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Abstract: Drug delivery nanosystems have been thriving in recent years as a promising
application in therapeutics, seeking to solve the lack of specificity of conventional chemotherapy
targeting and add further features such as enhanced magnetic resonance imaging, biosensing and
hyperthermia. The combination of magnetic nanoparticles and hydrogels introduces a new
generation of nanosystems, the magnetogels, which combine the advantages of both
nanomaterials, apart from showing interesting properties unobtainable when both systems are
separated. The presence of magnetic nanoparticles allows the control and targeting of the
nanosystem to a specific location by an externally applied magnetic field gradient. Moreover, the
application of an alternating magnetic field (AMF) not only allows therapy through hyperthermia,
but also enhances drug delivery and chemotherapeutic desired effects, which combined with the
hydrogel specificity, confer a high therapeutic efficiency. Therefore, the present review
summarizes the magnetogels properties and critically discusses their current and recent
biomedical applications, apart from an outlook on future goals and perspectives.
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1. Introduction

Cancer is still a major leading cause of death worldwide, with lung, colorectal, breast and
prostate exhibiting the highest incidence ratio [1,2]. Besides the individual genetical predisposition
to develop cancer, such high incidence is also related to risk factors, such as smoking and excess
body weight, which may be overcome by the promotion of healthy lifestyles, tobacco control,
vaccination, early detection and improved treatments [1-3]. Even though medicine progress
improved cancer survival rates, such has only been practically verified in high-income countries [3].
Indeed, conventional chemotherapy has been showing good results in patients with early stages of
the disease [4]. Yet, patient’s quality of life, target specificity, therapeutic effectiveness and cost have
to be readily improved and regarded as a main problem to solve in the next decades, to reduce the
adverse effects on healthy cells and extend better treatments to low income countries. Not only
cancer therapy but also antibiotics have been a target of intensive research facing more resistant
bacteria every year, which will inevitably end in higher susceptibility to wuntreatable
pathogenicities. Such problems require the development of new nanosystems with high
performance in therapeutics, which focus on solving the lack of conventional chemotherapy target
specificity, improve the treatment of bacterial infections without the use of antibiotics and add
further features such as enhanced magnetic resonance imageology, biosensing and hyperthermia.
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Since the pioneering work of Wichterle and Lim [5], elastic three-dimensional networks made
of water-soluble polymers [6,7], which cross-linking or entanglement retains a huge portion of
solvent [8], thus being known as hydrogels, have been thriving in biomedical applications. The core
strategy and interest of using hydrogels is mostly centered in taking advantage of the huge
diversity of physical and chemical properties passable of being conceived due to the vast variety of
usable polymers, producible physical forms and stimulus to activate their formation [6,7,9,10],
thereby allowing the development of nanosystems highly adjustable to the needs [11]. Such
properties are highly relevant as they allow precise control over drug diffusion and range of drugs
capable of being incorporated through the change of networks structure porosity, the hydrogelator
affinity to the aqueous environment and density of reticulate agents [6].

Self-assembled hydrogels have acquired a remarkable plethora of applications either in tissue
engineering, in vivo imaging or drug delivery, owing to their high portion of water and physical-
chemical similarity to the cellular matrix, both in composition and mechanical properties [12-19].
The gelation is achieved through the cooperative effect of different non-covalent intermolecular
interactions: hydrogen bonding, van der Waals, electrostaticc hydrophobic and aromatic m-m
interactions [7,9,12-15]. Therefore, the design, preparation and manipulation of the hydrogel must
be cautious and rationally conceived since the gelation is affected by pH value, kinetics of pH drop,
temperature, ionic force and structure amphiphilicity [7,9,13-20].

On the other hand, magnetic nanoparticles are a growing trend mainly due to the phenomenon
of superparamagnetism, as it allows the direct control to a specific location by using a magnetic
field gradient [21-24]. Such phenomenon, which generally happens at sizes smaller than 30 nm, has
triggered the research in the synthesis of a huge variety of these nanomaterials made of any
transition metal (Fe, Ni, Co, Mn...) and its oxides [21]. Transition metal ferrites are a class of soft-
magnetic nanoparticles with great superparamagnetic behavior and other suitable properties for
biomedical applications, such as chemical stability and mechanical hardness [22-26]. Within this
class of magnetic nanoparticles, manganese ferrite nanoparticles are of interest for biomedical
applications, as their magnetic susceptibility is higher than those of other transition metal ferrites
[22,24,27,28]. Yet, magnetite (FesOs) and maghemite (y-Fe:Os) have been the most used
nanoparticles due to their biocompatibility, high magnetization and easy synthesis. Therefore,
magnetic nanoparticles have promising properties for biomedical applications, as contrast agents in
magnetic resonance imaging, drug delivery and hyperthermia [22,29-31].

However, when it comes to in vivo applications, bioaccumulation, bioelimination/excretion,
tissue invasion and toxicity have to be taken into account [24,29]. The latter is generally surpassed
by using an organic or inorganic shell and the former by using nanoparticles with diameters
smaller or comparable to 50 nm, so that it may become possible for nanoparticles to penetrate
endothelial fenestrations in capillaries around tumor tissues and having a moderate retention time,
which is incompatible with the superparamagnetic behavior [24,29,32].

Hence, taking into consideration the need to develop highly efficient nanosystems and the
properties of hydrogels and magnetic nanoparticles, both have been combined to attain
magnetogels. Magnetogels ally the properties of both materials and introduce newer ones which
are not obtainable when the components are separated, thus improving the effectiveness of both
materials mainly in biomedical applications, which will be discussed in the following sections
(Table 1). The application of a magnetic field gradient allows the control and targeting of the
nanosystem to a specific location. This capability, combined with hyperthermia and enhanced drug
delivery promoted by the application of an alternating magnetic field (AMF), and the hydrogel
specificity confer a high therapeutic efficiency. In this review, magnetogels properties will be
initially discussed, followed by a critical analysis of their current and recent biomedical applications
as a new promising nanosystem.
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Table 1. Examples of biomedical applications of magnetogels according to the utilized nanoparticles

and hydrogelators.
Nanoparticle Hydrogelator Application Reference
Iron oxide Alginate-g-heparin Cell differentiation [33]
PEGMMA and PEGDMA Cancer therapy [34]
. . Cancer therapy [35,36]
Poly(N-isopropylacrylamide) MRI [37.38]
Chitosan Cancer therapy [39]
DNA Gene therapy [40]
Cancer therapy [41]
Cobalt ferrite | C1y(0rganophosphazene) MRI [42]

2. Properties and Applications of Magnetogels

Upon a stimulus, such as sonication, light irradiation and changing in ionic force or heating,
gelation takes place resulting: (I) in the formation of a crystal, due to high ordered aggregates; (II)
random aggregation into a precipitate; (III) a metastable state (hydrogel) as a product of optimum
intermolecular forces during a homogeneous self-assembly [16]. A reversible supramolecular
intertwined fibrillar structure is formed encompassing microdomains of solvent pocket capable of
retaining nanoparticles, which may interact with the hydrogelator through non-covalent or
covalent bonding, thus modifying network structure [16]. Such a combination can either enhance
the pristine materials properties, such as better adsorption or afford further mechanical, electrical,
optical and thermal properties [16,43].

A greater control over the mechanical properties is highly important as it allows the tailoring
of nanomaterials to mimic the structure of native tissues at the site of implantation and/or the
efficient transport and bioaccumulation of growth factors, drugs and cells into a specific location,
reducing side effects and enabling higher doses [44,14].

A thorough evaluation of the effect of nanoparticles in the hydrogel matrix mechanical
properties was carried out by Bonhome et al. [14], having demonstrated that it strongly changes the
storage modulus, rigidity and viscoelastic moduli, where a proportionality with the nanoparticle
content is observed. The proposed theoretical explanation is based on the condensation of the
polymer in dense phase nuclei, which evolution progressively slows down due to depletion of the
supersaturated polymer and reduction of mobility owing to the ongoing polymerization that leads
to the nuclei working as polymer fibrils cross-linkers [14]. Furthermore, the authors showed that
nanoparticles may function as nucleation sites, working as knots that might be explored as a mean
to regulate the porosity, swelling degree and gelation time [14]. In fact, it is demonstrated that, until
a nanoparticle critical concentration is attained, the swelling degree increases due to a higher
porous structure, while above it the cross-linking effect by the nanoparticles impart less porosity to
the network, that consequently leads to a lower swelling degree. However, it should be noticed that
an interaction between the nanoparticles and the polymer is required to such effect be observed, as
the polymer used by the authors was fibrinogen and could establish ionic interactions with the
hydroxide groups of nanoparticles surface.

Indeed, this assumption can be confirmed in many works that studied the incorporation of
magnetic nanoparticles in polymer hydrogel matrixes to improve drug delivery efficacy but have
many different outcomes. For example, Hamidian et al. [45] incorporated magnetite nanoparticles
into a starch-based grafted with poly(ethylene phthalate) hydrogel, which enhanced a higher
swelling degree but worsens the drug loading. On the contrary, Mahdavinia et al. [46] developed k-
carrageenan and chitosan-based magnetogels with magnetite nanoparticles that exhibit increased
methotrexate loading efficiency with higher magnetite content but lesser swelling degree.
Therefore, the effect of nanoparticles on the hydrogel matrix should always be evaluated to attain
the best outcome for the desired application.

Apart from the presence of magnetic nanoparticles allowing their detection and control
through a magnetic field gradient, it also stimulates cell adhesion, proliferation, differentiation and
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enables the visualization and in vivo follow-up though magnetic resonance imaging [14]. A
magnetogel of alginate-g-heparin with magnetite nanoparticles was developed by Kim et al. [33],
the structure of which was modified by changing the components concentration and by the
application of a magnetic field [33]. The authors demonstrated that the application of a magnetic
field allowed control over the release of transforming growth factor beta 1 (TGF-1) from the
magnetogel network enhancing the differentiation of ATDC5 chondrogenic cell line [33]. Hereby,
the control over diffusion through an alternating magnetic field reveals the superior efficiency of
the magnetogels, where the drug diffusion is enhanced by the thermally induced network collapse
and/or vibrational fiber disruption, while hydrogels rely only on the molecular diffusion and
hydrogel degradation.

Eventually, the outstanding properties of magnetogels also led to research in industrial
applications, such as the development of improved methods of depollution due to the easiness of
removal by a magnetic field, the large number of reusable cycles and the huge variety of removable
contaminants. For example, Kim et al. [47] developed a potassium copper hexacyanoferrate-
immobilized magnetogel with magnetite nanoparticles coated with citric acid to allow rapid
recovery through an applied magnetic field and improve KCuHCF dispersion, which may enhance
Cs* adsorption. The system showed high efficiency in a broad pH range and in the presence of
cations that directly compete with Cs*, having a capacity of 82.8 mg/g of magnetogel [47].
Nevertheless, besides attaining highly efficient magnetogels for the removal of nuclear residues
[48], it is necessary to design low-cost techniques and materials for the removal of dyes, as they are
hardly degraded by microorganisms, light or chemical treatments. This issue, combined with the
low efficiency and high cost of the current methods, puts the future of the ecosystem in danger [49].
An example of such materials was achieved by Mittal et al. [49], who developed a gum xanthan-
grafted-polyacrylic acid based magnetogel containing FesOs nanoparticles, which showed a
capacity of 642 mg of methyl violet per gram of magnetogel. Comparatively to the hydrogel, the
system was prone to better performance owing to the higher surface area and exposure of more
binding sites induced by the nanoparticles, thus being a promising material for removal of cationic
dyes [49].

From the given examples, the reader can already notice that FesOs nanoparticles are widely
used in magnetogels. Indeed, the most commonly used magnetic nanoparticles have been
magnetite (FesOs) and maghemite (y-Fex0s) [50,51]. Such fascination with these types of
nanoparticles can be explained by their magnetic properties, corresponding to the major
requirements of biomedical applications, such as low production cost, good physical and chemical
stability, biocompatibility and environmental safety, thus being widely used in target drug
delivery, MRI, magnetic hyperthermia and biosensing [52]. However, it has been reported that iron
oxide nanoparticles show peroxidase-like activity, thereby producing reactive oxygen species that
may cause severe damage to cell components and induce inflammatory responses [53-57]. In
addition, they tend to accumulate in organs with a high concentration of macrophages and thus
may not be advisable for long-term applications such as MR, taking into consideration that they
might disturb the immune function of the reticuloendothelial system [53]. Therefore, the use of iron
oxide nanoparticles requires improved coating, either polymeric or inorganic, to reduce these
effects, which is expected to be more frequent in future reports, as the techniques of production
become cheaper and simpler. Nevertheless, the peroxidase-like activity can be explored for the
development of biosensors. For example, Song et al. [56] developed a magnetogel based on cationic
surfactants ChTAFB(C) (CHs(CH2)n2CH2N(CHs)s[FeCls] and CH3(CHz2)n2CH2N(CHs)s[FeBrCls], with
n =12, 14, 16) and the chiral amphiphile sodium cholate containing 7.2 nm FesOs nanoparticles. This
system was capable of detecting glucose based on the oxidation of 3,3',5,5'-tetramethylbenzidine
(TMB) in the presence of H20: that results from glucose oxidation by glucose oxidase, producing a
blue color with a maximum absorbance at 652 nm and attaining a detection limit of glucose of 38.5
pmol/L. In another approach, Sang et al. [57] developed poly(2-acrylamido-2-methyl-1-
propanesulfonic acid) (PAMPS) based magnetogel containing FesOs and evaluated the effect of
cross-linking concentration on the peroxidase-like activity (Figure 1). The system showed the best



50f23

catalytic activity for low cross-linking concentrations, which the authors suggest being associated to
the enhancement of system affinity towards the substrate and due to the good dispersion of FesOs,
having attained a detection limit of 1.5%x10¢ mol L-! with a linear detection range of 1.5-9.8x107¢ mol
L™1[57]. The reader is referred to other articles if has an interest in the exploration of catalysis with
magnetogels [58-61].
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Figure 1. Schematic representation of the PAMPS based magnetogel preparation, where (A) the
hydrogel is immersed in a Fe (II) and Fe (III) ion-containing aqueous solution which (B) are
absorbed by the hydrogel network. The nanoparticles are then formed by co-precipitation in an
ammonia aqueous solution that (C) results in the magnetogel. Adapted from [57] with permission
from John Wiley and Sons, 2015.

Apart from all the properties and advantages, just like hydrogels, magnetogels can be
designed and fabricated into different types such as spheroid-like structures known as microgels,
nanofibrous networks and mesh-like nanocomposites, thus granting more control over the
nanosystem, as the optimum structure can be adapted to the desired application [50,62-68]. For
example, an interesting concept to develop microgels is the addition of a silica shell to a magnetic
nanoparticle core, which is further grafted with the hydrogelator polymer of interest. This concept
was shown by Hinrichs et al. [62] where silica-coated magnetite or hematite nanoparticles were
grafted with N-isopropylacrylamide (NIPAM) by a free radical emulsion polymerization method,
which was further cross-linked using N,N-methylenebisacrylamide (BIS) and grafted with amine
groups at the nanoparticle surface by addition of acrylic acid (AA). Macrogels can then be attained
by reaction of amine groups with the aldehyde moiety of glutaraldehyde (GA) [62]. A common
method for the development of magnetogels is the mixture of nanoparticles and a hydrogelator
solution followed by its gelation that produces a mesh-like composite, which sometimes might
require the nanoparticle surface functionalization to grant it stabilization. For example, Téth et al.
[63] developed magnetogels based on hyaluronate (HyA) and magnetite that had to be
functionalized due to the flocculation of magnetite nanoparticles by HyA molecules with the
formation of aggregates. This effect was prevented by using a natural and biocompatible polymer,
chondroitin-sulfate-A, which allows the production of an interesting nanosystem for biomedical
applications, such as the treatment of osteoarthritis [63]. Alternatively, this mesh-like composites
can be attained by in situ synthesis of magnetic nanoparticles, i.e., the nanoparticles are synthesized
directly in the hydrogel matrix [65]. Another common magnetogels design has been the bead-based
nanostructures, which are of interest in a wide variety of applications and the general strategy
involves the ionic cross-linking of sodium alginate in which can be integrated another polymer to
manipulate its properties [66]. A recent design has been the use of supramolecular hydrogelators
that can self-assemble in tubular structures or fibers, attaining nanofibrous networks which can also
be explored for the development of magnetogels. As an example, Das et al. [68] developed a
magnetogel based on diphenylalanine co-assembled with polydopamine spheres coated with
magnetite nanoparticles. Hereby considering the morphology, a microgel would be more
appropriate for intravenous injection, while the macrogel would be desirable for dermal
application, due to its bulk volume. However, when it comes to cancer therapy in deep tissues, it
should be noticed that microgels will have a similar behavior to liposomes, in opposite to macrogels
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that would require intramuscular injection for solid tumor therapy. Thus, besides the targeting of
magnetogels through an applied magnetic field gradient, the nanosystem can also accumulate in
the tumor region, due to the enhanced permeability and retention (EPR) effect around tumor
vasculature, which can be further allied with active targeting by a targeting moiety such as
arginine-glycine-aspartate (RGD) sequence or other specific targeting molecule, to increase
therapeutic specificity and reduce potential side effects [52].

Considering all the different advantages associated to the introduction of further tunable and
controllable properties previously discussed (Figure 2), magnetogels come up as highly potential
candidates for theranostics, being one of the current main biomedical challenges [69,70]. The
importance of theranostics is associated to the possibility of combining a non-invasive detection of
biomarkers at an early stage of a given disease with the choice, adoption and administration of
medical personalized treatments that take into account the genotype and the phenotypic
characteristics of the patient [70]. Therefore, the possibility of incorporating an immense variety of
chemical and structural functionalities in the same architecture might allow a precise, sensible and
accurate diagnostic accompanied by the treatment of heterogeneous pathogenicities, such as cancer
[70].

Figure 2. Introduced, tuneable and controllable properties and applications of magnetogels.

3. Hyperthermia, Drug Delivery and Cancer Therapy

Unlike the bulk ferro- and ferrimagnetic materials that generate heat through hysteresis losses,
the nanoparticles superparamagnetic behavior induces the conversion of magnetic energy into
thermal energy by means of different mechanisms when the material is subjected to an alternating
field, showing no remanence magnetization upon magnetic field removal [71,72]. Such mechanisms
can be either a Néel or Brownian relaxation, the dominant relaxation process being dependent on
the size and the particular magnetic material.

The Néel relaxation becomes the prevailing process when the nanoparticles are small enough
to the point it only requires a little bit of energy to induce rotation of the magnetic moment, being
highly influenced by the size of the nanoparticle. In these conditions, the relaxation time is given by
the equation [71]:

KV
Ty = ToeksT, )
where 7, is the characteristic time of the material (10°-1072 s), K is the anisotropy constant, V the
particle volume, kp the Boltzmann constant and T the temperature.

The other side of the coin is the Brownian relaxation, which is affected by medium viscosity,

where the relaxation time is given by the following equation [71]:

_ 3nVy
T = kBT, (2)

where 7 is the medium viscosity, Vu the particle hydrodynamic volume, ks the Boltzmann constant
and T the temperature. The application of a magnetic field faster than the nanoparticles relaxation
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time will induce heat generation due to the delayed relaxation of the magnetic moments [71].
Therefore, as the temperature generated by the nanoparticle will produce changes in the medium
viscosity, which affects the relaxation time and the particle movement, it is preferable the use of
nanoparticles with Néel relaxation to avert free particle rotation due to viscosity fluctuation.
Nevertheless, these relaxation mechanisms are size and material dependent and thus, this flexibility
allows the development of nanoparticles specifically designed for the desired application [70]
(Figure 3).
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Figure 3. Preferential application of iron oxide magnetic nanoparticles according to their size.

Hence, the concept of magnetic hyperthermia appears where the tissues are exposed to high
temperatures (42-45 °C), either to kill tumor cells by apoptosis or to prompt higher susceptibility to
radiation and antitumor drugs [31,71]. In this temperature range, enough thermic energy is
provided to promote denaturation of cytoplasmic, membrane and nuclear proteins. Such
denaturation of proteins required for the synthesis of DNA might induce higher susceptibility of
cancer cells to heat, considering that a malfunction mitotic phase will hinder the cellular division
[71]. Even though higher temperatures may seem beneficial by inducing apoptosis (around 46 °C)
or cell necrosis, such temperatures can also affect healthy cells and so a compromise above 42 °C
and below 46 °C is required. Above 42 °C, the blood flux is slowed down in the tumor region,
together with a lower oxygen and nutrients concentration, low pH and random vascularity.
Consequently, the heat dissipation is hampered and thereupon tumor cells become more sensitive
to hyperthermia therapies [23,71].

On the other hand, the application of temperatures below 42 °C will enhance blood flux and
oxygenation in tumor tissues that may contribute for a higher drug accumulation, intracellular
assimilation and DNA damaging, thus establishing a synergy with chemotherapy [23,71]. Indeed,
hyperthermia has become a suitable adjuvant therapeutic technique for combination with
chemotherapy, due to its influence over the antineoplastic drugs cytotoxic effect and perfusion
facilitation, but also due to the enhancement of local oxygenation that might favor radiotherapy
[31].

The multiple magnetic hyperthermia application is advantageous, still, the low nanoparticle
retention time does not allow the generation of sufficient heat needed for long-term repetitions,
requiring additional injections [31]. Hence, magnetogels may resolve such problem, as the hydrogel
matrix grants a long-term retention of the nanoparticles in the application site and reduces tissue
invasion by requiring a lesser number of injections.

In the field of hyperthermia, thermoresponsive polymers have been of great interest owing to
their phase transition from hydrophilic to hydrophobic upon a change in temperature [50]. Such
materials can be either positive (volume increase) or negative responsive (volume decrease) when
the temperature increases. For example, poly(N-isopropylacrylamide) (PNIPAAm) based hydrogels
undergo a phase transition from a swollen to a collapsed state around their lower critical solution
temperature (LCST) of 34.6 °C, which can be used to enhance drug delivery [73]. Moreover,
PNIPAAm is a biocompatible synthetic polymer which cross-linking concentration can be adjusted
to tune the phase transition temperature [73,74]. A study on the use of this polymer in
hyperthermia was carried out by Tabatabaei et al. [74] who developed a magnetogel containing iron
oxide nanoparticles with a 40 °C phase transition temperature. The authors showed that, upon
application of an AC magnetic field of 4 kA/m at 160 kHz, the magnetogel shrunk with a 25%
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volume reduction, apart from being possible to propel the system by using magnetic gradients of
400 mT/m inside a clinical MRI scanner [74]. Meenach and co-workers [34] also developed a
magnetogel based on synthetic polymers, the poly(ethylene glycol) methyl ether methacrylate
(PEGMMA) and dimethacrylate (PEGDMA) containing iron oxide nanoparticles. The authors
showed that besides the hydrogel matrix improving cell viability compared to only nanoparticles,
the system was capable of being heated to the hyperthermic temperature range (41-44 °C) or
thermoablative temperature range (61-64 °C) by controlling the magnetic field strength or the iron
oxide content [34]. The nanosystem selectively killed M059K glioblastoma cells in vitro by exposure
to an AC magnetic field of 25 kA/m at 297 kHz, thus being a promising system for metastasis
prevention after surgical tumor resection and for in situ formation in inaccessible locations [34].

An interesting work was carried out by Renard et al. [75] that evaluated in situ magnetogel
formation with iron oxide nanoparticles embedded in silica microparticles (beads) to favor
syringeability of the injectable formulation, in a high concentration to attain large heating
capacities, apart from showing different methods for implant in situ formation (Figure 4). The
hydrogelation in situ may be beneficial by avoiding potential harmful nanoparticle migration,
which combined with hyperthermia approaches will be highly advantageous for solid tumor
treatment [75]. For hydrogelators, chitosan and poloxamer 407 were used as models of
thermoresponsive hydrogels, with a temperature for sol-gel transition in the interval 33-36 °C,
while water soluble sodium alginate with calcium as ionic cross-linker was used to evaluate
internal and external hydrogelation as the best approach [75]. The authors demonstrated that the
thermoresponsive magnetogels containing 20% w/v of magnetic microparticles formed an unstable
implant due to the high particle content compromising the sol-gel transition and/or the mechanical
strength [75]. On the other hand, alginate magnetogel containing 10% w/v nanoparticles and
externally hydrogelated formed a strong implant in the tumor periphery, while internal
hydrogelation failed in situ [75]. Thus, the authors suggest that for attaining control over the
magnetogel distribution into the tumor center and periphery, a balance between a high viscosity
and rapidity of hydrogelation is required [75].
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Figure 4. Schematic representation of three possible injection mechanisms for in situ hydrogelation
of magnetogels. Reprinted from [75] with permission from Elsevier, 2010.

Indeed, this has been the way forward in the last decade, with continuous research on
materials with the appropriate mechanical characteristics and microstructure to improve cancer
therapy and drug delivery [31,76-80]. In addition, even if synthetic polymers may be the most easily
manipulated to acquire the desired mechanical and functional properties, they have the severe
problem of low biodegradability, due to the high chemical stability under physiological conditions.
Thus, biodegradability is another factor to consider, which can be accessed by using natural
hydrogelators or synthetic that are either chemically designed with degradable functionalities or
employed in a combination approach [77].

Hyperthermia has been constantly adapted to be fully applied as a stand-alone therapy, either
by using a high concentration of nanoparticles or with a high magnetic susceptibility. An example
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of that is the solution proposed by Vilas-Boas and co-workers [81], where the combination of
unfunctionalized nanoparticles with CXCR4-targeted nanoparticles granted a complete loss of cell
viability after 72 h, thus surpassing the practical limit that didn’t let the achievement of a 100%
lethal therapy. Such studies are highly relevant, as even if hyperthermia as a stand-alone therapy
may be impractical to the point that it may require the patient to be submitted too much time to an
AMF, the development of methods and strategies that improve the heating performance will be
beneficial for the hyperthermia-chemotherapy synergy under an applied magnetic field.

In a work by Gupta et al. [82], a poly(vinyl alcohol-g-2-hydroxymethyl acrylate) (PVA-
g-PHEMA) based magnetogel was developed containing iron oxide nanoparticles. The system can
attain a 55 emu/g saturation magnetization, stability of drug loaded at pH 7.4, enhancement of drug
release proportional to the intensity of the applied field and antibacterial activity when loaded with
ciprofloxacin, thus revealing promising properties for drug delivery [82]. In another example of
magnetic field induced drug release, a salecan-g-poly(crotonic acid-co-N-(hydroxymethyl
acrylamide)) magnetogel containing core/shell nanoparticles of FesOs/SiO2 was evaluated as a drug
nanocarrier, showing almost no cytotoxicity to A549 and COS-7 cells [83]. The maintained
doxorubicin release killed about 73.9% of A549 cells at a concentration of 12 ug/mL, with the
potentiality of higher efficiency, considering that a release of 89.5% at pH 4.0 under a magnetic field
of 1800 G was achieved [83]. In a similar work, the same authors developed a biocompatible
salecan-g-poly(vinylacetic acid-co-2-hydroxyethylacrylate) [poly(VA-co-HEA)] copolymer based
magnetogel containing FesOs@agarose nanoparticles with a maximum magnetization of 19.8 emu/g,
apart from a sustained and pH-triggered release of doxorubicin (DOX) [35]. The application of a
2200 G magnetic field at pH 4.5 accelerated the drug release, with a maximum of 91.3% after 64 h
[35]. In another example, Kim et al. [44] developed a magnetogel based on temperature-responsive
poly(N-isopropylacrylamide), magnetite nanoparticles and folic acid as a specific targeting ligand
for cervical cancer cell line (HeLa), thus enhancing intracellular uptake by combining magnetic
attraction and receptor-mediator endocytosis (Figure 5). The authors demonstrated that synergy
was achieved, further enhancing intracellular uptake, efficient cytotoxicity and apoptotic activity of
HelLa cells [44].
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Figure 5. (A) Schematic representation of the magnetogel preparation by precipitation
polymerization =~ with  conjugation of folic acid via EDC/NHS  (1-Ethyl-3-(3-
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doxorubicin. (B) Quantitative cellular uptake of magnetogels by HeLa and MDA-MB-231 cells with
and without and externally applied magnetic field and with or without folic acid. (C) Relative
viability of HeLa cells treated with free doxorubicin (DOX) (100 ug/mL), magnetogel (MHG) (100
pg/mL), magnetogel with folic acid (MHG-FA) (100 pg/mL) and DOX-loaded MHG-FAs at various
concentrations (12.5, 25, 50 and 100 ug/mL), treated for 30 min with or without externally applied
magnetic field and incubated for 96 h. (D) Apoptosis percentage of HeLa cells treated with 100
pug/mL MHG-FA or DOX-loaded MHG-FA for 30 min and further incubated for 48h. Adapted from
Kim et al. [44], Nature Publishing Group, 2017 (available under Open Access), with permission from
authors.
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In an interesting work by Xie et al. [39], a biocompatible magnetogel based on chitosan
crosslinked with telechelic difunctional poly(ethylene glycol) was developed containing
superparamagnetic iron oxide nanoparticles and the synergetic behavior of doxorubicin (DOX) and
docetaxel (DTX) in a triple negative breast cancer cell line was assessed. The nanosystem showed
remarkable results, as the combination of both chemotherapeutic drugs improved the release
profiles of each other and the application of an AMF of 19.99 kA/m at 282 kHz capable of inducing a
rise of 27.6 °C within 300 s, speeded up the release of docetaxel [39]. In addition, in vitro assays
resulted in a cell viability lower than 19.6% when DOX and DTX were combined and an
enhancement to 5.6% under the application of an AMF [39]. The in vivo assays also showed the
synergetic behavior of hyperthermia and dual-drug release, by improving antitumor activity when
mice were subjected to a 10 min AMF for 4 days [39].

Indeed, such work is a remarkable achievement in the field of drug delivery by magnetogels,
considering that improved efficiency of tumor treatment is always desirable, mainly the prevention
of local recurrence or metastasis immediately after tumor debulking surgery that can be accessed by
filling the cavity with an implant capable of controlled drug release [39]. Such purpose cannot rely
only on single drug administration considering that the high heterogenicity of tumor tissues and
differences in cancer progression may end up in the failure of the desired effect. Thus, an
alternative strategy is the synergetic combination of chemotherapeutic drugs with different
cytotoxic pathways and toxicity profiles, which might overcome such problem and further enhance
the therapeutic efficiency of a single injection, accompanied by a reduction of the required drug
dosage as was demonstrated by the previous work [39]. Therefore, this strategy should be taken as
a major objective in future developments in the field of drug delivery.

Although doxorubicin is widely used to study drug delivery with magnetogels and other
nanosystems due to its high efficiency in many cancer types, it must be considered that its toxicity
to cardiac tissues, promoting hypotension and transient electrocardiographic abnormalities, is a
drawback to its full potential as a chemotherapeutic agent. Considering this problem, there have
appeared some interesting works using natural compounds to reduce doxorubicin side effects
[36,86]. For example, Namdari et al. [36] developed a magnetogel based on N-isopropylacrylamide
copolymerized with methacrylic acid (NIPAAM-co-MAA) containing FesOs nanoparticles and
evaluated curcumin effect on the reduction of cardiac toxicity induced by doxorubicin. Doxorubicin
can induce free radical oxygen species either by synthesis of a semiquinone free radical that
produces a superoxide radical or the formation of an iron-doxorubicin complex capable of reducing
oxygen to hydrogen peroxide and other active species, thus being harmful to lipids and peptides in
cell membranes. The authors showed that an increase in curcumin-loaded magnetogel resulted in
the reduced expression of heart failure and cardiac hypertrophy markers B-MHC (beta major
histocompatibility complex), ANP (atrial natriuretic peptide) and BNP (B type natriuretic peptide)
[78]. In another example, Cheragi et al. [84] evaluated the cardioprotective effect of N,a-L-
rhamnopyranosyl vincosamide (VR) encapsulated into a NIPAAM-co-MAA based magnetogel. The
authors showed that the application of VR-loaded magnetogel in rats reduced the level of
myocardial malondialdehyde (MDA) comparatively to the standalone VR treatment, which is a
biomarker associated to the oxidative stress [84]. This result indicates a blocking effect of Dox-
mediated lipid peroxidation, which combined with the reduction of the 3-MHC, ANP and BNP
markers, comparatively to the standalone therapy demonstrates the nanosystem potentiality for a
future doxorubicin combined therapy.

An alternative to chemotherapeutic drugs was proposed by Zhang et al. [42], who developed a
biodegradable and thermosensitive magnetogel based on positively charged tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) and hydrophobic superparamagnetic iron oxide
nanoparticles, complexed with negatively charged poly(organophosphazene) polymers via ionic
and hydrophobic interaction, respectively. TRAIL is a TNF cytokine family member and
homotrimeric type 2 transmembrane protein-ligand, which specificity towards death receptors DR4
and DR5 overexpressed in cancer cells will selectively induce apoptosis. In addition, the
combination with hyperthermia enhances TRAIL effects due to caspase activation release of
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cytochrome c and the aggregation or degradation of cellular FLICE-inhibitory protein [42]. Thus,
the authors explored the synergy between multiple hyperthermia and TRAIL, which restored the
sensitivity of intrinsic TRAIL-resistant U-87 MG cancer cells and enhanced TRAIL-induced
apoptosis through the activation of caspase-3 and -8. Above all, the system demonstrated good in
vivo results, further supporting the relevant use of protein-based therapeutics (Figure 6) [42].
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Figure 6. (A) Schematic diagram of the thermosensitive magnetogel developed by Zhang et al.
based on positively charged tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and
hydrophobic superparamagnetic iron oxide nanoparticles, complexed with negatively charged
poly(organophosphazene) polymers, which TRAIL-SPION nanocomplex release from hydrogel is
enhanced at 43 °C under multiple MHT. (B) TEM representation of TRAIL/SPION nanocomplex. (C)
Temperature versus time graphs of TRAIL-SPION nanocomplex at 0.5 mg Fe/m over different
alternating magnetic field amplitudes and a constant frequency of 366 kHZ. (D) Schematic
illustration of the magnetic hyperthermia therapy device for in vivo study of the nanocomplex
efficiency on a U-87 MG-bearing nude mouse. (E) Tumor temperature monitoring over 2 cycles of
MHT after a single injection of the nanocomplex. (F) Tumor volume (V/Vinital) versus time after
treatment for single and combined therapy, with the arrows indicating the day of MHT application.
Adapted from [42] with permission from Elsevier, 2017.

Another stimulating advance observed in the field of bionanosystems was the development of
lipogels by Loépez-Noriega et al. [85]. The lipogels are based on chitosan/B-glycerophosphate
hydrogel and lysolipid thermally sensitive liposomes (LTSLs), with a transition temperature of 41
°C, above which openings in the liposome are induced, promoting the release of the drug payload.
Although not containing magnetic nanoparticles, the liposomes can be thermally activated by
radiofrequency, microwaves or high-intensity-focused ultrasounds. This nanosystem combines the
diffusion of free drug from the gel network and the limited release from encapsulated liposomes.
Further, the liposomes were prepared by pH gradient method allowing a pH-sensitive release when
the liposomes are subjected to an acidic pH, such as in the endosomal compartments [85]. On
account of the promising properties of lipogels, the combination with magnetic nanoparticles might
confer further potentialities to the magnetolipogels, due to the possibility of magnetically targeting
towards a specific location and observation of the therapeutic efficiency by magnetic resonance
imaging.

Apart from drug delivery and hyperthermia, magnetogels have assisted a recent entry in the
field of gene therapy. A pioneer work in this recent field was carried out by Ma and co-workers
[40], who developed a DNA magnetogel with magnetic nanoparticles modified with DNA, being
introduced in the DNA hydrogel matrix through hybridization (Figure 7). A remarkable

ek
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characteristic is the possibility of the magnetogel adhering pure DNA hydrogel, which results in a
single piece capable of being dragged under an applied magnetic field [40]. Undoubtedly, this work
opens the way to future advancements in gene therapy, considering that such concept will allow
the specific localization of the nanosystem in the desired target, the control over the DNA release
and high quantity of transportable DNA, which combined with the possibility of drug delivery,
may lead to a nanosystem of high potential for surpassing many of the already existing systems.
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Figure 7. (a) Schematic representation of the assembly of DNA linkers to the DNA functionalized
magnetic nanoparticles, where (b) the complementary linkers produced a precipitant in 10 min,
while (c¢) the non-complementary linkers did not result in any change. Reprinted from [40] with
permission from American Chemical Society, 2017.

4. Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) has been a target of intensive research for improved tumor
imaging in the result of its high anatomical resolution with unlimited tissue depth and soft tissue
contrast, taking into consideration the need to overcome the sensitivity and lack of specificity issues
commonly associated with the conventional contrast agents [86]. For that purpose, bionanosystems
have revolutionized MRI by exploring the enhanced permeation and retention (EPR) effect to
preferentially passively accumulate in the tumor areas, but also by the possibility to conceptualize
and tailor the physicochemical properties of the bionanosystem to actively direct it to the desired
area [86]. Magnetic nanoparticles, mainly iron oxide nanoparticles, have been playing an important
role as T2 contrast agents, due to their chemical stability and biodegradability, which can be
explored in the monitorization of diseases and detection of injuries or deficiencies [87,88]. Though,
it has also been reported that SPIONS suffer from peroxidase-like activity [56,57], which may
eventually produce undesirable effects in the long-term due to the production of ROS, thus
requiring a proper coating or the development of alternative nanoparticles. For example, cobalt
nanoparticles exhibit a higher room temperature saturation magnetization (1422 emu cm™) than
iron oxide nanoparticles (395 emu c¢cm 3), which can be explored to attain smaller particle core sizes
without compromising sensitivity and achieve better magnetic resonance imaging contrast [87].
Nevertheless, such particles are easily prone to oxidation, thus requiring to be covered by an
appropriate shell, to prevent the formation of Co%, apart from being of difficult synthesis. These
facts lead us back to the starting point where alternatives are required to the conventional iron
oxide nanoparticles, but easily synthesized and with improved biocompatibility, which can be
achieved by doping with transition metals such as Mn, Co, Ni and Zn, the MnFe:04nanoparticles
showing the highest mass magnetization value (110 emu g '), magnetic susceptibility and relativity
values [87]. Nevertheless, improvements are needed, and it is in this field that magnetogels appear
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as a promising solution to the low sensitivity, which requires an understanding of the proton spin
dephasing (T2relaxation) mechanisms produced by the magnetic nanoparticles. These mechanisms
are classified according to particle size, in which protons can diphase through a motional averaging
regime (MAR), visit-limited regime (VLR) or static dephasing regime (SDR) [88]. When the distance
travelled by the proton is longer than the distance between particles, full proton dephasing is not
achieved in a single encounter, subjecting the proton to different magnetic environment along its
travel, which might be refocused if an opposite polarity is found, thus retarding the overall
relaxation rate [88]. Such is the motional averaging regime, where the relaxation rates are
proportional to the particle size. However, as the particle size increases until a critical size, the
proton enters in the visit-limited regime. In this mechanism, a full dephasing zone around the
nanoparticle is defined where inside of it full dephasing is achieved while out of it only a minimal
occurs, i.e., the process is dependent on the distance to the particle [88]. Thereby, as in this regime
the protons spend enough time near one particle, it can be fully dephased in a single encounter.
Finally, as the particles become large enough, the inter-particle distance gets longer than the
distance travelled by the proton, subjecting the proton to an almost constant magnetic environment,
which is defined as the static dephasing regime where an almost continuous dephasing is produced
[88]. Naturally, these mechanisms have different implications for different bionanosystems based
on magnetic nanoparticles. For example, in magnetoliposomes, protons are hindered from the
dephasing zone near the particle surface by the hydrophobic coating, and so, in the MAR and VLR
regimes the relaxation rates are both reduced [89]. On the contrary, magnetogels will have different
mechanisms involved, as the hydrogel network will slow down water self-diffusing, which results
in a longer proton retention time close to the particle surface and a decrease in the exchange of
protons between the inner and outer coating environment [89]. Thus, a longer retention time will
enhance MAR relaxation rate by increasing the dephasing at each encounter, but it will also reduce
relaxation rates for the particles in the visit-limited regime [89].

Such properties have been explored for different applications, such as molecular or cellular
detection, monitoring and tracking of cells in vivo [37]. For example, Paquet et al. [37] were able to
enhance the transverse relaxation rate by up to 85% using SPIONS and a hydrogel made of acrylic
acid, N,N'-methylene-bis-acrylamide and N-isopropylacrylamide. The authors showed that the
increased hydrophilicity of the particle coating enhances interactions between protons and the
magnetic core, which further increases the relaxivity [37]. This property combined with the high
magnetic moment and the pH responsive hydrogel behaviour promotes pH-dependent and higher
T2 relaxivities [37]. Thus, magnetogels are highly promising for magnetic resonance imaging
applications as a result of the wide diversity of strategies possible of being used to enhance
transverse relaxation rates. Moreover, magnetogels have been showing promising results in various
in vivo assays, due to their huge structural and chemical flexibility. For example, Kim et al. [41]
developed a thermosensitive magnetogel based on poly(organophosphazene) and cobalt ferrite
nanoparticles coated with organic surfactants (oleic acid and oleylamine), which allowed non-
covalent interactions between the L-isoleucine ethyl esters of the polymer and the nanoparticles
hydrophobic coating during gelation (Figure 8A). Such nanosystem was estimated to be applicable
as a long-term magnetic resonance contrast agent over 4-5 weeks after surgery, without blurring or
spreading of the magnetogel and requiring a 4-day stabilization period [41]. Moreover, the authors
reported that 4 days after injection using stereotactic surgery in rat brains, the magnetogel was well
localized in the frontal cortex region, showing a strong negative MR T2 contrast (Figure 8B) [41].
These results, combined with properties such as the low cytotoxicity, thermosensitivity,
biodegradability, biocompatibility and injectability, propels this nanosystem as highly promising
for theranostics, when combined with therapeutic drugs, further supporting the potentiality of
magnetogels [41].
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Figure 8. (A) Schematic representation of the thermosensitive responsive behavior of the
poly(organophosphazene) and cobalt ferrite nanoparticles based magnetogel; (B) Time evolution of
the in vivo degradation of the magnetogel for the assessment as a long-term MR contrast agent,
having been injected into the righthand side of the frontal cortex region of the rat brain near the
corpus callosum. Reprinted from [41] with permission from Elsevier, 2012.

In another example, Chet et al. [90] developed a cellulose nanocrystal/silk fibroin-blended
magnetogel containing ultrasmall superparamagnetic iron oxide nanoparticles that were used to
non-invasively monitor magnetogel degradation and evaluate cartilage restoration through MRI.
The authors reported that magnetogels and hydrogels loaded with bone-marrow mesenchymal
stem cells took 8 weeks to show a marginal hyperintense signal due to occurrence of neocartilage
into the defects alongside normal articular cartilage, only taking other 4 weeks until a continuous
and smooth articular cartilage was formed [90]. Furthermore, it is possible to follow up the
biodistribution of magnetogels through MRI and achieve controlled drug release. Jaiswal et al. [38]
developed a magnetogel based on poly(N-isopropylacrylamide) and FesOs nanoparticles
functionalized with polyethylene glycol (PEG), which was loaded with doxorubicin and incubated
with bladder cancer T-24 cell lines, to evaluate the effect of an external radiofrequency field and
applied in swiss mice model via tail vein to monitor magnetogel accumulation. The authors
reported that one-hour application of a 375 Oe radiofrequency field resulted in 40% cells under
apoptotic condition 24 h after treatment, compared to only 13% without radiofrequency field
exposure, attaining a 95% cell death due to synergy between the heat generated by the RF field and
doxorubicin release [38]. In addition, the magnetogel was found to preferentially accumulate in
lungs 1 h after administration, with the heart showing a similar trend and liver showing no contrast
enhancement for 7 days (Figure 9) [38].
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Figure 9. Magnetic resonance imaging of swiss mice model liver, lung and heart tissues after
magnetogel injection via tail vein to monitor the in vivo biodistribution, the animals having been
sacrificed at 1 h and 7 days after injection. Adapted from [38] with permission from Elsevier, 2015.

Although these works demonstrate the potentiality of magnetogels for theranostics,
improvements on the signal-to-noise ratio are always required and also the avoidance of repeated
administration of contrast agents, without affecting accessibility and biodegradability of the
developed system. Thus, the development of magnetogels based on chelating hydrogelators might
provide a powerful nanosystem for MRI, taking into consideration the optimal results attained by
hydrogelators alone. For example, Chan et al. [86] developed a self-assembled cholesterol and
acryloyl modified pullulan hydrogelator containing gadolinium-chelating cross-linkers
(1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA)) to confer magnetic properties
and stabilize the material. These authors reported a 4 h high-level accumulation in 4T1 tumors in
mice after injection and a high Ti signal enhancement that lasts up to 7 days, without damage or
toxicity in major organs up to 3 months [86].

5. Future Perspectives, Goals and Conclusions

Magnetogels have been showing promising and interesting results in various fields from
biosensing to theranostics. Nevertheless, instead of being restrained to superparamagnetic ferrite
nanoparticles, the combination of magnetic and plasmonic effects should be a future goal, for
example by the development of core/shell nanoparticles (e.g., with a magnetic core and a gold shell)
or the development of magnetic nanoparticles decorated with plasmonic gold particles. Indeed,
gold has been a remarkable material, from Chinese traditional medicine to modern therapeutic
applications, such as the use of gold salts for the treatment of rheumatoid arthritis [91]. Apart from
that, the unique optical and physical properties, combined with the possibility to confer multiple
surface functionalities, has promoted the use of gold nanoparticles in several applications [91,92].
Besides some aspects in common with other nanoparticles, such as the size and shape dependence
of the optoelectronic properties and the great surface-to-volume ratio, gold furnishes nanoparticles
with excellent biocompatibility, low toxicity and the possibility of exploring the surface plasmon
resonance phenomenon and quenching of fluorescence. The surface plasmon resonance (SPR)
consists in the conductive electrons collective motion in relation to the crystal lattice, due to an
externally applied electric field, which produces a depolarizing electric field acting as a restoring
force and behaves as a damped oscillator due to the interactions between electrons and the
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environment/vicinity [93]. Nevertheless, for particle sizes smaller than 2 nm, the quantization
energy of the electronic levels becomes high enough to the point that the collective oscillation is
hindered. Therefore, as the surface plasmon resonance is highly sensible to the particle size and the
environment (particularly, the dielectric constant), it might function as a sensor to the presence of
molecules bonded or in the proximity of the nanoparticle surface [93]. For example, the presence of
electron donors (e.g., alkanethiols or alkylamines) induces a bathochromic shift, while acceptors
(e.g. phosphines) induce a hypsochromic shift of the plasmon frequency. In addition, the plasmon
band is sensible to the core charge, temperature, shape and proximity of other particles, i.e., the
particle aggregation induces interparticle plasmonic coupling, which results in a bathochromic shift
of the plasmon frequency, bandwidth widening and a solution color change from red to blue [92].
Moreover, gold nanoparticles strongly quench fluorescence through Forster resonance energy
transfer (FRET), due to the superposition of the emission spectra of fluorophores and the absorption
band of nanoparticles surface plasmon. Though, quenching can also be a result of photoinduced
electron transfer modulated by the charging or discharging of the gold nucleus, thus becoming
useful for the development of sensors [92]. These properties, together with the diversity of surface
functionalities, have contributed to the application of gold nanoparticles in different areas of
technological interest such as biosensors, clinic chemistry methods, immunologic assays,
photothermolysis of tumor cells, detection and control of microorganisms, transport of drugs and
monitorization of biological cells [91]. In the field of bionanosystems, Rittikulsittichai et al. [94]
made a pioneer work by developing magnetogel particles based on the thermoresponsive
poly(NIPAM-co-AA), silica-coated FesOs nanoparticles and gold nanorods, which is responsive to
several stimuli such as temperature, pH, light and an applied external magnetic field. The authors
demonstrated that upon a stimulus, the magnetogel could undergo a systematic and reversible
variation in the hydrodynamic diameter, due to swelling and deswelling of the hydrogel network,
which affects the gold nanorods optical properties. Moreover, the application of a 300 mW at 808 +
10 nm electromagnetic radiation induced a temperature change from 22 °C to 36 °C in 5 min, while
an alternating magnetic field of 10 kA/m at 100 kHz changed temperature from 34 °C to 40 °C in 10
min [94]. Such work demonstrates the promising synergy between magnetic and plasmonic effects
to remotely control drug delivery and enhance hyperthermia therapy.

Magnetogels could also be used as a nanosystem for gene delivery and therapy, in
combination with drug delivery, magnetic and plasmonic hyperthermia. For example, Eguchi et al.
[95] developed a DNA-based hydrogel cross-linked through Au-S interactions to gold
nanoparticles, where the DNA acts as the network polymer and the nanoparticles as nucleation,
overcoming the possible leaching out of nanoparticles. The authors demonstrated that the DNA
required for hydrogelation is long enough to encode proteins, this being evaluated for GFP (6012
bp) by incubating with cell lysates of E. coli, attaining 0.6 pug in 50 mL in one hour [95]. Another
interesting aspect is that gold nanoparticles have been shown remarkable results for tissue
regeneration, mainly by stimulation of osteogenic differentiation associated with the inhibition of
the receptor activator of nuclear factor-kb ligand pathway towards osteoclast formation in bone
marrow-derived macrophages and activation of the p38 mitogen-activated protein kinase (MAPK)
pathway, after intracellular uptake by mesenchymal stem cells [96]. Heo et al. [96] developed a
methacrylated gelatin-based hydrogel containing gold nanoparticles and showed that higher
nanoparticle content increased proliferation rate and osteogenic differentiation of human adipose-
derived stem cells, apart from stimulating bone regeneration of parietal bone defects. Furthermore,
magnetogels could be combined with magnetoliposomes to improve control over drug diffusion,
increase the diversity of drugs passible of being incorporated, enhance MRI contrast by introducing
clusters of nanoparticles in a medium containing magnetic nanoparticles (that might enhance the
regimes previously described), and add enzymatic and genetic therapy features.

Magnetogels have exhibited many advantages when compared to the standalone components,
which have promoted the entrance into a wide diversity of applications, from biosensors to contrast
agents. Nevertheless, such nanosystem is very recent and there are still few works which explore
their promising properties in hyperthermia and MRI combined with drug delivery. Moreover, most
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of the published studies are focused on the use of iron oxide nanoparticles and not on other types of
nanoparticles with advantageous properties, such as transition metal doped ferrites or cobalt
nanoparticles. As has been discussed, gold exhibits interesting properties such as the surface
plasmon resonance, affinity towards sulphur and cell differentiation stimulation that should be
readily explored for the combined application of photothermia and magnetic hyperthermia to
synergistically enhance potent anticancer drug effects on the desired target. Interestingly, the use of
superparamagnetic property of gold nanoparticles when in the presence of sulphur or the easy
binding of ligands and polymers [91-93], allows the development of magnetogels solely based on
gold nanoparticles and multifunctional polymers, thus attaining nanosystems that can work as anti-
inflammatory, anti-pathogenic and regenerative agents on the treatment of wounds and profound
tissue defects.

Apart from gold, silver might also be of interest due to its anti-pathogenic activity, as it may
help to reduce the need of developing every year new antibiotics, to overcome the astonishing
rising population of resistant bacteria, which is a path that will inevitably end in higher
susceptibility to untreatable pathogenicities.

Nevertheless, apart from introducing plasmonic properties in the magnetogels to attain more
control over their behavior and widening, and even more, their applications, other magnetic
nanoparticles should be readily explored in the development of magnetogels for biomedical
applications, such as the CoNi alloys for magnetic resonance imaging [97]. Although, such
nanomaterial may require a proper coating to confer adequate chemical stability and
biocompatibility for biomedical applications. A major advantage of magnetogels is the reduction of
nanoparticles toxicity, as shown by Finetti et al. [98], who developed a magnetogel based on
carboxymethylcellulose and CoFe20s nanoparticles coated with (3-aminopropyl)trimethoxysilane
acting as cross-linkers. The authors demonstrated that the endothelial permeability, oxidative
stress, cytoskeleton organization and inflammatory markers associated with endothelial toxicity
remained unchanged in magnetogels, while for the nanoparticles an increase was observed.
Therefore, such toxicity reduction effect could be used to develop and explore other magnetogels
comprising CoFe20s nanoparticles or other nanomaterials that have not yet been utilized due to
such a problem. However, the MnFe20s nanoparticles are recommendable from all the transition
metal doped-ferrites owing to their biocompatibility, strong T phase contrast for magnetic
resonance imaging, and higher magnetic susceptibility when compared with other ferrite
nanoparticles [99]. An example of their potential for hyperthermia cancer therapy is a
chitosan-based magnetogel developed by Kim et al. [99], which showed a remarkable specific
absorption rate (SAR) of 1.45 W/g at 266 kHz and 653 Oe.

However, besides the necessity to explore other magnetic nanoparticles to improve
hyperthermia, MRI contrast and add photothermia properties, magnetogels should be focused on
the use of biodegradable and biocompatible hydrogelators, such as polysaccharides, DNA or
peptide-based hydrogelators. Such materials should be low molecular weight hydrogelators to
reduce their impact over the magnetic response of the magnetic nanoparticles to an externally
applied magnetic field. Also, further functional properties could be added such as gadolinium
chelators, moieties to cross-link hydrogelators and nanoparticles (to reduce the possibility of
leaching out from the hydrogel network) and add functionalities to passively direct hydrogels to a
specific target. For example, the use of the naproxyl group in a hydrogelator molecular structure
will afford selectivity towards cyclooxygenase-2 [13]. The hydrogelators should also be responsive
to various stimuli, so to adapt the magnetogel to different situations or to attain different MRI
contrasts.

Therefore, magnetogels appear as strong candidates for future personalized therapies and
theranostic applications, which are potentiated by the strong fertile ground of functionalities and
properties passible of being developed, optimized and adapted for the different applications,
whether it is tissue engineering, drug delivery, hyperthermia, MRI or all together in the same
nanosystem.
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