
André de Matos Pedro

maio de 2018

U
M

in
ho

|2
01

8

Dynamic contracts for verification and
enforcement of real-time systems properties

D
yn

a
m

ic
 c

o
n

tr
a

ct
s

fo
r

ve
ri

fi
ca

ti
o

n
 a

n
d

 e
n

fo
rc

e
m

e
n

t
o

f
re

a
l-t

im
e

 s
ys

te
m

s
p

ro
p

e
rt

ie
s

 A
nd

ré
 d

e
M

at
os

 P
ed

ro

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

 Universidade do Minho

universidade de aveiro

maio de 2018

Trabalho realizado sob a orientação do

Professor Doutor Jorge Sousa Pinto

e do

Professor Doutor Luís Miguel Pinho

André de Matos Pedro

Dynamic contracts for verification and
enforcement of real-time systems properties

Universidade do Minho

Escola de Engenharia

Programa de Doutoramento em Informática (MAP-i)
das Universidades do Minho, de Aveiro e do Porto

Universidade do Minho

universidade de aveiro

Abstract

Runtime verification is an emerging discipline that investigates methods and tools to enable

the verification of program properties during the execution of the application. The goal is

to complement static analysis approaches, in particular when static verification leads to

the explosion of states. Non-functional properties, such as the ones present in real-time

systems are an ideal target for this kind of verification methodology, as are usually out of

the range of the power and expressiveness of classic static analyses.

Current real-time embedded systems development frameworks lack support for the verifi-

cation of properties using explicit time where counting time (i.e., durations) may play an

important role in the development process. Temporal logics targeting real-time systems

are traditionally undecidable. Based on a restricted fragment of Metric temporal logic with

durations (MTL-
∫

), we present the proposed synthesis mechanisms 1) for target systems

as runtime monitors and 2) for SMT solvers as a way to get, respectively, a verdict at

runtime and a schedulability problem to be solved before execution. The later is able to

solve partially the schedulability analysis for periodic resource models and fixed priority

scheduler algorithms. A domain specific language is also proposed in order to describe

such schedulability analysis problems in a more high level way.

Finally, we validate both approaches, the first using empirical scheduling scenarios for uni-

multi-processor settings, and the second using the use case of the lightweight autopilot

system Px4/Ardupilot widely used for industrial and entertainment purposes. The former

also shows that certain classes of real-time scheduling problems can be solved, even though

without scaling well. The later shows that for the cases where the former cannot be used,

the proposed synthesis technique for monitors is well applicable in a real world scenario

such as an embedded autopilot flight stack.

Resumo

A verificação do tempo de execução é uma disciplina emergente que investiga métodos e

ferramentas para permitir a verificação de propriedades do programa durante a execução

da aplicação. O objetivo é complementar abordagens de análise estática, em particular

quando a verificação estática se traduz em explosão de estados. As propriedades não

funcionais, como as que estão presentes em sistemas em tempo real, são um alvo ideal

para este tipo de metodologia de verificação, como geralmente estão fora do alcance do

poder e expressividade das análises estáticas clássicas.

As atuais estruturas de desenvolvimento de sistemas embebidos para tempo real não

possuem suporte para a verificação de propriedades usando o tempo expĺıcito onde a

contagem de tempo (ou seja, durações) pode desempenhar um papel importante no pro-

cesso de desenvolvimento. As lógicas temporais que visam sistemas de tempo real são

tradicionalmente indecid́ıveis. Com base num fragmento restrito de MTL-
∫

(metric tem-

poral logic with durations), apresentaremos os mecanismos de śıntese 1) para sistemas

alvo como monitores de tempo de execução e 2) para solvers SMT como forma de obter,

respectivamente, um veredicto em tempo de execução e um problema de escalonamento

para ser resolvido antes da execução. O último é capaz de resolver parcialmente a

análise de escalonamento para modelos de recursos periódicos e ainda para algoritmos

de escalonamento de prioridade fixa. Propomos também uma linguagem espećıfica de

domı́nio para descrever esses mesmos problemas de análise de escalonamento de forma

mais geral e sucinta.

Finalmente, validamos ambas as abordagens, a primeira usando cenários de escalonamento

emṕırico para sistemas uni- multi-processador e a segunda usando o caso de uso do sistema

de piloto automático leve Px4/Ardupilot amplamente utilizado para fins industriais e de

entretenimento. O primeiro mostra que certas classes de problemas de escalonamento em

tempo real podem ser solucionadas, embora não seja escalável. O último mostra que, para

os casos em que a primeira opção não possa ser usada, a técnica de śıntese proposta para

monitores aplica-se num cenário real, como uma pilha de vôo de um piloto automático

embebido.

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors Professor Jorge

Sousa Pinto and Professor Lúıs Miguel Pinho, for their guidance, valuable feedback, and

encouragement. Without them, this long run could never be finished with success.

My sincere thank you also goes to David Pereira for his encouragement, insightful com-

ments and for being so good advisor and colleague along these years. With him, I have

discussed several ideas often useful in this thesis. I want to thank Geoffrey Nelissen for

the fruitful meetings and discussions that we had along these years. I also would like

to thank Professor Simão Melo de Sousa for pushing me to this wonderful world of the

Formal Methods, and also for being an incentive to start my Ph.D. studies at CISTER.

Regarding host institutions, I would like to thank CISTER and Haslab, and University of

Minho.

I thank all my CISTER colleagues, Ricardo Severino, Lúıs Nogueira, Artem Burmyakov,

Kostiantyn Berezovskyi, and in special to Claudio Maia and José Fonseca for the op-

portunity to create a healthy environment to work and enjoy the life with so long mad

discussions.

Last but not least, I would like to thank my all family for supporting my humor and

my thoughts along these tough years, essentially my parents Eugenia and José, my little

brother Eduardo, and my sunshine Sonia for being so cooperative and comprehensive with

me.

This thesis was partially supported by National Funds through FCT/MEC (Portuguese

Foundation for Science and Technology) and co-financed by ERDF (European Regional

Development Fund) under the PT2020 Partnership, within the CISTER Research Unit

(CEC/04234); FCOMP-01-0124-FEDER-015006 (VIPCORE) and FCOMP-01-0124-FEDER-

020486 (AVIACC); also by FCT and EU ARTEMIS JU, within project ARTEMIS/0003/2012,

JU grant nr. 333053 (CONCERTO); and by FCT/MEC and the EU ARTEMIS JU within

project ARTEMIS/0001/2013 - JU grant nr. 621429 (EMC2).

Contents

Abstract v

Resumo vii

Acknowledgements ix

1 Introduction 1

1.1 Problem Statement . 2

1.2 Summary of Research Contribution . 3

1.3 Overview of Thesis . 4

2 Background and Related Work 7

2.1 Real-Time Systems . 7

2.1.1 Periodic Resource Models . 11

2.2 Languages and Logics . 12

2.2.1 Metric temporal logic with durations (MTL-
∫

) 14

2.2.2 first order logic of real numbers (FOLR) 16

2.2.3 Lambda expressions (λ-expressions) 17

2.2.4 Related Work . 19

2.3 Runtime Verification . 21

2.3.1 Runtime Monitoring of real-time system (RTS) 26

2.3.2 Related Work . 26

Summary . 32

3 RV with RMTL-
∫

33

3.1 The specification Language RMTL-
∫

. 33

3.2 Three-valued Extension of RMTL-
∫

. 37

3.3 Polynomial Inequality Translation . 44

3.3.1 Simplification Algorithm . 48

3.3.2 Functional Correctness . 52

xiii

CONTENTS xiv

3.4 SMT Synthesis for RMTL-
∫
3

Formulae . 55

3.5 Computation of RMTL-
∫
3

Formulae . 58

Summary . 62

4 RV-RMTL-
∫

Framework 63

4.1 Components . 63

4.2 Formal Specification of Periodic Resources 67

4.2.1 Extension for dependent tasks . 69

4.3 Safe Components and Monitors . 74

4.4 DSL for components . 75

4.5 Timing guarantees by hierarchy of monitors 79

Summary . 80

5 Evaluation 83

5.1 Application of µDSL for offline schedulability analysis 84

5.1.1 Two settings for schedulability analysis 86

5.1.2 Experimental results . 88

5.2 Lightweight Autopilot Systems: the case study 89

5.2.1 Use cases with RMTL-
∫
3
. 92

5.2.2 Experimental Results . 97

Summary . 99

6 Conclusion and Future Work 101

6.1 Future work . 102

A RV with RMTL-
∫
3

for C++11 105

A.1 RV Monitoring Model . 108

B rmtld3synth tool User’s Guide 111

C RTMLib 117

C.1 Usage of RTMLib . 117

C.1.1 Instantiating buffers . 117

C.1.2 Developing a simple Monitor . 118

D Inequality Translation Correctness Proofs 121

D.1 Soundness proofs for axioms . 127

D.2 Application Examples . 127

CONTENTS xv

Bibliography 129

List of Figures

2.1 Evaluation of propositions m, a, b over the trace ρ. 13

2.2 Diagram of a path (a) and respective duration computation (b) 17

3.1 Graphical proof sketch . 46

3.2 Evaluation of the operators U< and <, and of duration terms 59

4.1 Component-based sketch with one hypervisor and quasi-omniscient monitors. 64

4.2 Example of patterns and the global trace generated by the composition of

resource models defined in the Example 11 66

4.3 Flow graph of the scenario considered in Example 12 and 18 70

4.4 Encoding of processor mapping and memory mapping 71

4.5 Diagram with evidences of infeasibility . 73

4.6 Composition and complementary rules for µresource domain specific lan-

guage (µDSL) . 77

4.7 Inference tree for the Example 15 . 78

4.8 Inference tree for the Example 16 . 78

5.1 Linear, concave and convex restriction for c0 and c1 91

5.2 Experimental validation of the complexity results 93

5.3 Regions of decomposed inequalities with duration x, y and θ = 10 95

5.4 Comparison of implementations/architectures 98

A.1 Tool-chain overview . 106

A.2 Flow graph of the system enabled events defined in a time window. 109

xvi

List of Tables

2.1 Standard and Boolean Combinators . 19

3.1 Complexity results of the Algorithm 2 . 61

5.1 Expansion of the PRM(c0) where c0 means core0 86

5.2 Heat maps for performance comparison using the rmtld3synth tool for

synthesization and the Z3 solver for checking satisfiability 88

5.3 µDSL experimental results . 90

xvii

Chapter 1

Introduction

This thesis considers the field of real-time embedded systems, in which it is crucial to

guarantee a correct behavior in the temporal domain [Stankovic, 1988]. These systems

range from simple, isolated components to large, highly complex and inherently concurrent

systems. They act upon a variety of environments which are frequently very dynamic and

hard to capture during design time. Therefore, developing an real-time system (RTS) can

easily become a very difficult task to complete. Even though RTSs present potentially

complex requirements, their design and development processes are mostly limited to

model-driven techniques and intensive testing and fault-injection, which are known to

allow the existence of human-introduced errors. At later stages of the development cycle

such errors can become highly expensive and very hard to tackle, even with the number

of static analysis tools available. As the technology evolves, real-time embedded systems

are becoming more and more pervasive in our daily routines. Notorious examples of the

pervasiveness of real-time embedded systems in our daily lives range from airplane and

car control systems to medical devices such as pacemakers. A relevant example which

is spurring much interest and that we use in the thesis is the large variety of exciting

new models of commercial lightweight multi-copters available in the market and which

are currently being intensively used for aerial photography and cinematography, cargo

inspection and transportation, and for family entertainment. For safety reasons, some of

these multi-copters are being subject to restricted usage rules in several countries to limit

their excessively fast spreading in commercial applications. The traditionally adopted

mechanisms to treat the failures that can arise during multi-copter activity are commonly

applied only for hardware malfunctions. However, in the case of software, the adopted

applications/control systems are considerably open for users to modify, which in turn

increases the risk for these multi-copters to potentially crash in public areas, namely when

several developers spread over the world make changes on these systems. On the more

1

CHAPTER 1. INTRODUCTION 2

rigorous side of RTS development, formal methods have been introduced progressively

in the development cycle, most of which are based on temporal logic. While standard

temporal logics yield a natural and abstract framework for the analysis of safety and

liveness properties [Pnueli, 1977], these logics fail to capture the specific timing properties

of RTSs [Koymans, 1990]. This limitation is tackled by a set of timed temporal logics

[Alur and Henzinger, 1992a], and many of these logics have already been used to develop

model checking tools [Behrmann et al., 2006]. However, model checking has its own

pitfalls, namely when the size of the state space of the model that captures the RTS under

consideration is too large to be mechanically analyzed by a tool implementing a model

checking algorithm. Moreover, it might be the case that the properties to be checked

cannot be captured rigorously at the abstract level of the model of the system.

When we talk about Runtime Verification (RV) of real-time embedded systems, we are

increasing the dependability of these systems by drawing verdicts at runtime that may

be used to trigger recovery actions. RV is a major complement to static methods as

it can be used to check errors for which it is possible to conclude some property of

interest based exclusively in knowledge that can be gathered only at execution time.

Contrary to ad hoc instrumentation of runtime behavior, RV based approaches use formal

specifications and synthesize them into monitors, that is, pieces of code that take partial

traces of execution of the system and match them against the referred specifications

and make a verdict. Moreover, monitors can be used both to verify and enforce the

properties which are provided by components, even when the components assume the

form of a black-box, as long as each component is coupled with a formal specification. A

simple example of the power of RV is the case when the response to a property violation

detection consists in shutting down a complex component and give control to a simpler,

yet formally verified component. By adopting RV techniques, developers can decrease

the usual intensive testing efforts, and if used in collaboration with static verification

methods, this can increase the overall coverage of the system by ensuring execution time

correctness in those parts of the development where heavy-weight static approaches like

model checking and deductive verification fail due to well-known problems (e.g., the state-

space explosion problem inherent to model checking and the lack of proof automation in

deductive verification).

1.1 Problem Statement

In this thesis, we consider the problem of runtime checking hard real-time systems by

generating correct-by-construction monitors from a formal language and their correct

integration in target applications/systems. The outcome of a monitor checking is a “yes”,

CHAPTER 1. INTRODUCTION 3

“no” or “unknown” answer. In the case of a gas burner, for example, we may check

that the solenoid never leak for more than 4 time units in a period of at most 30 time

units. For the case of the system integration, we want to ensure that the monitoring

interference is predictable and bounded before the system begins its execution in order to

avoid unpredictable behaviors.

RV has receiving increasing attention in the real-time community in the past decade,

with clear focus on relaxing the burden of the verification intensive tasks using deductive

verification and model-checking. Deductive verification tends to get undecidable results

when reasoning about time (the “undecidable satisfiability problem” for certain logic

fragments), and systems tend to scale poorly when the model size grows (the “state space

explosion problem”).

Design of a decidable verification method to reason with explicit time properties (i.e.,

duration properties) at runtime is the main problem. It should be capable to describe

polynomial inequalities mixed with temporal order of propositions using a formal logic

in order to deal with hard real-time systems at the design phase. Moreover, it requires

a separation of which properties classic model-checking is unfeasible to treat, due to the

need of total coverage of the model, and what properties could be addressed statically

using deductive approaches. RV only deals with one execution trace, hence it amounts to

the “word acceptance” problem rather than the “emptiness check” problem as in model-

checking.

Embedded real-time systems could be rather complex if control routines are consid-

ered and different numeric methods such as proportional–integral–derivative (PID) con-

trollers [Åström and Hägglund, 2006], extended Kalman filter (EKF) [Julier and Uhlmann,

2004] are involved. For the majority of these cases, we cannot assume that fully describing

the behaviors with polynomial inequalities is enough. A potential solution is to deal with

well behaved fragments and if possible put on top of it other theories. This means that

output of tools to discretize control models can be verified at the level of the discretization

instead of at the design phase, feature that is addressed by dynamic logic [Platzer,

2008, Harel et al., 2000], temporal interval logic [Chaochen et al., 1993] and/or hybrid

logic [Platzer, 2007, Blackburn and Tzakova, 1999, Blackburn and Seligman, 1995].

1.2 Summary of Research Contribution

Considering the potential solution identified in the end of the previous section, we believe

that the polynomial description can be enough for the majority of the cases, rendering

them verifiable. More precisely, we set out to provide evidence for the following statement:

CHAPTER 1. INTRODUCTION 4

Thesis. Runtime verification of duration properties for hard real-time systems can be

made through the use of the synthesization of a fragment of Metric temporal logic with

durations (MTL-
∫

).

We will support this statement by a set of techniques and tools for synthesization of

monitors from a fragment of MTL-
∫

and by a correct-by-construction implementation of

the monitor integration on the target system. We developed a three-valued semantics for

a fragment of MTL-
∫

to deal with incomplete trace evaluation [De Matos Pedro et al.,

2017, 2015a]. For that formal language, we introduce two synthesis algorithms: one for

monitoring synthesis based on the theory of lists; and other for synthesis of satisfability

problems for satisfiability modulo theories (SMT) solvers based on non interpreted functions

with equality, arrays and non-linear arithmetic, including the use of quantifier elimination

tactic. In case of monitoring synthesis, we proceed before synthesis by applying a sim-

plifcation algorithm in order to remove and partially solve the quantifiers from formulas

in the proposed fragment of MTL-
∫

[De Matos Pedro et al., 2014b]. After that, the

new monitoring algorithm will be ready to be executed. We also provided a mechanism

to generate the monitor architecture according to the desired settings in order to be

embedded in the target system [De Matos Pedro et al., 2014a]. The synthesis algorithm

for SMT solvers is also presented as a first step to solve fundamental problems of hard

real-time systems [De Matos Pedro et al., 2016, 2015b]. In this thesis we also provide the

validation of the proposed techniques using an empirical use case about the schedulability

analysis of hard real-time systems, and a set of use cases for the autopilot stack Px4 [Meier

et al., 2015].

In addition, we have implemented a tool and a library that have come out of our research

efforts and both are now available to the public. They are rmtld3synth [De Matos Pe-

dro, 2018], a tool for synthesization of monitors and their respective safe inclusion, and

RTMLib [De Matos Pedro, 2016] the library to aid the monitor execution.

1.3 Overview of Thesis

This thesis is organized into six chapters, corresponding the three core sections to the RV

technique, the RV framework, and the practical evaluation of the technique. To accommo-

date readers, we provide a comprehensive introduction in Chapter 2 of the terminologies,

notations, and techniques that are used extensively throughout the remainder of the thesis.

The context for our research contribution with a discussion of related work in hard real-

time embedded systems, languages and RV is also presented.

Chapter 3 describes a new mechanism for RV of hard real-time systems regarding duration

CHAPTER 1. INTRODUCTION 5

properties, based on a decidable fragment of MTL-
∫

and a three-valued abstraction of this

fragment. The fragment allows for expressing quantified formulae, and is adequate for

quantifier elimination: we give an algorithm for the simplification of formulas containing

quantifiers and free logic variables. Intuitively, we abstract our fragment into first order

logic of real numbers (FOLR) to obtain quantifier-free formulas.

Chapter 4 provides a compositional framework that allows us to make assumptions about

the time isolation between components as well as the response times of the monitors. We

apply this notion to components with different criticality assurances, and whose specific

requirements shall be guaranteed statically and dynamically through schedulability analy-

sis and runtime monitoring, respectively. To guarantee these frameworks’ assumptions we

use the proposed fragment to analyze the schedulability of the compositional monitoring

framework (CMF), and to statically check the maximum response times of each of the

generated monitors.

Chapter 5 describes the practical evaluation of the proposed technique at level of both

static and dynamic verification. By static we mean a formalization of a set of rules of a

system resource usage as well as the claim of the resolution of the schedulability decision

problem for periodic resource models using a formal language. As dynamic we consider

the uncertainty monitoring and the practical case study of an autopilot. Considering

that the adopted formalism supports an explicit notion of time by means of inequalities,

durations and quantification over these formulas, it increases the expressiveness of classic

temporal logic to deal with explicit timing settings as we point out here using practical

evaluation experiments. Given the evaluation procedure that draws verdicts, we show the

importance of such existence in the context of hard real-time systems by ensuring that a

monitor always terminates and gives a result.

Finally, Chapter 6 discusses direction for future work in RV, including different synthesis

mechanisms targeting embedded systems which have so restricted resources as well as

different simplification techniques that may be adopted to use before submitting the

problem for SMT solvers.

CHAPTER 1. INTRODUCTION 6

Chapter 2

Background and Related Work

The identification and formal description of the inherent behavior of hard real-time sys-

tems are two fundamental steps for establishing the verification process of these systems.

Concerning identification, we characterize those systems and classify their schedulability

problems. Regarding the formal description, we justify the necessity, and present the

languages, to formally describe them.

Although specification languages and models for those systems are scarce, they are crucial

to address the design of new verification approaches, particularly when it comes to Runtime

Verification (RV). RV may be able to draw verdicts from more expressive formalisms than

static formal verification may currently perform, even though RV deals exclusively with

past executions and ideally reduces the burden for the software designer.

In this chapter, we give an overview of the properties of hard real-time systems, the formal

description of available languages for these systems, and we then describe the collection

of the state of the art in RV as well as the related work.

2.1 Real-Time Systems

RTS are those systems that are subject to timing constraints as well as resource constraints.

Consequently, the correctness of such systems depends on both time and functional aspects

where resource constraints may be included. According to [Burns and Wellings, 2009], real-

time systems can be distinguished from other systems, in general, when failure to respond

(or to react to a stimuli) can be considered non problematic. In [Mall, 2009], the author

describes the response time as a distinctive feature of real-time systems – although for

other authors this may be important, it is not crucial.

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Real-time systems are typically divided into soft real-time systems and hard real-time

systems. In soft real-time systems, missing a deadline degrades the performance (in

average). For instance, dropping video frames while streaming a video conference may

be inconvenient for the remote viewers, but no permanent harm is done. In hard real-time

systems, deadlines cannot be missed. For instance, an orbital satellite controller is a hard

real-time system since missing a deadline may cause the satellite to fail its orbit (wherever

it occurs). In such systems, deadlines must be kept even under worst-case scenarios.

There are many interpretations of the exact nature of a real-time system since each

author proposes a new one [Davis and Burns, 2011, Sha et al., 2004]. Nevertheless an

important one is �in real-time computing the correctness of the systems depends not only

on the logical result of the computation but also on the time at which the results are

produced.� ([Stankovic, 1988]).

Real-time systems span a considerable range of application domains such as process control

systems (e.g., a bottle filling assembly line), manufacturing systems (e.g., a production

control system), embedded systems (e.g., an onboard satellite computer), and multimedia

systems in general (e.g., a video streaming system), among many others. A few key

characteristics distinguish them from the more general-purpose systems.

• Time constraints: crucial to ensure deadlines, execution times (or durations), and

delays. For instance, deadlines restrict the time instant at which a process needs to

be concluded;

• Correctness criterion: this notion applies to both non real-time systems and real-

time systems. For real-time systems, this criterion differs from the one used in the

context of traditional systems, since correctness here implies functional and temporal

correctness. A functionally correct result produced after the deadline is considered

as incorrect;

• Support for numerical computation: the notion required for hybrid systems support

(e.g., control activities; a power plant management system). Real-time systems are

often dynamic systems where at discrete points in time some timing constraints are

required, but their behavior is a mix between discrete and dynamic systems;

• Safety-Criticality : denotes a mix between safety and reliability of systems. In

traditional systems, safety and reliability are not combined. A system is considered

safe when it does not cause any damage or injury even when it fails; reliability on

the other hand, states that a system can operate for a long time without exhibiting

any failure; and

CHAPTER 2. BACKGROUND AND RELATED WORK 9

• Large and complex : refers to the size and complexity of a system. While a small

program may not have significant problems since it is simple in its essence, the same

does not occur when developing a larger one.

Other characteristics are also applicable. However, they are not directly related to real-

time systems but may be considered as extension features. For instance, time constraints

characterize real-time systems directly, but a real-time system may, or may not, be

distributed. Such new features or extensions are described as follows:

• Reactive: describes the capacity of the system to react to external stimuli, producing

a feedback to the environment whenever the system evolves;

• Concurrent : consists of many parallel/concurrent interaction activities that should

be handled at the same time, i.e., several coexisting external elements with which

the computer program must interact simultaneously;

• Distributed : a notion of different components of the system being naturally dis-

tributed across spread physical locations;

• Embedded : represents the notion of custom-made independent systems which im-

plement specific control functions. Usually, these are known as real-time embedded

systems.1;

• Component criticality : represents the cost of a component failure. Real-time systems

may have components (or processes) of different criticalities. This introduces an

analysis of how critical are the results produced by each component related to the

proper functioning of the system;

• Stability : states that a system, even under overload conditions, complies to the

timing constraints for the high criticality components; and

• Fault-Tolerant : characterizes the ability to avoid a system entering a faulty state.

Under catastrophic scenarios, the system shall detect those states and continue

operating normally (or even in degraded mode) rather than shutting off abruptly.

Note that any real-time system can exhibit one or more of these features, as they provide

a coherent and congruent mix of characteristics.

One of the central issues in real-time systems is the mechanism to handle multiple interact-

ing activities (e.g., tasks), guaranteeing their timing constraints. This is called real-time

1Note that embedded systems are becoming more and more complex and generic (e.g. a mobile phone;

IoT home devices), therefore this distinction is starting to be fuzzy.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

scheduling and it is a very active area of research. Tasks can be seen as abstract types

which are used to denote components of code to be executed over certain constraints.

They are triggered when an event occurs (e.g., pressing a power off button, or even when

a kitchen robot see some stairs and avoid a faulty situation). These timing constraints

can be seen as a time restriction of code execution. In the following paragraphs, tasks and

timing constraints are classified.

Tasks. Real-time tasks can be classified as hard, firm or soft. These terms characterize

their dependence on and consequences of a deadline miss. It is not necessary that all

tasks of a real-time system belong to the same class. A hard real-time task is one that

is constrained to produce its results within certain predefined time bounds. A firm real-

time task, unlike hard real-time tasks, does do not fail when a timing constraint is not

satisfied (e.g., video conferencing), but there is no value in delivering the result after the

deadline. In a soft real-time task, timing constraints can be expressed in terms of the

average response time, and results have some value, although limited, after the deadline.

Moreover, real-time tasks can be characterized as being periodic, sporadic or aperiodic. A

periodic task is one that repeats within a fixed inter-arrival time; a sporadic task is one that

recurs at random instants (it has a dynamic inter-arrival time with a minimum interval);

and an aperiodic task is one that is similar to a sporadic task but has no minimum or

maximum inter-arrival time.

Timing Constraints. Timing constraints may be described by events (e.g., the occur-

rence of an input in a system such as an engine start action). These events characterize

the state changes of a system. Such systems can also be named as Discrete Event

Systems (DES) [Cassandras and Lafortune, 2008]. The events generated by real-time

systems can be classified as stimulus events or response events: the stimulus events are

generated by the environment where a system run and acts on it; the response events are

usually produced by the system in response to some stimulus of the environment (i.e.,

stimulus events). The timing constraints can be formulated through these type of events

and classified by three constraints: delay, deadline, and duration. As the name suggests

a delay d is the measure given by the time difference of two events e1, e2 greater or equal

to the value d, t(e2) − t(e1) ≥ d; a deadline is the bound of time b between two events

such as t(e2)− t(e1) ≤ b; and a duration dr corresponds to the inter-arrival time between

two consecutive events, t(e2)− t(e1) = dr. Timing constraints are in their essence timing

behaviors of real-time systems.

A task is instantiated multiple times and each instantiation is commonly denoted as a

CHAPTER 2. BACKGROUND AND RELATED WORK 11

job. The deadlines of real-time jobs can be relative to one time instant (e.g., the arrival

of a stimulus event) or absolute (from when the system started executing). The response

time is defined by the time duration between the job release and the instant that the task

finalizes its execution.

Scheduling algorithms normally target uniprocessor, multiprocessor, and distributed sys-

tems. Several major abstractions can be applied between uni/multi-processor systems and

distributed systems. They have in their essence major delays and spatial positions.

Although the main focus of this thesis is not on real-time scheduling, we have to provide

the classic schedulability analysis of periodic resource models in order to introduce the

meaning of resources in the context of the next chapters.

2.1.1 Periodic Resource Models

Let us assume a tasks set Γ = {τ1, τ2, ..., τn}, such that n ∈ N+ is the identifier of periodic

tasks, and τi = (pi, ei) with pi and ei being, respectively, the period and the worst-

case execution time of the periodic task τi; and a set of periodic resource models Ω =

{ω1, ω2, ..., ωm} with

ωj = (T, π, θ, rm),

where T ⊆ Γ , π is the replenishment period, θ is the server budget, and rm is the rate

monotonic scheduling policy.

The schedulability analysis for periodic resource models was first provided by Shin and

Lee [Shin and Lee, 2003, 2008]. The authors formulate an analysis based on resource model

supply. The supply bound function sbfω(t) is defined to calculate the minimum resource

supply for every interval of length t as follows:

sbfω(t) =

t− (k + 1)(π − θ) if t ∈ I,

(k − 1)θ otherwise,

where I = [(k + 1)π − 2θ, (k + 1)π − θ]. The value k is given by

k =

x if x > 1

1 otherwise
,

where x =
⌈
t−(π−θ)

π

⌉
.

For an arbitrary set of tasks τ and a rate monotonic scheduling policy, Lehoczky et al.

[Lehoczky et al., 1989] proposed a demand-bound function dbfrm(τ, t, i) that computes

CHAPTER 2. BACKGROUND AND RELATED WORK 12

the worst-case cumulative response demand of a task τi ∈ τ for any interval of length t.

It is defined by

dbfrm(τ, t, i) = ei +
∑

τk∈γτ (i)

⌈
t

pk

⌉
. ek,

where γτ (i) = {τ1, ..., τi} is a function that returns a set of tasks with higher-priority than

(and including) task τi, and τ is a periodic task set. The demand-bound function for

resource models is the same since the set of tasks is schedulable using the rate monotonic

policy. This means that the supply of a resource model must be greater than the demand

of the set of tasks that a resource model contains.

The tasks set T of a resource model is said to be schedulable according to a rate monotonic

policy if, and only if,

∀τi ∈ T, ∃ti ∈ [0, pi] s.t. dbfrm(T, ti, i) ≤ sbfω(ti).

2.2 Languages and Logics

Although any property of a system may be expressed in natural language, it is hard to

ensure that someone else will understand exactly what it means. Natural languages are

very expressive but, at the same time, imprecise. On the other hand, formal languages are

not very expressive but they are very precise, and do not allow for multiple interpretations

of the same concept.

Temporal logic is known as a language that is adequate for expressing temporal properties

such as liveness and safety. Safety properties ensure that a program does not do something

bad. Liveness properties ensure that the program does eventually something good.2 Tem-

poral logics have been used as a formalism for specifying qualitative ordering constraints on

the observable traces. The best-known logic is linear temporal logic (LTL) [Pnueli, 1977].

A formula in this logic is built from atomic propositions, standard boolean operators, and

modal operators. Nevertheless, LTL is not adequate for real-time systems specification. A

run of a real-time system needs to be modeled with timed interval sequences or as flows

with domain in R≥0.

The most widely known extension of LTL for dealing with real-time is metric temporal

logic (MTL) in which the modalities of LTL are augmented with timing constraints [Alur

and Henzinger, 1992b]. A common modality is called until and is denoted by U. Usually,

temporal operators can be strict (when they do not constrain the current instant) or not,

and matching (when they require their two arguments to hold together) or not. Intuitively,

2There are other properties, but they are out of the scope of this thesis.

CHAPTER 2. BACKGROUND AND RELATED WORK 13

b

a

m

a

b m

a

b m
ρ

Figure 2.1: Evaluation of propositions m, a, b over the trace ρ.

ϕ1 U<t ϕ2 is interpreted by true if along the execution trace (from 0 to t, excluding t),

there exists a point where ϕ2 holds, and such that all intermediate points satisfy ϕ1. In

case ϕ2 is true then the formula is evaluated to true. Intuitively, we are describing the

point-wise semantics of the until operator, that is strict and non-matching.

Common shorthands for metric operators are always (� or A) and eventually (� or E).

Example 1. Let us assume that the symbol m is periodically released at each 20 time

units, the trace ρ begins at t = 0, and that the until operator is strict and non-matching.

In Figure 2.1, we can observe that aU<16 b and aU<20 b are evaluated to false. However,

if we specify the formula

�<u m→ �<2 aU<16 b,

for u = 40, the evaluation is true. Intuitively, we are describing that for each occurrence

of the event m in the interval [0, 40[, in at least 2 time units the event a occurs, and that

the event a holds until the event b holds in at least 16 time units. Note that if we replace

u by 41, the formula is evaluated to false. The third occurrence of the m symbol does not

hold, neither do the symbols a and b occur further ahead.

MTL formulas can be interpreted over a variety of temporal models such as discrete (e.g.,

N, Z) [Emerson, 1990, Alur and Henzinger, 1993] and dense (e.g., R) [Hirshfeld and

Rabinovich, 2004, Bouyer et al., 2010, Souza and Prabhakar, 2007, Furia and Rossi, 2007]

time domains. Metric operators defined over discrete time can be regarded as simple

syntactic sugar, since they are a succinct way of expressing metric constraints that can

be encoded using the LTL’s next modality. Dense-time MTL operators are commonly

classified in terms of pointwise and continuous semantics. The pointwise semantics is

evaluated along possibly infinite sequences of timed words, i.e., sequences of pairs

(e0, t0)(e1, t1) . . . ,

where the ei are events/propositions belonging to an alphabet Σ and ti ∈ R≥0 are the

occurrence time instants of the events ei. The continuous semantics is evaluated over

possibly infinite signals. Given a set of propositions P , a signal is a function f : R≥0 → 2P

mapping t ∈ R≥0 to the set f(t) of propositions holding at time t. A restriction of the

CHAPTER 2. BACKGROUND AND RELATED WORK 14

continuous semantics for evaluating timed interval sequences is also known as an interval-

based semantics, or in other words, a continuous semantics with finite variability. Timed

interval sequences are sequences of pairs

(e0, l0)(e1, l1) . . . ,

where the li are contiguous, non-overlapping intervals with real or rational bounds, forming

a sequence of intervals of R≥0.

The majority of real-time systems operate in a dense time domain and states are always

changing at any time instant. Even if it may be possible to get infinitely many changes

over a fixed interval of time as the case of control systems, this will give us undecidable

results. As explained by Henzinger and colleagues [Henzinger et al., 1992] many verification

methods are based on the assumption that states are only observed at integer points (also

called digitization). Here, we are talking about digital systems, where such infinitely many

changes cannot occur. Metric temporal logic with durations (MTL-
∫

) is thus appropriate

for reasoning about such systems. However, the verification of digital systems does not

require the expressive power of continuous (R) semantics. Instead, it may be sufficient to

restrict the input model to timed interval sequences.

MTL-
∫

extend expressiveness of MTL with fragments of classic logic, including first order

logic of real numbers (FOLR). Nevertheless, we do not have a hybridization [Blackburn

and Tzakova, 1999], since we have terms and formulas separated, and quantification only

occurs over relation < (a predicate in FOLR) containing terms as argument. MTL-
∫

is

more expressive than FOLR. Moreover, lambda calculus can encode fragments of temporal

logic without making use of a proper lambda calculus temporal extension as proposed

in [Davies, 2017]. Lambda expressions will be described after introducing MTL-
∫

and

FOLR.

2.2.1 Metric temporal logic with durations (MTL-
∫
)

MTL-
∫

is more expressive than duration calculus (DC) [Lakhnech and Hooman, 1995,

Chaochen et al., 1993], but is undecidable since the relation over terms or the term function

may itself be undecidable. DC is based on interval logic and includes the chop modality

instead of the until modality as in temporal logic. This constructing operator allows us

to find a point in time where an interval can be split into two sub-intervals. Implicitly,

this express a temporal bound over liveness properties. Although DC is able to deal with

liveness properties as in MTL, the inverse chop modality shall be considered. Let us begin

by briefly reviewing MTL-
∫

.

Definition 1. Let P be a set of propositions and V a set of logic variables. The syntax

CHAPTER 2. BACKGROUND AND RELATED WORK 15

of MTL-
∫

terms η and formulas ϕ is defined inductively by

η ::= α | x | f(η1, . . . , ηn) |
∫ η

ϕ

ϕ ::= true | p | R(η1, . . . , ηn) | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃xϕ

where α ∈ R, x ∈ V is a logic variable, f a function symbol of arity n,
∫ η
ϕ is the duration

of the formula ϕ in an interval, p ∈ P is an atomic proposition, U and S are temporal

operators with ∼∈ {<,=}, γ ∈ R≥0, and R(η1, . . . , ηn), ϕ1 ∨ϕ2,¬ϕ, and ∃xϕ are defined

as usual.

Furthermore, we will use the following abbreviations: ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), ϕ → ψ for

¬ϕ ∨ ψ, �∼γ ϕ for trueU∼γ ϕ, and �∼γ ϕ for ¬(trueU∼γ ¬ϕ).

An observation function σ of length δ ∈ (R≥0 ∪ {∞}) over P is a function from P into

the set of functions from the interval [0, δ) into {tt,ff}. The length of σ is denoted by #σ.

A logical environment is any function υ : V → R≥0. For any υ, x ∈ V and r ∈ R, we will

denote by υ[x 7→ r] the logical environment that maps x to r and every other variable y to

υ(y). The following auxiliary definition will be used in the interpretation of the duration

of a formula.

Definition 2 (MTL-
∫

semantics). The truth value of a formula ϕ will be defined relative

to a model (σ, υ, t) consisting of an observation σ, a logical environment υ, and a time

instant t ∈ R≥0. We will write (σ, υ, t) |= ϕ when ϕ is interpreted as true in the model

(σ, υ, t). Terms and formulas will be interpreted in a mutually recursive way. First of

all, for each formula ϕ, observation σ and logical environment υ, the auxiliary indicator

function 1ϕ(σ,υ) : R≥0 → R≥0 is defined as follows, making use of the satisfaction relation:

1ϕ(σ,υ)(t) =

1 if (σ, υ, t) |= ϕ,

0 otherwise.

The value T JηK(κ,υ) t of a term η relative to a model can then be defined. A Riemann

integral [Gordon, 1994] of 1ϕ(σ,υ) is used for the case of a duration
∫ η
ϕ:

T JαK (σ, υ) t = α

T JxK (σ, υ) t = υ(x)

T Jf(η1, . . . , ηn)K (σ, υ) t = f (T Jη1K (σ, υ) t, . . . ,T JηnK (σ, υ) t)

T

s∫ η

ϕ

{
(σ, υ) t =

∫ t+T JηK(σ,υ) t
t 1ϕ(σ,υ)(t

′) dt′ if (∗)

0 otherwise

CHAPTER 2. BACKGROUND AND RELATED WORK 16

where (∗) means that 1ϕ(σ,υ) satisfies the Dirichlet condition [Lakhnech and Hooman,

1995, p.7]3 and the sub-term T JηK (σ, υ) t is non-negative, otherwise the function is non

Riemann integrable. The satisfaction relation in turn is defined as:

(σ, υ, t) |= p iff σ(p)(t) = tt and t < #σ

(σ, υ, t) |= R(η1, . . . , ηn) iff R(T Jη1K (σ, υ) t, . . . ,T JηnK (σ, υ) t)

(σ, υ, t) |= ϕ1 ∨ ϕ2 iff (σ, υ, t) |= ϕ1 or (σ, υ, t) |= ϕ2

(σ, υ, t) |= ¬ϕ iff (σ, υ, t) 6|= ϕ

(σ, υ, t) |= ϕ1 U∼γ ϕ2 iff there exists t′ such that t ≤ t′ ∼ t+ γ, (σ, υ, t′) |= ϕ2,

and for all t′′, t < t′′ < t′, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ϕ1 S∼γ ϕ2 iff there exists t′ such that t− γ ∼ t′ ≤ t, (σ, υ, t′) |= ϕ2,

and for all t′′, t′ < t′′ < t, (σ, υ, t′′) |= ϕ1

(σ, υ, t) |= ∃xϕ iff there exists an r ∈ R such that (σ, υ[x 7→ r], t) |= ϕ

Note that the semantics of the until operator is strict and non-matching [Bouyer et al.,

2010].

Figure 2.2a intuitively illustrates the use of the MTL-
∫

language. From Figure 2.2b we

can conclude that the formula ∀x
∫ x

(εβ) ≤
∫ x

εβ ∨ εα < x in the finite interval [0, 64) is

interpreted as true. Note that ∀x φ is a shorthand for ¬∃¬φ.

2.2.2 first order logic of real numbers (FOLR)

FOLR commonly denotes the first order logic defined over the structure (R, <,+,×, 1, 0) [Jo-

vanović and de Moura, 2013]. FOLR formulas, also known as Tarski formulas [Tarski, 1995],

are boolean combinations of polynomial equalities and inequalities. We define Z[x] by
⋃
Pn

as a ring of polynomials with one variable x, where P0 = Z, and Pn = xPn−1 + Pn−1.

Definition 3 (FOLR). A polynomial f ∈ Z[y, x] is of the form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0,

where 0 < d1 < · · · < dm, and the coefficients ai are in Z[y] with am 6= 0. A polynomial

constraint F is of the form f O g where f, g are polynomials and O ∈ {<,≤,=, 6=,≥, >}.
We denote the polynomial constraint that represents the negation of a constraint F by

¬F . A clause of polynomial constraints is a disjunction F1 ∨ · · · ∨Fn of n ∈ N polynomial

constraints. Note that in this definition we do not consider roots of polynomials.

3A function is said to satisfy the Dirichlet condition if and only if for any bounded interval I, it is

bounded in I and has a finite number of discontinuity points in I.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

εα

εβ

εidle

ρ
εidleεidleεidle εβ εβεβ εα εαεα

εβ U εα false

true

φ2

falseφ1

(a) A diagram containing: a path ρ; three event releases εβ , εα, and εidle; and the respective truth

value of the logic formulas εβ U εα, φ1 :=
∫ 30

εβ ∨ εα ≤ 10, and φ2 :=
∫ 30

εβ ≤ 10.

0 5 10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

υ(x)

x

Undef.

φ := true

φ :=
∫ x

εβ ∨ εα

φ :=
∫ x

εβεβ
εα

εβ
εβ

εα
εα

(b) The graph depicts the formula
∫ x

εβ and
∫ x

εβ ∨ εα which allows us to visually check the

formula ∀x
∫ x

εβ ≤
∫ x

εβ ∨ εα < x in the finite interval [0, 64).

Figure 2.2: Diagram of a path (a) and respective duration computation (b)

Example 2. Let us now consider the polynomial inequality 50 − x2 · y < 10. It can be

expressed using the pattern of the Definition 3 by

50 < (1 · y + 0) · x2 + 0 · x1 + 10,

where coefficient a2 is replaced by the monomial y. Considering a2 equals to 1·y2+1·y1+0,

we get 50 < a2 · x2 + 0 · x1 + 10 that is equivalent to 50 < x2 · (y2 + y) + 10.

2.2.3 Lambda expressions (λ-expressions)

The lambda calculus, commonly denoted by λ-calculus, was introduced in the 1930s by

Alonzo Church [Church, 1941]. It consists of a notation for describing mathematical

functions and programs, and a functional abstraction that captures some of the essential

CHAPTER 2. BACKGROUND AND RELATED WORK 18

common features of a wide variety of programming languages [League, 2000]. It is com-

monly described as the smallest universal programming language, since it is equivalent to

Turing machines. However, λ-calculus is focused on the transformation rules and single

function definition scheme, instead of the shape of the actual machine implementing them.

As such it is an approach more related to software than to hardware.

A λ-term is either a variable x ∈ V ar, where V ar is a countably infinite set of variables; an

application of a function e0 applied to an argument e1, usually written e0 e1; or a lambda

abstraction, λx.e representing a function with input parameter x and body e. Formally,

lambda expressions are inductively defined by

e ::= x |λx.e | e0 e1

where the metavariable e represents a λ-calculus term.

An expression can be surrounded with parenthesis for clarity, and we use the notation

with “.”s to avoid the proliferation of multiple lambdas, each one with one argument. For

instance, λx1, . . . xn.M is equivalent to (λx1(. . . (λxnM) . . .)), where M is the body of the

abstraction. We assume that lambda abstractions associate to the right, and applications

to the left, i.e., MN1 . . . Nn is equivalent to (. . . (MN1) . . . Nn). Note that λ acts as

a variable binder in a similar way to the quantifiers ∃ and ∀ in predicate calculus and
∫
. . . dx in integral calculus.

We begin by describing the meaning of the β reduction (−→β)

(λx.M)N −→β M [N/x],

where M [N/x] can be read “replace free occurrences of x in M by N”. The α-rule is defined

by

λx.M = λy.M [y/x] and y is not a free variable of M .

This rule captures the fact that a bound variable can be replaced by any other free variable.

The reduction denoted by −→∗β is the transitive and reflexive clousure of −→β.

Substitution suffers from the problem of “variable capture”. It can be solved using different

approaches. A simple one is to replace the bounded variables in certain circumstances as

in [League, 2000, Hindley and Seldin, 2008]. For instance, to evaluate λy.(λx.yx)(xz), we

have that (λx.yx)[y/xz]. Here, using the modern approach, we need to use the α-reduction

to rename x and reduce (λw.yw)[y/xz] into λw.xzw.

The concept of equality in λ-calculus is not the same as in most of mathematics where it

is called extensional equality. Instead of including the assumption that for funtions f1, f2

with the same domain, for all x , f1(x) = f2(x) implies that f1 = f2; we have that two

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Combinator λ-calculus term

I λx.x

K λxy.x

S λxyz.xz(yz)

B λxyz.x(yz)

C λxyz.xzy

Combinator λ-calculus term

T λxy.Kxy

F λxy.y

N (NOT) λp.pFT

O (OR) λpq.ppq

E (ITE) λpab.pab

Table 2.1: Standard and Boolean Combinators

terms are equal if they encode the same algorithm in some way. This does not means

that if two programs compute the same mathematical function then they are the same

program. Note that one of them may be more efficient than the other. The λ-calculus is

then said to have intensional equality. Different extensions exist but they converge in the

same results.

There are a diverse set of combinators. Combinators are lambda terms with no free

variables. Informally, combinators are completely specified operations. Some of the special

combinators are the substitute-and-apply operator S, the identity operator I, the constant

operator K, the swap operator C, and the compose operator B. Church Booleans are other

special combinators: the truth value true T, the truth value false F, the if-then-else (as

know as ite) E, the or operator O, and the not operator N. All of them can be found in

Table 2.1.

Example 3. Let us now see an example using Boolean combinators and the if-then-else

operator. Consider the term “if a then T else F”. Case when a = T, we have E T T F

equals to

(λpab.pab)(λxy.x)(λxy.x)(λxy.y) = (λxy.x)(λxy.x)(λxy.y) = (λxy.x) = T.

For a = F, we have E F T F equals to

(λpab.pab)(λxy.y)(λxy.x)(λxy.y) = (λxy.y)(λxy.x)(λxy.y) = (λxy.y) = F.

To sum up, λ-calculus, more properly the typed λ-calculus, is the basis of the well-known

functional programming languages such as ML and OCAML [Rémy, 2002]. As such it may

be an elegant theory to synthesize/encoding temporal logics for different purposes such as

monitors and/or SMT solvers.

2.2.4 Related Work

At the beginning of the 1990s, real-time constraints have been added to temporal logics

[Koymans, 1990, Alur et al., 1993], in order to extend this vocabulary with the specification

CHAPTER 2. BACKGROUND AND RELATED WORK 20

of quantitative timing constraints. A bewildering diversity of operators are used in timed

temporal logics that introduce considerable variations on the decidability and expressive-

ness of properties. There are two well-established families of timed logics with linear time.

The first one is characterized by modalities decorated with quantitative constraints and is

named timed propositional temporal logic (TPTL). TPTL [Bouyer et al., 2010] makes use of

quantification together with untimed temporal modalities and explicit constraints on time

values. The second one that is characterized by the freeze-quantification is metric temporal

logic (MTL). MTL uses the time interval constrained modalities “until” and “since”.

Alur and Henzinger [Alur and Henzinger, 1994] investigated the expressiveness and decid-

ability properties of timed logics MTL and TPTL. They showed that MTL can be easily

translated into TPTL. Furthermore, they conjectured, giving an intuitive example, that

TPTL is more expressive than MTL. In [Maler and Nickovic, 2004] a fragment of MTL

for continuous signals is considered, which is intrinsically different from observing discrete

signals in a continuous time domain.

Nevertheless, MTL and TPTL are both undecidable even for finite timed words. Thus,

several restrictions have been proposed to obtain decidable sub-logics such as Bounded-

MTL [Bouyer et al., 2008b] which has “bounded” intervals (its satisfiability EXPSPACE-

complete), and metric interval temporal logic (MITL) [Alur et al., 1996] which is decidable

in EXPSPACE. Subsets of TPTL are less studied; one of such logics, the constrained TPTL,

can be found in [Pandya and Shah, 2010, Parys and Walukiewicz, 2009].

Logics suitable for expressing linear-time temporal properties of event timed sequences or

timed resources are timed linear-time temporal logic (TLTL) [Bouyer, 2009] and weighted

metric temporal logic (WMTL) [Bouyer et al., 2008a]. Moreover, the well-known branching-

time temporal logic for timed words TCTL (UPPAAL’s [Behrmann et al., 2006] underlying

logic). Such logics are well suited for expressing simple time-bounded response properties

in linear and branching time. For instance, several simple properties can be defined by

these logics such as: an event a occurs in three time units, or even an event a consumes

at least three energy units.

The temporal logic MITL is one of the most popular real-time extensions of LTL. The

main modality of MITL is the timed until UI where I is some non-punctual interval

with integer or rational endpoints. The original version of MITL contained only future

temporal operators, although past and future versions of MITL were proposed in [Alur

and Henzinger, 1992b].

Nevertheless, none of these related logics deals with explicit time, i.e., when counting time

is required. MTL-
∫

and DC are the languages that better fit the requirement of embedded

hard real-time systems. DC is an interval logic making use of a chop operator instead of

CHAPTER 2. BACKGROUND AND RELATED WORK 21

the common temporal modalities, and MTL-
∫

is more expressive than DC. The excessive

expressiveness of such languages makes them intractable. Neither DC or MTL-
∫

is more

convenient to describe embedded real-time systems. They are simply different languages

within the same roots on temporal logic. However, we believe that intrinsic temporal

modalities such as until and since inside the logic are more convenient and intuitive for

dealing with RV.

2.3 Runtime Verification

The increasing pervasiveness of critical applications in the context of safety-critical sys-

tems leads us to state, according to [Baier and Katoen, 2008], the following sentence:

”The reliability of safety-critical systems is a key issue in the system design process”.

The magnitude of real-time systems, as well as their complexity, grows apace, meaning

that there are no longer small and standalone applications. Typically, such systems are

embedded in a larger context where several other components and systems connect and

interact. These systems become much more vulnerable to errors – the number of defects

grows exponentially with the number of interacting system components. In particular,

phenomena such as concurrency and non-determinism that are central to modeling real-

time systems turn out to be very hard to handle with standard known techniques.

Formal verification have an inherent separation in two kinds of approaches: deductive

reasoning [Makinson, 2012, Almeida et al., 2011], where techniques by logic deduction

are applied (e.g., iterative theorem proving, automated theorem proving [Harrison, 2009]);

and model-based verification where properties are checked for all execution traces (e.g.,

classical model checking [Clarke et al., 1999], probabilistic model checking [Baier and

Katoen, 2008]). The latter will be the focus of this chapter since timed temporal logics,

a known formalism for checking timed systems, are well suited for modeling real-time

systems, and also because the RV concept is close to model checking techniques (i.e., a

trace model instead of an automaton).

Real-time systems are systems where RV may play an important role, not only due to

their high complexity, which makes several static approaches practically unfeasible in a

foreseeable future [Zhu et al., 2009, Leucker and Schallhart, 2009, Falcone, 2010], but

also due to their high dependence on temporal constraints (e.g., reachability becomes

undecidable due to the time clock operations: addition, subtraction by a constant, etc.)

[Norström et al., 1999, Fersman et al., 2007, Krcal et al., 2007, Burns and Wellings, 2009].

The research on techniques for these systems has been growing progressively along the

recent years, due to a high need for reliable and safe development alternatives to static

CHAPTER 2. BACKGROUND AND RELATED WORK 22

approaches. Nonetheless, the trend towards new dynamic approaches has been higher for

soft real-time systems rather than for hard real-time systems (by focusing essentially on

the functional aspects).

The Runtime Verification (RV) technique monitors the behavior of a system to check

its conformance to a set of desirable logical properties. Note that the RV literature

mostly focuses on event-triggered solutions. Nonetheless, this monotonic event invocation

introduces two major defects to the system under scrutiny, namely significant overhead,

and unpredictability. These effects can however be eliminated by using more recent

techniques such as event-based monitoring with predictive analysis [Zhu et al., 2009],

and sample-based monitoring with predictive analysis as introduced by [Fischmeister and

Ba, 2010, Bonakdarpour et al., 2011].

Runtime monitoring (or monitoring upon execution time) is based on the synthesis of

monitors (dedicated blocks of source-code) in an automatic way from formal specifications.

It can be deployed offline for debugging, or online for dynamically checking properties

during execution. Offline monitoring is currently a slightly inactive research topic; it

consists in collecting a program trace (i.e., an execution trace) which is afterwards analyzed

to verify if the execution is in compliance with the specification or not. For the purposes

of replay and analysis of the scheduling process offline monitoring may be used to capture

from a system implementation some operations such as: system calls, interrupts, context

switches, and state variables. Online monitoring, on the other hand, may for instance

ensure, by checking upon execution, that when a plug-in is loaded dynamically by one

application, its consumed resources shall not exceed the resources allowed by the host

application. This can be performed via inline monitoring, where the monitoring is inserted

into execution code as annotations (e.g., assertions), or else by outline monitoring, where

the monitor executes as a separate concurrent process. In addition, outline monitors

may be implemented by hardware, synthesized from high level formal specifications and

executed on FPGAs, resulting in zero runtime overhead on the system’s CPU [Goodloe

and Pike, 2010]. Typically, RV involves a significant time penalty when a system is under

execution, thereby some authors [Sankar and Mandal, 1993, Pellizzoni et al., 2008] propose

that it is crucial to use multi-processor systems when a hardware monitoring approach

is not used. Using a multi-processor allows the monitoring process to be performed

concurrently on a different processor, without delays for the system under monitoring.

Predictive analysis of runtime monitors refers to the ability of ensuring that real-time con-

current systems under scrutiny are sound. Soundness means that the predictive analysis is

able to detect, correctly, functional (or even concurrency) errors from observing execution

traces.

CHAPTER 2. BACKGROUND AND RELATED WORK 23

In the last decades, several RV approaches have emerged, mainly for concurrent systems.

These approaches are an alternative or a complement to the conventional methods (e.g.,

model checking [Clarke et al., 1999], theorem proving [Fitting, 1996], and testing [Hamlet,

2010]), and, as such, a lightweight manner to check the behavior of systems, even if only

partially. Let us now give a formal definition of RV.

Definition 4. (Runtime Verification) RV is a verification technique that allows checking

whether a run of a system under scrutiny satisfies or violates a given correctness property.

RV deals with the observation problem, it detects violations (or satisfactions) of specified

properties that can (or cannot) be mitigated. A violation occurs when a system under

scrutiny deviates from the required behavior of the system.

Runtime Monitoring. Runtime monitoring is a process that is able to enforce property

checking for systems during execution time. By system under monitoring (SUM), we

consider a system under observation (SUO) where its evolving execution is observed at

selected points (along the execution time) and those observations are checked against the

given specifications [Goodloe and Pike, 2010]. In a more general perspective, runtime

monitoring can be viewed as a technique that allows to check past finite execution trace

(PFET) of a system. As such, runtime monitoring may only observe finite executions (past

observations), contrary to classical verification techniques (e.g., model checking) where the

focus is only on infinite executions. Thus, an execution of a system may be viewed as a

finite prefix of a possibly infinite execution, and is therefore considered a PFET. The

notion of runtime monitor is established in a slightly more general form in Definition 5.

Definition 5. (Runtime Monitor) A runtime monitor is a process that reads a PFET and

yields a certain verdict at execution time.

By verdict we mean, in abstract, a truth value from some truth domain. This domain can

be commonly-valued true and false, three-valued true, false and unknown, or even yielding

a probabilistic interval in [0, 1].

The problem of RV, in its mathematical essence, can be reduced to answering the word

problem, i.e., the problem of whether a given word is included in some language. Let JϕK

denote the set of valid executions satisfying the property ϕ. The word inclusion problem

consists in checking whether the execution w is an element of JϕK. On the other hand,

the language inclusion problem is more complex and undecidable in general (e.g., classical

timed automata) [Alur and Dill, 1994, Alur et al., 1999].

Runtime monitoring has been applied to concurrent (or even soft real-time) systems in

order to detect functional violations at runtime, and trigger system recovery actions when

CHAPTER 2. BACKGROUND AND RELATED WORK 24

a catastrophic error occurs. However, runtime monitoring can be applied to nonfunctional

aspects of a system through constraints, such as: performance, time, costs/weights or

even resources utilization. Currently, as far as we are aware, there are no monitoring

frameworks for such constraints.

Let us now overview logic-based monitoring. In spite of the fact that runtime monitors

typically only have finite execution traces available at some point in execution, this does

not imply that logics for infinite traces such as LTL, computation tree logic (CTL), or

even the superset of CTL (CTL*) cannot be adopted to (or restricted only to) analyze

finite execution traces. LTL [Pnueli, 1977] is a well-accepted and established logic used for

specifying properties of infinite traces, however, as referred, in RV, the goal is to check LTL

properties given finite prefixes of infinite traces. As such, we will now give a description

of two LTL-based specifications for finite traces.

ptLTL [Laroussinie et al., 2002] was proposed to extend the LTL with past operators.

The principle of this logic is rather intuitive: something in the present implies that

something happened in the past. ptLTL is a temporal logic where future-time modalities

– F (“sometime in the future”), G (“always in the future”), U (“until”), and X (“next”) –

are complemented with their past-time counterparts – P or F−1 (“once in the past”), H or

G−1 (“always in the past”), S or U−1 (“since”), and X−1 (“previous”) – respectively. There

is a duality between Past-time and Future-time logics, however, Gabbay [Gabbay, 1987]

has proved that any linear-time temporal property expressed using past-time modalities

can be translated into an equivalent (when evaluated at the beginning of the path), pure

future formula. Actually, ptLTL is not more expressive than LTL, but it is more succinct

than LTL. Gabbay also argues that this result also extends to other temporal logics, such

as CTL* with past, µ-calculus with past, etc.

LTL3, introduced by Bauer et al. [Bauer et al., 2011] is a logic which shares the syntax

with LTL but deviates in its semantics for finite traces. The idea was to implement three

truth values – > (true), ⊥ (false), ? (inconclusive) – for the logic formulas. More precisely,

given a finite word u and an LTL3 formula ϕ, the interpretation of u is defined, according

to [Bauer et al., 2011], as follows:

• if there is no continuation of u satisfying ϕ, the value of ϕ is false;

• if every continuation of u satisfies ϕ, the value of ϕ is true; and

• if true or false values cannot be determined, the value of ϕ is inconclusive.

Havelund and Rosu [Havelund and Rosu, 2002] propose a monitor synthesis algorithm

for ptLTL formulas. The generated monitor tests whether the ptLTL formula is satisfied

by a finite trace of events given as input and executed in linear time – depending on the

CHAPTER 2. BACKGROUND AND RELATED WORK 25

ptLTL formula size as well as the memory consumption. The synthesis process is basically a

pretty-print, which is a direct conversion from the logic formula to the target programming

language Java. The authors also suggest optimizations for the synthesis algorithm, which

is part of PaX, and argue that it generates efficient monitors.

Bauer et al. [Bauer et al., 2011] have developed an algorithm for generating efficient

monitors for discrete-time properties. Their approach only considers monitoring properties

that are specified in LTL3 or in TLTL with three truth values. They describe how finite

state machines (FSMs) with three output symbols are generated from LTL3 formulas. The

generated automaton reads finite traces and yields their three-valued semantics. Thus,

monitors for three-valued formulas classify prefixes as being good (>), bad (⊥), or neither

good nor bad (?). Standard minimization techniques for FSMs can be applied to obtain

a unique FSM that is optimal with respect to its number of states. The authors designed

LTL3 to specifically match the needs arising in RV.

Comparing both previous solutions, there are two important differences to note:

1. Bauer et al.’s solution uses LTL with three truth values instead of Havelund and

Rosu’s solution that uses ptLTL, and

2. Bauer et al.’s solution generates FSMs from LTL3 formulas instead of Havelund and

Rosu’s solution that applies a direct conversion from ptLTL semantics to the program

code (in this case, the Java programming language).

Two techniques that are less used but are related to the topic of this thesis. The Anna

(ANNotated Ada) specification language was introduced in [Sankar and Mandal, 1993],

including the synthesis monitor algorithm named Anna consistency checking system (Anna

CCS). This outdated approach consists in the construction of a high-level specification

language for concurrency monitoring. It is suitable to monitor the critical aspects of the

system’s behavior continuously along its execution. Anna is based on first order logic

and its syntax is an extension of the Ada syntax. Anna CCS provides the capability

to distribute the monitoring of specifications on multi-processor hardware platforms to

meet practical time constraints. However, this approach assumes that the program under

monitoring is sequentially executed. LOLA [D’Angelo et al., 2005] is also a specification

language and an algorithm for the online and offline monitoring of synchronous systems,

which include circuits and embedded systems. Even being a functional language over

finite streams, the initial proposal does not contemplate support for runtime monitoring

of synchronous systems using more than one clock, neither asynchronous systems. Due to

that several streams acquired with different clocks cannot be used.

CHAPTER 2. BACKGROUND AND RELATED WORK 26

2.3.1 Runtime Monitoring of RTS

So far, not many approaches for RV of real-time properties have been proposed. In the

following, three real-time monitoring approaches are described.

Temporal Rover [Drusinsky, 2000] is appropriate for monitoring of hard real-time systems

due to the temporal constraints being specified in MTL in spite of the monitoring software

being closed, therefore we are not able to undertansd how it is designed. Temporal Rover

is a commercial RV tool based on future time metric temporal logic. It allows program-

mers to insert formal specification in programs via annotations, from which monitors are

generated. An Automatic Test Generation (ATG) component is also provided to generate

test sequences from logic specifications. Temporal Rover and its successor, DB Rover,

support both inline and offline monitoring. However, they also have their specification

formalisms hardwired and are tightly bound to Java. [Alves et al., 2011] presents the

results of a formal computer-aided validation and verification of critical time-constrained

requirements of the Brazilian Satellite Launcher flight software based on Temporal Rover.

In [Auguston and Trakhtenbrot, 2008] the authors present an approach for the dynamic

analysis of reactive systems via RV of code generated from Statechart [Harel and Naamad,

1996] models and verified by the Statemate approach [Auguston and Trakhtenbrot, 2008].

The approach is based on the automatic synthesis of monitoring statecharts from formu-

las that specify the system’s temporal and real-time properties in a proposed assertion

language. The promising advantage of this approach is in its ability to analyze real-world

models (with attributes reflecting the various design decisions) in the system’s realistic

environment. This capability is beyond the scope of model checking tools.

Bauer et al. have developed an algorithm for generating efficient monitors from TLTL for

real-time systems [Bauer et al., 2011]. The authors introduce the notion of TLTL with

three truth values, denoted TLTL3. This basic notion is interesting and adequate for RV,

since the complete set of traces is not available and the RV requires that the specification

is evaluated increasingly. This approach employs so-called event-clock automata (ECA)

for monitoring of TLTL3 formulas. Moreover, Bauer et al. introduce the symbolic timed

runs and show their benefits for checking specifications efficiently, avoiding a possible but

generally expensive translation of ECA to predicting-free timed automata. Yet, without

considering counting time explicitly.

2.3.2 Related Work

The last two decades have witnessed an immense increase in research activities in the

CHAPTER 2. BACKGROUND AND RELATED WORK 27

area of static analysis [Nielson et al., 1999, Almeida et al., 2011, Tschannen et al., 2011],

where numerous theories and methods have been developed to verify both sequential and

concurrent programs [Apt et al., 2009]. However, techniques such as model checking [Baier

and Katoen, 2008, Clarke et al., 1999] and theorem proving [Harrison, 2009] proved to be

hard, expensive and non intuitive for the common programmer (i.e., many times unusable

[Tschannen et al., 2011]). Moreover, the trend towards increasing size and complexity of

software in real-time systems promises to make their static verification very challenging

in the foreseeable future [Zhu et al., 2009]. The exploration of other techniques, such as

dynamic verification, is necessary in order to decrease the burden of program verification,

either in alternative or as complement to static methods [Leucker and Schallhart, 2009,

Falcone, 2010]. A recent trend in program verification is the use of runtime checking to

complement the property verification of sequential and concurrent systems [Tschannen

et al., 2011, Zee et al., 2007].

In this section, we will review some approaches to monitoring based on aspect-oriented

programming, rule-based languages, and hardware monitoring.

Aspect-Oriented Programming Languages. Aspect-oriented programming is a re-

cent paradigm to organize the entities according to aspects, which has proved to be

adequate/useful for monitoring calls instrumentation. Aspect-oriented programming has

been increasingly adopted in different programming languages, e.g., AspectJ (an aspect-

oriented extension of Java language), AspectC++ (an aspect-oriented extension of C

and C++ languages), and recently Ada 2012 [Barnes, 2012]. Building on these AOP

languages, numerous extensions have been proposed to provide domain-specific features

for AOP. Among these extensions, Tracematches [Allan et al., 2005] and J-LO [Bodden,

2004] support history(trace)-based aspects for Java.

Tracematches enables the programmer to trigger the execution of certain block of code by

specifying a parametric regular pattern of events in a computation trace, where the events

are defined over entry/exit of AspectJ pointcuts. When the pattern is matched during the

execution, the associated code will be executed.

J-LO is a tool for runtime-checking temporal assertions. These temporal assertions are

specified using parametric linear temporal logic (LTL) and the syntax adopted in J-LO is

similar to Tracematches except that the properties are specified in a different formalism.

J-LO also uses the same parametricity semantics as Tracematches. J-LO mainly focuses

on checking properties at runtime rather than providing programming support. In J-LO,

the temporal assertions are inserted into Java files as annotations that are then compiled

into runtime checks. Both Tracematches and J-LO support parametric events, i.e., free

CHAPTER 2. BACKGROUND AND RELATED WORK 28

variables can be used in the specified properties and will be bound to specific values at

runtime for matching events.

Rule-based Languages. Eagle [Barringer et al., 2004a], RuleR [Barringer et al., 2007],

and PQL [Martin et al., 2005] are general specification languages which encompass moni-

toring algorithms. Such specification formalisms allow for complex property specification

with parameter bindings. Eagle and RuleR are based on fixed-point logics and rewrite

rules, while PQL is based on SQL relational queries. PQL allows programmers to express

design rules that deal with sequences of events associated with a set of related objects.

These schemes tackle the definition of specification language with the support of data

binding among many other features, which makes the languages somewhat confusing and

probably inefficient for monitor generation.

Program Trace Query Language (PTQL) [Goldsmith et al., 2005] is a language based on

SQL-like relational queries over program traces. The current PTQL compiler, Partiqle,

instruments Java programs to execute the relational queries on the fly. PTQL events

are timestamped, and the timestamps can be explicitly used in queries. PTQL can be

arbitrarily complex in the worst cases but, in average, it has an acceptable overhead.

PTQL properties are globally scoped and their running mode is inline, as the predecessor

PQL. PTQL provides no support for recovery, its main use being to detect errors. PTQL

has static and dynamic tools. The static analysis conservatively looks for potential matches

for queries and is useful to reduce the number of dynamic checks. The dynamic analyzer

checks the runtime behavior and can perform user-defined actions when matches are found.

Attempts at monitoring hardware. BusMOP [Pellizzoni et al., 2008] is an outline

hardware monitoring solution proposed to plug a monitor into a peripheral bus. The pe-

ripheral behavior is monitored by hardware, within which the read and write transactions

are examined on the bus without runtime overhead on the system.

The PSL to Verilog compiler, P2V [Lu and Forin, 2008], is an attempt to perform runtime

monitoring of formal properties in hardware. P2V is similar to BusMOP in that monitors

are implemented in hardware rather than software, and that both approaches thus have no

runtime overhead on the CPU. P2V, however, is more similar to the above approaches in

that it is designed for monitoring actual programs rather than peripheral devices. Also it

requires a dynamically extensible soft-core processor implemented on an FPGA, while the

BusMOP approach can potentially be applied to any COTS communication architecture.

Furthermore, P2V uses hardwired logic (PSL) while BusMOP allows for the use of different

formalisms.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

2.3.2.1 Frameworks

MOP [Meredith et al., 2011], RV [Meredith and Roşu, 2010], MaC [Kim et al., 2004],

PathExplorer (PaX) [Havelund and Rosu, 2001], Eagle [Barringer et al., 2004b], RuleR

[Barringer et al., 2010], and RMOR [Havelund, 2008] are RV frameworks for logic, extended

regular expressions (ERE), context-free grammar (CFG), assertion-based monitoring, within

which specific tools for Java (and C) – Java-MOP [Jin et al., 2012], RV-Monitor/RV-

Predict, Java-MaC, Java PathExplorer, Hawk [d’Amorim and Havelund, 2005], and RMOR,

respectively – are implemented. The summary of the specification languages of such

platforms, which support outline monitoring, is the following

- MOP supports extended regular expressionss (EREs), Java modeling language (JML),

and several variants of LTL;

- RV uses five different specification formalisms, namely FSMs, EREs, CFGs, past-time

linear temporal logic (ptLTL), and future-time linear temporal logic (FTLTL);

- MaC uses a specialized language based on interval temporal logic;

- JPaX just supports LTL;

- Eagle adopts a first order fixed-point LTL with a chop operator;

- RuleR solves some performance issues of Eagle and adopts a fixed-point propositional

temporal logic (PTL); and

- RMOR supports LTL and a graphical state machine language RCAT.

MOP, a monitor oriented programming framework, can be seen as having evolved from

JPaX with the idea that the specification and implementation together form a system.

The MOP approach supports inline, outline, and offline monitoring; it allows to define

new formalisms to extend the MOP framework; it generates monitors from annotated code

as plain Java code; and it adapts easily to new languages (as the authors argue). MTL

currently is not supported by MOP, neither is any other real-time logic. The RV system

[Meredith and Roşu, 2010], a commercial-grade successor of MOP, is based on the success

of the MOP system and on a vastly expanded version of the jPredictor System [Chen et al.,

2008]. MaC [Sokolsky et al., 2006, Sammapun et al., 2007] and JPaX integrate monitors

via Java bytecode instrumentation, making them difficult to port to other languages.

MaC also supports statistical runtime checking. Eagle attempts to build a logic that is

powerful enough to subsume most existing specification logics. The Eagle logic with a

chop operator allows to model sequential composition. Although quite expressive, it does

not yield efficient monitors, so RuleR attempts to address those inefficiencies [Goodloe and

Pike, 2010]. A monitor is expressed as a collection of logic rules specified in propositional

CHAPTER 2. BACKGROUND AND RELATED WORK 30

temporal logic, as a FSM, or CFG. The RMOR platform monitors C programs specifying

both safety and bounded liveness properties that can be expressed as FSMs, and observes

events recorded in an execution trace.

These platforms are only suited for runtime monitoring or even RV of concurrent systems.

As such, they cannot be used for real-time systems since only temporal constraints are

ensured, and as it is well known that real-time systems are mainly characterized by their

dependence on timing (or timed) constraints.

2.3.2.2 RV vs. static verification and testing techniques

Due to the increasing importance of contextualizing verification techniques in the sense

of knowing their potential and fragilities, a comparison between RV and three well-known

techniques (deductive reasoning, model checking and testing) is made in the following

paragraphs. These techniques can be characterized in terms of scalability, types of prop-

erties and coverage.

Model Checking. RV shares many similarities with model checking and, roughly speak-

ing, this technique can be seen as complementary to model checking (i.e., runtime verifi-

cation reduces verification issues, which are undecidable, but also reduces the coverage).

Nevertheless, and according to [Leucker and Schallhart, 2009], there are important differ-

ences to consider:

1. In RV, only one execution of a given system is checked to answer, in execution time or

after the execution (inline monitoring and outline monitoring, respectively), whether

it satisfies a given correctness property ϕ. This corresponds to knowing whether

the execution trace satisfies the property ϕ, i.e., the word acceptance problem. In

contrast, model checking deals with the language inclusion problem. As is well-

known, the word problem is of far lower complexity than the inclusion problem

[Alur and Dill, 1994].

2. RV considers finite traces, since all executions are necessarily finite, whereas model

checking deals with infinite traces.

3. RV, especially when dealing with online monitoring, considers finite executions of

increasing size. For this, a monitor should be designed to consider executions in an

incremental fashion. In contrast, model checking deals with a complete model which

allows considering arbitrary positions of a trace.

CHAPTER 2. BACKGROUND AND RELATED WORK 31

From an application point of view, there are also important differences between RV and

model checking: RV deals only with observed executions. Thus it is applicable to black-

box systems for which no system model is at hand. In model checking, however, a precise

description of the system to check is mandatory as, before actually running the system, all

possible executions must be checked. Furthermore, model checking suffers from the well-

known state explosion problem, which refers to the fact that analyzing all executions of a

system is typically carried out by generating the whole state space, which often becomes

unfeasibly huge. Considering a simple run, on the other hand, most applications of RV

are not practically limited by their memory requirements, since the necessary history

information, although potentially unbounded, is usually fairly small.

Model checking is characterized by a lower scalability (due to the state explosion problem),

a lower properties coverage (several properties cannot be checked, e.g., explicit time

properties, especially when dealing with TPTL and MTL), and higher coverage of the

model (e.g., a property ϕ holds for all possible paths of the model). However, verification

using model checking is only as good as the model of the system.

Deductive Reasoning. Logical deduction is clearly one of the most used techniques in

software verification; however, it is also one of the most difficult to apply. Deductive proof

construction and RV are two distinct techniques, clearly without similarities. They differ

in the following points:

1. Deductive proofs are much more time-consuming than a push button operation such

as RV in the sense of utilization perspective. Deductive reasoning requires that well

known deductive techniques and tactics are used. Moreover, all RV tools works in

an automatic fashion.

2. RV has lower coverage than deductive proofs. The latter technique is general and

comprehensive. In contrast, RV only verifies concrete past executions which cannot

be extended or generalized.

3. Deductive proofs are exact and rigorous, no more verification efforts are required

after a finite set of steps are found.

Testing. RV has similarities with testing since neither of the techniques considers each

possible execution of a system, but just a single or a finite subset, indicating that their

coverage is usually incomplete.

There are two testing schemes, namely suite-based testing and oracle-based testing, that

can be used [Hamlet, 2010]. Typically, a test suite is formed by a finite set of finite input-

CHAPTER 2. BACKGROUND AND RELATED WORK 32

output sequences. Test-case execution is then the act of checking whether the output of a

system agrees with the predicted one, after giving the input sequence to the system under

test. However, oracle-based testing, a closer approach to RV, composes a test suite which

is only formed by input sequences. To anticipate the output results for testing, a so-called

test oracle has to be designed and coupled to the system under test. This oracle observes

the system under test and checks a number of properties (e.g., by unit tests 4) in an

automatic way. In contrast, RV is identical in the sense that the monitor is coupled to the

system and instead of testing it, monitors whether the properties are satisfied or violated.

An alternative way to compare both techniques, according to [Bauer et al., 2011], is:

1. RV generates monitors from high-level specifications rather than a handmade con-

struction of a test oracle.

2. RV does not consider the supply of a suitable set of input sequences to exhaustively

test a system.

This technique is the most widely used in industry due mainly to its greater scalability,

in spite of lower coverage and the uncertainty in test oracle development.

Summary

Indispensable topics and respective related works have been summarized and merged

in this chapter as the background required to read this thesis. We have recapped the

importance of duration properties for proving correct real-time systems’ behavior with the

conclusion that there is a huge gap of RV frameworks ready to deal with explicit real-time

systems properties. Proper languages for describing hard real-time systems properties have

been surveyed as well, including a diverse number of properties. One important language

is MTL-
∫

, which, being more expressive than duration calculus, may originate further

issues that need to be dealt statically (we will continue exploring it in the next chapter).

We have also introduced lambda calculus as basic and elegant theory for constructing new

synthesis algorithms.

4Consists of testing certain areas of the source-code by providing different inputs for such blocks of code

(e.g., functions) and comparing it with the desired outcome.

Chapter 3

RV with RMTL-
∫

RV is concerned with the problem of generating monitors from formal specifications, and

adding these monitors into the target code as a safety-net that is able to detect abnormal

behaviors and, possibly, respond to them via the release of counter-measures. Providing

an expressive formal language that fits the timing requirements of real-time systems is the

main objective of this chapter.

A fragment of MTL-
∫

is presented as an intuitive tool to carry out RV of hard real-

time systems. We begin by the specification language and then introduce the notions

of inequality translation using FOLR in order to simplify restricted metric temporal logic

with durations (RMTL-
∫

) formulas. In the remaining part of the chapter, we present the

correctness result of the inequality translation algorithm, and we conclude by describing

the synthesis algorithms for static and dynamic verification purposes.

3.1 The specification Language RMTL-
∫

To overcome the undecidability results of MTL-
∫

, we will apply restrictions on its def-

inition. RMTL-
∫

is a syntactically and semantically restricted fragment of MTL-
∫

; the

syntactic restrictions over MTL-
∫

include the use of bounded formulas, of a single relation

< over the real numbers, the restriction of the n-ary function terms to use one of the

+ or × operators, and a restriction of α constants to the set of rationals Q. Tarski’s

theorem [Tarski, 1995] states that the first-order theory of reals with +, ×, and < allows

for quantifiers to be eliminated. Algorithmic quantifier elimination leads to decidability,

assuming that the truth values of formulas involving only constants (without free variables

and bound variables) can be computed.

33

CHAPTER 3. RV WITH RMTL-
∫

34

The semantic restrictions on the other hand include the conversion of the continuous

semantics of MTL-
∫

into an interval-based semantics, where models are timed interval

sequences and formulas are evaluated in a given logical environment at a time t ∈ R≥0.

Definition 6 (RMTL-
∫

formulae). Let P be a set of propositions and V a set of logical

variables. The syntax of RMTL-
∫

terms η and formulas ϕ is defined inductively as follows:

η ::= α | x | η1 ◦ η2 |
∫ η

ϕ

ϕ ::= true | p | η1 < η2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U∼γ ϕ2 | ϕ1 S∼γ ϕ2 | ∃xϕ

where: α ∈ R, x ∈ V is a logical variable, the operators ◦ ∈ {+,×} are used for the sum

and multiplication of terms,
∫ η
ϕ is the duration of the formula ϕ in the interval [0, η];

p ∈ P is an atomic proposition, < is the relation less than on terms, U and S are temporal

operators, with ∼∈ {<,=} and γ ∈ R≥0.

We will use the following classic shorthands: ϕ ∧ ψ for ¬(¬ϕ ∨ ¬ψ), ϕ → ψ for ¬ϕ ∨ ψ,

�∼γ ϕ for trueU∼γ ϕ, and �∼γ ϕ for ¬(trueU∼γ ¬ϕ). We will denote by Φ the set of

RMTL-
∫

formulas. Furthermore, we will use ◦ ∈ {+,×} and ∼∈ {<,=} to range over

operators.

A timed state sequence κ is an infinite sequence of the form

(p0, [i0, i
′
0[), (p1, [i1, i

′
1[) . . . ,

where pj ∈ P, i′j = ij+1 and ij , i
′
j ∈ R≥0 such that ij < i′j and j ≥ 0. Let κ(t) be defined

as {pj} if there exists a tuple (pj , [ij , i
′
j [) such that t ∈ [ij , i

′
j [, and as ∅ otherwise. Note

that there exists at most one such tuple.

A logical environment is any function υ : V → R≥0. For any x ∈ V, r ∈ R, and logical

environment υ, we will denote by υ[x 7→ r] the logical environment that maps x to r and

every other variable y to υ(y).

Definition 7 (RMTL-
∫

semantics). The truth value of a formula ϕ will be defined relative

to a model (κ, υ, t) consisting of a timed state sequence k, a logical environment υ, and

a time instant t ∈ R≥0. We will write (κ, υ, t) |= ϕ when ϕ is interpreted as true in the

model (κ, υ, t). Terms and formulas will be interpreted in a mutually recursive way.

First of all, for each formula ϕ, timed state sequence k and logical environment υ, the

auxiliary indicator function 1ϕ(κ,υ) : R≥0 → R≥0 is defined as follows, making use of the

satisfaction relation:

1ϕ(κ,υ)(t) =

1 if (κ, υ, t) |= ϕ,

0 otherwise.

CHAPTER 3. RV WITH RMTL-
∫

35

The value T JηK(κ,υ) t of a term η relative to a model can then be defined. A Riemann

integral [Gordon, 1994] of the function 1ϕ(κ,υ) is used for the case of a duration
∫ η
ϕ.

T JαK(κ,υ) t = α

T JxK(κ,υ) t = υ(x)

T Jη1 ◦ η2K(κ,υ) t = T Jη1K(κ,υ) t ◦T Jη2K(κ,υ) t

T

s∫ η

ϕ

{
(κ,υ) t =

∫ t+T JηK(κ,υ)t
t

1ϕ(κ,υ)(t∗) dt∗ if T JηK(κ,υ) t ≥ 0

0 otherwise

The satisfaction relation is defined inductively as follows:

(κ, υ, t) |= true

(κ, υ, t) |= p iff p ∈ κ(t)

(κ, υ, t) |= η1 < η2 iff T Jη1K(κ,υ) t < T Jη2K(κ,υ) t

(κ, υ, t) |= ϕ1 ∨ ϕ2 iff (κ, υ, t) |= ϕ1 or (κ, υ, t) |= ϕ2

(κ, υ, t) |= ¬ϕ iff (κ, υ, t) 6|= ϕ

(κ, υ, t) |= ϕ1 U∼γ ϕ2 iff there exists t′ such that t ≤ t′ ∼ t+ γ and (κ, υ, t′) |= ϕ2,

and for all t′′such that t < t′′ < t′, (κ, υ, t′′) |= ϕ1

(κ, υ, t) |= ϕ1 S∼γ ϕ2 iff there exists t′ such that t− γ ∼ t′ ≤ t and (κ, υ, t′) |= ϕ2,

and for all t′′such that t′ < t′′ < t, (κ, υ, t′′) |= ϕ1

(κ, υ, t) |= ∃xϕ iff there exists a value r ∈ R such that (κ, υ[x 7→ r], t) |= ϕ

We will write (κ, υ) |= ϕ as shorthand for (κ, υ, 0) |= ϕ. Note that the semantics of the

until operator is strict and non-matching. This implies that, in order to satisfy ϕ1 U∼γ ϕ2,

the model is not required to satisfy ϕ1.

An important property of our restriction is that RMTL-
∫

satisfies by construction the

Dirichlet condition implying the Riemann property [Lakhnech and Hooman, 1995, p.7]:

Lemma 1. For any RMTL-
∫

formula ϕ, timed state sequence κ, and logical environment

υ, the indicator function 1ϕ(κ,υ) is Riemann integrable.

Proof of Lemma 1. We proceed by contradiction on the claim that the function 1ϕ(κ,υ) has

finitely many discontinuities. Let us consider the model (κ, υ, t) and a proposition prop

such that prop ∈ κ(t) for t ∈ [0, 1).

We consider the case when φ is equal to
∫ 1
prop = 1−a: from the semantic interpretation

of the duration term, we have T
r∫ 1

prop
z

(κ,υ) t = 1 − t. Applying the substitution

property of equality, we get a+
∫ 1
prop = 1. Since t is directly related to the variable a,

when the timed state sequence κ has finite length, from the semantic rules we can see that

CHAPTER 3. RV WITH RMTL-
∫

36

if a has infinitely many discontinuities along t then 1φ(κ,υ) also contains infinitely many

discontinuities. Considering the above relation between t and the logic variable a (t = a),

introducing infinitely many discontinuities in t means that we can extend the formula

φ to introduce finitely many discontinuities in a. Now, from a close examination of the

semantics of the logic, we have that a can be constrained only by polynomial inequalities.

Infinite discontinuities on polynomial inequalities are not obtainable.

We also need to consider the case when Boolean operators are applied to polynomial

inequalities. In order to obtain an infinite number of discontinuities we would need an

infinite number of Boolean operators and then an infinite formula. Since any formula

needs to be finite to be satisfiable, then this contradicts the claim.

We skip the proof for the remaining cases, since no more relations between t and logic

variables can be allowed semantically, other than those originating in duration terms in

certain circumstances. To conclude the proof, we have that no infinitely many discon-

tinuities exist, and then the Dirichlet condition holds, which implies that the indicator

function 1ϕ(κ,υ) is Riemann integrable. �

Example 4 (Application of Durations). Let us now consider an example using a duration

term concerning the evolution of a real-time system formed by tasks depending entirely on

the occurrence of events, the evaluation of the propositions is performed over these events,

and all the tasks have an associated fixed set of events. Let φm be a formula that specifies

the periodic release of a renewal event for a timed resource in the system, and let ψm be

a formula specifying every event triggered by tasks belonging to that resource. To monitor

utilization and the release of timed resources, we employ the formula,

�<v φm →
∫ t

ψm ≤ β,

where v is arbitrarily large, t is the budget renewal period, and β is the allowed budget (i.e.

the execution time of tasks belonging to the timed resource). Let us consider two finite

sequences κ1 and κ2, such that κ1 is a subsequence of κ2, and an arbitrary formula φ.

In the two-valued setting, incremental evaluation over t is inconsistent with respect to the

sequence, since we could have (κ1, υ, 0) 6|= φ and (κ2, υ, 10) |= φ due to lack of sequence

symbols in κ1.

A different solution will be presented in the next section where the unknown truth-value

is an option.

CHAPTER 3. RV WITH RMTL-
∫

37

3.2 Three-valued Extension of RMTL-
∫

The three-valued logic extension of RMTL-
∫

, which we will call three-valued restricted

metric temporal logic with durations (RMTL-
∫
3
), is syntactically defined as before, but

contains two new terms. These terms allow for variables to be maximized and minimized in

certain intervals, subject to a constraint given as a formula. The terms must be introduced

here due to the situation in which no minimum or maximum exists (the formula is not

satisfied in the interval), since we need to define an infeasible value instead of assigning a

real number to these terms. The language of terms of RMTL-
∫
3

is defined as follows:

η ::= α | x | min
x

ϕ | max
x

ϕ | η1 ◦ η2 |
∫ η

ϕ

where min
x

ϕ and max
x

ϕ, are respectively, the minimum and maximum of a formula with

respect to the logical variable x. All other formulas and terms are as in RMTL-
∫

. We will

denote by Φ3 the set of RMTL-
∫
3

formulas, and by Γ the set of RMTL-
∫
3

terms.

Definition 8 (RMTL-
∫
3

Semantics). The truth value of a formula ϕ will again be defined

relative to a model (κ, υ, t) consisting of a timed state sequence k, a logical environment υ

and a time instant t ∈ R≥0, and will now be one of the 3-values {tt,ff,⊥}. We will write

JϕK3(κ,υ,t) = tt when ϕ is interpreted as true in the model (κ, υ, t), JϕK3(κ,υ,t) = ff when ϕ

is interpreted as false in the model (κ, υ, t), and JϕK3(κ,υ,t) = ⊥ otherwise. The auxiliary

indicator function 1ϕ(κ,υ) : R≥0 → {−1, 0, 1} is defined as follows:

1ϕ(κ,υ)(t) =

1 if JϕK3(κ,υ,t) = tt,

0 if JϕK3(κ,υ,t) = ff,

−1 if JϕK3(κ,υ,t) = ⊥

The interpretation of the term η will be given by T JηK3(κ,υ) t ∈ R ∪ {⊥R}, as defined by

the following rules. Whenever T JηK3(κ,υ) t = ⊥R, this means that the term η is infeasible.

Rigid terms:

- T Jη1K3(κ,υ) t is defined as α if η1 = α, and as υ(x) if η1 = x

Minimum and Maximum terms:

- If η1 = min
x

ϕ, then T Jη1K3(κ,υ) t is defined as:

minm if m 6= ∅ and for all y such that y < minm, JϕK3(κ,υ[x 7→y],t) 6= ⊥
⊥R otherwise

where m = {r | JϕK3(κ,υ[x 7→r],t) = tt}.

CHAPTER 3. RV WITH RMTL-
∫

38

- If η1 = max
x

ϕ, then T Jη1K3(κ,υ) t is defined as:

max n if n 6= ∅ and for all y such that maxn < y, JϕK3(κ,υ[x 7→y],t) 6= ⊥
⊥R otherwise

where n = {r | JϕK3(κ,υ[x 7→r],t) = tt}.

Duration term:

- If η1 =
∫ η2 φ, then T Jη1K3(κ,υ) t is defined as:

∫ t+T Jη2K3(κ,υ) t

t
1φ(κ,υ)(t

′) dt′ if
T Jη2K3(κ,υ) t ≥ 0 and for all t′′ ∈ [t, t+T Jη2K3(κ,υ) t],

1φ(κ,υ)(t
′′) ∈ {0, 1}

⊥R otherwise

Binary terms:

- If η1 = η2 + η3, then T Jη1K3(κ,υ) t is defined as:

T Jη2K3(κ,υ) t + T Jη3K3(κ,υ) t if T Jη2K3(κ,υ) t,T Jη3K3(κ,υ) t ∈ R

⊥R otherwise

- If η1 = η2 × η3, then T Jη1K3(κ,υ) t is defined as:

T Jη2K3(κ,υ) t×T Jη3K3(κ,υ) t if T Jη2K3(κ,υ) t,T Jη3K3(κ,υ) t ∈ R

⊥R otherwise

Turning to the interpretation of formulas, we define JϕK3(κ,υ,t) to be one of the three values

in {tt,ff,⊥}, according to the following rules.

Basic formulae:

- If φ is p, then JφK3(κ,υ,t) is tt if p ∈ κ(t), ff if p 6∈ κ(t) and κ(t) 6= ∅, and

⊥ if κ(t) = ∅.

Relation operator:

- If φ is η1 < η2, then JφK3(κ,υ,t) is defined as:

tt if T Jη1K3(κ,υ) t,T Jη2K3(κ,υ) t ∈ R, and T Jη1K3(κ,υ) t < T Jη2K3(κ,υ) t

ff if T Jη1K3(κ,υ) t,T Jη2K3(κ,υ) t ∈ R, and T Jη1K3(κ,υ) t ≥ T Jη2K3(κ,υ) t

⊥ if T Jη1K3(κ,υ) t = ⊥R or T Jη2K3(κ,υ) t = ⊥R

Boolean operators:

- If φ is ¬ϕ, then JφK3(κ,υ,t) is tt if JϕK3(κ,υ,t) = ff, ff if JϕK3(κ,υ,t) = tt, and⊥ otherwise.

CHAPTER 3. RV WITH RMTL-
∫

39

- If φ is ϕ1 ∨ ϕ2, then JφK3(κ,υ,t) is tt if Jϕ1K3(κ,υ,t) = tt or Jϕ2K3(κ,υ,t) = tt,

ff if Jϕ1K3(κ,υ,t) = ff and Jϕ2K3(κ,υ,t) = ff, and ⊥ otherwise.

Temporal Operators:

- If φ is ϕ1 U∼γ ϕ2, then JφK3(κ,υ,t) is defined as:

tt if there exists t′ such that t ≤ t′ ∼ t+ γ, Jϕ2K3(κ,υ,t′) = tt and

for all t′′, t < t′′ < t′, Jϕ1K3(κ,υ,t′′) = tt

ff if for all t′, t ≤ t′ ∼ t+ γ,

Jϕ2K3(κ,υ,t′) 6= ff implies that

there exists t′′ such that t < t′′ < t′, Jϕ1K3(κ,υ,t′′) = ff and

Jϕ2K3(κ,υ,t′) = ff implies that there exists no t′′ such that t < t′′ < t′ or

there exists t′′ such that t < t′′ < t′, Jϕ1K3(κ,υ,t′′) = ff

⊥ otherwise

- If φ is ϕ1 S∼γ ϕ2, then JφK3(κ,υ,t) is defined as:

tt if there exists t′ such that t− γ ∼ t′ ≤ t, Jϕ2K3(κ,υ,t′) = tt and

for all t′′, t′ < t′′ < t, Jϕ1K3(κ,υ,t′′) = tt

ff if for all t′, t− γ ∼ t′ ≤ t,
Jϕ2K3(κ,υ,t′) 6= ff implies that

there exists t′′ such that t′ < t′′ < t, Jϕ1K3(κ,υ,t′′) = ff and

Jϕ2K3(κ,υ,t′) = ff implies that there exists no t′′ such that t′ < t′′ < t or

there exists t′′ such that t′ < t′′ < t, Jϕ1K3(κ,υ,t′′) = ff

⊥ otherwise

Existential operator:

- If φ is ∃x ϕ, then JφK3(κ,υ,t) is defined as:

tt if there exists a value r ∈ R such that JϕK3(κ,υ[x 7→r],t) = tt

ff if for all r ∈ R, JϕK3(κ,υ[x 7→r],t) = ff

⊥ there exits r ∈ R such that JϕK3(κ,υ[x 7→r],t) = ⊥ and

there exists no r ∈ R such that JϕK3(κ,υ[x 7→r],t) = tt

We will write (κ, υ, t) |=3 ϕ when JϕK3(κ,υ,t) = tt, and (κ, υ, t) 6|=3 ϕ when JϕK3(κ,υ,t) = ff.

In what follows we will often write η1 = η2 for ¬(η1 < η2) ∧ ¬(η2 < η1).

Preservation of RMTL-
∫

Semantics. An immediate motivation for (the choice of)

defining a three-valued semantics for our logic fragment comes from the nature of runtime

verification, which evaluates timed sequences where it is not possible to determine a defini-

tive true or false value without analyzing the complete trace. For instance, considering a

CHAPTER 3. RV WITH RMTL-
∫

40

prefix κp of a timed sequence κ, we have that the evaluation of the same formula in the

models (κ, υ, t) and (κp, υ, t) produces different truth values. Classic semantics cannot

provide a common truth value to make consistent incremental evaluations of the model,

which is an important feature for RV.

The semantic preservation of both truth and falsity for the three-valued logic is defined

using the following two relations: a partial relation ≺ ⊆ {tt,ff,⊥} × {tt,ff} defined by

tt ≺ tt, ff ≺ ff, and ⊥ ≺ ff; and a partial relation / ⊆ R ∪ {⊥R} ×R defined by ⊥R / 0,

and m/m, for all m ∈ R, which gives a distinct treatment to duration terms that evaluate

to 0 in the 2-valued semantics.

We will now formulate two auxiliary results required to prove the semantic preservation

of RMTL-
∫

in RMTL-
∫
3
. From a close examination of the minimum and maximum

term semantics, we have that these terms are indeed quantified formulas, interpreted

as a minimum or a maximum value that satisfies the quantification, or as ⊥R when

this minimum or maximum is nonexistent. First of all we observe that the following

axioms [Tarski, 1995, p. 205], where φ does not contain minimum and maximum terms,

extend to our present setting:

A 1. η1 ◦min
x

φ < η2 ⇐⇒ (∀y y < x→ ¬φ[y/x]) ∧ η1 ◦ x < η2 ∧ φ.

A 2. η1 ◦max
x

φ < η2 ⇐⇒ (∀y y > x→ ¬φ[y/x]) ∧ η1 ◦ x < η2 ∧ φ.

A 3.
∫ η3 φ1 ◦ η1 ∼ η2 ⇐⇒ x = η3 ∧

∫ x
φ1 ◦ η1 ∼ η2

Axioms A1 and A2 indicate that a formula containing a minimum/maximum term is indeed

a quantified formula constrained by the mim/max of the variable x. Axiom A3 replaces a

formula containing a duration constrained in an interval by a duration term constrained

by a logic variable. The meaning of φ ⇐⇒ ψ is that (κ, υ, t) |=3 φ iff (κ, υ, t) |=3 ψ, for

a model (κ, υ, t).

Lemma 2. Let φ be a RMTL-
∫
3

formula such that minimum and maximum terms only

occur outside of the duration terms. Then, there exists an equivalent RMTL-
∫
3

formula

containing no occurrences of minimum and maximum terms.

Proof. The proof follows by induction on the structure of the formula φ. We only present

the case when φ is η1 < η2. We have to prove that there exists an equivalent form for the

minimum and maximum terms for RMTL-
∫
3

formulas. In particular, for all η3 and η4 and

for any x and φ1, the following holds

η3 + η4 ×min
x

φ1 < z ⇐⇒ (∀y y < x→ ¬φ1[y/x]) ∧ η3 + η4 × x < z ∧ φ1.

CHAPTER 3. RV WITH RMTL-
∫

41

Suppose η1 is η3 + η4 × min
x

φ1 and η2 is η5 + η6 × min
x

φ2. Assuming that η1 6= z and

η2 6= z, by the fourth axiom of the second axiomatization of Tarski [Tarski, 1995], we have

that η1 < z ∧ z < η2, i.e.

η3 + η4 ×min
x

φ1 < z ∧ ¬
(
η5 + η6 ×min

x
φ2 ≤ z

)
.

Now, we have both inequalities in the same shape and we can consider the first one for

continuing the proof (since the proof for the other inequality is similar). By axiom A1, we

have (∀a a < x→ ¬φ1[a/x]) ∧ η3 + η4 × x < z ∧ φ1. By induction hypothesis we have

(∀a a < x→ ¬φ1[a/x]) ∧ (η6 + η7 ×min
y

φ2) + (η8 + η9 ×min
w

φ3)× x < z ∧ φ1.

Re-applying Axiom 1, we have that

(∀a a < x→ ¬φ1[a/x])∧
(∀b b < y → ¬φ2[b/y])∧

(∀c c < w → ¬φ3[c/w])∧
φ1 ∧ φ2 ∧ φ3∧

(η6 + η7 × y) + (η8 + η9 × w)× x < z.

Hence, the minimum terms vanish. We skip the case when η1 = z, η2 6= z and η1 6= z,

η2 = z; and also when the maximum term is employed (which makes use of axiom A2),

since the proof is similar. �

From Lemma 2, we conclude that the minimum and maximum terms do not increase the

RMTL-
∫
3

expressiveness as they are indeed syntatic sugar that can be eliminated. We

have not considered the situation when minimum and maximum terms occur in the scope

of duration terms. For that we need to apply axiom A3 to replace the bound term of the

duration, allowing for Lemma 2 to be further applied.

Now, given the result of Lemma 2, we will add the minimum and maximum terms to

the syntax and semantics of RMTL-
∫

, since there is no difference from the expressiveness

standpoint. Then, we will prove by mutual structural induction on the formula that the

semantics is preserved. Let us define m = {r | JϕK(κ,υ[x 7→r],t) = tt}. The minimum term

min
x

ϕ is semantically interpreted as an RMTL-
∫

term as:

T
r

min
x

ϕ
z

(κ,υ) t =

minm if m 6= ∅
0 otherwise

.

The maximum term max
x

ϕ is semantically defined as:

T
r

max
x

ϕ
z

(κ,υ) t =

maxm if m 6= ∅
0 otherwise

.

CHAPTER 3. RV WITH RMTL-
∫

42

Lemma 3. If φ1 is an RMTL-
∫
3

formula then Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t).

Proof. We will prove by mutual structural induction that Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t) for any

RMTL-
∫
3

formula φ1, and T Jη1K3(κ,υ) t / T Jη1K(κ,υ) t for any term η1. For terms we have

to prove that the following cases hold.

1. (Base Case α) If T JαK3(κ,υ) t = T JαK(κ,υ) t then T JαK3(κ,υ) t / T JαK(κ,υ) t

2. (Base Case x) If T JxK3(κ,υ) t = T JxK(κ,υ) t then T JxK3(κ,υ) t / T JxK(κ,υ) t

3. (Step Case
∫ η1 φ1) If Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t), T Jη1K3(κ,υ) t / T Jη1K(κ,υ) t, and

T Jη1K(κ,υ) t < 0 iff T Jη1K3(κ,υ) t = ⊥R ∨ T Jη1K3(κ,υ) t < 0 then T
q∫ η1 φ1

y
3

(κ,υ) t /

T
q∫ η1 φ1

y
(κ,υ) t

4. (Step Case η1 ◦ η2) If T Jη1K3(κ,υ) t / T Jη1K(κ,υ) t and T Jη2K3(κ,υ) t / T Jη2K(κ,υ) t

then T Jη1 ◦ η2K3(κ,υ) t / T Jη1 ◦ η2K(κ,υ) t

Base cases 1 and 2 are trivially solved since by definition the semantic rules are exactly

the same, and then for any model T JαK3(κ,υ) t = T JαK(κ,υ) t and T JxK3(κ,υ) t = T JxK(κ,υ) t

hold. Step case
∫

. Assuming that Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t) and that T Jη1K3(κ,υ) t /

T Jη1K(κ,υ) t, we need to consider when the evaluation of term η1 is less than zero. From

the semantic nature of the term
∫ η1 φ1 we have that for any model T

q∫ η1 φ1

y
3

(κ,υ) t =

⊥R if T Jη1K3(κ,υ) t = ⊥R and that T
q∫ η1 φ1

y
(κ,υ) t = 0 if T Jη1K(κ,υ) t < 0. Then from

T
q∫ η1 φ1

y
(κ,υ) t = 0 iff T

q∫ η1 φ1

y
3

(κ,υ) t = ⊥R ∨ T
q∫ η1 φ1

y
3

(κ,υ) t = 0, we concude that

T Jη1K(κ,υ) t < 0 iff T Jη1K3(κ,υ) t = ⊥R ∨T Jη1K3(κ,υ) t < 0 holds for any model (κ, υ)t. The

step case 4 is direct.

Now, we continue the proof for formulas. We need to consider the cases:

1. (Base Case true) If JtrueK3(κ,υ,t) = JtrueK(κ,υ,t) then JtrueK3(κ,υ,t) ≺ JtrueK(κ,υ,t)

2. (Base Case p) If JpK3(κ,υ,t) = tt iff JpK(κ,υ,t) = tt then JpK3(κ,υ,t) ≺ JpK(κ,υ,t)

3. (Step Case<) If T Jη1K3(κ,υ) t / T Jη1K(κ,υ) t, T Jη2K3(κ,υ) t / T Jη2K(κ,υ) t, T Jη1K(κ,υ) t =

ff iff T Jη1K3(κ,υ) t = ⊥R ∨ T Jη1K3(κ,υ) t = ff, and T Jη2K(κ,υ) t = ff iff T Jη2K3(κ,υ) t =

⊥R ∨T Jη2K3(κ,υ) t = ff then Jη1 < η2K3(κ,υ,t) ≺ Jη1 < η2K(κ,υ,t)

4. (Step Case ¬) If Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t) and Jφ1K3(κ,υ,t) = tt iff J¬φ1K3(κ,υ,t) = ff

and Jφ1K(κ,υ,t) = tt iff J¬φ1K(κ,υ,t) = ff then J¬φ1K3(κ,υ,t) ≺ J¬φ1K(κ,υ,t)

5. (Step Case ∨) If Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t), Jφ2K3(κ,υ,t) ≺ Jφ2K(κ,υ,t), Jφ1K3(κ,υ,t) =

tt ∨ Jφ2K3(κ,υ,t) = tt iff Jφ1 ∨ φ2K3(κ,υ,t) = tt and Jφ1K(κ,υ,t) = tt ∨ Jφ2K(κ,υ,t) = tt iff

Jφ1 ∨ φ2K(κ,υ,t) = tt then Jφ1 ∨ φ2K3(κ,υ,t) ≺ Jφ1 ∨ φ2K(κ,υ,t)

CHAPTER 3. RV WITH RMTL-
∫

43

6. (Step Case U∼γ) If Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t), Jφ2K3(κ,υ,t) ≺ Jφ2K(κ,υ,t), and

Jφ1 U∼γ φ2K3(κ,υ,t) = tt iff Jφ1 U∼γ φ2K(κ,υ,t) = tt, then

Jφ1 U∼γ φ2K3(κ,υ,t) ≺ Jφ1 U∼γ φ2K(κ,υ,t)

7. (Step Case ∃x) If there exists a model (κ, υ, t) such that Jφ1K3(κ,υ,t) ≺ Jφ1K(κ,υ,t),

J∃xφ1K3(κ,υ,t) = tt iff J∃xφ1K(κ,υ,t) = tt, then J∃xφ1K3(κ,υ,t) ≺ J∃xφ1K(κ,υ,t)

We trivially prove that JtrueK3(κ,υ,t) = JtrueK(κ,υ,t), since the semantic definition of true

in both logics is the same. Base case p. From the semantic nature of p, we prove that

JpK3(κ,υ,t) = tt iff JpK(κ,υ,t) = tt holds, since JpK3(κ,υ,t) = tt iff p ∈ κ(t) and JpK(κ,υ,t) = tt

iff p ∈ κ(t). Step case <. Assuming T Jη1K3(κ,υ) t / T Jη1K(κ,υ) t and T Jη2K3(κ,υ) t /

T Jη2K(κ,υ) t, we need to prove that T Jη1K(κ,υ) t = ff iff T Jη1K3(κ,υ) t = ⊥R∨T Jη1K3(κ,υ) t =

ff and T Jη2K(κ,υ) t = ff iff T Jη2K3(κ,υ) t = ⊥R ∨ T Jη2K3(κ,υ) t = ff hold. For simplicity, we

consider the proposition T Jη1K3(κ,υ) t = tt iff T Jη1K(κ,υ) t = tt and T Jη2K3(κ,υ) t = tt iff

T Jη2K(κ,υ) t = tt. For these cases the semantic rules are the same, and then the proposition

holds. Proofs for step cases ¬, ∨, U, and ∃ are skipped since they are direct. �

Before concluding this section, we define a function to translate formulas containing

minimum and maximum terms into formulas without occurrences of these operators.

Definition 9 (erasure of min/max terms). Let fφ and fη be two mutually recursive

functions responsible for erasing minimum and maximum terms from formulas and terms,

respectively. In the case when φ1 (the recursive argument of fφ) is of the form

η3 + η4 ×min
x

φ1 < η5

then the function returns

(∀y y < x→ ¬fφ(φ1[y/x])) ∧ fφ(fη(η3 + η4 × x) < fη(η5)).

Otherwise, the function fφ proceeds recursively over its sub-formulas and fη over its sub-

terms until no more occurrences of min/max terms exists.

Note that due to verbosity in the above definition, the formula η3 + η4×min
x

φ1 < η5 does

not extent with the ¬ and ∨ operators, since any inequality in a formula will reduce to this

pattern using the connectives properties. For terms, any term will reduce to the pattern

η3 + η4 × x using commutative and distributive properties of addition and multiplication.

Lemma 4. The function ft is partially correct.

Proof Sketch. The proof follows by mutual structural induction on the formulas and terms

containing min/max terms, and using axioms A1 and A2. �

CHAPTER 3. RV WITH RMTL-
∫

44

3.3 Polynomial Inequality Translation

A close examination of the semantics of RMTL-
∫
3

reveals that the timed state sequence

κ and the logic environment υ are not directly related as parameters for evaluating the

truth value of formulas. This property allows us to define a mechanism for introducing

isolation by splitting formulas and/or translating them into polynomial inequality condi-

tions. Several conditions can be discarded prior to execution, and the resulting simplified

formula is then suitable for runtime monitoring and/or checking with SMT solvers.

The axiom system for the arithmetic of real numbers provided by Tarski [Tarski, 1995]

can be used to encode polynomial inequalities as in RMTL-
∫
3
. Several properties provided

by this well-known fragment will be used to facilitate the removal of quantifiers, when

properties expressed as quantified formulas are monitored at execution time. From the

Tarski–Seidenberg theorem [Tarski, 1995] we have that for any formula in FOLR, there

exists an equivalent one not containing any existential quantifiers. Thus it is possible

to define a decision procedure for quantifier elimination over FOLR. One of the most

efficient algorithms, with complexity 2-EXPTIME, is cylindrical algebraic decomposition

(CAD), later proposed by Collins [Collins, 1976, Basu et al., 2006]. To use it we require

a set of axioms for isolation of temporal operators and duration terms, and an automatic

mechanism to apply them.

Let us now describe the constraint required for an RMTL-
∫
3

formula to be interpreted as

a formula of FOLR; and the notion of rigid term and rigid formula.

Definition 10 (Inequality Translation Constraint). Let φ3 be a formula in RMTL-
∫
3
. φ3

is a formula in FOLR if it is free of duration terms, minimum/maximum terms, temporal

operators, and propositions.

Definition 11 (Rigid Formula). A term r is said to be rigid if its evaluation does not

depend on the model parameter t. A rigid formula φr is a formula where every term is a

rigid term.

In what follows, let φ< be a formula containing a conjunction of polynomial inequalities

of the form T 1 < T 2 ∧ T 3 < T 4 ∧ · · · ∧ Tn−1 < Tn with T a term and n
2 the number of

inequalities; φ 6< a formula free of polynomial inequalities; and φi a formula of RMTL-
∫
3

with index i ∈ N.

Definition 12 (DNF3 Formula). A formula φi ∈ Φ3 is in DNF3 if the subformulas of the

until operators and the duration terms are in DNF3, or it is a formula not containing

occurrences of until operators and duration terms, in disjunctive normal form (DNF).

CHAPTER 3. RV WITH RMTL-
∫

45

Axioms A4 and A5 below describe how rigid formulas φr can be isolated outside the scope

of the temporal operator. Axiom A6 isolates polynomial inequalities inside duration terms.

Axiom A7 isolates inequalities inside duration terms.

A 4. φ1 ∨ (φr ∧ φ2) U∼γ φ3 ⇐⇒ (φr → φ1 ∨ φ2 U∼γ φ3) ∧ (¬φr → φ1 U∼γ φ3)

A 5. φ1 U∼γ (φr ∧ φ2) ∨ φ3 ⇐⇒ (φr → φ1 U∼γ φ2 ∨ φ3) ∧ (¬φr → φ1 U∼γ φ3)

A 6.
∫ r
φr ∧ φ ∼ η ⇐⇒

(
φr ∧

∫ r
φ ∼ η

)
∨ (¬φr ∧ 0 ∼ η)

A 7. �
∫ η
φ1 ∨ φ2 =

∫ η
φ1 +

∫ η
φ2 −

∫ η
φ1 ∧ φ2

Soundness proofs for axioms A4, A5, A6, A7 can be found in Appendix D. These axioms

are used to provide isolation of formulas for certain patterns, but an automated method

is required to apply them. Due to the changing nature of temporal operators and the

duration terms over the model parameter t, this method is not straightforward and several

details should be considered. First, we need to consider that duration terms inside until

operators cannot be isolated but can be simplified. The nature of these operators does

not allow for splitting a conjunction/disjunction of two different formulas as is thew case

for rigid terms inside until operators. They can however be split using axiom A4 and/or

A5. Terms occurring inside duration terms can be split by axiom A6, A3 and/or A7.

Definition 13 (Isolated Formula). A formula φi is said to be isolated if every term and

temporal operator depending on the parameter t does not contain other terms or temporal

operators depending on the model parameter t.

Definition 14 (Simplified formula). A formula is said to be simplified if the quantified

polynomial inequalities have been decomposed and all variables are bounded. A simplified

formula is a formula where operators and terms depending on the parameter model t only

contain equalities of the form x =
∫ η
ϕ.

The resulting formula of our process shall be a simplified formula. Second, any formula

produced by our automated method cannot contain logic variables that are free. The

presence of free variables would mean that the monitor should solve a satisfiability problem

on the fly, which is not admissible for our purpose. We should solve as many formulas as

possible offline, and avoid formulas containing free variables (these are corner cases that

will receive a different treatment). Lastly, we need to consider that temporal operators

shall be mapped to propositions, and duration terms to free variables. Propositions shall

be mapped to x = 1 for an arbitrary logic variable x.

We also prove, in Lemmas 5 and 6, that any formula of the form φ1 U∼γ φ2 or η ∼
∫ ηx φ

can be simplified. Proofs are also given in Appendix D. Some definitions and intermediate

lemmas are included in Appendix D as well.

CHAPTER 3. RV WITH RMTL-
∫

46

∫ η 6< φ

∫ η′6< φ 6<∫ η′
φ 6<∫ η′6< φ

∫ η′6< φ<p∫ η′
φ<p

∫ η′
φ U φ′

HYPOTHESIS

∫ η′ φ
∀φ, φ′ Property 1 holds.

φ′′ U φ′′′6<

φ′′′′6< U φ′′′′′6<

φ<p U φ′<p
φ 6< U φ′<p
φ<p U φ′6<

φ<∫ U φ′<∫
φ6< U φ′<∫
φ<∫ U φ′6<

HYPOTHESIS

φ U φ′

BASE CASES

INDUCTIVE STEPS

∀φ, φ′ Property 2 holds.

ϕ

φ′′ U φ′′′ φ′′6< U φ′′′
∫ η
φ 6<

∫ η
φ

Figure 3.1: Graphical proof sketch

Lemma 5. Let φ1, φ2 be two formulas in RMTL-
∫
3

and consider the formula φ1 U∼γ φ2.

Then, there exists an equivalent formula where every until operator is free of inequalities

or only contains equalities of the form x =
∫ η
ϕ.

Lemma 6. Let φ be a formula in RMTL-
∫
3
, and ηx, η two terms, and consider the formula

η ∼
∫ ηx φ. Then, there exists an equivalent formula where any duration term is free of

inequalities, or only contains equalities of the form x =
∫ η
φ.

Theorem 1. Let φ be a RMTL-
∫
3

formula. For any formula φ, there exists an equivalent

simplified formula.

Before presenting the proof of Theorem 1, let us give an intuitive proof sketch for it. The

proof idea is to ensure that the existential quantifiers of a RMTL-
∫
3

formula are removed,

and the remaining inequalities are isolated to give us a simplified formula. Figure 3.1

shows the relations/dependences of Lemma 5 and Lemma 6 that are used in parts of the

proof of Theorem 1. The figure shows that two main inductive hypotheses are applied for

both branches, based on Property 1 and Property 2 that are introduced next. They refer

to formulas and terms which are mutually recursive. Before introducing those properties,

let us introduce some required definitions.

Definition 15. Let fφ (X,Y, Z) be a shorthand for (X → Y) ∧ (¬X → Z), where X, Y

and Z are formulas in RMTL-
∫
3
.

Let f 6< be a map function from a formula φ in RMTL-
∫
3

to a formula free of inequalities,

or at most containing equalities of the form x =
∫ η
φ2, where φ2 is a sub-formula of φ.

Let f< be a map function from a formula φ in RMTL-
∫
3

to a formula φ< with arbitrary

length n. We denote by f6<i and f<i map functions for arbitrary identifiers i ∈ N. Note that

CHAPTER 3. RV WITH RMTL-
∫

47

defining the translation in a sequence of small mappings will ease the proof structure of

the Lemma 5. We also denote f �i with � ∈ {<, 6<}.

Definition 16. Let S�(φnk) be a set of formulas containing a combination of n disjunctions

{f �1 (φ) , · · · , f �n (φ)} taken k ≤ n at a time without repetition, and s�(φnk) an element of the

set S�(φnk).

Definition 17. Let f�s(φn
k

)
: N → S�(φnk) a function such that f�s(φn

k
)
(i) is the ith element of

the set S�(φnk).

Definition 18. The intermediate function fd(n)
: Vn →

(
N→ S�(φnk)

)
→ N2 → Φ is

defined by

fφ

(
f<s(φnr)

(1) , y1,i =

∫ ηx

f≮s(φnr)
(1) , y1,i = 0

)
∧ · · · ∧

fφ

(
f<s(φnr)

(m) , ym,i =

∫ ηx

f≮s(φnr)
(m) , ym,i = 0

)
,

where ym,i ∈ Vn, and (m, i) ∈ N2.

The following properties will allow us to simplify/transform terms and formulas by iso-

lating inequalities from them. The isolation property for the sub-terms of the duration

terms is presented as well.

Property 1 (Until Formula Isolation).

φU∼γ ψ ⇐⇒ Xm

where Xi is defined as

(
f<i (ψ) ∧ f<i (φ) ∧

(
f6<i (φ) U∼γ f6<i (ψ)

))
∨Xi−1,

and 0 < i ≤ m, m ∈ N.

Property 2 (Duration Term Isolation).

η ∼
∫ ηx

φ ⇐⇒ Yn ∼ η ∧Dn,

where Yi is inductively defined by

(y1,i + · · ·+ ym,i)− (Yi−1) ,

Di is inductively defined by

fd(n)

(
(y1,i, . . . , ym,i,), f

�
s(φnr)

, (m, i)
)
∧Di−1,

0 < i ≤ n, m = n!
r! (n−r)! , and r = n− (i− 1).

CHAPTER 3. RV WITH RMTL-
∫

48

Proof Sketch of Theorem 1. The proof follows by mutual structural induction on the for-

mula φ and the term η. The case when φ is φ1 U∼γ φ2 or η is
∫ η1 φ1 is directly proved

by applying Lemmas 5 and 6, respectively. For the reamining cases true, p,¬,∨, ∃ and for

term cases α, x, ◦, we have to prove that no relation exists between these rules and the

model parameter t, i.e, the parameter t is always constant with respect to the evaluation

of these formulas and terms.

The proofs for base formulas true and p are trivial since t is fixed by the semantic rule. Let

us now consider the case when φ is ¬φ1. From the semantic interpretation of RMTL-
∫
3
,

we have that J¬φ1K3(κ,υ,t) and Jφ1K3(κ,υ,t) are evaluated at the same time instant t. In the

case when φ is φ1 ∨ φ2, we also have φ1 and φ2 evaluating at the same time t.

Finally, for the case when φ is ∃xφ1 we have to prove that if the formula φ1 does not

contain operators and terms depending on the parameter model t or only contain equalities

of the form x =
∫ η
ϕ then from CAD we have a simplified formula. This comes from

straightfoward induction on φ1 and from the assumption that CAD is sound. �

3.3.1 Simplification Algorithm

Based on Theorem 1, we know that there exists a decision procedure for simplifying

formulas. To translate any formula in RMTL-
∫
3

into a formula in FOLR compliant with

Definition 10, we require an algorithm for generating simplified monitoring conditions.

Algorithm 1 can be used to replace duration terms by new free variables constrained

by the nature of those terms, with propositions being replaced by fixed-valued logic

variables (e.g., p = 1 means that the proposition P is required for evaluation in a certain

formula). The algorithm begins by testing if a formula contains free logic variables and

existential quantifiers. If the formula can be simplified we proceed, otherwise we return

the input formula φ1 (Line 3). Next, the duration terms are recursively replaced by

new fresh variables in υ, minimum and maximum terms are transformed into quantified

inequalities, and inequality conditions are generated (Line 5). The function reduce fm

applies min/max term substitutions as provided by axioms A1, A2, and A3; replace fm

and replace tm are functions that replace temporal operators and duration terms with

new free variables and propositions (Line 4) and construct a set of subformulas and

subterms to be mapped; and the auxiliary mutually recursive functions map and solve

translate formulas in RMTL-
∫
3

into FOLR formulas ready to be decomposed using cylindri-

cal algebraic decomposition (CAD) (Line 6). The function map generates the polynomial

inequality conditions for temporal operators and duration terms using axioms A4, A5, A6,

and A7. Before submitting the resulting conditions to decomposition, all propositions are

replaced by equalities of the form p = 1. Let us now see four example applications of the

CHAPTER 3. RV WITH RMTL-
∫

49

Require: a formula φ1

Ensure : a simplified formula φ2

1 Function simplify (φ1) is
begin

2 let φ3 = reduce fm(φ1) in

3 if is var free(φ3) then φ3 else

4 let u set = replace fm(φ3) in

5 let s set = map(u set, ∅) in

6 let φ4 = CAD(select(s set)) in

7 reduce((s set\{select(s set)}) ∪ {φ4})
end

8 Function map (u set,s set) is
begin

9 if u set = ∅ then s set else

10 let x = select(u set) in

11 case x of
begin

12 x =
∫ η1 φ6 :

13 solve(sD(η1,φ6), u set, s set)

14 φ7 Uv φ8 :

15 solve(sU(v,φ7,φ8), u set, s set)

16 φ9 :

17 solve(sF(φ9), u set, s set)

end
end

18 Function solve(S,u set,s set) is
begin

19 if (let (y,v) = S in v) then

20 let u n = u set\{x} in

21 map(u n, s set ∪ y)

else

22 let u n = u set\{x} in

23 map(u n ∪ y, s set)
end

24 Function sU(a,φ1,φ2) is
begin

25 let (ln, lw) = isol disj(dnf fm(φ1)) in

26 if lw 6= [] then

27 apply axiom(a4 prim, a,

lst to dnf(ln), lw, φ2)

else

28 let (ln2, lw2) = isol disj(dnf fm(φ2)) in

29 if lw2 6= [] then

30 apply axiom(a5 prim, a,

lst to dnf(ln2), lw2, φ1)

31 else

(φ1 U<a φ2, true)
end

32 Function sD(η1, φ1) is
begin

33 let (ln, lw) = isol disj(dnf fm(φ1)) in

if len(lw) > 1 then

34 apply axiom(a7 prim, η1,

lst to dnf(ln), lw, φ1)

else

35 let (ln, lw) = isol cnj(dnf fm(φ1)) in

if lw 6= [] then

36 apply axiom(a6 prim, η1,

lst to dnf(ln), lw, φ1)

else

(
∫ η1 φ1, true)

end

37 Function sF(φ1) is
begin

38 if isIsolated(φ1) then (φ1, true) else

(φ1, false)
end

Algorithm 1: Simplification of RMTL-
∫
3

Inequalities

algorithm.

Example 5. Consider the duration formula

0 <

∫ 10

a ∨ φ<.

The result of applying the function replace fm to this formula is the set containing the

formulas 0 < x and x =
∫ 10

a ∨ φ<. Applying axiom A7 over the second formula results

CHAPTER 3. RV WITH RMTL-
∫

50

in

x+

∫ 10

a ∧ φ< =

∫ 10

a+

∫ 10

φ<.

Getting decomposed the or operator inner the duration term, we are able to generate the

inequality conditions using the axiom A6. They are

φ< → x =

∫ 10

a+

∫ 10

true−
∫ 10

(a ∧ true)

that simplifies to

φ< → x =

∫ 10

true

and

¬φ< → x =

∫ 10

a.

Finally, the output formula is

0 < x ∧
(
φ< → x =

∫ 10

true

)
∧
(
¬φ< → x =

∫ 10

a

)
.

Note that when we have a temporal operator a similar generation of the inequality

conditions is performed, but this time using axioms A4 and A5.

Example 6. Let us now see an example using a formula containing a temporal operator.

Consider the formula

x > 0 ∧ aU<10 (b ∧ x < 10).

We first note that aU<10 (b ∧ x < 10) can be converted to an equivalent formula of the

form

((x < 10)→ aU<10 b) ∧ ¬(x < 10)→ aU<10 ff.

This result comes from the application of axiom A5. In DNF3, we have

(x > 0 ∧ x < 10 ∧ aU<10 b) ∨ x > 0 ∧ ¬(x < 10) ∧ aU<10 ff,

which simplifies to 0 < x < 10 ∧ aU<10 b.

After this step we have the inequality conditions ready to be simplified using the CAD

technique (Line 6). The decomposed formula can then be reduced, or else the terms

initially found in the original formula can be replaced back (Line 7).

Example 7. Let us now see a complete application of the algorithm for a simple formula.

Consider the formula

x <

∫ x+1

(a ∧ x < 10) ,

with a a proposition whose truth value depends on the model parameter t. Since the logic

variable x is used both at the level of the relation operator of the formula and in the

CHAPTER 3. RV WITH RMTL-
∫

51

duration term, finding a valuation of x that satisfies the formula is not trivial; we can use

our algorithm to generate inequality conditions, and reduce the latter conditions into an

RMTL-
∫
3

formula. We begin by replacing the term
∫ x+1

(a ∧ x < 10) by y and apply axiom

A3 on the same term. We get the formula

x < y ∧ w = x+ 1 ∧ y =

∫ w

(a ∧ x < 10) .

Applying axiom A6 on the duration term, we have
(
x < 10→ y =

∫ w

a

)
∧ (¬(x < 10)→ y = 0) .

Replacing y =
∫ w

a with the constraint 0 ≤ y < w, we have the final formula, ready for

simplification,

x < y ∧ w = x+ 1 ∧ (x < 10→ 0 ≤ y < w) ∧ (¬(x < 10)→ y = 0) .

After simplification of the formula using CAD we get

true if x ∈]− 1, 0[; and x <

∫ 1+x

a if x ∈ [0, 10[.

After applying the function reduce, the free logic variables are recursively substituted

following the structure of the formula, with the exception of x that remains unchanged.

In the case that x is substituted by a duration term, then we have a decision procedure

to compute the truth value of the term based on the outcome of the procedure; if x has

not been replaced by a duration term and x is not quantified, then we need to universally

or existentially quantify it explicitly, otherwise the formula cannot be synthesized into a

monitor.

The functions sU, sD, sF are responsible for applying axioms A4-A7, and will play a major

role in the proof of correctness of the algorithm. isol disj, isol cnj, isIsolated and

dnf fm will be described later in this thesis.

Example 8. Let us now see a final example, but now with emphasis on duration of

durations. Consider the quantified formula

∃y
∫ ∫ 10 φ1+y+1

φ2 < y.

We can apply Axiom 3 since the scope of the duration term
∫ 10

φ1 is immutable, and we

get

∃y z =

∫ 10

φ1 + y + 1 ∧
∫ z

φ2 < y.

Continuing the process as in the previous example, we have

∃y z = h+ y + 1 ∧m < y ∧ 0 ≤ h < 10 ∧ 0 ≤ m < z

CHAPTER 3. RV WITH RMTL-
∫

52

and after applying CAD we get

∫ z

φ2 < 10 ∧ 1 +

∫ 10

φ1 +

∫ z

φ2 < z < 11 +

∫ 10

φ1.

A way to compute this formula is decomposing it by z, h,m order as follows:

(1 < z < 11 ∧ 0 ≤
∫ 10

φ1 < −1 + z ∧ 0 ≤
∫ z

φ2 < −1−
∫ 10

φ1 + z) ∨

(11 ≤ z < 21 ∧ −11 + z <

∫ 10

φ1 < 10 ∧ 0 ≤
∫ z

φ2 < −1−
∫ 10

φ1 + z).

Note the that this example cannot be submitted for monitoring purposes until the formula

has no free variables and quantifiers. However, for solving it using an SMT solver it is

possible as we will see in the next section.

3.3.2 Functional Correctness

To ensure that the above algorithm correctly does what it is supposed to do, we begin by

stating the functional correctness criteria, lemmas and theorems. Every lemma is guided

by the required statements to conclude the proof of the functional correctness theorem.

Some definitions and lemmas appear in Appendix D, due to their considerable length.

Lemma 7. The function sU is partially correct.

Proof. The proof follows by case analysis on the structure of function sU. We have three

cases. The first one is when φ1 contains inequalities. We have to prove that if lw is not

empty then the application of the Axiom 4 is sound. The result came from the soundness

of the Axiom 4 as the function apply axiom (Line 27) applies explicitly the axiom. The

second case is when φ1 is free of inequalities, and φ2 contains inequalities. We have to

proof that if lw2 is not empty then the application of the Axiom 5 is sound. The proof

cames from the soundness of this axiom as stated in Appendix D. The third case is when

φ1 and φ2 do not contain formulas with inequalities. We have to prove that if lw and lw2

is empty then true is returned meaning that no changes have been performed in φ1 neither

in φ2. The proof is trivial. We conclude the proof that for a given input set there is an

output formula which is equal to the input formula, or totally/partially simplified. �

Lemma 8. The function sD is partially correct.

Proof. The proof is similar to the proof of the Lemma 7. �

Lemma 9. The function map is partially correct.

CHAPTER 3. RV WITH RMTL-
∫

53

Proof. The proof follows by case analysis on S (Line 19).

The function map takes as input a set u set of formulas and a set s set of simplified

formulas, and calls one of the functions sU, sD, or sF, as appropriate, to process one of

the formulas of u set. Recall that the atomic simplification functions sD/sU/sF may need

to be applied more than once to a given formula; for this reason the functions return a

pair consisting of a simplified formula and a boolean indicating whether the formula has

been fully simplified (in which case no further calls are required). Depending on whether

the selected formula has been fully simplified or not, it will be moved (or not) to the set

s set of simplified formulas. The auxiliary function solve takes a formula returned by

sD/sU/sF and recursively calls map modifying u set and s set as appropriate.

- Case S always return v equals true:

As the unsolved set (u set) decreases and the solved set (s set) increases until u set

is empty, we have that all formulas are solved. The functional correctness depends

then on the partially correctness of the functions sU, sD, and sF given by Lemmas 7

and 8, respectively.

- Case S does not always returns v equals false:

From the assumption that the function S is partially correct, we have that there is

no other path for terminating the recursive calls than at some point in the execution

of the function solve, the function S returns a solved formula several enough times

to solve all the subformulas. From that, we have to prove that if the function

map returns then the solved set has increased with correct solved formulas and the

unsolved set has decreased in the same ratio. Then, the correctness of the resulting

formula depends on the partially correctness of the functions sU and sD that is given

by Lemmas 7 and 8, and also on the correctness of the function sF. The partially

correctness of this function is straightforward since it only returns a solved formula

if the formula contains every subformula in the solved set. Finally, we have that ”if

the function map returns then it returns a tuple containing a formula processed by

applying sound axioms and a true value” holds.

Hence, the correctness proof ends since the map function holds both cases. �

Let us now introduce the theorem to state that the Algorithm 1 simplify RMTL-
∫
3

formulas

as expected, i.e., for each input the algorithm produces the expected output.

Theorem 2 (Functional Correctness). For all input formulas of the Algorithm 1, if the

Algorithm 1 returns a formula then this formula is simplified.

CHAPTER 3. RV WITH RMTL-
∫

54

Proof of Theorem 2. Let us denote the pre condition p meaning the algorithm returns,

and the post condition q meaning that the output is a simplified formula. We have to

prove that p implies q. We proceed by directly prove that the sequential statements

of the simplify function are partially correct. We begin by proving that the function

reduce fm is partially correct, which result came from Lemma 4. Case when is var free

return true then the function returns the formula φ1 without minimum and maximum

terms. Otherwise, we have to prove that if the function replace fm returns then the

output is a tuple containing two sets of formulas u set and s set. We skip this proof step.

Next, we prove that map is partially correct as stated by Lemma 9. We skip the proof step

for Colin’s CAD since it is well know and established algorithm. We also omit the proof

step for reduce since it makes the reverse of the function replace fm. Hence, Algorithm 1

returns simplified formulas. �

Theorem 3 (Termination). For all input formulas, the Algorithm 1 terminates.

Proof of Theorem 3. We only consider the termination proof step for the function map,

and skip the remaining direct proof steps. As the proof for the Lemma 9, this proof has

the same shape for the case analysis.

- Case S always return v equals true:

As the unsolved set decreases (u set) and the solved set (s set) increases until it is

empty, we have that the map function is primitive recursive if S is also a primitive

recursive function.

- Case S does not always returns v equals false: From that, we have to prove that

if the function map returns then the solved set is eventually increasing with solved

formulas and the unsolved set is decreasing. We also have to prove that successive

calls of sU, sD and sF are upper bounded by the number of the inequalities in a

formula and that these functions terminate.

Let us now consider three inductive steps, one for each function application, and

skip the base cases since they are trivial. From Lemma 11, successive calls of sU are

upper bounded by 2n − 1, where n is the number of inequalities. Since n is finite,

we have to apply those axioms finitely. For successive call of sD, we follow from

Lemma 12 that give us also an upper bound. Finally, function sF only returns a

formula if every sub-formula is solved. We have to prove that if no more successive

calls of sD and sU can happen then the input formula of sF is a solved formula.

This is a result stated in Theorem 1 that indirectly states that for any formula in

RMTL-
∫
3

there is an equivalent simplified formula by successive application of the

axioms A3, A4, A5, A6, A7, which is chosen as the required pattern. Given the

CHAPTER 3. RV WITH RMTL-
∫

55

shape of these axioms, we also have that the application order of the axioms do not

impact the final formula and then no backtracking algorithm is required.

We conclude the proof with the statement that the function map terminates. Assuming

that CAD ,reduce fm, replace fm and reduce terminate then Algorithm 3 terminates. �

To conclude, we guarantee that if the algorithm terminates then we have a simplified

formula, and at same time that the algorithm is bounded and thus terminates for any

formula, assuming that CAD terminates.

3.4 SMT Synthesis for RMTL-
∫

3
Formulae

The synthesis algorithm for RMTL-
∫
3

presented here is suitable for solve the satisfiability

problem of our fragment using dyadic rationals (real numbers of the form m
2n for n,m ∈ Z).

This means that our formalization is adjusted as an input model for SMT solvers in SMT-

LIBv2 specification language. At this point formulas shall be in simplified form. In the

next section we will present an alternative algorithm that generates executable monitors.

SMT provers have been progressively adding smart tactics for solving problems that until

now could only be solved using human creativity. Of course several issues such as inductive

proofs and quantified fragments are really difficult or even impossible to check by such

general approaches.

Due to being the target of several optimizations, such as conflit-driven clause learning,

and also due to their efficiency handling a mix of non-quantified logic fragments, including

non-interpreted functions and decidable logic fragments for arithmetic, these solvers are

suited for several classic problems in the real-time community. This fact has not been

suitably explored until now; we give here just steps in this direction.

Efficient synthesis algorithms can give modular advantages for different problem formula-

tions such as schedulability analysis. In order to give a feasible time model for synthesis

of RMTL-
∫
3
, we have to assume that intervals have exactly size one and symbols can be

consecutively repeated in the input timed sequence, in order to formulate the new synthesis

algorithm. This is a restriction over the time model used in interval-based semantics. We

take this choice to avoid a more complex problem formulation and utilization of the solver’s

features that may induce the problem to be unfeasible at the first place due to make use of a

more detailed timed model. We will now describe a new algorithm for synthesis of RMTL-
∫

with this restricted model over interval-based semantics using lambda expressions, that

will be converted to the SMT-LIBv2 [Barrett et al., 2010] language with small effort.

CHAPTER 3. RV WITH RMTL-
∫

56

The set of theories that we use are quantified uninterpreted functions with equality, arrays,

and non-quantified non-linear arithmetic. For arrays we use the select word that given

a trace and a time t returns a proposition. first and second constructs are used for

pairs, and ite is the if-then-else construct. In what follows we define the combinators

evalP, evalU, evalD, that will evaluate respectively propositions, less-until operator, and

duration terms, based on the standard rewriting semantics of λ-expressions (β-reduction).

The other operators available in RMTL-
∫
3

are directly converted. These include the

common ¬ and ∨ operators and the arithmetic operators + and ×. The proposition

formulation is encoded by the lambda expression

evalP
.
= λ p t . ite (select κ t = p) tt ff,

where select word selects a given element of the array κ for some index and returns a

proposition. κ is not propagated along the definitions in order to avoid being verbose. We

encode the trace as an array and the time t as an index, meaning that time is discrete.

The word eval should be replaced by one of the evaluation functions as appropriate.

Evaluation of the less until is defined by the following set of lambda expressions

map4
.
= λ b . ite (b = tt) tt (ite (b = ff) ff ⊥),

evali
.
= λ b1 b2 . ite (b2 6= ff) (map4 b2) (ite (b1 6= tt) (map4 b1) r)),

evalb
.
= λ t v . ite (v = r) (evali (eval t) (eval t)) v,

evalf ′ .
= λf. λx i . (x ≥ 0)→ ite (i ≥ 0 ∧ x > i)

(evalb x ((f f) (x− 1) i) = (f f) x i)

(evalb x r = (f f) x i),

evalf
.
= evalf ′ evalf ′,

map3
.
= λx . ite ((first x = true) ∧ (second x = r)) ⊥

(ite ((first x = false) ∧ (second x = r)) ff (ite (second x = ff4) ff tt)),

evalc
.
= λt t′ . mkpair (trc size ≤ 10) (evalf (t− 1) t′), and

evalU
.
= λt′ t . map3 (evalc t t′).

Evaluation of the duration term is defined by

ind
.
= λ κ t . ite (eval t = tt) 1 0

evale′ .
= λf . λx i . (x ≥ 0)→ ite ((i ≥ 0) ∧ (x > i))

(((f f) (x− 1) i) + (ind κ x) = (f f) x i)

(ind κ x = (f f) x i)

evale
.
= evale′ evale′

evalD
.
= λt′ t . evale (t− 1) t′

CHAPTER 3. RV WITH RMTL-
∫

57

Note that we need to remove the recurrence among the lambda expressions by unfolding.

To avoid us or the SMT solver unfolding so many times, a bound over quantification for the

temporal and duration operators is applied, based on the temporal nature of the operator.

For
∫ γd φ, we assume that the duration is in the interval [t, t+ γd[for all t ∈ N+

0 , and for

the case φ1 U<γ φ2 we assume the interval [t, t+γ[for all t ∈ N+
0 . These assumptions help

us to reduce the search space in order to generate at least one finite model. The following

Example 9 illustrates this for a simple case.

Example 9. The expression evale 2 1 will be evaluated as follows:

evale 2 1 −→β

(λxi.(x ≥ 0)→ ite(i ≥ 0 ∧ x > i)

((evale′ evale′) x i = ((evale′ evale′)(x− 1)i) + (ind k x))

((evale′evale′) x i = ind k x)) 2 1 −→∗β
(2 ≥ 0→ ite (1 ≥ 0 ∧ 2 > 1)

(evale′ 2 1 = (1 ≥ 0→ ite (1 ≥ 0 ∧ 1 > 1)

(evale′ 1 1 = (evale′ 1 1 = ind κ 1) + (ind κ 1))

(evale′ 1 1 = ind κ 1)) + (ind κ 2))

(evale′ 2 1 = ind κ 2))

where after simplifying we get

evale′ 2 1 −→∗β (evale′ 1 1 = ind κ 1) + (ind κ 2).

One trick that can be used to encode such notations in SMT solvers logically consists of

encoding such definitions by using uninterpreted functions and universal quantification.

The uninterpreted function fevale can be specified by writing the following axiom:

∀x i, (x ≥ 0)→ ite ((i ≥ 0) ∧ (x > i))

(fevale x i = (fevale (x− 1) i) + (ind κ x))

(fevale x i = ind κ x).

In this section we have presented a synthesis algorithm for the interval-based semantics of

RMTL-
∫
3

with a restricted model. We have adopted this restriction due to the simplicity

and feasibility of the approach using array theory. Other alternatives may be used such

as the codification of the interval-based semantics without such restrictions, but this may

increase the burden for solving the same problem using a more refined timed model. As

a last remark, we should note that the duration term can be bounded by all terms, not

only for α and x. In what follows we will discuss a computable approach.

CHAPTER 3. RV WITH RMTL-
∫

58

3.5 Computation of RMTL-
∫

3
Formulae

This algorithm is able to generate monitors that can be directly executed on the target

platform and draw a three-valued verdict, instead of deciding if there is a model that

satisfies a given formula. Monitors are generated for functional programming languages

but can be further converted to imperative languages such as C++11 with small effort, as

we further describe in Appendix A. This algorithm encodes reals as floating point numbers.

Given the definition of RMTL-
∫
3
, we can derive an evaluation algorithm for monitor

synthesis. In what follows we will present the algorithm and study the time complexity of

the computation with respect to both trace and formula size.

We begin with a set of preliminary definitions. The set of timed sequences is denoted

by K, the duration of the timed state sequence κ ∈ K is denoted by d(κ), and the set

of logic environments is denoted by Υ. Let B4 be the set {tt4,ff4,⊥4} ∪ {r} where r is

a new symbol that will be used only for purposes of formulae evaluation, and D the set

R≥0 ∪ {⊥R}. The function subK : (K × Υ × R≥0) → R≥0 → K defines a timed sub-

sequence constrained by the interval]t, t+ γ], where t and γ are real numbers to be used

as parameters in subK. The function mapB4 : B3 → B4 maps tt to tt4, ff to ff4 and ⊥
to ⊥4; mapB3 : B ×B4 → B3 maps (tt, r), (tt,⊥4), and (ff,⊥4) to ⊥; (ff, r), (ff,ff4), and

(tt,ff4) to ff; and (ff, tt4) and (tt, tt4) to tt. We will employ a left fold function defined in

the usual way.

From a close examination of the operators, the corresponding Compute(¬) and Compute(∨)

evaluation functions have time complexity constant in the number of timed sequence

symbols, linear in the depth of the formula for Compute(¬), and exponential in the depth

of the formula for Compute(∨). Let us consider the functions Compute(η) :: (K × Υ) →
R→ Γ→ D and Compute(ϕ) :: (K×Υ×R≥0)→ Φ3 → B3 for the evaluation of U< and

<, and the term
∫

.

Operator U<. Given formulas φ1, φ2 and γ ∈ R≥0, the formula φ1 U<γ φ2 is evaluated in

a model (κ, υ, t) by the function Compute(U<) : (K×Υ×R≥0)→ R≥0 → Φ3 → Φ3 → B3,

defined in Figure 3.2. We report here only on the computation function Compute(U<);

the remaining functions are Compute(U=) for punctual until, Compute(S<) for the non-

punctual dual operator, and Compute(S=) for the punctual dual operator. These operators

have at most two new branches. Given an input κ with size nκ, and a measure mϕ of the

depth of a formula ϕ, we obtain from the structure of the computation the upper bound

of time complexity
(
nκ+mϕ
mϕ

)
· 2nκ . For instance, we understand by a formula with depth

one as aU b, a formula with depth two as (aU b) U (aU b) and so on.

CHAPTER 3. RV WITH RMTL-
∫

59

evi
al :: B3 → B3 → B4

evi
al b1 b2 ,

mapB4 b2 if b2 6= ff

mapB4 b1 if b1 6= tt and b2 = ff

r otherwise

evb
al :: (K×Υ×R≥0)→ Φ3 → Φ3 → B4 → B4

evb
al m φ1 φ2 v ,

evi
al

(
Compute(ϕ) m φ1

)(
Compute(ϕ) m φ2

)
if v = r

v otherwise

evfold
al :: (K×Υ×R≥0)→ Φ3 → Φ3 → K→ B4

evfold
al (κ, υ, t) φ1 φ2 κ , fold

(
λv (p, (i, t′))→ evb

al (κ, υ, t′ − ε) φ1 φ2 v
)
r κ

evCal :: (K×Υ×R≥0)→ R≥0 → Φ3 → Φ3 → K→ (B×B4)

evCal (κ, υ, t) γ φ1 φ2 κ ,
(
d(κ) ≤ t+ γ, evfold

al (κ, υ, t) φ1 φ2 κ
)

Compute(U<) m γ φ1 φ2 ,

mapB3

(
evCal m γ φ1 φ2 (subK m γ)

)
if γ ≥ 0

ff otherwise

ev<al :: R→ R→ R

ev<al val1 val2 ,

val1 < val2 if val1 ∈ R and val2 ∈ R

⊥ otherwise

Compute(<) m h1 h2 , ev<al

(
Compute(η) m h1

)(
Compute(η) m h2

)

1ϕ(κ,υ) :: (K×Υ)→ R≥0 → Φ3 → {0, 1}

1ϕ(κ,υ) (κ, υ) t φ ,

1 if Compute(ϕ) (κ, υ, t) φ = tt

0 otherwise

evηal :: (K×Υ)→ Φ3 → K→ R≥0

evηal (κ, υ) φ κ , fold
(
λs, (p, (i, t′))→ t′ ·

(
1ϕ(κ,υ) (κ, υ) t′ φ

)
+ s
)

0 κ

Compute(
∫
) (κ, υ) t a φ ,

evηal (κ, υ) φ (subK (κ, υ, t) a) if a ≥ 0

⊥R otherwise

Figure 3.2: Evaluation of the operators U< and <, and of duration terms

CHAPTER 3. RV WITH RMTL-
∫

60

Function Compute(η) (κ, υ) t h :: (K×Υ)→ R→ Γ→ D is

case h of

α : evalα α

h1 + h2 :
(

Compute(η) m h1

)
+
(

Compute(η) m h2

)

h1 × h2 :
(

Compute(η) m h1

)
×
(

Compute(η) m h2

)

∫ h1

φ : Compute(
∫
) (κ, υ) t

(
Compute(η) (κ, υ) t h1

)
φ

end

end

Function Compute(ϕ) m φ :: (K×Υ×R≥0)→ Φ3 → B3 is

case φ of

p : evalp m p – base case

¬φ : Compute(¬) m φ – Boolean operators

φ1 ∨ φ2 : Compute(∨) m φ1 φ2

φ1 U<γ φ2 : Compute(U<) m γ φ1 φ2 – temporal operators

φ1 S<γ φ2 : Compute(S<) m γ φ1 φ2
η1 < η2 : Compute(<) m η1 η2 – relational operator

end

end

Algorithm 2: Computation of RMTL-
∫
3

terms (Compute(η)) and formulas

(Compute(ϕ))

Operator <. Given two terms η1, η2 ∈ Γ, the formula η1 < η2 is evaluated relative to

a model (κ, υ, t) by the function Compute(<) : (K × Υ × R≥0) → Γ → Γ → B3, also

shown in Figure 3.2. The time complexity of this computation function depends on the

time complexity of Compute(η) since any formula containing only the relation operator <

cannot have size greater than one, or consume any input symbols. For instance, a formula

with depth two is
∫ 1
φ1 <

∫ 1
φ1, and with four is

∫ 1
(
∫ 1
φ1 <

∫ 1
φ1) <

∫ 1
(
∫ 1
φ1 <

∫ 1
φ1).

Term
∫

. The evaluation of a duration term
∫ η
φ in the model (κ, υ, t) is performed by

the function Compute(
∫

) : (K×Υ)→ R≥0 → R→ Φ3 → D, again defined in Figure 3.2. It

has linear time complexity in the size of the timed sequence, and constant time complexity

in the formula size assuming that Compute(η) has constant complexity. + and × terms are

directly mapped into their respective computational operations. The complexity of those

operations is directly related to the number of terms. Given a formula ϕ and a measure

mη describing the number of operators + and × occurring in a formula ϕ, we have a linear

lower bound of time complexity in O(2mη) again assuming that Compute(η) has constant

complexity.

CHAPTER 3. RV WITH RMTL-
∫

61

Compute Ω Big-O

(α) Ω(1) O(1)

(
∫

) Ω(nκ − 1) O(nκ)

(+), (×) Ω(2mη−1) O(2mη − 1)

(p) Ω(1) O(1)

(¬) Ω(m¬) O(m¬)

(∨) Ω(2m∨−1) O(2m∨)

(<) Ω(1) O(1)

(U<), (S<) Ω(1) O(2 · nk)
(ϕ), (η) Ω(2(nκ)2 · (2mϕ − 1)− 4(nκ)2 + nκ · (2mϕ − 1)− 2(nκ)) O(

(
k+mϕ
mϕ

)
· 2k)

Table 3.1: Complexity results of the Algorithm 2

Time complexity of the evaluation algorithm. We are now in a position to present

a straightforward recursive top-level evaluation Algorithm 2 excluding punctual temporal

operators, using the previous definitions for auxiliary computations. Let mϕ be a measure

for ∨, <, temporal operators, and non-rigid terms. Given the complexity of these formulas

and term operators, and knowing that all temporal operators have the same complexity

as the until operator, we have by semantic definition that any combination of formulas

has higher complexity. As such, the complexity of Algorithm 2 is exponential in the input

size of the formula and the timed state sequence, as given by the upper bound identified

above.

Table 3.1 summarizes the complexity for each individual evaluation function. For each

function (α), Compute(
∫

), (+), (×), (p), Compute(¬), Compute(∨), Compute(<),

Compute(U<) and Compute(S=), we assume that the function Compute(ϕ) executes in

constant time in order to identify the source of complexity for each case. This happens in

the evaluation of <,
∫

, + and ×. We also have asymptotically identified a lower bound

for the complexity of the evaluation algorithm for each case, including Compute(η) and

Compute(ϕ). Although the complexity is exponential, we have that in average the behavior

may be much closer to the lower bound, as we will see in Chapter 5.

In order to analyze the space complexity of the synthesized monitors we first note that the

synthesis algorithm produces monitors written using pure lambda functions. Following

our approach, each formula ψ in RMTL-
∫
3

to be synthesized, of length mψ, will originate

a set of λ-expressions whose global size is in O(mψ), and whose mutual recursion pattern

(or call graph) is free of cycles, since the invocations follow the structure of the formula

ψ. Execution of these λ-expressions relies on a functional, stack-based mechanism, and it

follows that the number of push/pop operations performed will be in O(mψ). The required

CHAPTER 3. RV WITH RMTL-
∫

62

stack size will thus be linear in mψ, and constant in the input trace size. Therefore, the

generated monitoring algorithms have constant space complexity regarding the trace size,

as our experimental results will confirm in Chapter 5.

Summary

In this chapter we have presented two distinct synthesis approaches for the well-behaved

fragment of MTL-
∫

. The approach based on SMT solvers is essential to prove some safety

properties about the basis of the monitoring architectures, and the other approach can be

an appropriate extension for checking more expressive and complex duration properties.

This combination is essential to cover the nature of the duration properties since the

majority of such properties are practically impossible to check statically. In this way,

synthesis of monitors acts as a complement to cover unchecked properties and draw verdicts

about the past executions. A three-valued extension of the RMTL-
∫

formalism is also

defined which allows us to carry out coherent sequential evaluation of traces.

As a final note, this work will be used as basis for the next chapter, where we address the

problem of determining which properties can be discarded statically and which parts can

be addressed at runtime in the context of real-time systems scenario.

Chapter 4

RV-RMTL-
∫

Framework

RV methods can be applied to systems where the source code is not available , or in those

cases where we have access to the code but the complexity of the system’s requirements is

too high to be addressed via any of the most commonly used static verification approaches.

For RV, only a monitoring model needs be considered beforehand as well as the monitor

synthesis mechanisms.

In this chapter, we introduce a component-based framework that helps us to manage

the composition of the runtime monitors with the target system in order to support

external observations of the system at execution time. It also ensures properties such

as the maximum detection delay of the monitors, as well as the encoding of the scheduler

behavior, which are features that are of paramount importance for hard real-time systems.

In the remaining part of the chapter, we introduce the notion of safe monitor and describe a

domain specific language (DSL) that supports the construction of different safe components

and monitoring sketches.

4.1 Components

Before introducing components’ types and the framework model itself, we will recall the

preliminary definitions of a real-time task set, a periodic resource model, and an event

sequence.

We will assume task sets Γ = {τ1, τ2, ..., τn}, such that n ∈ N+ is the number of tasks

τi = (pi, ei) where pi and ei are, respectively, the period and the worst-case execution

time of τi. Each task τi ∈ T is implicitly periodic and has implicit deadline. A periodic

resource model ω is a tuple (T , π, θ, rm), where T ⊆ Γ , π is the replenishment period, θ is

the server budget, and rm is the rate monotonic scheduling algorithm. The set of periodic

63

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 64

Hypervisor
Hypervisor
monitor

Component β

Mm

7

2 3

4 5 6 h1 h2 h3
M l

Mh

Component α

m4

m5

m7

τ1

τ2

τ3

m1

m2

m3

m6

1

9 8

1310 11

12

14
15res1

Figure 4.1: Component-based sketch with one hypervisor and quasi-omniscient monitors.

resource models is denoted by Ω = {ω1, ω2, . . . , ωm} for an arbitrary m ∈ N+. We denote

the index i of a task by τi and the index j of a resource by ωj , where 0 < i ≤ n and

0 < j ≤ m holds, respectively. The outputs of a resource model ω are sequences of events.

Let us now consider the alphabet of events E . Each element can be of one of the following

types: a task release event RE; a task start event ST; a task sleep event SL; a task resume

event RS; a task stop event SO; a resource budget release event RN; or a general purpose

event identifier tuple EV. We also consider that general purpose events are special since

they include a certain event identifier. Events can also have inheritance over other events

as denoted by e1(e2), for any e1, e2 ∈ E . For short, we adopt the notation e1(ωj ,τi) that

means that the event e1 inherits from EV with event identifier tuple (ωj , τi), for any

i, j ∈ N, ωj ∈ Ω, and τi ∈ T .

Event sequences are a formalism that allows us to describe the scheduler behavior, creating

a generic event language that a system can produce. If a system produces unexpected

event words, we shall consider it a faulty system. Similar meaning is also established for

temporal logic observations [Lakhnech and Hooman, 1995]. A sequence of events, also

known as execution trace, is an infinite sequence

ρ = (e1, t1)(e2, t2) · · ·

of time-stamped events (ei, ti) with ei ∈ E and ti ∈ R+. The sequence satisfies monotonic-

ity and progresses, i.e., ti ≤ ti+1 for all i ∈ N+, and for all t ∈ R+ there is some i > 0 such

that ti > t, respectively.

After having introduced these preliminary definitions, we are able to start describing the

compositional monitoring framework (CMF). This framework is composed from a set of

components of one of the following types:

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 65

- (Timing Constraint) A timing constraint Ψ is a set of constrained temporal formulas

in RMTL-
∫
3
.

- (Task) A task tsk is a pair (τ1,Ψ) such that τ1 ∈ Γ and Ψ are constrained formulas

encoding several task behaviors to be checked at runtime.

- (Resource) A resource res is a tuple of the form (ω,Ψ), where ω ∈ Ω is a resource

model, and Ψ is a set of constrained formulas to be checked at runtime.

We assume the existence of a relation for the composition of resources, tasks and con-

straints. This relation is restricted by the way that components are composed with other

components of the same type. Let us now introduce a small practical example of a two-level

hierarchy system to be used along this chapter.

Example 10. Consider the Figure 4.1 as a component-based graphical model where each

link connecting point A to point B means ”A relates with B”. Solid boxes are resources,

dashed boxes are tasks, and squared solid boxes are formulas in RMTL-
∫
3
. These formulas

will be automatically synthesized with respect to a given monitoring model and some

properties such as if the maximum detection delay of the monitors will be ensured by

the framework.

In this sketch, we also have distinct resources Mh, Mm and M l which encapsulate monitors

by priority based on different criticality levels. This allows us to identify until what point

this framework can deal with elastic executions. By elastic execution we mean a system

composed by several resources that can use different budgets over different time instants (a

feature that we will describe in the use case presented in the next chapter). A hypervisor is

no more than a component that only exists in this sketch for encapsulation purposes. This

component contains a set of quasi-omniscient monitors (resp. hypervisor monitors) that

reach verdicts about the assumptions of the monitoring architecture (a notion of monitors’

hierarchy as described in the end of this chapter).

Intuitively, we have presented the purpose of CMF through this example, i.e., as a frame-

work to deal with description of the monitoring sketches and also to split the properties

to be checked statically and dynamically. Note that task and resource components are

simple encodings of task and resource model behaviors coupled with timing constraints

that are encoded as RMTL-
∫
3

formulas to be safely monitored. Our major goal is to ensure

that every monitor complies with the expected maximum detection delay, since worst case

execution time (WCET) violations of one or more tasks may interfere with each other and

also other non monitoring tasks, resulting in an undesirable environment.

In addition, the predictability of our framework with respect to the event sequences can be

established by identifying the relevant or critical events, and preserving the partial order

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 66

Pattern ωA

Pattern ωC

ST(ωC ,τ1)

EV(idle)
ST(ωA,τ1)

ST(ωA,τ1) ST(ωA,τ1)

ST(ωA,τ2)
ST(ωA,τ3) ST(ωA,τ2) ST(ωA,τ3)

RS(ωC ,τ1)

RS(ωC ,τ1)RS(ωA,τ3)

ST(ωC ,τ1)

RS(ωA,τ3)

SL(ωC ,τ1) SL(ωA,τ3) SL(ωA,τ3)

SO(ωA,τ1)
SO(ωA,τ2)

SO(ωA,τ3)

SO(ωA,τ1)

SO(ωA,τ2)

SO(ωA,τ1)

SO(ωA,τ3)

SL(ωC ,τ1)

ST(ωC ,τ1)

mdl of τ1

t29t0 t10 t25 t39 t45t3

(ωA, idle) (ωA, idle)

(ωA, idle)(ωA, τ1)

Pmts1
Pmts1

ρ

(ωA, τ2)
(ωA, τ1)

(ωA, τ2)

(ωA, τ3) (ωA, τ3)(ωA, τ1) (ωA, τ1)
(ωA, τ2)

(ωA, τ3)
(ωA, τ3)

ωA
ωC

(ωA, τ2)
(ωA, idle)

Pts2 Pts3 Pts2Pts1 Pts1 Pts1

(ωC , τ1) (ωC , τ1) (ωC , τ1)(ωC , idle) (ωC , idle)
(ωC , τ1)

7 33

· · ·

(ωA, τ1)
(ωA, τ2)

(ωA, τ3)
(ωC , τ1)

Figure 4.2: Example of patterns and the global trace generated by the composition of

resource models defined in the Example 11

of events arrival for monitor processes. We need to save this order due the possibility of

using more than one trace/buffer in the same sketch of this framework. We also identify

the event SO as the critical event for schedulability analysis, since it is the event triggered

when a task job finishes its execution. We denote the critical events by the subset Ecr ⊆ E ,

the prefix-tree which preserves the partial order of events for all possible executions by pt,

and the maximum duration of a prefix trace by s. Given these predictable traces pt, we

are able to evaluate the response time of the monitor m for each trace ρ ∈ pt using the

formula

�<s
∧

e∈Ecr
e→ �≤γ SO(e,m), (4.1)

where SO(e,m) is the triggered event that the monitor m generates at the end of its complete

execution for monitoring the task/resource that has been triggered the event e, and s is

the time window to be considered.

Example 11. Let us assume two resource models ωA with parameters (π = 10, θ = 8) and

ωC with (π = 5, θ = 1) described in Figure 4.2 containing three tasks τ1(p = 14, e = 3),

τ2(p = 20, e = 5), and τ3(p = 27, e = 7), and one task τ1(p = 33, e = 4), respectively. We

could see that to guarantee the maximum detection delay of the monitor task τ1 in ωC , the

trace depicted in the Figure 4.2 needs to be generated. For the generation of this trace, we

assume the well known critical instant theorem to find the worst execution trace as well

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 67

as the hyper-period of the resource model to define the maximum length of the trace [Liu

and Layland, 1973]. Replacing the event SO(e,m) with SO(ωC ,τ1) in Formulae 4.1, we are

able to check the maximum detection delay of our trace, which corresponds to a value γ

greater than 26 time units depending on the desired WCET, and where the instants t29

and t39 exemplify the allowed periods. In this case, the maximum detection delay may

increase depending on the monitor period when greater than 42 time units. Note that

this example only works for the assumption of the critical instant theorem and/or the

consequent enumeration of the possible traces, and therefore is not general enough.

In the remaining part of this chapter, we illustrate how to overcome this issue in an

elegant way without the assumption of prefix trees or the critical instant theorem by

reformulating the time constraints check into a satisfiability problem. Without enumerating

every possible trace or selecting the worst trace, which is impossible in a multi-processor

setting due essentially to anomalies [Andersson and Jonsson, 2002], we are able to specify

and analyze schedulability of multi-processor systems, notably the ones with dependent

tasks.

4.2 Formal Specification of Periodic Resources

To simplify the expressions’ encoding of the safe CMF model, we first introduce some

syntactical notations and formula abbreviations.

The set of tasks with higher-priority (and including) than τi for ωj is denoted by γτiωj . We

also use h as the hyper-period, and the operator T , true as T defining a shorthand for

true. For events, we adopt the following notations: EV(ωj , ·) denotes the set of events

that can be generated by the resource model ω; EV(ωj , τi) denotes the set of events that

can be generated by the task τi in the resource model ωj ; evs
+(ωj , τi) is defined by

evs(ωj , τi) ∨ SO(ωj ,τi) ∨ EV(ωj , τi) ∨ RE(ωj ,τi),

with evs(ωj , τi) defined by

ST(ωj ,τi) ∨ RS(ωj ,τi) ∨ RN(ωj),

which specifies all events that a task τi in the resource model ωj can trigger; evs−(ωj , τi)

denotes the formula resulting from the removal of the RE(ωj ,τi) and SO(ωj ,τi) events from

evs+(ωj , τi); finally, evs∗(ωj , τi) denotes the formula resulting from the removal of the

ST(ωj ,τi) and SO(ωj ,τi) events from evs+(ωj , τi).

A resource component (ωj , {ψ1, ψ2, ...}) is made of the set of formulas {ψ1, ψ2, ...} ⊂ Φ3

that will be automatically synthesized as a collection of online monitors, and a resource

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 68

model ωj that captures the semantic nature of the resource with a formula containing

properties such as the resource model budget supply, the schedulability policy, the task

set durations and period, and other intrinsic settings for complete specification of the

component. Φ3 is a set of three valued formulas as defined before, and the binary operator

ϕ1� ϕ2, meaning next implies, is a shorthand for ϕ1 → (ϕ1 U<b ϕ2), where b is a fixed

and sufficiently large number.

The resource model budget supply is specified by the formula

�≤h RN(ωj)�
(
�=π RN(ωj)

)
∧
∫ π ∨

τi∈τ
evs+(ωj , τi) ≤ θ, (4.2)

where ωj is one resource model, π and θ are their renewal period and budget, and RN(ωj)

is the budget renewal event. This formula states that for each occurrence of the event

RN(ωj) in the resource model ωj , the duration of the other events until π time units does

not overpasses the budget θ per period π.

For the partial order of the task releases, as defined by the scheduler policy rm, we

introduce the RMTL-
∫
3

formula

�≤h
∧

τi∈T

(
RE(ωj ,τi)�

(
ev(ωj , τi) U≤pi SO(ωj ,τi)

))
, (4.3)

where

ev(ωj , τi) ,

∨

τk∈γ
(τi−1)
ωj

evs+(ωj , τk)

 ∨ evs

−(ωj , τi)

and γ
(τi−1)
ωj denotes the set of higher-priority tasks, excluding events triggered by the task

τi. This formula means that for every event RE(ωj ,τi) there is always an event SO(ωj ,τi),

and that the events occuring before SO(ωj ,τi) should be any event from τi’s higher-priority

tasks.

The duration of tasks allocated to one resource model is specified by the formula

�≤h
∧

τi∈T
RE(ωj ,τi)�

∫ pi ∨

τk∈γ(τi)
ωj

evs+(ωj , τk) ≤ ei. (4.4)

Note that the ≤ operator should be changed to ≥ in order to specify the absolute WCET

of the task set.

We also specify other properties such as the precedence of the event SO(ωj ,τi) (i.e., each

event ST(ωj ,τi) may be followed by an event SO(ωj ,τi), but the event SO(ωj ,τi) occurs since

ST(ωj ,τi) occurs). The precedence of the event SO(ωj ,τi) is specified by the formula

�≤h
∧

τi∈T
SO(ωj ,τi)�

(
es(ωj , τi) S≤pi ST(ωj ,τi)

)
, (4.5)

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 69

where

es(ωj , τi) ,

∨

τk∈γ
(τi−1)
ωj

evs+(ωj , τk)

 ∨ evs

∗(ωj , τi).

The complete encoding of the component is given by the conjunction of the formulas 4.2,

4.3, 4.4 and 4.5. For the remaining part of the chapter, we define it by PRM(ωj), where

ωj is indexed according to certain workload parameters, allowing us to unroll the sub-

formulas in the correct way. This partially concludes the formalization of the periodic

resource model’s behavior using RMTL-
∫
3
.

Note that in the Section 4.3 we will return to the hierarchical composition of the presented

resource specification, but only after extending the formalization to dependent tasks.

4.2.1 Extension for dependent tasks

Adding dependence task checking is as easy as adding more timing constraint formulas.

Properties such as “the dependent task (B) cannot begin until the task (A) completes”

can be ensured as result of A being a pre condition for the result of B. Note that this

is necessarily a more expressive model of dependent tasks than the ones presented in the

literature [Goossens et al., 2016, Puffitsch et al., 2015, Baro et al., 2012]. Assuming that

tasks are divided into several sections according to their flow graphs, we could specify

that a section of a task has a dependence relatively to other tasks’ sections. And, other

constraints written in RMTL-
∫
3

restricting other resources such as memory and network

message passing can be asserted as well. It turns out that extending the model is modular,

unlike the classical schedulability analysis tests where we may have to redo everything from

scratch.

Example 12. Let us take τ1 as a system task and τ2 a monitoring task, where each one

executes in isolation in the resources ω1 and ω2. Consider the resources with the event

control graph described in the Figure 4.3. The monitoring task has an arbitrary period

and may contain two sub-events such as EV1 and EV2, or even execute arbitrarily. For

the former case, these points are when the monitor contains enough/required symbols to

consume, identified by the formula’s morphology. Then, executing before these points does

not make sense since it is wasting time and increasing pessimism in the schedulability

analysis. EV1 shall execute after EV(E), and EV(H) and EV1 shall execute after EV(H)

and EV(C). For the latter case, arbitrary execution incurs in executing the monitor before

and after task τ1 terminates, which in the worst case indicates that we need to execute the

monitor after SOω1,τ1 occurs. Executing along the system task is not safe, context-switches

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 70

EV(A)

EV(B)
EV(C)

EV(D)

EV(E)

STω1,τ1

EV(F)

EV(G)

EV(H)

EV(I)
SOω1,τ1

STω2,τ2 EV(1) EV(2) SOω2,τ2

STω2,τ2 / SLω2,τ2 RSω2,τ2 / SLω2,τ2 SOω2,τ2

Overhead

txt0 ty tz tw

Figure 4.3: Flow graph of the scenario considered in Example 12 and 18

for resuming and entering the sleep state are unnecessarily required, and the overhead is

tw − tz.

Indeed,this is a generalization for elasticity of budgets and periods along execution time of

resources. Offsets can also be applied for starting monitor execution, avoiding ST(ω2, τ2) at

time tx, and only the hyper period among different cores is required to encode schedulability

of multi-core systems in a satisfiability problem.

Our approach is modular in the sense that it can be extended with minor efforts. It also

allows us to manage sets of polynomial inequalities as in common real-time approaches and

an hybrid between both formalizations may be an option. However, the drawback of the

approach is that solving the generated problems in a practicable way may be challenging, a

discussion that will take place in the next chapter. Note also that SMT solvers have been

the target of significant advances in the last years, and heuristic approaches proposed

in hard real-time systems literature fail to deal with this type of extension since they

behave badly with non local properties [Puffitsch et al., 2015]. Currently, only linear

programming and constraint programming techniques are successfully applied to solve

parts of this problem for a high number of tasks and several working cores without any

proof generation. When using SMT solvers the same does not happen.

To the best of our knowledge, there are presently no published works in the RV literature

that, instead of considering a unique period for a monitor, consider multiple periods

for the same monitor, each one activated at certain time instants. This is a pattern of

periods which we will call monitoring with elastic execution. Periods and execution times

are not fixed. We know that event-driven approaches are not so feasible for embedded

systems and even less feasible for hard real-time systems where predictability and timing

correctness are required [Medhat et al., 2015, Bonakdarpour et al., 2013]. Commonly,

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 71

core 0 core 1 memory chunk 0

txt0 ty tz

(a)

core 0 core 1 memory chunk 0

txt0 ty tz

(b)

7

Figure 4.4: Encoding of processor mapping and memory mapping

such approaches propose finding new parameters for existing scheduling algorithms. Time-

triggered approaches are too generic but predictable in comparison with the event-driven

ones. Moreover, the classical schedulability analysis can be readily applied but they are

in general too pessimistic for RV of hard real-time systems. This is the novelty of our

approach, that instead of being too generic allows us to define more constraints about the

execution of the monitors, including the extension for multi-core systems. Proofs are also

generated for each sketch and we only need to assume the synthesis steps.

Example 13. Consider that we have to get a scheduler for dependent tasks executing

in a multi-core system. Given our approach we can deal with it by simply extending the

formulas as easily as constructing a formula of the form

∧

ω∈Ω

�=lcm(ω) PRM(ω),

where lcm is a function returning the least common multiple for a resource ω. We are

assuming that each resource ω executes in different cores.

In Figure 4.4, we have a graphical representation of this encoding, including the way we

reserve memory. lcm will give us 0 or tx. ty is used to find that

�=ty

∫ tz

EV(ω,usage) < 10,

which means that the memory usage should be less than 10 space units. Note that we

reason about both space and time in the same trace. In case of trace (b), the overlapping

of the same execution unit when migrating to different cores is not allowed. From these,

we know where the task allocates its stack ensuring that it is allowed by the specification.

We specify it by the formula

�<tx
(
ST(ω,·) ∨ RS(ω,·)

)
→ ¬ �=tx ST(ω,·) ∨ RS(ω,·),

for any resource ω ∈ Ω. We see a task only making use of a local stack, indicating that

the memory allocation is predictable. By stack we mean a portion of memory allocated

continuously and dedicated only to a task.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 72

Another feature that we have is the position at which the local stacks are allocated. Instead

of providing an inequality such as
∑

τi∈τ size(τi) < L, where we do not know anything

about the allocation as in [Puffitsch et al., 2015], we ensure that there is enough space and

the order of the allocation. Knowing the portion where we allocate memory can help us to

speedup the execution of the system since we may have non homogeneous memories in the

system, which means different speed accesses.

This example has illustrated how multi-processor scheduling can be encoded by simply

extending the presented formalization, including dependent tasks.

Another feature that we might refer here is how contention accessing a shared memory

resource can affect the schedulability analysis, as has been exemplified in the Figure 4.4.

Instead of getting worst-case bound on the contention, we can formulate this constraint in

a different way. The presented approach avoids considering a possible pessimistic worst-

case scenario of contention a priory. For instance, if two cores access the same region

of memory then this will cause contention somehow. However, if we enforce these cores

to use the memory in a different time instant or during better circumstances then the

contention is relaxed, and the worst case will not be worth applying. In this way, this

approach using temporal formulas describing temporal patterns may be more appropriate

in terms of access patterns to reduce contention, improving on the techniques that can be

found in the literature.

Scrutinizing the importance of WCET and dependent constraints in monitor-

ing. Let us now see an important case that is often neglected in the RV literature. WCET

has been commonly assumed for constructing schedulability analysis of different schedu-

lability algorithms. However, this introduces some issues regarding the pessimism and the

practical application of these approaches for analysis of runtime monitors. WCET is a

general assumption that is sufficient for cases where there are no dependency constraints

on tasks or resources, i.e., they are independent or partially independent.

Consider a system with a taskset containing a task where WCET depends on the execution

of the other tasks as in the running Example 11. It turns out that the schedulability of

the taskset is infeasible according to [Shin and Lee, 2008], since the WCET may tend to

be unachievable and/or too pessimistic to be considered, and even due to this test only

working with independent tasks (i.e., unsafe for our purpose). By assuming a simple

dependency constraint, we may find a lower WCET and a schedulable taskset using

our logic fragment. This is how monitors can behave if they are depending on timing

constraints, and properties such as maximum detection delay are necessary for ensuring

it.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 73

ST(ωC ,τ1)

EV(idle)

ST(ωA,τ1)

ST(ωA,τ1) ST(ωA,τ1)

ST(ωA,τ2)

ST(ωA,τ3) ST(ωA,τ2) ST(ωA,τ3)

RS(ωC ,τ1)

RS(ωC ,τ1)RS(ωA,τ3)

ST(ωC ,τ1)

RS(ωA,τ3)

SL(ωC ,τ1) SL(ωA,τ3) SL(ωA,τ3)

SO(ωA,τ1)

SO(ωA,τ2)

SO(ωA,τ3)

SO(ωA,τ1)

SO(ωA,τ2)

SO(ωA,τ1)

SO(ωA,τ3)

SL(ωC ,τ1)

ST(ωC ,τ1)

ρ1
· · ·

7 33

ST(ωC ,τ1)

EV(idle)

ST(ωA,τ1)

ST(ωA,τ1) ST(ωA,τ1)

ST(ωA,τ2)

ST(ωA,τ3) ST(ωA,τ2) ST(ωA,τ3)

RS(ωC ,τ1)
RS(ωC ,τ1)

RS(ωA,τ3)

ST(ωC ,τ1)

RS(ωA,τ3)

SL(ωC ,τ1) SL(ωA,τ3) SL(ωA,τ3)

SO(ωA,τ1)

SO(ωA,τ2)

SO(ωA,τ3)

SO(ωA,τ1)

SL(ωA,τ3)
SO(ωA,τ2)

SO(ωA,τ1)

SO(ωA,τ3)

SL(ωC ,τ1)

ST(ωC ,τ1)

ρ2
· · ·

RS(ωA,τ3)

333

ST(ωC ,τ1)

EV(idle)

ST(ωA,τ1)

ST(ωA,τ1) ST(ωA,τ1)

ST(ωA,τ2)

ST(ωA,τ3)
ST(ωA,τ2) ST(ωA,τ3)

RS(ωC ,τ1)
RS(ωC ,τ1)

RS(ωA,τ3)

ST(ωC ,τ1)

RS(ωA,τ3)

SL(ωC ,τ1) SL(ωA,τ3) SL(ωA,τ3)

SO(ωA,τ1) SO(ωA,τ2)
SO(ωA,τ3)

SO(ωA,τ1)

SL(ωA,τ3)
SO(ωA,τ2)

SO(ωA,τ1)

SO(ωA,τ3)

SL(ωC ,τ1)

ST(ωC ,τ1)

ρ3
· · ·

RS(ωA,τ3)

RS(ωC ,τ1)

SL(ωC ,τ1)

RS(ωC ,τ1)

SL(ωC ,τ1)

RS(ωA,τ3)

333

mdl of τ1

(ωA, τ1)

(ωA, τ2)

(ωA, τ3)

(ωC , τ1)

t29t0 t10 t25 t39 t45t3 t4 t5 t21

Figure 4.5: Diagram with evidences of infeasibility

The Figure 4.5 provides evidences of different traces ρ1, ρ2, and ρ3, where using periodic

resource models can introduce such infeasibility. ρ2 and ρ3 are traces where the maximum

detection delay is lower, but they have more context-switches, and portions of execution

where the task may be wasting time. ρ1 is an acceptable trace, however, ρ2 and ρ3 may

not work due to discharging 2 and 1 time units before executing τ1. This time may be

crucial for executing a monitor for τ1 under the assumption of the WCET of the task. More

precisely, a monitor task will execute as the system provides symbols for consumption and

the first block of both traces will not be considered in these traces.

To provide a real WCET for this application without requiring to largely estimate it,

we only need to find the exact WCET of a job with the assumption that each entry of

this job will be executed when events are ready to be consumed, using a time triggered

approach. For that, we need to statically assert the formula 4.1 and a formula encoding

their precedences at the level of the internal events of a task or a set of tasks.

RV of explicit time is inherently dependent of past execution and as such we need to adopt

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 74

models such as the ones containing dependent tasks with exact schedulability to avoid

pessimism. Monitoring and pessimism do not combine, since the goal of a monitor is to

interfere as low as possible in the system but increase as high as possible the reliability of

the system.

4.3 Safe Components and Monitors

In this section, we will continue extending the scheduling formalization of resource models

in order to support construction of safe components and monitors using RMTL-
∫
3
. We

consider mdl as the function transforming a formula to be monitored into one formula

including the maximum detection delay assertion.

Let us recall that κi is a prefix of a timed sequence κ at i, and κi is a suffix of κ at i. We

write κ |= P when the time sequence κ satisfies the property P .

Let us start by defining what is meant by a safety property [Alpern and Schneider, 1987].

Definition 19. Let K be the set of infinite timed sequences, and P a property. P is a

safety property iff for all κ ∈ K such that κ 6|= P there exists an i, i ≤ 0 such that for all

κb ∈ K, κiκb 6|= P .

Since monitoring a property does not ensure anything by itself, we need to establish the

following propositions.

Proposition 1. Let φ be a monitoring formula in RMTL-
∫
3
. The monitor formula φ is

safe iff the formula mdl(φ) is satisfiable.

Proof (sketch). Consider that φ is a safety property, and mdl constructs the set E of sub-

formulas from φ. Then, we have to prove that the formula �<a
∧
e∈E

(
e→ �≤γ SO(m)

)
is

safe. Since for all e ∈ E, e is a safe formula, it remains to prove that �<a
(
(¬e1) ∨ �≤γ SO(m)

)
∧

(
(¬e2) ∨ �≤γ SO(m)

)
. . . is a safe formula. The proof follows by Definition 19 for the cases

¬e, e1∨ e2, and e1 U<γ e2, which we omit here for simplicity. Hence, if it is satisfiable then

we have a safe monitor. �

Proposition 2. Let C be a component of the form (Γ, ω, ϑ,Φsub), and Φsub is equal to

φ1, φ2, . . . , φn for an arbitrary length n. The component C is safe iff the formula PRM(ω)∧
∧n
i=1mdl(φi) is satisfiable.

Proof (sketch). Assuming that PRM(ω) is a safe formula, the proof follows directly from

Proposition 1. �

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 75

Lemma 10. Let C1 and C2 be two components of the form (Γ1, ω1, ϑ1,Φ1) and (Γ2, ω2, ϑ2,Φ2)

where Φsub is equal to Φ1 ∪ Φ2 and of the form φ1, φ2, . . . , φn for an arbitrary length n.

Arbitrary execution of C1 and C2 is safe iff the formula PRM(ω1)∧PRM(ω2)∧∧n
i=1mdl(φi)

is satisfiable.

Proof (sketch). The proof follows directly from Proposition 2 for C1 and C2. �

Let us now go back to the Example 10 containing an hierarchy of monitors. A hierarchy

of components as described in Figure 4.1 can be specified based on arbitrary execution of

components.

The composition for the case of the hypervisor of the form (Ω, ηp, ηm, φh), where Ω is

a set of resource models, ηp a set of processors, and ηm a set of memories, is indeed a

composition of the components inside Ω and
∧
φ∈φhmdl(φ).

Ensuring the safety property for each monitoring formula is of extreme importance in

order to ensure that nothing bad happens when other monitors and system’ tasks are

combined. To facilitate the description of monitoring schemes using a more natural

language for program developers, we will introduce next a micro resource DSL. Note

that every construction of this DSL is on top of the presented formalization of the last

sections.

4.4 DSL for components

Regarding resources, tasks, and other abstractions for task jobs and execution units of RTS,

there are no DSLs appropriate to reason about resource availability and schedulability. In

this section we introduce the µDSL language that have been designed to appropriately deal

with resources and tasks among other constraints such as describing functional properties,

including safety and liveness properties. Let us now introduce the syntax and establish

how this language is synthesized to RMTL-
∫
3

by the respective operational semantics.

Definition 20 (Syntax). Let optk denote one of the operators � or ./, where � means

the relation of the priority of tasks, and ./ means that two tasks can be executed with the

same priority, or execute arbitrarily. The operator for resources is oprs ∈ {‖,�}, where

‖ means that the resources execute in parallel, and � means that the resources have a

priority relation. We introduce a mapping operator
m7→ for constraining the resources to

memory regions. For instance, the expression res(tsk(10, 3), 5, 10)
m7→ chk(1) means that

the resource res(tsk(10, 3), 5, 10) is mapped to the first chunk of memory. In a similar

way, we use the operator
c7→ for mapping resources to cores. For instance, the expression

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 76

res(tsk(10, 3), 5, 10)
c7→ cre(1) means that the resource will be executed in core one. We

also define chk as intervals (e.g, [a, b[, a, b ∈ N+) mapped to memory chunks, and cre

as a map of core indexes to Booleans. Finally, we define ct as a shallow translation of

RMTL-
∫
3

to express the same timing constraints. The µDSL is inductively defined by

task expressions tk and resource expressions rs, as follows:

tm ::= vl | [ct]v

ct ::= ev | ¬ct | ct1 ∨ ct2 | ct1 ∧ ct2 | ct1 → ct2 | ct1 _ ct2 | [[ct]]tm | tm1 < tm2

tk ::= tsk(p, e) | tk1 optk tk2

rs ::= res(tk, π, ω) | rs1 oprs rs2 | rs m7→ chk | rs c7→ cre | rs / ct

where tsk(p, e) is a task identified by a period e ∈ N+ and an execution time e ∈ N+, and

res(tk, π, θ) is a resource with period π ∈ N+ and budget θ ∈ N+.

Definition 21 (Operational semantics). The semantics of our µDSL will be given by a

set of rules having as premises and conclusion judgments of the form 〈a,Φ〉 ⇒ 〈b,Φ′〉 with

the meaning that a reduces to b and the current formula Φ being synthesized is updated

to Φ′. Note that this is a small step semantics.

The compositional semantic rules as well as the complementary rules are defined in the

Figure 4.6. The semantic rules for expressions using 7→ and / operators are also included.

Note also that the remaining rules for reducing ct are a shallow translation of RMTL-
∫
3
,

and no modifications in the syntax of the logic occurs. [ct]v is the same as
∫ v
ct, ct1 _ ct2

is the same as ct1 U∼b ct2 with b sufficiently large, and [[ct]]tm is the same as ct ∧ [ct]tm.

Let us now consider the events defined above in this chapter, and the identifier ” ′ ”

for labeling sub-formulas. Remark also that terminal rules cpl2 and cpl3 make changes

according to the formal specification introduced in Section 4.2 for resources and tasks,

respectively. chk, cre and ct rules are used for mere labeling.

We exemplify now two options that can be adopted. The first option is defining one formula

generated by unfolding the temporal formula until a desired time bound. For instance,

considering the punctual formula, which may be impractical for larger bounds. For the

second option we need the definition of an invariant with a built-in implication, since we

do not require to be constantly evaluating the until operator for each time instant, but

only at certain time instants. In this case, the drawback is the definition of an auxiliary

sub-formula, describing that an event is triggered once at each desired period.

Example 14. Let us assume the expression tsk(9, 3) and the formula ψ equals to

(
ST(τ1) ∨ RS(τ1) ∨ SL(τ1) U<9 SO(τ1)

)
∧
∫ 9

ST(τ1) ∨ RS(τ1) ∨ SL(τ1) ∨ SO(τ1) < 3.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 77

Composition rules
cmp1:

〈tsk(a, b),Φ〉 ⇒ 〈.,Φ′′〉 〈tk,Φ′′〉 ⇒ 〈tk′,Φ′〉
〈tsk(a, b) � tk,Φ〉 ⇒ 〈tk′,Φ′〉

cmp21 :
〈tsk(a, b),Φ〉 ⇒ 〈.,Φ′′〉 〈tk,Φ′′〉 ⇒ 〈tk′,Φ′〉

〈tsk(a, b) ./ tk,Φ〉 ⇒ 〈tk′,Φ′〉
cmp22 :

〈tsk(a, b),Φ〉 ⇒ 〈.,Φ′′〉 〈tk,Φ′′〉 ⇒ 〈tk′,Φ′〉
〈tk ./ tsk(a, b),Φ〉 ⇒ 〈tk′,Φ′〉

cmp3:
〈res(a, b, c),Φ〉 ⇒ 〈.,Φ′′〉 〈rs,Φ′′〉 ⇒ 〈rs′,Φ′〉

〈res(a, b, c)� rs,Φ〉 ⇒ 〈rs′,Φ′〉

cmp41 :
〈res(a, b, c),Φ〉 ⇒ 〈.,Φ′′〉 〈rs,Φ′′〉 ⇒ 〈rs′,Φ′〉

〈res(a, b, c) ‖ rs,Φ〉 ⇒ 〈rs′,Φ′〉
cmp42 :

〈res(a, b, c),Φ〉 ⇒ 〈.,Φ′′〉 〈rs,Φ′′〉 ⇒ 〈rs′,Φ′〉
〈rs ‖ res(a, b, c),Φ〉 ⇒ 〈rs′,Φ′〉

Complementary rules
rsct:

〈rs,Φ〉 ⇒ 〈.,Φ′′〉 〈ct,Φ〉 ⇒ 〈.,Φ′〉
〈rs / ct,Φ〉 ⇒ 〈.,Φ′ ∪ Φ′′〉

rschk:
〈rs,Φ〉 ⇒ 〈.,Φ′′〉 〈chk,Φ′′〉 ⇒ 〈.,Φ′〉

〈rs m7→ chk,Φ〉 ⇒ 〈.,Φ′〉
rscre:

〈rs,Φ〉 ⇒ 〈.,Φ′′〉 〈cre,Φ′′〉 ⇒ 〈.,Φ′〉
〈rs c7→ cre,Φ〉 ⇒ 〈.,Φ′〉

chk:
〈chk,Φ〉 ⇒ 〈.,Φ′〉

cre:
〈cre,Φ〉 ⇒ 〈.,Φ′〉

ct:
〈ct,Φ〉 ⇒ 〈.,Φ′〉

cpl1:
〈tk,Φ〉 ⇒ 〈.,Φ′′〉 〈res(., a, b),Φ′′〉 ⇒ 〈.,Φ′〉

〈res(tk, a, b),Φ〉 ⇒ 〈.,Φ′〉

cpl2:
〈tsk(a, b),Φ〉 ⇒ 〈.,Φ′〉

cpl3:
〈res(., a, b),Φ′′〉 ⇒ 〈.,Φ′〉

Figure 4.6: Composition and complementary rules for µDSL

We can unfold the meaning of the expression tsk(9, 3) by

ψ ∧ �=9 ψ ∧ �=18 ψ ∧ �=b ψ, (4.6)

which is as big as the required bound, which in this case is b = 27.

For the second alternative making use of the always operator, we define it by the formula

RE(τ1) ∧ �<b RE(τ1) →
(
�=p RE(τ1)

)
∧ ψ, (4.7)

where b is the upper bound, equal to 27 + 9, and p = 9 is the task period, which means the

starting point of the execution of a task.

We decided to adopt the second option for µDSL, since in terms of synthesis the result

will be more succinct.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 78

cmp1:
cpl2:

〈tsk(9, 3),Φ〉 ⇒ 〈.,Φ′′′〉
cpl2:

〈tsk(11, 5),Φ′′′〉 ⇒ 〈.,Φ′′〉
〈tsk(9, 3) � tsk(11, 5),Φ〉 ⇒ 〈.,Φ′′〉

Figure 4.7: Inference tree for the Example 15

cpl1:
cmp1: Example 15

〈tsk(9, 3) � tsk(11, 5),Φ〉 ⇒ 〈.,Φ′′〉
cpl3 〈res(., 10, 5),Φ′′〉 ⇒ 〈.,Φ′〉

〈res(tsk(9, 3) � tsk(11, 5), 10, 5),Φ〉 ⇒ 〈.,Φ′〉

Figure 4.8: Inference tree for the Example 16

Example 15. Let us begin by a simple example using the expression tsk(9, 3) � tsk(11, 5),

and identify tsk(9, 3) by τ1 and tsk(11, 5) by τ2. Applying the rules cpl2 and cmp1, we can

construct the inference tree depicted in the Figure 4.7. We get Φ′′ equal to

(
RE(τ2) →

((
�=11 RE(τ2)

)
�
(
ST(τ2) ∨ RS(τ2) ∨ SL(τ2) ∨ Fl(φ′′) U<11 SO(τ2)

)))
∧

(
RE(τ2) →

∫ 11

ST(τ2) ∨ SL(τ2) ∨ RS(τ2) ∨ SO(τ2) = 5

)
∧ Φ′′′,

where Φ′′′ is equal to

(
RE(τ1) →

((
�=9 RE(τ1)

)
�
(
ST(τ1) ∨ RS(τ1) ∨ SL(τ1) U<9 SO(τ1)

)′
label1

))′
unt1∧

(
RE(τ1) →

∫ 9

ST(τ1) ∨ SL(τ1) ∨ RS(τ1) ∨ SO(τ1) = 3

)′
dur1 ∧ Φ,

and the filter function Fl(Φ′′′) returns the formula

RE(τ1) ∨ ST(τ1) ∨ RS(τ1) ∨ SL(τ1) ∨ SO(τ1).

Note that the filter Fl makes use of labels. For the next example, let us denote Φ′′ by Ψ1.

Example 16. Let us assume the expression res(u′, 10, 4), where u′ is equal to tsk(9, 3) �
tsk(11, 5) as in the Example 15. Applying the rules cpl1, cmp1, cpl2, and cpl3, we get the

inference tree depicted in Figure 4.8. We get Φ′ equal to

(�=10 RN) ∧
(

RN→
∫ 10

Fl(Φ′′) < 4

)
.

Note that in this case Φ′∧Ψ1 is false, since Φ′ conflicts with Ψ1 due to the execution time

of the tasks that exceed 4 time units. Let us now denote Φ′ ∧Ψ1 by Ψ2 for simplicity.

Finally, we get the final formula

(
RN�

(
RE(τ1)� RE(τ2)

))
∧ �<b Ψ2,

where b is the least common multiple of the expression.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 79

4.5 Timing guarantees by hierarchy of monitors

Timing correctness regarding the execution of explicit time monitors. Knowl-

edge of the length of the traces is required before execution, and for that we define a bound

over temporal formulas, allowing us to determine a map from time to event size. The

calculation of temporal bounds for formulas of RMTL-
∫
3

is then achieved by a recursive

algorithm that traverses the inductive structure of the formulas by summing the time

window required for each formula. We now give two examples of the calculation of an

upper bound for a given formula, and the construction of a flow graph for a given time

window.

Example 17. Let us consider a trace and the formula a U<10 (b U<10 c), containing

propositions a, b, c evaluated at time t = 0. Based on the semantics of temporal operators

we achieve the timing bounds t ∈]0, 10[and t ∈]0, 20[, for the inner and outer until

operators. These time bounds are intervals where the truth values resulting from the

evaluation of formulas may change. By the semantic nature of temporal operators, we

know that for any t 6∈]0, 10[∪]0, 20[the truth value is maintained constant, which gives

us the desired bound for changes of the evaluation value.

Example 18. In order to estimate the amount of time required from the system under

observation to couple monitors in a safe manner, we can use a pessimistic approach based

on the assumption of a maximum inter-arrival time of events in the system, or we can

pre-compute the flow graph of the application. Based on these, we are able to infer how

many events will be triggered in a certain time interval. To exemplify the specific case of

the latter, we define a time window given by a certain formula using the previous approach.

Then, we create a flow graph of the entire system and fix the starting point of the system

as depicted in the partial flow pattern of the events under monitoring in the Figure 4.3.

From label STω1,τ1 to SOω1,τ1, where ST corresponds to the beginning of the execution and

SO corresponds to the end of the execution, we have the flow of the main task composed by

three paths , and from label STω2,τ2 to SOω2,τ2, we have the optional task, which includes

EV(1) and EV(2). In summary, we have at most four events between ST and SO and the

optional task two events. The figure also depicts the dependencies of events, and allows

us to estimate the required relative time for some events.

Altogether, these examples combine temporal settings of the monitors and the system

itself: the first one give us the amount of time that we need to wait for a verdict (minimum

time granularity); the second one helps us to find the period for a monitor based on the

time behavior of the system under monitoring as well as to estimate the WCET of the

monitor (i.e, the time complexity times a constant).

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 80

Timing guarantees of the hard real-time systems are commonly pessimistic [Shin and

Lee, 2003]. Given that, it is not good to have monitors always executing in constant

time since they may consume more time than required in average. In order to produce

coherent timing verdicts of monitors without assuming any specific scheduler, a hierarchy

of monitors should be employed. The main monitor requires to execute in constant time

to supervise the other monitors that can be executing without any restriction of time.

Given that, as the time elapses the main monitor is ensuring the timing guarantees of the

other monitors and then these monitors are supervising the main application. Now, we

are able to use our framework to settle on any real-time scheduler.

The idea behind a hierarchy of supervising monitors is to obtain a monitor that is correct-

by-construction and executes in constant-time and constant-space. This allows us for

adaptability of new monitors, as well as to incorporate new system functions. In order

to give constant-time implementation of a monitor, we need to fix the sample size for the

trace that the supervisor monitor uses to incrementally evaluate, and use the symbol-based

execution for arbitrary n steps. However, we do not have guarantees that the maximum

delay detection will be ensured. For that we need to consider the rate of the events

that scheduler and monitors trigger. It is relatively simple since monitors are time/event

triggered or both. Since counting events is constant time, we have a monitor that will

count the events in order to verify if they are greater than the amount of events allowed

by the system. Note that this is safe by itself since the assumption is also monitored.

Note that none of the related works have focus on an hierarchy of trusted monitors. At

most, they assume that the monitors execute as fast as possible and when there is no

real-time operating system (RTOS), the scheduling is employed by the hardware interrupt

routines [Pike et al., 2010].

Summary

In this chapter, we have presented the formalization of periodic resource models extended

with dependent tasks. Based on that we have constructed the analysis for the presented

framework in order to discharge properties statically by means of an offline analysis,

and at execution time employing runtime monitors. For constructing the skeleton of

the monitoring sketch, we have introduced the µDSL language, which we believe has the

potential to become an important artifact for the real-time community, embedding the

same language as the one we have introduced in Chapter 3 to synthesize monitors.

This is the novelty of our approach. Instead of being too generic, it allows us to define more

concrete/specific constraints about the execution of the system under observation, and at

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 81

the same time specifying runtime monitors. For the cases where there are less constraints,

the output of the offline analysis will be successful as well, including the extension for

multi-core systems where cores and memory regions are automatically assigned. Moreover,

proofs are generated for each sketch giving us a great confidence over the analysis just by

assuming the synthesis mechanisms. The practicability of our approach depends on both

synthesis steps, which are of major importance.

In terms of the practical implementation of the framework proposed and described in the

chapter, we follow an approach that consists in: 1) synthesis mechanism for functional

language (and then extended to imperative languages such as C++); 2) synthesis mecha-

nism for SMT solvers such as Z3 , and 3) the framework including a proper language and

tools to combine both offline and online mechanisms. When mixing these techniques we

are able to carry out safe RV of hard real-time systems.

CHAPTER 4. RV-RMTL-
∫
FRAMEWORK 82

Chapter 5

Evaluation

Over the past decades several approaches for schedulability analysis have been proposed

for both uni-processor and multi-processor real-time systems [Davis and Burns, 2011].

Although different techniques are employed, very little has been put forward in using

formal specifications, with the consequent possibility for mis-interpretations or ambiguities

in the problem statement [Cerqueira et al., 2016].

Moreover, the major effort in the research community working on controller design for

real-time embedded systems is the design of physical models rather than model synthe-

sis techniques and associated formal verification approaches [Ranjbaran and Khorasani,

2010]. Even when formal synthesis and verification methods are used, the techniques

for enforcing time isolation are generally discarded and delegated to the capabilities of

non-formally/partially verified RTOSs [Andronick et al., 2016, Meier et al., 2015].

In this chapter, we describe the application of the techniques and the framework pre-

sented in the preceding chapters, and evaluate their usability regarding the safe inclusion

of monitors in a working environment as well as the monitor synthesis from RMTL-
∫
3

language. We will begin by describing the usefulness of our approach in the context

of offline schedulability analysis, and later on showing evidence of the effectiveness for

schedulability analysis of uni- and multi-processor systems without runtime monitors.

Then, we introduce the case study for RV of lightweight avionic systems making use of

the RV-RMTL-
∫

framework for monitoring control systems. Finally, we discuss the kind

of properties we are able to deal with, as well as the results achieved in verifying them.

83

CHAPTER 5. EVALUATION 84

5.1 Application of µDSL for offline schedulability analysis

Along almost forty years, a bewildering diversity of schedulability tests for hard real-

time systems has been proposed to address the constrains imposed by the required timing

predictability. These tests vary considerably in their complexity, expressivity, and target

scheduling policies (e.g., fixed task or job priority, preemptive or non-preemptive). The

literature [Audsley et al., 1995, Fidge, 1998] reveals that generally schedulability testing

works by assuming a worst-case scenario and checking that each of the involved tasks gets

a sufficient allocation of shared resources or jobs complete before their deadlines. Although

in multi-core the same does not naturally happen, cases that are not ”the worst” will also

succeed.

The reasons for adopting a logic-based paradigm for schedulability analysis are: it becomes

more comprehensive and expressive; it rules out potential specification incoherences typical

of informal specifications; and it has some benefits relatively to the available analysis, not

in terms of efficiency but in terms of being easily extendable for monitoring approaches

such as the acquisition of the maximum detection delay of a task as in [Zhu et al., 2009].

As further context on offline scheduling using temporal logic, we note that:

1. the outcome of a classical schedulability analysis is typically a verdict for a certain

set of tasks, but no counter-examples are shown if the set of tasks is not schedulable;

2. the behavior of the scheduler is assumed rather than being explicitly included in the

schedulability test;

3. the timing description of the tasks is the unique data provided by classical analysis

methods (i.e., offsets, jitters, periods, deadlines);

4. standard approaches are not possible to extend with other useful properties such

as monitoring and enforcement of real-time properties [Pinisetty et al., 2013, Pike

et al., 2010], due to the restricted definition of their sets of tasks (e.g., defining a

bound for two consecutive instructions, the inter-arrival time of an event);

5. some real-time systems literature [Zhu et al., 2010, 2009] commonly considers the

estimation of an arrival rate, which implies minimization and produces significant

issues (e.g., under and over estimations, local minimums and maximums, etc.).

This work integrates the description of the scheduling behavior with the schedulability

analysis, which enables the generation of counter-examples when the system is not schedu-

lable. These counter-examples are fundamental for the system designer to understand and

adapt the design accordingly. Although giving an unsatisfiable answer is, in general, faster,

CHAPTER 5. EVALUATION 85

it is not straightforward to draw a readable counterexample as the SMT solver normally

relies on getting the minimal unsatisfiable core.

The present schedulability analysis consists in the evaluation of a formula over a trace

(or a set of traces) produced by a periodic resource model where tasks execute along a

fixed priority scheduling. In order to decrease the state space search we might assume for

uni-core scheduling the critical instant theorem [Liu and Layland, 1973]. This assumption

would reduce our problem to just one trace acceptance for a set of logic properties and

would allow us to identify the relevant traces and combine our approach with the foun-

dational real-time systems theory. However, this does not work for multi-core scheduling

and is thus not sufficiently generic for our purposes.

Our schedulability decision problem is indeed a satisfiability problem over a trace regarding

a RMTL-
∫

formula. The general schedulability problem for tasks/resources is described

in the following definitions.

Definition 22. Let {τ1, τ1, . . . , τn} ⊆ T ⊆ Γ be a set of tasks with arbitrary size n. The

set of tasks are schedulable according to a fixed priority if and only if there exists an event

sequence such that PRM(ω1) holds for some ω1 equal to (T , l, l, fp) with l a sufficient large

number, and fp the fixed priority policy.

Definition 23. Let {ω1, ω2, . . . , ωm} ⊆ Ω be resource models with arbitrary size m. The

resource models are said to be schedulable if and only if, there exists an event sequence

such that PRM(ω1)∧PRM(ω2)∧ · · · ∧PRM(ωm) is satisfied, and the duration of the found

event sequence is greater than or equal to hyper period among resources.

Informally, these definitions lead us to state that there exists in the past sufficient resources

to meet the deadlines of all tasks in the periodic resource model if this resource model

acts as specified (i.e., behaves accordingly).

Our schedulability analysis for several period resource models relaxes the truth notion of

the WCET. This means that the WCET of a task (or set of tasks) can be erroneously

estimated, and ensures that the remaining resource models are also schedulable, which is

a property of great interest for multi-core scheduling where anomalies can happen.

Next, we will consider a simple fixed priority schedulability test with implicit deadlines,

and then move forward to a more elaborated example based on multi-core scheduling. For

both we will use µDSL (introduced in Chapter 4 as part of the RV-RMTL-
∫

framework) to

encode simple expressions, since it is more succinct.

CHAPTER 5. EVALUATION 86

propfm , RU(c0,τ1)∨SO(c0,τ1)∨RU(c0,τ2)∨SO(c0,τ2)∨RU(c0,τ3)∨SO(c0,τ3)

init , RN(c0) U<2 (RE(c0,τ1) U<2 (RE(c0,τ2) U<2 RE(c0,τ3)))

�<60 RN(c0)→
(
�=60 RN(ω)

)
∧
∫ 60 propfm<50

�<60 RE(c0,τ1)→
(
�=20 RE(c0,τ1)

)
∧(RE(c0,τ1) U<2 (RU(c0,τ1)∨RU(c0,τ3)∨SO(c0,τ3) U≤20 SO(c0,τ1)))

�<60 RE(c0,τ2)→
(
�=15 RE(c0,τ2)

)
∧(RE(c0,τ2) U<2 (RU(c0,τ2)∨RU(c0,τ1)∨SO(c0,τ1)∨RU(c0,τ3)∨SO(c0,τ3) U≤15 SO(c0,τ2)))

�<60 RE(c0,τ3)→
(
�=10 RE(c0,τ3)

)
∧(RE(c0,τ3) U<2 (RU(c0,τ3)∨RU(c0,τ2)∨RU(c0,τ1)∨SO(c0,τ1)∨SO(c0,τ2) U≤10 SO(c0,τ3)))

�<60 RE(c0,τ1)→
∫ 20 RU(c0,τ1)∨SO(c0,τ1)=9

�<60 RE(c0,τ2)→
∫ 15 RU(c0,τ2)∨SO(c0,τ2)=8

�<60 RE(c0,τ3)→
∫ 10 RU(c0,τ3)∨SO(c0,τ3)=3

init

Table 5.1: Expansion of the PRM(c0) where c0 means core0

5.1.1 Two settings for schedulability analysis

µDSL in uni-core setting. To demonstrate the effectiveness of the schedulability anal-

ysis using µDSL, we introduce a synthetic workload. Consider as example the workload

composed by one component (60, 50), which executes at each hyper period three tasks with

parameter pairs (20, 9), (15, 8) and (10, 3), with available 50/60 time units for executing.

The first element of the tuple is the period and the second the deadline/budget. In µDSL,

the expression describing the example is

server0

[(
tsk

(20,9)
ts1 � tsk(15,8)

ts2

)
./ tsk

(10,3)
ts3

]
(60,50)

, (5.1)

which specifies that ts1 has higher priority than ts2, and ts3 executes arbitrarily with ts1

and ts2.

Usage of events as specified in the RV-RMTL-
∫

framework is more adequate for runtime

monitoring purposes. Due to the overhead that resume and sleep events may cause when

using SMT solvers and the ability to infer when a task sleeps/stops occurs based on non

consecutive events, we will adopt only three events per task, RE,RU (meaning ST, RS

or SL) and SO. Based on that, we have automatically formulated the set of formulas

described in Table 5.1 from Expression 5.1 using the proposed synthesis algorithm for

SMT solvers. The same table also includes a trace that satisfies the given specification.

Note also that other events can be further considered as required. The reader is referred

to Appendix B for a more detailed example of a complete synthesis.

CHAPTER 5. EVALUATION 87

(define-fun i n d i c a t o r ((mt Time)) Int

(i te (= (computep trace mt pa) TVTRUE) 1 0)

)

(declare-fun evaln ((Time)) Int)

(assert (= 0 (eva ln 0)))

(assert (f o ra l l ((x Int)) (=> (> x 0) (= (eva ln x) (+ (eva ln (- x 1))

(i n d i c a t o r x))))))

(assert (< (eva ln 10) 9))

Listing 5.1: Example of a RMTL-
∫

duration term encoding using SMT-Libv2

µDSL in multi-core setting. A specification for a multi-core setting, making use of

the previous expression, can be expressed as

server0

[(
tsk

(10,8)
ts1 � tsk(20,5)

ts2

)
./ tsk

(27,7)
ts3

]
(1,1)

c7→ core0 ‖

server1

[
tsk

(33,4)
ts4 � tsk(6,2)

ts5

]
(1,1)

c7→ core1, (5.2)

where instead of specifying the amount of execution time allowed for each resource the

expression assigns for server0 and server1 the pair (1, 1). This means that all available

resources in the server0 are executing in isolation in the core0 as well as the resources of

server1 in core1.

For both settings, the next step of the approach (introduced in Chapter 4) consists in the

transformation of a specification written in µDSL into an equivalent RMTL-
∫

specification.

We can then check the satisfiability of a scheduling property over the generated set of

formulas like for instance checking if task ts1 can execute more than 9 time units. Next,

we convert this formula into the SMT-LIBv2 [Barrett et al., 2015] language using our tool

(described in Appendix B) and delegate the reasoning to the Z3 solver [de Moura and

Bjørner, 2008].

To better exemplify how the process is done, let us consider the Listing 5.1 that shows an

incomplete candidate encoding of the interval-based semantics for the RMTL-
∫

duration

term. The uninterpreted function computep evaluates a proposition at the instant mt, and

pa is a proposition representing an event. It is true from the beginning of the event’s

occurrence until the next event is triggered in the system. Our goal is to find a trace

(or set of traces) that satisfies these constraints, henceforth if the answer we obtain is

unsat then the system cannot be scheduled (the constraints are somehow inconsistent);

otherwise, we have a flow of the system for which these constraints result in a schedulable

behaviour.

CHAPTER 5. EVALUATION 88

ID Formula Checked Performance

(a) p ∧ �<b1 p→ �=2 p X

(b) (p ∨ q) U<b1 r X

(c)
∫ b1 p < 3 X

(d) ((p ∨ q) U<b1 r) ∧
∫ 9
r < 2 X

(e) ((p ∨ q) U<b1 r) ∧ 10 <
∫ 9
r unsat

(f) �<b1p ∧ �<b2¬p unsat

(g) �<b2(a ∨ b) U<b1 r X

Table 5.2: Heat maps for performance comparison using the rmtld3synth tool for

synthesization and the Z3 solver for checking satisfiability

Comparatively to classic approaches, it is clear that this type of reasoning allows us to

construct and extend our constraints easily, without the need to reformulate every step of

the analysis (it is a constructive approach). Note also that the expressiveness to deal with

temporal order is of extreme importance when dealing with systems depending on time,

which sets of inequalities and equalities alone cannot provide. It is therefore important to

reuse such sets of (in-)equalities and combine them with logic connectives to get a fine-

grained description of the system. Furthermore, the recent developments of SMT solvers

positively impact our approach, namely due to the efficiency of the underlying reasoning

methods that increase the chances of constructing the proofs we need in a fully automatic

way.

5.1.2 Experimental results

The setup employed in our experimental evaluation was based on an Intel Core i3-3110M

at 2.40GHz CPU with 8 GB of RAM memory, and running Windows 10 Embedded x86

in a virtual machine running on a Fedora 23 X86’64 host.

For RMTL-
∫
3

formulas. Currently, it is not possible to devise a fair evaluation compar-

ison for our approach since there are no available tools that consider duration terms in the

way we consider in this work. In order to provide some insight about the feasibility of our

technique, we have measured the times taken by the Z3 SMT solver to prove satisfiability

of a set of specifications, as shown in Table 5.2. We have considered different structures

for the presented formulae. The goal is to show indicators of the feasibility of the approach

on sets of formulae with heterogeneous structural schemes, as we would expect to occur

in a real-life example.

CHAPTER 5. EVALUATION 89

The time required to solve formulas is not directly related with a formula’s complexity

or length, as formula (a) indicates when compared to (c). Note that formulas containing

durations are slower in average to solve than formulas containing only temporal operators,

as confirmed by the time it took to solve the satisfiability of formula (b) when compared

to formula (c). Furthermore, a mix of both temporal operators and durations does not

mean slower times as exhibited in the case of formula (d). We also note that showing

that a formula is unsatisfiable is in general faster than proving satisfiability. The formula

(e) from Table 5.2 is an example of this phenomenon. Finally, formula (g) show that

nested temporal operators could grow exponentially. Note that b1 and b2 are sampled at

increments of 5 from 5 to 50, < 1s and = 100s, and black cells mean a timeout (more

than 150s).

More complex examples can be seen in the tool’s repository [De Matos Pedro, 2018]. Our

experimental results indicate that this method can indeed be feasible for small sets of tasks

and resource models.

For µDSL expressions. Experiments using µDSL are described in Table 5.3. The results

indicate that this approach does not scale. However, it is very impressive that it was

possible to obtain in a few hours results for such highly nested formulas as shown in the

table. Note also that |U| means the number of until operators in the formula, and |
∫
| the

number of duration terms. The experiments also show that the results are not dependent

of the number of constraints, but on the size of the required input sequence. As the

case of core0

[
tsk

(9,8)
ts1 � tsk(3,1)

ts2

]
(20,8)

getting an unsatisfiable result is faster than getting

a satisfiable result when using only one task (i.e, the formula core0
[
tsk

(5,2)
ts1

]
(10,10)

). We use

the operators <, > to give an upper and lower bound to the time that we require to satisfy

the formula.

5.2 Lightweight Autopilot Systems: the case study

In fact, the most common models in the market – excluding the military-grade ones

– are not required to follow the rigorous software development processes that are used

in commercial avionic systems, mostly because they are small, cheap, and appear to

be inoffensive. Furthermore, multi-copters do not have any special inherent stability

mechanism, and are very dependent on their control software [Müller and D’Andrea,

2014]. Paradoxically, they are simpler than helicopters but also unsafer, since the latter

provide auto-rotation maneuvers that allow them to glide to the ground and still land

vertically [Hoffmann et al., 2007].

CHAPTER 5. EVALUATION 90

ID Expression |U| |
∫
| t(s) sat

(a) server0
[
tsk

(5,2)
ts1

]
(10,10)

5 3 13.55 X

(b) server0
[
tsk

(9,6)
ts1 �tsk

(3,1)
ts2

]
(9,8)

10 5 3.05 X

(c) server0
[
tsk

(10,2)
ts1 �tsk(10,2)

ts2 �tsk(10,3)
ts3

]
(10,10)

13 7 < 10800 X

(d) server0
[(
tsk

(20,9)
ts1 �tsk(15,8)

ts2

)
./ tsk

(10,3)
ts3

]
(60,50)

13 7 timeout 7

(e) srv0

[(
tsk

(10,2)
ts1 �tsk(5,1)

ts2

)
./ tsk

(5,2)
ts3

]
(10,8)

‖ srv1

[
tsk

(5,1)
ts4

]
(10,5)

18 10 < 16800 X

(f)
server0

[(
tsk

(10,2)
ts1 �tsk(5,1)

ts2

)
./ tsk

(5,2)
ts3

]
(1,1)

c7→ core0 ‖

server1
[
tsk

(9,6)
ts4 �tsk

(3,1)
ts5

]
(1,1)

c7→ core1
20 10 < 14400 X

(g) server0
[
tsk

(9,8)
ts1 �tsk

(3,1)
ts2

]
(20,12)

/ (RU(server0,ts1)_RU(server0,ts2)) 12 5 < 11000 X

Table 5.3: µDSL experimental results

We will now show an example that illustrates the usage of an autopilot instrumented with

runtime monitors capable to observe the execution of multiple resource models in order

to increase the timing confidence of the autopilot’s control loop. Our approach uses an

offline algorithm for formula simplification, and an online evaluation procedure that can

be directly applied for the synthesis of runtime monitors. We will begin by presenting an

example of application of Algorithm 1 (already introduced in Chapter 3) for monitoring the

budget of a set of Resource modelss (RMs); then we will present the empirical validation

of the complexity results for Algorithm 2 (also presented in Chapter 3). In the remaining

part of this chapter, we will introduce two use cases followed by the strong evidence of the

feasibility of the runtime monitoring approach.

Let us now recall the concept of resource model (RM). RMs are servers capable to ensure

timed resource isolation between tasks. If they are constrained periodically, we define

them using a replenishment period and a budged supply. The budget supply is available

as time elapses, and is renewed at each period by the resource model. Elastic periodic

RMs are resource models containing elastic coefficients (similar to spring coefficients in

physics) to describe how a task can be compressed when the system is overloaded, and

manage imprecise computation. Naturally, the coefficients need to be constrained (linearly

or non-linearly) before execution. Intuitively, the idea is to check the coefficients according

to the polynomial constraints using our static phase, and provide the simplified formulas

for the further runtime evaluation phase.

Let us now extend Example 4 for multiple RMs, considering without loss of generality the

case of two RMs. We will use indexed formulas φmi , ψmi with 0 ≤ i < n, n = 2, and let

CHAPTER 5. EVALUATION 91

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c0

c 1

r1
r2
r3

Figure 5.1: Linear, concave and convex restriction for c0 and c1

αi, βi be indexed constants. For measuring the budgets of two resource models we could

use the following invariant:

n−1∧

i=0

�<v φmi →

0 ≤

n−1∑

j=0

xj < βi ∧ xi = cj ×
∫ αi

ψmi

 ∧ rm

where v is arbitrarily large, ci is a coefficient indexed at i that mean different weights for

each RM (two in this setting), and rm is a constraint formula over the free variables c0

and c1.

The problem is then to find values for c0, c1 satisfying the constraints

r1 :=
1

250
(245− 444× c1 + 200× c1 × c1) = c1,

r2 := 1− c0 = c1, or

r3 := 1− c0 × c0 = c1,

as shown in Figure 5.1, based on two duration observations over the formulas ψm0 and

ψm1 . Note that rm is replaced by one of these constraints, namely r2, and 0 ≤ c0, 0 ≤ c1

holds. r1 and r3 are only exemplifications of other possible constraints.

We will use Algorithm 1 for discarding possible conflicts, and decompose the formulas into

sub-formulas that are free of quantifiers. Let us simplify the previously defined invariant

for two resource models where the coefficients c0 and c1 are existentially quantified and

constrained by r2. After some transformations on the formula and assuming that both

resource models have the same settings (i.e., β0 is equal to β1 and α0 is equal to α1), we

obtain

φ1
6< := �<v

((
φm0 → φ2

6<
)
∧
(
φm1 → φ2

6<
))
,

such that

φ2
6< := a =

∫ α0

ψm0 ∧ b =

∫ α1

ψm1 ,

CHAPTER 5. EVALUATION 92

and

φ1
< := ∃c0 c1 . 0 ≤ c0 × a+ c1 × b < β0 ∧ r3

holds. The duration terms
∫ α0 ψm0 and

∫ α1 ψm1 have been replaced by the logic variables

a and b, and the free logic variables x0 and x1 have been erased since the duration terms

evaluate at the same time. We will then have an isolated formula, and apply CAD to

determine if φ1
< is satisfied. If it is, then we directly replace φ2

6< by true, otherwise we

have the bounds that satisfy φ2
6<. For this case, we obtain for φ1

< the decomposition

(a < 0 ∧ b ≥ 0) ∨ 0 ≤ a < 10 ∨ (a ≥ 10 ∧ b < 10).

Intuitively, we may think on the instances c0 = 0 and c1 = 1, and c0 = 1 and c1 = 0.

After this step, the simplified bounds are ready to be evaluated by the online method.

Note that we cannot proceed with the monitoring step without removing all the free

variables since our monitoring algorithm does not support solving inequalities at runtime.

We also have to justify that the usage of runtime solvers is difficult to apply on real-time

embedded systems since the demand of computation resources is in the majority of the

cases unavailable.

Let us now discuss the complexity of Algorithm 2 and establish an empirical comparison

with the bounds presented in the Chapter 3. We observe that the generation of nested

durations is more critical on average than the nesting of temporal operators. This result

matches the semantics of both terms and formulas, since the duration terms can integrate

any indicative function provided for any trace, unlike the until operator that requires a

successful trace to maximize its search. Consider Figure 5.2c, where the boxes i1 to i6 are

respectively the intervals]10j , 10j+1] for all j ∈ [1, 7[. They represent the number of cycles

performed by folding functions. The results confirm that as the number of until operators

stabilizes and the number of duration operators increases, the computation time also

increases at a higher rate due to the presence of durations. This occurs for generated uni-

form formulas and traces; deep nesting of until operators and nested durations is unlikely

to occur in hand-written specifications (it has not been clearly confirmed whether they

are useful for real-life applications). The experiments confirm the theoretical complexity

bounds obtained earlier (Figure 5.2d). We have performed the experiments on an Intel

Core i3-3110M at 2.40GHz CPU, and 8 GB RAM running Fedora 21 X86’64.

5.2.1 Use cases with RMTL-
∫

3.

The adopted formalism supports an explicit notion of time that is required for the timing

analysis of RTSs. Support of inequalities, durations and quantification over these, increases

the expressiveness of classic temporal logics to specify explicit timing settings, filling a gap

CHAPTER 5. EVALUATION 93

10−4 10−3 10−2 10−1 100 101 102

i1

i2

i3

i4

i5

i6

Computation Time (s)

f
ol
d
cy
cl
es

(a) execution cycles of fold functions vs. com-

putation time, m(ϕ) = 25 − 1 and nκ = 1000

i1 i2 i3 i4 i5 i6
0

2

4

6

8

10

fold cycles

U
n
ti
l
op

er
at
o
rs

(n
)

(b) number of until operators vs. execution

cycles of fold functions, m(ϕ) = 25 − 1 and

nκ = 1000

i1 i2 i3 i4 i5 i6

0

2

4

6

8

10

fold cycles

D
u
ra
ti
on

te
rm

s
(n
)

(c) number of duration terms vs. execution

cycles of fold functions, m(ϕ) = 25 − 1 and

nκ = 1000

100 101 102 103 104 105
10−4

10−1

102

105

108

nκ = 1000

nκ = 100

nκ = 10

10002 ·m(ϕ)

1002 ·m(ϕ)

102 ·m(ϕ)

m(ϕ)

C
om

p
u
ta
ti
on

T
im

e
(s
)

(d) computation time vs. formula size

constructed with nested Until operators

Figure 5.2: Experimental validation of the complexity results

in the common specification languages for RTSs. Increasing the expressiveness of temporal

logics may introduce decidability issues; the interest of decidable fragments, like RMTL-
∫
3
,

is that the existence of an effective procedure that always evaluates any formula in any

model as a truth value is guaranteed. In practice, the existence of this procedure implies

that a monitor always terminates drawing a verdict, which is indeed important in runtime

monitoring applications, and even more important in the context of hard real-time systems.

Let a be a coefficient represented by a logic variable. Duration terms of the form a×
∫ η1 ψ1

CHAPTER 5. EVALUATION 94

can be synthesized if the coefficient a is constrained by polynomial inequalities, or if the

coefficient a with distribution Beta or Dirichlet is employed. Under these restrictions,

our tool [De Matos Pedro, 2018] is able to generate monitors that evaluate conditional

probabilities of random actions of RTSs. For instance, these monitors can be used to

monitor the inflation and the deflation of imprecise tasks, which is required when imprecise

computation models are employed. Moreover, the degradation of the system can also be

specified by defining liveness properties such as “a task cannot execute for less that 5 time

units in one interval of 100 time units”.

Two use cases for monitoring of the Ardupilot autopilot framework are described in this

section. The first is a simple case that exemplifies the quantification of linearly constrained

duration formulas, to illustrate how to generate monitoring conditions in C++. Use

Case (2) explores how to encode uncertainty by using polynomial inequalities to constrain

quantified duration formulas.

Use Case (1): RM establish amounts of shared resources to be consumed by working

tasks in RTSs. Normally, these mechanisms focus on time consumption and ensure time

isolation between different tasks or sets of tasks. Periodic RMs are defined by their

replenishment period and budget supply. Budgets are dynamically available as the time

elapses and are replenished at certain defined periods. Elastic RMs are an extension of

periodic RMs containing elastic coefficients, similar to spring coefficients in physics. They

describe how the execution time of a task can be temporally deflated or inflated by applying

n-D geometric region constraints (polynomial inequalities) over resource budgets. These

restricted coefficients allow for the system’s under-load and over-load to be controlled.

Spring coefficients, which are seen as logic variables, define the rate (or constraint) of

inflation and deflation of a resource (in our case, processing time) and can be changed

during execution. In this use case, these coefficients are governed by linear inequality

constraints which dictate the under- and over-loading conditions of a certain set of tasks.

Example 19. Consider the formula

0 ≤ a×
∫ π1

ψ1 + b×
∫ π2

ψ2 ≤
1

4
θ

that specifies the resource constraints of two RMs where coefficients are managed according

to the linear equation a = 1 − b for a, b ≥ 1
4 , that ψ1,ψ2 are two formulas describing the

event releases of two distinct tasks, and that θ is the allowed execution time for the RMs.

Informally, the formula specifies that both resource models have different budgets when

both execute at the same time, which in practice is the case when both RMs interfere in the

system. To find the conditions for monitoring we need to quantify the formula, yielding a

new formula

∃{a,b}
(
a = 1− b ∧ a > 1

4
∧ b > 1

4
∧ 0 ≤ a×

∫ π1

ψ1 + b×
∫ π2

ψ2 ≤
θ

4

)
.

CHAPTER 5. EVALUATION 95

0 2 4 6 8 10

0

2

4

6

8

10

x

y

0 ≤ x ≤ 2 ∧ 8−x
3

< y < 10− 3x

2 < x ≤ 5
2
∧ 8− 3x < y < 10− 3x

5
2
< x ≤ 8

3
∧ 8− 3x < y < 10−x

3

8
3
< x < 10 ∧ 0 ≤ y < 10−x

3

Figure 5.3: Regions of decomposed inequalities with duration x, y and θ = 10

Later, after applying the simplification algorithm described in the Chapter 3, we generate

the monitoring conditions from Example 19, as follows:

(
∫ π1 ψ1=0∧0≤

∫ π2 ψ2<θ) ∨ (0<
∫ π1 ψ1<

θ
4
∧0≤

∫ π2 ψ2<θ−3
∫ π1 ψ1) ∨

(
∫ π1 ψ1= θ

4
∧0≤

∫ π2 ψ2≤ θ4) ∨
(
θ
4
<
∫ π1 ψ1<

θ
3
∧0≤

∫ π2 ψ2<
θ−
∫π1 ψ1

3

)
∨(∫ π1 ψ1= θ

3
∧θ−3

∫ π1 ψ1≤
∫ π2 ψ2<

θ−
∫π1 ψ1

3

)
∨

(
θ
3
<
∫ π1 ψ1<θ∧0≤

∫ π2 ψ2<
θ−
∫π1 ψ1

3

)
,

where ψ1 and ψ2 are both simplified formulas.

In Figure 5.3 we can see regions where the RMs are able to consume resources or not, as

well as regions where they are not able to do so. For instance, the resource B cannot

consume any resource if resource A consumes 10 units, and the resource A can only

consume more than 4 units if the resource B consumes less than 2 time units, due to

resource constraints. For the case of both resources consuming 2.5 units each, the difference

between the sum and the execution time indicates that the interference of both resource

models executing concurrently is at most 5 time units (it is identified by the hashed region).

Intuitively, this constraint means that one resource needs to be deflated when the other

resource is inflated and conversely. Note that different regions can be found by modifying

the constraints of the scale factor 1
4 , or any of the θ, a or b parameters.

Use Case (2): A conditional probability for a given duration measure for tasks can be

specified using this formalism. We will next evaluate the likelihood of the remaining tasks

in a system to be unscheduled, based on the overload of a certain task. This example

applies in the context of RMs monitoring and also of imprecise computation monitoring.

Let a be defined as a coefficient with uncertainty. Any probability distribution that can

be described using polynomial inequalities can be encoded using this approach. Here

we will focus on the Beta distribution only, but other interesting distributions, such as

multinomial and Dirichlet distributions, could be equally used.

CHAPTER 5. EVALUATION 96

Let X and Y behave as two random variables with distribution Beta(ai, bi) for i ∈ 0, 1.

To encode these random variables in RMTL-
∫
3
, we define the Beta probability density

function (pdf) as a constraint of the form

f (̂1− x, β − 1) f (̂x, α− 1)

Cβ
,

where Cβ is simplified and equal to B(α, β), and f̂ is the power function. Power functions

can be encoded in RMTL-
∫
3

with the following axiom

y =
a
√
xb ⇔ xb = ya ∨ y = x

b
a ,

for any x, y ∈ R≥0, a, b ∈ Q>0. Any function f̂ may now be encoded in RMTL-
∫
3
. The

Beta distribution p = fβ,α(x) is now fully defined by

ya1 = (1− x)b1 ∧ za2 = xb2 ∧ y × z
Cβ

= p,

where ai, bi ∈ N, i ∈ {1, 2} are solutions of the formulas a1
b1

= β − 1 and a2
b2

= α− 1, and p

stands for the probability of the logical variable x in the interval [0, 1].

Intuitively, the idea is to specify non-deterministic actions based on the information

provided at execution time. For instance, a system can change its modus operandis if for

some reason the probability of a given overload is greater than a certain fixed probability

threshold. Note that these probabilistic inequality constraints will be used as monitoring

conditions. The generation of monitoring conditions based on simplification approaches,

as in the Use Case (1), is only required if quantifiers are applied.

Let us consider without loss of generality the case of two tasks, where the first one may

have a chance to overload, and the second one should avoid this by self-deflating. The

specification of probabilistic coefficients that supports elasticity when overload situations

occur is encoded by

a =

∫ p1

ψ1 ∧ �<v
(
fβ,α (a) <

3

4
→ �<p1+p2

ψd

)
,

where v is arbitrarily large, ψd is defined as

∫ p2

ψ2 < b× d,

a and b are restricted by one polynomial inequality constraint (e.g., a = b + 1), d is the

maximum allowed execution time for a task, and ψ1, ψ2 are the formulas defined for each

of the two tasks (e.g., conjunction of propositions for specifying a certain task or RM).

Remark also that p1 and p2 are constants which represent the period of the tasks.

CHAPTER 5. EVALUATION 97

5.2.2 Experimental Results

Before discussing the experimental results for the presented use cases, we start by compar-

ing the results presented in Figure 5.2 with the ones presented next, where we show that

one element takes in average 400ns to be processed using an Intel x86 machine. For that,

we re-use the Ocaml source code used to generate the results provided in the Figure 5.2

in order to compare with our present setting.

For comparing both implementations, we have used the following set of RMTL-
∫
3

formulas:

(a) true U≤t φ (eventually); (b) φ → �≤t ψ (bounded-invariance); (c) �≤t
∫ t

φ ≤ β

(limited-duration); and finally (d) φ→
∫ t

ψ ≤ β (bounded-duration).

For each formula we have tested, we have also used different trace sizes ranging from

10 to 103. The traces that we consider are selected as the traces that maximize the

execution time of each formula evaluation. We have run the experiments on two distinct

architectures, namely, the ARM(armv7) and the x86(i686) architectures. The OCaml

experiments were only performed on the x86 architecture, while the C++ implementation

was tested on both of them.

PixHawk [Meier et al., 2015] board is the target platform to execute periodic monitors

that were synthesized from RMTL-
∫
3

formulas into C++. We also have tested the same

implementation using an Intel Core i3-3110M at 2.40GHz CPU with 8 GB of RAM

memory, and running Windows 10 Embedded x86 in a virtual machine running on a

Fedora 23 X86’64 host.

In the case of the PixHawk board, we have only 256kb of memory RAM for the overall

system and we assign at most 90% of the processor usage for these monitoring experiments.

From the experimental results presented in Figure 5.4, we can conclude that such monitors

execute in polynomial time as the trace increases, which goes according to the theoretical

results presented in [De Matos Pedro et al., 2015a]. 1 The stack consumption is also

acceptable for PixHawk board. The constant upper dashed line is the maximum stack

consumption of 1.76kb for the formula (c), and the other two lines are the lower bounds

of the remaining three formulas that have a very similar stack usage. Different lines

are depicted in Figure 5.4. They correspond to different execution times and stack

experiments: the lines tagged with ”ocaml” refer to the execution of the original evaluation

algorithm using ocaml; the ones tagged with ”x86” are the execution times of the C++

implementation in the same platform of the Ocaml test; and finally, the ones tagged with

”arm” refer to the execution time of the C++ implementation in the PixHawk board.

1The instructions to generate the C++ code files that are the output of the use cases experiments are

fully detailed in Appendix C.

CHAPTER 5. EVALUATION 98

0

0.5

1

1.5

2

st
ac
k
(k
b)

101 102 103

105

106

107

108

109

1010
ti
m
e
(n
s)

(a) ocaml

(a) x86

(a) arm

(b) ocaml

(b) x86

(b) arm

(c) ocaml

(c) x86

(c) arm

(d) ocaml

(d) x86

(d) arm

Figure 5.4: Comparison of implementations/architectures

In these experiments, we do not consider more than two nested until operators, which is

indeed a common pattern of formulas for the specification of embedded systems. Therefore,

we do not have any evidence of how deep nested until operators can be used in a real

application scenario.

Experimental results: execution time vs. stack size. Let us first begin with the

analysis of the impact in the Ardupilot firmware. The Use Case (1) is composed of several

disjunctions, meaning that each branch of the formula can take different execution times.

However, the results demonstrate that these formulas are not out of the scope of the

previous experiments. The stack usage is 3.4kb for the Use Case (1), and 4.3kb for the

formula proposed in the Use Case (2). Based on that, the execution times are on average

faster than the worst case considered. Commonly, the monitor increases its execution time

as more events are triggered. This means that if the set of events selected for a system

is subdivided in different buffers (when possible), then the monitoring will generate lower

overheads. However, the impact of the overheads in the Ardupilot is not negligible. The

overhead generated in the system is 10us/1s for the instrumentation of two sub-tasks, and

is 50ms/1s for the monitor (the sub-tasks have periods of 10ms and 5ms respectively).

We have also an idle time of about 40% percent. Monitor buffer length is fixed to 100

elements, which is the value obtained according to the pre-calculated time interval required

for the formulas under synthesis, and we consider a maximum inter-arrival time of 1ms.

The monitors execute with a period of 1s.

Unrecoverable actions. In these use cases, a parachute may be released if a wrong

verdict is obtained, or else a safe technique can be deployed, where the multi-copter will

spin in order to compensate for a faulty motor. Parachutes are currently used in lightweight

aviation to avoid possible unrecoverable mechanical faults, such as motor and propeller

failures.

CHAPTER 5. EVALUATION 99

Autopilot Firmware. Ideally, lightweight controller systems should use elastic execu-

tion time for tasks, in order to enable the required adaptability for reducing overload

situations.

Ardupilot2 supports several platforms such as AVR, ARM (based on

NuttX3), and X86 (based on the Linux kernel) [Coombes et al., 2012]. Recently, Ardupi-

lot has adopted non-linear Kalman filters for the attitude and heading reference system

(AHRS). It is a demanding process that can only be executed in the PixHawk board. For

this ARM architecture, two versions are available to perform the same tasks as in imprecise

computation definitions. The faster one adopts direction cosine matrix (DCM), which is

sufficient for the majority of the cases (but is less accurate). The slower version reveals

that AHRS can be much better for heavy copters. Ardupilot for the AVR architecture

contains several sub-tasks that are scheduled using cyclic scheduling rules. It uses the

Hardware Abstraction Library (HAL) to communicate with the devices directly, using

interrupt-driven routines. However, Ardupilot for PixHawk uses the HAL to communicate

with device drivers that are implemented as separate tasks running in NuttX. The RTOS

runs a single main task as defined by the AVR architecture, and, instead of using interrupt-

driven routines, uses four optional tasks that should be executed at least once each second.

These optional tasks have different purposes such as controlling the IO, the UART, and

managing timing events and storage (system drivers). The main task contains sub-tasks

that execute cyclically in different frequencies ranging from 20hz to 400hz, dictated from

the defined cyclic scheduler. The execution rule for sub-tasks is: based on the predicted

WCET, an optional task will execute if there exists available time.

For construction of a safe autopilot, we are required to ensure time-space isolation. This

is crucial for autopilot tasks that have not been formally verified, or are still undergoing

testing. To the best of our knowledge none of the currently available autopilot systems for

radio control copters have been formally verified. They may well generate absurd values

due to hardware failures, and are susceptible to introduced code attacks, via radio-frequency

telemetry links [Moosbrugger et al., 2017].

Summary

Evaluating the proposed theory is of great importance. Formally proving that a real-

time scheduler acts as desired, i.e., is correct, is extremely difficulty (it is in many case

a combinatorial problem) due to the inherent dependency on time. However, proving

2http://copter.ardupilot.org
3http://nuttx.org/

CHAPTER 5. EVALUATION 100

it automatically is even more complex and in the majority of the cases it is undecidable

(although there are cases where it may be decidable to say if a given settings is schedulable

or not according to a given algorithm).

In this chapter, it has been demonstrated that certain classes of real-time scheduling

problems can be solved, but not as efficiently as the real-time community could expect.

Even though this approach may not scale well, as our results have shown, it points

out several issues that would have to be solved in order to increase the applicability

of constructing proofs using SMT-based techniques. The positive points are: our results

show that it is extremely easy and intuitive to encode scheduling problems in this logic;

the approach uses a push button technique to tell us if the scheduling property holds or

not, at least in an initial phase (normally saying that a system is unschedulable is close

to immediate); and finally the approach mixes offline checking with runtime checks.

In the final part of this chapter, it was shown that monitoring durations even in lightweight

platforms such as small embedded systems is feasible and of great importance, in order to

avoid possible execution overloads. Overheads are significant depending on the formulas to

be monitored. Nevertheless, the push button synthesis allows us to monitor properties in

the system for the cases where an event sequence is adopted to log a running application.

Acting on the results of monitoring is outside the scope of this work.

Chapter 6

Conclusion and Future Work

RV is a promising technique for making real-time systems (and also other types of systems

in general) more reliable and safer. It has been established as a replacement or as

complement to static approaches (e.g., model-checking and deductive approaches).

Although RV approaches targeting specifically real-time systems are scarce, they differ

from the classic ones. Time bounds and bounded interference are required for explicit

time properties. As such, we have developed a new approach for the RV of hard real-time

systems, where duration properties play an important role, and incremental evaluation

is required. The closest approaches to ours are that of Nickovic and colleagues [Nickovic

and Piterman, 2010], who provide synthesis algorithms for MTL specifications, and the

work of Pike and colleagues [Pike et al., 2010], who have developed a framework based on

a formal stream language, together with a synthesis mechanism that generates monitors.

However, none of these previous approaches is sufficiently expressive to allow for reasoning

about duration properties, which is the novelty of our work.

The first level of operation of our approach consists of offline analysis for the simplifi-

cation of formulas by means of quantifier removal techniques; the second is an online

evaluation algorithm for RV purposes. We restrict syntactically and semantically the two-

valued MTL-
∫

logic, with a three-valued interpretation. Incremental evaluation allows our

technique to handle millions of samples, with formulas containing hundreds of operators.

Another important point is the expressiveness of the logic that has been adopted for this

work. Contrary to MTL, which is not sufficiently expressive to deal with explicit durations

of propositions/events, our experimental results have revealed that using RMTL-
∫
3

allows

for properties to be specified at the abstraction level of counting time, and to be efficiently

synthesized for a platform as small as PixHawk, which is certainly impressive.

101

CHAPTER 6. CONCLUSION AND FUTURE WORK 102

Yet, regarding the expressiveness and computing feasibility of timed temporal logics,

the unbounded Since operator was not considered very relevant in this work, because

it requires a full history of a trace. This is not feasible in the context of lightweight real-

time embedded systems where resources are scarce. It is known from [Hunter et al., 2013]

that for each formula containing the Since operator there exists a corresponding formula

making use of its dual Until operator, which further justifies our exclusive use of the latter

operator in this work.

The overall conclusion of our work is that software monitoring techniques, which draw

verdicts about timing software faults as well as hardware timing failures, are valid, and

may be extremely useful to complement the fault-tolerant mechanisms [Ranjbaran and

Khorasani, 2010, Müller and D’Andrea, 2014] that are used for the detection of abnormal

mechanical failures.

Additionally, we have described in this thesis an alternative approach to scheduling anal-

ysis following a formal based specification of the components of a scheduling hierarchy,

and its translation into the SMTLIBv2 language for which we have used the Z3 solver to

obtain valid schedules.

6.1 Future work

In terms of future work related to formal languages, it remains to be seen whether

extensions of LTL that are strictly more expressive than MTL, such as TPTL [Bouyer

et al., 2010] could be used as an alternative for dealing with durations.

Regarding simplification techniques for RV, other efficient mechanisms to reduce the

execution time of the monitors as well as the stack usage are required. The shape of

the formula impacts severely on its execution time.

Other optimization techniques for synthesis of RMTL-
∫
3

into SMT problems may be worth

exploring. An example is the extension of the synthesis algorithm for interval-based

semantics without assuming unit intervals (i.e., intervals of size one), and the consequent

repetition of non interleaved symbols. Instead of two intervals [0, 1[and [1, 2[evaluating

the symbol a, we have only one interval [0, 2[evaluating a. The theory of strings (word

equations) could also be adopted to solve partially the multi-core scheduling problem,

instead of the array theory. However, it remains to be seen whether this can be better to

explore interleaving of tasks.

Hybrid approaches, in the context of multi-core hard real-time schedulability analysis, can

be adopted to treat global scheduling for multi-core systems.

CHAPTER 6. CONCLUSION AND FUTURE WORK 103

Regarding the synthesis mechanisms, synthesization of RMTL-
∫
3

into classic timed au-

tomata (TA) is an option. Although it appears to be unfeasible for RV due to the state

explosion problem, encoding time can only be possible if we make use of more expressive

classes of automata, such as TA extended with stopwatches [Cassez and Larsen, 2000].

However, the reachability problem for these classes is undecidable, which may imply that

no gain should be expected from the point of view of either static analysis or of space

complexity for RV purposes.

Regarding the framework, predicting the size of the traces has been considered in this

thesis, but more clever solutions should be investigated, for instance along the lines of the

idea proposed in [Navabpour et al., 2015]. Instead of estimating the best periods, we could

formulate a problem to find the execution pattern that is enough for the application and

the monitor. Moreover, we may avoid formulating an optimization problem using linear

programming. For that, we might use SMT solvers that we think would be capable to

extend the presented schedulability analysis approach to dependent sporadic tasks with

monitors.

Regarding the overall thesis, as the rmtld3synth tool is sufficiently mature, other problems

could be solved using the proposed techniques. One of them is the monitoring of security

threads, throughput, and counting (although not equal, it may be close to MTL with

counting [Krishna et al., 2016]). RMTL-
∫
3

will allow us to deal with a great number

of functional properties by adding some syntactic sugar over the duration terms. Even

though the word duration refers to time, RMTL-
∫
3

is able to deal with different units such

as space and energy. It is simply a case of meaning.

CHAPTER 6. CONCLUSION AND FUTURE WORK 104

Appendix A

RV with RMTL-
∫
3 for C++11

In this section we present a RV framework for embedded RTSs based on the novel RV

monitoring model that will be described in Section A.1. The latter contains the con-

straints/rules from the application side that allow us to synthesize a proper architecture

for monitors. These rules are used to configure the target application to be executed in a

multi-processor embedded system or over a classic single-processor from the AVR or ARM-

M families of embedded processors. The support is given by the RTMLib [De Matos Pedro,

2016] library that allows us to execute monitors in a lock-free and wait-free manner, which

is very useful to guarantee deadlock-free RV operation.

Our toolchain is depicted in Figure A.1. As input, we have a set of formulas that will

be converted to monitors using a one-to-one correspondence. From these formulas, we

generate Ocaml and C++11 source code as well as tests for C++11 implementation that are

automatically generated from the Ocaml synthesis, which corresponds to the dependence

between both synthesis tools and identified by the dashed arrow. Tests and synthesized

monitors are merged and compiled using the gcc toolchain including the support library

RMTLib. This binary will run under NuttX OS. Otherwise, the compiled code from the

synthesis Ocaml tool is executed in a common x86 operating system.

Operationally, each monitor can share resources (e.g., memory and processors) with other

monitors or may execute in isolation (using its own processor and memory partition),

which is part of the specification of the RV monitoring model. The monitors have different

execution rules that may change at execution time, and rules for their operation.

- Execution rules are step-based (for iterative/tail recursive monitors; for an arbitrary

number n ∈ N of execution steps), symbol-based (for explicit symbol consumption

in automata formalisms), time-based (a timed bound in discrete execution time for

execution of general purpose monitors). Based on this we can change the execution

105

APPENDIX A. RV WITH RMTL-
∫
3
FOR C++11 106

RMTL-
∫
3

specification

rtml3synth2cpprtml3synth2ocaml

RTMLib

Tool-chain

.mli .ml .c .h ⊕

ocamlc gcc 4.7 with C++ atomics

elfbin

Pretty-printer

.c .h .mk

NuttX OS

Monitors

RV Mon. Model

Input
Output

Unit Tests

Figure A.1: Tool-chain overview

of the monitor at runtime in a dynamic way (a feature provided by RTMLib).

- Operation rules are time-triggered or event-triggered; the idea is to generate runtime

verifiers depending of the target RTS. The modes of operation/execution are assigned

according to the RV model.

For hard RTS, we use the step-based rule combined with a time-triggered rule. Note that

there is no explicit architecture for monitoring, and different RV rules produce different

monitor architectures, depending on the target systems and the provided RV monitoring

model.

Synthesis Algorithm Refinement. The evaluation algorithm proposed for RMTL-
∫
3

in the Chapter 3 uses functional programming language features such as pattern matching

and higher-order functions, in particular fold operations.

Let K be a set of sequences κ, Υ a set of logic environments υ, andR≥0 the domain of a time

instant t (analogous to the model (κ, υ, t)). Let us first consider the lambda functions, as

already defined in the Chapter 3, such as Compute(∨) :: (K×Υ×R≥0)→ Φ3 → Φ3 → B3,

Compute(¬) :: (K × Υ × R≥0) → Φ3 → B3, Compute(U<) :: (K × Υ × R≥0) → R≥0 →
Φ3 → Φ3 → B3, and Compute(

∫
) :: (K × Υ) → R≥0 → R → Φ3 → D, that evaluate

formula schemes of the form ψ1 ∨ ψ2, ¬ψ, ψ1 U<γ ψ2, and
∫ η
ψ, respectively. Note that

(K×Υ×R≥0) is a model (consisting of a sequence in K, a logic environment in Υ, and

a time instant in R≥0), D the set R≥0 ∪ {⊥R}, Φ3 is a set of three-valued formulas, B3 is

the set of three-values {tt,ff,⊥} , and B4 is a four-valued set defined by B3 ∪ {r}, where

r is the fourth symbol of the four-valued set. Pattern matching features are currently not

included in imperative programming languages such as C++11. Henceforth, and for the

sake of compatibility with C++11, we adapt that algorithm as follows:

– the pattern matching constructions are statically erased and fully encoded into the

generated monitors;

APPENDIX A. RV WITH RMTL-
∫
3
FOR C++11 107

– the fold functions are encoded as iterators over the structure of traces;

– the remaining functions are encoded as C++11 lambda functions.

Pattern matching is simplified over the inductive structure of the formulas. For instance,

the formula a→
∫ 10

b is implemented without pattern matching by composition over the

structure of the formula. For that, we need to define some new C++11 lambda functions

such as computep :: P → (K × Υ × R≥0) → B3, compute¬ :: ((K × Υ × R≥0) → B3) →
(K×Υ×R≥0)→ B3, compute∫ :: R→ ((K×Υ×R≥0)→ B3)→ (K×Υ)→ R≥0 → D,

and

compute∨ :: ((K×Υ×R≥0)→ ((K×Υ×R≥0)→ B3)→ B3)→
(((K×Υ×R≥0)→ B3)→ (K×Υ)→ R≥0 → D)→

(K×Υ×R≥0)→ B3.

Note that they encode the pattern matching (all required combinations for a given formula)

instead of accepting RMTL-
∫
3

formulas as input arguments. The generated function that

corresponds to a→
∫ 10

b is then the lambda function

λm. compute∨ (compute¬ (computep a))
(
compute∫ 10 (computep a)

)
m

where m is the model defined in C++11 as TraceIterator<int> iter,

struct Environment env, and timespan t. Note that λx. fun is defined in C++11 as

the expression [](x){fun}.

Let us now focus on the U operator. Porting to C++11 the function Compute(U<), re-

sponsible for the synthesis of the until operator, requires defining a number of auxiliary

C++11 functions. As an example, the function evfold
al :: (K × Υ × R≥0) → Φ3 → Φ3 →

K→ B4, as provided in the original RMTL-
∫
3

evaluation algorithm, is defined in C++11 as

shown in Listing 1. We remark that the synthesized function (evfold
al (κ, υ, t) φ1 φ2 κ) is

originally defined by

fold
(
λv (p, (i, t′))→ evb

al (κ, υ, t′ − ε) φ1 φ2 v
)
r κ,

where φ1 and φ2 are formulas that were statically coded as the C++11 lambda functions

evb
al (of which there exist as many as there are occurrences of until operators, since each

one contains different formulas), κ is the original trace sequence that is mapped into the

iterator iter of Listing 1, and i is the lower bound of the interval (i, t′), ε is the minimum

precision of a float, and r is a proper mark for release if the until evaluation gives us an

unknown value, identified in C++11 by FV SYMBOL, respectively. The operators U<, <, and

duration terms
∫ η
ϕ may now be fully implemented using the C++11 lambda functions.

APPENDIX A. RV WITH RMTL-
∫
3
FOR C++11 108

auto eval_fold = [](struct Environment env, timespan t, TraceIterator<int> iter) > four_valued_type

{

return std::accumulate

(

iter.begin(), iter.end(), pair<four_valued_type, timespan>(FV_SYMBOL, t),

[&env, eval_b](const pair<four_valued_type, timespan> a, Event<int> e)

{

return make_pair(eval_b(env, a.second, a.first), a.second + e.getTime());

}

).first;

};

Listing 1: evfold
al synthesis in C++11

The existential operator does not need to be treated since we assume the existence of

a simplification algorithm that decomposes a quantified formula into a non quantified

formula. The output of this tool is a monitor written in the C++11 programming language

and composed by several source files, and the input is a configuration file containing an

RMTL-
∫
3

formula to be synthesized. The rmtld3synth synthesis tool for these operators,

written in the Ocaml programming language [The OCaml Development Team, 2013] is

fully described in [De Matos Pedro, 2018]. The reader is referred to the example in

Appendix B for further details and a worked out example.

A.1 RV Monitoring Model

In this section we describe how monitors are linked to buffers and tasks via the spe-

cialized RunTime Embedded Monitoring Library (RTMLib), and then discuss how timing

guarantees are enforced in practice by the adopted hierarchy of monitors.

Linking monitors with RTMLib

Monitors are executed in a simple embedded monitoring framework which we named the

RTMLib [De Matos Pedro, 2016]. These monitors use circular buffers as the data structure

to hold a trace, and they have a certain periodicity. The framework ensures that monitors

retrieve events from circular buffers respecting their partial order, in a lock- and wait-free

manner. Note that several buffers are used in a composition as described in [Nelissen et al.,

2015] for the reference architecture; more details on the implementation of RTMLib can be

found in the documentation in [De Matos Pedro, 2016]. Monitors execute as higher-priority

tasks and are constantly interfering with the application. However, such interference is

predictable and constant, since each monitor can execute in constant time that depends

on the structure of the formula.1

1By constant time we mean that a monitor executes the same number of CPU cycles at each invocation.

APPENDIX A. RV WITH RMTL-
∫
3
FOR C++11 109

β/α

A

C
D

E

F

α

I
J

L

M β/α βA

CD

E

F
IJL M

1 2 3 4

Execution Flow Window

Figure A.2: Flow graph of the system enabled events defined in a time window.

Knowledge of the length of the circular buffers is required at compile time, and for that

we define a bound over temporal formulas, allowing us to determine a map from time to

event size. The calculation of temporal bounds for formulas of RMTL-
∫
3

is then achieved

by a recursive algorithm that traverses the inductive structure of the formulas. We now

give two examples of the calculation of an upper bound for a given formula, and the

construction of a flow graph for a given time window.

Example 20. Let us consider a trace and the formula a U<10 (b U<10 c), containing

propositions a, b, c evaluated at time t = 0. Based on the semantics of temporal operators

we achieve the timing bounds t ∈]0, 10[and t ∈]0, 20[, respectively. These time bounds

are intervals where the truth values resulting from the evaluation of formulas may change.

By the semantic nature of temporal operators, we know that for any t 6∈]0, 10[∪]0, 20[the

truth value is maintained constant, which gives us the desired bound for changes of the

evaluation value.

Example 21. In order to estimate the amount of time required from the system under

observation to couple monitors in a safe manner, we can use a pessimistic approach based

on the assumption of a maximum inter-arrival time of events in the system, or we can

pre-compute the flow graph of the application. Based on these, we are able to infer how

many events will be triggered in a certain time interval. To exemplify the specific case of

the latter, we define a time window given by a certain formula using the previous approach.

Then, we create a flow graph of the entire system and fix the starting point of the system

as depicted in the partial flow pattern of the events (ranging from symbol A to M) under

monitoring in the Figure A.2. From label α to β, where α corresponds to the beginning of

the execution and β corresponds to the end of the execution, we have the flow of the main

task composed by three paths (the task that manages the autopilot controller), and from

label 1 to 4, we have the optional task (a time-triggered task for device drivers execution

that need to execute at least 1 time in a second). The optional task has two times the

period of the main task. In summary, we have at most four events between α and β and

the optional task executes twice between them. The figure also depicts the dependencies of

APPENDIX A. RV WITH RMTL-
∫
3
FOR C++11 110

events, and allows us to estimate the required relative time for some events.

Altogether, these examples combine temporal settings of the monitors and the system

itself: the first one give us the amount of time that we need to wait for a verdict (minimum

time granularity); the second one helps us to find the period for a monitor based on the

time behavior of the system under monitoring as well as to estimate the WCET of the

monitor (i.e, the time complexity times a constant).

Appendix B

rmtld3synth tool User’s Guide

The rmtld3synth synthesis tool is able to automatically generate monitors based on

the formal specifications written in RMTL-
∫
3
. Polynomial inequalities are supported by

this formalism as well as the most common operators of temporal logics. Furthermore,

quantification is also considered in the language of RMTL-
∫
3

as a means to facilitate the

decomposition of the quantified formulas into several monitoring conditions.

We will now present an overview of the typical process for generating monitors for Ocaml

and C++11 languages using this tool, together with a running example of a simple moni-

toring case generation. We begin by the running example, present the generated monitors,

and show how to configure the RV monitoring model to couple with the system.

Consider the formula

(a→ ((a ∨ b) U<10 c)) ∧
∫ 10

c < 4 (B.1)

that intuitively describes that given an event a, b occurs until c and, at the same time, the

duration of b shall be less than four time units over the next 10 time units. For instance,

a trace that satisfies this formula is

(a, 2), (b, 2), (a, 1), (c, 3), (a, 3), (c, 10).

From rmtld3synth2ocaml tool, we have synthesized the formula’s example into the code

of the Listing 3. For that, we have used the command in the Listing 1.

./ rmtld3synth --synth -ocaml --input -latexeq "(a \rightarrow ((a \

lor b) \until_ {<10} c)) \land \int ^{10} c < 4"

Listing 1: Utilized shell command for the Equation B.1

Next, we can also generate C++11 monitors by replacing --synth-ocaml with --synth-cpp11.

111

APPENDIX B. RMTLD3SYNTH TOOL USER’S GUIDE 112

The outcome is the monitor illustrated in the Listings 4 and 5. To use those monitors, we

need to define a trace for Ocaml reference as in the Listing 2.

module OneTrace : Trace = struct let trc = [("a",(0.,2.));("b

" ,(2.,4.));("a" ,(4.,5.));("c" ,(5.,8.));("a" ,(8. ,11.));("c

" ,(11. ,21.))] end;;

module MonA = Mon0(OneTrace);;

Listing 2: Ocaml’s reference code for monitor instantiation

For the Ocaml language, experimental integration with RTMLib is available. However, we

do not describe it here, but refer the reader for the examples in rmtld3synth’s repository 1.

For C++11 we will now briefly describe how it is performed. Given the verbosity of the

generated code, we have removed the conjunction including the duration inequality, and

used instead the simple formula ∫ 10

c < 4.

Now, we describe the settings for constructing the RV monitoring model.

Overview of the configuration settings. The settings for rmtld3synth tool are

defined using the syntax

(<setting_id> <bool_type | integer_type | string_type>)

where | distinguishes between the supported types of arguments such as Boolean, integer

or string, and setting id is a string containing the name of the setting to which values

are assigned. An example of a set of possible settings for the tool is given in the first

five lines of Listing 6. We now briefly describe the purpose of each of the setting entries

present in Listing 6:

- gen tests sets the automatic generations of test cases (to be used as a demo in the

described illustration below).

- gen concurrency tests constructs tests for testing lock- and wait-free monitors

executing concurrently.

- gen unit tests constructs tests for C++11 synthesis using the Ocaml source code

as an oracle.

1Available at https://github.com/anmaped/rmtld3synth/tree/v0.3-alpha, version 0.3-alpha.

https://github.com/anmaped/rmtld3synth/tree/v0.3-alpha

APPENDIX B. RMTLD3SYNTH TOOL USER’S GUIDE 113

open L i s t

open Rmtld3

module type Trace = sig val t r c : t r a c e end

module Mon0 (T : Trace) = struct

let compute uless gamma f1 f2 k u t =

l et m = (k , u , t) in

let e v a l i b1 b2 =

i f b2 <> False then b3 to b4 b2 else i f b1 <> True && b2 = False then b3 to b4 b1 else

Symbol

in

let eva l b (k , u , t) f 1 f2 v =

i f v <> Symbol then v else e v a l i (f 1 k u t) (f2 k u t)

in

let e v a l f o l d (k , u , t) f 1 f2 x =

f s t (f o l d l e f t (fun (v , t ’) (prop , (i i 1 , i i 2)) > (eva l b (k , u , t ’) f 1 f2 v , i i 2)) (Symbol , t)

x)

in

i f not (gamma >= 0 .) then

raise (Fa i l u r e ”Gamma of U operator i s a non negat ive value ”)

else

begin

l et k , , t = m in

let subk = sub k m gamma in

let e v a l c = e v a l f o l d m f1 f2 subk in

i f e v a l c = Symbol then

i f k . d u r a t i o n o f t r a c e <= (t +. gamma) then Unknown else (Fa l se) else b4 to b3 e v a l c

end

let compute tm duration tm fm k u t =

l et dt = (t , tm k u t) in

let i n d i c a t o r f u n c t i o n (k , u) t phi = i f fm k u t = True then 1 . else 0 . in

let riemann sum m dt (i , i ’) phi =

(∗ d t=(t , t ’) and t in] i , i ’] or t ’ in] i , i ’] ∗)
count durat ion := ! count durat ion + 1 ;

l et t , t ’ = dt in

i f i <= t && t < i ’ then

(∗ l ower bound ∗)
(i ’ . t) ∗ . (i n d i c a t o r f u n c t i o n m t phi)

else (

i f i <= t ’ && t ’ < i ’ then

(∗ upper bound ∗)
(t ’ . i) ∗ . (i n d i c a t o r f u n c t i o n m t ’ phi)

else

(i ’ . i) ∗ . (i n d i c a t o r f u n c t i o n m i phi)

) in

let e v a l e t a m dt phi x = f o l d l e f t (fun s (prop , (i , t ’)) > (riemann sum

m dt (i , t ’) phi) +. s) 0 . x in

let t , t ’ = dt in

e v a l e t a (k , u) dt fm (sub k (k , u , t) t ’)

l et env = environment T. t r c

l et l g env = log i ca l env i r onment

l et t = 0 .

l et mon = (fun k s t > b3 not ((fun k s t > b3 or ((fun k s t > b3 not ((fun k s t > b3 or

((fun k s t > b3 not ((fun k s t > k . eva luate k . t r a c e ”a” t) k s t)) k s t) ((

compute uless 10 . (fun k s t > b3 or ((fun k s t > k . eva luate k . t r a c e ”a” t) k s t) ((

fun k s t > k . eva luate k . t r a c e ”b” t) k s t)) (fun k s t > k . eva luate k . t r a c e ”c” t)) k

s t)) k s t)) k s t) ((fun k s t > b3 not ((fun k s t > b3 l e s s than ((

compute tm duration (fun k s t > 1 0 .) (fun k s t > b3 or ((fun k s t > k . eva luate k .

t r a c e ”c” t) k s t) ((fun k s t > k . eva luate k . t r a c e ”d” t) k s t))) k s t) ((fun k s t

> 4 .) k s t)) k s t)) k s t)) k s t)) env lg env t

end

Listing 3: Generated Ocaml monitor

APPENDIX B. RMTLD3SYNTH TOOL USER’S GUIDE 114

#ifndef MON0 COMPUTE H

#define MON0 COMPUTE H

#include ” rmtld3 . h”

auto mon0 compute = [] (struct Environment &env , timespan t) mutable > th r e e va lued type {
return [] (struct Environment env , timespan t) > th r e e va lued type { auto t r1 = [] (struct

Environment env , timespan t) > durat ion {

auto e v a l e t a = [] (struct Environment env , timespan t , timespan t upper , Trace I t e ra tor< int >

i t e r) > durat ion

{
auto i n d i c a t o r f u n c t i o n = [] (struct Environment env , timespan t) > durat ion {

auto formula = [] (struct Environment &env , timespan t) mutable > th r e e va lued type { auto

s f 1 = [] (struct Environment &env , timespan t) mutable > th r e e va lued type { return

env . eva luate (env , 2 , t) ; }(env , t) ; auto s f 2 = [] (struct Environment &env , timespan t)

mutable > th r e e va lued type { return env . eva luate (env , 1 , t) ; }(env , t) ; return b3 or

(s f1 , s f 2) ; }(env , t) ;

return (formula == T TRUE) ? std : : make pair (1 , fa l se) : ((formula == T FALSE) ? std : :

make pair (0 , fa l se) : std : : make pair (0 , true)) ;

} ;

auto lower = i t e r . getLowerAbsoluteTime () ;

auto upper = i t e r . getUpperAbsoluteTime () ;

timespan val1 = (t == lower) ? 0 : t lower ;

timespan val2 = (t upper == upper) ? 0 : t upper upper ;

auto cum = lower ;

return std : : accumulate (

i t e r . begin () ,

i t e r . end () ,

std : : make pair (make duration (0 , fa l se) , (timespan) lower) , (durat ion s t a r t s at 0)

[&env , val1 , val2 , &cum , t , t upper , i n d i c a t o r f u n c t i o n] (const std : : pair<duration ,

timespan> p , Event< int > e)

{
auto d = p . f i r s t ;

auto t b eg in = cum ;

auto t end = t beg in + e . getTime () ;

cum = t end ;

auto cond1 = t beg in <= t && t < t end ;

auto cond2 = t beg in <= t upper && t upper < t end ;

auto valx = ((cond1) ? val1 : 0) + ((cond2) ? val2 : 0) ;

auto x = i n d i c a t o r f u n c t i o n (env , p . second) ;

return std : : make pair (make duration (d . f i r s t + (x . f i r s t ∗ (e . getTime () valx)) , d .

second | | x . second) , p . second + e . getTime ()) ;

}
) . f i r s t ;

} ;

auto sub k = [] (struct Environment env , timespan t , timespan t upper) > Trace I te ra to r< int >

{
Trace I te ra to r< int > i t e r = Trace I t e ra tor< int > (env . trace , env . s t a t e . f i r s t , 0 , env . s t a t e .

f i r s t , env . s t a t e . second , 0 , env . s t a t e . second) ;

// to use t h e i t e r a t o r f o r bo th s e a r c h e s we use one r e f e r e n c e

Trace I te ra to r< int > &i t = i t e r ;

ASSERT RMTLD3(t == i t e r . getLowerAbsoluteTime ()) ;

auto lower = env . trace > searchIndexForwardUnti l (i t , t) ;

auto upper = env . trace > searchIndexForwardUnti l (i t , t upper 1) ;

i t . setBound (lower , upper) ;

return i t ;

} ;

auto t upper = t + make duration (1 0 . , fa l se) . f i r s t ;

return e v a l e t a (env , t , t upper , sub k (env , t , t upper)) ;

}(env , t) ;

auto t r2 = make duration (4 . , fa l se) ;

return b3 l e s s than (tr1 , t r2) ;

}(env , t) ; } ;

#endif // MON0 COMPUTE H

Listing 4: Generated C++11 monitor

APPENDIX B. RMTLD3SYNTH TOOL USER’S GUIDE 115

#ifndef MONITOR MON0 H

#define MONITOR MON0 H

#include ” Rmtld3 reader . h”

#include ”RTML monitor . h”

#include ”mon0 compute . h”

#include ”mon1 . h”

class Mon0 : public RTML monitor {
private :

RMTLD3 reader< int > t r a c e = RMTLD3 reader< int >(bu f f e r mon1 . ge tBu f f e r () , 0 .) ;

struct Environment env ;

protected :

void run () {
th r e e va lued type out = mon0 compute (env , 0) ;

DEBUG RTEMLD3(” Vered ict :%d\n” , out) ;

}

public :

Mon0(useconds t p) : RTML monitor (p ,SCHED FIFO, 50) , env (std : : make pair (0 , 0) , &trace ,

o b s e r v a t i o n) {}
} ;

#endif //MONITOR MON0 H

Listing 5: Generated C++11 monitor header

- buffer size sets the static size of the buffer to be used (rmtld3synth tool can

change it if required by some constraints).

- minimum inter arrival time establishes the minimum inter-arrival time that the

events can have. It is a very pessimistic setting but provides some information for

static checking.

- maximum period sets the maximum interval between two consecutive releases of a

task’s job. It has a correlation between the periodic monitor and the minimum

inter-arrival time. It provides static checks according to the size of time-stamps of

events.

- event type provides the type for dealing with events (commonly is a class parame-

ter).

- event subtype provides the type for the event data. In that case, it is an identifier

that can distinct 255 events. However, if more events are required, the type should

be modified to *uint32 t* or greater. The number of different events versus the

available size for the identifier is also statically checked.

- cluster name identifies the set of monitors. It acts as a label for grouping monitor

specifications.

Writing formulas in RMTLD3 The formulas ‘m simple‘ and ‘m morecomplex‘ fol-

low the same syntax defined in this section. For setting a periodic monitor, we use

APPENDIX B. RMTLD3SYNTH TOOL USER’S GUIDE 116

(gen_tests true)

(minimum_inter_arrival_time 102)

(maximum_period 2000000)

(event_subtype uint_8)

(cluster_name monitor_set1)

(m_simple 1000000 (Or (Until 200000 (Prop A) (Prop C)) (Prop B)))

(m_morecomplex 500000 (Or (Until 200000 (Prop set_off) (Or (Until 200 (Prop A) (Prop C)) (Prop B))) (

Prop B)))

Listing 6: The default configuration file.

type var id = string with sexp

type prop = string with sexp

type time = float with sexp

type value = float with sexp

type formula =

True of unit

| Prop of prop

| Not of formula

| Or of formula ∗ formula

| Until of time ∗ formula ∗ formula

| Exists of var id ∗ formula

| LessThan of term ∗ term

and term =

Constant of value

| Variable of var id

| FPlus of term ∗ term

| FTimes of term ∗ term

| Duration of term ∗ formula

with sexp

type rmtld3 fm = formula with sexp

type rmtld3 tm = term with sexp

type tm = rmtld3 tm with sexp

type fm = rmtld3 fm with sexp

Listing 7: The inductive type.

(m usecase1 <period> (<monitor sexpr>)). They are formatted as a symbolic expres-

sion. The type in Ocaml is according to the Listing 7.

Appendix C

RTMLib

The RunTime Embedded Monitoring Library (RTMLib) is a library that has been devel-

oped with the purpose of runtime monitoring of real-time embedded systems. RTMLib

is based on lock-free ring buffer FIFO queues for managing the information from events

that are registered in buffers. The library is supported in both ARM and x86 platforms.

Efficient architectures can be developed based on lock-free enqueue and dequeue primitives

over trace sequences containing time stamped events. Synchronization primitives for

dequeueing operations allow different readers to progress synchronously over the target

instantiated buffers. Buffers are implemented with different timestamps, depending of the

architecture. For ARM it uses 32bit values to save memory, and for x86 it uses 64bit

timestamps.

C.1 Usage of RTMLib

C.1.1 Instantiating buffers

Buffers are resources shared between the SUO and the monitors. Buffers contain time-

stamped event sequences that inform monitors of the changes in the state of the SUO.

RTMLib requires at least one global buffer available for the instrumentation of the SUO,

and that at the linking phase of the compilation shall provide the address of the buffer

for external monitors to make use of it. We define a ”interface.h” header file that serves

as the interface header to be used by both the SUO and the monitors. The code of the

Listing 1 exemplifies this requirement.

Note that this code, uint8 t could be used to represent events identified as integers

ranging from 0 to 255 only. Other types such as uint16 t and uint32 t could also be

117

APPENDIX C. RTMLIB 118

#include "RTEML_buffer.h"

extern void __start_periodic_monitors();

// defining one buffer with size 100 of type uint8_t

extern RTEML_buffer<uint8_t, 100> __buffer_monitor_set1;

#define EV_C 3

#define EV_A 4

#define EV_set_off 5

#define EV_B 1

Listing 1: interface.h sample file.

#include "M_morecomplex.h"

#include "M_simple.h"

#include "RTEML_buffer.h"

RTEML_buffer<uint8_t, 100> __buffer_monitor_set1;

M_morecomplex mon_m_morecomplex(__buffer_monitor_set1, 500000);

M_simple mon_m_simple(__buffer_monitor_set1, 1000000);

void __start_periodic_monitors()

{

if (mon_m_morecomplex.enable()) {::printf("ERROR\n");}

if (mon_m_simple.enable()) {::printf("ERROR\n");}

}

Listing 2: interface.cpp sample file.

used to increase the number of different kinds of events that can be considered. However,

strings and classes are discouraged as they bring extra memory space overhead that, in

the extreme, can compromise the whole implementation of adding monitors into the target

SUO1.

The instantiation of buffers and monitors together shall follow along the lines of the pro-

gramming structure used in the code listed below. Note, however, that is not mandatory

to instantiate the buffer with the monitors as the Listing 2 describes. The M simple.h

header defines a monitor according to what is described in the next paragraph. The

M morecomplex.h header defines another monitor that shares the buffer buffer monitor set1,

and start periodic monitors is the procedure used to initialize both monitors.

C.1.2 Developing a simple Monitor

We now show how to construct a simple monitor based on RTEML monitor class. First,

the RTEML monitor class enables monitors to execute at a certain periodicity. The class

is initialized using some arguments such as the period, the scheduler policy, and the

priority. The scheduler policies and priorities are commonly OS dependent. For instance,

in Windows Embedded 10 x86, we only have available the SCHED FIFO policy in pthreads-

1The natural alternative is to map these events in a hash table to save memory space.

APPENDIX C. RTMLIB 119

#include "interface.h"

class M_simple : public RTEML_monitor {

private:

RTEML_reader<int> __reader = RTEML_reader<int>(__buffer_monitor_set1.getBuffer());

protected:

void run(){

::printf("Body of the monitor.");

}

public:

M_simple(useconds_t p): RTEML_monitor(p,SCHED_FIFO,5) {}

};

Listing 3: monitor.h sample file.

win32, and priorities can be negative and range from -15 (lowest) to 15 (highest). Zero is

the normal priority.

For fully Posix compliant OS, the priorities are non negative and several policies such as

SCHED RR (round robin) and SCHED OTHER exist. In case of NuttX OS, we have the same

policies. The class M simple is defined in the Listing 3. This monitor will display the

string ”Body of the monitor.” several times with a period of p useconds. Lets replace the

‘run‘ procedure with a consumer procedure as exemplified in the paragraph below.

Consumer procedure. The consumer process is exemplified using one lambda function.

It fits the required interface defined in RTEML monitor for the procedure run. The body of

the function initializes an object of type RTEML reader<int> that will be used as the con-

sumer for the lock-free buffer. The procedure

dequeue() peek a tuple containing an event of type Event<int>, where the template

typename is the type of the expected identifier of the event, and a time-stamp. Note

that the dequeue is local to the reader, does not affect the global buffer, and can be

synchronized using a certain time-stamp. However, to get a global dequeue of a certain

event, we shall share the same reader among the tasks. The consumer is defined in the

Listing 4, where the variable tmpEvent stores the dequeued event, where the methods

getTime() and getData() return the time-stamp and the event identifier, respectively.

Producer procedure for Monitors Lets construct a producer for the lock-free ring

buffers. First, we initialize the object writer of the type RTEML writer<int>. Then,

we enqueue a value of type int to the buffer that accepts events of the type Event<int>,

and finally print the buffer to the stdout for debugging purposes. The code is described

in the Listing 5.

APPENDIX C. RTMLIB 120

auto consumer = [](void ∗) > void∗
{

static RTEML_reader<int> __reader = RTEML_reader<int>(__buffer_monitor_set1.getBuffer());

Event<int> tmpEvent;

std::pair<state_rd_t,Event<int> &> rd_tuple = __reader.dequeue();

tmpEvent = rd_tuple.second;

::printf("event_out: %lu, %d code: %d\n", tmpEvent.getTime(), tmpEvent.getData(), rd_tuple.first);

return NULL;

};

Listing 4: Example of a consumer using lambda functions.

auto producer = [](void ∗) > void∗
{

static RTEML_writer<int> __writer = RTEML_writer<int>(__buffer_monitor_set1.getBuffer());

__writer.enqueue(1);

__buffer_monitor_set1.debug();

return NULL;

};

__task producer_A = __task(producer, 0, SCHED_FIFO, 100000);

Listing 5: Example of a producer using lambda functions.

Note that task is an helper used to construct the data descriptor of one task. It inputs

the function pointer, the priority, the scheduler policy, and the period. 100000 means 1
10

seconds.

Appendix D

Inequality Translation Correctness

Proofs

The following proofs are related with the Lemmas 5 and 6 that were enunciated in the

Chapter 3. Let us now introduce some required definitions and one auxiliar Lemma 11

before introducing the main proofs. Let us assume in this appendix that every formula φi

is in DNF3.

Definition 15. Let fφ (X,Y, Z) be a shorthand for (X → Y) ∧ (¬X → Z), where X, Y

and Z are formulas in RMTL-
∫
3
.

Lemma 11. Let φ be a finite formula in RMTL-
∫
3

containing propositions and inequalities

composed by rigid terms, and n > 0 the number of inequalities of φ with n ∈ N. Then,

there is an equivalent formula resulting from the application of both A4 and A5 at most

2n − 1 times, and containing 2n disjunctions.

Proof of Lemma 11. Straightforward induction over n. Let b be the function recursively

defined by f(m) = 1 + f(m − 1) + f(m − 1) with f(0) = 0, where f(m) denotes the

number of resulting disjunctions, and m = dlog2 xe, where x is the number of applied

axioms. Note that this function is structurally similar to the shape of A4 and A5 after

applying the simplification of implications to DNF3 of the form (X ∧φ1)∨ (Y ∧φ2), where

φ1 and φ2 are arbitrary sub-formulas that can be finitely expanded. We want to show that

f(n) + 1 = 2n.

Base case: f(1) + 1 = 21.

Inductive case: f(n) + 1 = 2n

121

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 122

f(n) = 1 + f(n− 1) + f(n− 1)

f(n) = 2n−1 + 2n−1 − 1

f(n) = 21 · 2n−1 − 1

f(n) = 2n − 1

f(n) + 1 = 2n

�

Lemma 12. Let φ be a finite formula in RMTL-
∫
3

containing inequalities, and n > 0 the

number of inequalities of φ with n ∈ N. There is an equivalent formula resulting from the

application of both A6 and A7 at most n times and contain m disjunctions.

Let us now recall the Lemma 5.

Lemma 5. Let φ1, φ2 be two formulas in RMTL-
∫
3

and consider the formula φ1 U φ2.

Then, there exists an equivalent formula where every until operator is free of inequalities

or only contains equalities of the form x =
∫ η
ϕ.

Proof of Lemma 5. By induction along the structure of the formulas φ1 and φ2.

- Base cases:

1. φ1, φ2 do not contain inequalities:

The proof is straightforward. First, we apply A4 and we get φr → φ1∨φ3 U φ2

or ¬φr → φ1 U φ2 and φ3 equals to false. Since both disjunctions are equal, we

get φ1 U φ2, and by definition that f<1 (φ2) := true, f<1 (φ1) := true, f6<1 (φ1) := φ1,

and f6<1 (φ2) := φ2. Therefore, Property 1 holds with true∧ true∧φ1 U φ2 equal

to X1.

2. φ1, φ2 contain inequalities involving propositions:

Let φ1 be equal to (a1 ∧ · · · ∧ pa,1) ∨ · · · ∨ (al ∧ · · · ∧ pa,l), and φ2 equal to

(b1∧ · · ·∧pb,1)∨ · · ·∨ (bl∧ · · ·∧pb,l), and ai,bi be inequalities composed by rigid

terms with i, j ∈ N.

For the sake of simplicity, we denote φa1 := (· · · ∧ pa,1) ∨ · · · ∨ (al ∧ · · · ∧ pa,l),
φa2 := · · · ∨ (al ∧ · · · ∧ pa,l), φb1 := (· · · ∧ pb,1) ∨ · · · ∨ (bl ∧ · · · ∧ pb,l), and

φb2 := · · · ∨ (bl ∧ · · · ∧ pb,l).

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 123

Applying A4 and A5 for the formulas φ1 and φ2, we have the formula

(a1 ∧ b1 ∧ φa1 U φb1) ∨
(a1 ∧ ¬b1 ∧ φa1 U φb2) ∨
(¬a1 ∧ b1 ∧ φa2 U φb1) ∨

(¬a1 ∧ ¬b1 ∧ φa2 U φb2).

From Lemma 11 we know that there are so many disjunctions as the 2n, where

n is the number of inequalities contained jointly in φ1 and φ2.

From the shape of A4 and A5, we see that at most four formulas φ1, φ2, φ3,

and φr are involved. For A4, we get by definition (φm1 ∧ φm2 U φm3), where

φm1 := f<i (φ3)∧f<i (φ1∨(φr ∧ φ2)), φm2 := f6<i (φ1∨(φr ∧ φ2)), and φm3 := f6<i (φ3).

For A5 the same scheme is followed. Both resulting formulas (φm1 ∧ φm2 U φm3)

and φm1 U (φm2 ∧ φm3) indicate that three formulas φm1, φm2, φm3 are required.

Since for all i such that 0 < i ≤ n there exist functions f<i (φ1), f6<i (φ2), f6<i (φ1),

and f6<i (φ2) that map inequalities for each disjunction, then Property 1 holds

for n = m.

For the cases of φ1 or φ2 containing exclusively inequalities with propositions

the proof is similar.

3. φ1, φ2 contain inequalities with duration terms:

The proof begins as similar as the proof above and then proceeds by applying

Lemma 6 for each duration term.

For the cases where φ1 or φ2 contain exclusively inequalities with duration

terms, the proof is similar to this case.

- Inductive cases: For all formulas ψ1 and ψ2, Property 1 holds.

1. case φ1 has inequalities:

(a) containing temporal operators:

Since φ1 is a formula in DNF3 containing temporal operators and inequali-

ties of the form

(
W 1 ∧ Z1 U φ6<

)
∨
(
¬W 1 ∧R1 U φ6<

)
∨ · · ·

∨ (Wn ∧ Zn U φ6<) ∨ (¬Wn ∧Rn U φ6<)

containing an inequality formula W i of the form T 1 < T 2∧· · ·∧T j < T j+1,

and two RMTL-
∫
3

formulas Zi,Ri in DNF3 free of inequalities before an until

operator occur (i.e., the new until operators can contain inequalities). Zi

and Ri are of the form

(
S1

1 U S1
2 ∧ · · · ∧ S1

m U S1
m

)
∨ · · · ∨ (Sn1 U Sn2 ∧ · · · ∧ Snm U Snm) ,

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 124

where S is a RMTL-
∫
3

formula in DNF3.

From the inductive hypothesis, we have that any sub-formula Sji U Sji has

an equivalent formula where temporal operators are free of inequalities and

this formula is a RMTL-
∫
3

formula in DNF3. Therefore, the formula may

contain inequalities inner the until operator

Zi U φ6<.

Since there is no propositions, the replacement of the sub-formulas is straight-

forward. Applying the axiom A4, we have

F :=
(
W 1 ∧ Z1

)
∨
(
¬W 1 ∧R1

)
∨ · · ·

∨ (Wn ∧ Zn) ∨ (¬Wn ∧Rn)

and

(
W 1 ∧ F U φ 6<

)
∨
(
¬W 1 ∧ F ∗ U φ6<

)
∨ · · ·

∨ (Wn ∧ F U φ 6<) ∨ (¬Wn ∧ F ∗ U φ6<) .

Therefore, given that a conjunction/disjunction of a DNF3 formula with

other non-DNF3 formula is a formula in DNF3. Hence, the Property 1

holds.

(b) proposition and temporal operator free: The proof follows by the applica-

tion of axiom A4.

2. case φ2 has inequalities. This case is similar to previous one, but know using

axiom A5 instead of A4.

3. case φ1 and φ2 have inequalities. The proof follows in a similar way to the

previous two cases.

�

Let us now recall the Lemma 6.

Lemma 6. Let φ be a formula in RMTL-
∫
3
, and ηx, η two terms, and consider the formula

η ∼
∫ ηx φ. Then, there exists an equivalent formula where any duration term is free of

inequalities, or only contains equalities of the form x =
∫ η
φ.

Proof of Lemma 6. By induction over the structure of the formula φ and the structure of

the term ηx.

- Base cases:

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 125

1. φ does not contain any inequality:

(a) ηx does not contain either logic variables or duration terms: the proof is

straightforward.

(b) ηx does not contain duration terms: the proof is straightforward since ηx

is a rigid term.

2. φ contains inequalities without until operators, and ηx does not contain either

logic variables or duration terms: Since there exists no terms that admit sub-

formulas, any atom Xi,j of a formula φ of the form

(X1,1 ∧ · · · ∧X1,m) ∨ · · · ∨ (Xn,1 ∧ · · · ∧Xn,m) ,

where 0 < i ≤ n and 0 < j ≤ m, can only be a relation formula or a proposition.

From the Axiom 7, we have

η ∼
∫ ηx

(X1,1 ∧ · · · ∧X1,m) +

∫ ηx

(· · ·+ (Xn,1 ∧ · · · ∧Xn,m))−
∫ ηx

((X1,1 ∧ · · · ∧X1,m) ∧ · · · ∨ (Xn,1 ∧ · · · ∧Xn,m)) .

Continuing applying Axiom 7 until no disjunctions are left, we have a formula

where the duration terms may only contain conjunctions of relation formulas

and propositions. Then, we have

η ∼
∫ ηx

(X1,1 ∧ · · · ∧X1,m) + · · ·+
∫ ηx

(Xn,1 ∧ · · · ∧Xn,m)

−
(∫ ηx

((X1,1 ∧ · · · ∧X1,m) ∧ (Xn,1 ∧ · · · ∧Xn,m)) + . . .

)

Replacing each duration term by a logic variable, we get

η ∼ (y1,1 + · · ·+ ym,1)− (y1,2 + . . .) .

Now, applying Axiom 6 for each resulting duration term, we obtain a formula

where inequalities are free of occurrences of the duration term. The resulting

formula is of the form

fd(n)

(
(y1,1, . . . , ym,1,), f

�
s(φn1)

, (m, 1)
)
∧ fd(n)

(
y1,2, f

�
s(φn2)

, (1, 2)
)
∧ · · ·

Hence, Property 2 holds.

3. φ contains inequalities with until formulas and ηx does not contain either logic

variables or duration terms: The proof structure is similar to the previous case,

and then follows from Lemma 5.

- Inductive cases: For all ψ, r such that η ∼
∫ r
ψ, the Property 2 is true.

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 126

1. φ contains duration terms and ηx is a rigid term containing only constants or

one logic variable:

We assume φ is of the form (X1,1 ∧ · · · ∧X1,m) ∨ · · · ∨ (Xn,1 ∧ · · · ∧Xn,m) ,

where any atom Xi,j , 0 < i ≤ n and 0 < j ≤ m may contain a duration term.

Applying the inductive hypothesis for each atom Xi,j we have that

E := η∗ ∼ y1,1 × α1,1 + · · ·+ yn,m × αn,m

and

E ∧Dn,

which is a conjuntion of an inequality bounded by η∗ and a disjunctive formula

Dn containing several equalities of the form

W 1,1 → y1,1 =

∫ ηx

Z1,1 ∧ ¬W 1,1 → y1,1 = 0 ∧ · · ·

∧ Wn,m → yn,m =

∫ ηx

Zn,m ∧ ¬Wn,m → yn,m = 0,

where W atoms are conjunctions of inequalities. Simplifying we get the formula

(
E ∧W 1,1 ∧ y1,1 =

∫ ηx

Z1,1

)
∨
(
E ∧ ¬W 1,1 ∧ y1,1 = 0

)
∨ · · · .

Again applying Axiom 7 for the overall formula η ∼
∫ ηx φ such that there is no

disjunctions over it, we have

η ∼
∫ ηx

((
E ∧W 1,1 ∧ y1,1 =

∫ ηx

Z1,1

)
∨
(
E ∧ ¬W 1,1 ∧ y1,1 = 0

)
∧ · · · ∧X1,m

)
+· · · .

By applying Axiom 6, we get E and W free of duration terms. Hence, Prop-

erty 2 holds.

2. φ does not contains inequalities and ηx contains duration terms:

We assume ηx of the form x1 × α1 + · · · + xn × αn where αi is replaced by a

expression of the form yi,1×αi,1 +· · ·+yi,n×αi,m and so on replacing them until

no logic variables are remaining. Then, we could simplify it by simply replacing

the whole expression with a fresh logic variable using the Axiom 3. Then, we

proceed with the same steps of the inductive case 1. Hence, Property 2 holds.

�

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 127

D.1 Soundness proofs for axioms

Let us now recall the introduced axioms.

A 1. η1 ◦min
x

φ < η2 ⇐⇒ (∀y y < x→ ¬φ[y/x]) ∧ η1 ◦ x < η2 ∧ φ.

A 2. η1 ◦max
x

φ < η2 ⇐⇒ (∀y y > x→ ¬φ[y/x]) ∧ η1 ◦ x < η2 ∧ φ.

A 3.
∫ η3 φ1 ◦ η1 ∼ η2 ⇐⇒ x = η3 ∧

∫ x
φ1 ◦ η1 ∼ η2

A 4. φ1 ∨ (φr ∧ φ2) U φ3 ⇐⇒ (φr → φ1 ∨ φ2 U φ3) ∧ (¬φr → φ1 U φ3)

A 5. φ1 U (φr ∧ φ2) ∨ φ3 ⇐⇒ (φr → φ1 U φ2 ∨ φ3) ∧ (¬φr → φ1 U φ3)

A 6.
∫ r
φr ∧ φ ∼ η ⇐⇒

(
φr ∧

∫ r
φ ∼ η

)
∨
(
¬φr ∧

∫ r
φ = 0

)

A 7. �
∫ η
φ1 ∨ φ2 =

∫ η
φ1 +

∫ η
φ2 −

∫ η
φ1 ∧ φ2

We have to prove the soundness of each one of the axioms, which means checking the

validity of each axiom. The soundness proof of A3 is straightforward since it only replaces

the term with a fresh variable. The soundness proof of A7 follows immediately from the

semantics.

Lemma 7. The axiom A4 is sound.

Proof. The proof follows directly from the definition of the semantic interpretation of

RMTL-
∫
3

formulas. �

Lemma 8. The axiom A5 is sound.

Proof. The proof follows directly from the definition of the semantic interpretation of

RMTL-
∫
3

formulas. �

D.2 Application Examples

Example 22 (Duration term example). It illustrates for a specific case how simplification

is done.

1. x <
∫ x+1

(P ∧ x < 10)

{replace duration term by y}

2. x < y ∧ 0 ≤ y ≤ x+ 1

{apply weaker inequality for P ∧ x < 10 }

APPENDIX D. INEQUALITY TRANSLATION CORRECTNESS PROOFS 128

3. x < y ∧ 0 ≤ y ≤ x+ 1∧
(

(x < 10)→
(

0 ≤
∫ x+1

P ≤ x+ 1
))
∧

(¬(x < 10)→ y = 0)

{replace new duration term by z}

4. x < y ∧ 0 ≤ y ≤ x+ 1∧
((x < 10)→ (0 ≤ z ≤ x+ 1))∧
¬(x < 10)→ y = 0

{apply CAD }

5. y = 0 ∧ (z = 0 ∨ (0 ≤ z ≤ x+ 1)))∨ (0 < y ≤ x+ 1 ∧ 0 ≤ z ≤ x+ 1) for x ∈ [−1, 0[,

and (x < y ≤ x+ 1 ∧ 0 ≤ z ≤ x+ 1) for x ∈ [0, 10[

{replace y and z by
∫ x+1

P }

6.
∫ x+1

P = 0 ∨ 0 <
∫ x+1

P ≤ x+ 1 for x ∈ [−1, 0[,

x <
∫ x+1

P ≤ x+ 1 for x ∈ [0, 10[, and

ff otherwise

{simplify
∫ x+1

P ≤ x+ 1 }

7. 0 ≤
∫ x+1

P for x ∈ [−1, 0[,

x <
∫ x+1

P for x ∈ [0, 10[, and

ff otherwise

Now, we have that ∀x, x <
∫ x+1

(P ∧ x < 10) is false, and ∃x, x <
∫ x+1

(P ∧ x < 10) is

true, since there is a value x = −1 where
∫ x+1

P = 0.

After simplifying ∀x, (0 ≤ x < 10)→ x <
∫ x+1

(P ∧ x < 10), we have ∀x, (0 ≤ x < 10)→
x <

∫ x+1
P .

Bibliography

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.

Adding trace matching with free variables to aspectj. SIGPLAN Not., 40(10):345–364,

October 2005. ISSN 0362-1340. doi: 10.1145/1103845.1094839. URL http://doi.acm.

org/10.1145/1103845.1094839.

José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa.

Rigorous Software Development - An Introduction to Program Verification. Under-

graduate Topics in Computer Science. Springer, 2011. ISBN 978-0-85729-017-5. doi:

10.1007/978-0-85729-018-2. URL https://doi.org/10.1007/978-0-85729-018-2.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2(3):117–126, 1987. doi: 10.1007/BF01782772. URL https://doi.org/

10.1007/BF01782772.

R. Alur and T.A. Henzinger. Logics and models of real time: A survey. In Proceedings of

the Real-Time: Theory in Practice, REX Workshop, pages 74–106, London, UK, UK,

1992a. Springer-Verlag. ISBN 3-540-55564-1. URL http://dl.acm.org/citation.

cfm?id=648143.749966.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):

183–235, 1994. doi: 10.1016/0304-3975(94)90010-8. URL https://doi.org/10.1016/

0304-3975(94)90010-8.

Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed

regular languages. In 33rd Annual Symposium on Foundations of Computer Science,

Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 177–186, 1992b. doi: 10.

1109/SFCS.1992.267774. URL https://doi.org/10.1109/SFCS.1992.267774.

Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.

Inf. Comput., 104(1):35–77, 1993. doi: 10.1006/inco.1993.1025. URL https://doi.

org/10.1006/inco.1993.1025.

129

http://doi.acm.org/10.1145/1103845.1094839
http://doi.acm.org/10.1145/1103845.1094839
https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
http://dl.acm.org/citation.cfm?id=648143.749966
http://dl.acm.org/citation.cfm?id=648143.749966
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/SFCS.1992.267774
https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1006/inco.1993.1025

BIBLIOGRAPHY 130

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–

204, 1994. doi: 10.1145/174644.174651. URL http://doi.acm.org/10.1145/174644.

174651.

Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-

time. Inf. Comput., 104(1):2–34, 1993. doi: 10.1006/inco.1993.1024. URL https:

//doi.org/10.1006/inco.1993.1024.

Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.

J. ACM, 43(1):116–146, January 1996. ISSN 0004-5411. doi: 10.1145/227595.227602.

URL http://doi.acm.org/10.1145/227595.227602.

Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: A deter-

minizable class of timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999. doi:

10.1016/S0304-3975(97)00173-4. URL https://doi.org/10.1016/S0304-3975(97)

00173-4.

Miriam C. Bergue Alves, Doron Drusinsky, J. Bret Michael, and Man-tak Shing. Formal

validation and verification of space flight software using statechart-assertions and

runtime execution monitoring. In 6th International Conference on System of Systems

Engineering, SoSE 2011, Albuquerque, New Mexico, USA, June 27-30, 2011, pages

155–160, 2011. doi: 10.1109/SYSOSE.2011.5966590. URL https://doi.org/10.1109/

SYSOSE.2011.5966590.

Björn Andersson and Jan Jonsson. Preemptive multiprocessor scheduling anomalies. In

16th International Parallel and Distributed Processing Symposium (IPDPS 2002), 15-19

April 2002, Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedings, 2002. doi: 10.

1109/IPDPS.2002.1015483. URL https://doi.org/10.1109/IPDPS.2002.1015483.

June Andronick, Corey Lewis, Daniel Matichuk, Carroll Morgan, and Christine Rizkallah.

Proof of OS scheduling behavior in the presence of interrupt-induced concurrency. In

Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France,

August 22-25, 2016, Proceedings, pages 52–68, 2016. doi: 10.1007/978-3-319-43144-4 4.

URL https://doi.org/10.1007/978-3-319-43144-4_4.

Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential

and Concurrent Programs. Texts in Computer Science. Springer, 2009. ISBN 978-

1-84882-744-8. doi: 10.1007/978-1-84882-745-5. URL https://doi.org/10.1007/

978-1-84882-745-5.

Neil C. Audsley, Alan Burns, Robert I. Davis, Ken Tindell, and Andy J. Wellings.

Fixed priority pre-emptive scheduling: An historical perspective. Real-Time Systems,

http://doi.acm.org/10.1145/174644.174651
http://doi.acm.org/10.1145/174644.174651
https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1006/inco.1993.1024
http://doi.acm.org/10.1145/227595.227602
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1109/SYSOSE.2011.5966590
https://doi.org/10.1109/SYSOSE.2011.5966590
https://doi.org/10.1109/IPDPS.2002.1015483
https://doi.org/10.1007/978-3-319-43144-4_4
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5

BIBLIOGRAPHY 131

8(2-3):173–198, 1995. doi: 10.1007/BF01094342. URL https://doi.org/10.1007/

BF01094342.

Mikhail Auguston and Mark B. Trakhtenbrot. Synthesis of monitors for real-time analysis

of reactive systems. In Pillars of Computer Science, Essays Dedicated to Boris (Boaz)

Trakhtenbrot on the Occasion of His 85th Birthday, pages 72–86, 2008. doi: 10.1007/

978-3-540-78127-1 5. URL https://doi.org/10.1007/978-3-540-78127-1_5.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,

2008. ISBN 026202649X, 9780262026499.

John Barnes. Rationale for ada 2012: Contracts and aspects. Technical report, Caversham,

UK, 2012.

Julie Baro, Frédéric Boniol, Mikel Cordovilla, Eric Noulard, and Claire Pagetti. Off-line

(optimal) multiprocessor scheduling of dependent periodic tasks. In Proceedings of the

27th Annual ACM Symposium on Applied Computing, SAC ’12, pages 1815–1820, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-0857-1. doi: 10.1145/2245276.2232071.

URL http://doi.acm.org/10.1145/2245276.2232071.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The smt-lib standard version 2.6.

2010.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version

2.5. Technical report, Department of Computer Science, The University of Iowa, 2015.

Available at www.SMT-LIB.org.

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based

Runtime Verification, pages 44–57. Springer Berlin Heidelberg, Berlin, Heidelberg,

2004a. ISBN 978-3-540-24622-0. doi: 10.1007/978-3-540-24622-0 5. URL http:

//dx.doi.org/10.1007/978-3-540-24622-0_5.

Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime

verification. In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking,

and Abstract Interpretation, volume 2937 of Lecture Notes in Computer Science, pages

277–306. Springer Berlin / Heidelberg, 2004b. ISBN 978-3-540-20803-7.

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule Systems for Run-Time

Monitoring: From Eagle to RuleR, pages 111–125. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2007. ISBN 978-3-540-77395-5. doi: 10.1007/978-3-540-77395-5 10. URL

http://dx.doi.org/10.1007/978-3-540-77395-5_10.

https://doi.org/10.1007/BF01094342
https://doi.org/10.1007/BF01094342
https://doi.org/10.1007/978-3-540-78127-1_5
http://doi.acm.org/10.1145/2245276.2232071
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-540-77395-5_10

BIBLIOGRAPHY 132

Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-time

monitoring. J. Log. and Comput., 20(3):675–706, June 2010. ISSN 0955-792X. doi:

10.1093/logcom/exn076. URL http://dx.doi.org/10.1093/logcom/exn076.

Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2006. ISBN 3540330984.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification for LTL

and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September 2011.

ISSN 1049-331X. doi: 10.1145/2000799.2000800. URL http://doi.acm.org/10.1145/

2000799.2000800.

Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson, Wang

Yi, and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd international conference

on the Quantitative Evaluation of Systems, QEST ’06, pages 125–126, Washington, DC,

USA, 2006. IEEE Computer Society. ISBN 0-7695-2665-9. doi: 10.1109/QEST.2006.59.

URL http://dx.doi.org/10.1109/QEST.2006.59.

Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language

and Information, 4(3):251–272, Sep 1995. ISSN 1572-9583. doi: 10.1007/BF01049415.

URL https://doi.org/10.1007/BF01049415.

Patrick Blackburn and Miroslava Tzakova. Hybrid languages and temporal logic. Logic

Journal of the IGPL, 7(1):27–54, 1999. doi: 10.1093/jigpal/7.1.27. URL https://doi.

org/10.1093/jigpal/7.1.27.

Eric Bodden. A lightweight LTL runtime verification tool for Java. In Companion to the

19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,

Canada, pages 306–307. ACM, October 2004. URL http://www.bodden.de/pubs/

bodden04lightweight.pdf. ACM Student Research Competition.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Sampling-based

runtime verification. In Proceedings of the 17th international conference on Formal

methods, FM’11, pages 88–102, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-

642-21436-3. URL http://dl.acm.org/citation.cfm?id=2021296.2021308.

Borzoo Bonakdarpour, Samaneh Navabpour, and Sebastian Fischmeister. Time-triggered

runtime verification. Formal Methods in System Design, 43(1):29–60, Aug 2013.

ISSN 1572-8102. doi: 10.1007/s10703-012-0182-0. URL https://doi.org/10.1007/

s10703-012-0182-0.

http://dx.doi.org/10.1093/logcom/exn076
http://doi.acm.org/10.1145/2000799.2000800
http://doi.acm.org/10.1145/2000799.2000800
http://dx.doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/BF01049415
https://doi.org/10.1093/jigpal/7.1.27
https://doi.org/10.1093/jigpal/7.1.27
http://www.bodden.de/pubs/bodden04lightweight.pdf
http://www.bodden.de/pubs/bodden04lightweight.pdf
http://dl.acm.org/citation.cfm?id=2021296.2021308
https://doi.org/10.1007/s10703-012-0182-0
https://doi.org/10.1007/s10703-012-0182-0

BIBLIOGRAPHY 133

Patricia Bouyer. Model-checking timed temporal logics. Electron. Notes Theor. Comput.

Sci., 231:323–341, March 2009. ISSN 1571-0661. doi: 10.1016/j.entcs.2009.02.044. URL

http://dx.doi.org/10.1016/j.entcs.2009.02.044.

Patricia Bouyer, Kim Guldstrand Larsen, and Nicolas Markey. Model checking one-clock

priced timed automata. Logical Methods in Computer Science, 4(2), 2008a. doi: 10.

2168/LMCS-4(2:9)2008. URL http://dx.doi.org/10.2168/LMCS-4(2:9)2008.

Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. On expressiveness

and complexity in real-time model checking. In Proceedings of the 35th international

colloquium on Automata, Languages and Programming, Part II, ICALP ’08, pages 124–

135, Berlin, Heidelberg, 2008b. Springer-Verlag. ISBN 978-3-540-70582-6. doi: 10.1007/

978-3-540-70583-3 11. URL http://dx.doi.org/10.1007/978-3-540-70583-3_11.

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL

and MTL. Inf. Comput., 208(2):97–116, 2010. ISSN 0890-5401. doi: 10.1016/j.ic.2009.

10.004. URL http://dx.doi.org/10.1016/j.ic.2009.10.004.

Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages: Ada,

Real-Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers Inc,

USA, 4th edition, 2009. ISBN 0321417453, 9780321417459.

Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete Event

Systems, Second Edition. Springer, 2008. ISBN 978-0-387-33332-8. doi: 10.1007/

978-0-387-68612-7. URL https://doi.org/10.1007/978-0-387-68612-7.

Franck Cassez and Kim Guldstrand Larsen. The impressive power of stopwatches. In

CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park,

PA, USA, August 22-25, 2000, Proceedings, pages 138–152, 2000. doi: 10.1007/

3-540-44618-4 12. URL https://doi.org/10.1007/3-540-44618-4_12.

Felipe Cerqueira, Felix Stutz, and Björn B. Brandenburg. PROSA: A case for readable

mechanized schedulability analysis. In 28th Euromicro Conference on Real-Time

Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016, pages 273–284, 2016. doi:

10.1109/ECRTS.2016.28. URL https://doi.org/10.1109/ECRTS.2016.28.

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An extended duration calculus

for hybrid real-time systems. In Hybrid Systems, pages 36–59, London, UK, UK, 1993.

Springer-Verlag. ISBN 3-540-57318-6. URL http://dl.acm.org/citation.cfm?id=

646874.709980.

Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jpredictor: a predictive runtime

analysis tool for java. In Proceedings of the 30th international conference on Software

http://dx.doi.org/10.1016/j.entcs.2009.02.044
http://dx.doi.org/10.2168/LMCS-4(2:9)2008
http://dx.doi.org/10.1007/978-3-540-70583-3_11
http://dx.doi.org/10.1016/j.ic.2009.10.004
https://doi.org/10.1007/978-0-387-68612-7
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1109/ECRTS.2016.28
http://dl.acm.org/citation.cfm?id=646874.709980
http://dl.acm.org/citation.cfm?id=646874.709980

BIBLIOGRAPHY 134

engineering, ICSE ’08, pages 221–230, New York, USA, 2008. ACM. ISBN 978-1-60558-

079-1. doi: 10.1145/1368088.1368119. URL http://doi.acm.org/10.1145/1368088.

1368119.

Alonzo Church. The Calculi of Lambda-conversion. Annals of mathematics studies.

Princeton University Press, 1941. ISBN 9780691083940.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,

Cambridge, MA, USA, 1999. ISBN 0-262-03270-8.

George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic

decomposition: a synopsis. ACM SIGSAM Bulletin, 10(1):10–12, 1976. doi: 10.1145/

1093390.1093393. URL http://doi.acm.org/10.1145/1093390.1093393.

M. Coombes, O. McAree, W. H. Chen, and P. Render. Development of an autopilot system

for rapid prototyping of high level control algorithms. In Proceedings of 2012 UKACC

CONTROL, pages 292–297, Sept 2012. doi: 10.1109/CONTROL.2012.6334645.

Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of java

programs. In Proceedings of the third international workshop on Dynamic analysis,

WODA ’05, pages 1–7, New York, USA, 2005. ACM. ISBN 1-59593-126-0. doi:

10.1145/1082983.1083249. URL http://doi.acm.org/10.1145/1082983.1083249.

Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd

Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime

monitoring of synchronous systems. In 12th International Symposium on Temporal

Representation and Reasoning (TIME 2005), 23-25 June 2005, Burlington, Vermont,

USA, pages 166–174, 2005. doi: 10.1109/TIME.2005.26. URL https://doi.org/10.

1109/TIME.2005.26.

Rowan Davies. A temporal logic approach to binding-time analysis. J. ACM, 64(1):1:1–

1:45, March 2017. ISSN 0004-5411. doi: 10.1145/3011069. URL http://doi.acm.org/

10.1145/3011069.

Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor

systems. ACM Comput. Surv., 43(4):35:1–35:44, October 2011. ISSN 0360-0300. doi:

10.1145/1978802.1978814. URL http://doi.acm.org/10.1145/1978802.1978814.

André De Matos Pedro. rtmlib Monitoring Library, 2016. Available at https://anmaped.

github.io/rtmlib/doc/, version 0.1-alpha.

André De Matos Pedro. rmtld3synth Synthesis Tool, 2018. Available at https://github.

com/anmaped/rmtld3synth/, version 0.3-alpha2.

http://doi.acm.org/10.1145/1368088.1368119
http://doi.acm.org/10.1145/1368088.1368119
http://doi.acm.org/10.1145/1093390.1093393
http://doi.acm.org/10.1145/1082983.1083249
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
http://doi.acm.org/10.1145/3011069
http://doi.acm.org/10.1145/3011069
http://doi.acm.org/10.1145/1978802.1978814
https://anmaped.github.io/rtmlib/doc/
https://anmaped.github.io/rtmlib/doc/
https://github.com/anmaped/rmtld3synth/
https://github.com/anmaped/rmtld3synth/

BIBLIOGRAPHY 135

André De Matos Pedro, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa Pinto.

Towards a runtime verification framework for the ada programming language. In Reliable

Software Technologies - Ada-Europe 2014, 19th Ada-Europe International Conference

on Reliable Software Technologies, Paris, France, June 23-27, 2014. Proceedings, pages

58–73, 2014a. doi: 10.1007/978-3-319-08311-7 6. URL https://doi.org/10.1007/

978-3-319-08311-7_6.

André De Matos Pedro, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa Pinto. A

compositional monitoring framework for hard real-time systems. In Proceedings of

the 6th International Symposium on NASA Formal Methods - Volume 8430, pages

16–30, New York, NY, USA, 2014b. Springer-Verlag New York, Inc. ISBN 978-3-

319-06199-3. doi: 10.1007/978-3-319-06200-6 2. URL http://dx.doi.org/10.1007/

978-3-319-06200-6_2.

André De Matos Pedro, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa Pinto. Mon-

itoring for a decidable fragment of mtl-
∫

. In Runtime Verification - 6th International

Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, pages 169–

184, 2015a. doi: 10.1007/978-3-319-23820-3 11. URL https://doi.org/10.1007/

978-3-319-23820-3_11.

André De Matos Pedro, David Pereira, Lúıs Miguel Pinho, and Jorge Sousa Pinto. Logic-

based Schedulability Analysis for Compositional Hard Real-time Embedded Systems.

SIGBED Rev., 12(1):56–64, March 2015b. ISSN 1551-3688. doi: 10.1145/2752801.

2752808. URL http://doi.acm.org/10.1145/2752801.2752808.

André De Matos Pedro, David Pereira, Luıs Miguel Pinho, and Jorge Sousa Pinto. SMT-

based schedulability analysis using RMTL-
∫

. CRTS 2016, page 31, 2016.

André De Matos Pedro, Jorge Sousa Pinto, David Pereira, and Lúıs Miguel Pinho. Runtime

verification of autopilot systems using a fragment of MTL-
∫

. International Journal on

Software Tools for Technology Transfer, Aug 2017. ISSN 1433-2787. doi: 10.1007/

s10009-017-0470-5. URL https://doi.org/10.1007/s10009-017-0470-5.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In

Tools and Algorithms for the Construction and Analysis of Systems, 14th International

Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

Proceedings, pages 337–340, 2008. doi: 10.1007/978-3-540-78800-3 24. URL https:

//doi.org/10.1007/978-3-540-78800-3_24.

Doron Drusinsky. The temporal rover and the atg rover. In Proceedings of the 7th

International SPIN Workshop on SPIN Model Checking and Software Verification,

https://doi.org/10.1007/978-3-319-08311-7_6
https://doi.org/10.1007/978-3-319-08311-7_6
http://dx.doi.org/10.1007/978-3-319-06200-6_2
http://dx.doi.org/10.1007/978-3-319-06200-6_2
https://doi.org/10.1007/978-3-319-23820-3_11
https://doi.org/10.1007/978-3-319-23820-3_11
http://doi.acm.org/10.1145/2752801.2752808
https://doi.org/10.1007/s10009-017-0470-5
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

BIBLIOGRAPHY 136

pages 323–330, London, UK, 2000. Springer-Verlag. ISBN 3-540-41030-9. URL

http://dl.acm.org/citation.cfm?id=645880.672089.

E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter Temporal

and Modal Logic, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990. ISBN

0-444-88074-7. URL http://dl.acm.org/citation.cfm?id=114891.114907.

Yliès Falcone. You should better enforce than verify. In Proceedings of the First inter-

national conference on Runtime verification, RV’10, pages 89–105, Berlin, Heidelberg,

2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-16611-2.

Elena Fersman, Pavel Krcal, Paul Pettersson, and Wang Yi. Task automata: Schedu-

lability, decidability and undecidability. Information and Computation, 205(8):1149–

1172, August 2007. ISSN 0890-5401. doi: 10.1016/j.ic.2007.01.009. URL http:

//dx.doi.org/10.1016/j.ic.2007.01.009.

C. J. Fidge. Real-time schedulability tests for preemptive multitasking. Real-Time Syst.,

14(1):61–93, January 1998. ISSN 0922-6443.

Sebastian Fischmeister and Yanmeng Ba. Sampling-based program execution monitor-

ing. In Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,

compilers, and tools for embedded systems, LCTES ’10, pages 133–142, New York,

USA, 2010. ACM. ISBN 978-1-60558-953-4. doi: 10.1145/1755888.1755908. URL

http://doi.acm.org/10.1145/1755888.1755908.

Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition.

Graduate Texts in Computer Science. Springer, 1996. ISBN 978-1-4612-7515-2. doi:

10.1007/978-1-4612-2360-3. URL https://doi.org/10.1007/978-1-4612-2360-3.

Carlo A. Furia and Matteo Rossi. On the expressiveness of MTL variants over dense

time. In Formal Modeling and Analysis of Timed Systems, 5th International Conference,

FORMATS 2007, Salzburg, Austria, October 3-5, 2007, Proceedings, pages 163–

178, 2007. doi: 10.1007/978-3-540-75454-1 13. URL https://doi.org/10.1007/

978-3-540-75454-1_13.

Dov M. Gabbay. The declarative past and imperative future: Executable temporal logic

for interactive systems. In Temporal Logic in Specification, Altrincham, UK, April

8-10, 1987, Proceedings, pages 409–448, 1987. doi: 10.1007/3-540-51803-7 36. URL

https://doi.org/10.1007/3-540-51803-7_36.

Simon Goldsmith, Robert O’Callahan, and Alexander Aiken. Relational queries over

program traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,

http://dl.acm.org/citation.cfm?id=645880.672089
http://dl.acm.org/citation.cfm?id=114891.114907
http://dx.doi.org/10.1016/j.ic.2007.01.009
http://dx.doi.org/10.1016/j.ic.2007.01.009
http://doi.acm.org/10.1145/1755888.1755908
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-540-75454-1_13
https://doi.org/10.1007/978-3-540-75454-1_13
https://doi.org/10.1007/3-540-51803-7_36

BIBLIOGRAPHY 137

October 16-20, 2005, San Diego, CA, USA, pages 385–402, 2005. doi: 10.1145/1094811.

1094841. URL http://doi.acm.org/10.1145/1094811.1094841.

Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: A survey and

future directions. Technical Report NASA/CR-2010-216724, NASA Langley Research

Center, July 2010.

Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time

schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time

Syst., 52(6):808–832, November 2016. ISSN 0922-6443. doi: 10.1007/s11241-016-9256-1.

URL http://dx.doi.org/10.1007/s11241-016-9256-1.

Russell A. Gordon. The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate

studies in mathematics. American Mathematical Soc., 1994. ISBN 9780821872222.

Dick Hamlet. Composing Software Components: A Software-testing Perspective.

Springer Publishing Company, Incorporated, 1st edition, 2010. ISBN 1441971475,

9781441971470.

David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Trans.

Softw. Eng. Methodol., 5(4):293–333, October 1996. ISSN 1049-331X. doi: 10.1145/

235321.235322. URL http://doi.acm.org/10.1145/235321.235322.

David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cambridge,

MA, USA, 2000. ISBN 0262082896.

John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge Univer-

sity Press, New York, NY, USA, 1st edition, 2009. ISBN 0521899575, 9780521899574.

Klaus Havelund. Runtime verification of C programs. In Proceedings of the 20th IFIP TC

6/WG 6.1 international conference on Testing of Software and Communicating Systems:

8th International Workshop, TestCom ’08 / FATES ’08, pages 7–22, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-68514-2. doi: 10.1007/978-3-540-68524-1 3.

URL http://dx.doi.org/10.1007/978-3-540-68524-1_3.

Klaus Havelund and Grigore Rosu. Monitoring java programs with java pathexplorer.

Electr. Notes Theor. Comput. Sci., 55(2):200–217, 2001. doi: 10.1016/S1571-0661(04)

00253-1. URL https://doi.org/10.1016/S1571-0661(04)00253-1.

Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In

Proceedings of the 8th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS ’02, pages 342–356, London, UK, 2002.

Springer-Verlag. ISBN 3-540-43419-4. URL http://dl.acm.org/citation.cfm?id=

646486.694486.

http://doi.acm.org/10.1145/1094811.1094841
http://dx.doi.org/10.1007/s11241-016-9256-1
http://doi.acm.org/10.1145/235321.235322
http://dx.doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1016/S1571-0661(04)00253-1
http://dl.acm.org/citation.cfm?id=646486.694486
http://dl.acm.org/citation.cfm?id=646486.694486

BIBLIOGRAPHY 138

Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks?

In Automata, Languages and Programming, 19th International Colloquium, ICALP92,

Vienna, Austria, July 13-17, 1992, Proceedings, pages 545–558, 1992. doi: 10.1007/

3-540-55719-9 103. URL https://doi.org/10.1007/3-540-55719-9_103.

J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An

Introduction. Cambridge University Press, New York, NY, USA, 2nd edition, 2008.

ISBN 0521898854, 9780521898850.

Yoram Hirshfeld and Alexander Rabinovich. Logics for real time: Decidability and

complexity. Fundam. Inf., 62(1):1–28, January 2004. ISSN 0169-2968. URL http:

//dl.acm.org/citation.cfm?id=1227039.1227041.

Gabriel M. Hoffmann, Haomiao Huang, Steven L. Wasl, and Er Claire J. Tomlin.

Quadrotor helicopter flight dynamics and control: Theory and experiment. In Proc.

of the AIAA Guidance, Navigation, and Control Conference. Vol. 2., 2007.

Paul Hunter, Joël Ouaknine, and James Worrell. Expressive completeness for metric

temporal logic. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 349–357, 2013. doi:

10.1109/LICS.2013.41. URL https://doi.org/10.1109/LICS.2013.41.

Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu. Javamop:

Efficient parametric runtime monitoring framework. In Proceeding of the 34th Interna-

tional Conference on Software Engineering (ICSE’12). IEEE, 2012. to appear.

Dejan Jovanović and Leonardo de Moura. Solving non-linear arithmetic. ACM Commun.

Comput. Algebra, 46(3/4):104–105, January 2013. ISSN 1932-2240. doi: 10.1145/

2429135.2429155. URL http://doi.acm.org/10.1145/2429135.2429155.

Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422, 2004. doi: 10.1109/JPROC.2003.823141. URL

https://doi.org/10.1109/JPROC.2003.823141.

Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky.

Java-mac: A run-time assurance approach for java programs. Form. Methods Syst. Des.,

24(2):129–155, March 2004. ISSN 0925-9856. doi: 10.1023/B:FORM.0000017719.43755.

7c. URL http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255–299, October 1990. ISSN 0922-6443. doi: 10.1007/BF01995674. URL

http://dx.doi.org/10.1007/BF01995674.

https://doi.org/10.1007/3-540-55719-9_103
http://dl.acm.org/citation.cfm?id=1227039.1227041
http://dl.acm.org/citation.cfm?id=1227039.1227041
https://doi.org/10.1109/LICS.2013.41
http://doi.acm.org/10.1145/2429135.2429155
https://doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1023/B:FORM.0000017719.43755.7c
http://dx.doi.org/10.1007/BF01995674

BIBLIOGRAPHY 139

Pavel Krcal, Martin Stigge, and Wang Yi. Multi-processor schedulability analysis of

preemptive real-time tasks with variable execution times. In Proceedings of the 5th inter-

national conference on Formal modeling and analysis of timed systems, FORMATS’07,

pages 274–289, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-75453-9, 978-3-

540-75453-4. URL http://dl.acm.org/citation.cfm?id=1779879.1779899.

Shankara Narayanan Krishna, Khushraj Madnani, and Paritosh K. Pandya. Metric

temporal logic with counting. In Foundations of Software Science and Computation

Structures - 19th International Conference, FOSSACS 2016, Held as Part of the Euro-

pean Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,

The Netherlands, April 2-8, 2016, Proceedings, pages 335–352, 2016. doi: 10.1007/

978-3-662-49630-5 20. URL https://doi.org/10.1007/978-3-662-49630-5_20.

Yassine Lakhnech and Jozef Hooman. Metric temporal logic with durations. Theor.

Comput. Sci., 138(1):169–199, 1995. doi: 10.1016/0304-3975(94)00151-8. URL https:

//doi.org/10.1016/0304-3975(94)00151-8.

François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal logic with

forgettable past. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),

22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 383–392, 2002. doi: 10.

1109/LICS.2002.1029846. URL https://doi.org/10.1109/LICS.2002.1029846.

Christopher League. Lambda calculi: A guide for computer scientists by chris hankin.

SIGACT News, 31(1):8–13, March 2000. ISSN 0163-5700. doi: 10.1145/346048.568490.

URL http://doi.acm.org/10.1145/346048.568490.

John P. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings of the Real-Time Systems

Symposium - 1989, Santa Monica, California, USA, December 1989, pages 166–171,

1989. doi: 10.1109/REAL.1989.63567. URL https://doi.org/10.1109/REAL.1989.

63567.

Martin Leucker and Christian Schallhart. A brief account of runtime verification. J. Log.

Algebr. Program., 78(5):293–303, 2009.

C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM, 20(1):46–61, January 1973. ISSN 0004-5411. doi:

10.1145/321738.321743. URL http://doi.acm.org/10.1145/321738.321743.

Hong Lu and A. Forin. Automatic processor customization for zero-overhead online

software verification. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 16(10):1346 –1357, October 2008. ISSN 1063-8210.

http://dl.acm.org/citation.cfm?id=1779879.1779899
https://doi.org/10.1007/978-3-662-49630-5_20
https://doi.org/10.1016/0304-3975(94)00151-8
https://doi.org/10.1016/0304-3975(94)00151-8
https://doi.org/10.1109/LICS.2002.1029846
http://doi.acm.org/10.1145/346048.568490
https://doi.org/10.1109/REAL.1989.63567
https://doi.org/10.1109/REAL.1989.63567
http://doi.acm.org/10.1145/321738.321743

BIBLIOGRAPHY 140

David Makinson. Sets, Logic and Maths for Computing, Second Edition. Undergraduate

Topics in Computer Science. Springer, 2012. ISBN 978-1-4471-2499-3. doi: 10.1007/

978-1-4471-2500-6. URL https://doi.org/10.1007/978-1-4471-2500-6.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals.

In FORMATS/FTRTFT, pages 152–166, 2004.

Rajib Mall. Real-Time Systems: Theory and Practice. Prentice Hall Press, Upper Saddle

River, NJ, USA, 1st edition, 2009. ISBN 8131700690, 9788131700693.

Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. Finding application

errors and security flaws using PQL: a program query language. In Proceedings of the

20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,

USA, pages 365–383, 2005. doi: 10.1145/1094811.1094840. URL http://doi.acm.

org/10.1145/1094811.1094840.

Ramy Medhat, Borzoo Bonakdarpour, Deepak Kumar, and Sebastian Fischmeister.

Runtime monitoring of cyber-physical systems under timing and memory constraints.

ACM Trans. Embed. Comput. Syst., 14(4):79:1–79:29, October 2015. ISSN 1539-9087.

doi: 10.1145/2744196. URL http://doi.acm.org/10.1145/2744196.

Lorenz Meier, Dominik Honegger, and Marc Pollefeys. PX4: A node-based multithreaded

open source robotics framework for deeply embedded platforms. In IEEE International

Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-30 May,

2015, pages 6235–6240, 2015. doi: 10.1109/ICRA.2015.7140074. URL https://doi.

org/10.1109/ICRA.2015.7140074.

Patrick Meredith and Grigore Roşu. Runtime verification with the rv system. In

Proceedings of the First international conference on Runtime verification, RV’10, pages

136–152, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-16611-3, 978-3-642-

16611-2. URL http://dl.acm.org/citation.cfm?id=1939399.1939413.

Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu. An

overview of the MOP runtime verification framework. International Journal on Software

Techniques for Technology Transfer, 2011.

Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. R2U2: monitoring and

diagnosis of security threats for unmanned aerial systems. Formal Methods in System

Design, 51(1):31–61, 2017. doi: 10.1007/s10703-017-0275-x. URL https://doi.org/

10.1007/s10703-017-0275-x.

https://doi.org/10.1007/978-1-4471-2500-6
http://doi.acm.org/10.1145/1094811.1094840
http://doi.acm.org/10.1145/1094811.1094840
http://doi.acm.org/10.1145/2744196
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ICRA.2015.7140074
http://dl.acm.org/citation.cfm?id=1939399.1939413
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x

BIBLIOGRAPHY 141

Mark W. Müller and Raffaello D’Andrea. Stability and control of a quadrocopter despite

the complete loss of one, two, or three propellers. In 2014 IEEE International Conference

on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014,

pages 45–52, 2014. doi: 10.1109/ICRA.2014.6906588. URL https://doi.org/10.

1109/ICRA.2014.6906588.

Samaneh Navabpour, Borzoo Bonakdarpour, and Sebastian Fischmeister. Time-triggered

runtime verification of component-based multi-core systems. In Runtime Verification

- 6th International Conference, RV 2015 Vienna, Austria, September 22-25, 2015.

Proceedings, pages 153–168, 2015. doi: 10.1007/978-3-319-23820-3 10. URL https:

//doi.org/10.1007/978-3-319-23820-3_10.

G. Nelissen, D. Pereira, and L. M. Pinho. A novel run-time monitoring architecture for

safe and efficient inline monitoring. In Ada-Europe 2015, pages 66–82, June 2015.

Dejan Nickovic and Nir Piterman. From mtl to deterministic timed automata. In

Formal Modeling and Analysis of Timed Systems - 8th International Conference,

FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010. Proceedings, pages

152–167, 2010. doi: 10.1007/978-3-642-15297-9 13. URL https://doi.org/10.1007/

978-3-642-15297-9_13.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.

Springer, 1999. ISBN 978-3-540-65410-0. doi: 10.1007/978-3-662-03811-6. URL https:

//doi.org/10.1007/978-3-662-03811-6.

Christer Norström, Anders Wall, and Wang Yi. Timed automata as task models for

event-driven systems. In Proceedings of the Sixth International Conference on Real-

Time Computing Systems and Applications, RTCSA ’99, pages 182–, Washington, DC,

USA, 1999. IEEE Computer Society. ISBN 0-7695-0306-3. URL http://dl.acm.org/

citation.cfm?id=519167.828781.

Paritosh K. Pandya and Simoni S. Shah. Unambiguity in timed regular languages:

Automata and logics. In Formal Modeling and Analysis of Timed Systems - 8th

International Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,

2010. Proceedings, pages 168–182, 2010. doi: 10.1007/978-3-642-15297-9 14. URL

https://doi.org/10.1007/978-3-642-15297-9_14.

Pawel Parys and Igor Walukiewicz. Weak alternating timed automata. In Proceedings of

the 36th Internatilonal Collogquium on Automata, Languages and Programming: Part

II, ICALP ’09, pages 273–284, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-

642-02929-5. doi: 10.1007/978-3-642-02930-1 23. URL http://dx.doi.org/10.1007/

978-3-642-02930-1_23.

https://doi.org/10.1109/ICRA.2014.6906588
https://doi.org/10.1109/ICRA.2014.6906588
https://doi.org/10.1007/978-3-319-23820-3_10
https://doi.org/10.1007/978-3-319-23820-3_10
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-642-15297-9_13
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
http://dl.acm.org/citation.cfm?id=519167.828781
http://dl.acm.org/citation.cfm?id=519167.828781
https://doi.org/10.1007/978-3-642-15297-9_14
http://dx.doi.org/10.1007/978-3-642-02930-1_23
http://dx.doi.org/10.1007/978-3-642-02930-1_23

BIBLIOGRAPHY 142

Rodolfo Pellizzoni, Patrick Meredith, Marco Caccamo, and Grigore Rosu. Hardware

runtime monitoring for dependable cots-based real-time embedded systems. In

Proceedings of the 2008 Real-Time Systems Symposium, RTSS ’08, pages 481–491,

Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3477-0. doi:

10.1109/RTSS.2008.43. URL http://dx.doi.org/10.1109/RTSS.2008.43.

Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard real-time

runtime monitor. In Runtime Verification - First International Conference, RV 2010,

St. Julians, Malta, November 1-4, 2010. Proceedings, pages 345–359, 2010. doi: 10.1007/

978-3-642-16612-9 26. URL https://doi.org/10.1007/978-3-642-16612-9_26.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine Rollet, and

Omer Landry Nguena Timo. Runtime Enforcement of Timed Properties, pages 229–244.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-35632-2. doi: 10.

1007/978-3-642-35632-2 23. URL https://doi.org/10.1007/978-3-642-35632-2_

23.

André Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. Electron.

Notes Theor. Comput. Sci., 174(6):63–77, June 2007. ISSN 1571-0661. doi: 10.1016/j.

entcs.2006.11.026. URL http://dx.doi.org/10.1016/j.entcs.2006.11.026.

André Platzer. Differential dynamic logic for hybrid systems. Journal of Automated

Reasoning, 41(2):143–189, Aug 2008. ISSN 1573-0670. doi: 10.1007/s10817-008-9103-8.

URL https://doi.org/10.1007/s10817-008-9103-8.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washington,

DC, USA, 1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32. URL http:

//dx.doi.org/10.1109/SFCS.1977.32.

Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. Off-line mapping of multi-rate

dependent task sets to many-core platforms. Real-Time Syst., 51(5):526–565, September

2015. ISSN 0922-6443. doi: 10.1007/s11241-015-9232-1. URL http://dx.doi.org/10.

1007/s11241-015-9232-1.

Mina Ranjbaran and Khashayar Khorasani. Fault recovery of an under-actuated quadrotor

aerial vehicle. In Proceedings of the 49th IEEE Conference on Decision and Control,

CDC 2010, December 15-17, 2010, Atlanta, Georgia, USA, pages 4385–4392, 2010. doi:

10.1109/CDC.2010.5718140. URL https://doi.org/10.1109/CDC.2010.5718140.

Didier Rémy. Using, Understanding, and Unraveling the OCaml Language From Practice

to Theory and Vice Versa, pages 413–536. Springer Berlin Heidelberg, Berlin,

http://dx.doi.org/10.1109/RTSS.2008.43
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/978-3-642-35632-2_23
https://doi.org/10.1007/978-3-642-35632-2_23
http://dx.doi.org/10.1016/j.entcs.2006.11.026
https://doi.org/10.1007/s10817-008-9103-8
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/s11241-015-9232-1
http://dx.doi.org/10.1007/s11241-015-9232-1
https://doi.org/10.1109/CDC.2010.5718140

BIBLIOGRAPHY 143

Heidelberg, 2002. ISBN 978-3-540-45699-5. doi: 10.1007/3-540-45699-6 9. URL

http://dx.doi.org/10.1007/3-540-45699-6_9.

Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr. Statistical runtime checking

of probabilistic properties. In Proceedings of the 7th international conference on

Runtime verification, RV’07, pages 164–175, Berlin, Heidelberg, 2007. Springer-Verlag.

ISBN 3-540-77394-0, 978-3-540-77394-8. URL http://dl.acm.org/citation.cfm?id=

1785141.1785158.

Sriram Sankar and Manas Mandal. Concurrent runtime monitoring of formally specified

programs. Computer, 26(3):32–41, March 1993. ISSN 0018-9162. doi: 10.1109/2.204684.

URL http://dx.doi.org/10.1109/2.204684.

Lui Sha, Tarek Abdelzaher, Karl-Erik én, Anton Cervin, Theodore Baker, Alan Burns,

Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real

time scheduling theory: A historical perspective. Real-Time Syst., 28(2-3):101–155,

November 2004. ISSN 0922-6443.

Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees.

In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS 2003), 3-5

December 2003, Cancun, Mexico, pages 2–13, 2003. doi: 10.1109/REAL.2003.1253249.

URL https://doi.org/10.1109/REAL.2003.1253249.

Insik Shin and Insup Lee. Compositional real-time scheduling framework with periodic

model. ACM Trans. Embedded Comput. Syst., 7(3):30:1–30:39, 2008. doi: 10.1145/

1347375.1347383. URL http://doi.acm.org/10.1145/1347375.1347383.

Oleg Sokolsky, Usa Sammapun, Insup Lee, and Jesung Kim. Run-time checking of dynamic

properties. Electron. Notes Theor. Comput. Sci., 144(4):91–108, May 2006. ISSN 1571-

0661. doi: 10.1016/j.entcs.2006.02.006. URL http://dx.doi.org/10.1016/j.entcs.

2006.02.006.

Deepak Souza and Pavithra Prabhakar. On the expressiveness of mtl in the pointwise and

continuous semantics. Int. J. Softw. Tools Technol. Transf., 9(1):1–4, February 2007.

ISSN 1433-2779. doi: 10.1007/s10009-005-0214-9. URL http://dx.doi.org/10.1007/

s10009-005-0214-9.

John A. Stankovic. Misconceptions about real-time computing. IEEE Computer, 21(10):

10–19, 1988. doi: 10.1109/2.7053. URL https://doi.org/10.1109/2.7053.

Karl Johan Åström and Tore Hägglund. Advanced PID Control. ISA - The Instrumenta-

tion, Systems and Automation Society, 2006. ISBN 978-1-55617-942-6.

http://dx.doi.org/10.1007/3-540-45699-6_9
http://dl.acm.org/citation.cfm?id=1785141.1785158
http://dl.acm.org/citation.cfm?id=1785141.1785158
http://dx.doi.org/10.1109/2.204684
https://doi.org/10.1109/REAL.2003.1253249
http://doi.acm.org/10.1145/1347375.1347383
http://dx.doi.org/10.1016/j.entcs.2006.02.006
http://dx.doi.org/10.1016/j.entcs.2006.02.006
http://dx.doi.org/10.1007/s10009-005-0214-9
http://dx.doi.org/10.1007/s10009-005-0214-9
https://doi.org/10.1109/2.7053

BIBLIOGRAPHY 144

Alfred Tarski. Introduction to Logic and to the Methodology of Deductive Sciences. Dover

Books on Mathematics Series. Dover Publications, 1995. ISBN 9780486284620.

The OCaml Development Team. Ocaml programming language, 2013. URL http://www.

ocaml.org.

Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Usable verification

of object-oriented programs by combining static and dynamic techniques. In Software

Engineering and Formal Methods - 9th International Conference, SEFM 2011, Montev-

ideo, Uruguay, November 14-18, 2011. Proceedings, pages 382–398, 2011. doi: 10.1007/

978-3-642-24690-6 26. URL https://doi.org/10.1007/978-3-642-24690-6_26.

Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime checking

for program verification. In Proceedings of the 7th international conference on

Runtime verification, RV’07, pages 202–213, Berlin, Heidelberg, 2007. Springer-Verlag.

ISBN 3-540-77394-0, 978-3-540-77394-8. URL http://dl.acm.org/citation.cfm?id=

1785141.1785161.

Haitao Zhu, Matthew B. Dwyer, and Steve Goddard. Predictable runtime monitoring. In

21st Euromicro Conference on Real-Time Systems, ECRTS 2009, Dublin, Ireland, July

1-3, 2009, pages 173–183, 2009. doi: 10.1109/ECRTS.2009.23. URL https://doi.org/

10.1109/ECRTS.2009.23.

Haitao Zhu, Steve Goddard, and Matthew B. Dwyer. Selecting server parameters for

predictable runtime monitoring. In 16th IEEE Real-Time and Embedded Technology

and Applications Symposium, RTAS 2010, Stockholm, Sweden, April 12-15, 2010, pages

227–236, 2010. doi: 10.1109/RTAS.2010.18. URL https://doi.org/10.1109/RTAS.

2010.18.

http://www.ocaml.org
http://www.ocaml.org
https://doi.org/10.1007/978-3-642-24690-6_26
http://dl.acm.org/citation.cfm?id=1785141.1785161
http://dl.acm.org/citation.cfm?id=1785141.1785161
https://doi.org/10.1109/ECRTS.2009.23
https://doi.org/10.1109/ECRTS.2009.23
https://doi.org/10.1109/RTAS.2010.18
https://doi.org/10.1109/RTAS.2010.18

	Página 1
	Página 2
	Página 3
	Página 4
	thesis (1).pdf
	Abstract
	Resumo
	Acknowledgements
	Introduction
	Problem Statement
	Summary of Research Contribution
	Overview of Thesis

	Background and Related Work
	Real-Time Systems
	Periodic Resource Models

	Languages and Logics
	Metric temporal logic with durations (MTL-)
	first order logic of real numbers (FOLR)
	Lambda expressions (-expressions)
	Related Work

	Runtime Verification
	Runtime Monitoring of RTS
	Related Work

	Summary

	RV with RMTL-
	The specification Language RMTL-
	Three-valued Extension of RMTL-
	Polynomial Inequality Translation
	Simplification Algorithm
	Functional Correctness

	SMT Synthesis for RMTL-3 Formulae
	Computation of RMTL-3 Formulae
	Summary

	RV-RMTL- Framework
	Components
	Formal Specification of Periodic Resources
	Extension for dependent tasks

	Safe Components and Monitors
	DSL for components
	Timing guarantees by hierarchy of monitors
	Summary

	Evaluation
	Application of DSL for offline schedulability analysis
	Two settings for schedulability analysis
	Experimental results

	Lightweight Autopilot Systems: the case study
	Use cases with RMTL-3.
	Experimental Results

	Summary

	Conclusion and Future Work
	Future work

	RV with RMTL-3 for C++11
	RV Monitoring Model

	rmtld3synth tool User's Guide
	RTMLib
	Usage of RTMLib
	Instantiating buffers
	Developing a simple Monitor

	Inequality Translation Correctness Proofs
	Soundness proofs for axioms
	Application Examples

	Bibliography
	Página em branco
	Página em branco
	Página em branco

