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Abbreviations 

A apoptosis or programmed cell death 

ABC  avidin-biotin/peroxidase complexes 

ALIPs abnormally lokalised immature precursors 

AML acute myeloid leukemia 

AnV Annexin-V  

APAAP alkaline phosphatase antialkaline phosphatase complexes 

Ara-C Cytosine -D-arabinofuranoside  

ATG antithymocyte globulin 

Bad Bcl-xL/Bcl-2 associated death promoter 

Bax Bcl-2 associated X gene 

Bcl-2 B-cell lymphoma/leukemia-2 gene 
Bcl-x a Bcl-x isoform that inhibits PCD 

BM bone marrow 

BMMNC bone marrow mononuclear cells 

BrdU bromodeoxyuridine 

BSA bovine serum albumin 

CAI caspase-inhibitors 

CD Cluster of Differentiation 

CFU-GEMM colony-forming unit – granulocyte, erythrocyte, monocyte, 

macrophage 

CFU-GM colony-forming unit – granulocyte, macrophage 

c-myc  this proto-oncogene encodes a transcription factor (Myc) that 

promotes growth, proliferation and apoptosis 

Cl clusters 

Cl/Co cluster/colony ratio 

Co colonies 

CPT camptothecin  

CTL cytotoxic T lymphocyte  

DAB 3,3’-diaminobenzidine tetrahydrochloride 

ddH2O double distilled water  

DMSO dimethylsulfoxide  

dUTP deoxyuridine triphosphate  

EGR1 Early Growth Response gene-1  

EP  electrophoretic 

FAB French-American-British classification 

FADD Fas associated death domain (= MORT-1) 

FAP-1 Fas associated phosphatase-1 

Fas CD95 or APO-1 

FasL Fas ligand 

FasR Fas receptor or Fas 
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Fc Fc fragment of immunoglobulin 

FC final concentration 

FCM flow cytometry 

FCM-ISEL modified ISEL technique for FCM  

FCS fetal calf serum 

FITC fluorescein isothiocyanate  

(F)ISH (fluorescence) in situ hybridization 

G0 temporarily non-proliferating cells within G0 of cell cyclus 

(resting phase) 

G1 the interval between mitosis (cell division) and S-phase 

(DNA replication) of the cell cycle 

GFs growth factors 

GF growth fraction 

G-CSF granulocyte colony-stimulating factor 

GM-CSF granulocyte-macrophage colony-stimulating factor 

G-PBS glucose-phosphate-buffered saline 

Gy Gray 

HR high-risk  

HSC hematopoietic stem cell(s)  

hSCF human stem cell factor 

ICE IL-1  converting enzyme 

IFN interferon  

IH immunohistochemistry  

IL interleukin 

IMDM Dulbecco's edium, Iscove  Modification M 's

IPSS International Prognostic Scoring System 

IRF-1 interferon regulatory factor-1  

ISEL in situ end labeling 

ISH in situ hybridization 

IUdR iododeoxyuridine  

LI labeling index or percentage cells in S-phase 

LR low-risk 

LTBMC long-term bone marrow cultures 

kbp kilobase pair 

M Molar 

mAb monoclonal antibodies 

MDR1 Multidrug Resistance gene 1 

MDS myelodysplastic syndrome(s) 

mFasL membrane-bound FasL 

min. minutes 

MNC mononuclear cells 

NBM normal bone marrow 
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N  number (or n), or normality (for solutions) 

NK cells Natural Killer cells 

Ntot total number of aggregates 

Nx number of aggregates at day x 

PBS peripheral blood stem cell or phosphate buffer solution 

PBST peripheral blood stem cell transplantation 

PCD rogrammed ell eath P C D

PE plating efficiency  

PI propidium iodide 

PS phosphatidylserine 

RA / RARS refractory anemia / RA with ringsideroblasts 

RAEB(t) refractory anemia with excess of blasts (in transformation) 

rhu recombinant human 

rpm revolutions per minute 

RPMI RPMI medium was developed by Moore et. al. at Roswell 

Park Memorial Institute 

sAML secondary AML after MDS 

SC single cells 

SCF stem cell factor 

SCSW single-cell single-well (assay) 

SD standard deviation 

SEM standard error of mean  

SSC sodiumchloride-sodiumcitrate solution 

sFasL soluble Fas Ligand 

sFas soluble Fas or FasR 

Tc cell cycling time  

Td cell doubling time 

TNF  tumor necrosis factor-  

TNF-R1 tumor necrosis factor receptor 1 

Ts duration of S-phase or DNA synthesis time 

TBS tris buffer solution 

TBST tris buffer solution with Tween 20 

TUNEL terminal deoxynucleotidyl transferase nick-end labeling 

VLA very late antigen  

WHO World Health Organization  

XCIP X chromosome inactivation pattern(s) 

Z-VAD-FMK a cell-permeable, irreversible inhibitor of caspase-1, -3, -4, 
and -7  

Z-DEVD-FMK a cell-permeable, irreversible inhibitor of caspase-3, -6, -7, 

-8, and -10. 
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 General introduction 15 

Introduction 

The myelodysplastic syndromes (MDS) are hyperproliferative, acquired clonal 

stem cell disorders, associated with massive intramedullary apoptosis or 

programmed cell death (PCD). A leukemic phenotype, mainly characterized by 

an increase of blasts showing differentiation arrest, is gradually observed, as 

MDS progresses from low-risk (LR-) to high-risk MDS (HR-MDS). Three 

interacting compartments can be distinguished in MDS bone marrow (BM); the 

polyclonal, residual normal hematopoiesis, the monoclonal preleukemic 

compartment, and the blastic leukemic compartment. Within LR-MDS, 

monoclonal hematopoiesis dominates leukemic blast cell proliferation (<5%), 

whereas this pattern is reversing during MDS evolution to acute myeloid 

leukemia (AML). This shift in the balance of proliferation versus apoptosis has 

to be applied constantly to these three interacting compartments in MDS. For 

illustration, the following example and nomenclature is used. Stem Cell Factor 

(SCF) is a major factor to induce differentiation and to mediate the transition 

from the earliest CD34 negative (CD34 ) stem cells to the more differentiated 

CD34 positive (CD34
+
) stem cells, whereas IL-6 promotes proliferation and 

maintains self-renewal of CD34
+
 stem cells. The balance and interaction 

between these cytokines may play different roles in normal, monoclonal, and 

leukemic hematopoiesis ("static profile" of these compartments). Furthermore, 

these cytokine levels, their receptor density, and/or their receptor-ligand 

interaction may change within each hematopoietic compartment as MDS 

progresses, also changing the balance and interaction of these cytokines 

between these three pools ("dynamic profile"). Genetic or phenotypic changes 

of the malignant pool and changing interactions with the environment (stroma 

or different accessory cells) also cause a complex dynamic change in different 

interactions (cell-cell, cell-stroma, stroma-stroma) between these three pools 

as MDS progresses ("complex-dynamic profile").  

This review describes these complex-dynamic profiles of stem cells and 

progenitors in MDS. Emphasis is put on the origin of monoclonality and its 

implications in MDS (Part I) and phenotypic-functional studies to understand 

the biology (balance of proliferation and apoptosis) of MDS in evolution 

(Part II). Part III of this chapter discusses the FasR/FasL system as one of the 

most important members of the nerve-growth factor receptor family for carrying 

apoptosis signal transduction. 

Part I. Clonality in MDS 

Dysplastic features and an increase of blasts found in hypercellular BM 

characterize MDS. The International Prognostic Scoring System (IPSS)
1
, based 
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16 Chapter 1 

upon the percentage of marrow myeloblasts, cytogenetic characteristics, and 

the number of cytopenias, defines prognosis and survival of MDS patients with 

more accuracy than the original French-American-British (FAB) classification. 

MDS progression to AML is determined by further accumulation of genetic 

defects in the myelodysplastic clone. Early studies suggested that these 

aberrant clones may originate in a more committed myeloid stem cell (CFU-

GEMM: colony-forming unit–granulocyte, erythrocyte, monocyte) in most 

patients, evaluated by immunophenotyping and (fluorescence) in situ 

hybridization or (F)ISH
2-4

. More recent studies proved that cytogenetically 

aberrant cells could also be detected in the primitive stem cell pool
5,6

. Mehrotra 

et al.
5
 found cytogenetically aberrant cells in a primitive (CD34

+
lin ) stem cell 

compartment. The percentage abnormal cells was not associated with 

compartment expansion, indicating that these aberrant primitive hematopoietic 

cells do not show a leukemic phenotype (growth and survival advantage). This 

primitive compartment with high Multidrug Resistance gen 1 (MDR1) 

expression accounts for the high relapse rate of MDS patients treated with 

intensive chemotherapy and autologous BM transplantation.  

In general, it is hypothesized that a first hit causes inactivation or deletion of 

tumor suppressor genes (e.g. Interferon regulatory factor 1 (IRF-1) and Early 
Growth Response 1 (EGR-1) at 5q31-33 region), DNA repair genes (at 7q22 

region) or, although less frequently, activating mutations in a proto-oncogene 

(e.g. N-ras and its association with chromosome 7 deletions). This first hit will 

subsequently lead to a "controlled" growth advantage of this "damaged" stem 

cell and its progeny over the normal pool of stem cells
7
. MDS in preleukemic 

phase detects monoclonality (in females) by X-chromosome inactivation 

studies (see below), which may occur before the development of karyotypical 

abnormalities. The growth advantage of these preleukemic CD34
+
 cells and its 

progeny may be caused by an increase of the number of S-phase cells with or 

without a substantial survival benefit
8
. This genetically altered progenitor cell 

pool is more prone to additional mutations or deletions ("genomic instability"). 

S-phase cells are more susceptible to detrimental DNA events because of their 

status of unpacked and uncoiled DNA and intense DNA synthesis with less 

DNA repair time. The final behavior of the leukemic clone in MDS is determined 

by its overall make-up of activated genes. Patients with balanced chromosomal 

translocations seem more likely to present with overt leukemia than patients 

with unbalanced chromosomal abnormalities
9,10

.  

Interestingly, patients with and without abnormal karyotype have no different 

levels of overall apoptosis
11

. It is therefore tempting to speculate that 

monoclonality by itself induces immune responses leading to overt apoptosis. 

This apoptotic process is also conferred to the normal, polyclonal 

hematopoiesis and stromal tissues as innocent bystanders (see Part II). As 

polyclonal blood cells are dying intramedullary, relatively more apoptosis-
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 General introduction 17 

resistant blood cells with normal or dysplastic appearance in the peripheral 

blood are found as the progeny of monoclonal hematopoiesis
12

. Furthermore, 

the percentage cytogenetically aberrant BM blasts is always considerably 

higher than the BM mature granulocytes indicating a partial maturation arrest 

(and decreased PCD) of monoclonal hematopoiesis in MDS
13

. Above all, anti-

apoptotic therapy in MDS patients sometimes results in disappearance of 

cytogenetically aberrant clones and resumption of polyclonal hematopoiesis
14

. 

The role of FasR/FasL in MDS is probably a double-edged sword: a tool of 

immune surveillance by NK (Natural Killer) cells and/or cytotoxic T cells with 

enhanced membrane-bound FasL (mFasL) attacking the preleukemic clone(s), 

which in their turn show decreasing FasR and increasing FasL expression 

during leukemic progression. This process gradually leads to an escape of the 

leukemic cells (with high FasL expression) from immunoregulatory cells and 

probably contributes to progressive PCD of normal and monoclonal 

preleukemic hematopoiesis with enhanced FasR expression (see part III). 

The HUMARA assay which uses a polymorphic gene on the X-chromosome 

showing a high rate of heterozygosity (>90%) is the most used assay to 

study X Chromosome Inactivation Patterns (XCIP) to detect monoclonality. The 

presence of monoclonality is an early feature in MDS. However, differentiation 

from constitutional excessive Lyonization and acquired skewing associated 

with increasing age, is a major limitation in interpretation of these assays (total 

skewing 15-40%). The use of T lymphocytes as control cells and sequential 

analyses may solve this practical problem. On the other hand, no specific 

genetic marker is needed for assessment of monoclonality with XCIP. The 

different XCIP assays used on different sorted subsets of BM and blood in 

MDS patients have shown monoclonality originating in a primitive 

(CD34
+
Lin /Thy1

+
) or early committed (CD34

+
CD33

+
) stem cell. 

Part II. Biological features of CD34+ cells and their myeloid 
progeny in MDS in evolution 

Characteristics of CD34+ cells in MDS 

The percentage CD34, CD33, and CD13 positive bone marrow mononuclear 

cells (BMMNC) increased as patients progressed to HR-MDS, and correlated 

with shorter survival
15-18

. Also co-expression of CD13 (mean 90%) was 

significantly increased in MDS CD34
+
 cells. This was associated with a 

predominant outgrowth of colony-forming units–granulocyte, macrophage 

(CFU-GM), usually showing undifferentiated clusters, as hardly any erythroid 

aggregates were found
19

. Furthermore, abnormally high ratios of pro- versus 

anti-apoptotic proteins (c-Myc/Bcl-2 and Bax+Bad/Bcl-2+Bcl-x) were found 
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18 Chapter 1 

within the CD34
+
 cells of especially LR-MDS patients

20,21
. These ratios 

reversed in advanced MDS and AML. 

The size of the CD34
+
 pool is rapidly increasing during MDS progression in the 

majority of patients
8
, and a concomitant rise in the number of aberrant blasts 

occurred, as was detected by flow cytometry (FCM) side scatter and CD45 

expression
18

. The morphologically "normal" CD34
+
 blast cells may contain 

monoclonal, cytogenetically normal CD34 cells, but this remains to be proven. 

The presence of circulating CD34
+
 cells in MDS correlated with leukemic 

progression, even better than cytogenetics and CFU-GM growth in vitro 22
. It 

may indicate that cell-stroma interactions have changed in HR-MDS, and this 

may contribute to leukemic evolution. 

 

Proliferation of CD34+ cells and their progeny in MDS 

In vivo thymidine analogue (BrdU/IUdR) incorporation studies in MDS 

patients
23,24

 followed by BM immunohistochemistry (IH) have shown an 

increment of overall proliferation of BMMNC. These studies demonstrated a 

higher than normal overall myeloid growth fraction (GF: median percentage 

S-phase cells 25-30%, range 13-49%) with a decreasing trend towards 

HR-MDS. Furthermore, the total cell cycling times (Tc) increased when RA 

progressed to RAEB-t (Tc of 37.5 and 56.6 hours, respectively). Within the 

myeloid compartment, a rapid increment of the percentage of CD34
+ cells (from 

1.67 to 8.69% from LR- to HR-MDS, respectively)  and the percentage CD34
+
 

cells in S-phase (from 0.19 to 0.43%, respectively) was observed during the 

evolution of MDS
8
. A concomitant rise was also found in the percentage 

proliferating CD34
+
 cells within the proliferating myeloid compartment during 

MDS progression (from 0.35 to 1.44%, respectively). These patterns clearly 

illustrate a growth advantage within the CD34
+
 pool, which only partially 

explains the exponential growth of the size of the CD34
+
 pool during MDS 

evolution. Using FCM with Ki-67 (a proliferation marker), Parker et al.
20

 found 

increasing percentages of proliferating (G1) CD34
+
 cells (range 10-70%) within 

the (growing) CD34
+
 compartment during MDS progression, as the percentage 

S-phase cells in the CD34
+
 pool was hardly changing in our study (mean 

5-10%)
8
. As the nuclear antigen Ki-67 is not an excellent proliferation marker 

for myeloid cells and it only distinguishes non-cycling (G0) from cycling (G1) 

cells, the differences between these two studies can be explained by enhanced 

PCD of CD34
+
 cells in G1. Thus, the CD34

+
 compartment expands as MDS 

progresses with a tendency to cycle slower than their more mature CD34  

progeny. Furthermore, also the differentiation arrest in leukemic blasts
18

, and 

their progressive survival benefit account for this expansion of CD34
+
 cells and 

blasts. It is important to stress that proliferation and differentiation are 
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 General introduction 19 

progressively uncoupled mechanisms during the evolution of the leukemic 

clone(s) as MDS progresses. 

Proliferation and apoptosis of CD34+ cells and their progeny in 
MDS: dynamic profiles in vitro 

In vitro studies with BMMNC of MDS patients have shown decreased colony 

and increased cluster formation with slower growth kinetics, delayed and 

disturbed differentiation or arrest at the stage of myelo-monocytic blasts
25

, as 

well as increased apoptosis
26

. This leukemic growth pattern in vitro was 

associated with an increase of blasts and CD34
+
 BM cells, and correlated with 

a higher incidence of leukemic transformation with shorter survival
15,27,28

. We 

studied the profiles of proliferation and PCD (by ISEL) of BMMNC of MDS 

patients in vitro26
 The proliferation, defined by the total number of clusters and 

colonies, was initially enhanced as compared to normals. But this was rapidly 

followed by a concomitant increased apoptosis: 75% of clusters and more than 

40% of colonies showed more than 50% PCD. In contrast, normal controls 

showed a median PCD of 50% in clusters and 17% in the colonies. AML 

patients showed delayed and low colony growth in vitro, because of enhanced 

apoptosis at cluster level (60-80%) compared to a relative low PCD in colonies 

(20%). Interestingly, some colonies of AML patients showed no apoptosis at 

all
26

.  

Single cell  assays of CD34
+
 BM cells in MDS showed a similar biological 

profile: increased proliferation and apoptosis at cluster level and decreased 

colony formation showing decreased cell numbers. These colonies showed 

less overall PCD than normal colonies
29

. As neither stromal interactions nor 

accessory cell influences are involved in this system, probably (pre)leukemic 

clones with longer cell cycling time (43.7 hours in MDS versus 33.8 hours in 

normal colonies) and less PCD can evolve in this system. It implies that the 

patterns observed are intrinsic properties of MDS progenitor cells. (F)ISH 

studies have to be performed to distinguish growth patterns of chromosomal 

aberrant from normal clones. 

Long-term bone marrow cultures (LTBMC), analyzing MDS stromal influences 

on normal CD34
+
 cells, have shown defective surface coverage and support in 

promoting proliferation and differentiation
30

, leading to increased levels of FasR 

and apoptosis
31

. In contrast, Deeg et al.
32

 found stimulatory effects of MDS 

stroma on normal CD34
+
 or MDS CD34

+
 cells. They suggested that accessory 

mononuclear (non-stromal) cells or abnormal hematopoietic precursors in the 

non-adherent marrow fraction provided the inhibitory effects as they produced 

tumor necrosis factor-  (TNF ) at maximal levels.  

LTBMC (with normal stroma) were capable of detecting latent subclones with 

abnormal karyotypes in the majority of MDS patients with normal cytogenetics. 
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20 Chapter 1 

In some (25%) patients these karyotypes also became apparent in vivo.
33

. 

Furthermore, LTBMC detected profound deficiencies in the number of 

secondary colony-forming cells and in long-term proliferation of multipotent 

MDS progenitors, together with disturbed differentiation and stromal 

interference
30,34,35

. 

Stroma-free LTBMC with a combination of four growth factors (GFs) showed a 

normal expansion of MDS progenitor cells with normal or dysplastic 

differentiation in 50% of cases. Complete unresponsiveness and progressive 

leukemic growth with 100% immature blasts was found in 30% and 20% of 

MDS cases, respectively
36

. Furthermore, Novitzky et al.
30

 showed that the 

subgroup of MDS patients with the highest overall BMMNC apoptosis had the 

best clonogenic growth in vitro and showed the best response to anti-TNF  

therapy in vivo. This shows that the inhibitory and PCD-inducing cytokines and 

their corresponding cells outweigh their stimulating counterparts in MDS 

marrows. A high proliferative potential continues to be present in MDS 

hematopoiesis. 

Several mechanisms may explain these altered growth patterns in vitro. MDS 

CD34
+
 cells with enhanced co-expression of CD13 form predominantly 

nonerythroid clusters with impaired differentiation
19

. MDS progenitors show a 

diminished response to granulocyte colony-stimulating factor (G-CSF)
25

, and 

granulocyte-macrophage colony-stimulating factor (GM-CSF)
37

, which could be 

reversed by supersaturating doses in some patients
38

. Stem cell factor (SCF) 

promotes cluster growth, whereas in combination with other GFs 

undifferentiated colonies are promoted. SCF may in part be responsible for the 

growth advantage of MDS clonogenic cells over normal blasts, although no 

differences in c-kit expression were observed
28,39,40

. Enhanced apoptosis 

detected in the progeny of BMMNC and CD34
+
 cells of MDS patients may 

explain this decreased colony formation. In serum-free cultures and LTBMC, 

MDS CD34
+
 cells showed poor or no growth of differentiated colonies, 

irrespective of their growth type, suggesting the defective support of accessory 

and stromal cells
31,40

. Influences of stromal and accessory cells are not the only 

explanation of increased PCD as it was also found in single cell assays of MDS 

CD34
+
 cells

29
. Differentiation between cytokine-mediated and/or FasR-FasL 

mediated PCD is warranted! 

Apoptosis of CD34+ cells and their progeny in MDS: dynamic 
profiles and controversies 

Apoptosis can be triggered by a variety of circumstances like growth factor 

deprivation, receptor interaction like tumor necrosis factor receptor 1 (TNF-R1) 

and FasR, and cell damage causing molecular and or genomic damage 

beyond repair. Several quantitative techniques have been developed to 
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 General introduction 21 

measure apoptosis like immunohistochemistry (IH) or flow cytometry (FCM) by 

in situ end labeling (ISEL) or TdT-mediated dUTP nick-end labeling (TUNEL). 

ISEL and TUNEL detect specific DNA fragmentation products developed after 

the activation of different endonucleases. These techniques proved enhanced 

intramedullary PCD
41,42

, as it was postulated before
43

. 

Overall apoptosis detected by the ISEL technique on plastic embedded BM 

biopsies was excessive in MDS. More than 50% of patients showed more than 

75% ISEL
+
 cells

41,44
. In general, less apoptosis was found with TUNEL (mean 

range 12-46%), especially when BM smears were used
30,45-48

. The detection of 

PCD by morphology (±3%) underestimates the amount of apoptosis
11

. This 

phenomenon is explained by the short duration of the apoptotic process. In 

addition, early apoptotic cells present phosphatidylserine (PS) on their outer 

membrane, signaling macrophages for engulfment, often before clear apoptotic 

morphology can be detected. Apoptosis was observed in clusters of marrow 

cells in BM biopsies and the amount of PCD was positively and significantly 

correlated with the level and localization of TNF  expression
23

. Both trilineage 

parenchymal and stromal cells are dying
31,41

. The number of macrophages was 

clearly increased, showing massive ISEL-positive apoptotic bodies of captured, 

dead cells
23

. PCD was inversely correlated with leukocyte count
11

.  

Overall apoptosis of BMMNC measured by TUNEL on BM aspirates (range 

20-46%) and BM biopsies (range 47-69%) is high in LR-MDS and decreases 

during progression of MDS
45,46,48,49

. High rates of overall PCD were correlated 

with low Bournemouth scores
46

 and were significantly correlated with low blast 

numbers
48

. In contrast, a large number of BM biopsies treated with ISEL 

showed massive apoptosis (>75%) in most HR-MDS patients. ISEL-positivity 

(ISEL
+
) decreased towards intermediate levels (range 33-67%) in LR-MDS, 

although both high and low ISEL positivity was found in LR-MDS
23,41

. The most 

likely explanation for these discrepancies in PCD is the difference in used 

material. More apoptotic cells in MDS marrow aspirates were found in the high-

density fraction of mononuclear cells than in the mostly used low-density 

fraction
50

. A considerable amount of apoptotic cells is damaged and lost during 

the work-up of marrow aspirates. Differences in the detection of different DNA 

fragmentation products by ISEL and TUNEL is also a fair explanation
42

. 

Another explanation may be the heterogeneity of MDS. The apoptotic degree is 

different in the various compartments (CD34
+
 vs. CD34 , and leukemic vs. 

monoclonal vs. polyclonal) in time. These compartments also change in size 

during MDS progression.  

In MDS, various levels of apoptosis within the CD34
+ pool were found with 

different techniques. Massive PCD of CD34
+
 progenitors was found in LR-

MDS, as it decreased towards HR-MDS
20,21

. Parker et al.
20

 showed excessive 

apoptosis (median range 50-60%) by FCM using Annexin-V (AnV), whereas 

Rajapaksa et al.
21

 showed a sub-G1 peak of 9%, both detected in the CD34
+
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subset in early MDS. In contrast, TUNEL performed on cytospin preparations of 

sorted CD34
+
 cells of MDS patients showed a lower mean PCD of 24%, not 

significantly different from normals. In general, higher values were found in LR- 

versus HR-MDS
30

. Increased c-myc/Bcl-2 ratios of CD34
+
 cells were correlated 

with enhanced PCD in LR-MDS patients
21

. In addition, pro-apoptotic (Bax+Bad) 

versus anti-apoptotic (Bcl-2+Bcl-x) ratios were increased in CD34
+
 cells of 

patients with LR-MDS. Disease progression was associated with significantly 

reduced ratios, due to increased Bcl-2 and a reduction in Bad expression
20

. 

Surprisingly, as these ratios play an eminent role as molecular death switches, 

they were not associated with apoptosis measured by AnV, whereas they were 

inversely correlated with IPSS score and cytogenetic risk group. AnV detects 

PS on the outer membrane of cells. This is probably a marker before the point 

of "no-return" of PCD, as a fraction of thawed AnV
+
CD34

+
 cells showed 

proliferation in single cell assays
51

. 

Conflicting results were found when CD34
+
 and CD34  cell populations were 

compared with TUNEL by FCM and ISEL by IH
52

. In general, CD34  cells 

showed more PCD with TUNEL than CD34
+
 cells, but this difference was not 

significant, whereas 56% CD34  cells versus an occasional CD34
+
 cell showed 

ISEL
+
 in BM biopsies. Different types of nuclear endonucleases found in CD34

+
 

and CD34  cells causing different DNA fragmentation products may explain 

this. Above all, ISEL positivity was decreased in blast clusters of advanced 

MDS and in AML blasts in BM biopsies
41

. 

The overall balance of these dynamic profiles between increased proliferation 

and apoptosis results in ineffective hematopoiesis with cytopenias in the 

peripheral blood. A significant positive correlation was observed between the 

degree of PCD and proliferation
41

. Also anti-PCD treatment studies
14

 clearly 

showed that PCD and proliferation were correlated phenomena. Parker et al.
20

 

found the following apoptosis/proliferation ratios in the MDS CD34
+
 cells: 2.08 

(RA/RARS), 1.14 (RAEB), and 1.7 (MDS-AML). Maximum PCD was found in 

RA/RARS, whereas proliferation peaked in RAEB, and both processes 

declined towards MDS-AML. “Signal antonymy” is an unique feature for MDS
53

. 

It means that the cell is dying in S-phase as a result of concomitant 

engagement into incompatible pathways like proliferation and cell cycle arrest. 

Signal antonymy in MDS (mean of 54% of S-phase cells) was found in all 

hematopoietic lineages as well as stromal cells. The explanation for this 

phenomenon is still unknown. 

Complex dynamic profiles in MDS: interactions 

Growth factors and cytokines play an important role in the apoptotic processes 

in MDS. In general, GFs can be considered as survival factors. The end result 

is determined by the balance between levels of positive and negative 
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hematopoietic GFs and cytokines and their receptor status. Enhanced 

expression of TNF  and IFN  was detected in BM biopsies of MDS 

patients
23,54

. TNF  expression was significantly correlated with PCD. TNF -

induced cytotoxicity is mediated by reactive oxygen intermediates generated in 

the mitochondrial respiratory chain. Anti-apoptotic therapy by TNF -lowering 

regimens in MDS patients resulted in decreased TNF  levels followed by 

decreased PCD in BM, and clinical responses in 40-50% of patients
14,30,55

. 

These results led to Raza's postulation of a dual role of elevated TNF  (and 

IL-1 ) levels in the hematopoiesis of MDS patients: stimulation of proliferation 

of CD34
+
 stem and early progenitor cells, but inducing apoptosis in their CD34  

progeny
44

. One contributing link interacting in this paradigm has been found: 

TNF  (and IFN ) upregulates FasR/CD95 expression, which is one of the main 

pathways of introducing cell death signals to cells. Sometimes a decrease or 

disappearance of cytogenetically aberrant clone(s) was observed during TNF -

lowering therapy
14

. These effects suggest that anti-TNF  treatment may favor 

normal rather than aberrant hematopoiesis. 

Part III. The Fas/FasL system in MDS 

Introduction of normal physiology 

All members of the nerve growth factor receptor family play dual roles as they 

can trigger both apoptosis as well as proliferation
56

. One of the members is Fas 

(CD95, APO-1), a 45kDa type I transmembrane glycoprotein. The Fas receptor 

(FasR, or Fas) is normally expressed on a wide range of mature blood cells 

(monocytes, neutrophils, NK cells, B and T lymphocytes), and highly expressed 

on activated lymphocytes. In contrast, Fas is weakly expressed on immature 

BM cells. CD34
+
/CD38

+
 cells have two-fold higher expression than 

CD34
+
/CD38  cells

57-59
. The receptor density increases from early CD34

+
 stem 

cells to more mature progenitors, and it is particularly upregulated on 

proliferating myeloid progenitors
60

. Cytokines known to mediate proliferation, 

maturation, and survival of hematopoiesis facilitate negative growth regulation 

by the FasR pathway in activated cells
60

. This effect could serve as a negative 

feedback mechanism by T cells on activated hematopoiesis
61,62

. These findings 

suggest that the Fas/FasL system plays a role in the homeostasis of 

hematopoiesis
63

. Furthermore, Fas expression is upregulated in a dose-

dependent fashion in IFN  and TNF  treated marrow CD34
+
 stem cells and it 

facilitates FasR-induced PCD
57,58

. The combination of TNF  and IFN  had a 

synergistic effect on the induction of Fas expression on progenitors
57

. Activated 

peripheral blood mononuclear cells were able to produce soluble Fas 

isoforms
64

. Soluble Fas (sFasR) inhibits apoptosis in vitro 65
. 
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Fas Ligand (FasL) is a 40kDa type II transmembrane protein. FasL is 

predominantly expressed in activated cytotoxic T cells (CTL's), B cells, and NK 

cells, but it is also expressed on monocytes, neutrophils and tumor cells. 

Membrane-bound FasL (mFasL) induces PCD by trimerization or cross-linking 

of the Fas receptor in some Fas-expressing cell lines or memory T cells
66

. It 

works as a cytotoxic effector molecule of CTL and NK cells, and probably of 

AML tumor cells. Membrane-bound FasL can be cleaved into a soluble form 

(sFasL) by a metalloproteinase
67

. Membrane-bound FasL is more potent in 

promoting PCD than sFasL
68

. The shedding of FasL from the membrane is a 

mechanism for downregulating its killing activity: sFasL competitively inhibits 

the killing of T cells by mFasL
68,69

. Above all, Josefsen et al.
59

 found that sFasL 

promoted cell survival of human BM CD34
+
CD38  progenitor cells by 

suppressing PCD in suspension cultures as well as in single cell assay, 

whereas PCD was slightly increased in the more mature CD34
+
CD38

+
 cells. 

These studies demonstrate that the delicate balance between mFasL and 

sFasL levels represents a (paracrine and/or autocrine) regulator of early 

hematopoiesis: survival and proliferation promotion by sFasL versus apoptosis 

induction by mFasL. 

 

Interaction of Fas with its natural ligand (FasL) or with agonistic anti-Fas 

monoclonal antibodies (like CH11) causes homotrimerization of CD95 and 

triggers PCD by activation of the FADD/MORT-1 cascade
70

. Concurrent 

expression of Fas and FasL on the same cell leads to PCD after interaction by 

membrane folding, although monocyte-derived macrophages could escape 

from spontaneous or anti-Fas IgM induced apoptosis
71

.  

Enhanced Fas expression on BM progenitors seems to play a role in ineffective 

hematopoiesis
57

. They showed that IFN  and TNF  mediated suppression of 

colony formation from immature (CD34
+
CD38 ) and mature (CD34

+
CD38

+
) 

progenitors was enhanced by FasL without the presence of accessory cells. 

IFN  and TNF  cause cell cycle inhibition of hematopoietic cells, upregulate 

FasR expression on CD34
+
 cells, and induce ICE expression in these cells 

which subsequently led to PCD in vitro when CH-11 was added
57,58,72

. Above 

all, tumor cells with FasL expression escape from the T cell-mediated immune 

surveillance, while they maintain the ability to induce Fas-mediated apoptosis 

in normal cells, especially in activated lymphocytes
73,74

. 

The Fas/FasL system in MDS 

Immunohistochemical (IH) stained MDS BM sections showed positive staining 

for Fas (and FasL), whereas BM samples of normals showed no staining
47

. 

These findings were confirmed by RT-PCR for Fas (and FasL) mRNA
18,47

. Fas
+
 

cells were found in all cell lineages, including CD34
+
 cells. Also Lepelley et al.

45
 

observed increased Fas expression in BM cells (by IH) in about 40% of MDS, 
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whereas a variable proportion of blasts showed weak Fas expression. Gersuk 

et al.
18

 found increased Fas expression of BMMNC by FCM in MDS. They 

observed that considerably more CD34
+
 blasts showed Fas expression in MDS 

as compared to normal BM (87% vs 25%), but Fas expression intensity on 

CD34
+
 cells was negatively correlated to the BM blast number. Leukemic blasts 

apparently loose Fas expression with progression of MDS
46

. Interestingly, 

significantly more CD3
+
 activated T cells with Fas expression were found in 

MDS BM in comparison to normal BM
18

.  

Regarding the function of Fas, not all FasR
+
 BM cells showed TUNEL 

positivity
47

. Furthermore, MDS BMMNC showed increased caspase-3 

mRNA
18,75

 with a lower to absent FAP-1 expression, which is an inhibiting 

modulator of the FasR signal transduction pathway
76

. Bouscary et al.
48

 found 

clearly enhanced apoptosis by TUNEL associated with significantly increased 

levels of caspase-3 activity and low blast numbers in LR-MDS patients.  

Although overall Fas expression on hematopoietic progenitors was increased in 

MDS, it was not correlated with FAB subtype, the Bournemouth score, 

apoptosis rates or peripheral cytopenias
45,46

. In contrast, in vitro culture studies 

in MDS have shown decreased clonogenic capacity of CFU-GM and the 

involvement of enhanced Fas expression on proliferation and PCD
18.45,46,77

. The 

erythroid lineage seems to be more sensitive for Fas-mediated apoptosis than 

the myeloid lineage
45,46,78

. Also LTBM cultures with MDS stroma have shown 

defective support in promoting proliferation and differentiation in combination 

with increased levels of Fas and apoptosis of these normal progenitors
31

. 

Higher levels of TNF  and sTNF-R1 were found in marrow plasma of MDS 

patients as compared to normals
18

. The addition of anti-TNF  mAb or soluble 

rhuTNFR:Fc to Dexter cultures increased colony numbers
18

.  

FasL expression in MDS was increased in BM cells of all lineages, irrespective 

their maturation state, but it was even higher in AML blasts
47,78

. This increase in 

FasL expression was significantly correlated with FAB subtype, the number of 

abnormal metaphases, and survival
78

. Furthermore, overall FasL expression in 

de novo AML was comparable to AML after MDS
78

, whereas primary MDS had 

significantly lower FasL
+
 aberrant blasts compared to secondary MDS

18
. 

Gersuk et al.
18

 observed variable and increased amounts of FasL on MDS 

CD34
+
 blasts in contrast to normal CD34

+
 cells. FasL expression was inversely 

associated with TNF  levels and Fas expressing during MDS progression. 

Furthermore, considerably more BM FasL
+
 CD3

+
 cells in MDS (17%) were 

found as compared with normal BM (2%)
18

. The majority of apoptotic cells by 

TUNEL were also FasL
+
 with the exception of macrophages

47
. Macrophages 

showed considerably more staining for FasL than for Fas. In addition, 

significantly higher levels of soluble FasL were found in marrow plasma of MDS 

patients
18

.
 
Soluble FasL seems to be functional in MDS as it inhibited the 

growth of clonogenic CD34
+
/HLA-DR

+
 progenitors in a dose-dependant way

78
. 
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Similarly, suppression of apoptosis of BM mononuclear cells was observed by 

treatment with anti-FasL
75

. 

Overexpression (by RT-PCR and IH) of TNF  was detected more often than 

overexpression of IFN  in BMMNC of MDS patients (79% vs. 42%, 

respectively), in contrast to observations in normal BM
54

. The majority of TNF  

and IFN  producing cells were CD68
+
 macrophage lineage cells. TNF  and 

IFN  upregulate Fas expression in a wide array of hematopoietic cells. A 

significant correlation was found between TNF  protein levels in marrow 

plasma and Fas expression on MDS marrow blasts
18

 and between TNF  

expression (by IH) and the extent of apoptosis in BM biopsies
44

.  

 

The following model of immunoregulatory mechanisms in MDS can be 

postulated from all these observations. Monoclonality develops as one of the 

first hallmarks in early MDS. The immune system probably detects these 

aberrant cells and an immune response is triggered. Activated CTL’s and NK-

cells show increasing expression of mFasL, whereas activated monocytes and 

macrophages produce increasing amounts of TNF  and IFN . Subsequently, 

upregulation of Fas occurs, especially in the more mature cells. Massive 

apoptosis develops in both normal and monoclonal compartment by enhanced 

TNF  levels as well as by increased Fas/FasL interactions. Upregulated Fas-

bearing mature and immature normal and stromal  BM cells die as innocent 

bystanders and subsequently proliferation increases to compensate their loss. 

As particularly proliferating myeloid progenitors have enhanced Fas 

expression, they also die in increasing numbers (causing signal antonymy). 

Upregulation of mFasL (subsequently leading to soluble FasL) is a way to 

defend against attacking FasL-bearing CTL's, NK cells or macrophages. The 

same happens to the rapidly dividing monoclonal cells, but as a consequence 

of additional mutations/deletions during high mitotic pressure, these cells 

acquire a differentiation defect and a survival benefit. Furthermore, these cells 

are capable of turning down their Fas expression. Alternatively, they develop 

non-functional truncated Fas splicing variants leading to a survival benefit and 

consequently a growth advantage. On the other hand, as these blasts maintain 

enhanced mFasL in order to escape from the triggered immune-surveillance, 

their enhanced mFasL expression may also contribute to the increased killing 

of polyclonal hematopoiesis and immunoregulatory cells with increased 

expression of Fas. During MDS progression, evolution of leukemic clones with 

decreasing Fas and increasing mFasL turn down their PCD machinery by 

acquiring additional genetic aberrations. These leukemic clones progressively 

develop growth advantage at the expense of increasing death of monoclonal 

preleukemic and normal hematopoiesis. 
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Abstract 

Background and objectives 

Myelodysplastic syndromes (MDS) are highly proliferative bone marrow (BM) disorders where the 

primary lesion presumably affects a CD34
+
 early progenitor or stem cell. We investigated the 

proliferative characteristics of CD34
+ 

cells in vivo of 33 untreated MDS patients (19 RA, 5 RARS, 7 

RAEB, 2 RAEBt) and five patients with acute myeloid leukemia after MDS (sAML). 

 

Materials and methods 

All patients received a one hour infusion of the thymidine analogue iodo- or bromodeoxyuridine 

intravenously before a BM aspirate and biopsy was taken. A double-labeling immunohistochemistry 

technique by monoclonal anti-CD34 and anti-IUdR/BrdU antibodies was developed and performed. 

By this technique we recognized CD34
+
 and CD34  cells actively engaged in DNA synthesis or not. 

 

Results 

As MDS evolves a significant increase occurred in the percentage of CD34
+
 cells of all myeloid 

cells (mean value: RA/RARS 1.67%, RAEB(t) 8.68%, sAML 23.83%), as well as in the percentage 

of proliferating CD34
+
 cells of all myeloid cells (RA/RARS 0.19%, RAEB(t) 0.43% and sAML 

3.30%). This was associated with a decreasing trend in the overall myeloid labeling index (LI: 

RA/RARS 25.8%, RAEB(t) 24.6% and sAML 21.5%). This decrease in overall myeloid LI is due to 

an exponential increase in the proportion of CD34
+
 cells of the proliferating compartment during 

MDS evolution (RA/RARS 0.35%, RAEB(t) 1.44% and sAML 11.98% of all S-phase cells). These 

CD34
+
 cells appeared to proliferate more slowly than their more mature CD34  counterparts, since 

we found a progressive increment in the mean total cell cycling time (Tc) of all myeloid cells during 

MDS progression (RA/RARS 39.8, RAEB(t) 45.2 and sAML 65.8 hours). 

 

Conclusions 

This study showed that during MDS evolution to sAML the CD34
+
 compartment develops a growth 

advantage leading to apparent expansion. 
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Introduction 

In myelodysplastic syndromes (MDS) the initial DNA-altering event probably 

occurs at the level of the pluripotent stem cell. This early event may cause a 

change in the cell cycle control mechanism that leads to a growth advantage of 

this particular clone over their normal counterparts. This clonal expansion 

causes the frequently found monoclonal hematopoiesis of the nonlymphoid 

cells in MDS
1-5

. During this process of high proliferative activity secondary 

events (DNA damaging events or DNA repair mechanism failures) induce a 

cytogenetically marked subclone, like the frequently found 5q-, monosomy 7, 

trisomy 8 clones in MDS
6
. This subclone or the following subclones

7-9
 are 

characterized by even more complex cytogenetic abnormalities and are 

recognized by their immaturity as blasts and/or as abnormally localised 

immature precursors or ALIPs
10-12

. Eventually these subclones may cause the 

evolution from RAEB(t) to acute myeloid leukemia (AML) by progressive 

dedifferentiation and eventually losing their gene-directed programmed cell 

death (PCD) or apoptosis
13,14

. 

Over several years more evidence has been found that the high labeling index 

(LI) in MDS is abrogated by a high apoptotic cell death
9,14-16

, which explains the 

hypercellular bone marrow (BM) with peripheral cytopenias. This increased 

apoptosis in MDS is visualized by different techniques like high/low molecular 

weight DNA extraction by electrophoresis, in situ end labeling (ISEL) of DNA, in 

situ terminal deoxynucleotidyl transferase (TUNEL) assay, and the Annexin V 

assay by different research groups
17-21

. When RA/RARS develops to RAEB(t) 

overall apoptosis is high. It slows down during the development of secondary 

AML (sAML after previous MDS) because of the appearance of a progressive 

number of ISEL-negative, immature myeloblasts. On the other hand, the high 

myeloid LI decreases with slowing down of cell cycle times of myeloblasts 

when evolution occurs to RAEBt and sAML
9,13,15,22

. It is still not proven whether 

the high proliferation rate (mean overall myeloid LI of 25 to 30%) is a 

compensatory mechanism for the high apoptosis rate in myelodysplasia
9,23

. 

However, first results of treating MDS patients with pentoxifylline and 

ciprofloxacin support this hypothesis: suppression of PCD (by turning down 

transcription of TNF ) was followed by a decrease in overall myeloid LI
24

. 

Very little is known regarding the specific proliferative characteristics of CD34
+
 

cells in particular in MDS. By flow cytometry (FCM), a sufficient number of stem 

cells after selection procedures can usually be obtained, but determining an 

accurate LI from aspirated and separated cells is frequently proven to be 

unreliable
25,26

. The best way of determining the accurate LI is obtaining BM 

biopsies after in vivo labeling of S-phase cells
13

. Fortunately, we have been 

able to develop an method to identify CD34
+
 cells and to simultaneously 

examine their proliferative characteristics in BM biopsies. We conducted this 
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study to achieve a better understanding of their cycling properties during MDS 

evolution and to study the process of a possible growth advantage of the clone 

within CD34
+
 compartment, as more immature myeloblasts occur during MDS 

progression to sAML. 

Materials and methods 

Patients 

Thirty-three MDS patients (21 males and 12 females, mean (±SD) age 65.8 

(±13.8)  years) were studied for the proliferative characteristics of CD34
+
 cells. 

All MDS patients (FAB classification:19 RA, 5 RARS, 7 RAEB and 2 RAEBt), 

together with five sAML patients (four males and one female, mean age 52.8 

(±10.4)  years) and five “normals” (lymphoma patients with uninvolved BM, four 

males and one female, mean age 56.8 (±22.7) years), who served as controls, 

were eligible for study after informed consent was obtained. None of the 

patients had received any therapy (except supportive care) for at least two 

weeks prior to the one hour infusion of one of the thymidine analogues iodo- or 

bromodeoxyuridine (IUdR/BrdU) at 100mg/m² intravenously, using a constant 

rate infusion pump. Each infusion was immediately followed by a BM aspirate 

and biopsy, which were handled on ice. The infusion protocols were reviewed 

and approved by the Investigative Review Board of the Rush-Presbyterian-St. 

Luke’s Medical Centre, National Cancer Institute (NCI) and the Food and Drug 

Administration. The drugs were supplied by NCI. See  Table 2.1 for detailed 

individual characteristics of all patients and controls. 

Single-labeling immunohistochemistry to measure overall myeloid 
LI 

The BM biopsies were labeled by 3D9 (Bioscience Inc, Bethlehem, PA, USA) 

antibodies against incorporated IUdR/BrdU to detect S-phase cells by showing 

a brown punctation overlying their nucleï. After counterstaining and taking 

myeloid morphology into account, an overall myeloid LI could be determined. 

This procedure was described before in full detail
27

 and was also followed for 

the sAML patients and controls. 
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Table 2.1 Proliferative characteristics of patients and controls expressed as a percentage of 

three different compartments: total myeloid cells, total proliferating cells and total 

CD34 cells (see Materials and methods section for details). 

Serial Sex Age FAB LI LICD34 CD34S/S CD34 CD34S/M Ts Tc 

1 M 65 RA 20.00  5.62  0.26  0.60  0.034   

2 M 27 RA 28.50  0.00  0.00  0.10  0.000   

3 F 82 RA 13.10       13.40  102.00 

4 M 65 RA 32.60  6.25  0.05  0.35  0.022   

5 M 49 RA   0.00  0.00  0.00  0.000   

6 M 68 RA 27.20  9.33  0.62  4.89  0.456  11.70  42.90 

7 F 76 RA 24.70  17.71  0.47  0.20  0.035  4.40  17.90 

8 M 73 RA 24.90  0.00  0.00  1.00  0.000  8.60  34.50 

9 M 64 RA     1.03    

10 M 66 RA 29.20  20.19  0.14  2.88  0.581   

11 M 88 RA 34.20  20.38  1.84  1.21  0.247  13.40  39.30 

12 F 83 RA 28.00  12.50  0.04  0.91  0.114  5.40  19.10 

13 M 85 RA 27.10  8.39  0.15  1.04  0.087   

14 F 78 RA 20.90  5.86  0.32  3.90  0.229  11.30  54.00 

15 F 46 RA 29.90  2.00  0.08  2.89  0.058  7.00  23.40 

16 M 63 RA 26.40  3.33  0.05  1.17  0.039  9.90  37.50 

17 M 63 RA   23.74  0.66  0.73  0.173   

18 F 83 RA 25.50  4.07  0.37  6.07  0.247  7.30  28.70 

19 M 71 RA 20.00  24.26  1.67  3.06  0.742  15.90  77.00 

20 M 62 RARS 36.10  25.84  0.31  0.84  0.217  4.60  12.90 

21 F 69 RARS   0.00  0.00  0.16  0.000   

22 F 83 RARS   16.67  0.52  3.60  0.600   

23 M 67 RARS 15.40  5.00  0.18  1.71  0.085   

24 M 77 RARS 27.30  0.00  0.00  0.00  0.000  7.70  28.10 

25 M 60 RAEB 21.70  2.46  3.12  10.58  0.26  18.40  94.80 

26 M 60 RAEB   2.28  0.78  20.41  0.465   

27 M 63 RAEB 27.10  1.65  0.37  4.29  0.071  3.90  14.40 

28 F 76 RAEB 24.90  6.35  4.49  11.68  0.742  3.80  14.80 

29 M 53 RAEB 34.50  3.57  0.10    4.60  13.30 

30 F 40 RAEB 25.20  26.92  2.41  1.94  0.522   

31 F 64 RAEB 15.10  0.00  0.00  0.03  0.000   

32 M 53 RAEBt 24.00  6.49  0.41  10.54  0.684  21.10  88.10 

33 F 50 RAEBt 24.20  6.91  1.24  10.00  0.691  11.00  45.60 

34 M 52 AML 10.30  0.00  0.00  0.30  0.000  5.80  60.00 

35 M 48 AML 32.60  9.81  2.40  7.06  0.693   

36 M 68 AML 19.10  22.61  33.42  55.55  12.56  13.80  72.60 

37 M 56 AML 24.70  10.73  15.66  17.94  1.925   

38 F 40 AML 20.90  3.51  8.42  38.31  1.345  13.50  64.70 

39 M 31 control 29.20    0.10    

40 M 71 control 25.20  0.00  0.00  0.70  0.000   

41 F 43 control 28.20  0.00  0.00  0.20  0.000   

42 M 51 control   5.71  1.20  0.10  0.006   

43 M 88 control 31.90  0.00  0.00  0.00  0.000   

M=male, F=female, Ts and Tc in hours. 
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Double-labeling immunohistochemistry CD34/BrdU to measure 
CD34 cells in S-phase or not 

After fixation and decalcification of the BM biopsies, embedding in paraffin was 

performed. Sections of approximately 6 m were placed on positively charged 

Superfrost Plus slides, air-dried and used for immunohistochemistry (IH) at 

room temperature. After deparaffinization by running through 100% xylene and 

graded ethanols, rehydration in double distilled water (ddH2O) was followed by 

incubation in freshly prepared 3% H2O2 for 30 minutes (min.) to block 

endogenous peroxidase. After rinsing thoroughly in ddH2O, three washes in 

respectively 0.15 M Tris Buffer Solution (TBS: 0.15 M sodium chloride in 0.05 

M Tris buffer, pH 7.5) and 0.5 M TBS (0.5 M sodium chloride in 0.05 M Tris 

buffer, pH 7.5) with 0.1% Tween 20 (Sigma)(TBST) was followed by a one hour 

incubation with a monoclonal mouse anti-CD34 (dilution 1:10) antibody 

(QBend/10, Biogenex). Again three washes in 0.5 M TBST which was followed 

by 30 min. incubation with the secondary rabbit-antimouse IgG (1:20) antibody 

Z259 (Dako, Carpinteria, CA, USA). After three washes in 0.5 M TBST, the 

tertiary (1:40) antibody D651 (APAAP: alkaline phosphatase antialkaline 

phosphatase complexes, Dako) was applied for 30 min., followed by washes in 

0.5 M TBST. A blue color reaction was developed in the cell membrane and 

cytoplasm by applying a freshly prepared BCIP/NBT (5-bromo-4-chloro-3-

indoxyl phosphate and nitro blue tetrazolium chloride, Dako) with 1 M 

levamisole (1 l/ml) for approximately 3 to 10 min. by repeatedly checking the 

blue color under the microscope. The BCIP/NBT reaction was neutralised by 

rinsing in ddH2O. The slides were left overnight in 0.15 M phosphate buffer 

solution (PBS) (0.15 M sodium chloride in 0.1 M phosphate buffer, pH 7.5) for 

performing a second IH procedure the next day to detect cells in S-phase. 

This procedure was started by applying 1mg/ml nuclease free pronase 

(Calbiochem, LaJolla, CA, USA) for 45 min. incubation, followed by three 

washes in 0.15 M PBS. 4N HCl treatment for 20 min. was done to permeabilize 

cell- and nuclear membrane, which was followed by dip rinsing in ddH2O and 

three washes in 0.15M PBS and 0.5 M PBST (0.5 M sodium chloride in 0.1 M 

phosphate buffer with 0.1% Tween 20, pH 7.5) each. The incubation with the 

primary anti-BrdU/IUdR (1:500) 3D9 containing 1.5% horse serum was stopped 

after 60 min. with three washes in 0.5 M PBST. The secondary (1:200) 

biotinylated monoclonal mouse antibody (Vectastain Elite Kit ABC, Vector, 

Burlingham, CA, USA) in 1.5% horse serum was incubated for 30 min. After 

washes in 0.5 M PBST, the tertiary (1:50) antibody ABC (avidin-

biotin/peroxidase complexes, Vectastain Elite Kit) was also incubated for 30 

min. and followed by three washes in 0.5 M PBST. The brown color reaction 

was developed in the nucleus with 50 mg DAB (3,3’-diaminobenzidine 

tetrahydrochloride, Sigma) in 200 ml 0.05 M Tris buffer, pH 7.5, together with 

12-14 l 30% H2O2 for 4 to 10 min., followed by three rinses in dd H2O. 
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Postfixation for the BCIP blue color was needed and performed with 2% 

glutaraldehyde at 4ºC for 20 mins. Dehydration of these paraffin sections was 

done by graded ethanols. After going through 100% xylene three times 30 

seconds, the slides were mounted with xylene-based mounting solution 

(Permount) using 2 m thick glass coverslips. No counterstain was used in this 

double-labeling procedure. 

Single-labeling immunohistochemistry to measure the percentage 
of CD34+ cells of all myeloid cells 

The same procedure after deparaffinization was followed as by the double-

labeling procedure, but we used DAB/ABC-kit to detect the CD34
+
 labeled cells 

(brown cytoplasm and cell membrane) and counterstained the biopsy slides 

with hematoxylin to differentiate CD34
+
 cells from the other myeloid cells. No 

postfixation treatment was needed for these slides. 

Morpho-immunohistochemical evaluation of BM biopsies: 
detection and scoring of CD34+ cells and/or S-phase cells within 
the myeloid compartment 

At least 2000 positively labeled S-phase cells were counted from five or more 

areas of the single-labeled biopsy for determination of the LI (%). Furthermore, 

2000 S-phase labeled myeloid cells were counted by searching for CD34
+
 

fields (aggregates or single cells) in the double-labeling method, whereas to 

2000 myeloid cells were counted by searching for CD34
+
 cells in the single-

labeling method. Aggregates of three or more CD34
+
 cells were seen and 

scored as a number of single cells. Erythroid and megakaryocytic cells were 

excluded by morphology. This evaluation procedure was done twice (on 

different days) by one and the same person, who is an experienced 

hematomorphologist. These different cells were counted and expressed as a 

percentage of one of the three different compartments (see Figure 2.1). 

Autoradiography for determining Ts (duration of S-phase or DNA 
doubling time) and calculation of Tc 

The bone marrow aspirate samples were double-labeled in vitro with tritiated 

thymidine for the calculation of the duration of S-phase (Ts) by our previously 

described method
13

. With the use of Ts and LI the total cell cycling time Tc of 

all myeloid cells can be calculated using the formula described by Wimber and 

Quastler
28

: Tc=Ts  GF/LI. GF is the growth fraction or the percentage of cells 

in cycle, which was assumed to be 100%. Ts and Tc are both expressed in 

hours in Table 2.1. 
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Figure 2.1 Overall myeloid compartment contains CD34
+

and CD34
 
compartments, both contain 

a proliferating fraction, taken together as S-phase compartment or LI of overall 

myeloid compartment. 

 LLI (%):overall myeloid labeling index (LI) or percentage myeloid S-phase cells of all 

myeloid cells in BM biopsies (grey area); LLICD34 (%): percentage CD34
+
 S-phase 

cells of all CD34
+
 cells or the labeling index of CD34

+
 cells (spotted grey area divided 

by spotted area); CCD34 (%): percentage CD34
+ 

cells of all myeloid cells (spotted 

area); CCD34S/S (%): percentage CD34
+ 

cells in S-phase of all myeloid S-phase cells 

(spotted grey area divided by grey area); CCD34S/M (%): percentage CD34
+
 cells in 

S-phase of all myeloid cells (%) can be calculated by multiplying CD34 (in %) by 

LICD34 (in %) divided by 100 (spotted grey area divided by white area). 

Statistical analysis 

After analyzing the distribution of the different continuous variables in the 

various subgroups, only LI, Ts, and Tc showed a Gaussian distribution in all the 

subgroups. Therefore, a distribution-free Wilcoxon-Mann-Whitney test was 

used to determine statistical significant differences (P<0.05) between these 

skewed-distributed subgroups (Table 2.2). Also the use of median values (with 

25-75% interval) is statistically seen more correct to describe these parameters 

when skewed distributions are involved. Pearson rank correlation tests were 

used to analyse statistically significant correlations (P<0.05) between various 

sets of two different variables within these subgroups.
 

Results 

After applying the double-labeling IH technique, CD34
+
 cells showed a blue 

colored cytoplasm and cell membrane with variable intensity, while the S-phase 

cells showed brown staining overlying the nucleus. CD34
+
 cells in S-phase are 

therefore double-labeled (Figure 2.2). Aspecifically blue stained blood vessel 
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endothelium and collagen by QBend/10 was not taken into account but served 

as positive internal control. The majority of cells were non-stained CD34  cells 

not in S-phase. Sometimes CD34
+
 aggregates could be found in which all the

cells where in S-phase, especially in sAML and the more advanced stages of

MDS (Figure 2.3). The mean values ( standard error of mean; SEM) of all 

determined proliferative parameters of all the groups are shown in Table 2.2

and Figures 2.4 and 2.5. Statistical differences between the various 

(sub)groups and the level of significance in combination with the median values 

(with 25-75% interval) of only the skewed-distributed parameters are expressed

in Table 2.2. 

Table 2.2 Proliferative characteristics of the CD34
+
, S-phase and overall myeloid compartments 

in controls, MDS subgroups and sAML. 

Variable Controls n=5 RA/RARS n=24 RAEB(t) n=9 sAML n=5 

LI (%) 28.6 ± 1.38 25.8 ± 1.39 24.6 ± 1.91 21.5 ± 3.64 

LICD34 (%) <0.1 9.60 ± 1.91 6.29 ± 2.70 9.33 ± 3.87 

6.10 (2.00–17.71) 3.57 (2.28–6.49) 9.81 (3.51–10.73) 

CD34S/S (%) <0.1 0.35 ± 0.11 (b
3
, c

3
) 1.44 ± 0.52 11.98 ± 6.00 (e

5
)

0.17 (0.04–0.47) 0.78 (0.37–2.41) 8.42 (2.4–15.66) 

CD34 (%) 0.22 ± 0.12 1.67 ± 0.35 (a
2
, b

1
, c

2
) 8.68 ± 2.29 (d

2
) 23.83 ± 10.21 (e

2
)

0.1 (0.1–0.2) 1.03 (0.35–2.89) 10.27 (4.29–10.58) 17.94 (7.06–38.31) 

CD34S/M (%) <0.1 0.189 (a
2
, b

5
, c

3
) 0.429 (d

2
) 3.304 (e

5
)

0.087 (0.035–0.247) 0.494 (0.260–0.684) 1.345 (0.693–1.93) 

Ts (hours) 9.28 ± 1.02 10.5 ± 3.15 11.0 ± 2.62 

Tc (hours) 39.8 ± 7.01 45.2 ± 15.5 65.8 ± 3.68 

Variables are expressed as mean percentage ± SEM and median (25–75% interval, second line), 

statistical significant differences between the following subgroups are designated as follows:

RA/RARS vs. controls (a), RA/RARS vs. RAEB(t) (b), RA/RARS vs. sAML (c), RAEB(t) vs. controls

(d), sAML vs. controls (e), the level of significance (P value) is expressed as a number in 

superscript (5 means P<0.05 etc). 

Labeling index of myeloid cells and CD34+ cells during MDS 
evolution

A statistically non-significant decrease occurred in the mean overall myeloid LI: 

RA/RARS 25.8%, RAEB(t) 24.6% and sAML 21.5% (Table 2.2 and Figures 2.4

and 2.5). The controls/lymphoma patients with uninvolved BM had an 

unexpectedly and unexplained high LI. Subsequently, we determined the size

of the CD34
+
 compartment and the LI of CD34

+
cells. A significant increase in 

the mean percentage of CD34
+
 cells of all myeloid cells was found with the

progression from RA to sAML. The percentages CD34
+
 cells were 1.67% in 

RA/RARS, 8.68% in RAEB(t) and 23.83% in sAML, much higher as compared 

to 0.22% of the controls (Figure 2.4). On the other hand, no significant 

differences were found in the LI of CD34
+

cells during MDS evolution. The 

mean percentage of proliferating CD34
+
 cells within the CD34 compartment 
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was 9.60% in RA/RARS, 6.29% in RAEB(t) and 9.33% in sAML. However, 

when the proliferating compartment of CD34
+
 cells as a fraction of all myeloid 

cells (CD34S/M) was analysed, a significant exponential increase was found 

during MDS evolution: 0.189% in RA/RARS, 0.429% in RAEB(t) and 3.304% in 

sAML (Figure 2.4). An exponential increase of proliferating CD34
+ 

cells as a 

fraction of all myeloid proliferating cells (CD34S/S) was also seen with 

progression of myelodysplasia to sAML: 0.35% in RA/RARS, 1.44% in RAEB(t) 

and 11.98% in sAML (Figure 2.4). Sometimes we observed CD34
+
 aggregates 

in which all the cells were in S-phase, especially in patients with a high CD34 

expression (Figure 2.3). 

 
 
Figure 2.3 Bone marrow biopsy of a patient with RAEBt showing a double-labeled (CD34

+
/BrdU

+
) 

cell aggregate in which all the CD34
+
cells are in S-phase. 

 
Figure 2.2 Double-labeling immunohistochemistry CD34/BrdU in MDS bone marrow biopsy: 

CD34
+
cells show blue cytoplasm and cell membrane, whereas S-phase cells show a 

brown nuclear staining. CD34 cells in S-phase have both features. 
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Figure 2.4 Proliferative characteristics of overall myeloid and CD34
+
cells during MDS 

evolution.
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These data suggest that the CD34
+
 compartment increases as MDS 

progresses to sAML. Within this compartment the percentage proliferating 

CD34
+
 cells remains the same (LICD34). The absolute number of proliferating 

CD34
+
 cells (CD34S/M) increases therefore, whereas a decreasing trend 

occurs in the size of the overall myeloid proliferating compartment (LI) as MDS 

evolves to sAML. This means that within this decreasing proliferating overall 

myeloid compartment, the fraction of proliferating CD34
+
 cells (CD34S/S) 

increases at the expense of the proliferating CD34  fraction during MDS 

evolution to sAML. The aforementioned changes in the different compartments 

are depicted together in Figures 2.5a and 2.5b. 

 

       a            b 
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Figure 2.5 (a) Overall myeloid LI (%) divided in % proliferating CD34

+
and CD34

-
cells of all 

myeloid cells during MDS progression to sAML. (b) Shift in size of CD34
+ 

and CD34
-

compartment (as % of all myeloid cells) during MDS evolution to sAML. 

Duration of cell cycle phases 

As MDS evolves to sAML, the mean total cell cycling time (Tc) increased 

progressively, although it just missed statistical significance, whereas no 

change occurred in the mean duration of S-phase (Ts). The mean Tc and Ts in 

the different subgroups are respectively 39.8 and 9.28 hours for RA/RARS, 

45.2 and 10.5 hours for RAEB(t), and 65.8 and 11.0 hours for sAML (Table 2.2 

and Figure 2.6). 

Correlations between various proliferative characteristics within 
the different subgroups 

Within the RA/RARS and RAEB(t) subgroups a strong significant correlation 

was found between Tc and Ts, respectively r=0.84 (P<0.0004) and r=0.99 

(P<0.0004), which was not found within the sAML group. 
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Figure 2.6 Mean total cell cycling time (Tc  in hours, on top). ND, not determined. 
 

 

Within the RA/RARS an increase in the CD34
+
 fraction of the total myeloid LI 

leads to a longer Ts and to a longer overall Tc because the percentage 

proliferating CD34

 
+ 

cells of all myeloid S-phase cells (CD34S/S) was 

significantly positive correlated with Tc, Ts and CD34S/M (respectively r=0.59 

(P<0.04), r=0.72 (P<0.008) and r=0.59 (P<0.005). Also CD34S/M was 

significantly correlated with Tc and Ts, respectively r=0.74 (P<0.006) and 

r=0.70 (P<0.01). The size of the CD34
+
 compartment depends on the 

percentage of proliferating CD34
+
 cells of all myeloid cells: CD34 was 

significantly correlated with CD34S/M (r=0.64, P<0.002). This means that 

within the CD34
+
 compartment of the RA/RARS group the balance between 

cell proliferation or cycling is favored over apoptosis . 

Within the RAEB(t) group and the controls we did not find any of the 

aforementioned correlations. Regarding the sAML group, similar characteristics 

were found as in the RA/RARS group: a higher CD34
+
 fraction within the 

overall myeloid LI leads to a longer overall Tc and an increment in the 

percentage of proliferating CD34
+
 cells of all myeloid cells because the 

percentage of proliferating CD34
+
 cells of all S-phase cells (CD34S/S) was 

positively correlated with Tc (r=0.99, P<0.08) and CD34S/M (r=0.94, P<0.02). 

Furthermore, the percentage CD34
+
 cells of all myeloid cells (CD34) was 

positively correlated with CD34S/S and CD34S/M, respectively r=0.86 (P<0.06) 

and r=0.83 (P<0.08). Only in sAML a positive correlation was found between 

LICD34 and CD34S/M (r=0.90, P<0.04). This means that in sAML the balance 

between CD34 cell proliferation or cycling and apoptosis is even more favored 

for proliferation than it is the case in RA/RARS. 
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Discussion 

The aim of this study was to get a better insight into the biology of CD34
+
 cells 

in relation to the overall myeloid population during the evolution of MDS. 

Therefore we investigated the evolutionary pattern of proliferation of myeloid 

cells in general and CD34
+
 cells in particular by means of IH double-labeling on 

BM biopsies. In patients with a low CD34 expression the CD34 parameters are 

a little overrated because of searching for positive fields for CD34 expression. 

This is not the case in patients with a high CD34 expression because of the 

fact that almost every field could be scored. Despite some overinterpretation, 

our values of CD34 (%) are within the same range as observed for the different 

FAB classifications by a similar study of Soligo et al.
29

 using a different method 

for scoring single-label CD34 immunohistochemistry in BM biopsies of MDS 

patients. 

During MDS progression we observed a significant increment in the percentage 

of CD34
+
 cells of all myeloid cells (CD34), which means that the CD34

+
 

compartment enlarges during progression from RA to sAML, which follows a 

concomitant increase in the percentage of BM blasts by FAB classification. 

Furthermore, as the overall myeloid LI shows a decreasing tendency from MDS 

transition to sAML, the percentage proliferating CD34
+
 cells of all myeloid cells 

(CD34S/M) increases  exponentially at the expense of the proliferating CD34  

compartment. The LICD34 remains the same because the percentage S-phase 

cells in the increasing CD34
+
 compartment remains the same, but the absolute 

number of proliferating CD34
+
 cells in the CD34

+
 compartment increases and 

consequently the absolute number of proliferating CD34
+
 cells of all myeloid 

cells. This can be (partially) explained by an exponential increment in the 

percentage of proliferating CD34
+
 cells of all myeloid cells in S-phase 

(CD34S/S). Furthermore, a decreasing number of all myeloid cells in S-phase 

concurrently with an increase in Tc and no change in Ts during MDS evolution 

to sAML can be explained by the slower proliferation of the enlarged 

proliferating CD34
+
 compartment. Immature CD34

+
 blasts must cycle slower 

than their CD34  counterparts, otherwise a fast CD34
+
 overgrowth within the 

BM would occur in every case of MDS, unless apoptosis or a rapid transit time 

to the CD34  compartment would prevent this overgrowth. As MDS evolves 

enhanced differentiation loss and decreased apoptosis occurs in the CD34
+
 

compartment (especially as leukemic blasts are concerned) which further 

increases the size of this compartment. From previous proliferation studies we 

already know that during the evolution within MDS and to sAML the overall 

myeloid LI decreases as Tc prolongs
9,26

, but it still has to be proven if (a 

substantial number of) these increased CD34
+ 

clonogenic blasts with a longer 

duration of G0/G1-phase cause this phenomenon. Above all, the phenomenon 

of “signal antonymy” (dying S-phase cells) in MDS was not taken into account 
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and this characteristic feature of MDS has to be investigated also for its 

implications for measuring overall Ts and consequently Tc. 

Myelodysplasia is primarily characterised by a phase of monoclonality before a 

(rapid) expansion of leukemic blasts occur. Mehrotra et al.
4
 showed in AML that 

the frequency of cytogenetically aberrant stem cells (CD34
+
lin ) is uncoupled 

from compartment size, which means that additional mutation(s) and 

maturation loss of the blast subpopulation is needed before expansion can 

occur. Also in MDS these characteristics can be found
30,31

. Furthermore, it was 

also found by interphase FISH analysis that the percentage of cytogenetically 

aberrant cells in the CD34  compartment was higher than in the CD34
+
 

compartment in good prognosis MDS, whereas this percentage of aberrant 

cells was almost the same in both compartments in poor-prognosis MDS
30

. 

Dynamic processes of clonal expansion and suppression of normal 

hematopoiesis and the balance between them are involved in these 

phenomena. These additional mutations may lead to apparent (and eventually 

malignant) clonal expansion by several mechanisms: enhanced dedifferen-

tiation or differentiation arrest, increased autonomic proliferation, turning down 

of apoptosis and eventually decreasing cell cycling times of clonogenic blasts. 

These mechanisms are clearly incorporated in the FAB classification: the 

progression of blasts, but even better in the IPSS score. Enhanced 

dedifferentiation of MDS CD34
+
 cells was also found in in vitro cultures upon 

growth factors
32-34

. No clear reports can be found investigating the increased 

autonomic proliferation in MDS. In RAEB(t) and sAML, we previously showed 

less overall apoptosis, especially in blasts, by using ISEL on BM biopsies
14

. 

This phenomenon was also recently reported by Bouscary et al.
35

 by showing a 

lower Fas expression on CD34
+
 cells of patients with advanced stages of MDS 

and sAML when compared with early MDS stages, which was also associated 

with less PCD by the TUNEL technique. In our study, we only found a strong 

positive correlation between LICD34 and CD34S/M in sAML (r=0.90, P<0.04), 

probably because apoptosis was found to be completely negative in this 

clonogenic blast population
14

. Evidence for increased proliferation with slower 

cell cycling times of CD34
+
 cells during MDS progression is also reported in 

this article. The mechanism of eventually decreasing total cell cycling times is 

seen in the blast subpopulation of ALIP-positive RAEB(t) patients with a very 

fast evolution to sAML
11,13

. 

The typical profile of exponential proliferation of CD34
+
 cells during MDS 

evolution may be explained by a progressive autonomous proliferation in the 

CD34
+
 compartment. Some evidence seen in our biopsies for a possible role of 

paracrine-induced “signal synchronisation” in CD34
+ 

aggregates, in which all 

the CD34
+
 cells were in S-phase, could be used as a morphological substrate 

for this autonomic proliferation (Figure 2.3). Increasing evidence for autocrine 

and/or paracrine mechanisms for the explanation of the autonomous growth of 
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(and anti-apoptotic effects in) AML blasts is found in the literature today
36,37

, but 

no studies in MDS are performed or reported as yet. 

Different groups have already shown that the absolute percentage of CD34
+
 

cells/blasts (CD34%) increases during the evolution of MDS
38,39

. The MDS 

CD34
+
 cells show clearly promoted proliferative capacity (high cluster/colony 

ratio in semi-solid medium) with strongly impaired differentiation upon growth 

factors in in vitro cultures
32-34

. TNF  is one of the cytokines which may have a 

dual role in this process: stimulation of proliferation of presumably early 

progenitor cells and induction of apoptosis in their more mature 

progeny
9,14,20,40,41

. TNF  directly stimulates the recruitment and proliferation of 

very early, primitive progenitors (CD34
++

,CD38 ) and induces an increased 

resistance of the inhibitory effect of TGF  on these early stem cells
40,42,43

. The 

immunohistochemically detected high TNF  levels in the BM biopsies of MDS 

patients are therefore a likely explanation of the increment in the absolute 

number of CD34
+
 cells, as well as the proliferating fraction of CD34

+
 cells when 

MDS evolves
9,14,41,44

. On the other hand, a positive relationship between the 

degree of PCD and the level of TNF  in the BM biopsies with a great 

preponderance of TNF  specifically around more mature ISEL-positive cells 

could explain the decrease in LI of CD34  cells, as well as a reduction in size of 

the CD34  compartment found in this study. Of course the balance between the 

various acting cytokines in the BM play the ultimate role in determining the 

overall proliferation and apoptosis of myeloid cells. 

CD34
+
 overexpression is observed in more than 30% of all MDS patients and 

CD34 expression is higher (as percentage CD34
+
 single cells and CD34

+
 

aggregates) in RAEB(t) than in RA/RARS
29,32

. The number of CD34
+
 

aggregates in MDS biopsies are significantly positively correlated with the 

percentage of BM blasts and ALIPs
45

. A significantly higher frequency of CD34 

expression is also found in sAML (or therapy-related AML) when compared 

with “de novo” AML
46

. In the present study, we showed a continuous process of 

increasing CD34 expression during the evolution of myelodysplasia to sAML 

caused by an increasing fraction of CD34
+
 cells within the total S-phase 

population. CD34-positivity in BM and the presence of CD34
+
 cells in 

circulation in MDS are both correlated with poor overall prognosis and with 

leukemic transformation
12,29,32,47,48

. Within AML after MDS, this prognostic 

relevance of CD34 expression has not been demonstrated yet, because no 

studies on this selected subgroup within AML have been performed. In this 

study we found a higher CD34 expression in AML after previous MDS as 

compared with the MDS subgroups, which is the first evidence in literature of a 

prognostic meaning of CD34 expression in AML-MDS. This poor prognostic 

meaning of increasing CD34
+
 aggregates, as well as increasing CD34

+
 

circulating cells in MDS can probably be explained by “signal synchronisation”. 

This means that growth signalling or initiation in these blast cell aggregates 
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occurs in a paracrine fashion, causing these cells to go into S-phase at the 

same time. This phenomenon is possibly responsible for autonomic growth by 

overruling the need for stromal interactions for proliferation (Figure 2.3). These 

speculations fit perfectly in the following model: when no or less stromal 

interaction for growth purposes is needed, less activation of the cytokine-

dependent 1-integrins very late antigen (VLA)-4 and VLA-5 on the CD34
+
 cells 

can be assumed, which leads to a lower BM fibronectin adhesion and a higher 

chance of circulating CD34
+
 cells

49-51
. Above all, recently a lower expression of 

the cell adhesion molecule L-selectin was found in this primitive CD34
+
 cell 

population of MDS patients compared to normals
52

. From a prognostic 

perspective, it may therefore be very important to apply this double-labeling 

immunohistochemistry to determine how many CD34
+
 cells and CD34

+
 

aggregates can be found in the BM biopsies, and especially how many of them 

are in S-phase.  

S-Phase specific agents like cytosine arabinoside (Ara-C) are considered to be 

most effective in MDS. If chronic cytoreductive therapy (like low-dose Ara-C) is 

effective enough to kill (because Tc increases with no change in Ts) the 

aberrant CD34
+
 stem cell clone(s) will be uncertain. New therapeutic options in 

the growing population of MDS patients have to be developed. The 

combination of cytoreductive therapy and biological therapy directed to 

suppression of proliferation of the aberrant CD34
+
 clone(s) and suppression of 

apoptosis of more differentiated BM cells may restore normal polyclonal 

hematopoiesis in MDS patients. 

Conclusions 

In summary, as MDS evolves from low-risk to high-risk groups and eventually 

sAML, we observed an increase in absolute CD34
+
 cells, as well as an 

increase in absolute CD34
+
 cells in S-phase in BM biopsies. We believe that 

this phenomenon is the result of clonal expansion of genetically altered blast 

cells with less or no apoptosis and with slower proliferation rates than their 

more mature CD34  counterparts in a different microenvironment of cytokines 

and probably changed stromal interactions. The IH double-labeling technique 

we described can be used to follow MDS evolution and probably determine 

prognosis and leukemic transformation with greater accuracy than before and 

irrespective of their FAB subtype, like Oriani et al.
48

 have shown for single-

labeling CD34 immunostaining. The different biological processes which lead to 

changes in size and proliferative capacity of the CD34
+
 and CD34  

compartments within MDS in evolution have been discussed and are 

pathophysiologically expressed in Figure 2.7. 
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Figure 2.7 Proliferative characterisitcs and size of the CD34 and CD34 compartments during 

MDS evolution to sAML. Gray area, % S-phase cells of all myeloid cells; white area, % 

cells of all myeloid cells; PCD area, apoptosis of S- and non-S-phase cells in CD34
 

compartment. 
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Abstract  

Background and objectives 

To study the apoptotic process in time we used the following flow cytometric (FCM) techniques: 

Phosphatidylserine (PS) translocation by Annexin-V(AnV)-FITC, DNA fragmentation by in situ end 

labeling (ISEL) and propidium iodide (PI) staining. Because PS translocation is assumed to be an 

early feature of programmed cell death (PCD), we questioned if AnV positivity implies inevitable 

cell death. 

 

Materials and methods 

Apoptosis was induced in Jurkat cells by -irradiation, incubation with camptothecin (CPT), or 

cytosine -D-arabinofuranoside (Ara-C). At different time intervals, PCD was quantified by AnV/PI 

and ISEL. To analyze the influence of cell handling procedures on PCD, we applied these three 

FCM techniques on normal CD34
+
 bone marrow (BM) stem cells after selection and after a freeze-

thaw procedure. Various AnV+/PI  CD34
+
 fractions were cultured in single-cell single-well (SCSW) 

assay. 

 

Results 

Jurkat cells under three different detrimental conditions showed essentially the same pattern of 

apoptosis in time. Initially developed AnV+/PI  cells subsequently (within one hour) showed ISEL 

positivity, after which they turned into AnV+/PI++ cells with even higher levels of ISEL positivity (80-

90%). Eventually, they lost some of their PI and ISEL positivity and formed the AnV+/PI+ fraction. 

Cell handling of CD34
+
 cells caused high and variable AnV+/PI  fractions (overall range 23-62%). 

Within total AnV+ and AnV+/PI  populations, only a minority of CD34
+
 cells showed ISEL positivity 

(range 4-8% and 0.8-6%, respectively). Different fractions of AnV+/PI  CD34
+
 cells did have 

clonogenic capacity in SCSW assay. 

 

Conclusions 

PCD of cell suspensions in vitro can be followed accurately in time by these three different FCM 

techniques. PS translocation is rapidly followed (within one hour) by oligo-nucleosomal DNA 

fragmentation, after which cell (and nuclear) membrane leakage occurs. Detection of PS 

asymmetry by AnV-FITC is not always associated with (inevitable) apoptosis, as can be concluded 

from the proliferative capacity of AnV+/PI  CD34
+
 cells in SCSW assay. 
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Introduction 

Each electrophoretic (EP), immunohistochemical (IH) and flow cytometric 

(FCM) technique detects only one specific feature of the process of apoptosis. 

Gel- and pulse-field EP methods detect small oligo-nucleosomal DNA strand 

breaks (multiples of 180-200 basepairs; “DNA-laddering”) and large DNA 

strand breaks (more than 30-50 kbp), respectively, which are supposed to be 

relatively late and early features of programmed cell death (PCD). 

Unfortunately, EP techniques are not applicable for quantification of PCD. In 

contrast, IH techniques like in situ end labeling (ISEL) and terminal 

deoxynucleotidyl transferase nick end-labeling (TUNEL) of DNA and FCM 

methods like Annexin-V (AnV)-fluorescein isothiocyanate (FITC), TUNEL, and 

propidium iodide (PI) can detect apoptosis of single cells.  

AnV detects phosphatidylserine (PS) transposition on the outer plasma 

membrane, which occurs at a rather early stage of PCD during the so-called 

“execution phase”
1-6

. This loss of membrane asymmetry develops downstream 

of the Bcl-2 checkpoint, after the disruption of the mitochondrial 

transmembrane potential, the release of apoptosis-inducing factor, and the 

activation of caspases
1
. PS translocation precedes nuclear condensation, loss 

of membrane integrity (causing PI uptake) and cell shrinkage
6,7

. Whether PS 

transposition occurs before or after “the point-of-no-return” of PCD is still a 

matter of debate. ISEL is an IH technique originally described by Wijsman et 

al.
8
 and modified successfully for plastic-embedded BM tissue by Mundle et 

al.
9
. A mix of four nucleotides with DNA-Polymerase-I is used to detect specific 

3’-OH ends of single-strand DNA breaks, which are found after endonuclease 

activation. Therefore, ISEL is detected in the phase of PCD beyond the point-

of-no-return. We modified this ISEL technique and made it applicable for 

FCM
10,11

. We used it in combination with AnV/PI to study the kinetics of 

different features of PCD. Furthermore, we questioned if PS translocation 

under every circumstance means inevitable apoptosis by culturing sorted 

AnV+/PI  CD34
+
 cells in a single-cell single-well (SCSW) assay. 

Materials and methods 

Materials 

The T-cell leukemia Jurkat cell line was cultured in RPMI (Gibco, Paisley, UK) 

with 10% fetal calf serum (FCS; Gibco) and treated in different ways to induce 

PCD in vitro. These cells (0.5 10
6
) were either incubated with 4 ml fresh 

medium containing camptothecin (CPT; 2 g/ml, Sigma, Zwijndrecht, the 

Netherlands) or cytosine -D-arabinofuranoside (Ara-C; 10
-4

 M, Sigma), or they 

were -irradiated with 12.5 Gray (Gy) and subsequently cultured for 7 days. 
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PCD was measured (in duplicate) by AnV/PI in time and different fractions 

were sorted and subsequently fixed overnight in freshly prepared 4% 

paraformaldehyde at 4 C. These cells were stored in 70% ethanol at -20 C for 

ISEL analysis at a later time. 

The BM of three normal donors (D1-D3) was processed by Ficoll density 

separation (1.077 g/ml, Sigma) to obtain a mononuclear cell fraction. CD34
+
 

progenitors were isolated from this fraction with directly conjugated CD34 

antibody-coupled immunomagnetic beads (Dynal, Oslo, Norway). After a wash 

with glucose-phosphate buffered saline (G-PBS) with bovine serum albumin 

(BSA), these cells were resuspended in Iscove’s medium, supplemented with 

10% v/v heat-inactivated FCS and 10% v/v dimethylsulfoxide (DMSO) at a 

concentration of 0.2-0.4 10
6 

cells/ml. Subsequently, the cells were 

cryopreserved in a temperature-controlled freezer (Kryo 10, Planerbiomed, 

Sunbury, Middlesex, United Kingdom) and stored in liquid nitrogen at -198 C. 

Cells were thawed rapidly in a waterbath of 37 C and diluted in FCS, 

containing 0.2 mg/ml DNAse, 4 M MgSO4 and 15 U/ml heparin. PCD analysis 

by FCM (AnV/PI and ISEL, in duplicate) was performed immediately after 

CD34 selection, after thawing, and after 4.5 hours residing in Iscove’s medium 

with FCS in a 5% CO2 atmosphere at 37 C. 

PCD analysis by FCM on an Epics Elite ESP (Beckman Coulter, 
Hialeah, FL, USA) 

For the AnV/PI procedure described in detail in Vermes et al.
3
, we always used 

freshly obtained cells without preceding fixation. After centrifugation, the cells 

were washed with RPMI medium with 5% FCS. Incubation was performed with 

AnV-FITC (end-concentration (EC) 1.2 g/ml, Bender Medsystems/Cordia, 

Leiden, the Netherlands) with an excess of calcium (2.5 mM) and PI (EC 

1.6 g/ml, Sigma) for 10 minutes (min.). Jurkat cells in medium without 

cytotoxic treatment served as a negative control. Different AnV/PI fractions 

were sorted for ISEL by FCM (see also Figure 3.2 for the various 

compartments): AnV /PI , AnV+/PI , AnV+/PI++, AnV+/PI+. 

The modified ISEL technique for FCM (FCM-ISEL) on fixed cells was applied 

as follows. After washing the cells with PBS-BSA, incubation with SSC (NaCl 

0.3 M, sodium citrate 30 mM, pH 7.0) was performed for 20 min. at 78 C, 

followed by another wash in PBS-BSA. After washing with buffer (Tris HCl 

50 mM, MgCl2 5 mM, -mercaptoethanol 10 mM, BSA 0.005%, pH 7.5), 

incubation with DNA-Polymerase-I (20 U/ml, Promega, Madison, WI, USA) 

together with 11-bio-dUTP (0.5 M, Sigma), dATP, dCTP, and dGTP (10 M 

each, Promega) was carried out at 19 C for 30 min. A wash with PBS-BSA and 

incubation with streptavidine-Cy5 (1.0 g/sample) at 4 C for 30 min. was 

performed. Finally, the cells were washed with PBS-BSA followed by 
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FCM-ISEL. Incubation of cells without DNA-Polymerase-I served as a negative 

control. All AnV/PI and ISEL measurements were performed (in duplicate) on 

CD34
+
 cells within the life-gate and on Jurkat cells  after setting the 

discriminator to exclude debris by forward and right angle scatter. 

Single-Cell Single-Well Assay 

Human BM CD34
+
 cells were stained with AnV-FITC. An autoclone unit sorted 

single PI CD34
+
 cells within the life-gate which were bright (AnV++: AnV 

fluorescence intensity 3), dull (AnV+: AnV fluorescence intensity 0.5-3) or 

negative (AnV : AnV fluorescence intensity 0.5) for AnV in 96-well round-

bottom plates (Costar, Corning, NY, USA). Every well was checked for the 

presence of one single cell by inverted microscopy before culturing. Each well 

contained 75 l Iscove’s medium (Gibco) supplemented with 2 mM L-glutamine 

(Flow Laboratories, Zwanenburg, the Netherlands), streptomycin 50mg/ml and 

penicillin 50 IU/ml (Gibco), 20% v/v FCS, and recombinant growth factors 

(GFs). This medium was supplemented with granulocyte-colony stimulating 

factor (20 ng/ml, Amgen, Thousand Oaks, CA, USA), human stem cell factor 

(25 ng/ml, Amgen), interleukin-3 (50 ng/ml, Sandoz BV, Uden, the Netherlands) 

and granulocyte macrophage-colony stimulating factor (20 ng/ml, Sandoz). The 

plates were incubated in a fully humidified, 5% CO2 incubator at 37 C. The 

proliferative capacity of these CD34
+
 cells was assessed by counting the cells 

in every well at day 14 by an inverted microscope. Proliferative capacity was 

assessed by enumerating wells with 2 or more cells, more than 50, and more 

than 500 cells per 96 wells. 

Results 

The modified ISEL technique works well. FCM-ISEL without adding DNA- 

Polymerase-I served as a negative control (Figures 3.1A, 3.1B). After adding 

DNA-Polymerase-I to CPT-treated Jurkat cells, an excellent separation 

between ISEL+ and ISEL  cells (Figures 3.1C, 3.1D) was found. 

Kinetic analysis of CPT-induced apoptosis in Jurkat cells by 
AnV/PI by FCM 

The process of PCD in time during CPT incubation (0-4--22-48-72-169 hours) 

determined by AnV/PI is depicted in Figure 3.2. Fresh AnV /PI  cells became 

AnV+/PI  within 4 hours (mean AnV and PI fluorescence intensities of 27.3 and 

0.42, respectively), after which they developed strong PI positivity (AnV+/PI++ 

within 22 hours: mean AnV and PI fluorescence intensities of 39.1 and 63.1, 
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respectively). All cells eventually turned into end-stage apoptosis as an 

AnV+/PI+ population (within 22 hours and more: mean AnV and PI 

fluorescence intensities of 37.8 and 6.0, respectively). Figure 3.3 shows the 

time course quantity of these different AnV/PI fractions. The same traverse 

pattern as depicted in Figure 3.2 was put down in Figure 3.3. 
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Figure 3.1 Jurkat cells treated with CPT (2 mg/ml) for 50 hours and stained with the FCM-ISEL 

method. C,D: ISEL+ cells are positioned to the right. A,B: FCM-ISEL without DNA-

Polymerase-I (serves as negative control). 
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Figure 3.2 The process of apoptosis in time of Jurkat cells during various time periods (T in 

hours) of CPT incubation (2 mg/ml). Fresh AnV-/PIcells become AnV+/PI- within 4 h 

and develop strong PI positivity (AnV+/PI++) within 24 h. Subsequently, all these cells 

turn into an AnV+/PI+ population as the AnV-/PI-, AnV+/PI-, and AnV+/PI++ 
populations disappear. 
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Figure 3.3 Quantification of apoptosis by AnV/PI FCM of Jurkat cells treated with CPT during

various incubation periods.

Development in time of AnV/PI and ISEL in CPT-treated Jurkat 
cells

ISEL was performed on the different AnV/PI fractions on two time points 

(Figure 3.4). AnV  cells showed no ISEL positivity, whereas ISEL positivity 

rapidly increased in the AnV+/PI  fraction to almost 70-80%. ISEL positivity 

ultimately gained 10 to 20% when the AnV+/PI++ fraction was formed, after 

which it decreased by almost the same magnitude by turning into the end-stage 

AnV+/PI+ fraction.
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Figure 3.4 Determination of ISEL positivity (mean and SD) of the different AnV/PI fractions of 

Jurkat cells during 24 and 47 hours of CPT incubation. Dark gray bars: T=24 hours, 

gray bars: T=47 hours.

If we looked more carefully at the early phase of the PCD process (0-4 hours, 

Figure 3.5) of CPT-treated Jurkat cells, an evident increment of total AnV 
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positivity was noted between 2 and 3 hours. This increment of AnV+/PI  cells 

was rapidly followed by a clear gain of ISEL+ cells (within one hour; between 3 

and 4 hours of incubation) with no concomitant rise in PI. 
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Figure 3.5 Jurkat suspension culture treated with CPT for 4 hours; apoptosis measurements in 

duplicate, depicted as mean % positive cells (and SD). 

 

PCD development of Jurkat cells treated with three inducers of 
apoptosis  

As can be seen in Figure 3.6, the increment in time of the percentage AnV+ 

CPT-treated Jurkat cells was followed by a same profile of increment of the 

percentage ISEL+ and PI+ cells, although the differences were less 

pronounced as time proceeded. Quite different patterns of PCD of Jurkat cells 

were found during Ara-C incubation and after -irradiation (Figure 3.6); they 

both showed less PCD and a more gradual increment of apoptosis. But, in 

general, we always observed the same pattern of phases of PCD in time (AnV+ 

earlier and higher than ISEL+). The difference between both apoptotic 

populations was not high (maximum 15-20%). Furthermore, the PI+ fraction 

remained in the same range as the ISEL+ fraction. 
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Figure 3.6 The kinetic pattern of apoptosis of Jurkat cells treated with CPT, Ara-C and 

-irradiation is quantified by three FCM techniques; AnV-FITC, ISEL and PI. Dark gray 

bars: AnV+, gray bars: ISEL+, open bars: PI+.  
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PCD measurements by FCM of sorted BM CD34+ cells; influence 
of cell handling 

In Table 3.1, the results of D1 of different PCD characteristics (mean % ± SD) 

are depicted as percentages of the whole CD34
+
 population within the life-gate  

after CD34 selection, after viable freezing and thawing, and after 4 hours of 

incubation in medium after thawing. A variable amount of cell loss is anticipated 

and was found after each cell handling procedure,  as was  proven by a 

gradually increment of the amount of cell debris after each procedure (5.5% to 

12.1% to 13.4%, respectively). On the other hand, the percentage of CD34
+
 

cells within the life-gate only showed a slight decrease during these procedures 

(70.5 to 70.0 to 67%, respectively), representing some decrease in absolute 

numbers of vital CD34
+
 cells.  An unexpected high amount of total AnV positivity 

was found (62.2  2.1%) directly after CD34 selection with antibody-coupled 

beads, of which only a small part showed really features of PCD (ISEL+ of 

5.9% versus AnV+/PI+ of 0.35  0.07%). After viable freezing and thawing, the 

amount of AnV+ CD34
+
 cells was considerably less but still remained high 

(39.6  2.5%), whereas only slightly lower mean ISEL+ and AnV+/PI+ levels 

were found (4.6  0.5% and 0.15  0.07%, respectively). Incubation of the 

thawed cells in medium for 4.5 hours caused some decrease in total AnV+ 

( 8%), which was totally attributed by a shift from AnV+/PI- fraction towards the 

AnV-/PI- population. The amount of AnV+/PI+ hardly changed (0.1%) whereas 

the amount of ISEL positivity almost doubled (7.6  0.1%). Under all these 

circumstances, the difference between AnV+/PI- and ISEL+ populations of 

CD34
+
 cells remained at least 24% with a maximum of 55%.  

 
Table 3.1 Apoptosis measurements (mean ± SD) of life-gated CD34

+
 cells after CD34 selection 

with immunomagnetic beads (D1), and after viable freeze-thawing of CD34
+
 cells (D1-

3), followed by incubation in medium (D1), and plating efficiency in the SCSW assay 

(D2-D3) with size and number (#) of cell aggregates per 96 wells. 

D1 / CD34
+

life-gated AnV-/PI- AnV+/PI- AnV+/PI+ 

mean%  SD

Total AnV+ ISEL+ 

After CD34+ selection (in %) 37.8 ± 2.1 61.9 ± 2.1 0.35 ± 0.07 62.2 ± 2.1 5.9 

After thawing CD34+ (in %) 60.5 ± 2.5 39.4 ± 2.4 0.15 ± 0.07 39.6 ± 2.5 4.6 ± 0.5 

After incubation medium (in%) 68.8 31.1 0.1 31.2 7.6 ± 0.1 

D2 / CD34
+

Total (%) SSCSW >2 cells >50 cells >500 cells ISEL+ (%) 

AnV-/PI- 75.1 ## aggreg. 18 10 8 0 

AnV+/PI- 23.6 AnV+ 16 7 4 0.8 

   AnV++ 14 1 1 4.1 

AnV+/PI+ 1.3  0 0 0  

D3 / CD34
+

Total (%) SSCSW >2 cells >50 cells >500 cells ISEL+ (%) 

AnV-/PI- 63.0 ## aggreg. 27 11 8 0 

AnV+/PI- 35.0 AnV+ 14 5 4 3.8 

   AnV++ 8 3 1 5.4 

AnV+/PI+ 1.5  0 0 0  
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Culturing different AnV/PI fractions of thawed CD34+ cells in an 
SCSW assay 

After thawing of the sorted CD34
+
 cells of donor 2 and 3 (D2, D3), the AnV 

fractions within the PI- compartment (AnV-, AnV+, AnV++) were used for 

SCSW assay to detect their proliferation capacity as a golden standard of 

viability. These AnV fractions were also sorted from the life gate after excluding 

cell debris. The difference between AnV+/PI- populations of both donors was 

10-15% (Table 3.1), which was not correlated with their percentages ISEL+ 

found within the dull and bright AnV+/PI- CD34
+
 cells. As AnV-CD34

+
 cells 

showed normal growth in SCSW assay, this fraction grew approximately twice 

as good as their AnV+/PI  counterparts. Within this last group, the dull AnV+ 

cells grew considerably better than the bright AnV++CD34
+
 cells. AnV+/PI+ 

CD34
+
 cells showed no growth at all, as was expected. 

Discussion 

In this study we used Jurkat cells to observe the kinetics of three features of 

PCD by FCM. We also used CD34
+
 cells to measure apoptosis characteristics 

after cell handling and to investigate if AnV positivity after cell handling implied 

inevitable PCD. PS transposition of cells has been recognized as an 

evolutionary well-saved and ubiquitous marker of early PCD, that is needed for 

cell engulfment by macrophages before their plasma integrity becomes 

compromised
5,12

. However, PS translocation is not unique for apoptosis 

because it was also observed during (secondary) necrosis
13

. Therefore, we 

used the AnV-FITC assay with PI by time-lapse examination to differentiate 

among viable (AnV-/PI-), early apoptotic (AnV+/PI-), late apoptotic, and 

secondary necrotic (AnV+/PI++ or AnV+/PI+) cells
3,4,6,7,13-15

. Furthermore, as 

we needed a method to distinguish between early and late PCD, we developed 

a modified ISEL technique for FCM
10,11

. ISEL can be seen as a variant of the 

TUNEL technique, but TUNEL is used much more frequently in research
16,17

. 

DNA-Polymerase-I used in ISEL was tested and was able to detect DNA 

fragments generated by endonuclease activity in Jurkat and human BM CD34
+
 

cells during PCD
18-21

. To study apoptosis in time, we preferred the ISEL 

technique because it has been shown to be more specific for PCD than for 

necrosis as compared to TUNEL
20,22,23

. Furthermore, the TUNEL assay is 

prone to false positive and negative staining
15,24

. ISEL and PI detect specific 

DNA fragments and loss of cell membrane integrity, respectively, which are 

features of inevitable PCD, as they occur after each other during the execution 

phase
1,2,16,25-27

. From our background of research with stem cells, we 

questioned if detection of AnV (within CD34
+
 cells) means that the point-of-no-
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return of PCD has been passed. This is still a matter of debate, although some 

evidence in favour of this hypothesis has been gathered
6,28,29

. 

In line with the above-mentioned considerations, we proved in all Jurkat 

experiments that membrane PS asymmetry precedes DNA fragmentation 

and/or membrane perturbation (Figures 3.2, 3.3, and 3.5), as DNA fragmen-

tation precedes cell membrane leakage (Figures 3.4 and 3.5). 

Others
1,4,6,13,16,17,30-32

 have obtained similar results with various techniques 

(AnV/PI, AnV/PI with TUNEL, AnV/TUNEL, different DNA binding dyes, 

morphology, comet assay, and laser scanning cytometry), but not in one setup 

of serial experiments in time combining three PCD-analyzing techniques with 

three apoptosis-inducing methods. In the experiment of exposing Jurkat cells to 

CPT, PS expression increased after 2-3 hours (AnV+/PI-) and was followed by 

ISEL increment by only one hour difference (Figure 3.5). Others also found this 

relation in time with different techniques
28,32-35

 and it emphasizes the discrete 

line in time to pass the point-of-no-return regarding PCD (of this cell line under 

these circumstances). On the other hand, Bacsó et al.
32

 proved within a CD95-

induced Jurkat apoptosis model that virtually all the AnV+/PI  cells, which 

increased after 2 hours, had apoptotic comets or remnants (as it also detects 

early 50kb DNA fragments). 

After carefully analyzing the process of PCD in time, an interesting pattern was 

observed. AnV+/PI /ISEL  viable cells developed into AnV+/PI /ISEL+ and 

subsequently AnV+/PI++/ISEL++ cells, representing a more progressive phase 

of apoptosis with the highest ISEL positivity. These cells turned into 

AnV+/PI+/ISEL+ cells, which are end-stage apoptotic and/or secondary 

necrotic cells, presumably characterized by more DNA disintegration, nuclear 

condensation, and leakage of cell and nuclear membranes causing less PI- 

and ISEL-positive staining
15

. These results are comparable with the Nicoletti 

assay
3,36

 and with the report of MacNamara et al.
37

 who studied HL-60 cells 

under similar conditions. They determined the PCD of these cells as a sub-

G0/G1 peak on DNA histograms with forward and sideward scatter features 

reflecting cell shrinkage and the presence of apoptotic bodies.  

The different PCD patterns of Jurkat cells after -irradiation, CPT, or Ara-C 

were explained by the detrimental action upon different cellular targets and by 

a different dose-response. One should realize that the death of these cells is 

necrotic at high levels of insult, whereas PCD is induced at lower levels. For 

example, -irradiation promptly caused single and double DNA strand breaks, 

some of which were sublethal and could be repaired, some of which were lethal 

(causing PCD), and some of which were devastating to the cell (causing 

necrosis). This explains the initial combination of primary necrosis and 

apoptosis (of especially cells in S-phase
38

), in which the higher amount of 

necrosis with more PI positivity (higher than ISEL) gradually declined in order 

to make place for more apoptotic involvement (ISEL>PI). CPT, a DNA-
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topoisomerase-I blocker, induces DNA strand breaks of all cells (although 

DNA-replicating S-phase cells are more sensitive), whereas Ara-C, a 

pyrimidine antagonist, predominantly effects S-phase cells. Perhaps this could 

explain a slower increment in PCD by Ara-C as compared to CPT
29,33-35

. 

High numbers of AnV+/PI- of CD34
+
 cells within the life-gate occurred after 

CD34
+
 selection with immunomagnetic beads (D1:  62%) and they also 

showed a high variability after rapidly freezing and thawing (mean AnV+/PI- of 

D1-D3:  33  8%). It is a well-known and accepted phenomenon that a highly 

variable amount of stem cells is lost after CD34 selection and viable freezing 

and thawing. Cryopreservation in liquid nitrogen of mononucleated BM cells in 

10% DMSO leads to absent trypan blue exclusion in approximately 10-15% 

cells and to a 25  10% loss of stem cells and colony forming unit-granulocyte 

macrophages (CFU-GM)
39

. But, the important issue is what are the 

characteristics of the CD34
+
 cells within the life-gate regarding cell-viability 

versus apoptosis after these cell handling procedures? Cryopreservation of 

hematopoietic stem cells leads to high and variable AnV positivity (range 

5-70%), but whether these cells are destined to die remains to be proven and 

should not be presumed
40

. Membrane alteration or damage could be triggered 

by the handling during the antibody-coupled immunomagnetic bead selection 

or induced by controlled freezing (DMSO should prevent crystal formation) and 

rapidly thawing (DMSO can cause osmotic shock) of these cells
41

. The big 

difference in percentage between total AnV+ and ISEL+ CD34
+
 cells (between 

20-55%) in combination with an unchangeable low percentage in ISEL+ cells 

(  5%) after CD34 selection and after thawing argues strongly for a temporary 

membrane alteration and not for PCD. In our experiment, at least some of 

these AnV+ cells repaired their membrane activation-alteration and/or damage 

during incubation in medium (approximately 6-8% in D1), whereas other cells 

followed their path of PCD as ISEL was increasing. Furthermore, at least 8% (8 

of 96 wells) to 15% (14 of 96) of these thawed AnV+/PI- CD34
+
 cells (AnV++ 

fraction) had proliferative capacity. On the other hand, these cells represented 

at least 30% (8 of 27 wells) to 78% (14 of 18 wells) of the normal plating 

efficiency found within these two controls in this SCSW assay. Normal plating 

efficiency (using AnV- CD34
+
 cells) is defined as the number of wells showing 

proliferative capacity. In contrast, the CFU-GM capacity (to form colonies of 

more than 40 cells as being granulocytes and macrophages) was strongly and 

inversely correlated with the AnV intensity of these PI- CD34
+
 cells. Therefore, 

AnV should not be used as a marker or as the only marker of apoptosis in 

experiments with stem cells in which physical membrane activation or alteration 

may be expected. PCD should be proved by distinct morphological features or 

by FCM techniques that detect DNA fragmentation products
15,32

. From these 

experiments, we conclude that in some experimental settings membrane 

activation or alteration and/or a low apoptotic insult was involved in causing PS 
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exposition in a commitment phase to apoptosis. This phase of "pre-apoptosis" 

has been shown to be caspase-independent and reversible if the strength of 

the stimulus is low and of short duration
26

. A substantial fraction of AnV+/PI  

BM CD34
+
 cells after different cell handling procedures has certainly not 

passed the point-of-no-return in the process of PCD, as the cells retained 

proliferative capacity, although to a lower extent. In analogy, cryopreservation 

and thawing of human spermatozoa
42

 were associated with the induction of 

membrane PS translocation and high post-thaw levels of AnV were found even 

in the fractions with high sperm motility. 
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Abstract  

Background and objectives 

Enhanced proliferation of MDS progenitors is abrogated by increased programmed cell death 

(PCD) of their progeny in vivo. We investigated whether bone marrow mononuclear cells (BMMNC) 

of MDS patients also showed enhanced proliferation and apoptosis in vitro in comparison with 

acute myeloid leukemia (AML) and normal BM (NBM).  

 

Design and methods 

BMMNC were cultured in agar during 10 days. Proliferation was determined by counting clusters 

and colonies. Apoptosis was assessed by performing in situ end labeling on these cultures at days 

4, 7, and 10.  

 

Results 

NBM showed a decrease in the number of clusters in time due to PCD of clusters and due to 

development of clusters into colonies with low apoptotic level. In MDS patients, about 2-fold more 

clusters have developed at day 4, and in contrast with NBM, the total number of clusters at day 7 

remained high in spite of an increasing percentage of apoptotic clusters (from 52 to 76%) in 

combination with more colony formation. The number of clusters and colonies showed a sharp 

decline at day 10 because of persistently high apoptosis at cluster level and increasing PCD in 

colonies. BMMNC of AML patients showed decreased proliferation with enhanced apoptosis at 

cluster level in contrast to a relatively low apoptotic level in the colony-forming cells.  

 

Conclusions 

Within MDS, increased proliferation is abrogated by enhanced apoptosis, whereas AML showed 

decreased proliferation with a low level of apoptosis in colony-forming cells. These growth profiles 

of BMMNC are independent of stromal influences and represent intrinsic features of the MDS 

progenitors and possibly accessory cell interactions. 
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Introduction 

Myelodysplastic syndromes (MDS) are acquired clonal stem cell disorders 

characterized by increased overall proliferation and apoptosis, associated with 

impaired differentiation leading to accumulation of myeloblasts, often with 

elevated CD34 expression and aberrant immunophenotypes. The overall 

balance between proliferation and programmed cell death (PCD) within the 

bone marrow (BM) changes as MDS evolves to acute myeloid leukemia 

(AML)
l-8

. Monoclonality is the hallmark of MDS and implies a growth advantage 

of MDS progenitors over normal hematopoiesis. During MDS progression, the 

clonal myelodysplastic hematopoiesis, characterized by increased proliferation 

but no survival benefit, gradually transforms into leukemic hematopoiesis, 

characterized by enhanced cell survival with defective differentiation and a low 

proliferation rate. This hypothesis is supported by the observation that the 

overall size of the CD34
+
 compartment (containing S- and non-S-phase cells) is 

higher in RAEB(t) when compared with RA/RARS but the percentage CD34
+
 

cells in S-phase remains low in RAEB(t)
4
. 

Besides the above-mentioned “intrinsic” changes, interactions between the 

MDS progenitors and the microenvironment ("extrinsic" changes like stromal 

and/or accessory cell interactions) may also play a role in the increased overall 

(myeloid) proliferation associated with substantially increased apoptosis
9,10

. 

Anti-apoptotic therapies in MDS patients (like anti-TNF  therapy, thalidomide, 

ATG and/or cyclosporine A) have proven to decrease overall PCD and 

subsequently hyperproliferation within the BM, but the question still remains 

which intrinsic or extrinsic features are altered and at which maturation level. 

To clarify these questions we analyzed whether the in vivo overall 

hyperproliferation and increased apoptosis could also be observed in vitro by 

excluding stromal influences. Bone marrow mononuclear cells (BMMNC) of 

MDS patients were cultured in agar and compared with the “growth profiles” of 

normal bone marrow (NBM) and AML. The results show that the in vitro 

kinetics of early and late progenitors and their progeny parallels the in vivo 

observations. The role of intrinsic features and possible interactions with non-

stromal accessory cells are discussed, on the basis of the in vitro profiles of 

MDS BMMNC presented in this study which are not influenced by stromal 

interactions. 
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Materials and methods 

Patients 

For our studies, we selected de-novo MDS patients (n=5) and AML patients 

(n=6) with trisomy 8 as sole cytogenetic abnormality. We compared the in vitro 

profiles of both groups with the profiles observed in healthy controls (NBM, 

n=6). Informed consent was obtained in all cases. The patient characteristics 

are presented in Table 4.1. 

 
Table 4.1 Individual patient characteristics with mean values in normals. 

NBM 

 

Age 

(yrs) 

Gender 

 

FAB BM blasts 

(%) 

IPSS GF 

(%BMMNC)

A%tot A%-Cl A%-Co 

n=6 37 5M / 1F    0.24 42 54 25 

MDS 
         

   1 78 M RARS  1  0.5 0.10 58  72 36 

   2 55 M RAEB  7  1.5 0.33 56  66 41 

   3 60 F RAEB  15  2 1.00 62  70 52 

   4 64 M RAEB  17  2.5 0.06 40  50 30 

   5 66 M RAEBt  26  3 0.58 42  53 26 

AML 
         

   1 52 M M5  32  0.06 40  55 18 

   2 50 M M4  38  0.08 44  60 21 

   3 41 F M4  48  0.08 48  68 17 

   4 59 F M1  76  0.08 51  67 27 

   5 44 F M5  95  0.23 41  53 23 

   6 57 M M4   0.01 87  100 67 

FAB: French American British classification, BM: bone marrow, MNC: mononuclear cells, IPSS: 

International Prognostic Scoring System, GF: Growth Fraction; % S-phase cells of BMMNC, A%tot: 

% apoptotic clusters and colonies; overall apoptosis, A%-Clu and A%-Co: % apoptotic clusters and 

colonies, respectively. All in vitro parameters are expressed as mean values of days 4, 7, and 10. 

BMMNC collection, cryopreservation, and thawing 

BMMNC were obtained from BM aspirates after Ficoll (Sigma, St. Louis, 

Missouri, USA) density centrifugation (1.077 g/ml). BMMNC were cryo-

preserved and stored in liquid nitrogen before thawing
11

. 

Agar culture conditions and assessment of proliferation 

After thawing, BMMNC were resuspended with Iscove’s (IMDM, Gibco) 

supplemented with 20% FCS, 50 IU/ml penicillin, 50 g/ml streptomycin (Flow 

Laboratories), 0.3% (w/v) bacto-agar (Difco, Detroit, Michigan, USA), and 

G-CSF (Amgen, Thousand Oaks, CA, USA, final concentration (FC) 20 ng/ml), 

GM-CSF (Sandoz BV, Uden, the Netherlands, FC 25 ng/ml), IL-3 (Sandoz BV, 

FC 40 ng/ml), hSCF (Amgen, FC 25 ng/ml). No erythropoietin was used in 
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order to culture myeloid clusters and colonies. We plated 200,000 cells per 

35 10-mm culture dishes (Costar, Cambridge, Massachusetts, USA). After 

incubation in a fully humidified 37 C atmosphere, the plates were scored with 

an inverted microscope (Diavert Leitz) on days 4 (8 plates), 7 (6 plates), and 10 

(4 plates). The proliferative capacity of BMMNC was defined as the number (N) 

of clusters (Cl: 10-39 cells) and colonies (Co: 40 cells) per culture dish. Ntot is 

the total number of clusters and colonies together per culture dish. Clusters 

and colonies were disregarded if they showed clear pycnotic features. After 

counting, two agar bottoms were cut in halves and citospinned (1500 rpm for 

10 minutes) on Superfrost slides, as described in detail before
12

. After drying 

for 30 min. (minutes), these half-bottoms were put in cold 4% paraformal-

dehyde in 0.15 M phosphate buffer solution (PBS) for fixation overnight. These 

slides were stored in 70% ethanol at 4 C until the in situ end labeling (ISEL) or 

in situ hybridization (ISH) procedures were performed. 

ISEL assay adapted for agar cultures on slides 

Apoptosis was detected by the ISEL assay
13

. This technique detects oligo-

nucleosomal DNA strand ends of 200-300 base pairs in size using a cocktail of 

DNA-Polymerase-I and four nucleotides of which only dUTP (11-bio-dUTP, 

Sigma) is biotinylated. The slides were rinsed in double-distilled water followed 

by incubation in 0.23% Periodic Acid (Sigma) for 30 min. to block endogenous 

peroxidase. They were rinsed once in distilled water and then 3 times in 0.15 M 

PBS (0.15 M sodium chloride in 0.1 M phosphate buffer, pH 7.5) with 0.1% 

Tween 20 (Sigma) (PBST) for 4 min. each. Subsequently, the slides were 

immersed in SSC solution (0.3 M sodium chloride, 30 mM sodium citrate, pH 

7.0) of 78 C and incubated for 20 min. to enhance the accessibility of DNA for 

probes. The slides were rinsed in 0.15 M PBST, followed by 3 wash steps for 

4 min. each. Incubation with 1 mg/ml Pepsin (Porcine by Serva, Heidelberg, 

Germany) in 2 M HCl for 20 min. was performed, followed by washes in 0.15 M 

PBST. Subsequently, the slides were rinsed in Buffer A (50 mM Tris HCl, 5 mM 

MgCl2, 10 mM 2- -mercapto-ethanol, 0.005% bovine serum albumin, pH 7.5). 

The ISEL cocktail containing Buffer A with 20 U/ml DNA-Polymerase-I, 

0.01 mM dATP, dCTP, and dGTP (Promega) together with 0.001 mM bio-dUTP 

was applied to all slides, followed by incubation at 18 C for 2 hours. 

Afterwards, the slides were rinsed with Buffer A, followed by 3 rinses for 4 min. 

each, which was followed by 3 wash steps in 0.5M PBS (0.5 M sodium chloride 

in 0.1 M phosphate buffer, pH 7.5). The secondary mouse anti-biotin (M0743, 

Dako, Carpinteria, CA, USA) antibody (1:200) was applied for 30 min., followed 

by 3 washes with 0.5 M PBS. Incubation of the tertiary biotinylated horse anti-

mouse (Vectastain Elite kit) antibody (1:200) lasted for 30 min. Finally, ABC 

solution (avidin-biotin/peroxidase complexes, Vectastain ABC Elite Kit, Vector, 
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Burlingame, CA, USA) was applied for 30 min. Washes with 0.5 M PBS were 

followed by 8 min. incubation with 50 mg DAB (3,3’-diaminobenzidine 

tetrahydro-chloride, Sigma) in 200 ml 0.05 M Tris buffer with 12 μl 30% H2O2 

(pH 7.5). A brown color reaction occurred only in the nuclei with DNA 

fragmentation products in situ. Finally, the sections were rinsed in distilled 

water and were air-dried. The negative control was treated with the ISEL 

cocktail without DNA-Polymerase-I. Cytospin slides of Jurkat cells treated with 

and without Camptothecin (2 g/ml) for 120 hours in suspension cultures were 

also used as positive (95-100% ISEL positive cells, Figure  4.1A) and negative 

control (3-5% ISEL positive cells), respectively. 

Scoring of apoptosis within the agar cultures on slides 

To calculate the percentage of apoptotic cells within each cluster or colony, the 

cells with a clear brown nucleus (ISEL-positive) and the total number of cells of 

a cluster or colony were counted (Figure 4.1). Subsequently, apoptosis in 

clusters and colonies was determined as being <50% and 50% ISEL-positive 

cells. Apoptosis (A) in this study is defined as the number of clusters or 

colonies showing 50% and more ISEL-positive cells (Figure 4.1B), because 

apoptosis is overruling proliferation in these aggregates. The degree of 

apoptosis (A%) is defined as the percentage of clusters or colonies per culture 

dish showing 50% or more ISEL-positive cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4.1 Jurkat suspension culture with camptothecin, shown as positive ISEL-control (A), 

normal colony in agar culture with considerably more than 50% apoptosis (B) versus 

normal colony with hardly any PCD (C). 

B
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A B
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ISH studies upon day 10 - agar bottoms 

The ISH-procedure performed upon day 10 - agar bottoms paraformaldehyde-

fixed slides for detection of chromosome 8 has been described in detail 

before
12

. Since an aggregate is principally the result of the proliferation of a 

single progenitor cell and as it always harbors some dying cells breaking down 

their chromosomes, not all cells within these aggregates have to pick up ISH 

signals to distinguish between disomic and trisomic 8 aggregates. See Figure 

4.2 for examples of this technique. Single cells (SC), clusters and colonies with 

two or three brown spots within their nuclei were counted on day 10. 

Aggregates were disregarded and not counted when the ISH signals were not 

convincingly detectable. Aggregates were counted as more than 75% of viably-

looking cells within an aggregate showing ISH signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 ISH procedure with CEP-probe against chromosome 8, performed on agar cultures 

showing a trisomic cluster (A), a trisomic colony (B), and a disomic cluster (C). 

Definitions and statistical analysis 

The median numbers (N) of clusters or colonies per patient group were 

calculated on days 4, 7, and 10. Ntot contains all the counted clusters and 

colonies per culture dish, regardless of their amount of apoptosis. 

Cluster/colony ratios (Cl/Co) of days 7 and 10 were determined for each 

sample and median values were calculated for each group. The median 

A B

C

A B

CC
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percentages of apoptotic clusters or colonies defined as having 50% and more 

ISEL-positivity (A%=A/N×100%) in each study group were also calculated. The 

overall amount of apoptosis of clusters and colonies together (A%tot) was 

determined. The growth fraction (GF) or plating efficiency (PE) is defined as the 

percentage dividing cells of seeded BMMNC and can be calculated by the 

following formula: GF=Ntot/200.000 cells. Because of the frequently found 

skewed or non-Gaussian distribution curves of the different variables 

(especially in the MDS and AML groups), we used medians and applied a 

distribution-free Wilcoxon Mann-Whitney test to assess statistical differences 

(P<0.05) between the three groups. 

Results 

During the 3-day intervals between scoring, clusters may either become 

pycnotic and disappear, or they may continue to proliferate to form larger 

clusters or colonies followed by differentiation, or they proliferate continuously 

without differentiation (blast colonies). Furthermore, the progenitors not 

proliferating at day 0 may enter S-phase during culturing (delayed growth 

initiation). We deliberately defined clusters as aggregates of 10-39 cells, 

because it was not feasible to correctly count all small clusters (of 2-9 cells; 

N2-9), as they occurred frequently in MDS cultures, especially at day 4.  

Profiles of proliferation and apoptosis in NBM, MDS, and AML  

From day 4 to day 10, normal BM showed a considerable decrease in the 

number of clusters (from median of 261 to 73) due to apoptosis in 48-53% of 

the clusters and due to progression into colonies (Table 4.2 visualized in Figure 

4.3). The number of colonies and the percentage apoptotic colonies slightly 

changed from day 7 to day 10 (N=217 to 229 with PCD of 17% to 28%, 

respectively). These aggregates showed clearly features of cell differentiation 

(data not shown).  

In MDS patients (Table 4.2 and Figure 4.3) considerably more clusters 

developed (N=342 with 52% PCD on day 4). In contrast to NBM, the total 

number of clusters remained the same from day 4 to day 7, despite an increase 

in the percentage of apoptotic clusters (from 52 to 76%). Also more colonies 

were formed than in NBM (N=280 with 29% PCD vs. N=217 with 28% PCD, 

respectively). Eventually, the continued high level of apoptosis resulted in a 

sharp decline (by 58%) of clusters on day 10 (N=140 with 75% PCD). Also the 

number of colonies clearly decreased (by 55%) to 126 colonies on day 10 

because of increasing apoptosis (42%) and a constantly high PCD at cluster 

level (Figure 4.3). Median Cl/Co ratios in MDS continued to be significantly 
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higher than normal (0.78 vs. 0.53 on day 7 and 0.97 vs. 0.28 on day 10, 

respectively).  

 
Table 4.2 Results of in vitro proliferation and apoptosis of BMMNC of NBM, MDS, and AML. 

Day NBM (n=6)    MDS (n=5)   AML (n=6)  

 Clusters SS Colonies SS Clusters Colonies SS Clusters Colonies 

N 4 261 (146-641) 2 0  342 (104-792)   62 (5-180)  

   A% 48% (37-67%) 2   52% (31-85%)   79% (70-100%)  

N 7 100 (70-266)  217 (152-450) 2 337 (40-1436) 280 (51-505) 3 73 (7-367) 19 (8-103) 

   A% 53% (45-72%)  28% (17-36%)  76% (30-84%) 29% (9-61%)  47% (32-100%) 24% (11-100%) 

   Cl/Co 0.53 (0.33-0.7) 1.2   0.78 (0.55-3.43)   2.96 (0.7-9.64)  

   Ntot 309 (238-716) 2   842 (91-1855)   101 (15-470)  

   A%tot 34% (27-51%)    41% (25-79%)   44% (26-100%)  

N 10 73 (41-170)  229 (147-571) 2 140 (29-760) 126 (68-531) 3 65 (7-155) 57 (13-129) 

   A% 51% (35-79%)  17% (9-40%)  75% (44-91%) 42% (20-69%) 3 62% (39-100%) 20% (14-33%) 

   Cl/Co 0.28 (0.17-0.67) 1.2   0.97 (0.43-5.97)   1.15 (0.54-2.45)  

   Ntot 314 (192-741) 2   284 (97-1291)   126 (20-284)  

   A%tot 26% (18-45%) 1.2   62% (30-80%)   45% (30-55%)  

In vitro proliferation (Nx: number of aggregates at day x) and apoptosis (A%: % aggregates 

showing 50% or more apoptosis) of BMNNC: median values (range), Cl/Co: cluster/colony ratio, 

Ntot and A%tot means overall proliferation and apoptosis, statistical significant differences (SS: 

P<0.05) by Wilcoxon Mann-Whitney test between the subgroups are designated as follows: 

1=NBM vs. MDS, 2=NBM vs. AML, and 3=MDS vs. AML. 

 

 

17%

48%

53%
51%

28%

0

50

100

150

200

250

300

Cl 4 Cl 7 Cl 10 Co 7 Co 10

median N, 

A

42%

29%
75%

76%

52%

0

50

100

150

200

250

300

350

400

Cl 4 Cl 7 Cl 10 Co 7 Co 10

20%24%

62%47%
79%

0

20

40

60

80

Cl 4 Cl 7 Cl 10 Co 7 Co 10

Controls Myelodysplasia AML

17%

48%

53%
51%

28%

0

50

100

150

200

250

300

Cl 4 Cl 7 Cl 10 Co 7 Co 10

median N, 

A

42%

29%
75%

76%

52%

0

50

100

150

200

250

300

350

400

Cl 4 Cl 7 Cl 10 Co 7 Co 10

20%24%

62%47%
79%

0

20

40

60

80

Cl 4 Cl 7 Cl 10 Co 7 Co 10

Controls Myelodysplasia AML
 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 The median number of clusters (Cl) and colonies (Co) scored on days 4, 7, 10 (first 

bar, N=proliferation) in combination with the number (and their percentage) of clusters 

and colonies which showed 50% or more ISEL positive cells (second bar, 

A=apoptosis). Apoptosis is overruling proliferation when A% is more than 50%.  

 

This in vitro profile in MDS can partially be explained by the initial contribution 

of numerous small clusters consisting of 2 to 9 cells on day 4 (considerably 

higher than normal), which dropped dramatically towards day 7. An increasing 

overall apoptosis from day 7 to 10 (from 41% to 62%) implicated that apoptosis 
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started to overrule proliferation. Moreover, overall apoptosis on day 10 was 

significantly higher than in NBM (62% vs. 26%).   

In AML proliferation was consistently slower as compared with NBM and MDS, 

resulting in a low and stable number of clusters (between 62 and 73) from days 

4 to 10 (Table 4.2 and Figure 4.3). High percentages of apoptotic clusters 

throughout the culture period (increasing from 42% to 79% from days 4 to 10), 

besides a considerably lower contribution of the smaller cluster (N2-9) 

compartment in time (lower than in normal BM) contributed to the low overall 

colony formation. A limited number of colonies were formed initially (n=19, PCD 

24%), but the numbers increased up to day 10 with consistently low apoptotic 

involvement and sometimes with blastic appearance (n=57 with PCD 20% at 

day 10, Table 4.2 and Figure 4.3). These in vitro profiles of clusters and 

colonies caused declining Cl/Co ratios from day 7 to 10, which remained 

significantly higher in AML (2.96-1.15) compared to NBM (0.53-0.28).  

Comparing the final size of aggregates, NBM formed the largest colonies 

(Figure 4.1), whereas AML formed the smallest aggregates, both with a lower 

degree of apoptosis when compared to MDS. 

Regarding overall proliferation (Ntot, Table 4.2) and calculating plating 

efficiency, normal BMMNC showed an overall GF of 0.24% that declined to 

0.16% on day 10. Colony-forming cells represent 0.11%, which is about 70% of 

the GF at day 10. As compared to NBM, MDS patients showed a GF (although 

clearly underestimated due to the cluster definition of this study) almost twice 

as high (0.47%), which hardly changed till day 7, but rapidly decreased (by 

70%) to 0.14% on day 10. Furthermore, colony-forming cells represent only 

50% of this GF at day 10 (0.06%). In contrast, the GF in AML patients was 

importantly lower (1/3 of normal: 0.07%), with a markedly decreased colony 

forming capacity (0.01%). These colony-forming cells in AML increased 

significantly (0.03%) and represent 60% of GF at day 10.  

Overall apoptosis of all aggregates (A%tot, Table 4.2) decreased during follow-

up in NBM (from 48 to 26%) and in AML (79 to 45%), whereas it increased in 

MDS (52 to 62%). In NBM, apoptosis in clusters remained constant whereas it 

decreased in colonies (48-51% vs. 28 to 17%, respectively). However, median 

PCD in clusters and colonies increased in MDS (52 to 75% and 29 to 42%, 

respectively) in contrast to AML (79 to 62% and 24 to 20%, respectively). 

ISH of single cells and aggregates compared to in vitro data at 
day 10 

The percentages of trisomic 8 cells in the single cells (SC) and aggregates at 

day 10 of culturing together with their day 10 in vitro characteristics are shown 

in Table 4.3. A correlation could be observed between the percentage BM 

blasts and the percentage trisomy 8 metaphases in the MDS group (r=0.62), in 
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contrast to the AML group. Furthermore, a strong positive correlation was 

observed between the percentage BM blasts and GF in AML (r=0.85), in 

contrast to MDS (r=0.52). A strong negative correlation between GF and 

overall apoptosis at day 10 was found in AML (r=-0.75), which was not the 

case in MDS (r=0.50). The same negative correlation was also found between 

GF and degree of apoptosis in clusters within AML (r=-0.68). The percentage 

of trisomy 8 positive clusters and colonies at day 10 was lower than the 

percentage of +8 metaphases by classical cytogenetics with the exception of 

two patients (MDS5 and AML5) who showed no clear decrease (Table 4.3). 

The percentage trisomy 8 positive clusters and/or colonies at day 10 did not 

differ significantly from the percentage trisomy 8 cultured SC. The percentage 

trisomy 8 positive clusters and/or colonies at day 10 was higher than 50% in 

two MDS patients (no. 3 and 5) and in two AML patients (no. 3 and 5), meaning 

a proliferation advantage of the trisomic clone in vitro in 4 of 9 patients (Table 

4.3). No clear relationship could be established between the percentage of 

trisomy 8 positive cells or aggregates after culturing and the degree of 

apoptosis in all aggregates (A% tot), or in clusters (A%-cl), or in colonies (A%-

Co). 

 
Table 4.3 In vitro characteristics linked with ISH data of MDS and AML, both obtained at day 10. 

 Patients characteristics In vitro characteristics at day 10 ISH data at day 10 

 %blasts IPSS %tri8 GF A%tot A%-Cl A%-Co %SC %Cl %Co 

NBM n=6    0.19 29.4 56.0 20.8    

MDS 
          

   1 2 0.5 50 0.06 30 49 20 28 25 38 

   2 7 1.5 4 0.14 80 91 69 14 5 0 

   3 15 2.0 100 0.65 62 76 42 54 63 33 

   4 17 2.5 95 0.05 34 44 30 F F F 

   5 26 3.0 80 0.44 70 75 42 80 82 100 

AML 
          

   1 32   0.06 41 62 25 38 0 0 

   2 38  95 0.04 49 61 19 24 100 0 

   3 48  90 0.07 36 47 14 53 76 20 

   4 76  70 0.07 51 74 20 14 16 50 

   5 95  80 0.14 30 39 20 84 98 93 

   6    0.01 55 100 33 F F F 

Mean data for normal bone marrow (NBM), F=Failure, IPSS=International Prognostic Scoring 

System, %tri8=% metaphases with trisomy 8 obtained by cytogenetics, GF=Growth Fraction or % 

S-phase cells of BMMNC, A%tot=% apoptotic clusters and colonies, A%-Cl=% apoptotic clusters, 

A%-Co=% apoptotic colonies, %SC=% single cells with trisomy 8, %Cl and %Co=% trisomic 

clusters and colonies, respectively. 
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Discussion 

This in vitro study showed excessive proliferation and apoptosis of BMMNC of 

MDS patients in concordance with the in vivo observations of Raza et al. in BM 

biopsies. In the hyperproliferative BM, Raza detected massive overall PCD 

( 75% ISEL+ cells) of both parenchymal and stromal cells in more than 50% of 

MDS patients
1,3,9

.
 
We observed that 30-75% of the clusters and colonies of 

MDS patients without any sign of pycnosis by microscopy consisted of more 

than 50% ISEL+ cells. This phenomenon is also seen in AML and NBM, 

although to a lesser extent. It is well known that cells with a normal, viable 

appearance may already harbor irreversible apoptotic features. Apoptosis in 

MDS has been considerably underestimated by bright field microscopy in the 

era before the in situ end labeling (ISEL and TUNEL) techniques
1-3,9,13-15

. The 

apparent paradox in MDS between hypercellular BM and pancytopenia can be 

explained by this high level of PCD in MDS BM.  

Our study is the first in vitro study that simultaneously detected proliferation 

and apoptosis of BMMNC of MDS and AML patients on different time points. 

The end-results of in vitro culturing of myelodysplastic BMMNC is characterized 

by increased cluster formation (hyperproliferation) besides decreased colony 

formation and disturbed differentiation
16

, but as our study has shown, both 

cluster-forming and colony-forming cells went through a phase of 

hyperproliferation followed by enhanced apoptosis. The increment of blasts and 

CD34
+
 cells within MDS correlates with this "leukemic growth pattern" in vitro, 

as these characteristics in MDS were also associated with a higher incidence 

of leukemic transformation in vivo17-19
. Our study showed a correlation between 

percentage of blasts and increasing Cl/Co ratios in MDS at day 10 (r=0.81) as 

well. 

The high level of apoptosis corresponds with the pancytopenia in the blood of 

MDS patients, which in it may provide a proliferation signal, as in our study 

overall apoptosis was positively correlated with growth fraction at day 10 

(r=0.50). Anti-apoptotic therapy induced inhibition of PCD in the BM of MDS 

patients and improvement of peripheral blood counts was followed by a 

decrease of the enhanced BM proliferation index
20

. This higher (and 

underestimated) growth fraction in MDS, which was clearly seen on days 4 and 

7 of our study, may initially and partly be caused by a intrinsic limited growth 

potential of a considerable proportion of late committed progenitor cells. The 

other and probably increasing component of the growth fraction contains the 

clonogenic compartment with increased proliferation, slower cell cycling times, 

and probably higher survival rates. Evidence for this hypothesis is found by 

double-labeling techniques performed on BM biopsies
1,2 

and by the observed 

increment in size of the CD34
+
 compartment with more cells in S-phase 

concomitantly with longer cell cycling times as MDS progressed to AML
4
.  
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Caux et al.
25,26

 proved the dual role of increased levels of TNF
1-3

 as an 

explanation for the combination of hyperproliferation of progenitors and their 

progeny and increased PCD found in the more differentiated compartment in 

BM biopsies of MDS patients. These opposite activities may also be linked with 

the feature of "signal antonymy", cells dying in S-phase, exclusively found in 

MDS marrows
13

. Within aspirated MDS BM cells, more activated monocytes-

macrophages with TNF -producing capacity are found
2,3,24

, and they may 

contribute as non-stromal accessory cells to the above-mentioned and 

enduring effects in culture
25,26

. As TNF  also upregulates FasR expression on 

CD34
+
 cells and their progeny in a dose-dependent manner, it facilitates 

apoptosis in vivo and in vitro
27,28

. BM biopsies of MDS patients showed 

enhanced FasR expression on CD34
+
 cells and their progeny in an increasing 

fashion towards maturation when compared to normal BM, whereas leukemic 

blasts loose this expression during progression from MDS
5,29,30

. In vitro culture 

studies in MDS showed a correlation between decreased clonogenic capacity 

of CFU-GM and enhanced FasR expression
5,30,31

. In addition, within BMs of 

MDS patients, also more activated lymphocytes and macrophages as 

accessory cells are found with enhanced FasL expression
5,27 

which on their 

turn may contribute to the enhanced PCD of FasR-bearing cells (by FasR-FasL 

interaction) in culture. Above all, more leukemic blasts with enhanced FasL and 

decreased FasR-expression are found during MDS progression to AML
5,29,31 

giving rise to PCD of FasR-bearing normal and monoclonal progenitors and 

their progeny. All these factors may explain the higher proportion of BMMNC of 

MDS patients initially showing enhanced proliferative capacity (as they were 

primed in vivo) and temporarily (till day 7) overriding the simultaneously 

enhanced apoptotic impact observed in the progeny of these proliferating cells. 

But, as PCD-enhancing factors may increase during culturing as mentioned 

above, the balance is turned and apoptosis subsequently overrules 

proliferation. It is difficult to determine the degree and impact of non-stromal 

accessory cells upon proliferation and apoptosis in culture versus the intrinsic 

growth characteristics of CD34
+
 cluster-forming and colony-forming cells in 

BMMNC in MDS. But, we recently performed a study using the same MDS 

patients as in this study, in which single MDS CD34
+
 cells were cultured within 

single wells. We observed a similar increased apoptotic propensity, especially 

at the cluster-forming cell level
32

.
 
This study provided strong evidence that 

enhanced apoptosis is an intrinsic feature of MDS progenitor cells.   

Trisomy 8 was chosen as the clonal marker in our study of MDS-AML. Trisomy 

8 as sole cytogenetic abnormality is found in approximately 5-10% of de novo 

AML and MDS and is associated with an intermediate prognosis
21

. Trisomy 8 

involvement detected by FISH on BM smears is positively correlated with the 

percentage of trisomic BM blasts in MDS
22

. Comparison of classical 

cytogenetics with FISH showed that trisomy 8 in MDS and AML had a distinct 
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proliferative advantage over the disomic population
23

. Although these studies 

have completely different conditions, we observed a proliferative advantage of 

the trisomic 8 clone in our study in only 4 of 9 patients (Table 4.3). Nilsson et 

al.
34

 clearly showed the existence of a disomic MDS clone within the stem cell 

compartment (CD34
+
CD38 Thy

+
) in MDS patients with trisomy 8. This disomic 

8 compartment was functionally impaired showing decreased colony growth in 

SCSW assay and no long-term-culturing initiated-cells activity or reconstitution 

in the NOD-SCID transplantation assay. In addition, CD34
+
 and overall BM 

cells of MDS patients with trisomy 8 have an increased Fas susceptibility in 

vitro because of increased FasR expression
33

, which is concordant with the 

higher and increasing overall PCD within MDS compared to normals in this 

study. 

BMMNC of AML patients with trisomy 8 showed an in vitro pattern of low 

proliferative capacity with an increased degree of apoptosis in clusters. As the 

leukemic population has considerably longer total cell cycling times
35 

and more 

delayed growth initiation
18

, the number of colonies formed at day 7 is low, but 

their numbers increased in time with a low degree of apoptosis (20-24%). 

Probably this “leukemic growth” is becoming more important as characterized 

by autonomous growth
36

 through autocrine-paracrine mechanisms, differen-

tiation arrest and less or eventually no PCD, since we also observed some 

blastic colony formation with hardly any ISEL-positivity. As stromal interactions 

are not needed and accessory cells have no influence (as described above), 

this growth pattern is understandable and fully observed in our culture system.  

Finally, regarding the size of the colonies, the largest colonies were clearly 

observed in NBM because of continuous proliferation with overall low apoptotic 

insult. Colony forming cells from MDS BMMNC produced more and 

substantially larger colonies than their AML counterparts as their “primed” 

proliferative capacity and rate was significantly higher. These characteristics 

parallel the in vivo situation by 
3
H-thymidine incorporation studies performed on 

MDS and AML patients, after which BM biopsies were taken and tested by 

double labeling for S-phase presence and apoptosis
1,2,4,13,35

.  

We conclude that the overall balance between proliferation and apoptosis of 

colony-forming cells is in favor of proliferation in normals and AML patients. 

However, in MDS patients, enhanced proliferation initially overrules PCD, but 

massive apoptosis ultimately counterbalances the increased proliferation. The 

in vivo enhanced BM proliferation causing hypercellular marrows together with 

peripheral pancytopenia due to simultaneously high apoptosis are similar to the 

observations described in our in vitro system, despite the absence of stromal 

influences. Our studies suggest that these “growth” characteristics are caused 

by growth factors or cytokines produced by non-stromal accessory cells 

besides intrinsic properties of these progenitors. Our presented in vitro system 

may be used as a model to study several extrinsic factors of influence upon 
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“programmed” proliferation and Programmed Cell Death within MDS and AML 

patients, such as anti-TNF  or immune suppressive therapy. As anti-apoptotic 

therapy in MDS in vivo may provide less proliferation pressure upon these 

monoclonal MDS progenitors, a delay and/or fall in the acquirement of 

additional clones during MDS progression may alter the natural history of MDS 

patients. 
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Abstract  

Background and objectives 

Bone marrows (BM) of myelodysplastic syndrome (MDS) patients show increased proliferation and 

premature programmed cell death (PCD) in vivo as well as in vitro. We explored the proliferative 

capacity and apoptotic propensity of CD34
+
 progenitor cells of MDS patients excluding accessory 

cell interference.   

 

Materials and methods 

CD34
+
CD3 CD19  cells of five MDS patients and five normal BM (NBM) were sorted as single cells 

into single wells and were cultured in liquid medium. Wells were evaluated on days 4, 7, 10, and 

14. PCD was determined by staining with Annexin-V-FITC. Growth rate and cell doubling time (Td) 

were calculated for each colony-forming cell. 

 

Results 

NBM CD34
+
 cells formed clusters and colonies and both showed increasing PCD in time, although 

within colonies the degree of apoptosis was twice as high (about 25%) as compared with clusters 

at all time points. In MDS increased cluster formation was observed at all evaluation points when 

compared to NBM, whereas the number of colonies was markedly reduced (1/7 of NBM). These 

colonies were also smaller, usually smaller than 100 cells. Significantly enhanced levels of PCD of 

clusters (53-79%) in combination with longer cell doubling times explain this slower formation of 

smaller colonies. Surprisingly, these colonies showed considerably lower levels of PCD (7-32%) as 

compared to NBM (1-48%, median values). 

 

Conclusions 

In the absence of stromal influences and accessory cells, this study in MDS patients showed 

intrinsically enhanced proliferation and apoptosis of cluster-forming cells, as the opposite was true 

for colony-forming cells. 

Thesis Span V5.1.pdf   92Thesis Span V5.1.pdf   92 7-12-2006   14:39:067-12-2006   14:39:06



 Growth and apoptosis profiles of CD34
+
 cells in SCSW assay in MDS 93 

Introduction 

Myelodysplastic syndromes (MDS) are clonal stem cell disorders characterized 

by ineffective hematopoiesis, peripheral cytopenias and dysplasia. 

Hyperproliferation in MDS is abrogated by increased premature programmed 

cell death (PCD) or apoptosis
1-5

. Increased overall apoptosis in MDS is found in 

hematopoietic as well as in stromal cells
6,7

 and in all MDS subtypes
3,6,8

, 

although some investigators have observed higher apoptotic levels in low-risk 

(LR-) compared to high-risk (HR-) MDS groups
9,10

. Important factors leading to 

increased PCD in MDS are 1) increased death-receptor ligands like tumor 

necrosis factor-  (TNF ) and Fas ligand expression within the bone marrow 

(BM) microenvironment
2,4,8,11-15

; 2) increased FasR expression on matured 

myeloid cells as well as on CD34
+
 cells

9,11,16-18
; and 3) increased numbers of 

leukemic blasts (with low FasR expression) and CD3
+
 T cells, both with 

increased FasL expression within the BM
8,11,16

. Furthermore, some studies 

have found evidence for increased PCD by changed (intrinsic) mitochondrial 

characteristics of BM cells of MDS patients
19,20

. Dror clearly demonstrated 

altered pro-apoptotic changes in the mitochondrial pathway without pro-

apoptotic influences of the FasR of the cell membrane in a RARS patient
19

. 

Increased apoptosis is found especially in the more matured CD34-negative 

compartment
21

. Several studies also showed enhanced PCD in the CD34
+
 

hematopoietic stem cell (HSC) and progenitor compartment, especially in the 

LR-MDS group as compared to the HR-MDS patients
21-23

. Accessory cells, 

besides the intrinsic features of MDS stem cells, may cause this enhanced 

HSC apoptosis. Despite increased apoptosis of CD34
+
 cells, this compartment 

is rapidly increasing in size during MDS progression towards acute myeloid 

leukemia (AML)
5
. Raza et al. observed decreased in situ end labeling (ISEL) 

positivity of BM blasts of HR-MDS and AML patients by immunohistochemistry 

on BM biopsies
6
. By excluding stromal influences and accessory cells, our 

study explores the intrinsic proliferative capacity and apoptotic propensity of 

CD34
+
 HSC and progenitors of MDS patients by liquid culturing of single cells. 

Materials and methods 

Patients 

Cryopreserved BM mononuclear cells (BMMNC) of MDS patients (n=5) and 

normal BM controls (NBM, n=5) were used for these in vitro assays. Only 

patients with primary MDS with trisomy 8 were used for these studies in order 

to get a homogeneous group, classified as an intermediate-risk group 

according to World Health Organization (WHO) classification. The individual 

patients with their in vitro characteristics are presented in Table 5.1: Patient 5 is 
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ranked as RAEBt according to French-American-British (FAB) classification 

and as AML according to WHO. 

 
Table 5.1 In vitro growth (mean) and apoptosis (median) characteristics of individual MDS 

patients. 

Patients MDS 1 MDS 2 MDS 3 MDS 4 MDS 5 

Diagnosis RARS RAEB RAEB RAEB RAEBt 

%BM blasts 2% 7% 15% 17% 26% 

Trisomy 8 (% metaphases by cytogenetics) 50% 4% 100% 44% 91% 

IPSS 00.5 1.5 2.0 2.5 3.0 

Clusters (n/plate; day 4 to 14) 44.8 50.1 37.1 35.5 57.4 

Colonies overall (n/plate) 2.5 23.6 1.8 0.12 0.79 

Colonies of 100-500 cells (n/plate) 0.23 4 0.37 0.085 0 

Colobies >500 cells (n/plate) 0 2.5 0.31 0 0 

Cl/Co ratio (day 7 to 14, median) 12.9 1.2 20.8 165.1 49.9 

PCD overall (% apoptotic cells/aggregate) 32 14.1 44 88 7.4 

PCD of clusters (% apoptotic cells/Cl) 35.7 57 48.6 87 7.3 

PCD of colonies (overall) 27.7 8.9 9  18.6 

PCD of colonies (40-100 cells) 29.1 24.5 9  18.6 

Growth rate to form clusters 20 cells (Td) 0.60(40) 0.57 (42.1) 0.40 (60) * 0.43 (55.8) 

No. days to form clusters of 20 cells 6.65 6.92 10.62 * 9.72 

Growth rate of CFU-GM (overall, Td) 0.64 (37.5) 0.58 (41.4) 0.47 (51.1)  0.51 (47.1) 

No. of days to form colonies (overall) 7.56 8.42 11.00  9.78 

IPSS: International Prognostic Scoring System, n: number of aggregates, Cl/Co ratio: 

cluster/colony ratio, PCD: programmed cell death, growth rate with Td (cell doubling time) in hours 

between brackets, * hardly any cluster formation of 20 and more cells. 

BMMNC collection, cryopreservation, thawing and labeling 

BMMNC were isolated (Ficoll-Paque 1.077 g/ml; Pharmacia Biotech, Uppsala, 

Sweden) and cryopreserved, as described before
24

. After thawing and washing, 

the cell pellet was resuspended in 100 l glucose-phosphate-buffered saline 

(G-PBS) and stained with CD34-PE, CD3-FITC (both ImmunoTech., A 

Beckman-Coulter Co., Mijdrecht, the Netherlands), and CD19-FITC (Dako A/S, 

Copenhagen, Denmark) at 4°C for 30 min.
24

. Afterwards, the cells were 

washed with G-PBS and restored in Iscove's medium with 10% v/v fetal calf 

serum (FCS) prior to sorting by flow cytometry (FCM). 

Single cell sorting of CD34+CD3 CD19  cells from BMMNC 

The culture medium consisted of Iscove's, 2 mM glutamine (Flow Laboratories, 

Irvine, Scotland), streptomycin 50 μg/ml, penicillin 50 IU/ml (Flow Laboratories), 

supplemented with 20% v/v FCS, 5% w/v bovine serum albumin, and 

recombinant growth factors; G-CSF (20 ng/ml), hSCF (25 ng/ml; both from 

Amgen, Thousand Oaks, CA, USA), IL-3 (50 ng/ml), and GM-CSF (20 ng/ml; 

both from Sandoz BV, Uden, the Netherlands). Before sorting, 10 round-bottom 

96-well plates were filled with culture medium, 75 μl per well (Costar #3799, 

Cambridge, MA, USA).  
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An Epics Elite flow cytometer, equipped with an autoclone device (Coulter, 

Miami, FL, USA) was used for single cell sorting. CD34
+
CD3 CD19  cells within 

the life gate were sorted for single-cell single-well (SCSW) assay. These plates 

were placed in an incubator at 37°C, 5% CO2 in a fully humidified atmosphere. 

SCSW assay to determine proliferation of CD34+/CD3 /CD19  
cells 

One day after sorting and using an inverted microscope, a single cell per well 

was observed in the center of each round-bottom well. The total number of 

cells per well was counted by inverted microscope at days 4, 7, 10, and 14. 

The exact number of cells within each well was corrected by counting from 

stored brightfield images as this inverted microscope was equipped with a 

bright phase contrast objective and a CDD-camera (Variocam, PCO computer 

optics, Kellheim, Germany). To estimate the number of cells in large colonies, 

we matched the areas on a calibration curve, which was made after correlating 

the area of different-sized colonies with their exact number of cells (data not 

shown), as described before
25

.  Clusters and colonies were defined as 

aggregates of 2 to 39 cells and a minimum of 40 cells, respectively. Only 

myeloid clusters and colonies were formed, as no erythropoietin was used. 

Their morphology with regards to CFU-G, CFU-GM or CFU-M was not scored, 

as it was not subject of this study. Proliferation is visualized in time in Figure 

5.1, as it is defined by the number of clusters and/or colonies per 96-well plate 

(the sum is called plating efficiency, or PE), and by the size of colonies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

day 4 day 7 day 10 day14

0

Proliferation and %PCD of colonies

(40-100 cells)

6

7

50

60

Proliferation and %PCD of colonies

(40-100 cells)

6

7

50

60

2

3

4

5

m
e
d
ia

n
n

o
. 

o
f
c
o
lo

n
ie

s
/

p
la

te

10

20

30

40

%
a
p
o
p
to

ti
c
 c

e
lls

p
e
r

c
o
lo

n
y

Proliferation and % apoptotic cells (%PCD) 

PCD/NBM PCD/MDS

Proliferation and %PCD of colonies

(overall)

0

2

4

6

8

10

12

14

16

18

day 4 day 7 day 10 day14

m
e
d
ia

n
n

o
. 

o
f
c
o
lo

n
ie

s
/

p
la

te

0

5

10

15

20

25

30

%
a
p
o
p
to

ti
c
 c

e
lls

p
e
r

c
o
lo

n
y

Proliferation and %PCD of colonies

(overall)

0

2

4

6

8

10

12

14

16

18

day 4 day 7 day 10 day14

m
e
d
ia

n
n

o
. 

o
f
c
o
lo

n
ie

s
/

p
la

te

0

5

10

15

20

25

30

%
a
p
o
p
to

ti
c
 c

e
lls

p
e
r

c
o
lo

n
y

of clusters

0

5

10

15

20

25

30

35

40

45

50

day 4 day 7 day 10 day 14

m
e
d
ia

n
n

o
. 

o
f 
c
lu

s
te

rs
 /

p
la

te

0

10

20

30

40

50

60

70

80

90

%
a
p
o
p
to

ti
c
 c

e
lls

p
e
r 

c
lu

s
te

r

NBM MDS

of clusters

0

5

10

15

20

25

30

35

40

45

50

day 4 day 7 day 10 day 14

m
e
d
ia

n
n

o
. 

o
f 
c
lu

s
te

rs
 /

p
la

t

0

10

20

30

40

50

60

70

80

90

%
a
p
o
p
to

ti
c
 c

e
lls

p
e
r 

c
lu

s
te

re

NBM MDS

Figure 5.1 In vitro profiles of proliferation and apoptosis (%PCD) of CD34
+
 cells of normals (NBM) 

and MDS patients during 14 days of culturing, expressed in median values, regarding 

clusters (0-39 cells), small colonies (40-100 cells), and colonies overall (40 and more 

cells). 
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Data analysis of growth profiles 

Only wells with clusters (sized 20 cells; 4 cell divisions) and colonies at day 

14 were used for expressing mean growth curves (Figure 5.2) and for 

calculating cell doubling times (Td) of cluster-forming cells and colony-forming 

cells, respectively. Growth rate of these aggregates is defined and expressed 

as the number of cell population doubling per day from which a Td in hours was 

calculated
25

 . 
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Figure 5.2 Growth curves of CD34

+
 cells of MDS patients compared with normal BM (NBM) in 

SCSW assay with their relative amount at day 14 of colony-forming cells (upper line) 

and cluster-forming cells reaching at least 20 cells (lower line).  

Apoptosis detection in SCSW assay with fluorescence microscopy 

At each time point, two 96-well plates were evaluated for the number of 

apoptotic cells within each cluster or colony. An Annexin-V (AnV) solution (end-

concentration 1,2 μg/ml) was prepared, containing Iscove's medium, 1.0 M 

CaCl2 and 5% v/v AnV-FITC (Bender MedSystems, Vienna, Austria). An AnV-

FITC solution of 5 l per well was added; incubation for 30 min. at room 

temperature was followed by light and fluorescence microscopy imaging (see 

Figures. 5.3A and 5.3B). After recording brightfield images, the cells were 

excited with a mercury arc lamp using a 440-490 nm band pass filter for AnV-

FITC. Emission was measured with long pass 520 nm and fluorescence 

images were recorded. Calibration of fluorescence signal detection was 

performed using flowset fluorospheres (Beckman-Coulter Corporation, Miami, 

FL, USA). For analysis of the fluorescence images, we used TCL-Image 4.6 

software (TNO, Delft, the Netherlands) to objectively define the cut-off level for 

positive cells in comparison to the background. The mean fluorescence per cell 

for an apoptotic cell was arbitrarily set to be at least 3 times higher than the 

mean background fluorescence. The precise method of image analysis was 
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described before
26

. The exact amount of apoptosis is defined as the 

percentage AnV+ cells in each cluster or colony. 
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Figure 5.3A Examples of light microscopy with An-V fluorescence microscopy images of 

aggregates after 7, 10, and 14 days of culturing of NBM CD34+ cells in SCSW 

assay. See the difference in PCD between colony at day 10 and 14, as the last one 

has a more blastic appearance. The cluster at day 14 is becoming pycnotic. 
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Figure 5.3B Examples of light microscopy with An-V fluorescence microscopy images of  

aggregates after 7, 10, and 14 days of culturing of MDS BM CD34+ cells in SCSW 

assay with clearly increased PCD. 
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Statistics of in vitro profiles 

To detect statistical differences between both groups regarding proliferation 

and apoptosis (as both showed a skewed distribution), we used the Mann-

Whitney test as appropriate. Different growth and cell death characteristics can 

be calculated of each patient (see Table 5.1) and normal control. The median 

values of these parameters of each group (on different time points) are 

expressed in Table 5.2, whereas the in vitro characteristics of each MDS 

patient was linked with its FAB/WHO classification and International Prognostic 

Scoring System (IPSS) score
27

 and eventually compared in Table 5.1. 
 

Table 5.2 Characteristics of proliferation and apoptosis (median values) in the CD34
+
 SCSW 

assay of normals and MDS patients. 

Characteristics Normals / NBM MDS 

  day 4 day 7 day 10 day 14 day 4 day 7 day 10 day 14 

Plating efficiency (ntot/96 wells)  35.0  40.6  40.1  40.1  44.4  46.3  46.8  50.5 

Clusters (n/96 wells)  34.9  31.4  24.9  23.1  44.4  43.0  39.1  38.7 

Colonies overall (n/96 wells)   9.2  15.3  16.9   0.3  1.8  2.5 

Colonies of 40-100 cells (n/96 wells)   6.7  6.7  4.9   0.2  1.6  2.5 

Colonies >100 cells (%of PE)   3.0  9.0  12.0   0.0  0.0  0.0 

Cl/Co ratio   3.1  1.4  1.1   135.2  20.8  13.4 

PCD of clusters (% apoptotic cells)  0.0  4.6  18.7  21.1  0.0  15.1  25.0  48.6 

PCD of clusters (% apoptotic cells/Cl)  0.0  3.4  10.1  12.4  0.0  52.8  75.0  78.6 

PCD of colonies (overall)   0.0  25.0  24.9   8.9  12.3  16.1 

PCD of colonies (40-100 cells)   1.0  48.3  42.0   7.0  22.5  32.1 

Growth rate to form clusters >20 cells   0.66  (Td=36.5 hr)   0.50  (Td=48.0 hr) 

Number of days to form clusters of 20 cells   7.02     8.47   

Growth rate of CFU-GM (overall)   0.71  (Td=33.8 hr)   0.55  (Td=43.7 hr) 

Number of days to form colonies (overall)   8.07     9.19   

n: number of aggregates, ntot: total number of aggregates, Cl/Co ratio: cluster/colony ratio, PCD: 

programmed cell death or apoptosis, Td: cell doubling time in hours (hr). 

Results  

Growth and PCD characteristics of normal progenitors  

Growth and PCD characteristics of normal progenitors are depicted in Table 

5.2 and illustrated in Figures 5.1 and 5.3A. 

NBM CD34
+
 cells showed a maximum number of clusters at day 4 (35 wells 

per plate) with hardly any apoptotic cells. Subsequently, the number of clusters 

decreased (from 35 to 23 clusters per plate at day 14), mainly because of on-

going formation of colonies (from 9 to 17 per plate at day 14) and, to a lesser 

extent, because of increasing PCD within the developing clusters (from median 

3.4% towards 12.4% apoptotic cells at day 14; see Figure 5.1).  
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Colony formation rate reached a maximum between days 4 and 7 (Table 5.2), 

and subsequently the colony number increased slightly from day 10 to 14 

despite a concomitant increase of overall PCD (median 0% towards 25% at 

day 14). This normal growth profile is depicted by the growth curves (n=474) of 

different cluster-forming and colony-forming CD34
+
 cells in Figure 5.2: an initial 

log growth phase with subsequently decreasing growth rates towards finally 

reaching a plateau. The level of apoptosis within small colonies (40-100 cells) 

was always significantly higher (ranging from 1% to 48%; Figure 5.1) during the 

whole culture period as compared with apoptosis in the intermediate and large 

colonies, as colonies all together showed overall PCD levels from 0% to 25% at 

day 14. A lower growth potential and earlier differentiation with subsequent 

apoptosis explains this observation in the smaller colonies. At day 14, the ratio 

of colonies to larger clusters ( 20 cells) reached 3:1 (Figure 5.2), whereas an 

overall cluster/colony (Cl/Co) ratio of almost 1 was reached at days 10 and 14 

(Table 5.2). At day 14, the relative amount of colonies versus bigger clusters 

( 20 cells) versus smaller clusters (<20 cells) are 47%-12%-41% of the plating 

efficiency, respectively. 

Growth and PCD characteristics of MDS progenitors  

Growth and PCD characteristics of MDS progenitors are illustrated in Figures 

5.1 and 5.3B, and Tables 5.1 (individually) and 5.2 (as a group). 

Compared with NBM at all time points, MDS CD34
+
CD3 CD19  progenitors 

formed higher numbers of clusters (median 44-39/plate; Figure 5.1 and Table 

5.2) which decreased slowly in time, although high levels of PCD were 

observed (from 0% towards 79% at day 14; see Figure 5.3B for examples). 

Furthermore, a consistently and significantly lower level of colony formation 

was observed in MDS (peak formation rate between days 7 and 10; Figure 

5.1). Predominantly colonies of less than 100 cells were formed. At day 14, the 

ratio of colonies to large clusters ( 20 cells) reached only 1.2:1 (whereas 3:1 in 

NBM). At day 14, the relative amount of colonies versus bigger clusters ( 20 

cells) versus smaller clusters (<20 cells) are 22%: 18%: 60% of the plating 

efficiency, respectively. 

The overall PCD in colonies of MDS patients is also increased in time (from 9 

to 16%), but this level was considerably lower compared to NBM (from 0 to 

25%). This difference in PCD is even more pronounced (by 10-26% lower) in 

the smaller colonies (40-100 cells; Figure 5.1 and Table 5.2), which are 

preferentially formed in MDS. As compared to NBM, the overall plating 

efficiency of CD34
+
 cells of MDS patients in SCSW assay increased in time, 

and was significantly higher at all time points (Table 5.2). Since high cluster 

formation with very high levels of apoptosis constantly overruled colony 

formation, it is not surprising that the median Cl/Co ratios of MDS patients 
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remained far above the normal ratio of 1. The slower formation of clusters and 

colonies within MDS leads to mean overall Td that is about 10 hours longer as 

compared to normal controls (Table 5.2). These characteristics are visualized 

by lower slopes of growth curves (n=411) in Figure 5.2 and a left shift in the 

distribution of Td in Figure 5.4. This means more proliferating CD34
+
 cells with 

longer Td as compared to normal BM. As the initial log growth curves within the 

first 4 days are similar between normal and MDS progenitors (see similar 

slopes in Figure 5.2), the longer cell doubling times within MDS patients are 

due to slower cluster and colony formation after day 4, probably caused by high 

and increasing apoptosis at cluster level in time. 
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Figure 5.4 Distribution of Td (cell doubling times) of CD34

+
 cells expressed in fractions of 

different time periods of normal bone marrow (NBM) and myelodysplastic syndrome 

(MDS) in SCSW assay. 

Relationship between growth and PCD levels according to IPSS 
score in MDS patients 

The five MDS patients in Table 5.1 are ranked from relatively good prognosis, 

or LR-MDS, to bad prognosis, or HR-MDS, according to FAB or WHO, with 

less or more than 10% BM blasts, and IPSS score. No correlation was found 

between percentage BM blasts and percentage trisomy 8 metaphases detected 

by conventional cytogenetics. Furthermore, no correlations were found 

between percentage trisomy 8 metaphases or the percentage BM blasts and 

growth and PCD characteristics within this group. High cluster formation 

(45-50/plate) with increased PCD (36-57%) and low to normal colony numbers 

(3-24/plate) with low to normal apoptosis (9-28%) was observed in the LR-MDS 

patients (# 1 and #2). The RAEB patients (#3 and #4) showed lower formation 

of clusters with very high levels of apoptosis (49-87%) and therefore 

Thesis Span V5.1.pdf   100Thesis Span V5.1.pdf   100 7-12-2006   14:39:087-12-2006   14:39:08



 Growth and apoptosis profiles of CD34
+
 cells in SCSW assay in MDS 101 

importantly decreased colony numbers (<2/plate) with lower PCD levels. The 

RAEBt/AML patient (#5) showed the highest numbers of clusters with the 

lowest apoptosis level (7.4%), in combination with a prolonged doubling time 

(Td of 47 hours versus 33.8 hours for normals) and subsequently a low number 

of small colonies characterized by a low apoptotic insult (19%) as compared to 

normals (42-48%; Table 5.2). 

Discussion 

The MDS CD34
+
CD3 CD19  population (subsequently stated as CD34

+
 cells) 

showed a significantly higher overall growth fraction (GF) or plating efficiency 

(PE), as compared to normal progenitors in this SCSW assay. This increased 

MDS GF mainly consisted of cluster-forming cells (clusters with <20 and 20 

cells: respectively 60% and 18%, at day 14). Furthermore, in contrast to normal 

progenitors, MDS cluster-forming cells showed, although not initially, a slower 

and lower proliferative potential because of earlier and eminent apoptosis. Also 

the MDS colony-forming cells, which are a minor fraction (mean 22% of PE at 

day 14, and median 0.3-2.6% of the progenitors during culturing, whereas 47% 

and 9.2-16.9%, respectively, in NBM), showed an overall slower and lower 

proliferative potential leading to small-sized colonies, but with consistently 

lower intrinsic apoptosis as compared to normal controls. Importantly, these in 

vitro growth and apoptosis characteristics are intrinsic, as they appear without 

direct influences of stroma or accessory cells. Whether the observation of Dror 

could account for this enhanced intrinsic PCD beyond the RARS group, as it 

was especially found in cluster-forming cells in all our MDS patients, merits 

further research
19,20

. 

Furthermore, ranking MDS patients towards more advanced FAB/WHO 

classification, we found a transition from a LR-MDS “growth profile” (with high 

proliferation and shorter cell-doubling times, lower Cl/Co ratios and  high 

apoptosis of clusters and small colonies) towards a more “leukemic growth” 

profile, with increased Cl/Co ratio’s, longer cell doubling times, and much lower 

apoptosis levels of colony-forming cells as compared to cluster-forming cells. 

This in vitro leukemic growth profile has been associated with increased 

percentage BM blasts and correlates with a higher propensity to leukemic 

transformation
28-31

. Furthermore, a cautionary remark is necessary, as we did 

not use erythropoietin. Erythropoietin has been frequently used in previous 

studies and its influence upon these in vitro “growth characteristics” of the 

myeloid aggregates is not precisely known. On the other hand, only MDS 

patients with trisomy 8 (approximately 5-10% of MDS) were chosen in order to 

obtain the highest possible uniformity in “growth” characteristics. Trisomy 8 

clone in MDS has shown to have a distinct proliferative advantage over the 
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disomic population by comparison of classical cytogenetics with fluorescence in 

situ hybridization (FISH) of MDS BM
32

. Furthermore, trisomy 8 in MDS is 

associated with the upregulation of immune/inflammatory genes and 

downregulation of apoptosis-inhibiting genes of CD34
+
 cells, which is 

consistent with the enhanced apoptosis seen in (early) MDS
33

. Finally, trisomy 

8 involvement in MDS and AML has distinct survival profiles, clearly showing 

the leukemic impact during MDS progression
34

. A warning should be made that 

these growth characteristics of this subpopulation of five MDS patients with 

trisomy 8 can not be generalized for the whole MDS population. 

The association of an increasing S-phase fraction of both the overall myeloid 

compartment and the CD34
+
 compartment with a longer total cell cycling time 

during MDS progression was also observed by double-labeling techniques 

within BM biopsies
2,4,5

. These studies, combined with our in vitro observations, 

demonstrate the expanded MDS progenitor pool, explaining a higher plating 

efficiency throughout the SCSW assay. Predominantly clusters with increased 

PCD are formed from this CD34
+
 compartment, which implies that most of 

these CD34
+
 cells probably belong to the more mature progenitor cell pool with 

decreased intrinsic proliferative capacity. Or alternatively, their growth potential 

is abrogated by enhanced intrinsic apoptosis. In analogy with the SCSW assay, 

long-term bone marrow cultures (LTBMC) of multipotent MDS progenitors with 

normal stroma but with disturbed stromal interactions have shown similar 

results like decreased numbers of secondary colony-forming cells with 

decreased long-term proliferation
35-37

. As  MDS progresses, more blasts 

appear and a subpopulation (or a MDS subclone) with a more leukemic in vitro 

growth profile (slower proliferation with less differentiation and apoptosis) can 

be observed by the overall delayed and decreased formation of predominantly 

smaller colonies with decreased PCD in time, as compared to normal BM. 

Stroma-free LTBMC with MDS progenitors and four growth factors showed 

similar progressive leukemic growth with immature blasts
38

. 

Furthermore, as MDS eventually turns into AML, an increase of the MDS clone 

and the development of subclones are considered, as these clones gradually 

overcome apoptosis. This study observed a similar profile (Table 5.1) of an 

increased leukemic growth of some clusters and subsequently small colonies 

during MDS progression, associated with a lower growth rate and a lower PCD 

level of colony-forming cells. (F)ISH studies on these clusters and colonies 

have to be performed to prove this theory. But, in general, the predominance of 

cluster-forming cells in MDS could be a reflection of the increased progenitor 

cell pool of which a larger and more mature fraction rapidly divides
5
 to 

overcome the enhanced apoptosis found in the more mature CD34  progeny
1-4

. 

Eventually, as MDS progresses to AML, a decreased overall proliferative 

capacity is the result of increased numbers of normal and/or monoclonal CD34
+
 

and CD34  cells dying in S-phase (so-called “signal antonymy”). This unique 
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and frequently found phenomenon in MDS ultimately abrogates the increased 

proliferative potential of the increased S-phase fraction
1,5

. Also, faster cell 

divisions of the more mature progenitors leading to earlier (and probably 

disturbed) maturation and eventually earlier and therefore increased normal 

cell death could also play a role. Both phenomena are intrinsic features of 

progenitors, as if their proliferation augmentation was ordered from abroad, as 

being “the last line of defense within a dying BM with rapid accumulation of 

AML blasts”.  

Colony-forming progenitor cells showed decreased PCD in the SCSW assay, 

as compared with NBM. This intrinsic feature of more immature MDS colony-

forming CD34
+
 cells definitely accounts for the decreased apoptosis and slower 

proliferation rate in the SCSW assay. It represents a more leukemic growth 

pattern within these immature MDS colony-forming cells, probably belonging to 

a pre-AML subclone, as they are progressively gaining the ability to overcome 

apoptosis in access of a differentiation arrest on their way to become “real AML 

blasts”. 
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Abstract  

Background and objectives 

Myelodysplastic syndromes (MDS) are clonal stem cell disorders characterized by increased 

proliferation and programmed cell death (PCD). In MDS, we previously showed enhanced 

apoptosis in vitro in the absence of accessory cells. We hypothesize that if this intrinsic apoptosis is 

inhibited by caspase-inhibitors (CAI: Z-VAD-FMK and Z-DEVD-FMK; single use or in combination), 

it can restore in vitro proliferation of MDS progenitors towards a normal growth profile.  

 

Materials and methods 

Single-cell sorted CD34+ cells of MDS patients with trisomy 8 were cultured with and without 

caspase-inhibitors and the total number and size of clusters (2-39 cells) and colonies ( 40 cells) 

were counted on days 4, 7, and 10. On days 7 and 10, these aggregates were checked for PCD by 

Annexin-V-FITC staining. 

 

Results 

The declining effect of CAI upon intrinsically enhanced apoptosis was significantly more 

pronounced in clusters than in colonies, as clusters originally showed higher PCD. In analogy, the 

effect of CAI on PCD was higher in low-risk (LR) compared to high-risk (HR) MDS, and also 

colonies showed this effect in the LR-group. The combination of CAI in LR-MDS patients eventually 

led to lower colony formation with lower PCD of clusters and colonies at day 10. In HR-MDS, CAI 

induced more clusters at days 4 and 7 with lower PCD at days 7 and 10, whereas colony formation 

did not change, as it hardly occurred. Furthermore, the size of clusters and colonies did not change 

significantly with CAI. 

 

Conclusions 

CAI decreased apoptosis of in vitro cultured CD34
+
 cells of all MDS patients and led to decreased 

colony growth in the LR-MDS patients, whereas increased cluster formation with hardly any colony 

formation was found in the HR-MDS group. The use of CAI in these MDS patients did not restore a 

normal growth pattern.  
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Introduction 

Myelodysplastic syndromes (MDS) are clonal stem cell disorders characterized 

by cytopenias due to ineffective haematopoiesis, which is a result of 

hyperproliferation abrogated by increased apoptosis
1-3

. Increased overall 

programmed cell death (PCD) in MDS is found in all FAB classification 

groups
3-5

, although the PCD level is higher in low-risk (LR) compared to high-

risk (HR) MDS
6,7

. Enhanced apoptosis in myelodysplasia is partly caused by 

increased death-receptor ligands like TNF , IL1 , and Fas ligand (FasL) 

expression within the bone marrow (BM)
2,5,8-13

. Also increased FasR 

expression on mature myeloid cells as well as on CD34
+
 cells

6,9,14-16
 render 

these cells more prone for apoptosis. Apoptosis in MDS is also caused by 

increased numbers of leukemic CD34
+
 blasts and CD3

+
 T cells, both with 

enhanced FasL expression
6,9,14

. Although enhanced PCD is predominantly 

found in the more mature CD34  compartment
17

, several studies also observed 

enhanced PCD in the CD34
+
 hematopoietic stem cells (HSC) and progenitor 

compartment, especially in the LR-MDS group
17-19

.  

During MDS progression towards acute myeloid leukemia (AML), the CD34
+
 

cell compartment is increasing
20

. Furthermore, we recently observed that 

especially the cluster-forming CD34
+
 cells of MDS patients showed increased 

PCD in single-cell single-well (SCSW) assay
21

. These in vitro observations 

were done in single progenitors in the absence of stroma or accessory cells, 

which implies that the apoptotic propensity are intrinsic features of MDS. We 

hypothesize that caspase-inhibitors (CAI) can reverse this intrinsic enhanced 

apoptotic propensity and could therefore restore normal growth.  

Caspases are cell death proteases which disassembly the cell and its 

organelles into apoptotic bodies in an orderly fashion. They can be divided in 

initiators (like caspases 8, 9, and 10) and executioners (caspases 3, 6, and 7). 

As broad-spectrum, cell-permeable CAI we used Z-VAD-FMK, which has an 

irreversible inhibitory effect on caspase-1, 3, 4, and 7, versus Z-DEVD-FMK 

which inhibits caspase-3, 6, 7, 8 and 10. Recent experiments have shown a 

broader mechanism of action of caspases in the myeloid homeostasis: they are 

involved in entering the cell cycle and in cytokine-induced proliferation as 

well
22

. 

The aim of our study was to explore the effect of these two broad-spectrum CAI 

and their combination upon 1) the intrinsic increased apoptotic propensity of 

CD34
+
 progenitor cells of MDS patients, and 2) the overall balance of 

proliferation and apoptosis of the CD34
+
 cells in vitro by excluding interference 

of stromal and accessory cells by culturing in SCSW assays. 
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Materials and methods 

Patients 

Cryopreserved BM mononuclear cells (BMMNC) of four MDS patients with 

trisomy 8 as the sole cytogenetic abnormality (intermediate risk group by 

cytogenetics) were used as in our previous studies
21

. Table 6.1 and 6.2 show 

the patient characteristics and the in vitro proliferation and apoptosis data. 

BMMNC collection, cryopreservation, thawing and labeling 

BMMNC were isolated from the interphase after Ficoll-Paque (1.077 g/ml; 

Pharmacy Biotech, Uppsala, Sweden) density centrifugation and 

cryopreserved, as described before
23

. After rapidly thawing, these cells were 

restored in fetal calf serum (FCS) with additives (MgSO4, preserved free 

heparin, DNAse) to regain cell metabolism before labeling was performed (for 

concentrations and manufactures see reference 22). BMMNC were washed in 

glucose-phosphate buffered saline (G-PBS) and centrifuged at 18 C for 10 

minutes (min.). The cell pellet was resuspended in 100 l G-PBS (containing 

5 million cells/ml) and stained with directly labeled antibodies, as described 

before
21

. Afterwards, the cells were washed with G-PBS and restored in 

Iscove's medium with 10% v/v FCS prior to sorting by flow cytometry (FCM). 

Single cell sorting of CD34+ cells from BMMNC 

Before sorting of CD34
+
 cells was performed, culture medium was prepared to 

fill round-bottom 96-wells plates (Costar #3799, Cambridge, MA,USA) with 

75 l per well. The consistence of this culture medium with growth factors 

(GFs) G-CSF, h-SCF, IL-3 and GM-CSF was described before
21

. Furthermore, 

the addition of 2 broad-spectrum, cell-permeable, and irreversible inhibitors of 

caspases (Z-VAD-FMK and Z-DEVD-FMK, Omnilabo Int. B.V., Breda, the 

Netherlands) were used as single agents (both solutions with final 

concentration (FC) of 10μM) and in combination (FC 10 μM, each) in order to 

detect a PCD-lowering effect on the sorted CD34
+
 cells. An Epics Elite Flow 

Cytometer, equipped with an autoclone device (Coulter, Miami, FL, USA) was 

used for single cell sorting. Forward vs. right angle scatter were used to 

exclude dead cells and debris. CD34
+
CD3 CD19  cells within the life gate were 

sorted out of this thawed BMMNC fraction, indicating that lymphocytes (with no 

proliferation capacity within this assay) were excluded. Eventually, the 

autoclone unit sorted and seeded one CD34
+
 cell within one well. Ten 96-well 

plates were used per patient to perform these SCSW assays in time. 
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SCSW assay to determine proliferation of CD34+ cells 

After sorting, these 96-well plates were immediately placed in an incubator at 

37°C, 5% CO2 in a fully humidified atmosphere. One day after sorting and 

using an inverted microscope, one single cell per well was observed in more 

than 98% of these wells. In each well, the total number of cells were counted 

under a Zeiss (Thornwood, NY, USA) Axiovert 35M inverted microscope at 

days 4, 7, and 10 by one technician to evaluate the clonogenic capacity of 

these CD34
+
 cells. Clusters and colonies were defined as aggregates of 2-39 

cells and 40 cells, respectively. Proliferation is defined as the number of 

clusters and colonies per 96-well plate (called plating efficiency; PE), as also 

the size of clusters and colonies was taken into account. The exact number of 

cells within each well could be counted using the recorded brightfield images, 

as described before
24

. Delayed growth initiation means that the plating 

efficiency at day X+3 is considerably higher ( 10%) than at day X because of 

delayed initiation of cell division. 

Apoptosis detection in SCSW assay with fluorescence microscopy 

At days 7 and 10, two 96-well plates of each condition were used for 

determining the number of apoptotic cells within each cluster or colony, as 

described before
21

. For analysis of the fluorescence images, we used 

TCL-Image 4.6 software (TNO, Delft, the Netherlands) to objectively define the 

cut-off level for positive cells in comparison to the background. The precise 

method of image analysis was described before
25

. The amount of apoptosis 

(PCD level) is accurately defined as the percentage Annexin V-FITC
+
 cells of 

all cells within each cluster or colony. 

Statistics of in vitro profiles 

To detect statistical differences between the in vitro profiles (proliferation with 

number and size of clusters and colonies versus apoptosis) with and without 

CAI within one patient, we used different tests. Wilcoxon Mann-Witney test was 

used because of frequently found skewed distribution of these parameters, and 

student t-test to detect statistical differences regarding PCD level (% apoptotic 

cells per aggregate). 

Results 

Tables 6.1 and 6.2 show the clinical data and the in vitro growth and apoptosis 

characteristics of our four MDS patients with trisomy 8, classified from low-risk 

(MDS-1 and -2) to high-risk MDS (MDS-3 and -4) according to FAB-WHO with 
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increasing percentages of BM blasts, CD34
+
 cells, and subsequently IPSS 

scores
26

. 

 
Table 6.1 Mean in vitro growth characteristics of individual MDS patients.  

 MDS-1 MDS-2 MDS-3 MDS-4 
FAB-WHO classification MDS-MPS RA RAEB-RAEB2 RAEBt-AML 
IPSS / %BM blasts 0.5 / 1% 1.0 / 5% 2.0 / 15% 3.0 / 26% 
% trisomy 8 by cytogenetics  100% 100% 91% 
% CD34+ cells of BMMNC 4% 16% 18% 31% 
Cl/Co ratio day 7 and day 10 - CAI 1.5 and 0.5 6.6 and 4.7 24.5 64 

Proliferation clusters day 4 - 7 - 10 day 4 - 7 - 10 day 4 - 7 - 10 Day 4 - 7 - 10 
   number of clusters - CAI 64 - 39 - 21 52 - 46 - 47 33 - 46 - 49 40 - 61 - 64 
   number of clusters + ZVAD 64 - 27 - 22 51 - 47 - 42 43 - 53 - 47 44 - 67 - 61 
   number of clusters + DEVD 64 - 32 - 20 46 - 46 - 42 41 - 51 - 47 51 - 66 - 65 
   number of clusters + combi 59 - 30 - 23 46 - 48 - 51 40 - 48 - 46 47 - 66 - 67 

Proliferation colonies day 4 - 7 - 10 day 4 - 7 - 10 day 4 - 7 - 10 Day 4 - 7 - 10 
   number of colonies - CAI 1 - 26 - 45 0 - 7 - 10 0 - 0 - 2 0 - 0 - 1 
   number of colonies + ZVAD 0 - 38 - 44 0 - 5 - 6 0 - 0 - 3 0 - 0 - 3 
   number of colonies + DEVD 0 - 33 - 48 0 - 5 - 6 0 - 0 - 4 0 - 0 - 0 
   number of colonies + combi 0 - 32 - 37 0 - 3 - 5 0 - 0 - 2 0 - 0 - 1 

Results     
changed PE in comparison to -CAI day4,10:-10%c day4:-10%d,c day4:+20-30%a day4:+10-30%a 
  day10:-15%v,d day7:+10%d,v day7:+10%a 
delayed growth initiation  no yes:day7d, 

day7-10c 
yes:day7b yes:day 7b 

stimulation Co growth day 7 yes:+30%a no:-40%a not present not present 

Cl/Co ratio: cluster/colony ratio, PE: plating efficiency, +/- CAI: with or without caspase-inhibitors; 
v
=Z-VAD, 

d
=Z-DEVD, 

c
=combination of CAI, 

a
=all 3 CAI conditions, 

b
=All conditions +/- CAI. 

 

The addition of caspase-inhibitors (+CAI; +ZVAD, +DEVD, + combi) in the MPS 

(myeloproliferative) MDS-1 patient led to significantly more (+20-40%) colony 

formation at day 7, a difference that was no longer observed at day 10, and it 

occurred without significant changes in level of apoptosis or the size of the 

formed aggregates at day 7. At day 10, the combination of CAI (“combi” or “c” 

in both tables) significantly decreased the level of PCD of both clusters (64% 

vs. 88%) and colonies (6% vs. 13%, see Table 6.2). Unexpectedly, the lower 

PCD concurred with almost 20% fewer colonies as compared to control, but 

without significantly changing the size of these aggregates. This proliferation 

profile means that there are 2 groups of cluster-forming CD34
+
 cells: initially 

fast-growing ones leading to more colonies at day 7 which are stimulated for 

faster growth by CAI, besides slower-growing ones leading to lower colony 

formation with less PCD at day 10 by CAI. 
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Table 6.2 Mean apoptosis of clusters (Cl) and colonies (Co) of individual MDS patients, +/- CAI: 

with or without caspase-inhibitors. 

 MDS-1 MDS-2 MDS-3 MDS-4 

FAB-WHO MDS-MPS RA RAEB-RAEB2 RAEBt-AML 

IPSS / %BM blasts 0.5 / 1% 1.0 / 5% 2.0 / 15% 3.0 / 26% 

Apoptosis Cl mean ± CI, median mean ± CI, median mean ± CI, median mean ± CI, median 

day 7 - CAI  41% ± 13  26% ± 8, 18%  8% ± 5, 0%  10% ± 7, 0% 

day 7 + CAI  42% ± 15   16% ± 6, 0%
v
  5% ± 3, 0%

v
   3% ± 3, 0%

 v
 

    9% ± 6, 0%
d
  7% ± 5, 0%

d
  3% ± 3, 0%

d
 

    13% ± 7, 0%
c
  5% ± 6, 0%

c
  6% ± 4, 0%

c
 

day 10 - CAI  88% ± 9, 100%  26% ± 9, 10%  24% ± 7, 17%  20% ± 8, 0% 

day 10 + CAI  81% ± 10, 91%
v

 22% ± 6, 25%
v
   4% ±  2, 0%

v
  18% ± 8, 0%

v
 

   65% ± 13
d
  22% ± 7, 18%

d
   11% ±  6, 0%

d
  19% ± 7, 0%

d
 

   64% ±  11
c
  20% ± 6, 18%

c
   13% ± 6, 2%

c
  9% ± 6, 0%

c
 

Apoptosis Co mean ± CI, median mean ± CI, median   

day 7 - CAI  4% ± 2, 2%  5% ± 9, 0% hardly any Co hardly any Co 

day 7 + CAI  3% ± 1, 2%  2% ± 5, 1% hardly any Co hardly any Co 

day 10 - CAI  13% ± 7, 4%  33% ± 22 hardly any Co hardly any Co 

day 10 + CAI  11% ± 7, 3%
v
  21% ± 9

v
 hardly any Co hardly any Co 

  12% ± 8, 2%
d
  22% ± 22

d
   

   6% ± 4, 1%
c
  6% ± 5, 7%

c
   

v
=Z-VAD, 

d
=Z-DEVD, 

c
=combination CAI, median is given in case of more than 10% different from 

mean, CI = 95% confidence interval, bold results mean significantly different from control condition 

without CAI. 

 

 

The MDS-2/RA patient showed a typically (LR-)MDS growth pattern with 

considerably fewer and smaller-sized colonies (<100 cells) and with higher 

Cl/Co ratios than MDS-1 (Table 6.1). The addition of CAI led to a lower PE at 

day 4 (minus 10% clusters for DEVD and combi) and at day 10 (minus 15% for 

ZVAD and DEVD), with significantly lower colony formation at day 7 and 10 

with all CAI conditions (-30 to 60%). Delayed growth initiation was found for 

DEVD at day 7 and for the combination of CAI at days 7 and 10 (Table 6.1). 

Significantly decreased PCD was found within clusters at day 7 for all CAI 

conditions (9-16%, median 0% vs. 26%, median 18% without CAI), and this  

translated into colonies with significantly lower PCD at day 10 for the 

combination of CAI (6% vs. 33% without CAI, Table 6.2). This growth profile 

with CAI is probably the result of delayed growth initiation and/or slower growth 

leading to lower cluster formation with lower PCD at day 7, which progresses to 

lower colony formation with lower apoptosis at day 10. 

The MDS patients 3 and 4 are both HR-MDS patients according to FAB and 

both are showing the highest Cl/Co ratios (Table 6.1) with delayed (only at day 

10) and hardly any colony formation ( 4). In contrast to LR-MDS patients, 

these HR-MDS patients showed an increment in clusters of 10-30% and 5-15% 

at days 4 and 7, respectively, in all CAI treated samples. This difference was 
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no longer detected at day 10. Furthermore, delayed growth initiation at day 7 

(+20-25%) was observed at all conditions (± CAI conditions) in both patients. In 

MDS-3, a significant decrease of PCD of clusters at day 10 was seen when 

CAI were added, of which Z-VAD had the most pronounced impact (mean 4% 

vs. 24% without CAI, Table 6.2). In MDS-4, Z-VAD and the combination of CAI 

also significantly decreased the level of PCD within clusters at day 7 (3% vs. 

10%) and clusters at day 10 (9% vs. 20%), respectively. As hardly any colonies 

were found, no real conclusions about the influence of CAI upon colonies can 

be made. Furthermore, no increment in cluster and colony size was observed 

in association with this PCD lowering effect of CAI in both HR-MDS patients. 

In conclusion, both in low and high risk MDS patients, apoptosis was inhibited 

by CAI. But in LR-MDS, eventually an inhibiting effect on proliferation of 

colonies was observed, whereas in HR-MDS, more day 4 and 7 clusters were 

observed, as these differences were no longer seen at day 10. 

Discussion 

Compared with the proliferation profile of normal BM CD34
+
 cells in SCSW 

assay, it has been shown that MDS CD34
+
 cells initially have a higher growth 

fraction, leading to the formation of significantly more clusters (with higher 

PCD) in comparison to colonies (with lower apoptosis), and all together at a 

slower pace
21

. These studies show “intrinsic” profiles without the influence of 

accessory cells and stroma. The increasing S-phase fraction within the overall 

myeloid compartment as within the CD34
+
 compartment in combination with 

longer total cell cycling times as MDS progressed, was also observed by 

double-labeling techniques within BM biopsies
2,8,20

. These studies combined 

with our similar in vitro observations clearly demonstrate this growth advantage 

of the CD34
+
 pool of MDS patients causing a higher plating efficiency in SCSW 

assay. However, it is essential that this so called “growth advantage” of MDS 

CD34
+
 cells in vitro consist profoundly of cluster-forming units with restricted 

proliferation capacity and enhanced PCD. It seems likely that these CD34
+
 

cluster-forming cells belong to the more mature HSC pool with decreased 

intrinsic proliferative capacity. Only a small part of these MDS CD34
+
 S-phase 

cells belong to colony-forming units (CFU), which mostly form small colonies of 

40-100 cells at a slower pace (longer cell cycling times) and decreased PCD as 

compared to normal CD34
+
 cells. Probably these CFU represent the 

(pre)leukemic clone with or without the cytogenetic marker. As FISH studies 

upon these small clusters and colonies within these round-bottom wells could 

not be performed successfully, it still is an assumption. 

In this study, we investigated the influence of CAI upon the proliferation and 

apoptosis of MDS CD34
+
 progenitors in vitro. It can be concluded from this 
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study that the combination of CAI in LR-MDS patients eventually leads to lower 

colony formation, while in HR-MDS patients CAI induce increasing numbers of 

clusters at days 4 and 7, which was no longer observed at day 10. In general, 

CAI in MDS patients resulted in inhibition of apoptosis of cluster- and colony-

forming progenitors. Furthermore, it is obvious from our study that the use of 

CAI did not restore normal growth in these MDS patients, as it did not stimulate 

faster (higher numbers) and bigger colony formation. 

The inhibition in colony formation in LR-MDS despite the lowering effect of the 

combination of CAI on apoptosis of clusters and colonies may be due to a 

growth inhibitory effect of CAI, eg. by slowing down cell cycling and/or going 

out of cycle. This growth profile by using CAI could resemble stimulation of pre-

leukemic growth with longer cell cycling times and lower PCD. This statement 

has to be proved by FISH studies upon these cultures. On the other hand, in 

the HR-MDS there was a higher cluster formation with lower PCD by CAI, at 

least during 7 days. Probably CAI in this HR-MDS group, in which colony-

forming CD34
+
 cells originally show more autonomous growth with decreased 

apoptosis and longer cell cycling times, led to an acceleration of a leukemic 

profile leading to more aggregates with substantially more survival advantage. 

In other words; CAI overruled or restored the decreased intrinsic proliferative 

potential of cluster-forming progenitor cells in HR-MDS. In analogy: the usage 

of CAI in vivo in HR-MDS patients should not be used without careful watching, 

because acceleration towards leukemia could be stimulated.  

Furthermore, it has been shown that functional FADD and caspase 8 are 

needed for apoptosis as well as for cytokine-induced proliferation of 

hematopoietic progenitor cells
22

. That study showed that the inhibition of 

hematopoietic colony formation by non-functional FADD and caspase 8 is not 

primarily due to effects on cell viability but it may rather be due to defects in 

entering the cell cycle from the G0 state. This probably resembles the delayed 

growth initiation with CAI found in 3 out of 4 patients at day 7 in our study. 

Additionally, a higher fraction of proliferating cells going out of cell cycle with 

more survival advantage during the influence of CAI could also play a role in 

the LR-MDS patients. In general, it was stated that death receptors have a 

threshold level of activation for different effects and by this mechanism play a 

role in myeloid cell homeostasis as a double-edged sword: delayed growth 

initiation and proliferation (and therefore survival advantage) versus apoptosis.  

In conclusion, this study shows that in 4 MDS patients in different stages of the 

disease, the intrinsic apoptotic features can be inhibited by broad-spectrum 

caspase inhibitors. However, this reduced apoptosis does not translate into 

restoration of more colony formation as was seen in normal hematopoiesis.  

It is important to stress that this in vitro leukemic growth profile in our SCSW 

assay was observed without cell-cell or cell-stromal interactions, whereas the 

same leukemic profile was also observed in other culture systems with intact or 
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disturbed stromal interactions. A reasonable explanation for this phenomenon 

could be the fact that it is an intrinsically feature of (or “programmed” within) the 

CD34
+
 cell, as surrounding growth factors are only conditional for initial 

proliferation, as subsequently autonomic proliferation with or without production 

of paracrine growth factors exists. Accessory cells and/or stroma are not that 

important for actually changing this in vitro leukemic profile, but probably act as 

an accelerator or brake upon the predestined faith of this CD34
+ 

S-phase 

compartment. 
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Summary, conclusions and future perspectives 

The myelodysplastic syndromes (MDS) are highly proliferative bone marrow 

(BM) disorders characterized by dysplastic features, hyperproliferation, and 

enhanced intramedullary apoptosis or programmed cell death (PCD). The 

balance between proliferation and apoptosis in different cell compartments 

changes in time and plays a role in the progression toward acute myeloid 

leukaemia (AML). AML blasts proliferate at a lower pace than normal CD34
+
 

cells and they are able to turn down their PCD process. Subsequently, as the 

proliferation fraction is increasing, PCD is turned off, and eventually the 

proliferation rate increases dramatically leading to full blown AML. The relation 

between cell proliferation and apoptosis in MDS, their change in balance during 

progression towards AML, and the influences of accessory cells were the main 

topics of research described in this thesis. 

 

In cchapter 1, we present the current knowledge on the biology of stem and 

myeloid progenitor cells in MDS. It should be emphasized that the myeloid 

compartment in MDS contains three different hematopoietic cell populations 

within a pathological bone marrow (BM) micro-environment: residual polyclonal 

or normal hematopoiesis, a monoclonal preleukemic population, and a 

leukemic or blastic hematopoiesis. During MDS evolution, the relative size of 

these compartments changes; initially the normal hematopoiesis is suppressed, 

later on during progression to AML the blastic compartment increases. In MDS 

the initial DNA-altering event (toxic, chemotherapy and/or radiotherapy 

induced) probably occurs at the level of the pluripotent stem cell. Additional 

genetic defects lead to growth advantage of the (pre)malignant clone 

(monoclonality), differentiation arrest and finally suppression of PCD.  

Accumulation of leukemic blasts increases the apoptotic potential towards 

residual polyclonal (and monoclonal) hematopoietic cells and stromal cells, as 

these blasts carry FasL upon their cell membranes inducing apoptosis by Fas-

FasL interaction. As differentiating cells express a higher density of FasR on 

their cell membranes, they are more prone to apoptosis. T-cells with FasL 

expression act as a double-edged sword; apart from killing leukemic blasts, 

they also kill the more mature myeloid progenitors and their progeny 

characterized by an increased FasR expression. The resulting (pan)cytopenia 

probably stimulates the proliferation of normal (and monoclonal) progenitors. 

This proliferation pressure in itself  increases the chance of acquiring additional 

(cyto)genetic changes (or mutations) because of decreased DNA repair time. 

Subclones with additional cytogenetic abnormalities are the result of this 

process. Eventually apoptosis overrules proliferation within the CD34¯ 

compartment leading to decreased peripheral cell numbers. “Signal antonymy” 

(cells dying in S-phase) is a frequently observed and unique feature in early 
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stage MDS. The balance between these different proliferation profiles and 

apoptosis of the different marrow compartments in MDS, and their change in 

time during progression to AML, determines the different FAB/WHO-stages and 

prognostic classifications such as the IPSS (International Prognostic Scoring 

System) which are based on the percentage of marrow blasts, the number of 

profound cytopenias, and cytogenetic characteristics. 

 

In cchapter 2, we investigated the proliferation state of the CD34
+
 stem and 

progenitor cell compartment of 33 untreated MDS patients and 5 patients with 

sAML (with a MDS-prephase) in order to achieve a better understanding of 

their cycling properties during MDS evolution. All patients received an infusion 

of the thymidine analogue iodo- or bromodeoxyuridine followed by a BM 

aspirate and biopsy. A double-labelling immunohistochemistry technique using 

anti-CD34 and anti-IUdR/BrdU antibodies was developed to discriminate 

CD34
+
 and CD34¯ cells actively engaged in DNA synthesis or not. As MDS 

evolves, we observed a significant increase in the percentage of  CD34
+
 cells 

(mean value: RA/RARS 1.67%, RAEB(t) 8.68%, sAML 23.83%), as well as in 

the percentage of proliferating CD34
+
 cells of all myeloid cells (RA/RARS 

0.19%, RAEB(t) 0.43% and sAML 3.30%). This increase was associated with a 

decrease in the overall myeloid labeling index (LI: RA/RARS 25.8%, RAEB(t) 

24.6% and sAML 21.5%). This decrease in overall myeloid LI is due to a shift in 

the ratio of proliferating CD34
+
 and CD34¯ cells, as an exponential increase in 

the proportion of CD34
+
 cells of the proliferating compartment during MDS 

evolution occurred (RA/RARS 0.35%, RAEB(t) 1.44% and sAML 11.98% of all 

S-phase cells) at the expense of the proliferating CD34¯ compartment. As this 

latter more mature compartment with higher FasR expression decreases during 

MDS evolution, “signal antonymy” in this compartment may account for this 

phenomenon. Overall marrow apoptosis is higher in low-risk (LR-) MDS than in 

high-risk (HR-)MDS because of higher apoptosis in the larger mature CD34¯ 

compartment than in the smaller CD34
+
 compartment. Furthermore,  we 

observed a progressive increment in the mean total cell cycling time of all 

myeloid cells during MDS progression (RA/RARS 39.8, RAEB(t) 45.2 and 

sAML 65.8 hr).  

This study showed that during MDS evolution to sAML, the CD34
+
 

compartment develops a growth advantage and, therefore, increases with more 

cells dividing at a slower pace. Of course, the expansion of this CD34
+
 

compartment might also be due to a differentiation arrest in combination with 

decreased programmed cell death. The combined proliferation and apoptosis 

profiles were subject of our subsequent in vitro MDS studies. 

 

In cchapter 3 we used cell suspensions to study the different features of the 

apoptotic process in vitro in time by flow cytometric (FCM) techniques. To study 
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the dynamic process of apoptosis, we used Annexin-V (AnV) for 

phosphatidylserine (PS) translocation, in situ end labeling (ISEL) for DNA 

fragmentation, and PI staining for cell membrane leakage. We developed a 

new flow cytometric ISEL technique, since it was only available as an 

immunohistochemical technique. Both ISEL and PI techniques detect different 

phases of PCD. Because PS translocation is assumed to be an early feature of 

apoptosis, we questioned if AnV positivity also implies inevitable cell death.. 

Therefore, we used suspension cultures of Jurkat cells and induced apoptosis 

by -irradiation, incubation with Camptothecin (CPT), or Cytosine -D-

arabinofuranoside (Ara-C). At different time intervals apoptosis was quantified 

flow cytometrically by AnV/PI and ISEL. To analyse the consequence of AnV 

positivity, before or beyond the point of no return of apoptosis, various normal 

human AnV+/PI  CD34
+ 

fractions were cultured in a single-cell single-well 

(SCSW) assay.  

We observed that all Jurkat cells showed a same pattern of apoptosis in time 

under these three different apoptosis-inducing conditions. AnV+/PI  cells 

showed subsequently ISEL positivity, after which they turned into AnV+/PI++ 

cells with even higher levels of ISEL positivity (80-90%). Eventually, they lost 

some of their PI and ISEL positivity (due to DNA desintegration). Cell handling 

after freeze-thawing of normal human CD34
+
 cells resulted in a highly variable 

AnV+/PI  fraction (range 23-62%). Within this AnV+ and  AnV+/PI  populations 

only a minority of CD34
+
 cells showed ISEL positivity (range 4-8% and 0.8-6%, 

respectively). Furthermore, AnV+/PI  CD34
+
 cells did have clonogenic capacity 

in the SCSW assay.   

We concluded that PCD in vitro can be followed accurately using these three 

different FCM techniques. PS translocation is rapidly followed by oligo-

nucleosomal DNA fragmentation, after which cell (and nuclear) membrane 

leakage occurs. Detection of PS asymmetry by AnV-FITC in vitro may be due 

to handling of the cells. Furthermore, we showed that Annexin-V positive cells 

after freezing and thawing could recover and start proliferating again, meaning 

that PS asymmetry does not always mean that cells have entered a phase of 

inevitable PCD.  

 

In cchapter 4, we used an agar culture system to investigate if BM mononuclear 

cells (BMMNC) of MDS patients also showed enhanced proliferation and 

apoptosis in vitro, with acute myeloid leukemia (AML) and normal BM (NBM) as 

a reference. BMMNC of de-novo MDS and AML patients with trisomy 8 as the 

sole cytogenetic marker were used in these studies.  

BMMNC were cultured in agar during 10 days. Proliferation was determined by 

scoring number of clusters (10-39 cells) and colonies ( 40 cells). Their sum is 

called plating efficiency (PE). Apoptosis was assessed by performing in situ 

end labeling (ISEL) on these cultures at days 4, 7, and 10. Apoptotic 
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aggregates are defined as having 50% or more apoptotic or ISEL+ cells per 

aggregate. The ISEL technique was especially developed for the agar culture 

system as it detects a PCD feature beyond the point of no return. Furthermore, 

in situ hybridization (ISH) studies of day 10 - agar bottoms fixed on slides were 

performed to see if there was a difference in proliferation and apoptosis in time 

between disomic and trisomic aggregates in MDS and AML patients. 

Kinetics in NBM showed a decrease in the number of clusters in time due to 

increasing PCD (median 50%) of clusters and due to progression to colonies 

with overall low apoptotic level (median 23%). In MDS patients, about 2-fold 

more clusters were found at day 4, and in contrast with NBM, the total number 

of clusters at day 7 remained high in spite of an increasing percentage of 

apoptotic clusters (from median 52 to 76%) in combination with more colony 

formation. The observed enhanced PE in MDS is obvious and reflects more 

cells in S-phase. In contrast to NBM, in MDS we observed numerous small 

clusters (of 2 to 9 cells;  3 cell divisions) which contributed to this 

phenomenon. At day 10,  the number of clusters and colonies in MDS showed 

a sharp decline due to persisting high apoptosis at cluster level (median 75%) 

and increasing PCD in colonies (median 42%). BMMNC of AML patients 

showed decreased PE in comparison with normal and MDS; low proliferation 

with enhanced apoptosis at cluster level (median 62%) and a substantially 

delayed and reduced number of small colonies which showed relatively low 

apoptotic insult (median 20%) at day 10.  

A strong positive correlation was found between percentage BM blasts and the 

growth fraction (percentage cells in S-phase) in AML (r=0,85), in contrast to 

MDS (r=0,52). It means that the S-phase cells in vitro in AML represent BM 

leukemic blasts, as in MDS probably more normal or monoclonal non-blastic 

progenitors represent the growth fraction. Furthermore, we did not observe a 

clear proliferative advantage of the trisomic 8 clone in the majority of the 

patients in this study. 

In conclusion,, we observed increased proliferation in MDS, associated with 

enhanced apoptosis in time, similar to our observations in vivo. AML clusters 

showed high apoptosis in contrast to a relatively low level of apoptosis in 

colony-forming cells (CFC). In AML CFC, leukemic transformation resulted in 

longer cell-cycling times and decreased apoptosis. These growth profiles of 

BMMNC are independent from stromal influences and represent intrinsic 

features of progenitor cells themselves, but interactions with non-stromal 

accessory cells (with or without growth factor production) can not be excluded. 

Since both proliferation and apoptosis were measured in one culture system, 

this approach provides insight in the balance of these two different 

mechanisms. For example, by changing growth factors, and/or ligands, or by 

inhibition of cell growth receptors, this type of experiments can give insight in 

the cell proliferation processes: what is an intrinsic (or so called ”programmed”) 
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cell property, what is the impact of autocrine and paracrine secretion of factors 

or ligands, and what is the influence of accessory cell interactions on apoptosis 

and proliferation of MDS (and AML) progenitors?  

 

To rule out the role of accessory cells, we studied in cchapter 5 

CD34
+
CD19¯CD3¯ progenitor cells of 5 MDS patients and 5 normal controls by 

single cell sorting and culturing in the SCSW assay for 14 days in liquid 

medium with addition of growth factors. Subsequently, we evaluated the 

intrinsic proliferative capacity and apoptotic propensity of CD34
+
 progenitor 

cells of MDS patients and compared them with normal in vitro characteristics. 

Cultures were evaluated on days 4, 7, 10, and 14, and cells were counted 

within each well by inverted light microscopy. PCD was determined by staining 

with Annexin-V-FITC and the percentage apoptotic AnV+ cells per aggregate 

was determined by fluorescence microscopy. We used the Annexin-V method 

instead of ISEL, as the latter technique uses fixed cells and could not be 

performed within this liquid culture system with low cell numbers. Growth rate 

and cell doubling time (Td) were calculated for each colony-forming cell after 

14 days of culturing. 

In normal BM, we observed that CD34+ cells formed clusters and colonies. 

Both showed increasing PCD in time, although within colonies the degree of 

apoptosis was twice as high (about 25%) as compared with clusters at all time 

points. In MDS, increased cluster formation and also increased plating 

efficiency (PE) was observed at all evaluation points when compared to normal 

BM, whereas the number of colonies was markedly reduced (1/7 of normal). At 

day 14 of culturing, the relative amount of colonies compared to larger clusters 

(  20 cells) and to smaller clusters (< 20 cells) in normal BM was 47% - 12% - 

41%, respectively. In MDS these relative amounts were shifted to smaller 

clusters:  22% - 18% - 60%, respectively. The MDS colonies were also smaller, 

almost all less than 100 cells. Significantly enhanced levels of PCD in clusters 

(53-79%) in combination with longer cell doubling times (about 10 hours longer) 

may explain this reduced number of smaller colonies. Surprisingly, these MDS 

colonies showed considerably lower levels of PCD in time (7-32%) as 

compared to normal (1-48%, median values). 

This study of CD34+ progenitors in MDS patients showed consistently 

enhanced plating efficiencies (or an overall higher growth fraction), mainly due 

a higher number of cluster-forming cells. This was consistent with our findings 

in the agar culture studies. Furthermore, as compared to normal BM, enhanced 

intrinsic proliferation and apoptosis of MDS cluster-forming CD34
+ 

cells was 

found, in contrast to the colony-forming CD34
+
 cells (CFC). Above all, by 

ranking MDS patients according to the FAB/WHO classification, we found a 

transition from a LR-MDS growth profile (with high proliferation and shorter cell-

doubling times, lower Cl/Co ratios and high apoptosis of clusters and colonies) 
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towards a more “leukemic growth” profile with increased Cl/Co ratio’s, longer 

cell- doubling times, and subsequently lower apoptosis levels, especially at the 

level of CFC. Probably these CFC belong to the leukemic clone, in which 

longer cell-doubling time with decreased or no PCD cause a slow formation of 

smaller colonies with more blastic morphology.  

 

In cchapter 6 we hypothesized whether caspase-inhibitors (CAI) could block 

intrinsically enhanced apoptosis of cluster-forming cells in MDS, and by doing 

so, could restore a normal growth pattern (with higher numbers and larger 

colonies). Again we used single-cell sorted CD34
+
CD3¯CD19¯ cells of MDS 

patients (with trisomy 8) in cultures of 10 days with and without adding CAI. 

Proliferation and PCD was determined as described in chapter 5. 

We observed that the inhibitory effect of CAI on apoptosis was significantly 

more pronounced in clusters than in colonies. Furthermore, the apoptosis-

inhibiting effect of CAI was higher in LR-MDS than in HR-MDS, as also 

colonies showed this effect in the LR-group. The combination of CAI in LR-

MDS patients led to a decrease in colony numbers with lower PCD of these 

aggregates at day 10. In HR-MDS, CAI induced more clusters at days 4 and 7 

with lower PCD at days 7 and 10, whereas the scarce colony formation did not 

change significantly. Furthermore, the size of clusters and colonies did not 

change significantly with CAI in both MDS groups. 

In general, we conclude that CAI decreased apoptosis of in vitro cultured 

CD34
+
 cells of all MDS patients by inhibiting apoptosis of cluster- and colony-

forming progenitors.  Interestingly, CAI inhibition of apoptosis in MDS patients 

certainly did not restore normal growth. 

Recent studies have shown a broader mechanism of action of caspases in 

myeloid homeostasis: they are involved in entering the cell cycle and in 

cytokine-induced proliferation as well. These mechanisms may play a role 

when CAI are used in vitro: delayed growth initiation was found in 3 out of 4 

MDS patients, leading to lower colony formation in LR-MDS patients. On the 

other hand, in HR-MDS patients CAI may stimulate survival  and/or 

proliferation. 

Future perspectives  

Modern technologies, like microarrays and microfluidic cards techniques, may 

provide information which genes are involved in the basic biological processes 

of MDS (and AML), such as proliferation and apoptosis, the topics of this 

thesis. Correlation between these molecular and biological pathways is 

expected to lead to a more precise approach of treatment. Besides 

chemotherapy, a better rationale for other treatment modalities may be defined, 
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such as treatment with thalidomide, gemtuzumab ozogamicin, lenalidomide, 

DNA methyltransferase inhibitors, farnesyl transferase inhibitors, bevacuzimab, 

and growth factors (erythropoeitin and G-CSF). All these therapies interfere 

with molecular pathways. The in vitro culture systems used in this thesis can be 

of great value in this approach. Combined analysis of molecular and biological 

pathways of various cell suspensions under different conditions will give 

additional insight which genes and proteins are involved in the pathophysiology 

of MDS. As can be concluded from our in vivo and in vitro experiments, it 

seems logically to apply a “missionary approach” within the low-risk MDS 

group. Suppression of apoptosis may relieve the proliferation pressure. The 

anti-apoptotic and cytokine modulating therapy seems to work in a minority of 

LR-MDS patients by suppressing the cytogenetically aberrant clone. As more 

insight is gained into the different players of the apoptotic pathways, this 

approach could be fine-tuned and might be more efficient. Subsequently, the 

“crusader approach” for the remaining preleukemic or leukemic clone  might be 

applied selectively, as the normal stem cell pool is usually damaged and 

declined in this category of patients.  

Today we use an AML-like approach to treat HR-MDS patients, but this 

approach offers a lower success rate than in primary AML. Recently developed 

agents may improve relapse-free and overall survival. By in vitro testing of 

these agents (with or without chemotherapy) in the different cell suspensions of 

these patients, as mentioned above, in combination with molecular and 

biological analyses, it may lead to a more precise therapeutic rationale. Our in 

vitro culture systems with simultaneous detection of proliferation and apoptosis, 

as described in this thesis, can therefore be of great value, as they can be used 

prior to in-vivo testing of newly developed agents. 
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Samenvatting, conclusies en toekomstperspectieven 

Myelodysplastische syndromen (MDS) zijn beenmerg (BM) aandoeningen, 

gekenmerkt door verhoogde proliferatie (celdeling), dysplasie (rijpingsstoornis) 

en verhoogde intramedullaire apoptose of geprogrammeerde celdood (PCD). 

De balans tussen proliferatie en celdood van de verschillende celtypen in het 

BM verandert tijdens het ziektebeloop en speelt een cruciale rol in de overgang 

van MDS naar acute myeloide leukemie (AML). Leukemische blasten 

prolifereren langzamer dan normale blasten (CD34
+
 cellen) en tonen 

verminderde apoptose. Deze vermindering van apoptose gaat uiteindelijk 

gepaard met een versnelling in proliferatie; beide processen veroorzaken 

zodoende een accumulatie van leukemische blasten in het BM en bloed wat 

uiteindelijk een full blown AML tot gevolg heeft. De fysiologische processen van 

proliferatie en celdood van verschillende celtypen in MDS, hun balans en de 

verandering hiervan ten tijde van progressie met eventuele invloeden van 

accessoire cellen, zijn de belangrijkste onderwerpen van onderzoek die in dit 

proefschrift worden beschreven. 

 

In hhoofdstuk 1 geven we een overzicht weer van de huidige kennis van zaken 

van de biologie van de stamcellen en voorlopercellen in MDS. We dienen ons 

te realiseren dat het BM van MDS patiënten is te verdelen in een drietal 

hematopoietische cel compartimenten te midden van een veranderende micro-

omgeving met stromale cellen, zoals oa. vet- en endotheelcellen. Deze drie 

celpopulaties betreffen residuale polyclonale, normale hematopoiese (HP), 

monoclonale of preleukemische HP, en (monoclonale) leukemische of blastaire 

HP. Gedurende de evolutie van MDS naar AML treedt er een verandering op in 

de relatieve grootte en dus onderlinge verhouding van deze celpopulaties. In 

het begin wordt de normale HP onderdrukt of gaat dood, terwijl gedurende de 

overgang van MDS naar AML de blastaire component steeds meer toeneemt. 

MDS ontstaat waarschijnlijk door een initiële noxe (toxische stof, 

chemotherapie en/of bestraling) die een DNA-verandering in een pluripotente 

stamcel teweegbrengt. Vervolgschade leidt tot additionele genetische 

veranderingen in deze clonale stamcel, hetgeen leidt tot een groeivoordeel, 

differentiatiestop en uiteindelijk ook verminderde celdood in de leukemische 

blasten. Als deze blasten accumuleren, initiëren zij onderdrukking (meer 

apoptose) van de omliggende polyclonale en monoclonale HP en stromale 

cellen doordat zij via verhoogde FasL expressie op hun celmembraan interactie 

aangaan met de verhoogde FasR expressie op deze meer uitgerijpte cellen. 

Bovendien ontstaan gedurende MDS-progressie meer T-cellen met verhoogde 

FasL expressie die een tweeledig effect sorteren: het (pogen tot) doden van 

leukemische blasten en via FasL-FasR celdood veroorzaken van de rijpe 

progenitorcellen en hun nakomelingen als onschuldige omstanders. De 
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resulterende progressieve pancytopenie geeft waarschijnlijk via een 

terugkoppelingsmechanisme een verhoogde proliferatiedruk op deze cellen 

met meer kans op additionele genetische fouten, die niet of slecht gerepareerd 

worden door een kortere DNA-hersteltijd. Hierdoor ontstaan subklonen met 

additionele chromosomale afwijkingen. Uiteindelijk overheerst apoptose over 

proliferatie in het CD34  compartiment hetgeen tot lagere perifere celaantallen 

leidt. “Signal antonymy” betekent dat cellen doodgaan ten tijde van de S-fase 

(= fase van DNA synthese cq. verdubbeling); dit blijkt een karakteristiek, uniek 

en veelvoorkomend verschijnsel te zijn in MDS. De balans tussen deze 

verschillende profielen van proliferatie en apoptose van de verschillende 

celcompartimenten in het BM van MDS patiënten verandert gedurende de 

overgang van MDS naar AML. Deze progressie wordt weergegeven in de FAB-

WHO classificatie en de IPSS: een scoringssysteem gebaseerd op het 

percentage beenmergblasten, het aantal ernstige cytopenieën en de aard van 

de cytogenetische afwijkingen.  

 

In hhoofdstuk 2 onderzochten we het proliferatieprofiel van de CD34
+
 stam- en 

progenitorcellen van 33 niet-behandelde MDS patiënten en 5 secundaire AML 

patiënten (na MDS voorstadium) om een beter inzicht te krijgen in het 

groeivoordeel van CD34
+
 cellen gedurende de progressie van MDS naar AML. 

Daartoe kregen alle patiënten een infusie met een thymidineanaloog, gevolgd 

door een BM-aspiraat en -biopsie. Via immuno-histochemische dubbel-

labellingstechnieken konden we CD34
+
 van CD34  cellen onderscheiden en 

het percentage S-fase cellen bepalen. Gedurende MDS evolutie zien we een 

significante toename van het percentage CD34
+
 cellen, als ook van het 

percentage CD34
+
 cellen in S-fase. Deze toename was geassocieerd met een 

afname in de myeloide labellingsindex, hetgeen de totale fractie delende cellen 

beschrijft binnen het totale myeloide (CD34
+
 en CD34 ) compartiment. Dit 

wordt veroorzaakt door een verschuiving in de verhouding van proliferende 

CD34
+
 in S-fase ten koste van een afnemende deling in het CD34- 

compartiment. Daar dit laatste meer rijpere compartiment een hogere FasR 

expressie vertoont kan “signal antonymy” hierin een rol spelen. Totale 

apoptose is in het algemeen in laagrisico (LR-)MDS hoger dan in hoogrisico 

(HR-)MDS vanwege een groter aandeel van het rijpere CD34  compartiment in 

deze LR-groep. Bovendien is het bekend dat onrijpere CD34
+
 cellen langzamer 

delen dan de rijpere CD34- nakomelingen. Zodoende is het logisch dat er 

sprake is van een progressieve toename van de totale celcyclustijd van alle 

myeloide cellen gedurende de MDS evolutie naar AML (van 40 naar 66 uur), 

zoals wij in deze studie aantonen.  

Concluderend laat deze studie een groeivoordeel zien van het CD34
+
 

compartiment gedurende MDS-evolutie waardoor het totale CD34
+
 

compartiment toeneemt met langzaam delende cellen. Waarschijnlijk zal ook 
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een toegenomen differentiatiestop en een verminderde apoptose in deze 

CD34
+
 cellen een rol spelen, hoewel we dit in onze studie niet hebben 

onderzocht. De gecombineerde celdood- en celproliferatieprofielen in vitro zijn 

dan ook onderwerp van onze vervolgstudies in MDS. 

 

In hhoofdstuk 3 hebben we de verschillende kenmerken van apoptose in de tijd 

bestudeerd middels nieuwe flowcytometrische (FCM) technieken op 

celsuspensies. Om het dynamische profiel van geprogrammeerde celdood te 

bestuderen, gebruikten we Annexine-V (AnV) om phosphatidylserine (PS)-

translokatie van de celmembraan aan te tonen, in situ end labeling (ISEL) 

techniek om DNA fragmentatieprodukten te detecteren, en PI kleuring voor het 

vast stellen van celmembraanlekkage. De flowcytometrische ISEL techniek 

moest ontwikkeld worden, daar deze methode tot nu toe alleen beschikbaar 

was als een immunohistochemische techniek. ISEL en PI technieken tonen 

verschillende fasen van irreversibele apoptose aan. PS translokatie toont een 

vroege fase van celdood aan. Zodoende vroegen wij ons af of dit ook een 

irreversibele fase van apoptose vertegenwoordigt. Wij gebruikten een Jurkat 

cellijn voor suspensie cultures en induceerden apoptose middels -bestraling, 

of door middel van incubatie met camptothecine of Ara-C. Na verschillende 

tijdsintervallen werd apoptose gekwantificeerd middels  AnV/PI en ISEL via 

FCM. Voor het vaststellen of AnV positiviteit een fase van irreversibele celdood 

vertegenwoordigt, werden verschillende AnV+/PI- humane normale CD34
+
 

cellen na ontdooien gekweekt in een single-cell single-well (SCSW) assay. 

Deze Jurkat-cellen vertoonden eenzelfde apoptose profiel onder elk van de 

bovenstaande drie apoptose-inducerende condities: AnV+/PI- cellen 

vertoonden binnen een uur ook ISEL positiviteit, waarna zij veranderden in 

AnV+/PI++ cellen met zelfs hogere niveaus van ISEL positiviteit (80-90%). 

Uiteindelijk verloren al deze cellen enige mate van PI- en ISEL-positiviteit door 

desintegratie van het DNA. Gecryopreserveerde normale CD34
+
 cellen 

toonden na ontdooien een variabele AnV+/PI- fractie (23-62%). Binnen deze 

AnV+ en AnV+/PI- fracties was sprake van een kleine hoeveelheid cellen die 

ook ISEL positiviteit vertoonde (resp. 4-8% en 0,8-6%). Bovendien zagen wij 

ook AnV+/PI- CD34
+
 cellen die clonogene aktiviteit vertoonden in de SCSW 

assay, hetgeen impliceert dat PS asymmetrie van de celmembraan nog niet 

een fase van irreversibele celdood aangeeft. 

 

In hhoofdstuk 4 gebruikten wij de BM mononucleaire cellen (BMMNC) van MDS 

patiënten in agar cultures om verhoogde mate van proliferatie en apoptose aan 

te tonen in vitro, zoals deze patiënten dit ook hebben laten zien in vivo. We 

gebruikten BM van AML patiënten en normaal BM (NBM) als referentie. 

BMMNC van de-novo MDS en AML patiënten met trisomie 8 als enige 

cytogenetische marker (intermediaire risico-groep volgens WHO-FAB) werden 
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gebruikt in deze studie om de hoogst mogelijke mate van uniformiteit te 

verkrijgen. 

BMMNC werden gekweekt in agar gedurende 10 dagen. Proliferatie werd 

gedefinieerd als het aantal clusters (10-39 cellen) en kolonies ( 40 cellen) op 

een bepaalde dag. De som van alle delende cellen, clusters en kolonies wordt 

“plating efficiency” genoemd (PE). Apoptose werd vastgesteld door middel van 

een aangepaste ISEL techniek op gefixeerde agar bodems van dag 4, 7 en 10. 

Apoptotische aggregaten zijn gedefinieerd als hebbende 50% of meer ISEL 

positieve cellen per aggregaat. In situ hybridisatie (ISH) werd verricht op 

agarbodems van dag 10 om verschil aan te tonen in proliferatie- en 

apoptoseprofiel van disome en trisome aggregaten van bovenstaande 

patiënten. 

Agarkweken met NBM lieten een afname in de tijd zien van het aantal clusters 

door toename van apoptose (mediaan 50%) en overgang van clusters naar 

kolonies met weinig apoptose (mediaan 23%). In MDS patiënten werden 

tweemaal zoveel clusters gevormd op dag 4. In tegenstelling tot NBM, bleef het 

clusteraantal hoog op dag 7 ondanks een forse toename van apoptotische 

clusters (van mediaan 52 naar 76%) en een groter aantal kolonies dan in NBM. 

De duidelijk toegenomen PE in MDS gaf aan dat  meer cellen in S-fase waren, 

duidend op een hogere proliferatiefractie dan normaal. Bovendien zagen we in 

MDS (itt. NBM) de vorming van vele kleine clusters (van 2-9 cellen, 3 

celverdubbelingen) die ook bijdragen aan dit profiel. Op dag 10 was er sprake 

van een scherpe daling in aantal clusters en kolonies tgv. persisterende sterk 

verhoogde apoptose op clusterniveau (mediaan 75%) en toegenomen 

apoptose op kolonie niveau (mediaan 42%). BMMNC van AML patiënten lieten 

een duidelijke verlaagde PE zien; lage proliferatie met verhoogde apoptose 

(mediaan 62%) op cluster niveau en een vertraagde vorming van minder 

kolonies met relatief lage apoptose (mediaan 20%) op dag 10.  

Een sterke positieve correlatie werd gevonden tussen het percentage BM 

blasten en de groeifractie (% delende cellen) in AML (r=0,85), terwijl dit niet zo 

duidelijk werd gevonden in MDS (r=0,52). Dit betekent dat de delende cellen in 

AML voortkomen uit BM leukemische blasten, terwijl dit in MDS veel minder het 

geval is omdat waarschijnlijk ook normale en monoclonale niet-blastaire 

progenitors deze groeifractie vertegenwoordigen. In het algemeen kunnen we 

uit de ISH data concluderen dat er geen proliferatie voordeel van de trisomie 8 

kloon werd gevonden in de meerderheid van de patiënten in deze studie. 

Concluderend zagen wij in MDS toegenomen proliferatie die uiteindelijk werd 

gevolgd door verhoogde apoptose conform de in vivo bevindingen van een 

celrijk BM, forse signal antonymy, met cytopenieen in het bloed. In AML-

clusters zagen we verhoogde apoptose in tegenstelling tot de relatief lage 

apoptose van kolonievormende cellen. In AML kolonies resulteerde de 

leukemische transformatie in langere celcyclustijden met verminderde 
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apoptose. Deze groeiprofielen van BMMNC zijn onafhankelijk van stromale 

invloeden en vertegenwoordigen daarom intrinsieke kenmerken van 

progenitors en mogelijk interacties met niet-stromale accessoire cellen (met of 

zonder groeifactor productie). Daar wij proliferatie en apoptose tegelijkertijd 

vaststelden in één kweeksysteem, kregen we inzicht in de balans tussen 

beiden. Aanvullende studies door bijvoorbeeld andere groeifactoren, liganden, 

of door toepassing van receptor blokkades, kunnen we via dit kweeksysteem 

vaststellen wat intrinsiek is (of wel “geprogrammeerd”), en wat de invloed is 

van autocriene en paracriene secretie van groeifactoren en/of liganden, en wat 

de invloed is van accessoire celinteracties op apoptose en proliferatie van MDS 

(en AML) progenitors? 

 

Om de invloed van accessoire cellen in kweken geheel uit te sluiten, 

bestudeerden wij in hhoofdstuk 5, CD34
+
CD19 CD3 progenitors van 5 MDS 

patiënten en van 5 normale controles door middel van kweken van 

enkelvoudige cellen. Deze cellen zijn flow-cytometrisch geselecteerd, één cel 

per celbodem gesorteerd, en vervolgens gekweekt gedurende 14 dagen in 

vloeibaar medium met toevoeging van groeifactoren. We onderzochten de 

intrinsieke proliferatieve capaciteit en apoptose van CD34
+
 progenitorcellen 

van MDS patiënten en vergeleken deze met de normale in vitro profielen. 

Op dag 4, 7, 10 en 14 werden deze kweken beoordeeld; binnen elke celbodem 

werden het aantal cellen geteld door middel van lichtmicroscopie. Apoptose 

werd vastgesteld door kleuring met Annexin-V-FITC en het percentage 

apoptotische AnV+ cellen per aggregaat werd vastgesteld  door middel van 

fluorescentie-microscopie. Wij gebruikten de Annexine-V methode in plaats van 

ISEL, aangezien de laatstgenoemde techniek gebruik maakt van gefixeerde 

cellen en daarom niet kan worden toegepast op dit vloeibaar kweeksysteem 

met kleine celaantallen. Groeisnelheid en celverdubbelings-tijden werden 

berekend voor elke kolonievormende cel na 14 dagen. 

In NBM stelden we vast dat CD34
+
 cellen clusters en kolonies vormden met 

toename van apoptose in de tijd, waarin de mate van apoptose in kolonies 

twee keer zo hoog was (ongeveer 25%) in vergelijking met clusters op alle 

tijdstippen. In MDS vonden we, conform de bevindingen in agarkweken, 

toegenomen clustervorming evenals toegenomen PE op alle tijdstippen in 

vergelijking tot NBM, terwijl het aantal kolonies duidelijk was verminderd (1/7 

van normaal). Op dag 14 vonden we in NBM met name kolonies (47% van alle 

aggregaten) vergeleken met grote clusters ( 20 cellen) en kleinere clusters 

(<20 cellen), respectievelijk 12% en 41%. In MDS waren deze verhoudingen 

verschoven naar de kleinere clusters: 22% - 18% - 60%, respectievelijk. De 

MDS kolonies waren ook veel kleiner dan normaal en hadden meestal minder 

dan 100 cellen. Significant verhoogde mate van apoptose in clusters (53–79%) 

in combinatie met een langere celverdubbelingstijd (ongeveer 10 uur langer) 
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verklaren een verminderd aantal en kleinere kolonies. Het was verrassend dat 

de MDS kolonies duidelijk lagere niveaus van apoptose lieten zien in de tijd 

(7-32%) in vergelijking tot NBM (1–48%, mediane waarden), en dit verschil 

(ongeveer 10–26% minder) werd nog duidelijker bij vergelijking van de kleinere 

kolonies (40–100 cellen) tussen beide groepen.  

Deze studie laat een consistente verhoogde PE of groeifractie zien, die met 

name op rekening komt van clustervormende CD34
+
 MDS cellen. Dit is in 

analogie met onze agarkweken. De intrinsiek verhoogde proliferatie en 

apoptose van clustervormende cellen is duidelijk tegengesteld aan 

kolonievormende cellen. Indien wij MDS patiënten rangschikken volgens 

FAB/WHO classificatie, vinden we een overgang van een LR-MDS 

“groeiprofiel” (met hoge proliferatie en kortere celverdubbelingstijden, lagere 

Cl/Co ratio’s met hogere apoptose van clusters en kolonies) naar een meer 

leukemisch groeipatroon met verhoogde Cl/Co ratio’s, langere 

celverdubbelingstijden, en vervolgens lagere niveau’s van apoptose in met 

name kolonievormende cellen (CFC). Waarschijnlijk behoren deze CFC tot de 

leukemische kloon, waarin een langere celverdubbelingstijd met verminderde 

of geen apoptose een langzamere vorming geeft van kleinere en meer 

blastaire kolonies.  

 

In hhoofdstuk 6 wilden we de hypothese toetsen of blokkade van deze intrinsiek 

verhoogde apoptose van clustervormende CD34
+
 cellen door gebruik van 

caspase inhibitoren (CAI) op enkelvoudige celniveau een normaal groeipatroon 

kan herstellen. Wederom gebruikten wij CD34
+
CD3 CD19 progenitorcellen 

van MDS patiënten (met trisomie 8) in SCSW culturen gedurende 10 dagen 

met en zonder toevoeging van CAI. Proliferatie en apoptose werden 

vastgesteld zoals beschreven in hoofdstuk 5. 

We constateerden dat de intrinsiek verhoogde apoptose afnam onder invloed 

van CAI en dat dit fenomeen sterker was in clusters dan in kolonies. Dit effect 

van CAI was hoger in LR-MDS dan in HR-MDS, terwijl ook kolonies in de LR-

groep dit effect vertoonden. De combinatie van CAI in LR-MDS patiënten 

leidde tot lagere kolonievorming met lagere apoptose van deze aggregaten op 

dag 10. CAI induceerde in HR-MDS meer clusters op dag 4 en 7 met lagere 

apoptose op dag 7 en 10, terwijl het spaarzame aantal kolonies niet duideliik 

veranderde. Bovendien veranderde de grootte van clusters en kolonies niet 

significant onder invloed van CAI in beide groepen. 

Samenvattend, kunnen we concluderen dat CAI een verlaging van apoptose 

induceert van in vitro gekweekte CD34
+
 cellen van alle MDS patiënten, zowel 

van cluster- als van kolonie-vormende progenitors. Echter inhibitie van 

apoptose leidde tot minder kolonies in LR-MDS, terwijl er meer clusters en nog 

steeds nauwelijks kolonies werden gevormd in HR-MDS. Dus het gebruik van 

CAI in MDS patiënten herstelt zeker niet het normale groeipatroon. Recente 

Thesis Span V5.1.pdf   136Thesis Span V5.1.pdf   136 7-12-2006   14:39:127-12-2006   14:39:12



 Samenvatting 137 

experimenten in de literatuur laten een breder werkings-mechanisme zien van 

caspases in de myeloide homeostase: ze zijn betrokken bij het in cyclus komen 

en bij cytokine-geïnduceerde proliferatie. Waarschijnlijk spelen deze 

mechanismen ook een rol als CAI worden gebruikt: vertraagde groei-initiatie 

werd gevonden in 3 van de 4 MDS patiënten hetgeen leidt tot lagere 

kolonievorming in LR-MDS patiënten. Anderzijds, in HR-MDS patiënten is het 

werkingsmechanisme van CAI waarschijnlijk meer stimulatie van 

overlevingsvoordeel en/of proliferatie daar er meer clustervormende cellen 

worden gezien.  

Toekomstperspectieven  

Moderne technologieën, zoals microarrays en microfluidic cards, zullen meer 

inzicht geven in welke genen betrokken zijn bij basale biologische processen 

zoals proliferatie en apoptose van MDS (en AML) patiënten, zoals we die 

getest hebben in dit onderzoek.  Koppeling van moleculaire diagnostiek aan 

deze biologische pathofysiologie zal zeker gaan leiden tot een gerichtere 

aanpak. Met als gevolg het ontstaan van een betere rationale voor de 

toepassing van de nieuwere middelen, zoals thalidomide, gemtuzumab 

ozogamicine, lenalidomide, DNA-methyltransferase-remmers, farnesyl-

transferase-remmers, bevacuzimab en groeifactoren (erythropoietine en 

G-CSF); allen grijpen namelijk in op specifieke moleculaire paden. Met deze 

aanpak zullen de kweeksystemen, zoals in onze studies ontwikkeld en 

toegepast, van grote waarde kunnen zijn. Deze kweeksystemen zijn immers 

uniek voor gecombineerd analyseren van bovenstaande processen; door het 

toepassen van verschillende condities op verschillende celtypen kan 

proliferatie en apoptose in vitro simultaan bestudeerd worden. De verschillende 

celtypen kunnen leukemische blasten zijn, maar ook de resterende blasten na 

toepassing van chemotherapie, of zelfs de leukemische stamcel. Daarnaast 

kunnen deze cellen op hun oorspronkelijke en vervolgens ook op hun 

veranderde genetische opmaak met translatie naar eiwitten ten tijde van kweek 

geanalyseerd worden.  

Gedurende de evolutie of progressie van MDS, onstaan uit (pre)leukemische 

klonen door continue DNA-veranderingen in de tijd, klonen met additionele 

cytogenetische afwijkingen. Mede op grond van onze bevindingen lijkt het in 

LR-MDS patiënten rationeel om te starten met een “missionaris” aanpak (van 

apoptose remming) om de proliferatiedruk te verminderen. De anti-

apoptotische aanpak heeft bewezen dat zij in een minderheid van de MDS 

patiënten de cytogenetisch-aberrante kloon remt. Meer inzicht in de specifieke 

spelers van al deze apoptotische paden zal deze aanpak verfijnen en breder 

toepasbaar maken. De volgende stap moet zich richten op de resterende 

Thesis Span V5.1.pdf   137Thesis Span V5.1.pdf   137 7-12-2006   14:39:127-12-2006   14:39:12



138  

(pre)leukemische kloon of zelfs stamcel met een meer selectieve “missile” 

aanpak, daar het normale stamcelcompartiment al reeds is beschadigd en 

daardoor afgenomen.  

In HR-MDS is de aanpak tot op heden vergelijkbaar met die bij AML, maar 

minder succesvol dan bij primaire AML. Wellicht dat ook hier de combinatie van 

chemotherapie met nieuwe middelen (liefst volgens een “missile” aanpak) de 

prognose sterk kan verbeteren. Ook voor dergelijke patiënten kan het in vitro 

testen van nieuwe middelen, met bovenstaande besproken aanpak van 

analyseren van celsuspensies, eventueel in combinatie met chemotherapie, de 

prognose verbeteren. De in dit proefschrift beschreven kweeksystemen en 

simultane analyse van proliferatie en apoptose kunnen van grote waarde zijn 

voordat deze patiënten aan nieuwe behandelingen worden blootgesteld.  
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De schrijver van dit proefschrift werd geboren op 3 april 1963 te Geleen. Na het 

behalen van Atheneum B diploma (Albert Schweitzer Scholengemeenschap, 

Geleen) in 1981, startte hij met de studie Geneeskunde aan de Katholieke 

Universiteit Nijmegen. Hij behaalde het doctoraalexamen in 1986 en het 
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dr. G.P. Vooys) naar celkarakteristieken van het mamma- en het cervix-

carcinoom in relatie tot hun maligne karakter. Eveneens verrichtte hij 

onderzoek, onder leiding van dr. Ad Hermus en dr. Ton Bartelink, op de 

Intensive Care van het St. Radboud Ziekenhuis (hoofd Dr. J. Gimbrère) naar 

het functioneren van de hypofyse-bijnieras en het vaststellen van de incidentie 

van relatieve bijnierschorsinsufficientie bij ernstig zieke patiënten. Van 1989 tot 

begin 1991 volgde hij de opleiding tot Eerste Luitenant-Arts te Hilversum en 

verrichtte hij onderzoek  voor Defensie naar radio-actieve stralingschade van 

het DNA van leukocyten op de afdeling Hematologie in het  St. Radboud 

Ziekenhuis (initiële opleider Prof. dr. C. Haanen, vervolgens Prof. dr. Theo de 

Witte). Ten tijde van dit onderzoek ontving hij de “Radboudpluim” voor 

bijzondere inzet in het kader van patiëntenzorg via de aferese-afdeling, oa. 

voor intensieve plasmaferese van meningococcensepsis patiënten. 

Aanvankelijk fungeerde hij vanaf 1991 als AGNIO in het Diakonessen 

Ziekenhuis te Arnhem (opleider dr. Jan Werre), en vervolgens als AGIO Interne 

Geneeskunde in het Rijnstate Ziekenhuis te Arnhem (opleider dr. Louis 

Verschoor) tot halverwege 1995. Vervolgens verrichtte hij een jaar onderzoek 

op het gebied van myelodysplasie aan het laboratorium van Prof. dr. Azra 

Raza (Rush Cancer Institute, Chicago, IL, USA), dank zij een subsidie van de 

Sacha Swarttouw Hijmans Stichting. Dit onderzoek diende als onderbouwing 

voor het verkrijgen van een AGIKO-schap (subsidie NWO/FMW). Hij voltooide 

de opleiding Interne Geneeskunde onder leiding van Prof. dr. Jos van der 

Meer. In 2001 volgde registratie als internist, en in 2003 registratie als 

hematoloog. Vanaf 2003 werkt B. Span als hematoloog/chef-de-clinique in het 

Academisch Ziekenhuis te Maastricht. 
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