default value 

for burn-in length is 500 iterations and monitoring chain length is 5000 

iterations. However, the length of iterations can be increased for better 

convergence.   
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7.3.2 MCMC Diagnostics 

A wide range of MCMC diagnostics can be used to check the convergence of 

MCMC models. This is important to give an indication of whether the chain has 

been run for long enough to provide robust values for the mean and standard 

deviation of the estimated parameters. This experiment used two MCMC 

diagnostics that are commonly used in cross-classified model analysis (Rasbash 

et. al., 2012). 

First, a visual inspection of the monitoring chain trajectories window in MLwiN 

for each parameter estimated was performed. Through visualisation inspection, 

an equilibrium pattern or stationary distribution in the trajectories indicates 

that the chains have sufficiently converged.  

A second common diagnostic is the quantification of the effective sample size 

(ESS). During the MCMC iterations, it is common for the value of the draw to be 

correlated with the value of the preceding draw i.e., autocorrelation. This is 

because each subsequent sample is drawn by using the current sample as 

mentioned in Section 7.3.1.  

The ESS measures the number of iterations in a way that accounts for the 

autocorrelation of the chain. It is automatically calculated in MLwiN using the 

implementation by Browne (2015). It defines the ESS as the number of 

iterations, n, divided by a measure of the correlation of the chain called the 

autocorrelation time, 𝜌𝑘: 

 𝐸𝑆𝑆(𝑛) =
𝑛

1 + 2 ∑ 𝜌𝑘
∞
𝑘=1

 (36) 

A higher ESS number indicates high independence (or less autocorrelation) in 

the chain and thus provides more information about the posterior distribution. 

It is common practice to terminate the simulation once the ESS is greater than a 

pre-specified threshold. This experiment uses a rule of thumb for sample size of 
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at least 400 iterations for all parameters. It is considered enough for the model 

to make a reasonable estimation of the posterior mean. 

The example given in Figure 7-2 shows a comparison of the visual diagnostics 

for one model which runs for two different numbers of iterations; (a) 10,000 

and (b) 500,000. For both trajectories, the X axis represents the number of 

iterations and the Y axis represents the draws from the parameter estimate.  

 

 

(a) 

 

(b) 

Figure 7-2 Comparison of two visual diagnostics for monitoring chain trajectories of one model 
which runs for different iterations; (a) 10,000 iterations and (b) 500,000 iterations 

 

The monitoring chain trajectories in Figure 7-2 (a and b) are the examples of 

trajectories which have resulted from the current experiment. The trajectories 

showed different behaviour as explained below:  

(a) Inconsistent-looking graph which has the estimated posterior mean = 5.113 

and ESS = 156 iterations. This is considered low (i.e., not enough) for the 

model to make a reasonable estimation of the posterior mean as the 

effective sample size is less than 400 iterations. Whilst there is no trending, 

the chain is not long enough to promote confidence in the results.  

(b) Consistent-looking graph which has the estimated posterior mean = 5.126 

and ESS = 7,062 iterations. Here, the chain is much longer and the ESS is also 
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higher. This is considered enough for the model to make a reasonable 

estimation of the posterior mean as it produces an effective sample size 

much higher than 400. 

7.4 Experimental Design 

The existing similarity search experiment uses several types of fingerprints and 

similarity coefficients that are combined with each other. There are ten different 

types of fingerprints, which describe a compound’s different features as listed in 

Table 4-4. The features were hashed into the bits in the binary fingerprints. All 

fingerprints were generated for a size of 1024 bits using the RDKit from the 

KNIME software (Landrum, 2016). The thirty-one similarity coefficients used in 

this experiment were the same as the previous experiment described in Chapter 

5.  

Ten random reference compounds from each of 15 activity classes in the 

ChEMBL dataset were used for the similarity search, resulting in a total of 

46,500 similarity searches (i.e., 10 reference compounds, 15 activity classes, 10 

types of fingerprints and 31 types of similarity coefficients). The effectiveness of 

these similarity searches was measured based on the top 1% enrichment factor 

(𝐸𝐹1%). The variables used in this study are summarised in Table 7-1.  

Table 7-1 Variables used in this study 

 

7.5 Initial Model 

An initial cross-classified model with four levels was implemented for all 

similarity search results. The model will decompose the total variance of the 

Variables Descriptions

Fixed part variable

Enrichment factor The dependent variable: The overall effectiveness of each similarity measure

Constant The variable associated with the intercept coefficient

Random part variables

Activity class The chemical dataset grouped by similar biological properties (e.g. 5HT)

Fingerprint The representation of chemical compound (e.g. ECFP_4)

Similarity coefficient The measurement that quantifies the degree of similarity (e.g. Tanimoto)

Reference structure The chemical compound used as reference structure in similarity search
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enrichment values (i.e., the response variable) into separate activity classes, 

fingerprints, similarity coefficients and similarity searches (i.e., the reference 

structures) variance components (i.e., the influence variables). A basic, null 

model can be expressed as: 

 

𝑒𝑓𝑖 = 𝛽0 + 𝑢𝑐𝑙𝑎𝑠𝑠𝑖𝑑(𝑗3)
(4)

+ 𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

+ 𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

+ 𝑒𝑖  

𝑢𝑐𝑙𝑎𝑠𝑠𝑖𝑑(𝑗3)
(4)

~𝑁(0, 𝜎𝑢(4)
2 ) 

𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

~𝑁(0, 𝜎𝑢(3)
2 ) 

𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

~𝑁(0, 𝜎𝑢(2)
2 ) 

𝑒𝑖~𝑁(0, 𝜎𝑒
2) 

(37) 

 where 𝑒𝑓𝑖 is the observed enrichment value for a given similarity search 𝑖 (𝑖 = 1, 

… , 46,500), 𝛽0 is the mean 𝐸𝐹1% across all activity classes, fingerprints and 

similarity coefficients, 𝑢𝑐𝑙𝑎𝑠𝑠𝑖𝑑(𝑗3)
(4)

 (classid(𝑗3) = 1, … , 15) is the effect of 

similarity search 𝑖‘s activity class, 𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

 (fpid(𝑗2) = 1, … , 10) is the effect of 

similarity search 𝑖‘s fingerprint, 𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

 (coefid(𝑗1) = 1, … , 31) is the effect of 

similarity search 𝑖‘s similarity coefficient, and 𝑒𝑖 is the level 1 residual error 

term, incorporating other factors (and random variation) that affect the 

enrichment value. The activity class, fingerprint, similarity coefficient and 

residual error are assumed independent and normally distributed with zero 

means and constant variances.  

The proportion of the observed response variation can be measured at activity 

class, fingerprint, similarity coefficient and similarity search levels. As a result, it 

is possible to establish the relative importance of the activity class, fingerprint, 

similarity coefficient and level one residual variation as sources of variations to 

the enrichment values. Furthermore, the magnitude and ranking of individual 
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activity classes, fingerprints and similarity coefficients can also be examined 

using their individual random effects. 

The model was fitted in the MLwiN software using the MCMC method as 

described in Section 7.3. A starting value of 1 and the default value for the burn-

in length of 500 iterations were used. The model was run for 500,000 iterations 

of monitoring chain length. These values were found to be sufficient for the 

chains to have converged (i.e., monitored by the consistent-look of visual 

diagnostics in the model trajectories window). The ESS value was over 800 for 

all parameters of the model which indicates the number of independence (or 

less autocorrelation) samples in the 500,000 iterations. The results are 

presented and discussed in the following sections. 

7.5.1 Relative Importance of Similarity Measures 

The results from fitting the initial model in Eq. (37) for all 46,500 similarity 

searches using the ChEMBL dataset are listed in Table 7-2. It reports the 

variances and standard errors estimated for each level (i.e., component) in the 

model. Hence, the comparison of the relative importance between the activity 

class, fingerprint and similarity coefficient can be observed based on the 

estimated variance in each level. 

As shown in Table 7-2, the mean 𝐸𝐹1% across all levels is estimated to be 12.725, 

with a standard error of 1.857. The effect of L4 variance (i.e., between-activity 

class variance) is estimated as 54.170 (S.E. = 23.635). The effect of L3 variance 

(i.e., between-fingerprint variance) is estimated as 4.689 (S.E. = 3.042) while the 

effect of L2 variance (i.e., between-similarity coefficient variance) is estimated 

as 4.222 (S.E. = 1.772). The residual error, i.e., reference compound as affect to 

the enrichment value, is estimated as 92.473 with a standard error of 0.607. 
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Table 7-2 Variance estimation of similarity search components (4 level cross-classified model) 
for ChEMBL dataset 

Variance S.E. Variance S.E. Variance S.E. Variance S.E. Variance S.E.

1 ChEMBL 12.725 1.857 54.170 23.635 4.689 3.042 4.222 1.772 92.473 0.607

Model No. Dataset

Intercept 
(Mean EF)

Effect L4 
(Activity Class)

Effect L3 
(Fingerprint)

Effect L2 
(Similarity 
Coefficient)

Effect L1 
(Residual Error)
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Overall, the residual errors are larger compared to the variances estimated for 

the activity class, fingerprint and similarity coefficient levels. The variance 

estimated for activity class level is also larger compared to the fingerprint and 

similarity coefficient variances. This indicates larger disparities between the 

activity classes and the reference structures as compared to the fingerprint and 

similarity coefficient components. However, the difference between the 

fingerprint and similarity coefficient variances is relatively small. This shows 

that the fingerprint and the similarity coefficient are almost equally important 

to the enrichment value when considered across the entire dataset of searches.  

The larger variation for the residual error (i.e., 92.473) can be due to the 

iterations of the model and the different structure of the reference compounds. 

All similarity values that were fitted in this cross-classified model were 

measured from 15 different activity classes which have different properties. As 

mentioned in Section 7.4, ten reference compounds were chosen randomly from 

each activity class to be measured in the similarity search experiment. These 

reference compounds were structurally different depending on which activity 

class they belong to. Hence, the residual error is large as it is affected by the 

nature of the activity class. This is supported by the estimated variance for the 

activity class level, which is the second largest after the residual error (i.e., 

54.170). The variance between-activity class and individual ranking will be 

discussed in the next section. 

7.5.2 Estimation of the Individual Activity Class Effect 

Figure 7-3 presents the caterpillar plot for the activity class variable effect (i.e., 

level 4) estimated by the model. The plots in the diagram indicate the ranking of 

different types of activity classes used in this experiment. They were ordered by 

the value of residuals (i.e., predicted activity class effect). The horizontal scale 

indicates the rank order with vertical scale surrounded by 95% Bayesian 

confidence interval (CI) limits.  
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The residual value represents the difference when compared to an average 

activity class, i.e., the grid line y-axis equal to zero. Higher residual values 

indicate a better rank position. The activity class with the highest residual value 

will be ranked highest and can be considered the best according to the model. 

The activity classes with the CIs that do not overlap the grid line y-axis equal to 

zero (i.e., the average line) are considered ‘better than the average’. 

As shown in Figure 7-3, the highest ranked activity class is AT1. This is followed 

by the SubP, MMP1, HIVP, PKC, Thrombin, 5HT3, AChE, PDE4, COX, 5HT1A, D2, 

Renin, FXA and 5HT activity classes. According to the model, four out of 15 

activity classes are considered better than the average (i.e., activity classes with 

CIs that do not overlap the average line). These are the top four activity classes, 

i.e., the AT1, SubP, MMP1, HIVP activity classes.  

 

Figure 7-3 Caterpillar plot of the activity class-level residuals with 95% Bayesian credible 
intervals for ChEMBL dataset 
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It is also interesting to observe that all but one homogeneous class (i.e., Renin) 

were ranked highest. This also indicates that the 𝐸𝐹1% results produced by the 

homogeneous classes (except for Renin) are higher than the heterogeneous 

classes, in which the 𝐸𝐹1% has been used as the response variable for the cross-

classified model implementation. The level of homogeneity for each activity 

class in the ChEMBL dataset can be referred to the mean pairwise similarity 

value (MPS) in Table 4-3 in Chapter 4. 

There is a possible reason for this occurrence. In similarity search applications, 

the homogeneous class is expected to produce higher 𝐸𝐹1% results than the 

heterogeneous class. This is because the compounds that belong to the 

homogeneous class are structurally more similar than the compounds that 

belong to the heterogeneous class. It will be easier to differentiate between the 

actives from inactives for the homogeneous class compared to the 

heterogeneous class. Hence, the performance of the similarity searches for 

homogeneous activity class is higher.  

However, in the case of Renin, further observation of the 𝐸𝐹1% values resulted 

from this activity class showed that they are relatively low compared to the 

other 𝐸𝐹1% values resulting from the other homogeneous classes. This is 

probably due to the reference structures that have been randomly selected for 

the Renin activity class. The use of these reference structures may affect the 

effectiveness of the similarity search results and also the ranking of Renin in the 

cross-classified model. 

The fingerprint and the similarity coefficient components have been found to be 

almost equally important in this model. However, it would still be interesting to 

observe the individual effect of the various types of fingerprints and similarity 

coefficients, across the entire dataset of searches. Therefore, the following 

sections present the results of an individual effect for each component.  
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7.5.3 Estimation of the Individual Fingerprint Effect 

Figure 7-4 presents the caterpillar plot for the fingerprint variable effect (i.e., 

level 3) estimated by the model. As shown in Figure 7-4, the highest ranked 

fingerprint is MorganR2. This is followed by the FeatMorganR2, MorganR1, 

Torsion, Atom Pair, FeatMorganR1, Avalon, Layered, RDKit and Pattern 

fingerprints. According to the model, three out of ten fingerprints are 

considered better than the average (i.e., fingerprints with CIs that do not 

overlap the average line). These are the top three fingerprints, i.e., MorganR2, 

FeatMorganR2 and MorganR1. 

 

 

Figure 7-4 Caterpillar plot of the fingerprint-level residuals with 95% Bayesian credible 
intervals for ChEMBL dataset 

 

From the rankings, it can be observed that all six fingerprints that were ranked 

on the top are the similarity types of fingerprints (refer Table 4-4). The 

remaining four fingerprints that were ranked lower are the substructure types 

of fingerprints. Three of the four circular fingerprints, Morgan R2, 
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FeatMorganR2 and MorganR1, were indeed found to be significantly better than 

the average in this model. It is also observed that one of the topological types of 

fingerprints, Torsion, has been ranked among the top circular fingerprints. This 

implies that Torsion fingerprint has a certain degree of discrimination ability, 

which is similar to circular fingerprints. 

The finding of the top ranked fingerprints supports previous research that has 

examined the comparison of 2D fingerprints used for similarity-based virtual 

screening with multiple reference structures (Hert et al., 2004). The study 

conducted on the MDDR dataset found that the circular types of fingerprint are 

generally more effective, with the best results obtained from the ECFP_4 

fingerprints (i.e., the Morgan R2 in this investigation).  

A more recent research, which implemented the similar types of 2D fingerprints 

used in this study, has also being reviewed. Riniker and Landrum (2013) 

developed an open-source platform for virtual screening to evaluate the 

performance of 12 commonly used fingerprints. Six of the 12 types of 1024 bits 

fingerprint used in the previous study have been used in this experiment, i.e., 

Atom Pair, Torsion, RDKit, Avalon, ECFP_4, FCFP_4. For RDKit, the maximum 

path length that was used in the previous study (i.e., path length of 5) is 

different than the path length used in this experiment. This is because this 

experiment uses the default maximum path length which is 4.  

Riniker and Landrum (2013) have found that the circular fingerprints are 

generally ranked higher by the enrichment factor as the evaluation method; 

which are consistent with the finding in this research. Another interesting 

finding is that the Torsion fingerprint has been found to be exceptionally ranked 

among the top fingerprints by all of the evaluation methods used. This matches 

the finding of this study, in which the Torsion has been ranked among the top 

circular fingerprints as shown in Figure 7-4.  
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7.5.4 Estimation of the Individual Similarity Coefficient Effect 

Figure 7-5 presents the caterpillar plot for the similarity coefficient variable 

effect (i.e., level 2) estimated by the model. The highest ranked fingerprint is the 

B37 (Maxwell-Pilliner) similarity coefficient as shown in Figure 7-5. This is 

followed by the B38, B34, B26, B18, B30, B29, B19, B42, B3, B28, B22, B9, B33 

and B10 similarity coefficients. These fifteen similarity coefficients are 

estimated to be significantly better than the average by the model. The 

remaining similarity coefficients in the ranking were B51, B11, B8, B17, B46, 

B23, B15, B25, B16, B43, B20, B1, B36, B5, B7 and B6. 

 

 

Figure 7-5 Caterpillar plots of the similarity coefficient-level residuals with 95% Bayesian 
credible intervals for ChEMBL dataset 

 

Further observation of Figure 7-5 showed that many of the higher ranked 

similarity coefficients are plotted almost equally on the same horizontal line. 

This is another way of illustrating the variances resulting from using the 

similarity coefficients. It indicates that there are almost equally similar 
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variances and small differences of the residual values among the similarity 

coefficients. 

A previous study by Todeschini et al. (2012) has observed that the similarity 

coefficients B38 (Harris-Lahey) and B42 (CT4) yield very good results on their 

retrieval abilities in similarity based virtual screening using the WOMBAT 

dataset. Both similarity coefficients were also superior to the well-established 

B3 (Jaccard-Tanimoto). The present findings seem to agree with Todeschini et 

al. (2012), who showed that the B38 similarity coefficient is ranked among the 

top (i.e., second rank with variance = 1.528). The first ranked is B37 with a 

variance of 1.529. The B42 similarity coefficient was at rank nine. All of the 

similarity coefficients were still ranked higher than B3 (i.e., 10th in rank).  

7.6 Extended Model I 

Results from the previous section have shown that the variation of the cross-

classified model is highly influenced by the activity class component. Therefore, 

further analysis was conducted to investigate the importance of the components 

independently of the activity classes. Fifteen three-level models were developed 

and implemented in this analysis, one for each activity class in the ChEMBL 

dataset. Each model uses only the total number of 3,100 𝐸𝐹1% values resulting 

from the similarity searches for a particular activity class. The model can be 

expressed by: 

 

𝑒𝑓𝑖 = 𝛽0 + 𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

+ 𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

+ 𝑒𝑖 

𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

~𝑁(0, 𝜎𝑢(3)
2 ) 

𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

~𝑁(0, 𝜎𝑢(2)
2 ) 

𝑒𝑖~𝑁(0, 𝜎𝑒
2) 

(38) 
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where the response variable, 𝑒𝑓𝑖 is the observed enrichment value for a given 

similarity search 𝑖 (𝑖 = 1, … , 3,100), 𝛽0 is the mean 𝐸𝐹1% across all fingerprints 

and similarity coefficients, 𝑢𝑓𝑝𝑖𝑑(𝑗2)
(3)

 (fpid(𝑗2) = 1, … , 10) is the effect of similarity 

search 𝑖‘s fingerprint, 𝑢𝑐𝑜𝑒𝑓𝑖𝑑(𝑗1)
(2)

 (coefid(𝑗1) = 1, … , 31) is the effect of similarity 

search 𝑖‘s similarity coefficient, and 𝑒𝑖 is the level 1 residual error term, 

incorporating other factors (and random variation) that affect the enrichment 

value. The fingerprint, similarity coefficient and residual error are assumed 

independent and normally distributed with zero means and constant variances. 

The models produced the proportion of the observed response variation and 

individual random effects at fingerprint, similarity coefficient and similarity 

search levels. Hence, the relative importance and individual random effects can 

only be examined on these levels. The model was fitted in the MLwiN software 

with the similar settings as described by the previous model. The results are 

discussed in the following sections. 

7.6.1 Relative Importance of Similarity Measures 

The results from fitting the model in Eq. (38) for all activity classes of the 

ChEMBL dataset are listed in Table 7-3. It reports the variances and standard 

errors estimated for each parameter (i.e., component) of all fifteen cross-

classified models. The relative importance between the fingerprint and the 

similarity coefficient levels can be compared in Figure 7-6.  

The values in Table 7-3 indicate that the estimated variances and standard 

errors of mean 𝐸𝐹1% vary depending on the nature of the activity classes. The 

highest mean 𝐸𝐹1% across all fingerprints and all similarity coefficients is from 

the AT1 activity class (i.e., the most homogeneous with MPS = 0.52). The 

estimated variance for this activity class is 27.806 with a standard error of 

2.184. The lowest mean 𝐸𝐹1% (i.e., variance 5.125 of and S.E. of 0.398) is from 

the 5HT activity class which is one of the heterogeneous classes in the ChEMBL 

dataset (i.e., MPS = 0.34). The mean 𝐸𝐹1% variances resemble the ranking of 
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activity class obtained in Figure 7-3 if the variances are sorted in descending 

order.  

Further observation of Figure 7-6 shows that in the majority of cases the 

fingerprint effect is higher than the similarity coefficient effect. This can be seen 

for the 5HT1A, 5HT3, AChE, D2, HIVP, MMP1, PDE4, PKC, Renin, SubP and 

Thrombin activity classes. The differences of these variance levels were also 

very large. The remaining four activity classes have higher similarity coefficient 

effects than the fingerprint effects, i.e., 5HT, AT1, COX and FXA. However, in 

contrast with the other eleven activity classes, the differences of these variance 

levels are relatively small 

 

Figure 7-6 Bar chart comparing the relative importance between the fingerprint and similarity 
coefficient effects for 15 activity classes of ChEMBL dataset 
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A sign test and a Wilcoxon signed-rank test were conducted to evaluate the 

differences of variances of the two components (i.e., fingerprint and similarity 

coefficient). For the Wilcoxon signed-rank test, the SPSS application will 

automatically measure the significance of the data using the large-sample test 

although there are only 15 pairs of observations (N = 15). This is acceptable as 

the large-sample test for the Wilcoxon signed-rank test appears to produce a 

good approximation even for relatively small samples (Siegel & Castellan Jr, 

1988). In the present context, each variance acts as a judge of the effectiveness 

of the various activity classes, where the significant of the differences is 

measured by the number of (i) fingerprint level > similarity coefficient level, (ii) 

fingerprint level = similarity coefficient level and (iii) fingerprint level < 

similarity coefficient level. 

The sign test resulted in the significance of the probability value of ρ = 0.118 

that is higher than the significant level of α = .05. This indicates that there is no 

significant difference in variances between the two components considering all 

15 cross-classified models using the sign test. However, the result of the 

significance of the probability value using the Wilcoxon signed-rank test is ρ = 

0.008. This means that when measured using the Wilcoxon signed-rank test, the 

variances between the two components are significantly different at α = .01 

level considering all 15 cross-classified models. The possible reason for this is 

because the Wilcoxon sign-rank test considers the direction and the relative 

magnitude in its measurement which makes it more powerful than the sign test. 

The results in Table 7-3 also show that the estimated variances for the residual 

errors were still large compared to the fingerprint and the similarity coefficient 

levels. All but one residual error value are higher than the L3 and L2 variances 

(where fourteen residual values were emphasised in italic and bold faced in 

column 10). This indicates that even after the separation of activity classes, in 

most of the cases the variation influenced by the reference structure far 

outweighs the influence of the fingerprint and the similarity coefficient. This is 

supported by the results from one of the statistical tests, i.e., the sign test, that 

has shown no significant difference between the fingerprint and the similarity 
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coefficient components. Therefore, another investigation, which developed a 

different cross-classified model for each reference structure, has been 

conducted and will be described in Section 7.7.  

7.6.2 Estimation of the Individual Fingerprint Effect 

Figure 7-7 presents the heat map of fingerprint level reflecting the ranking of 

the fingerprints across all activity classes according to the model. The rows 

indicate the types of fingerprints while the columns represent the activity 

classes. Each cell point in the heat map represents the rank position, i.e., low 

rank positions tend towards darker green tones while high rank positions tend 

to hotter orange and red tones. 

 

Figure 7-7 Heat map summarising the ranking of the variable effects for level 3 (fingerprint) for 
15 activity classes of ChEMBL dataset 

 

Overall, it can be seen that different fingerprints are best for different activity 

classes. Interestingly, five fingerprints were observed to reveal a consistent 
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ranking across all activity classes. The MorganR1, MorganR2 and FeatMorganR2 

fingerprints were found to be mostly ranked among the top six fingerprints 

while the RDKit and Pattern fingerprints were found to be mostly ranked among 

the lowest. The top ranked fingerprints for most activity classes are the 

similarity fingerprints (i.e., circular type) while the low ranked fingerprints are 

the substructure fingerprints (i.e., topological type).  

The details of these ranks are presented in Figure C-1 in Appendix C. The figure 

illustrates the caterpillar plots of the level 3 variable effects (i.e., the 

fingerprints) for each activity class. The plots in the diagrams were ordered by 

the value of residuals (i.e., predicted fingerprint effect). The horizontal scale 

indicates the rank order with vertical scale surrounded by 95% Bayesian 

confidence interval (CI) limits. The average fingerprint was determined by the 

same method explained in the Section 7.5.2 (second paragraph).  

The variance of the fingerprint level for each of the activity class relates to the 

value of the fingerprint residual in the caterpillar plots. An activity class which 

has a high value of variance in the fingerprint level will also have high residual 

values between the fingerprints. By referring to Table 7-3, the SubP activity 

class has the highest value of variance in the fingerprint level that is 66.164 

while FXA has the lowest value of variance, i.e., 1.098. 

A previous study by Hert et al. (2004) has found the FeatMorganR2 (FCFP_4) 

fingerprints being better for heterogeneous classes while MorganR1 (ECFP_2) 

being better for homogeneous classes in the MDDR dataset. In this study, 

FeatMorganR2 has been found to be very effective in both heterogeneous and 

homogeneous classes, e.g., 5HT (Model 1), AChE (Model 4), COX (Model 6), 

MMP1 (Model 10) and Renin (Model 13) in Figure C-1. The MorganR1 

fingerprints have also been found to be among the most effective for both types 

of activity classes.  
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7.6.3 Estimation of the Individual Similarity Coefficient Effect 

Figure 7-8 presents the heat map of similarity coefficient level reflecting the 

ranking of the coefficients across all activity classes. The rows indicate the types 

of similarity coefficients while the columns represent the activity classes. 

Similar to Figure 7-7, each cell point in the heat map represents the rank 

position, i.e., low rank positions tend towards darker green tones while high 

rank positions tend to hotter orange and red tones.  

 

Figure 7-8 Heat map summarising the ranking of the variable effects for level 2 (similarity 
coefficient) for 15 activity classes of ChEMBL dataset 

 

It can be observed that the higher or lower ranked similarity coefficients are 

easily identified across all activity classes. The B3 (Jaccard-Tanimoto), B18 

(Rogot−Goldberg), B19 (Hawkins−Dotson), B34 (Cohen), B37 (Maxwell-Pilliner) 

and B38 (Harris-Lahey) similarity coefficients were visually observed to be 
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consistently ranked higher. B1 (Sokal−Michener, Simple Matching), B5 

(Russel−Rao), B6 (Forbes), B7 (Simpson), B20 (Yule) and B36 (Peirce) were 

found to be consistently ranked lowest across all activity classes. 

The details of these ranks are presented in Figure C-2 (Appendix C). The figure 

illustrates the caterpillar plots of the level 2 variable effects (i.e., the similarity 

coefficients) for each activity class. The highest value of variance in the 

similarity coefficient level can be observed from homogeneous classes, e.g., ATI 

(Model 5) and SubP (Model 14) in Figure C-2. For both classes, B26 has shown 

to be the highest ranked coefficient and B6 as the lowest ranked coefficient. For 

the most heterogeneous class COX (Model 6), the B23 has shown to be the 

highest ranked coefficient and the B5 coefficient at the lowest rank. 

Model 12 which represents the PKC activity class has shown an interesting 

observation. The variances among the similarity coefficients were low and 

almost equally the same. These were indicated by the value of the residuals, 

which were nearly zero and showed an equal horizontal pattern in the 

caterpillar plot. This is the only case that has shown this behaviour across all 

activity classes. 

In comparison with the previous study, B26 has also been found to work well 

and performed better than B3 in homogeneous classes of the MDDR and 

WOMBAT datasets (Todeschini et al., 2012). The B38 and B42 similarity 

coefficient were also found to rank higher in both homogeneous and 

heterogeneous classes and mostly ranked higher than the B3 coefficient. 

7.7 Extended Model II 

The previous results in Table 7-3 have shown that the estimated residual errors 

were still large compared to the fingerprint and similarity coefficient variances. 

This indicates that the similarity search experiments were still influenced by the 

variation of the reference compounds. The sign test also showed that the 

fingerprint is not significantly different from the similarity coefficient 

component.  
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Thus, this section will make a conclusion about the variances between the 

fingerprint and the similarity coefficient levels independently of the reference 

structures. Another 150 three-level models were developed, one for each 

reference structure. Each model uses only the total number of 310 𝐸𝐹1% values 

resulting from the similarity searches based on a single reference compound. 

Using the same model expression in Eq. (38), the response variable, 𝑒𝑓𝑖 is the 

observed enrichment value for a given similarity search 𝑖 in which 𝑖 equal to 1 

until 310. The other parameters in the model remain the same. The models also 

produced the proportion of the observed response variation and individual 

random effects at fingerprint, similarity coefficient and similarity search levels. 

A better conclusion can be drawn about which component is more important 

between the fingerprint and the similarity coefficient based on these models. 

Next section discusses the results of the models. 

7.7.1 Relative Importance between Fingerprint and Similarity 
Coefficient 

The results from Table C-1 (Appendix C) report the variances estimated for each 

level of all 150 cross-classified models. A general inspection of the table showed 

that many variances estimated for the fingerprint were higher than the 

variances estimated for the similarity coefficient and residual errors. This can 

be seen by the models that have the L3 variances emphasised in italic and bold 

face.  

Comparison between the fingerprint and similarity coefficient variances also 

showed that the fingerprint variance was superior to the similarity coefficient 

variance, which can be observed by 136 models, which have the L3 variances 

marked by grey boxes. Only 14 models have L2 variances higher than the L3 

variances.  

The same statistical tests were repeated to evaluate these performances. Both 

the sign test and the Wilcoxon signed-rank test indicate that there were 

statistically significant differences in variances between the two components 
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considering all 150 cross-classified models (z = -10.024, ρ < .01 for the sign test 

and z = -9.880, ρ < .01 for the Wilcoxon signed-ranks test). Hence, these tests 

showed that the fingerprint component is significantly more important than the 

similarity coefficient component in this study. 

In addition to the changes of the variances above, it has also been observed that 

the residual errors have lessened compared to the L3 and L2 variances in most 

models. Only 18 out of 150 models have the residual errors larger than the 

other two levels of variances. This indicates that there were no higher variances 

between the reference structures as seen in the previous model in Section 7.5.2 

because the current models were modelled based on each reference structure. 

Of all cases, only one homogeneous activity class still has many models with 

higher residual errors than the L3 and L2 variances, i.e., PKC (7 models). The 

other homogeneous classes were SubP (1 model), AT1 (2 models), HIVP (1 

model) and Renin (3 models). The heterogeneous classes were 5HT (1 model), 

FXA (2 models) and Thrombin (1 model). 

The results from using 150 models showed that the use of different reference 

structures can result in substantial difference in the more important component 

of a similarity search. A robust conclusion was made considering all of the 

reference structures used in this experiment. Hence, it highlights another 

important finding that the role of the number of reference structures is an 

important factor in the comparative study of similarity measures.  

Arif et al. (2013) conducted a study that ranks different similarity measures 

based on the effectiveness of the similarity searches resulting from the use of 

different number of reference structures. The study found that rankings 

produced by the results of using all reference structures could be substantially 

different from the results of using a small number of reference structures. 

The findings in the current experiment seem to support the findings by Arif et 

al. (2013). The models have shown that different reference structures can result 

in different identification of the relative importance between similarity 
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measures, and therefore, a conclusion can only be made using a considerably 

large number of reference structures. 

7.8 Conclusion 

This chapter has carried out a detailed investigation into the relative 

importance between the fingerprint representation and the similarity 

coefficient components in similarity-based virtual screening. The experiment 

involved the use of cross-classified multilevel modeling to estimate the 

variances produced by various factors contributing to the similarity search. 

These variances were analysed to identify the importance of the components. 

The main findings in this study indicate that the fingerprint component is more 

important than the similarity coefficient in determining the effectiveness of 

similarity based-virtual screening. Based on the implemented dataset, the 

results suggest MorganR2 (ECFP_4) as the best fingerprint and B37 as the best 

similarity coefficient.  

Compared with the previous studies by Hert et al. (2004), Riniker and Landrum 

(2013) and Todeschini et al. (2012), this study carried out a different 

investigation that combines both similarity search components, i.e., the 

molecular representation and the similarity coefficient. Many of the results from 

this study seem to match those observed in earlier studies. 

Another important finding in this study also highlights the role of different 

reference structures in determining the relative importance of similarity 

measures. The use of large number of reference structures has allowed a robust 

conclusion to be made on the main findings, which seem to agree with the 

previous study by Arif et al. (2013). Therefore, the number of reference 

structures in determining the effectiveness of similarity search can be a basis 

for future studies of similarity search in virtual screening. 

In addition to these practical findings, it was also observed that the influences of 

the biological activity and the reference structure were also very important. 

These influences have been shown by the high variances estimated by the 
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models in Sections 7.5 and 7.6. However, the generalisability of these results is 

subject to limitation such as the non-normality of the residuals which can be 

investigated in the future. 

Hence, apart from the novelty of the cross-classified multilevel modelling and its 

implementation in chemoinformatics research, this chapter also highlights the 

importance of the similarity search component to help improving similarity-

based virtual screening. 
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Chapter 8 Summary and Future Work 

8.1 Introduction 

This thesis has conducted three investigations: (1) The effects of dimensionality 

on the effectiveness of similarity search applications (reported in Chapter 5); 

(2) The effects of dimensionality on the effectiveness of clustering applications 

(reported in Chapter 6); (3) The relative importance of the fingerprint and the 

similarity coefficient components on the effectiveness of similarity searching 

using cross-classified multilevel model analysis (reported in Chapter 7). This 

chapter summarises the overall key findings.  

8.2 Overall Summary of Work and Findings 

The search for nearest neighbour molecules in chemoinformatics applications 

involves two important components: (1) the molecular representations or 

descriptors and (2) the similarity or distance coefficients (Willett et al., 1998). 

The molecules are usually represented by a very high dimensionality 

representation (Todeschini & Consonni, 2000). For example, a common number 

of bits used for a 2D binary circular fingerprint is 1024 bits. However, the 

fingerprint dimension could be higher depending on the space required to 

represent the structure of the molecule (Sastry et al., 2010). The similarity or 

distance coefficients quantify the similarity or the distances of the molecules 

based on various formulations which consider different attributes of the 

fingerprint representation (Todeschini et al., 2012). The search process starts 

with converting the molecules into various types of representations and then 

measuring the similarity (or distance) between the molecules using different 

types of coefficients. Based on the underlying similar property principle, the 

nearest molecule which has the closest distance (or is most similar) to the query 

molecule is considered as the molecule with the most similar properties to the 

query molecule (Johnson & Maggiora, 1990). The nearest neighbour search has 

become the foundation of many chemoinformatics applications such as 

similarity searching and clustering.  
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In other domains, increasing the dimensionality of data representations has 

been found to decrease the effectiveness of nearest neighbour searches, a 

phenomenon known as the curse of dimensionality (Bellman, 1961). It happens 

when the ratio of the distance of a query point to its nearest neighbour and to its 

furthest neighbour tends to unity measured by a distance coefficient (Agrawal 

et al., 1998; Weber et al., 1998; Beyer et al., 1999). Hence, the effectiveness of 

the nearest neighbour search decreases and the results become meaningless, 

i.e., difficult to distinguish between the nearest (most similar) or the furthest 

(most dissimilar) neighbour since the distances are almost the same (Clarke et 

al., 2008).  

However, the effectiveness of nearest neighbour searches in the 

chemoinformatics domain does not seem to be affected by the use of high 

dimensionality representations. This behaviour has led this researcher to 

investigate the effect of nearest neighbour search in high dimensionality 

chemical datasets. Despite the proven effectiveness of the nearest neighbour 

search in chemoinformatics applications, a detailed study was needed to 

investigate the effects of nearest neighbour search when increasing the 

dimensionality of chemical datasets. This includes evaluating the effects of using 

different similarity or distance coefficients to the effectiveness of the searches. 

Experimental Chapters 5 and 6, were hence investigating the first aim of this 

study, i.e., the effects of dimensionality on the effectiveness of similarity 

searching and clustering applications.  

The first experiment in Chapter 5 conducted a similarity search using three 

chemical datasets. Each molecule in the datasets was represented by thirteen 

different dimensions of ECFP_4-like binary fingerprints. The similarity between 

the reference molecules and the rest of the molecules in the datasets was 

measured using thirty-one non-monotonic similarity coefficients. The 

effectiveness of the application was evaluated based on the 𝐸𝐹̅̅ ̅̅
1% ranked 

molecules.   

It was observed that an increase in fingerprint dimensions increases the 

effectiveness of the similarity search up to a certain fingerprint dimension 
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which is maintained thereafter. The evidence from this study suggested that this 

behaviour depends on the number of bits that is required to represent the 

information of the molecules. In addition to these findings, the variations in 

performance are due to the characteristics of the similarity coefficients used as 

the similarity measure. The use of a similarity coefficient that measures the 

internal (or local) representation of the molecules has proven not to be affected 

by the sparsity of high dimensional data. Instead, it can be used to identify the 

molecules with similar scaffolds or having a similar local structure to the query 

molecule.  

Further investigations were performed in Chapter 6 to study the effects of 

dimensionality on the effectiveness of another chemoinformatics application, 

i.e., molecular clustering. Similar to the experiment conducted in Chapter 5, the 

molecules were represented using thirteen dimensions of an ECFP_4-like binary 

fingerprints and clustered by two clustering methods. The pairwise distances 

were measured by ten distance coefficients and the effectiveness was measured 

based on the ability to separate the actives/ inactives and the identification of 

the single best cluster.  

The experiments revealed that the effectiveness of the clustering application in 

high dimensionality varies depending on the nature of the distance coefficient. 

Distance coefficients which measure the proportion of distances between two 

molecules from the overall dimensions tend to decrease the performance of the 

application in very high fingerprint dimensions. A detailed investigation of the 

distribution of the distances of two distance coefficients resulted in the 

identification of two significant behaviours. The results showed that, for a 

certain type of distance coefficient, as the dimensionality increases, it is difficult 

to discriminate the distances between the nearest or the furthest molecules as 

their distances were almost similar. This strengthens the conclusion made for 

the investigation reported in Chapter 5 that the variation of the effectiveness 

depends on the nature of the similarity measures. 

With regards to the second aim of this study, as mentioned in Section 1.3, the 

molecular fingerprint and similarity coefficient are among the key components 
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of a similarity search application. Many comparative studies have investigated 

the effect of varying the components of the searches (Hert et al., 2004; Riniker 

and Landrum, 2013; Todeschini et al., 2012). However, the studies focused on 

varying a single component while the other components were held constant in 

the investigations.  

Hence, Chapter 7 was designed to determine the relative importance of the 

components influencing 2D fingerprint similarity searching. A novel statistical 

approach called cross-classified multilevel modeling was adapted to model the 

results of similarity searches from all possible combinations of 2D fingerprints 

and similarity coefficients used in this experimental chapter. In contrast to 

previous comparative studies, this research considered all variations of 

components in the investigation.  

It was found that the activity class plays the greatest role in determining the 

effectiveness of the application followed by the reference structure, then the 

fingerprints and finally the similarity coefficients. Further analysis was carried 

out to assess the most important factor between the fingerprint and the 

similarity coefficient and showed that the fingerprint component is significantly 

more important than the similarity coefficient. This study also supports 

previous findings by Arif et al. (2013) that more reference structures should be 

used in comparative studies of similarity measures. 

8.3 Implication of Results 

The results from the high dimensional effect studies in Chapters 5 and 6 seem to 

contradict the curse of dimensionality phenomenon. In general, the increase of 

the dimensionality did not decrease the performance of the similarity searches. 

An implication of this is the possibility that the effectiveness was influenced by 

the coefficients used to measure the similarity or the distance of the molecules. 

Hence, these conclusions support the influence of the similarity coefficient in 

high dimensional similarity measure as suggested by France et al. (2012).  

The findings also suggested that the number of bits in the fingerprint and the 

types of similarity measure can have a significant impact on the performance of 
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nearest neighbour search in virtual screening applications. This is especially the 

case for searches involving high dimensionality with sparse binary 

representations. Hence, any research involving such representations should 

consider pre-analysing the binary fingerprint for bit collision (as conducted in 

this study) and carefully choose the coefficient for the similarity measure before 

performing the nearest neighbour searching. 

In addition, the conclusions made from Chapter 7 implied that the cross-

classification multilevel modeling, which has proven to be very useful in social 

science research, was also effective in this study. Such an approach is able to 

quantify the importance of components for similarity searching applications. 

Hence, this method can be used by researchers in the chemoinformatics domain 

to identify the components that could improve other virtual screening 

applications. 

8.4 Contribution to Knowledge 

The findings from this study make several contributions to the current 

literature in chemoinformatics context and in other domains.  

First, with appropriate dimensions of representations and suitable coefficients 

to measure the neighbourhood of the molecules, the effectiveness of the search 

can be improved. Researchers may consider higher dimensions than the 

commonly used 1024 bits fingerprint to represent the chemical dataset as also 

suggested by Sastry et al. (2010).  

Second, the findings of this investigation support those of earlier studies on high 

dimensionality data analysis that the effect of nearest neighbour search in high 

dimensionality is influenced by the neighbourhood measures (France et al., 

2012). 

Third, this is the first study reporting the use of cross-classified multilevel 

modeling to analyse various factors concerning chemical datasets and virtual-

based screening applications. It quantifies the importance of activity classes, 2D 

fingerprints, similarity coefficients and reference structures on the effectiveness 
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of similarity searches, which has not been studied previously in the 

chemoinformatics domain. It also identifies the variances of 2D fingerprint and 

similarity coefficient effects and suggests the relative importance of these two 

components. In addition, the findings of this investigation confirm the 

suggestion made by the previous study that more reference structures should 

be used in comparative research of similarity measures (Arif et al., 2013).  

8.5 Strengths and Limitations 

The key strengths of this study are that: (1) this is the first time an extended 

study of dimensionality effects was conducted in the chemoinformatics domain, 

and (2) it is also the first ever research in which the cross-classified multilevel 

modeling was implemented in a chemoinformatics domain.  

On the other hand, this work is subject to at least two limitations. First, the 

processing of high dimensionality data requires high computational resources 

of processing time and memory. However, this might not be the case if the 

experiment is conducted using high performance computing. Second, the 

current implementation of the cross-classified multilevel modeling is limited by 

the use of one chemical dataset. The implementation involving other datasets 

might provide more evidence for the conclusion. 

8.6 Suggestion for Future Research 

It is recommended that further research be undertaken in the following areas:   

1. The current study investigated the effects using various dimensions of 2D 

fingerprint. The results corroborate those of a previous study that 

highlighted the importance of using the proper number of 2D fingerprint 

dimensions (Sastry et al., 2010). The dimension of the 2D fingerprints can be 

considered as another influencing factor in determining the effectiveness of 

the similarity search application. Therefore, in future work, the dimension of 

the fingerprints can be added as another level modelled by the cross-

classified method. This is to quantify the importance of the dimension and 

suggest the best dimension that might be used to optimise the similarity 
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search application. In addition, the work can be extended to investigate the 

effects of dimensionality on the effectiveness of chemoinformatics 

applications using 3D fingerprints. 

2. There has been interest in optimising the similarity search application by 

evaluating the best combination of components (Riniker & Landrum, 2013; 

Sastry et al., 2010). Previously, this has been done by performing all the 

possible combinations of components and comparing the results using basic 

statistical methods. Alternatively, the cross-classified multilevel modeling 

has the ability to provide such an investigation in a different way. That is, by 

adding more levels to the models of any possible interactions between the 

similarity search components. For example, in order to identify the best 

combination of molecular representation and similarity coefficient, an 

analysis is conducted, a result is achieved by adding a new level to the model 

that represents the combination of different types of representation and 

coefficient. Upon the completion of the iterations, the model will produce the 

rank and variances for all possible combinations of representations and 

coefficients. Based on this rank, the best pair of performers can be identified 

and its relative importance can be measured by the level of the variances 

compared to the other combinations. It might be possible to use the best 

combinations identified for the purpose of optimising the similarity search 

application.  

3. Many previous studies in molecular clustering have compared and evaluated 

different clustering methods with the focus on identifying an effective 

method for grouping chemical data (e.g., Willett, 1987; Chu et al., 2012). 

However, there are other aspects that need to be considered for optimising 

the molecular clustering. MacCuish and MacCuish wrote a review that 

emphasised the importance of the molecular representation and the 

similarity measure used in the clustering process (MacCuish & MacCuish, 

2014). This highlights another perspective that is important in influencing 

the effectiveness of the clustering application. Therefore, a further study 

focusing on the identification of relative importance of components that 

influence molecular clustering is suggested. The cross-classified multilevel 
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modeling can be implemented to quantify the more important factors 

between the molecular representations, distance measures and clustering 

methods. In addition, the number of cluster partitions can be added as 

another component because it has been shown to have an influence on the 

current study in Chapter 6. 
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Figure A-3 Line plot measuring the average bits set, average enrichment curves and bit collision 
rate based on the average of 10 random molecules for WOMBAT dataset using various Morgan 

R2 fingerprint dimensions (Refer to Table A-3 for detail values) 

Figure A-4 Line plot measuring the average bits set, average enrichment curves and bit collision 
rate based on the average of 10 random molecules for ChEMBL dataset using various Morgan R2 

fingerprint dimensions (Refer to Table A-4 for detail values) 
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Appendix B Additional Results of Chapter 6 

Table B-1 Effectiveness value of Group Average clustering measured by (a) F-measure and (b) 
QPI-measure for the MDDR dataset using various distance coefficients and fingerprint 
dimensions. The range of the standard deviation, σ, for the mean F is between 0.000 and 0.625 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.539 0.605 0.665 0.713 0.750 0.869 0.097 0.101 0.105 0.109 0.113 0.116

2'6 0.802 0.887 0.974 1.060 1.060 1.043 0.109 0.112 0.122 0.131 0.140 0.146

2'7 0.785 0.877 0.943 0.972 0.981 0.896 0.142 0.161 0.175 0.189 0.206 0.229

2'8 0.741 0.830 0.876 0.938 0.977 0.971 0.203 0.225 0.248 0.282 0.305 0.314

2'9 0.818 0.891 0.931 0.967 0.977 1.009 0.231 0.244 0.260 0.270 0.283 0.300

2'10 0.898 0.934 0.934 0.924 0.924 1.049 0.235 0.248 0.256 0.260 0.274 0.290

2'11 0.918 0.937 0.946 0.945 1.003 1.039 0.229 0.256 0.261 0.260 0.273 0.289

2'12 0.891 0.987 0.987 0.888 0.911 0.951 0.229 0.243 0.246 0.257 0.277 0.286

2'13 0.914 0.954 0.965 0.996 1.007 0.987 0.235 0.240 0.253 0.273 0.279 0.283

2'14 0.842 0.954 0.952 1.053 1.046 1.046 0.227 0.252 0.254 0.266 0.270 0.281

2'15 0.830 0.921 0.946 1.003 1.018 1.103 0.232 0.243 0.259 0.270 0.280 0.286

2'16 0.850 0.918 0.944 0.970 1.015 1.103 0.227 0.254 0.258 0.268 0.280 0.293

2'17 0.915 0.923 0.947 0.973 1.006 1.008 0.226 0.246 0.259 0.268 0.277 0.292

2'5 0.495 0.507 0.577 0.612 0.643 0.758 0.112 0.114 0.118 0.123 0.126 0.129

2'6 0.851 0.946 0.956 0.983 1.007 1.008 0.172 0.179 0.191 0.198 0.211 0.217

2'7 1.072 1.126 1.079 1.038 1.044 1.045 0.276 0.273 0.294 0.296 0.305 0.316

2'8 0.851 0.862 0.908 0.976 0.976 1.021 0.314 0.276 0.286 0.293 0.313 0.330

2'9 0.959 0.947 1.020 1.091 1.064 1.064 0.324 0.332 0.327 0.343 0.347 0.348

2'10 0.840 0.887 0.943 0.921 0.928 0.976 0.309 0.327 0.339 0.347 0.363 0.367

2'11 0.880 0.889 0.931 0.929 1.053 1.086 0.309 0.324 0.325 0.345 0.359 0.361

2'12 0.950 1.018 0.961 1.001 1.039 1.087 0.299 0.315 0.324 0.313 0.353 0.372

2'13 0.982 1.012 0.971 0.990 1.042 1.043 0.300 0.325 0.316 0.337 0.349 0.357

2'14 0.963 0.963 0.933 1.001 1.030 1.096 0.308 0.335 0.334 0.338 0.349 0.379

2'15 0.962 0.963 1.002 1.019 1.055 1.121 0.310 0.337 0.348 0.348 0.354 0.339

2'16 0.963 0.982 0.972 0.988 1.022 1.070 0.306 0.327 0.339 0.339 0.344 0.330

2'17 0.954 0.956 0.968 0.994 1.032 1.070 0.309 0.334 0.342 0.347 0.353 0.371

2'5 0.737 0.791 0.843 0.843 0.877 0.878 0.098 0.101 0.104 0.109 0.113 0.118

2'6 0.721 0.812 0.857 0.860 0.864 0.871 0.109 0.116 0.123 0.133 0.141 0.145

2'7 0.727 0.825 0.865 0.884 0.854 0.996 0.150 0.164 0.173 0.183 0.189 0.244

2'8 0.774 0.823 0.863 0.972 0.968 0.978 0.208 0.222 0.238 0.270 0.274 0.293

2'9 0.855 0.870 0.875 0.887 0.900 0.909 0.225 0.244 0.256 0.265 0.278 0.288

2'10 0.845 0.906 0.974 0.979 1.007 1.109 0.221 0.244 0.259 0.271 0.273 0.281

2'11 0.839 0.929 1.012 0.987 0.988 1.056 0.235 0.241 0.260 0.270 0.279 0.287

2'12 0.863 0.850 0.895 0.855 0.865 0.875 0.226 0.233 0.251 0.268 0.284 0.284

2'13 0.861 0.961 0.990 1.018 1.032 1.032 0.229 0.237 0.255 0.266 0.276 0.294

2'14 0.905 0.955 0.977 1.049 1.061 1.063 0.230 0.243 0.262 0.283 0.285 0.290

2'15 0.820 0.994 1.016 1.036 1.023 1.031 0.245 0.264 0.272 0.275 0.275 0.309

2'16 0.908 0.989 0.998 1.050 1.068 1.030 0.246 0.240 0.265 0.268 0.275 0.284

2'17 0.881 0.968 0.998 1.050 1.068 1.030 0.231 0.237 0.264 0.268 0.275 0.283

2'5 0.753 0.818 0.857 0.874 0.874 0.935 0.109 0.115 0.121 0.124 0.128 0.132

2'6 0.808 0.835 0.848 0.920 0.943 0.955 0.173 0.185 0.194 0.201 0.217 0.225

2'7 0.908 0.955 0.987 0.996 1.037 1.043 0.254 0.264 0.278 0.287 0.283 0.310

2'8 0.797 0.888 0.903 0.934 1.035 1.098 0.297 0.304 0.295 0.278 0.292 0.307

2'9 0.910 0.965 1.011 1.053 1.038 1.064 0.319 0.324 0.329 0.336 0.342 0.335

2'10 0.922 0.976 0.983 0.950 0.968 1.010 0.313 0.323 0.329 0.341 0.369 0.381

2'11 0.877 0.910 1.009 1.013 1.025 1.124 0.313 0.328 0.341 0.342 0.339 0.369

2'12 0.924 0.887 0.908 0.928 1.018 1.052 0.313 0.313 0.327 0.336 0.341 0.375

2'13 0.882 0.919 0.901 0.913 1.034 1.034 0.306 0.330 0.336 0.347 0.360 0.356

2'14 0.990 1.023 0.977 1.058 1.081 1.065 0.311 0.337 0.344 0.344 0.359 0.377

2'15 1.016 0.993 0.994 1.043 1.050 1.113 0.302 0.333 0.342 0.337 0.341 0.388

2'16 1.036 1.072 1.018 1.043 1.058 1.052 0.295 0.333 0.327 0.346 0.357 0.390

2'17 1.037 1.072 1.018 1.043 1.058 1.046 0.295 0.326 0.321 0.341 0.351 0.378

[D1] Bray-Curtis

[D2] City-Block

[D3] Cosine 

[D4] Euclidean 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Table B-1 (continued) 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.495 0.507 0.577 0.612 0.643 0.758 0.110 0.113 0.118 0.123 0.126 0.128

2'6 0.849 0.946 0.956 0.983 1.007 1.008 0.172 0.180 0.186 0.198 0.211 0.217

2'7 1.072 1.126 1.079 1.038 1.038 1.045 0.254 0.273 0.293 0.291 0.304 0.314

2'8 0.851 0.862 0.908 0.915 0.976 1.021 0.314 0.274 0.279 0.293 0.312 0.329

2'9 0.959 0.947 1.020 1.082 1.064 1.064 0.324 0.332 0.324 0.345 0.347 0.347

2'10 0.840 0.872 0.943 0.907 0.928 0.976 0.311 0.324 0.333 0.343 0.363 0.367

2'11 0.825 0.940 0.910 0.931 0.929 1.053 0.307 0.325 0.328 0.325 0.347 0.359

2'12 0.950 0.950 0.962 0.962 1.011 1.011 0.299 0.299 0.325 0.325 0.349 0.349

2'13 0.949 0.949 0.949 0.990 0.990 0.990 0.298 0.298 0.298 0.340 0.340 0.340

2'14 0.764 0.764 0.764 0.764 0.764 0.764 0.228 0.228 0.228 0.228 0.228 0.228

2'15 0.248 0.248 0.906 0.906 0.906 0.906 0.084 0.084 0.336 0.336 0.336 0.336

2'16 0.758 0.758 0.758 0.758 0.758 0.758 0.146 0.146 0.146 0.146 0.146 0.146

2'17 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.588 0.584 0.622 0.698 0.716 0.766 0.097 0.101 0.104 0.109 0.113 0.116

2'6 0.806 0.872 0.880 0.901 0.993 1.017 0.109 0.114 0.118 0.129 0.142 0.151

2'7 0.736 0.798 0.930 0.949 0.968 0.930 0.145 0.160 0.183 0.196 0.209 0.222

2'8 0.734 0.922 0.910 0.954 0.944 0.967 0.204 0.232 0.253 0.270 0.283 0.293

2'9 0.874 0.837 0.846 0.932 0.989 1.039 0.244 0.243 0.253 0.264 0.275 0.286

2'10 0.909 0.919 0.986 0.966 0.987 1.099 0.240 0.257 0.275 0.278 0.288 0.300

2'11 0.870 0.825 0.822 0.839 0.849 0.890 0.229 0.248 0.260 0.268 0.273 0.277

2'12 0.933 0.952 0.952 0.907 0.949 0.936 0.229 0.244 0.249 0.258 0.275 0.287

2'13 0.930 0.948 0.972 1.030 1.030 1.020 0.234 0.246 0.252 0.267 0.282 0.289

2'14 0.904 0.949 0.971 0.983 1.026 1.071 0.249 0.241 0.266 0.272 0.281 0.290

2'15 0.936 0.938 0.959 0.980 1.038 1.103 0.226 0.245 0.259 0.266 0.277 0.284

2'16 0.914 0.932 0.932 0.980 1.015 1.103 0.233 0.250 0.256 0.262 0.274 0.285

2'17 0.837 0.932 0.935 0.983 1.015 1.038 0.208 0.239 0.257 0.260 0.270 0.281

2'5 0.553 0.592 0.699 0.761 0.846 0.846 0.088 0.090 0.092 0.093 0.094 0.096

2'6 0.627 0.747 0.809 0.847 0.865 0.866 0.090 0.092 0.095 0.097 0.099 0.103

2'7 0.586 0.657 0.709 0.801 0.878 0.879 0.095 0.099 0.103 0.106 0.110 0.117

2'8 0.700 0.742 0.725 0.759 0.773 0.795 0.101 0.106 0.117 0.129 0.135 0.139

2'9 0.836 0.818 0.874 0.875 0.875 0.815 0.119 0.124 0.134 0.147 0.147 0.157

2'10 0.688 0.768 0.768 0.850 0.850 0.850 0.120 0.136 0.136 0.149 0.149 0.149

2'11 0.456 0.648 0.648 0.648 0.648 0.808 0.096 0.134 0.134 0.134 0.134 0.211

2'12 0.569 0.569 0.569 0.569 0.569 0.569 0.109 0.109 0.109 0.109 0.109 0.109

2'13 0.161 0.161 0.786 0.786 0.786 0.786 0.081 0.081 0.170 0.170 0.170 0.170

2'14 0.386 0.386 0.386 0.386 0.386 0.386 0.090 0.090 0.090 0.090 0.090 0.090

2'15 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'16 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'17 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.725 0.773 0.802 0.813 0.951 0.969 0.113 0.115 0.118 0.122 0.128 0.130

2'6 0.860 0.902 0.859 0.920 0.947 0.990 0.183 0.190 0.195 0.202 0.220 0.223

2'7 0.902 0.962 0.995 1.003 1.023 1.027 0.253 0.259 0.274 0.283 0.307 0.307

2'8 0.756 0.850 0.917 0.926 1.030 1.090 0.282 0.270 0.278 0.289 0.311 0.319

2'9 0.923 0.975 0.964 1.031 1.039 1.059 0.304 0.329 0.336 0.344 0.349 0.345

2'10 0.851 0.958 0.979 0.943 0.959 1.006 0.309 0.320 0.342 0.345 0.373 0.373

2'11 0.843 0.925 0.950 0.950 0.989 1.019 0.301 0.321 0.322 0.326 0.333 0.353

2'12 0.947 0.960 0.904 0.933 1.019 1.042 0.293 0.311 0.323 0.320 0.309 0.318

2'13 0.934 0.934 0.954 0.954 1.010 1.010 0.296 0.296 0.337 0.337 0.346 0.346

2'14 0.996 0.996 0.996 1.058 1.058 1.058 0.302 0.302 0.302 0.352 0.352 0.352

2'15 0.776 0.776 0.776 0.776 0.776 0.776 0.245 0.245 0.245 0.245 0.245 0.245

2'16 0.317 0.317 1.033 1.033 1.033 1.033 0.083 0.083 0.335 0.335 0.335 0.335

2'17 0.629 0.629 0.629 0.629 0.629 0.629 0.162 0.162 0.162 0.162 0.162 0.162

[D8] Rogers-
Tanimoto 

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure

[D6] Jaccard

[D7] Kulsinski 

[D5] Hamming 

Distance 
Coefficients
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Table B-1 (continued) 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.546 0.622 0.698 0.699 0.699 0.774 0.084 0.085 0.086 0.087 0.087 0.088

2'6 0.562 0.633 0.634 0.729 0.805 0.834 0.086 0.087 0.089 0.090 0.092 0.093

2'7 0.601 0.646 0.700 0.765 0.816 0.816 0.089 0.091 0.093 0.097 0.098 0.101

2'8 0.600 0.656 0.671 0.694 0.767 0.867 0.095 0.101 0.103 0.109 0.113 0.115

2'9 0.692 0.678 0.683 0.714 0.717 0.737 0.106 0.115 0.124 0.132 0.140 0.150

2'10 0.734 0.734 0.774 0.774 0.806 0.806 0.117 0.117 0.130 0.130 0.150 0.150

2'11 0.580 0.580 0.580 0.580 0.800 0.800 0.122 0.122 0.122 0.122 0.179 0.179

2'12 0.667 0.667 0.667 0.667 0.667 0.667 0.117 0.117 0.117 0.117 0.117 0.117

2'13 0.161 0.161 0.816 0.816 0.816 0.816 0.081 0.081 0.168 0.168 0.168 0.168

2'14 0.397 0.397 0.397 0.397 0.397 0.397 0.088 0.088 0.088 0.088 0.088 0.088

2'15 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'16 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'17 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.574 0.654 0.675 0.699 0.738 0.756 0.097 0.100 0.104 0.108 0.112 0.116

2'6 0.641 0.805 0.902 0.903 0.997 1.019 0.108 0.116 0.125 0.131 0.139 0.143

2'7 0.729 0.858 0.859 0.911 0.936 0.994 0.141 0.158 0.183 0.203 0.206 0.221

2'8 0.850 0.814 0.858 0.950 0.982 0.966 0.211 0.243 0.249 0.272 0.291 0.295

2'9 0.853 0.839 0.921 1.000 1.014 1.036 0.235 0.248 0.255 0.269 0.282 0.290

2'10 0.791 0.817 0.860 0.873 0.916 0.999 0.239 0.247 0.262 0.265 0.268 0.278

2'11 0.878 0.814 0.829 0.831 0.868 0.928 0.231 0.240 0.249 0.258 0.267 0.270

2'12 0.894 0.932 0.985 0.940 0.996 1.007 0.223 0.241 0.244 0.262 0.273 0.285

2'13 1.028 0.900 0.936 0.952 0.988 1.009 0.232 0.241 0.253 0.260 0.271 0.285

2'14 0.786 0.907 0.963 0.974 0.966 1.020 0.219 0.255 0.266 0.269 0.277 0.284

2'15 0.899 0.941 0.937 0.952 0.957 1.064 0.224 0.254 0.271 0.282 0.281 0.285

2'16 0.945 0.959 0.955 0.970 0.955 1.064 0.231 0.246 0.272 0.281 0.284 0.289

2'17 0.904 0.921 0.924 0.927 0.955 1.064 0.235 0.251 0.266 0.280 0.287 0.291

[D9] 
Russell-Rao 

[D10] 
Sokal-Sneath 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Figure B-1 Effects of dimensionality on Group Average clustering measured by (a) F-measure 

and (b) QPI-measure for MDDR dataset using various distance coefficients (Refer to Table B-1 
for detail values) 
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Figure B-1 (continued) 
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Figure B-1 (continued)
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Table B-2 Effectiveness value of Ward’s clustering measured by (a) F-measure and (b) QPI-
measure for the WOMBAT dataset using various distance coefficients and fingerprint 
dimensions. The range of the standard deviation, σ, for the mean F is between 0.055 and 0.336 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.430 0.449 0.494 0.530 0.552 0.555 0.103 0.110 0.116 0.119 0.123 0.126

2'6 0.774 0.788 0.796 0.802 0.918 0.918 0.196 0.205 0.224 0.234 0.243 0.251

2'7 0.779 0.808 0.846 0.866 0.891 0.931 0.263 0.271 0.272 0.287 0.307 0.320

2'8 0.862 0.915 0.925 0.946 0.976 0.994 0.280 0.296 0.311 0.337 0.346 0.360

2'9 0.954 0.974 0.968 0.973 0.974 0.988 0.269 0.279 0.306 0.331 0.357 0.370

2'10 0.870 0.886 0.917 0.941 0.972 1.020 0.282 0.282 0.319 0.342 0.363 0.373

2'11 0.899 0.932 0.958 0.969 1.004 1.004 0.275 0.289 0.306 0.333 0.349 0.374

2'12 0.885 0.905 0.952 0.952 0.979 0.986 0.285 0.304 0.322 0.344 0.364 0.369

2'13 0.920 0.949 0.955 0.967 0.987 0.999 0.267 0.277 0.301 0.323 0.343 0.354

2'14 0.870 0.891 0.910 0.922 0.945 0.945 0.277 0.298 0.325 0.335 0.347 0.366

2'15 0.963 0.983 0.951 0.951 0.987 0.987 0.297 0.303 0.326 0.330 0.339 0.361

2'16 0.964 0.985 0.951 0.951 0.987 0.987 0.299 0.312 0.333 0.337 0.348 0.363

2'17 0.964 0.985 0.942 0.951 0.987 0.987 0.311 0.329 0.348 0.341 0.347 0.363

2'5 0.520 0.521 0.536 0.590 0.600 0.603 0.116 0.119 0.121 0.129 0.133 0.135

2'6 0.887 0.908 0.927 0.999 1.049 1.068 0.192 0.206 0.219 0.234 0.248 0.260

2'7 0.832 0.884 0.903 0.915 0.919 0.955 0.284 0.295 0.315 0.332 0.339 0.350

2'8 0.890 0.920 0.935 0.940 0.990 0.998 0.296 0.318 0.321 0.334 0.343 0.368

2'9 0.926 0.958 0.982 1.040 1.040 1.040 0.279 0.303 0.322 0.335 0.342 0.361

2'10 0.916 0.953 0.971 1.040 1.040 1.049 0.303 0.313 0.344 0.345 0.351 0.379

2'11 0.904 0.934 0.971 1.005 1.005 1.005 0.310 0.317 0.340 0.355 0.360 0.377

2'12 1.033 1.017 1.022 1.051 1.101 1.101 0.325 0.354 0.351 0.356 0.384 0.399

2'13 1.002 1.004 1.016 1.039 1.039 1.039 0.294 0.311 0.346 0.355 0.372 0.386

2'14 0.955 1.011 1.011 1.041 1.041 1.041 0.297 0.311 0.313 0.342 0.367 0.397

2'15 0.973 1.021 1.021 1.039 1.039 1.039 0.310 0.324 0.338 0.351 0.357 0.374

2'16 0.962 1.021 1.031 1.039 1.039 1.039 0.301 0.323 0.329 0.344 0.350 0.375

2'17 0.976 1.021 1.021 1.039 1.039 1.039 0.310 0.329 0.320 0.337 0.358 0.376

2'5 0.472 0.530 0.562 0.596 0.669 0.677 0.111 0.117 0.122 0.124 0.127 0.128

2'6 0.802 0.820 0.844 0.875 0.967 1.039 0.193 0.210 0.216 0.229 0.235 0.240

2'7 0.856 0.899 0.873 0.873 0.910 0.910 0.253 0.275 0.306 0.310 0.322 0.328

2'8 0.849 0.916 0.936 0.960 0.979 0.983 0.271 0.299 0.307 0.336 0.350 0.373

2'9 0.903 0.956 0.920 0.931 0.932 0.932 0.292 0.302 0.316 0.349 0.371 0.386

2'10 0.892 0.950 0.951 0.970 1.005 1.005 0.280 0.293 0.323 0.334 0.357 0.381

2'11 0.864 0.944 0.944 0.957 0.995 0.995 0.264 0.277 0.298 0.317 0.343 0.367

2'12 0.906 0.926 0.963 0.977 0.983 0.988 0.281 0.308 0.327 0.351 0.362 0.375

2'13 0.847 0.888 0.891 0.906 0.947 0.947 0.295 0.301 0.312 0.337 0.361 0.380

2'14 0.824 0.884 0.901 0.913 0.939 0.955 0.266 0.295 0.313 0.336 0.360 0.374

2'15 0.872 0.928 0.944 0.968 0.991 0.995 0.281 0.303 0.318 0.333 0.350 0.365

2'16 0.873 0.945 0.944 0.968 0.991 0.995 0.280 0.302 0.313 0.333 0.352 0.370

2'17 0.876 0.940 0.939 0.968 0.991 0.995 0.278 0.292 0.311 0.318 0.338 0.353

2'5 0.520 0.563 0.589 0.641 0.640 0.753 0.120 0.125 0.128 0.129 0.132 0.135

2'6 0.995 1.083 1.086 1.137 1.140 1.149 0.207 0.231 0.248 0.260 0.267 0.272

2'7 0.901 0.925 0.925 0.932 0.940 0.974 0.257 0.271 0.294 0.324 0.335 0.338

2'8 0.930 0.951 0.958 0.978 0.986 0.994 0.293 0.302 0.326 0.340 0.359 0.379

2'9 1.009 0.973 0.995 0.986 0.990 1.040 0.294 0.323 0.355 0.362 0.378 0.380

2'10 0.874 0.923 0.939 0.939 0.939 0.942 0.297 0.310 0.336 0.341 0.358 0.379

2'11 0.928 0.950 0.967 0.987 0.987 1.028 0.300 0.318 0.348 0.360 0.368 0.384

2'12 0.916 0.962 0.967 0.967 1.017 1.020 0.287 0.304 0.334 0.354 0.367 0.404

2'13 0.917 0.966 0.986 1.041 1.041 1.040 0.311 0.332 0.342 0.365 0.369 0.383

2'14 0.901 0.966 0.981 1.035 1.035 1.034 0.316 0.340 0.357 0.365 0.370 0.395

2'15 0.925 0.965 0.986 1.041 1.044 1.040 0.308 0.318 0.345 0.357 0.362 0.389

2'16 0.936 0.982 0.986 1.041 1.041 1.040 0.304 0.334 0.344 0.361 0.365 0.400

2'17 0.898 0.928 0.971 1.025 1.025 1.024 0.290 0.314 0.332 0.346 0.351 0.386

[D1] Bray-Curtis

[D2] City-Block

[D3] Cosine 

[D4] Euclidean 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Table B-2 (continued) 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.520 0.521 0.536 0.590 0.600 0.603 0.116 0.119 0.121 0.129 0.133 0.135

2'6 0.887 0.908 0.927 0.999 1.049 1.068 0.192 0.206 0.219 0.234 0.248 0.260

2'7 0.832 0.884 0.903 0.915 0.919 0.955 0.286 0.294 0.311 0.332 0.339 0.349

2'8 0.890 0.920 0.935 0.940 0.990 0.998 0.296 0.317 0.321 0.331 0.343 0.368

2'9 0.926 0.958 0.982 1.040 1.040 1.040 0.279 0.303 0.322 0.335 0.342 0.361

2'10 0.916 0.953 0.971 1.040 1.040 1.049 0.300 0.313 0.342 0.345 0.351 0.372

2'11 0.904 0.934 0.971 1.005 1.005 1.005 0.308 0.316 0.340 0.354 0.358 0.376

2'12 1.033 1.017 1.013 1.025 1.101 1.101 0.322 0.354 0.356 0.361 0.379 0.398

2'13 1.002 0.965 1.016 1.039 1.039 1.039 0.284 0.311 0.345 0.356 0.375 0.384

2'14 0.936 0.997 0.997 1.041 1.041 1.041 0.299 0.309 0.309 0.335 0.335 0.371

2'15 0.899 0.973 0.973 0.973 1.039 1.039 0.269 0.318 0.318 0.318 0.358 0.358

2'16 0.896 0.896 1.031 1.031 1.031 1.031 0.245 0.245 0.323 0.323 0.323 0.323

2'17 0.939 0.939 0.939 0.939 0.939 0.939 0.299 0.299 0.299 0.299 0.299 0.299

2'5 0.500 0.530 0.534 0.559 0.564 0.586 0.108 0.113 0.117 0.120 0.122 0.126

2'6 0.979 1.006 1.067 1.068 1.068 1.050 0.200 0.211 0.214 0.226 0.238 0.241

2'7 0.890 0.931 0.944 0.962 1.010 1.010 0.256 0.279 0.285 0.305 0.321 0.329

2'8 0.908 0.942 0.955 0.982 0.988 0.992 0.285 0.301 0.312 0.332 0.350 0.359

2'9 0.943 0.964 0.964 0.996 1.000 1.000 0.275 0.301 0.323 0.344 0.350 0.368

2'10 0.950 0.950 0.977 1.000 1.000 1.000 0.283 0.290 0.312 0.330 0.340 0.359

2'11 0.950 0.956 0.975 0.982 0.995 0.995 0.277 0.302 0.336 0.357 0.361 0.375

2'12 0.959 0.978 1.017 0.999 0.999 0.999 0.281 0.307 0.324 0.354 0.362 0.372

2'13 0.941 0.954 0.981 0.998 0.998 0.999 0.279 0.300 0.325 0.349 0.365 0.371

2'14 0.939 0.960 0.986 0.998 1.002 1.002 0.282 0.304 0.329 0.338 0.351 0.366

2'15 0.924 0.965 1.002 1.002 1.002 1.002 0.282 0.297 0.316 0.340 0.357 0.372

2'16 0.945 0.973 1.002 1.002 1.002 1.002 0.293 0.296 0.316 0.336 0.346 0.358

2'17 0.967 0.997 1.002 1.002 1.002 1.002 0.287 0.315 0.324 0.348 0.363 0.367

2'5 0.427 0.454 0.510 0.601 0.606 0.669 0.113 0.117 0.121 0.125 0.128 0.131

2'6 0.833 0.935 0.972 1.043 1.043 1.049 0.200 0.210 0.226 0.237 0.247 0.251

2'7 0.921 0.953 1.000 1.000 0.996 0.996 0.292 0.301 0.307 0.320 0.327 0.337

2'8 0.950 0.962 0.983 0.990 0.990 0.990 0.286 0.308 0.315 0.321 0.337 0.361

2'9 0.944 0.952 0.985 0.990 0.990 0.990 0.284 0.297 0.328 0.336 0.345 0.355

2'10 0.885 0.935 0.951 0.951 0.951 0.951 0.294 0.308 0.320 0.329 0.342 0.359

2'11 0.925 0.983 0.990 0.990 0.990 0.999 0.306 0.315 0.325 0.330 0.343 0.364

2'12 0.878 0.933 0.949 0.949 0.949 0.949 0.334 0.349 0.341 0.365 0.367 0.381

2'13 0.928 0.978 1.003 1.003 1.003 1.002 0.296 0.314 0.324 0.338 0.345 0.355

2'14 0.975 0.980 1.002 1.002 1.002 1.002 0.283 0.294 0.319 0.327 0.352 0.352

2'15 0.940 0.940 1.003 1.003 1.003 1.002 0.296 0.296 0.329 0.329 0.329 0.366

2'16 0.883 0.972 0.972 0.972 0.972 0.972 0.246 0.334 0.334 0.334 0.334 0.334

2'17 0.784 0.784 0.784 0.784 1.036 1.036 0.239 0.239 0.239 0.239 0.335 0.335

2'5 0.484 0.493 0.529 0.593 0.624 0.630 0.115 0.118 0.122 0.125 0.128 0.133

2'6 0.940 1.025 1.021 1.024 1.039 1.108 0.214 0.229 0.239 0.252 0.263 0.277

2'7 0.845 0.901 0.925 0.941 0.981 0.996 0.253 0.286 0.310 0.323 0.328 0.343

2'8 0.921 0.948 0.972 0.975 0.978 0.990 0.311 0.321 0.322 0.324 0.347 0.378

2'9 0.927 0.953 1.007 1.029 1.029 1.029 0.285 0.316 0.336 0.355 0.362 0.377

2'10 0.879 0.916 0.937 0.995 0.995 1.006 0.312 0.324 0.347 0.356 0.349 0.359

2'11 0.914 0.967 0.971 1.039 1.039 1.039 0.302 0.334 0.339 0.344 0.346 0.376

2'12 1.006 0.995 1.006 1.041 1.091 1.091 0.305 0.331 0.353 0.361 0.378 0.393

2'13 0.998 1.002 1.021 1.039 1.039 1.039 0.291 0.340 0.352 0.367 0.383 0.388

2'14 0.965 0.978 1.011 1.039 1.039 1.039 0.290 0.298 0.308 0.342 0.368 0.388

2'15 0.951 1.016 1.016 1.029 1.029 1.039 0.305 0.320 0.320 0.341 0.341 0.361

2'16 0.914 0.976 0.976 0.976 1.039 1.039 0.273 0.312 0.312 0.312 0.352 0.352

2'17 0.842 0.842 1.021 1.021 1.021 1.021 0.258 0.258 0.319 0.319 0.319 0.319

[D8] Rogers-
Tanimoto 

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure

[D6] Jaccard

[D7] Kulsinski 

[D5] Hamming 

Distance 
Coefficients
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Table B-2 (continued) 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.468 0.483 0.487 0.552 0.585 0.596 0.105 0.108 0.110 0.114 0.116 0.119

2'6 0.919 1.021 1.010 1.010 0.998 1.002 0.190 0.207 0.218 0.228 0.234 0.246

2'7 0.927 0.946 0.950 0.997 0.997 1.004 0.267 0.278 0.295 0.307 0.325 0.333

2'8 0.955 0.959 0.987 1.005 0.994 0.994 0.268 0.285 0.309 0.335 0.349 0.348

2'9 0.952 0.975 0.985 0.994 0.994 0.994 0.290 0.330 0.363 0.355 0.373 0.388

2'10 0.932 0.979 1.002 1.002 1.002 1.002 0.282 0.327 0.345 0.361 0.374 0.386

2'11 0.923 0.995 1.002 1.002 1.040 1.040 0.303 0.312 0.320 0.337 0.353 0.367

2'12 0.891 0.915 0.956 0.956 1.006 1.052 0.299 0.309 0.317 0.341 0.365 0.368

2'13 0.952 0.969 1.003 1.003 1.003 1.002 0.309 0.332 0.326 0.331 0.336 0.338

2'14 0.904 0.924 1.002 1.002 1.002 1.002 0.287 0.284 0.298 0.321 0.344 0.344

2'15 0.941 0.941 1.002 1.002 1.002 1.002 0.314 0.314 0.333 0.333 0.333 0.365

2'16 0.864 0.953 0.953 0.953 0.953 0.953 0.268 0.330 0.330 0.330 0.330 0.330

2'17 0.839 0.839 0.839 0.839 1.036 1.036 0.231 0.231 0.231 0.231 0.342 0.342

2'5 0.488 0.567 0.570 0.592 0.611 0.661 0.115 0.119 0.124 0.127 0.133 0.135

2'6 0.920 1.021 1.047 1.117 1.146 1.146 0.208 0.228 0.243 0.257 0.259 0.264

2'7 0.941 0.941 0.974 0.992 0.999 1.016 0.249 0.264 0.287 0.310 0.327 0.350

2'8 0.950 0.991 1.050 1.020 1.020 1.020 0.307 0.308 0.322 0.336 0.335 0.364

2'9 0.952 0.984 1.002 1.002 1.002 1.002 0.268 0.279 0.299 0.309 0.332 0.350

2'10 0.923 0.969 0.990 0.990 0.990 0.990 0.292 0.339 0.334 0.335 0.349 0.364

2'11 0.888 0.934 0.951 0.951 0.951 0.951 0.256 0.296 0.315 0.318 0.330 0.353

2'12 0.959 0.964 1.002 1.002 1.002 1.002 0.319 0.333 0.347 0.353 0.357 0.373

2'13 0.981 1.034 1.043 1.034 1.034 1.034 0.320 0.342 0.354 0.365 0.377 0.390

2'14 0.976 0.978 1.002 1.002 1.002 1.002 0.300 0.318 0.348 0.354 0.355 0.357

2'15 0.976 1.000 1.002 1.002 1.002 1.002 0.303 0.321 0.332 0.334 0.347 0.359

2'16 0.975 1.000 1.002 1.002 1.002 1.002 0.346 0.360 0.351 0.358 0.372 0.380

2'17 0.975 1.012 1.002 1.002 1.002 1.002 0.312 0.356 0.356 0.361 0.363 0.394

[D9] 
Russell-Rao 

[D10] 
Sokal-Sneath 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure



Appendix B Additional Results of Chapter 6 

220 

 

 

Figure B-2 Effects of dimensionality on Ward’s clustering measured by (a) F-measure and (b) 

QPI-measure for WOMBAT dataset using various distance coefficients (Refer to Table B-2 for 
detail values) 
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Figure B-2 (continued)
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Figure B-2 (continued)
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Table B-3 Effectiveness value of Group Average clustering measured by (a) F-measure and (b) 
QPI-measure for the WOMBAT dataset using various distance coefficients and fingerprint 
dimensions. The range of the standard deviation, σ, for the mean F is between 0.000 and 0.466 

 

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.393 0.400 0.495 0.514 0.560 0.578 0.076 0.078 0.081 0.084 0.086 0.089

2'6 0.434 0.460 0.600 0.644 0.669 0.688 0.088 0.092 0.101 0.106 0.113 0.123

2'7 0.469 0.533 0.624 0.621 0.683 0.718 0.131 0.135 0.155 0.190 0.194 0.191

2'8 0.630 0.795 0.785 0.817 0.897 0.917 0.166 0.180 0.191 0.209 0.226 0.242

2'9 0.748 0.802 0.843 0.856 0.869 0.894 0.190 0.214 0.222 0.250 0.250 0.257

2'10 0.725 0.753 0.805 0.835 0.909 0.909 0.186 0.224 0.245 0.244 0.264 0.273

2'11 0.767 0.914 0.903 0.903 0.929 0.957 0.211 0.215 0.236 0.246 0.258 0.311

2'12 0.768 0.854 0.874 0.915 0.937 0.963 0.205 0.229 0.241 0.257 0.319 0.326

2'13 0.917 0.932 0.893 0.898 0.941 0.966 0.205 0.228 0.241 0.254 0.307 0.313

2'14 0.788 0.846 0.901 0.914 0.922 0.966 0.207 0.234 0.234 0.270 0.310 0.323

2'15 0.784 0.847 0.899 0.912 0.914 0.961 0.215 0.228 0.234 0.276 0.310 0.321

2'16 0.775 0.847 0.899 0.912 0.936 0.961 0.208 0.223 0.234 0.273 0.310 0.321

2'17 0.733 0.843 0.911 0.912 0.936 0.961 0.199 0.238 0.232 0.272 0.307 0.317

2'5 0.407 0.480 0.549 0.557 0.614 0.648 0.089 0.091 0.096 0.097 0.099 0.101

2'6 0.712 0.721 0.773 0.838 0.901 0.927 0.178 0.190 0.188 0.194 0.202 0.214

2'7 0.922 0.985 0.999 1.004 0.999 0.999 0.267 0.281 0.264 0.302 0.315 0.332

2'8 0.850 0.905 0.973 0.974 1.005 1.013 0.238 0.254 0.303 0.391 0.388 0.402

2'9 0.792 0.910 0.976 0.979 0.942 0.997 0.246 0.238 0.269 0.294 0.313 0.344

2'10 0.821 0.881 0.925 0.946 0.966 0.987 0.253 0.263 0.280 0.280 0.304 0.345

2'11 0.826 0.858 0.937 0.951 0.964 0.983 0.246 0.306 0.324 0.321 0.328 0.338

2'12 0.840 0.874 0.905 0.973 0.987 0.981 0.251 0.313 0.312 0.325 0.330 0.355

2'13 0.841 0.857 0.911 0.949 0.975 0.976 0.242 0.273 0.320 0.331 0.350 0.350

2'14 0.805 0.864 0.926 0.926 0.987 0.936 0.241 0.303 0.310 0.280 0.356 0.380

2'15 0.845 0.921 0.939 0.959 0.987 0.937 0.241 0.294 0.323 0.292 0.357 0.380

2'16 0.916 0.921 0.941 0.945 0.966 0.922 0.231 0.288 0.327 0.287 0.347 0.355

2'17 0.875 0.920 0.936 0.940 0.966 0.922 0.236 0.320 0.328 0.280 0.346 0.358

2'5 0.306 0.365 0.414 0.467 0.496 0.541 0.076 0.079 0.081 0.083 0.086 0.089

2'6 0.435 0.483 0.569 0.643 0.669 0.691 0.087 0.095 0.100 0.106 0.114 0.121

2'7 0.549 0.570 0.610 0.637 0.680 0.743 0.123 0.136 0.150 0.179 0.193 0.197

2'8 0.643 0.742 0.821 0.839 0.926 0.927 0.171 0.181 0.200 0.217 0.227 0.241

2'9 0.750 0.781 0.810 0.821 0.851 0.890 0.179 0.198 0.221 0.218 0.247 0.249

2'10 0.728 0.832 0.827 0.850 0.906 0.939 0.215 0.220 0.240 0.249 0.274 0.283

2'11 0.818 0.891 0.899 0.906 0.920 0.960 0.204 0.232 0.229 0.240 0.258 0.318

2'12 0.854 0.921 0.933 0.944 0.944 0.957 0.210 0.234 0.243 0.271 0.275 0.354

2'13 0.843 0.810 0.874 0.907 0.921 0.956 0.195 0.217 0.222 0.250 0.260 0.345

2'14 0.819 0.821 0.866 0.904 0.923 0.956 0.199 0.228 0.240 0.244 0.267 0.329

2'15 0.798 0.845 0.862 0.905 0.909 0.957 0.195 0.224 0.234 0.248 0.281 0.350

2'16 0.728 0.906 0.925 0.961 0.961 0.987 0.203 0.237 0.247 0.248 0.267 0.348

2'17 0.793 0.906 0.925 0.961 0.961 0.987 0.200 0.243 0.254 0.251 0.267 0.350

2'5 0.448 0.535 0.559 0.588 0.645 0.674 0.088 0.090 0.095 0.097 0.098 0.102

2'6 0.652 0.707 0.781 0.847 0.858 0.979 0.180 0.188 0.201 0.208 0.213 0.226

2'7 0.940 0.979 0.959 0.958 0.958 0.962 0.224 0.253 0.262 0.310 0.304 0.316

2'8 0.868 0.901 0.942 0.981 0.989 0.990 0.258 0.282 0.279 0.313 0.362 0.370

2'9 0.836 0.886 0.940 0.946 0.947 0.983 0.249 0.261 0.252 0.285 0.307 0.338

2'10 0.817 0.857 0.925 0.944 0.973 0.975 0.219 0.262 0.277 0.268 0.284 0.320

2'11 0.832 0.873 0.917 0.917 0.966 1.008 0.234 0.297 0.315 0.306 0.332 0.338

2'12 0.883 0.936 0.955 0.960 0.964 0.973 0.242 0.283 0.312 0.297 0.302 0.361

2'13 0.877 0.901 0.945 0.930 0.936 0.984 0.255 0.329 0.343 0.299 0.314 0.364

2'14 0.865 0.892 0.930 0.915 0.970 0.922 0.246 0.280 0.312 0.307 0.348 0.348

2'15 0.847 0.913 0.925 0.928 0.980 0.937 0.252 0.282 0.329 0.322 0.344 0.337

2'16 0.833 0.882 0.910 0.919 0.972 0.928 0.233 0.286 0.316 0.322 0.334 0.348

2'17 0.841 0.877 0.923 0.924 0.984 0.934 0.231 0.287 0.311 0.315 0.338 0.354

[D1] Bray-Curtis

[D2] City-Block

[D3] Cosine 

[D4] Euclidean 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Table B-3 (continued) 

 
The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.407 0.480 0.529 0.557 0.614 0.648 0.089 0.091 0.095 0.097 0.099 0.101

2'6 0.707 0.721 0.759 0.838 0.901 0.927 0.176 0.190 0.189 0.194 0.201 0.214

2'7 0.916 0.979 0.999 1.004 0.999 0.999 0.267 0.281 0.264 0.302 0.316 0.332

2'8 0.820 0.905 0.957 0.974 1.003 1.013 0.223 0.250 0.301 0.391 0.387 0.402

2'9 0.792 0.910 0.954 0.979 0.942 0.979 0.246 0.238 0.257 0.277 0.310 0.340

2'10 0.788 0.881 0.888 0.946 0.966 0.987 0.234 0.262 0.282 0.282 0.297 0.344

2'11 0.826 0.858 0.925 0.943 0.963 0.963 0.246 0.303 0.310 0.296 0.329 0.329

2'12 0.772 0.772 0.875 0.973 0.973 0.973 0.228 0.228 0.318 0.290 0.290 0.290

2'13 0.743 0.858 0.858 0.858 0.858 0.975 0.154 0.250 0.250 0.250 0.250 0.346

2'14 0.619 0.619 0.619 0.926 0.926 0.926 0.133 0.133 0.133 0.309 0.309 0.309

2'15 0.805 0.805 0.805 0.805 0.805 0.805 0.214 0.214 0.214 0.214 0.214 0.214

2'16 0.467 0.467 0.467 0.467 0.467 0.467 0.091 0.091 0.091 0.091 0.091 0.091

2'17 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.388 0.427 0.460 0.491 0.586 0.618 0.075 0.078 0.080 0.083 0.085 0.088

2'6 0.408 0.444 0.582 0.706 0.732 0.745 0.085 0.092 0.100 0.105 0.114 0.120

2'7 0.460 0.516 0.675 0.716 0.691 0.795 0.121 0.137 0.149 0.164 0.196 0.196

2'8 0.627 0.796 0.790 0.803 0.832 0.918 0.172 0.179 0.198 0.203 0.223 0.238

2'9 0.780 0.821 0.840 0.874 0.878 0.903 0.205 0.216 0.222 0.242 0.251 0.262

2'10 0.745 0.828 0.832 0.848 0.958 0.958 0.214 0.237 0.248 0.257 0.271 0.279

2'11 0.734 0.867 0.891 0.892 0.918 0.943 0.202 0.219 0.231 0.241 0.257 0.271

2'12 0.806 0.903 0.874 0.887 0.920 0.929 0.204 0.233 0.245 0.249 0.268 0.306

2'13 0.896 0.896 0.903 0.903 0.933 0.939 0.220 0.219 0.245 0.256 0.306 0.312

2'14 0.771 0.812 0.881 0.904 0.928 0.930 0.202 0.222 0.233 0.275 0.296 0.314

2'15 0.845 0.868 0.894 0.908 0.924 0.950 0.206 0.221 0.230 0.248 0.292 0.295

2'16 0.855 0.858 0.894 0.908 0.929 0.950 0.214 0.231 0.233 0.253 0.259 0.291

2'17 0.855 0.858 0.894 0.908 0.924 0.950 0.212 0.232 0.232 0.285 0.287 0.291

2'5 0.327 0.391 0.425 0.502 0.520 0.556 0.068 0.069 0.070 0.071 0.073 0.074

2'6 0.318 0.337 0.389 0.435 0.462 0.462 0.070 0.071 0.073 0.075 0.077 0.079

2'7 0.325 0.416 0.441 0.432 0.438 0.500 0.073 0.077 0.081 0.084 0.087 0.091

2'8 0.331 0.334 0.379 0.427 0.513 0.538 0.081 0.083 0.092 0.099 0.105 0.109

2'9 0.408 0.579 0.618 0.618 0.720 0.730 0.093 0.100 0.110 0.110 0.118 0.128

2'10 0.429 0.429 0.515 0.515 0.586 0.586 0.100 0.100 0.118 0.118 0.131 0.131

2'11 0.287 0.475 0.475 0.475 0.475 0.608 0.082 0.120 0.120 0.120 0.120 0.156

2'12 0.350 0.350 0.350 0.350 0.350 0.350 0.098 0.098 0.098 0.098 0.098 0.098

2'13 0.127 0.127 0.127 0.531 0.531 0.531 0.064 0.064 0.064 0.131 0.131 0.131

2'14 0.163 0.163 0.163 0.163 0.163 0.163 0.073 0.073 0.073 0.073 0.073 0.073

2'15 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'16 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'17 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.414 0.438 0.513 0.559 0.653 0.674 0.085 0.089 0.094 0.098 0.102 0.103

2'6 0.646 0.701 0.769 0.872 0.878 0.913 0.168 0.178 0.184 0.195 0.205 0.211

2'7 0.869 0.966 0.932 0.942 0.949 0.943 0.227 0.236 0.263 0.301 0.284 0.294

2'8 0.901 0.948 0.956 1.042 1.063 1.058 0.262 0.273 0.283 0.273 0.300 0.320

2'9 0.811 0.888 0.971 0.975 0.982 0.997 0.254 0.259 0.280 0.292 0.301 0.328

2'10 0.832 0.861 0.894 0.954 0.944 0.976 0.310 0.268 0.269 0.270 0.286 0.305

2'11 0.832 0.838 0.925 0.937 0.973 0.992 0.233 0.268 0.290 0.278 0.319 0.338

2'12 0.738 0.837 0.914 0.985 0.948 0.948 0.234 0.258 0.309 0.298 0.324 0.324

2'13 0.810 0.810 0.916 0.939 0.939 0.939 0.240 0.240 0.278 0.289 0.289 0.289

2'14 0.759 0.868 0.868 0.868 0.868 0.891 0.151 0.256 0.256 0.256 0.256 0.355

2'15 0.586 0.586 0.586 0.931 0.931 0.931 0.134 0.134 0.134 0.306 0.306 0.306

2'16 0.822 0.822 0.822 0.822 0.822 0.822 0.218 0.218 0.218 0.218 0.218 0.218

2'17 0.466 0.466 0.466 0.466 0.466 0.466 0.091 0.091 0.091 0.091 0.091 0.091

[D8] Rogers-
Tanimoto 

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure

[D6] Jaccard

[D7] Kulsinski 

[D5] Hamming 

Distance 
Coefficients
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Table B-3 (continued) 

 
The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked 
in red for ease of reference. 

500 600 700 800 900 1000 500 600 700 800 900 1000

2'5 0.355 0.356 0.381 0.381 0.420 0.459 0.066 0.066 0.067 0.067 0.068 0.069

2'6 0.275 0.328 0.367 0.397 0.437 0.461 0.067 0.068 0.069 0.069 0.071 0.071

2'7 0.291 0.348 0.435 0.470 0.535 0.535 0.070 0.070 0.073 0.074 0.078 0.078

2'8 0.327 0.364 0.397 0.471 0.483 0.498 0.074 0.076 0.081 0.087 0.089 0.093

2'9 0.511 0.633 0.646 0.675 0.748 0.811 0.080 0.089 0.094 0.100 0.104 0.117

2'10 0.325 0.538 0.538 0.601 0.601 0.601 0.087 0.102 0.102 0.118 0.118 0.136

2'11 0.222 0.402 0.402 0.402 0.402 0.603 0.078 0.107 0.107 0.107 0.107 0.137

2'12 0.338 0.338 0.338 0.338 0.338 0.338 0.093 0.093 0.093 0.093 0.093 0.093

2'13 0.127 0.127 0.127 0.619 0.619 0.619 0.064 0.064 0.064 0.138 0.138 0.138

2'14 0.178 0.178 0.178 0.178 0.178 0.178 0.075 0.075 0.075 0.075 0.075 0.075

2'15 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'16 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'17 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000

2'5 0.365 0.420 0.422 0.474 0.546 0.570 0.075 0.077 0.079 0.082 0.084 0.087

2'6 0.425 0.531 0.699 0.733 0.737 0.739 0.088 0.092 0.102 0.107 0.117 0.121

2'7 0.476 0.587 0.653 0.675 0.735 0.802 0.127 0.140 0.155 0.185 0.187 0.196

2'8 0.637 0.767 0.796 0.808 0.908 0.912 0.167 0.185 0.194 0.207 0.228 0.233

2'9 0.758 0.808 0.827 0.874 0.884 0.910 0.200 0.210 0.233 0.248 0.267 0.265

2'10 0.735 0.744 0.785 0.832 0.917 0.917 0.210 0.229 0.246 0.260 0.276 0.286

2'11 0.723 0.816 0.850 0.853 0.875 0.923 0.215 0.223 0.232 0.238 0.252 0.265

2'12 0.855 0.903 0.869 0.871 0.908 0.918 0.205 0.231 0.244 0.257 0.323 0.332

2'13 0.862 0.888 0.897 0.910 0.912 0.940 0.197 0.260 0.280 0.315 0.311 0.320

2'14 0.817 0.824 0.908 0.909 0.926 0.932 0.203 0.219 0.238 0.248 0.306 0.315

2'15 0.893 0.858 0.908 0.909 0.926 0.940 0.206 0.214 0.233 0.305 0.304 0.315

2'16 0.783 0.860 0.907 0.909 0.926 0.940 0.204 0.224 0.233 0.244 0.306 0.316

2'17 0.777 0.860 0.907 0.909 0.926 0.940 0.195 0.220 0.238 0.307 0.305 0.315

[D9] 
Russell-Rao 

[D10] 
Sokal-Sneath 

Distance 
Coefficients

Fingerprint 
Dimensions

Partition
(a) F -Measure (b) QPI -Measure
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Figure B-3 Effects of dimensionality on Group Average clustering measured by (a) F-measure 
and (b) QPI-measure for WOMBAT dataset using various distance coefficients (Refer to 

Table B-3 for detail values) 
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Figure B-3 (continued)
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Figure B-3 (continued) 
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Appendix C Additional Results of Chapter 7 

Table C-1 Variance estimation of similarity search components (3 level cross-classified model) 
for 150 reference structures 

 
The grey box indicates larger variance when compared between the variance estimated for L3 and L2 
while the italic and bold faced indicate largest variance when compared between the variance estimated 
for L3, L2 and the residual error within the same reference compound. 

Model No. Intercept (Mean EF)
Effect L3 Variance

(Fingerprint)
Effect L2 Variance

(Similarity Coefficient)
Effect L1 Variance
(Residual Error)

1 4.437 13.365 0.668 0.969

2 5.465 1.729 2.484 1.334

3 1.594 3.117 0.139 0.698

4 4.243 3.286 1.029 1.463

5 3.105 2.390 0.363 0.946

6 7.702 7.574 2.303 2.437

7 7.007 5.408 2.389 1.887

8 9.180 9.165 4.587 3.092

9 6.155 3.582 1.130 4.438

10 2.324 2.299 0.136 0.571

11 1.637 0.249 0.033 0.141

12 7.914 9.349 1.391 2.242

13 3.931 7.408 0.762 1.871

14 5.794 9.715 1.973 2.758

15 7.080 22.093 3.138 6.911

16 7.854 21.028 3.435 6.326

17 3.225 5.609 0.598 0.980

18 12.045 39.632 5.434 9.414

19 12.546 50.677 5.781 9.008

20 12.042 51.400 5.649 8.431

21 4.403 5.371 0.602 2.634

22 1.776 1.662 0.153 0.407

23 12.831 84.702 3.821 15.112

24 2.674 6.270 0.150 1.249

25 3.579 3.664 0.024 2.342

26 7.221 22.094 1.387 7.777

27 27.357 50.438 9.619 23.631

28 26.556 42.110 10.397 25.137

29 27.782 56.359 14.899 21.284

30 25.515 73.787 8.988 13.962

31 8.322 23.009 1.374 3.979

32 7.933 19.183 1.618 2.741

33 8.884 19.328 2.311 2.855

34 9.524 10.567 0.525 3.505

35 9.521 14.459 1.123 3.209

36 1.079 0.300 0.005 0.163

37 11.836 6.023 0.691 1.543

38 22.586 20.633 10.385 11.419

39 10.106 20.699 2.134 4.118

40 6.760 5.878 1.476 3.314

41 6.430 42.396 2.355 11.679

42 34.558 87.156 66.798 82.178

43 30.310 111.689 53.158 62.094

44 30.327 108.162 46.212 57.823

45 28.705 137.240 41.022 80.110

46 30.157 104.919 44.730 74.675

47 46.634 114.361 98.825 130.524

48 36.678 95.607 33.328 95.962

49 27.345 162.659 36.485 83.347

50 6.720 27.571 3.036 9.350

5HT (MPS = 0.34)

5HT1A (MPS = 0.37)

5HT3 (MPS = 0.35)

AChE (MPS = 0.36)

AT1 (MPS = 0.52)
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Table C-1 (continued) 

 

The grey box indicates larger variance when compared between the variance estimated for L3 and L2 
while the italic and bold faced indicate largest variance when compared between the variance estimated 
for L3, L2 and the residual error within the same reference compound. 

Model No. Intercept (Mean EF)
Effect L3 Variance

(Fingerprint)
Effect L2 Variance

(Similarity Coefficient)
Effect L1 Variance
(Residual Error)

51 10.036 10.325 1.299 3.362

52 7.153 5.564 2.593 3.153

53 4.918 11.729 0.113 4.067

54 4.413 3.443 0.317 1.515

55 14.601 7.234 6.561 4.396

56 13.195 24.094 6.503 13.357

57 7.181 5.455 3.648 3.727

58 8.251 14.597 3.822 7.486

59 5.354 16.845 1.373 7.636

60 7.260 12.167 3.219 4.945

61 3.583 5.366 0.372 1.051

62 5.007 6.779 0.539 0.909

63 4.897 7.621 0.482 0.913

64 1.490 0.266 0.006 0.235

65 13.933 42.849 4.272 11.753

66 5.064 6.886 0.554 1.627

67 5.432 8.589 0.493 1.692

68 10.869 22.406 3.082 4.722

69 6.495 37.475 0.468 2.964

70 13.869 32.004 4.890 15.634

71 6.776 3.452 1.251 1.941

72 6.494 2.196 1.052 1.445

73 5.915 6.396 1.315 4.555

74 6.898 8.463 2.421 5.680

75 5.187 2.692 0.974 2.162

76 5.280 2.733 1.276 1.956

77 5.941 5.840 6.072 6.477

78 2.286 0.884 0.913 1.124

79 2.812 1.915 1.237 1.881

80 17.355 7.787 14.204 11.082

81 18.610 30.666 6.086 14.873

82 9.257 1.925 1.107 1.585

83 8.800 4.822 1.722 2.226

84 20.425 29.896 7.982 12.380

85 20.864 19.862 7.302 12.413

86 20.445 46.468 6.787 20.709

87 20.140 6.458 7.616 11.354

88 12.194 2.981 2.465 2.283

89 16.418 18.318 7.626 9.326

90 16.472 47.030 6.982 16.631

91 31.471 127.166 17.645 24.619

92 29.731 117.006 11.234 22.563

93 30.987 94.372 13.847 16.106

94 12.477 4.003 10.833 7.599

95 15.573 54.817 7.320 10.008

96 20.196 147.754 15.280 23.406

97 19.727 35.765 6.438 11.552

98 13.109 11.696 4.842 6.540

99 30.706 137.315 12.970 21.345

100 16.369 47.924 5.037 7.557

FXA (MPS = 0.39)

HIVP (MPS = 0.43)

MMP1 (MPS = 0.40)

COX (MPS = 0.28)

D2 (MPS = 0.35)
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Table C-1 (continued) 

 

The grey box indicates larger variance when compared between the variance estimated for L3 and L2 
while the italic and bold faced indicate largest variance when compared between the variance estimated 
for L3, L2 and the residual error within the same reference compound. 

Model No. Intercept (Mean EF)
Effect L3 Variance

(Fingerprint)
Effect L2 Variance

(Similarity Coefficient)
Effect L1 Variance
(Residual Error)

101 5.729 37.694 1.112 3.171

102 1.188 1.229 0.031 0.912

103 6.408 27.319 1.662 4.372

104 9.770 38.629 3.287 6.561

105 10.078 45.134 2.995 7.247

106 8.523 48.335 2.325 6.009

107 14.236 77.454 4.414 17.463

108 10.611 18.559 0.346 2.898

109 10.981 20.105 0.954 3.403

110 11.451 25.748 1.256 3.408

111 12.451 1.904 1.367 2.470

112 53.141 193.366 8.106 28.016

113 5.715 26.661 0.738 4.396

114 4.642 8.877 0.342 1.336

115 13.390 1.898 2.861 4.751

116 11.165 1.574 0.802 1.921

117 11.695 1.323 1.119 2.037

118 13.673 0.534 1.386 2.959

119 13.929 0.101 0.680 1.826

120 13.767 0.428 1.093 1.982

121 6.444 8.269 2.352 3.888

122 11.987 8.010 6.077 3.241

123 7.199 7.062 2.959 1.672

124 9.749 20.062 8.930 8.556

125 0.840 0.084 0.157 0.574

126 1.014 0.172 0.073 0.303

127 1.020 0.113 0.423 1.094

128 9.366 15.843 2.785 2.967

129 9.459 2.145 3.732 2.589

130 12.490 41.097 13.101 12.682

131 37.015 258.794 57.147 87.199

132 14.757 49.111 6.762 14.710

133 10.854 25.991 7.177 13.103

134 6.106 4.971 1.275 6.796

135 37.747 225.417 82.373 114.124

136 15.063 76.002 11.654 15.141

137 36.127 336.515 76.101 125.003

138 36.635 232.465 76.079 112.295

139 14.947 128.740 9.467 25.072

140 11.632 29.336 7.215 10.475

141 15.477 57.288 9.861 10.508

142 18.917 48.530 19.911 15.043

143 15.496 19.484 12.267 6.558

144 3.092 1.810 0.687 1.498

145 8.578 6.184 3.030 4.882

146 19.844 15.377 11.024 9.058

147 21.456 10.008 12.515 9.481

148 17.983 10.948 10.229 6.131

149 14.071 28.830 9.949 11.604

150 16.754 8.991 8.067 10.047

Thrombin (MPS = 0.35)

PDE4 (MPS = 0.31)

PKC (MPS = 0.42)

Renin (MPS = 0.45)

SubP (MPS = 0.43)
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  Figure C-1 Caterpillar plot of the fingerprint-level residuals with 95% Bayesian credible 
intervals for 15 activity classes of ChEMBL dataset 
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Figure C-1 (continued) 



Appendix C Additional Results of Chapter 7 

234 

  

  

  

  Figure C-2 Caterpillar plots of the similarity coefficient-level residuals with 95% Bayesian 
credible intervals for 15 activity classes of ChEMBL dataset 
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Figure C-2 (continued) 


