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PACS 87.16.Nn – Motor proteins (myosin, kinesin dynein)
PACS 67.40.Hf – Hydrodynamics in specific geometries, flow in narrow channels
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – We develop a simple lattice model to describe the hydrodynamic influence of active
mass transport along bio-filaments on freely diffusing mass in the cell. To quantify the overall
mass transport we include Brownian motion, excluded volume interactions, active transport along
the filaments, and hydrodynamic interactions. The model shows that the hydrodynamic forces
induced by molecular motors attached to the filaments give rise to a non-negligible flux close to
the filament. This additional flux appears to have two effects. Depending on the degree of filament
occupation it can exert a sufficiently large influence on unbound motors and cargo to modify their
transport and also regulate the flux of motors bound to the filament. We expect such a mechanism
is important in situations found in plant cells, where directional transport spans the entire cell.
In particular, it can explain the cytoplasmic streaming observed in plant cells.

Copyright c© EPLA, 2007

Introduction. – Molecular motors play a crucial role
in the organization of cells and mass transport inside
cells. Therefore, they are widely studied by biologists
and more recently also by physicists. Although there
are many different motors, each fulfilling a specific task,
they all are proteins that generate motion by converting
chemical energy, derived from hydrolysis of ATP, into
mechanical work [1,2]. In this work we focus exclusively
on processive molecular motors that, when attached to a
transport filament, e.g. actin in plant cells, can bind to
organelles or vesicles, and pull these along the filaments.
Transport provided by molecular motors in this way
is called “active transport”. Thus, bio-filaments can be
viewed as intercellular highways.
Intensive experimental work on various molecular

motors has revealed the chemical and mechanical
processes that an individual molecular motor undergoes
in order to move along a filament. But for the under-
standing of the overall motion of motors and their cargo
in cells, additional factors need considering. In particular,
the viscous interaction with the surrounding medium
and steric hindrance constitute two relevant mechanisms.

A third important process is thermal fluctuations because
due to the motors’ small size all unbound organelles
in the cell behave like colloids, hence their motion is
dominated by Brownian motion and is not ballistic.
However, contrary to thermal motion, which does not
produce directed motion, when a motor protein binds to
a filament it will start moving on average with a directed
motion. The polarity of the filament determines the
direction of the motion for each type of motor.
The origin of the asymmetric motion of a motor on

a filament is captured by simplified models, such as the
Brownian ratchet model [3,4]. When a finite fraction of the
motors move along a filament, one also needs to account
for their interactions. To that end, it proves useful to
disregard the details of how the filament-motor interaction
generates a net displacement and describe it as an asym-
metric simple exclusion process (ASEP). These models
can be coupled to a Langmuir-type adsorption kinetics to
account for the interaction between motors in the filament
and in the surrounding suspension [5]. Such approaches
have helped to elucidate the basic principles underlying
cooperative motion of molecular motors and have been
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applied to analyze the relevance of strong confinement [5]
and boundaries [6], which constitute important factors in
highly crowded cells.
The interactions of the motors with the surrounding

fluid can also have a deep influence in the collective
behavior of molecular motors, although it has not been
addressed before. Forces exerted by bio-filaments are
usually in the range of picoNewtons [1], while the drag
force exerted by water on a nanometer-size particle moving
at 1µm/s is of the order of 10−5 pN. Thus the hydro-
dynamic drag exerted on an isolated molecule is negligible,
and it is small for organelles.
Despite this fact, we will show that these forces induce

a qualitative change in the state of motion of suspended
particles close to biofilaments, because the hydrodynamic
forces generated when many active motors are present add
up. As a result, moving bound motors can exert sufficient
hydrodynamic force to give unbound motors in the vicinity
a “free ride”.
Besides the question of size, the relevance of hydro-

dynamic interactions together with excluded volume and
crowding effects will also depend on the specific situa-
tion of interest. Collective hydrodynamic effects may be
expected to play a minor role inside the complex three-
dimensional cytoskeletal network of animal cells. In this
case the motion is only locally directed, on long (cell-like)
length scales it is not. But in some situations with well-
defined symmetry and boundaries, such as in neurons or
plant cells, hydrodynamics may be relevant.
In particular, for cytoplasmic streaming in plant

cells collective hydrodynamic effects could explain the
rapid transport of organelles [7–10]. Here unidirectional
active transport takes place trough cytoplasmic strands.
Figure 1 shows a stamen hair cell of Tradescantia virgini-
ana (spiderwort) where such strands are clearly visible,
generating directional motion inside the cell. Microscopic
observations have elucidated non-negligible flow in the
cytoplasm caused by the movement of organelles [11].

Model. – In order to analyze the effects of solvent on
the transport of bound and suspended motors, we have
developed a lattice model that combines an asymmetric
Brownian motion along the filament with position-
dependent mobilities to include the effect of the
interactions mediated by the surrounding fluid. It can be
then regarded as an extension of ASEP models coupled
to Langmuir adsorption kinetics in which hydrodynamic
interactions are incorporated in a lattice description.
We consider a lattice occupied by N motor-organelle
complexes. These complexes are chosen to be equal to each
other in size, and have the same processivity and velocity.
Biofilaments are added as linear segments connecting
lattice sites, see fig. 2. The excluded volume of the motors
is allowed for by forbidding two particles from occupying
the same node simultaneously. Suspended motors diffuse
freely, while bound motors perform an ASEP motion
coupled with a Langmuir-type adsorption/desorption

CS

O

Fig. 1: Tradescantia virginiana (spiderwort) stamen hair cell.
The cytoplasmic strands (CS) contain organelles (O) (white
arrow); n: nucleus, v: vacuole, cc: cortical cytoplasm, cw:
cell wall. Bar = 20µm. Inserts: A) flower of T. virginiana,
B) Magnification of stamens, arrowheads indicate stamen hairs,
C) Single stamen hair.

Fig. 2: Schematical view of the model. Shown is a 2D lattice
consisting of cytoplasm embedded between two filaments. The
possible moves of the molecular motors are shown.

kinetics. The model assumes the cytosol is Newtonian,
which, to a first approximation, is reasonable for small
motor/cargo velocities.
To include the hydrodynamic coupling between motors

one must take into account that, due to the motors’ small
size and velocity, any fluid flow they induce will be at
low Reynolds numbers1. As a result, the general fluid flow
equation (the Navier-Stokes equations) simplifies to the
linear Stokes equation,

ηs∇2V−∇p=
∑

k

Fkδ(r− rk). (1)

1For organelles of a typical size l∼ 1µm moving in water
at a characteristic velocity u∼ 1µm/s have a Reynolds number,
Re= ul/ν, of order Re∼ 10−6.
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Here ηs is the viscosity of the solvent, ∇p the pressure
difference, δ is a delta function, rk is the position of the
k -th particle and V the fluid velocity. The flow is gener-
ated by the force Fk that particle k exerts on the fluid.
This force is the sum of the effective force produced by
the filament on the motor, F0, and the net force coming
from motor-motor interactions. The fluid flow induces a
drag on all the motors. As a result, the velocity of motor
i can generally be expressed as

Vi = µii ·Fi+
∑

j �=i
µij ·Fi+VRi =V0+Vi,d+Vi,r, (2)

where j sums over all motors subject to a force, Vi =
µii ·Fi =V0 is the single motor velocity produced by the
force F0 exerted by the filament (and it is hence non-
zero only for bound motors), Vi,r is the thermal velocity
and Vi,d corresponds to the hydrodynamic coupling.
Due to the linearity of eq. (1), the last contribution is
determined by the mobility matrix µij which in the Oseen
approximation reads [12]

µij =
3

4
µii
A

rij
[Î+ r̂ij r̂ij ], i �= j, (3)

where A is the hydrodynamic radius of the particles, µii =
1/(6πηsA) the self-mobility, rij = ri− rj , the distance
between two motors and r̂ij = rij/rij is a unit vector.
Equation (2) gives the dynamic equation which deter-

mines the motion of the motors. Since they move on the
nodes on a lattice, we have implemented a lattice variant
of the Ermak and McCammon method [13], taking into
account that hydrodynamic interactions also introduce
correlation in the motors’ diffusion. In order to account
for the hydrodynamic coupling, it is necessary to estimate
the interparticle forces associated with excluded volume;
we do it on the basis of the velocity change of the motor.
Finally, the biofilament processivity is accounted for

by allowing the motors to detach from the filament with
a certain probability κu. Motors in solution close to
the filament, in turn, can also attach to the filament
with probability κb. Motor interchange between the fila-
ment and the embedding solution determines the ratio
between the solution and filament volume fractions, φs
and φµ, respectively. Assuming uniform concentrations
along the microtubule and in the solution a mass flux
balance predicts the steady state relationship between
solution concentration and filament occupation, φ−1µ = 1+
κu(1−φs)/κbφs. We have taken values of κu and κb to
ensure the required filament and solution concentrations.
For the sake of simplicity, we neglect the effects that an

additional solid substrate could have on the hydrodynamic
interactions between suspended and attached motors; we
leave such generalizations and refinement of the analysis to
subsequent work. Consequently, our goal in this letter is to
look at the qualitative differences that the presence of the
solvent has on the dynamics of attached and suspended
motors compared to the predictions of previous analysis
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Fig. 3: The normalized velocity for different degrees of filament
occupation φµ. The open circles refer to the filament, the open
squares to the solution, the filled squares show data without
hydrodynamic interactions.

that concentrated exclusively on transport in the absence
of solvent.

Results. – We have considered the simplest geometry
in which particles move in the two-dimensional plane
confined between two filaments, although the hydro-
dynamic interactions correspond to those of a 3D fluid
(we presume that the structure of the particles in the
transverse direction can be neglected). Such a case can
be regarded as a suspension of motors between substrates
covered by a parellel set of filaments. Such an idealized
example contains the basic dynamic couplings and
facilitates the analysis. In order to analyze the interplay
between activity, excluded volume and hydrodynamic
forces, we fix the solution concentration to a small value,
φs = 0.05 and analyze the collective behavior of the
suspension+biofilament complex at different degrees of
filament’s occupation. In units of the lattice spacing, l,
and simulation time step, ∆t, for motors of unit mass we
vary the force exerted by the filament between 1/2 and
2 to control the single motor velocity, which should take
values of the order of (but smaller than) a lattice spacing.
Simulations are run for systems size L, containing around
1000 motors and for a few thousand time steps after
thermalization. Within the Oseen description it is known
that values of A close to the particle radius may lead to
numerical instabilities in configurations where particles
are close to each other. To avoid such problems, and
making use of the linearity of the system, we keep A/l
smaller than 1/5. For these parameters the motor Péclet
number is of order one2. Nevertheless, the results we will
discuss should not be severely affected by this fact, since
we focus on mean collective motor velocities.
In fig. 3 we show the velocity at which motors move

along a filament divided by the single motor velocity,

2For organelles of typical size l∼ 1µm that move along a
bio filament with a velocity u∼ 1µm/s and assuming a diffusion
coefficient of 10−12m2/s we find a peclet number of order Pe∼ 1.
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Fig. 4: Bound motor velocity for different filament occupation
φµ. 〈V〉 is the motor velocity, V0 the single motor velocity,
A the hydrodynamic radius and l the lattice spacing. The
line shows the theoretical expected increase in velocity due
to HI (see text). A and V0, expressed in lattice units as
described in the main text, are varied: Open symbols A= 0.1l;
filled symbols A= 0.2l; squares V0 = 0.2; triangles V0 = 0.4;
inverted triangles V0 = 0.6; circles V0 = 0.8.

V0, as a function of the filament occupation, φµ. In the
absence of hydrodynamic interactions (HI) the velocity
decreases linearly with increasing occupation fraction due
to excluded volume interactions.
When HI are considered, the drag first increases the

overall bound motor velocity. At higher concentrations
a second regime is achieved, where hindering due to
excluded volume effects causes this velocity to decrease.
Nevertheless, for all occupations the motors’ velocity is
larger than the corresponding one in the absence of HI. A
second, qualitative, effect of the cooperativity induced by
the solvent is displayed in the same figure where we show
the average velocity of motors in solution. In the absence
of HI particles can only display a net displacement along
the filament. However, in the case with HI, there clearly
exists a well-defined solution velocity which increases with
φµ until it reaches a maximum after which it decreases.
The position of the maximum depends on the specific
parameters considered. There seems to be an optimum
filament occupation which is different for both the filament
(φµ ≈ 0.2) and the solution (φµ ≈ 0.5). The position of
these maxima seems to be insensitive for all simulation
parameters explored (data not shown).
In fig. 4, we show the increase of the motors’ velocity

with respect to their biased velocity. Due to the linearity of
the hydrodynamic coupling, in the regime where excluded
volume interactions are negligible, the profiles are linear
in A. Hence, different systems collapse in a single curve as
a function of filament occupation. We can then use eq. (2)
to estimate the initial increase in motors’ velocity. If we
rewrite it as

(Vi−V0)l
V0A

=
3

4
µii
∑ l

rij
[Î+ r̂ij r̂ij ], i �= j (4)
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and approximate the right-hand side assuming a continu-

ous and uniform distribution of motors, we get (Vi−V0)lV0A
=

3
2 lφµ ln

L
2A , which agrees quantitatively with the simula-

tion results. For total filament occupation, φµ = 1 motors
cannot move along the filament, 〈V 〉= 0.
In fig. 5 we display the mean velocity of unbound

motors; these two plots show how the hydrodynamic
coupling can be tuned by controlling the motors’ size
and biased velocity. Using a more realistic choice for
the mobility tensor for particles at small separations
(Brenner [14], Rotne-Prager [12]) this data does not
change (data not shown), indicating that the mechanism
described is generic and comes from the algebraic correla-
tions induced by the embedding solvent.
Figure 6 shows the concentration of unbound motors

across the widthD of the system. It shows that the interac-
tions between the attached and suspended motors induce a
uniform distribution of suspended motors, independently
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of filament occupation. One can clearly see that the hydro-
dynamic interactions have a minor effect on the concentra-
tion profile between the filaments. Also the velocity profile,
as displayed in fig. 7, shows that the velocity in solution
is modified only in the filaments’ neighbourhood.

Discussion. – We have shown that long-range collec-
tive hydrodynamic interactions lead to a substantial
increase in the effective velocity of motors attached
to a filament. Moreover, their motion leads also to
net transport on the nearby unbound particles. This
mechanism is not captured by models that consider only
the activity and steric interactions of motors attached
to biofilaments. Such an additional transport mechanism
may be numerically as relevant as the mass transport
obtained by direct motion of attached motors.
Due to its nature, this mechanism is more relevant

for larger objects (suprananoscopic), for highly viscous
environments and for transport on elongated geometries.
One must take into account that as the dimensions grow
simple diffusion becomes more inefficient as compared to
convection.
The additive hydrodynamic force, as induced by the

processivity of the filament, might not be large compared
with the driving force which generates the motion of the

attached motors but the cumulative effect can give rise to
a net significant mass transport of the system. Obviously,
such a constructive mechanism will be more prominent
the more ordered the environment. In this sense, such a
mechanism can be envisioned to be more important in
situations as found in neurons or in cytoplasmic strands
in plant cells. The outcome of our simulations suggests
that this mechanism is indeed a plausible explanation for
how cytoplasmic streaming really takes place.
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