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Resumo 

A mudança incomum na rotina diária ao nível da mobilidade de um idoso em sua casa, 

pode ser um sinal ou sintoma precoce para a possibilidade de vir a desenvolver um problema 

de saúde. O recurso a diferentes sensores pode ser um meio para complementar os sistemas 

de cuidados de saúde tradicionais, de forma a obter uma visão mais detalhada da mobilidade 

diária do individuo em sua casa, enquanto realiza as suas tarefas diárias. 

Acreditamos, que os dados recolhidos a partir de sensores de baixo custo, como 

sensores de presença e ocupação, podem ser utilizados para fornecer evidências sobre os 

hábitos diários de mobilidade dos idosos que vivem sozinhos em casa e detetar desta forma 

mudanças nas suas rotinas. Neste trabalho, validamos esta hipótese, desenvolvendo um 

sistema que aprende automaticamente as transições diárias entre divisões da habitação e 

hábitos de estadia em cada uma dessas divisões em cada momento do dia e consequentemente 

gera alarmes sempre que os desvios são detetados. 

Apresentamos neste trabalho um algoritmo que processa os fluxos de dados dos 

diferentes sensores e identifica características que descrevem a rotina diária de mobilidade de 

um idoso que vive sozinho em casa. Para isso foi definido um conjunto de dimensões baseadas 

nos dados extraídos dos sensores, como parte do nosso Behaviour Monitoring System (BMS). 

Fomos capazes de detetar com um atraso mínimo os comportamentos incomuns e ao mesmo 

tempo, durações de confirmação da deteção elevadas, de tal modo suficientes para um 

conjunto comum de situações anormais. 

Apresentamos e avaliamos o BMS com dados sintetizados, produzidos por um gerador 

de dados desenvolvido para este efeito e projetado para simular diferentes perfis de 

mobilidade de indivíduos em casa, e também com dados reais obtidos de trabalhos de 

investigação anteriores. Os resultados indicam que o BMS deteta várias mudanças de 



 

x 

mobilidade que podem ser sintomas para problemas de saúde comuns. O sistema proposto é 

uma abordagem útil para a aprendizagem dos hábitos de mobilidade em ambientes 

domésticos, com potencial para detetar alterações comportamentais que ocorrem devido a 

problemas de saúde, e assim encorajar a monitorização dos comportamentos e dos cuidados 

de saúde dos idosos.
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Abstract 

Unusual changes in the regular daily mobility routine of an elderly at home can be an 

indicator or early symptoms for developing a health problem. Sensor technology can be 

utilised to complement the traditional healthcare systems to gain a more detailed view of the 

daily mobility of a person at home when performing everyday tasks. We hypothesise that data 

collected from low-cost sensors such as presence and occupancy sensors can be analysed to 

provide insights on the daily mobility habits of the elderly living alone at home and to detect 

routine changes. We validate this hypothesis by designing a system that automatically learns 

the daily room-to-room transitions and stays habits in each room at each time of the day and 

generates alarm notifications when deviations are detected. 

We present an algorithm to process the sensor data streams and compute features that 

describe the daily mobility routine of an elderly living alone at home. This was done by 

defining a set of sensor-driven dimensions extracted from the sensor data as part of our 

Behaviour Monitoring System (BMS). We are able to achieve low detection delay with 

confirmation time that is high enough to convey the detection of a set of common abnormal 

situations. 

We illustrate and evaluate BMS with synthetic data, generated by a developed data 

generator that was designed to mimic different users’ mobility profiles at home, and also with 

real-life dataset collected from prior research work. Results indicate BMS detects several 

mobility changes that can be symptoms of common health problems. The proposed system is 

a useful approach for learning the mobility habits at home environments, with the potential to 

detect behaviour changes that occur due to health problems, and therefore, motivating 

progress toward behaviour monitoring and elder’s care.
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 Introduction 

The world’s ageing population is growing rapidly. In Europe alone, the number of 

adults age 65 and older is expected to increase from 17.1% to 30% by the year 2060 [1] while 

in the United State the number will double in the next 20 years [2]. This trend has tremendous 

implications on nearly all sectors of society, including healthcare and medical services. As 

the populations become increasingly aged, healthcare costs are expected to increase putting 

more pressure on the families and governments. Medical and social studies show that the 

majority of the elderly people prefer to live independently in their own homes, in spite of their 

health conditions [2][3], which makes them more vulnerable to unsafe situations such as falls 

or unsafe movements. Solutions to this problem currently take great advantage of the advent 

of modern communications and electronic advances, particularly the advancement in sensing 

and smart home technologies, to enable the monitoring of the Activity of Daily Living (ADLs) 

such as sleeping, walking, showering, dressing, taking medicine, cooking, functional 

mobility, etc. This allows the healthcare providers to continuously monitor the functional 

status of the elderly, increase their ability to live independently and allow for early detection 

of diseases [4]. 

Older adults usually exhibit high regularities in their daily life routines. They tend to 

follow specific patterns when performing their daily activities at home. This includes their 

daily room-to-room transitions and stays habits in each room or place at home. Long-term 

history logs of this information unveil valuable knowledge about their daily mobility patterns. 

If uncovered, these patterns can be utilised to model their daily mobility behaviour and then 

identify any significant shift or unusual mobility habit that does not conform to a normal 

routine and may be an early symptom of a health problem [2][4]. For instance, a change in a 
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person’s sleeping habits (e.g. prolonged or less sleeping time) can be a symptom of anxiety, 

depression or early indication for developing Alzheimer’s disease. 

In this research work, we are interested in detecting unusual changes in the regular 

mobility behaviour of the independently living older adults by monitoring their daily 

navigations between rooms at home. In this thesis, we describe how we approach this goal by 

designing a system that automatically learns the daily room-to-room transitions and stays 

habits in each room at each time of the day and generates alarm notifications when deviations 

are detected. We hypothesise that the relationship between the changes in behaviour can be 

observed using data collected from smart home sensors. Hence, our system uses Passive 

Infrared (PIR) motion sensors as primary input to track the mobility of the monitored person 

and also is designed to be agnostic of the users’ daily mobility profiles. No explicit annotation 

or laborious labelling is required to manually configure the mobility profile of the monitored 

person or to train the underlying behavioural model. We validate the developed system on 

synthetic data as well as on real-life data that represents the daily behaviour of an elderly 

person living alone at home. 

1.1. Motivation 

Many elderlies nowadays live independently in their own homes and for whom 

frequent accidents that may occur and require medical attention are often detected too late. 

For instance, in Portugal during winter 2011 the social media reported some cases of elderly 

people found dead in their homes several weeks after passing away. These cases raised large 

social awareness for the effect of such dangerous events and also directed the community’s 

attention to the importance of monitoring the elderly at their homes to detect those kinds of 

abnormal situations and provide timely responses. The solution, importantly, should take into 

account the elderly’s preferences and requirements and also should respect the existing 

settings that they have at home with no extra effort or expenses to ensure the adoption of the 

solution among a large sector of people. 
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1.2. Problem Statement 

The problem of detecting unusual changes in the daily behaviour of an elderly person 

who lives independently at home has been investigated widely in the literature [5]. Solutions 

typically are sensor-based systems that require the use of wearable and non-wearable sensors 

to track the daily behaviours and provide responses when deviations are detected. These 

solutions usually require the intervention of the resident user, for instance, by pushing a button 

on a pendant or on a wrist watch, or by monitoring the resident using camera-based sensors 

installed at different locations at home. However, prior research studies [6] show that 

wearable and camera-based sensors are not very appreciated by the elderly people due to 

inconvenience, computational complexity, and privacy issues. The elderly might not feel 

comfortable wearing sensors all the time and may forget to wear them on some occasions, or 

may feel losing their privacy when monitored by cameras at home. This reduces the usefulness 

of these sensors for continuous behaviour monitoring. Even though some recent research 

studies include the sensors into the people clothes [7] or utilise the capability of smart watches 

[8] for behaviour monitoring, these works are still limited and not affordable for everyone, 

besides the limitations of the sensors’ battery energy. Moreover, most of the existing systems 

entail an explicit annotation or labelling process to be made offline in order to manually 

configure the typical behaviour of the monitored persons before use, which increases the 

required installation time of these systems and prevents them from being adaptive to small 

shifts in behaviour that do not necessarily should be considered unusual behaviour (e.g. 

seasonal changes). 

In this research, we aim at reducing the required user intervention in the monitoring 

system by relying only on sensors that can be included in the surrounding home environment 

and do not require too much attention. Therefore, our system uses Passive Infrared (PIR) 

motion sensors as primary input to track the mobility of the monitored person. PIR sensors 

are relatively cheap, easy to install and maintain, nonintrusive and are aligned with the privacy 

requirement of the elders and also are increasingly being adopted and installed in many 

buildings and houses for security and intrusion detection. Thus, our system will be readily 

installed at low cost and effort and also will not require personal data to be transmitted to 

external or cloud-based servers; the data will be processed locally at home, respecting the 

privacy requirement of the elders. Furthermore, it will avoid any kind of labelling or explicit 

annotation to pre-configure the users’ mobility profiles. The system is capable of learning the 
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daily mobility behaviour automatically from sensor observations and detect anomalous 

behaviours in quasi-real time, in contrast to most of the existing approaches in which the 

anomaly detection is provided on a daily basis. 

1.3. Objectives 

The main objectives of our research work can be articulated as follows: 

 To further study the problem of behavioural modelling and anomaly detection 

in the Ambient Assisted Living (AAL) domain. 

 To define a comprehensive framework that uses sensor observations obtained 

from low-cost sensors (e.g. Passive Infrared (PIR) motion sensors) to learn and 

understand the daily behaviour patterns of an elderly person living alone at 

home using the location context history. 

 To identify a set of abnormal or unusual behaviours that may happen to the 

elderly and have a high correlation with the deviations in the daily mobility 

routine at home. 

 To detect and recognise the basic activities that lead to the previously defined 

unusual behaviours (e.g. abnormal movement transitions, the absence of 

movement inside the house for a certain threshold time period, and leaving or 

entering the house at an unusual time). 

 To detect diseases symptoms at early stages and help healthcare professionals 

in the long-term diagnosis of some of the mobility-related diseases such as 

anxiety, depression or early stage of Alzheimer’s disease. 

 To reduce the number of false alerts generated by the monitoring system to the 

minimum and provide detection of abnormal situations in the least delay near 

to quasi-real time. 

 To identify suitable performance metrics to evaluate the developed monitoring 

system. 

 To define an evaluation methodology to validate the viability of the proposed 

system through realistic use cases and usage scenarios. 



Chapter 1 – Introduction 

 5 

1.4. Method 

The research method that we followed can be described as follows: 

 First, we started by performing a research study to identify the requirements 

and metrics for indoor location and tracking for Ambient Assisted Living 

(AAL). The study was conducted on the most common techniques and 

technologies for indoor localisation and their suitability for in-house 

monitoring of older adults. The results were published in [9]. 

 We studied the available technologies for sensors communication inside the 

home in preparation for the real deployment of the monitoring system. 

 We conducted an empirical experiment to evaluate the use of ZigBee 

technology for indoor localisation and collected results to estimate how good 

this technology is for tracking the mobility behaviour of the monitored 

persons. The results are included in Chapter 3. 

 We performed a review study on the recent literature on the topic of human 

behaviour modelling, exploring most of the current approaches for modelling 

human behaviour from sensor data streams. 

 We identified and designed the layout of the behaviour learning algorithm and 

the complete system’s architecture. 

 We developed the system as well as a data generator to produce synthetic data 

that simulates the typical daily behaviour of an elderly person living alone at 

home. The data generator was designed to generate data for users with different 

daily mobility profiles to ensure the diversity and realism of the generated data. 

The details of the developed data generator are provided in Appendix A. 

 We then identified a set of abnormal behaviours and their relationship with 

some of the most common health declines that may happen to older people at 

home. 

 We developed the anomaly detection module of the system and adapted its 

parameters experimentally before validating the whole system using the 

synthetic data and also real-life data collected from well-known smart home 

projects for activity recognition. 
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1.5. Contributions 

The major contributions of this thesis include: 

 The introduction of a system’s architecture for in-house monitoring that 

utilises Passive Infrared (PIR) motion sensors to track the mobility of the older 

people at home environments. 

 The development of an algorithm that automatically maps the raw sensors data 

of the monitoring system into meaningful movement patterns that describe the 

daily mobility behaviour of the monitored elderly person. 

 The algorithm is designed as part of the learning module in the system to 

extract relevant dimensions from the raw sensors data using an unsupervised 

method with no prior knowledge or explicit data labelling that describes the 

typical daily mobility profile of the monitored elderly person (i.e. agnostic of 

the user’s daily mobility profile). 

 The algorithm uses a time-based sliding window to interpret and process the 

sensory data streams and can adjust its internal behaviour model in real time 

as new observations become available, achieving the goal of providing online 

learning method. 

 The algorithm also can adapt its internal model to slight shifts in behaviour 

such as seasonal changes and to different people having very different daily 

behaviours, such as someone usually sleeping all morning or staying outside 

the house during the nights (e.g. sleeping at relatives’ home). 

 The developed system uses location context information (room-to-room 

transitions and stays habits) to build the underlying behavioural model. This 

gives the system the ability to be agnostic of the type of sensors used to acquire 

the location knowledge of the monitored person. 

 The system provides abnormal alarm notifications in quasi-real time, in 

contrast to most of the existing behaviour models, and also reduces the rate of 

wrong detection and false alert notifications. 

 We developed a data generator to simulate the mobility behaviour of the 

elderly people at home with an ability to generate different user mobility 

profiles and also to inject artificial anomalous behaviours. 
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 We designed and performed an evaluation method on synthetic data and real-

life dataset and compared the obtained results with some approaches from the 

state-of-the-art. 

1.6. The Structure of the thesis 

The remainder of this thesis is organised as follows: 

 Chapter 2: Behaviour Monitoring for Ambient Assisted Living: This 

chapter gives a background on the subject of the thesis. It provides an overview 

on the topic of human behaviour monitoring at home environments and 

introduces the most common techniques and technologies used for human 

behaviour monitoring. Moreover, it presents the most common approaches for 

modelling human behaviour from sensor data as well as detecting behavioural 

changes. We conclude the chapter by presenting a list of challenges and issues 

associated with the development of human behaviour monitoring systems for 

AAL and elders’ care. 

 Chapter 3: Indoor Location for Ambient Assisted Living: In this chapter, 

we present the results and description of a prototype experiment that we 

performed to evaluate the use of ZigBee technology for indoor localisation. 

We also present the results of a review study that we performed to identify the 

requirements and metrics for indoor location and tracking for Ambient 

Assisted Living.  

 Chapter 4: Behaviour Monitoring System (BMS): In this chapter, we 

describe the developed Behaviour Monitoring System (BMS). The description 

includes the overall architecture of the system, the defined modules, and a 

presentation of the behaviour modelling method. 

 Chapter 5: Validation Approach: An approach to validate the developed 

Behaviour Monitoring System (BMS) is presented in this chapter. It includes 

the description of the datasets used in the experiments and the definition of the 

performance metrics used to evaluate the system. We also present the 

description of the types of abnormal behaviours that we are targeting in this 

research work. 
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 Chapter 6: results and discussion: In this chapter, we present the obtained 

results of the performed experiments and give thorough discussions on them. 

The results are presented with respect to the defined performance metrics 

(Chapter 5) and the system’s modules. 

 Chapter 7: Conclusion: This chapter concludes the thesis. It gives an overall 

summary of the thesis as well as its limitations and possible directions for 

future research. 

 Appendices: The appendices include the descriptions of the developed 

Behaviour Monitoring System (BMS) and the Synthetic Data Generator as 

well as an extended presentation of the obtained results.
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 Behaviour Monitoring for Ambient 

Assisted Living 

Behaviour monitoring for Ambient Assisted Living (AAL) is an active research area 

with wide range of techniques and technologies currently being investigated. Monitoring 

human behaviour is not a trivial task. In fact, there is no single approach that claims to cover 

all aspects of human behaviour monitoring. However, with the recent advent of sensing and 

communication technologies, many innovative approaches have emerged and quite promising 

results have been achieved. In this chapter, a brief description on the topic of human behaviour 

monitoring is given, with more focus on technologies used for behaviour monitoring for 

Ambient Assisted Living (AAL) in smart home environments. 

2.1. Monitoring Activities of Daily Livings (ADLs) 

An important concept in Ambient Assisted Living (AAL) is the monitoring of the 

Activities of Daily Living (ADLs) [4]. Most of the existing AAL systems for elders’ care 

exploit the activity that is being performed by the elderly at home as a means for inferring or 

assessing the functional health status of the elderly. An elderly remains in a good health as 

long as he carries on his activities as usual with no significate deviations from the normal 

daily routine. The ADLs at home environment can be categorised into two main categories: 

basic ADLs (e.g. personal hygiene, bathing, feeding, dressing, and functional mobility) and 

instrumented ADLs (e.g. cooking and housework) [5]. ADLs monitoring of older adults 

allows healthcare providers to continuously monitor the functional status of the elderly, 

increases their ability to live independently, and allows for early detection of diseases such as 
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Alzheimer’s [10][11], dementia [12][13][14] and urinary tract infection [15]. ADLs also can 

be used to learn daily behaviour patterns such as sleeping habits [16] or daily movement 

patterns [17]. 

However, monitoring ADLs at home environments faces many challenges that need 

to be considered. Issues related to the types of sensors used for capturing the ADLs and the 

data processing and algorithms used for ADLs classification and recognition as well as the 

people’s preferences and privacy concerns are some of these challenges. In section 2.4 we 

discuss the challenges in more detail. 

2.1.1. Sensing Technologies 

In general, there are two main categories of sensors used for human behaviour 

monitoring: wearable and non-wearable sensors. Wearable sensors are usually attached to the 

human body or clothes whereas non-wearable sensors are usually embedded into the 

surrounding home environment [4]. The two kinds of sensors have been used extensively in 

various systems for behaviour monitoring and remote healthcare assisted living [18][19][20]. 

2.1.1.1. Wearable sensors 

Wearable sensors used for activity recognition and ADLs classification vary 

depending on the nature of the required application. As mentioned, they are usually attached 

to the human body or clothes or can be part of or make use of devices that people usually 

carry with them, such as wristwatches or cell phones. However, accelerometers are the most 

commonly used wearable sensors with a variety of applications and usage scenarios. 

Accelerometers are used to identify the location of a person and differentiate motions (e.g. 

running, walking, walk upstairs, cycling, etc.) [21] or to detect falls using acceleration data 

from wristwatches [22] or to classify posture of a person by monitoring the tilt of certain parts 

of the body using the acceleration due to gravity [5]. Moreover, accelerometers are combined 

with gyroscopes to obtained orientation information [23] and also with tilt switches in a wrist-

worn unit sensor [24] to capture the user’s behaviour rhythms in day-to-day activities as a 

way to improve long-term activity recognition. Figure 2-1 shows examples of wearable 

accelerometers. 
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Figure 2-1: Wearable Accelerometers [25] 

Smartphones are also considered wearable sensors. They are equipped with multiple 

kinds of sensors that provide a wealth of information for different applications (e.g. global 

positioning system (GPS), cameras, microphones, light, temperature, magnetic compasses, 

gyroscopes, and accelerometers). In [26], a framework that exploits the rich contextual 

information from smartphones (e.g. location, time, apps, call logs, and internal state) is 

presented. The framework uses the data collected from smartphone sensors to predict our next 

destination and which app we will be using in the next ten minutes. In [27], cell phone 

accelerometers are used for recognising activities such as walking, running, and jogging. 

Other kinds of wearable sensors also have been used for ADLs monitoring such as 

magnetic sensors [28] for monitoring activities and use of portable devices, RFID sensors for 

detecting interactions with objects in smart homes and recognizing activities like cooking, 

washing dishes [29], teeth brushing and watching TV [30], and inertial sensors [31] for 

providing assessment of patient progress after an injury or stroke in ecological rehabilitation 

environments. 

Wearable sensors are also used to monitor clinical measurements or vital signs, such 

as pulse rate, body humidity and temperature, respiration rate, and blood pressure, which 

indicate the state of a patient’s essential body functions. These measurements allow a much 

more in-depth evaluation on the person’s behaviours. For example, the detection of the heart 

rate and the use of Electromyography (EMG) sensors can be indicators for the overall activity 

level and physical fitness of the body and also can be used for the classification of the 

performed activities (e.g. in fitness applications). Moreover, monitoring changes in vital signs 

also can lead to early detection of health-related issues and, as a result, minimise the health-

related risks and discover diseases earlier [32]. Sensors that embedded into human clothes 
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also have emerged lately for monitoring vital signs, and many applications are being 

developed that facilitate the diagnosis of some diseases using these sensors [7]. 

However, the power consumption requirement and the convenience of constantly 

wearing wearable sensors are the major challenges that face the use of these sensors for long-

term human behaviour monitoring. 

2.1.1.2. Non-wearable sensors 

Non-wearable sensors also are being used for ADLs monitoring [33][34][35]. Infrared 

(IR) sensors are the most commonly used non-wearable sensors. They are used for detecting 

presence, motion or locating people at home. Passive Infrared (PIR) sensors detect infrared 

radiation that is emitted by objects in their field of view [25], as shown in  Figure 2-2. In [14], 

PIR sensors were used for managing dementia and depression diseases. The collected data 

from PIR sensors were used for the early detection of changes in activity level which was 

used to reduce the advancements of these diseases and lead to early interventions. 

 

Figure 2-2: PIR Infrared Sensor [25] 

Other non-wearable sensors are also being used for ADLs monitoring such as 

Ultrasonic sensors [36], pressure sensors [37], vibration sensors [38], video-based sensors, 

low-resolution thermal sensors [39], wattmeter sensors [40], water flow sensors [41], 

magnetic door switches [42] , and audio or sound sensors [43]. 

Table 2-1 presents a comparison on some of the properties of sensing technologies 

used for ADLs monitoring. 
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Table 2-1: Sensing Technologies - Properties Comparison 

Property PIR Camera Smartphone Smartwatch 

Location detection Low High High High 

Presence detection Medium High High High 

Tracking Single user Multi-users Multi-users Multi-users 

Resolution Single bit (on/off) High High High 

Cost Low High High High 

Privacy Concern Low High Low Low 

Battery life High NA Medium Low 

Require data Processing Medium High High High 

Localization accuracy Low (Room-level) High High High 

2.1.2. Activity Classification 

The existing studies towards the goal of human behaviour monitoring typically focus 

on the recognition of activities of daily living (ADLs) [44][45]. Various machine learning 

algorithms, signal processing techniques and statistical (heuristic) approaches have been used. 

The main steps that involved in this process are shown in Figure 2-3. In this section, we are 

more concerned about the activity classification step. 

 
Figure 2-3: Steps for Activity Classification (adapted from [44]) 

Many data mining and machine learning algorithms are used for ADLs classification: 

Support Vector Machines (SVM) [46][47], random forest [48], decision trees [28], fuzzy logic 

[49], Bayesian methods [50], and neural networks [47]. However, most of these classical 

machine learning algorithms assume that the input data for the classification step is 

independent and identically distributed (IID). This assumption does not hold in the case of 

human behaviour modelling and recognition, what a person is doing at the moment is not 

independent of what he was doing just before. Hence, more advanced models are required to 

handle the case when IID does not hold. In [4], two main categories that consider the 

dependency assumption are defined: generative approaches (e.g. Hidden Markov Model 

(HMM) [51]) and discriminative approaches (e.g. Conditional Random Field (CRF) [22]). 

Many algorithms from these two categories have been used widely and successfully in many 

Pre-processing Segmentation  Classification Features Extraction Input sensor 

data 

Output 
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behaviour modelling and ADLs classification applications. However, a previous intensive 

supervised training stage is required to estimate their models, which in turns may lead to 

human bias when labelling and annotating the activities. 

Statistical (heuristic) approaches are also being used for human behaviour monitoring 

[33][52]. A system that examines the activity rhythms at home using a statistical predictive 

algorithm is presented in [33] to evaluate the behaviour of a resident individual while 

performing the daily activity routine. In some cases, simple statistics (heuristics) measures 

are used as features for a second-level activity classification algorithm, as implemented in 

[53], where heuristic measures like means and variances were used as features for neural 

network models to detect and classify motion activities. 

2.2. Monitoring Location Context 

The location of a person is essential for measuring the activity and assessing the 

overall behaviour of the person. The location includes both indoor and outdoor locations. In 

this section, we present some of the prior research works that used the location context for 

human behaviour monitoring. 

2.2.1. Indoor location 

The indoor location of a person at home gives useful information that can be used to 

build behavioural models for their everyday life. The movements of people inside the home 

correlate to their daily physical activities and performance of the activities of daily living. For 

example, frequent visits to the bathroom at night during sleeping time can be an indicator for 

significant sleep disorder or nocturia disease and may be a sign of developing urinary tract 

infections disease [54]. These kinds of unusual sleep disorder can be detected by a localisation 

system that continuously monitors the location of a person at home. In [15], an integrated 

sensors network of Passive Infrared (PIR) motion sensors, bed and chair sensors, was used in 

apartments of volunteer residents at an ageing in place retirement community. The sensors 

were used for detecting pulse, respiration rate and bed restlessness which, in turn, were used 

for detecting urinary tract infections. PIR motion sensors also were used in [55] to determine 

the location of an older adult in a smart home environment and to infer the Activities of Daily 

Living (ADLs) such as sleeping, preparing meals, going out, toileting, and brushing. In [56], 
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a Ultra-Wide-Band (UWB) location system (UBISENSE) was used for monitoring the elderly 

people suffering from dementia. The system relied on small tags to provides accurate indoor 

localisation. In [57], an ultrasonic indoor location tracking system also was used for enabling 

location-aware pervasive services to monitor the older adults at home. 

In the following chapter (section 3.2), we present an evaluation study that we 

conducted to review the current techniques and technologies for indoor localisation. 

2.2.2. Outdoor Location 

The outdoor mobility of the elderly is also important for evaluating their quality of life 

when going outside. Elderlies who have physical mobility limitations tend to have a lower 

quality of life and involvement in social communities [58]. In [59], a disorientation detection 

method that detects outliers in a person GPS mobility trajectories is presented. A survey for 

mining GPS data for mobility patterns is presented in [60]. 

In this thesis, we mainly focus on behaviour monitoring at the home environment, and 

therefore, we will not dive further into behaviour monitoring using outdoor location. We do, 

however, consider in the modelling of daily habits the time periods when the persons leave 

their homes. 

2.3. Detection of Abnormal Behaviour 

Abnormal behaviour refers to finding unexpected behaviour that does not conform to 

usual behavioural routine [61]. This topic has been investigated widely and applied in many 

domains and application scenarios. The detection of abnormal human behaviour depends on 

the way of defining the human behaviour. Activity recognition is the main approach for 

detecting abnormal human behaviour [44]. The deviations in the activities of daily living 

(ADLs) are considered the most common way of defining abnormalities in the human 

behaviour. By monitoring the performed daily activities of a person for a certain time, one 

can learn and build a model of normal behaviour and then detect deviations. In [52], an 

abnormal human behaviour was defined as an increase or decrease in the daily physical 

activity, defined as any body movement produced by skeletal muscles that result in energy 

expenditure. The deviation or change in the physical activity level, according to historical 

data, was used as early symptoms of health problems. 
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In general, the abnormalities in the human behaviour are mainly related to the 

detection of falls [62][63], inactive periods [64][65], abnormal living patterns [66], long-term 

behaviour changes [32], or abnormal events such as sleeping disorder [67]. 

2.3.1. Detection of abnormal long period of inactivity 

One of the most abnormal behaviour that might happen to the elderly living alone is 

that of an elderly being immobilised or inactive for a long period of time due to falls, and not 

being able to get up and request an assistance. Some of the current solution to this problem 

use camera-based systems or include worn devices where the elderly can push a button to ask 

for a help in the case of emergency. Other works use smart home sensors to continually 

monitor the elderly and generate alarms that indicate the detection of long periods of 

inactivity. In [65], an algorithm was developed to automatically construct individual models 

of normal activity within the home using motion sensor data. The algorithm is based on 

learning the inactivity duration from the motion data over the past weeks and months. It was 

designed to generate alert anytime a new inactivity period occurs which is longer than a 

threshold value that indicates the normal inactivity periods. The system has four configurable 

parameters that determine the size of the alert threshold over daily 48 intervals. The 

algorithm’s parameters have been optimized experimentally to meet the performance 

objective of one or fewer alerts per week with slightly higher rate during the early weeks of 

learning. However, the algorithm requires robust determination of when the senior resident is 

away from home to avoid giving normal inactivity for the period outside home, and therefore, 

it uses different code to model when the senior is away from home. Figure 2-4 shows an 

example of a normal inactivity data learned by the developed algorithm in [65] with the alert 

line showing the threshold for detecting the abnormal inactivity periods. 
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Figure 2-4: Inactivity data with alert line [65] 

This work was further extended in [64] where three statistical and adaptive models 

were designed for detecting abnormal periods of inactivity using data obtained from 

unobtrusive PIR sensors. The authors applied a user-centric approach that addresses the 

requirements and concerns of the elderly users and their caregivers. The developed algorithm 

calculates the inactivity profile of a person on a daily basis and measures the difference with 

predefined inactivity profile so that days with large differences are considered abnormal. The 

algorithm inspects information obtained from the PIR sensors at half-hour interval over 24 

hours and uses percentile information to compute an alert threshold for the acceptable elapsed 

inactivity for these 48 daily intervals. It represents periods of inactivity by considering two 

commonly used distributions: Pareto distribution and hyper-exponential distributions. These 

distributions enabled them to use outlier anomaly detection techniques. In addition, they 

performed an evaluation on two real-life datasets CASAS Smart home (the Aruba) [68] and 

GT4 [64]. 

In both works, the period of inactivity was used as a proxy for detecting abnormal 

behaviour. However, in the two works the inactivity is detected on a daily basis or half-hourly, 

not in real time (high detection delay) and they focus only on one type of anomaly “long 

inactivity”. 

These two works share some similar objectives with us. The use of simple unobtrusive 

sensors (PIR) for learning the human behaviour and detecting abnormal behaviour (inactivity 
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periods in this case), the performance evaluation metrics used to assess their systems as well 

as the dataset used for validation (the Aruba). However, the main distinct difference from our 

work is that the performance of the developed statistical models in these works depends on 

prior assumptions about the data distribution of the inactivity periods (the normal behaviour). 

In [64], the authors showed that the exponential distribution, which is widely used for 

modelling the time between events, is not suitable for modelling periods of inactivity. This is 

because the distribution has a longer tail than exponential distribution. Therefore, they 

investigated the use of Pareto and hyper-exponential distributions. In our model, we do not 

have any prior assumption on the data distributions of the normal movement behaviour of the 

monitored person, and therefore, our model reduces the modelling settings and provides a 

more seamless behaviour learning approach. 

2.4. Challenges and Issues 

Figure 2-5 illustrates a taxonomy for some of the challenges and issues related to the 

development of behaviour monitoring systems for Ambient Assisted Living (AAL). These 

challenges are inspired by prior research studies [4][69][70] and learned while covering the 

state of the art materials. The hierarchy classification categorises the challenges and their sub-

challenges and then in this section, we present their respective descriptions and emphasis on 

the challenges that have been addressed in our system. 
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Figure 2-5: Behaviour Monitoring for AAL - Challenges and Issues 

2.4.1. Elderly Acceptance 

Providing a monitoring service for the elderly poses many challenges. Elderlies, 

especially unhealthy elderlies, have some limitations in performing tasks. Any service 

intended for them should pay more attention to the ease of use requirement, avoiding any 

kinds of complexity or interference that may overwhelm the elderly and reduce their 

autonomy and independence (ethical issues). This is translated into the selection of sensor 

modalities used for measuring and monitoring the behaviour, complexity of the system’s 

settings and assumptions, and service’s transparency and visibility. Social studies [3][71][72] 

give insights on the real requirements of the elderly and caregivers and also provide solid 

foundations to support the development of monitoring services for the elderly and help to 

reduce the lack of confidence in the services. 

2.4.2. Data Collection and Representation 

The characterization and representation of a behaviour are fundamental for the 

behaviour monitoring systems. The clear definition of the required behaviour leads to 

meaningful features extraction and model’s definition and helps to handle behaviours 

variances. The main challenge here is related to the lack of descriptive knowledge and 

standards to define the human behaviour in terms of features, heterogeneous sensor data 
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formats, and modelling approaches. Each of the existing systems for behaviour monitoring 

has their own individual definitions of the behaviour, their own design goals, and modelling 

approaches, which make the evaluation and comparison of these systems more difficult. 

Moreover, performing real-world experiments to validate these systems is really difficult. 

Many studies have been validated using synthetic data only [32], or real data collected for 

short periods of time in very controlled settings. In addition, the anomalous behaviours, in 

general, are rarely to happen and we may need a long time of monitoring to detect cases of 

abnormal behaviours to validate the developed systems. 

2.4.3. Privacy 

The privacy issue is a major concern for human behaviour monitoring. The type of 

sensors used for measuring the behaviour is crucial for the acceptance of the monitoring 

service. The trade-off between the privacy and the quality of monitoring is always existing, 

however, the advancement in sensing technologies may provide some compromises. For 

instance, a monitoring system based on camera sensors is not much appreciated, but currently, 

we have seen considerable advancement in this trend (e.g. the use of low-resolution cameras 

or images) which may help to reduce the privacy concerns. 

Moreover, the right to access the collected data from the monitoring system is also 

important to decide the authorised recipients of the monitoring data as well as the allowed 

data granularity for the recipients. 

2.4.4. Cost 

The costs of the sensing technologies used for measuring the human behaviour, their 

installation, calibration, maintenance, and updates costs have to hit the lowest prices to ensure 

the wide adoption and deployment of the behaviour monitoring systems among a larger sector 

of people. 

2.4.5. Service Quality 

The quality of the human behaviour monitoring service is represented in terms of its 

accuracy, robustness, adaptability, and scalability. The accuracy of detecting and 

differentiating the behaviour, despite the complexity of the monitored behaviours and the 

different ways of performing the same behaviour, is still a challenge for many behaviour 
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monitoring systems. Moreover, the adaptability of changing behaviour over time as well as 

the robustness of the monitoring service with respect to context changes (e.g. handling 

visitors, caregiver visits and pets’ existence at home while monitoring the elderly). The 

scalability of the monitoring service to cover large sector of people is also criteria to evaluate 

the quality of the service.
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 Indoor Location for Ambient Assisted 

Living  

There is a wide variety of approaches available that exploit indoor location as a 

measure for human behaviour monitoring in Ambient Assisted Living (AAL). The location 

of a person together with the time of the day, for instance, can be an indicator of the activity 

being performed by a person, and therefore can be used to monitor his daily behaviour and 

routine. In this chapter, we present, briefly, the description of a prototype study that we 

performed to evaluate the use of ZigBee technology for indoor localisation. The prototype 

was designed as an initial step towards the real deployment of the proposed behaviour 

monitoring system. The location context is a fundamental element of the system, and 

therefore, this prototype study plays an important role to identify the main challenges that 

face the deployment of the proposed system in real-life settings. In this chapter, we briefly 

describe the prototype, the ZigBee hardware components, the developed software for ZigBee 

modules, the developed indoor location system, and the obtained localisation results. This is 

followed by a summary of a review study that we conducted to identify the real requirements 

and metrics for location and tracking for AAL. We combined our findings from the prototype 

and the review study to emphasis on the wide gap among the real requirements of AAL 

applications and the capabilities of the existing indoor location technologies. The results of 

the review study were published in [9]. 
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3.1. ZigBee Prototype 

ZigBee technology is being used widely as one of the promising technologies that 

support Ambient Assisted Living (AAL) at home environment. In this section, we present the 

description of the prototype study that we performed to evaluate the use of ZigBee technology 

for indoor localisation and the obtained localisation results. 

3.1.1. Prototype Description 

A ZigBee network that consists of multiple ZigBee devices was designed and 

deployed in a home-like building to tracked the indoor location of a single person who usually 

navigates between the rooms in the building. The layout of the testbed environment is shown 

in Figure 3-1. All of the prototype’s experiments were carried out on the 1st Floor of CCG 

building at the University of Minho, Portugal. The building consists of multiple rooms and 

places, as shown in the figure. 

 

Figure 3-1:Experiment testbed 

The general localisation principle of the ZigBee prototype is based on the 

fingerprinting approach [73]; a location technique that relies on measuring the wireless signal 

strength level of the ZigBee network at predefined locations and storing this information in a 

database as an offline radio map for the positioning area (i.e. the building). This map is used 

later on during an online phase to locate the persons in real time. Thus, the localisation method 

of the prototype consists of two main phases: calibration (or training) phase and testing (or 

positioning) phase. 
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3.1.2. Hardware Configuration Profiles 

The prototype was developed based on CC2530 ZigBee System-On-chip 

Development kits from Texas Instruments, as shown in Figure 3-2. 

 

Figure 3-2: CC2530 ZigBee Evaluation Module 

The developed System-On-Chip of the ZigBee evaluation module has three different 

configuration profiles: coordinator, router, and end node device. Figure 3-3 illustrates the 

program flow, functionality and interactions of these configuration profiles. 
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 Coordinators: The coordinator is the master communication node of the ZigBee 

network. It receives unicast messages from ZigBee routers and transfers this 

information to the indoor location software running on a PC computer. 

 Router: The router measures the Received Signal Strength Indicator (RSSI) and then 

forwards the received messages to the coordinator together with the measured RSSI 

value. 

 End node: This profile represents the tracked person. It sends periodic broadcast 

messages to all nearby routers. 

3.1.3. Indoor Localisation Method 

To perform the localisation, we configured one module as ZigBee end node device to 

represent the tracked person during the prototype. This device was periodically sending 

broadcast messages to three ZigBee routers. The routers were configured and mounted at 

known places in the building to represent the location references. By exchanging messages 

between the ZigBee routers and the ZigBee end node device, the Received Signal Strength 

Indicator (RSSI) values near the ZigBee end node device were measured and transferred to 

the network coordinator node (ZigBee Coordinator). Then the coordinator transferred the 
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received data to an indoor location software, running on a PC computer, to perform the 

localisation. As mentioned, the fingerprinting localisation is performed in two phases. 

3.1.3.1. Calibration Phase 

In the calibration phase, we built a positioning radio map (fingerprints) for the testbed 

building by defining first a set of calibration points as reference points. At each point, we 

estimated the signal strength level of the ZigBee network. The locations of the defined 

calibration points are denoted by BLACK rectangles on the testbed layout, as shown in Figure 

3-1. The ZigBee end node device was mounted on a calibration car with a height of 1.0 meter. 

Using the calibration car, we moved to each calibration point and recorded the RSSI values 

from the ZigBee routers in range and stored this information in a database together with the 

corresponding names of the rooms in which the points were defined. This step constructed 

the offline positioning radio map for the testbed building. 

3.1.3.2. Testing Phase 

In the online testing phase, we measured the RSSI values at several testing points that 

were randomly distributed. The locations of the testing points are denoted by dark orange 

rectangles in the testbed layout, as shown in Figure 3-1. At each point, the current collected 

RSSI values were compared against the stored fingerprints values in the offline radio map and 

the best match (nearest point) was selected as the estimated location of the tracked end node 

device. The prototype uses the Euclidean distance algorithm to calculate the distances 

between the testing points and the fingerprints. The tracked end node device was located at 

room-level granularity and the room’s name, where the device was located, was provided as 

final output. 

3.1.4. Experiments and Results 

Table 3-1 presents the experiments settings of the prototype and Table 3-2 presents 

the obtained localisation results. We performed three experiments with three different 

sampling times at each testing point (5, 2, 1 minutes). The sampling time here represents the 

time interval between the broadcast messages sent by the ZigBee end node. In the three 

experiments, we obtained 80%, 50%, and 60% correct results, respectively. The results show 

that the localisation capability of ZigBee network still needs more improvement, especially 

when it is used for AAL systems. 
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Table 3-1:Experiment Settings 

# Calibration Points 39 (Figure 3-1) 

# Testing Points 10  

Time Interval (sampling) at each point 5, 2, 1 min 

Location Algorithm Euclidean and KNN 

Location Resolution Room-level 

Table 3-2: ZigBee Prototype - Experiments results 

Point Actual 

Location 

Estimated 

(5 min) 

Result Estimated 

(2 min) 

Result Estimated 

(1 min) 

Result 

1 Hall Hall  Correct Lab2  Incorrect Lab2  Incorrect 

2 Hall  Hall  Correct Store Incorrect Hall  Correct 

3 Store  Store  Correct Hall  Incorrect Hall  Incorrect 

4 Toilet Toilet  Correct Hall  Incorrect Toilet  Correct 

5 Corridor Room1  Incorrect Corridor  Correct Room1  Incorrect 

6 Corridor  Corridor  Correct Corridor  Correct Corridor  Correct 

7 Lab1  Lab1 Correct Lab1  Correct Lab1  Correct 

8 Room1  Room1  Correct Lab1  Incorrect Room2  Incorrect 

9 Lab1  Lab1  Correct Lab1  Correct Lab1  Correct 

10 Lab2  Toilet Incorrect Lab2  Correct Lab2  Correct 

3.1.5. Network Performance 

ZigBee network performance also has been experimentally evaluated in terms of the 

number of messages sent and received. 

3.1.5.1. Experiment Description  

In this experiment, we performed five tests in which the ZigBee end node device was 

configured to send periodic broadcast messages every 2, 3, 5, 10, 15 seconds in each test 

respectively. The reason was to specify the most relevant sending time in which the ZigBee 

network reaches its best performance. 

The main goal of this analysis was to estimate the percentage of the transmitted 

messages (by the end node device) that were actually received by the ZigBee routers. Ideally, 

when the ZigBee end node device sends a broadcast message, all nearby routers, who 

successively receive the broadcast, should generate a unicast message and send it to the 
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coordinator node. A unicast message includes unique timestamp coming from the broadcast 

received by the router. By calculating the number of received messages at the coordinator, we 

estimated the percentage of the successfully received broadcasts. The main steps of this 

analysis experiment can be summarised as follow: 

 The ZigBee end node device sends periodic broadcast messages to the nearby 

ZigBee routers every configurable time interval. In the experiments, we tested 

several time intervals (2,3,5,10,15 seconds). 

 The ZigBee routers receive the broadcasts, measure RSSI from the received 

broadcasts, and then send unicast messages to the ZigBee network coordinator. 

The unicast messages contain the measured RSSI, timestamp of the broadcast, 

and MAC address of the ZigBee router and the ZigBee end node device. 

 The ZigBee coordinator, in turn, receives the unicast messages and then 

transfers the received information to the connected PC via serial port. 

 The application on the PC was customised to receive the unicast messages 

during an adjustable time interval (5, 2, 1 minutes). The application user has 

the option to set the preferable period for receiving the messages (in seconds, 

minutes, or hours). 

3.1.5.2. Results and Discussion 

Table 3-3 presents the obtained results of the experiments. As shown, there are two 

columns provided for each receiving time interval to show the comparison of the actually 

received messages compared to the expected messages in the ideal case. As mentioned, the 

application on the PC was configured to receive the messages from the coordinator within 

several time intervals (5, 2, and 1 minutes). Within each receiving time interval, we performed 

5 different tests. The results are shown in the table. 

Table 3-3: Network Performance results 

 5 min 2 min 1 min 

Actual Ideal Actual Ideal Actual Ideal 

2 seconds 0 150 0 60 0 30 

3 seconds 0 00 0 40 0 20 

5 seconds 39 60 11 24 5 12 

10 seconds 30 30 12 12 6 6 

15 seconds 20 20 8 8 4 4 



Chapter 3 – Indoor Location for Ambient Assisted Living 

30 

As shown in the table, the results show poor network performance in the cases where 

the sending time between broadcast messages was less than 5 seconds. The network was 

totally unreliable, all broadcast messages have been lost during the transmission. However, 

as the sending time of the broadcast increased, the network performance improved. We 

believe that the reason for the poor performance when using shorter sending time might be 

because of the time required for writing the received messages on the serial port (UART port). 

This UART delay makes the coordinator fully occupied and therefore no transmission will be 

received from other ZigBee routers. 

3.1.6. Conclusion 

Developing an indoor location system based on fingerprinting technique and ZigBee 

technology is still a challenge. Based on the obtained results from the ZigBee prototype, the 

localisation accuracy is not as good as it should be, especially if the localisation service will 

be used for critical applications like healthcare and assisted living. Moreover, the network 

transmission behaviour was not fully reliable as many messages have been lost during the 

network performance experiments. Additional experiments with different settings are 

required to confirm the results and the use of ZigBee technology for indoor localisation.  
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3.2. Requirements and Metrics for Indoor Location 

Indoor location and tracking technologies are becoming fundamental components for 

Ambient Assisted Living (AAL) and, as a result, diverse technologies are being used for 

indoor location such as Passive Infrared (PIR) [74], Ultrasound [75], Radio Frequency (RF) 

[76][77][78], and computer-vision (camera-based) technologies [79]. These technologies 

have different physical, operational, performance, and cost characteristics that make them 

available for different kind of operational scenarios. In [9], we set out the general 

requirements for indoor location and tracking services for AAL. The definition of the 

requirements was based on a conceptual view for a typical AAL application scenario. From 

the scenario, we defined the requirements and also defined a set of metrics to be used as 

evaluation criteria. We also used the defined metrics to evaluate two of the existing 

technologies for indoor localisation. 

3.2.1. Requirements 

Figure 3-4 illustrates a conceptual view of a typical AAL system. The system is 

designed to monitor the daily behaviour of an elderly person living alone at home. As shown 

in the figure, the system consists of multiple interactive layers that are combined together to 

give the intended functionality of the system. In the subsequent sections, we provide the 

identified requirements for indoor location for AAL based on this conceptual view. 

 

Figure 3-4: Conceptual view for a typical AAL system 
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3.2.1.1. Functional Requirements 

The functional requirements include all the tasks and functions that the service is 

required to perform such as track, locate, and detect the presence of the people indoors with 

unique personal identification. They also include the detection of unusual or abnormal events 

e.g. falls or death and the ability to provide the final output in human-interpreted format. 

Moreover, they also include the capability of sending the data to remote servers at remote 

healthcare units for early interventions and timely responses as well as increasing the safety 

feeling of the monitored people. 

3.2.1.2. Non-Functional Requirements 

The non-functional requirements specify the criteria that can be used to judge the 

operation of the service such as providing enough localisation coverage, resilience to a power 

outage at homes, and the use of standards and normative definitions for information exchange 

and also ensuring privacy. 

3.2.1.3. Interface Requirements 

The interface requirements cover all the requirements related to the service's user 

interfaces and the monitoring software used for indoor location and tracking. They include 

the ability to provide a user-friendly interface, visualised views of the service’s output, and 

different data granularity views. 

3.2.1.4. Performance requirements 

The performance requirements are related to the performance of the service such as 

responsiveness (real time responses), the ability to provide the required location resolution, 

minimise localisation error and increase accuracy, avoid interferences with other home’s 

devices, automatic fault detection and reliability, availability and scalability. 

3.2.1.5. Product Requirements 

The product requirements include all the requirements that are related to the 

deliverable version of the service such as reduce the cost of installation, deployment, and 

maintenance, provide means for tackling the service’s performance, facilities information 

exchange for easy integration and interoperability, use of standards and norms, power 

efficient and eco-friendliness, and also provide information security. 
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3.2.2. Metrics 

The introduced requirements in the previous section provide a means to categorise the 

general requirements of indoor location service for AAL systems. In this section, we 

combined our findings from the requirements with some prior research works [80] [81] to 

defined a set of evaluation benchmarking to be used by the indoor location services’ 

developers and practitioners to evaluate their services. The defined metrics in this section 

provide a clear evaluation framework that maps between the desired (target) value and the 

minimum and acceptable value for each requirement. Table 3-4 lists the evaluation metrics. 

Table 3-4: Metrics for Indoor Location for AAL 

Metric Target Threshold 

Service Response time Within seconds Less than 5 minutes 

Precision Room-level Room-level 

Coverage Scope Inside house and areas nearby Inside house 

Service Output format Symbolic (Bedroom, Kitchen) Symbolic (Bedroom, Kitchen) 

Person Identifier Required Required 

Presence/Absence indicator Required Required 

Location Update Interval Adjustable Every 5 minutes 

Location Sampling rate/sec 1 sample every 5 second 1 sample every minute 

Service Calibration Self-Calibration Self-Calibration 

Service Remote 

Communication 

Fast connection to support 

remote instructions 

Fast connection to support 

remote instructions 

Remote Communication Cost Less than Internet Cost Same as Internet Cost 

Resilience to Power Outage Required Required 

Interference avoidance No Interference No Interference 

Automatic Fault Detection Required Required 

Battery lifetime more than 1 year 6 months 

# Location Reference Nodes One per house Two per house 

Use of Wearable tags No/Simple tags Easy to carry and wear 

Installation Complexity Low Low 

Remote/Local Computation Local Remote 

User’s Movement History Required Required  

# Tracked Persons Multiple Multiple 

User acceptance Required Required 
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Use of behavioural models 

for abnormality detection 
Required Required 

Service Cost Cheap Cheap 

Target: desired value                    Threshold: minimum acceptable value  

3.2.3. Evaluation 

In this section, as an example, we use the previously defined metrics to evaluate two 

of the indoor location technologies. We present how the metrics can be used to assess and 

identify the gaps between the real requirements of AAL systems and the existing indoor 

location technologies (WiFi Fingerprinting and Ultrasound-based). We selected these 

technologies due to their wide use in many localisation systems and also because other 

technologies might end up being too intrusive and not acceptable by the users (e.g. camera-

based), or too expensive to build and deploy (e.g. UWB-based). First, we briefly introduce 

the two technologies and then provide the evaluation results. 

3.2.3.1. WiFi Fingerprinting 

WiFi fingerprinting is a location technique that uses the existing WiFi network 

infrastructure at home/building to provide indoor localisation service for various location-

aware applications such as social networking, personal tracking, inventory control, 

entertainment augmented reality, and healthcare monitoring applications [82]. The technique 

has gained more attention in the last years due to the popularity and low price of WiFi devices. 

It estimates the locations of the tracked objects based on the Received Signal Strength 

Indicator (RSSI) collected from WiFi Access Points. Hence, it does not require additional 

hardware than what already exists at home. In this technique, there are two main phases: the 

offline phase (training) and the online phase (positioning) [83]. In the offline phase, the signal 

strength collected from several WiFi access points in the range are recorded and stored in a 

database along with the known coordinates of the user’s device. In the online phase, the 

current recorded RSSI values at an unknown location are compared to those stored in the 

fingerprint database and the closest match is returned as the estimated location of the user’s 

device. 

The main challenge of this technique is that any change of the environment such as 

adding or removing furniture at home/building requires an update on the recorded fingerprint 

database. However, the integration with another type of sensors such as cameras or motion 
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sensors can be used to reduce the need for frequent updates on the recorded fingerprints. 

Ekahau [84] and Microsoft RADAR [73] are some of the location systems that use WiFi 

fingerprinting for indoor localisation. 

3.2.3.2. Ultrasound-based 

Location services based on ultrasound consist of a set of ceiling-mounted receivers 

that detect ultrasound signals from tags, transmitted at user-defined time intervals, to calculate 

distances using time-of-flight. This technique has the potential to provide good accuracy and 

the fundamental devices are cheap. However, the synchronisation of the location sensors and 

the high installation complexity are the major challenges of this technology. Location systems 

that use ultrasound include Active bat [85], Cricket [86], and Dolphin [87]. 

3.2.3.3. Evaluation results 

Table 3-5 illustrates the evaluation results of the two technologies. In the table "+" 

depicts that the technology has satisfied the corresponding metric while "-" depicts 

unsatisfied. For each evaluation metric, there is a pair of values, represented as (target, 

threshold) respectively, to compare the technology against the defined values for each metric. 

Table 3-5: Evolution of Indoor Location techniques 

Metric WiFi Fingerprinting Ultrasound-based 

Response time (+,+) (+,+) 

Precision (+,+) (+,+) 

Coverage Scope (-,+) (-,+) 

Service Output Format (+,+) (+,+) 

Person Identifier (+,+) (+,+) 

Presence/Absence indicator (-,-) (-,-) 

Location Update Interval (+,+) (+,+) 

Location Sampling rate/sec (+,+) (+,+) 

Service Calibration (-,-) (+,+) 

Service Remote Communication (+,+) (+,+) 

Remote Communication Cost (-,+) (-,+) 

Resilience to Power Outage (-,-) (-,-) 

Interference avoidance (-,-) (+,+) 

Automatic Fault Detection (-,-) (-,-) 
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Battery life time (-,-) (-,-) 

# Location Reference nodes (-,-) (-,-) 

Use of Wearable tags (-,-) (-,-) 

Installation Complexity (-,-) (-,-) 

Remote/Local Computation (+,+) (+,+) 

User’s Movement History (+,+) (+,+) 

# Tracked Persons (+,+) (+,+) 

User acceptance (-,-) (-,-) 

Use of behavioural models for 

abnormality 
(-,-) (-,-) 

Service Cost (-,-) (-,-) 

3.2.4. Conclusion 

As illustrated in Table 3-5, the two location technologies used in the comparison are 

not designed to fully comply with all the requirements of AAL. For instance, the coverage 

scope requirement is not fully supported by both technologies unless additional location 

sensors are being deployed (e.g. additional WiFi access points and ultrasound receivers). 

Moreover, WiFi fingerprinting requires additional effort to calibrate the neighbourhood areas, 

in order to provide the required coverage, which means an extra deployment complexity. The 

ideal location service for AAL should provide the service with less effort and a minimum 

number of location sensors. In addition, the resilience for a power outage is also not 

considered by both technologies. The power outage is mostly occurring in houses and 

residential environments, especially in rural areas. The two technologies do not provide a 

reasonable solution for this requirement. Furthermore, the installation complexity of the two 

technologies is high. A location service for AAL has to be easy to install in terms of time, 

cost, and effort. Moreover, the automatic fault detection and handling the anomalies and 

outliers in the location data are not fully supported by the two technologies. 

From the conducted review and evaluation results we conclude that the existing indoor 

location technologies are not quite adequate for Ambient Assisted Living (AAL). There is a 

gap between the real requirements and the available technologies. The defined requirements 

and metrics in this section can contribute to the definition of a generic evaluation framework. 

This framework can be used to evaluate the potential AAL location services and also can be 
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used as guidelines for technological developments and system design. Additional evaluation 

and comparison studies are required to completely define all the requirements.
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 Behaviour Monitoring System (BMS) 

In this chapter, we present the overall description of our system and also provide 

details for each of its components. For simplicity, we base the description of our proposal on 

the use of simple PIR sensors installed in all rooms of a house. However, a similar approach 

can be used with other types of sensors/technologies that are able to detect the presence of a 

person in a room. 

4.1. System Architecture 

The general architecture of our system is graphically represented in Figure 4-1. A set 

of sensors is placed at different locations to collect information about a person’s daily mobility 

routine at the home environment. The collected data from the sensors is forwarded (1) to a 

home gateway installed inside the house that continuously processes and interprets the data 

locally, learns the normal routine of the person (Learning Module and Model) and then 

provides alarm notifications (6) when unusual deviations from the normal routine are detected 

(Detection Module). 
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In the following subsections, we describe our approach of using the collected 

observations from those affordable PIR sensors to learn a model for the normal mobility 

routine of the monitored person and then show how this model can be used to detect 

abnormalities. 

4.2. Learning Module 

The deployed PIR sensors in the home environment transmit signals when motion is 

detected. These sensor observations are logged in the home gateway and stored in a queue 

buffer for processing. An observation o is defined in the form o = <ts, sensor_id>, where ts 

denotes a timestamp indicating the time of detection, and sensor_id denotes the identification 

of the sensor that detected the motion. Examples of the sensor observations are presented in 

Table 4-1. Each sensor is assumed to be installed in a particular room in the house, and each 

room must have at least one sensor covering its serving area. The operation of the system 

relies on the detection of the monitored person within the range of these sensors with room-

level localisation accuracy. 

Table 4-1:Examples of sensor observations 

Timestamp Sensor ID 

06/04/2016-00:00:00 M001 

06/04/2016-00:06:05 M001 

06/04/2016-00:08:18 M002 

06/04/2016-01:10:20 M002 

06/04/2016-01:15:30 M002 

Figure 4-1: BMS system architecture 
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We hypothesise that a long-term sequence of these observations encodes the mobility 

routine of the monitored person, and therefore it can be used to build a model that represents 

the mobility behaviour of that person during normal days. The role of the learning module in 

our system is to continuously process and interpret the incoming sensor observations and use 

them to build a realistic model that summarises the mobility behaviour of the monitored 

person at each location in the house during the hours of the day. The learning module uses a 

time-based sliding window to process the observations from the queue buffer sequentially. 

The size of the learning window is pre-configured (e.g. a month) to indicate the sufficient 

context history to tune the model. The learning window is shifted every week to update the 

model on a weekly basis. Every time the model is updated, the oldest observations are 

removed from consideration, while the most recent observations are added. This feature 

allows the learning process to be performed in an online manner, considering the most recent 

observations, and also allows the model to adapt to slight shifts in behaviour that are not 

genuine anomalies (e.g. seasonal changes). 

4.2.1. Concepts and Terminology 

In this section, we summarise and list the important concepts and terminology used in 

the learning modules and employed by the model in the next section. 

4.2.1.1. Observation 

An observation is defined as a sensor event that perceives the state of an individual at 

home. It is represented in the form o = <ts, sensor_id>, where ts denotes the timestamp of 

sensor activation, and sensor_id denotes the identification of the sensor that detects the motion 

event. 

4.2.1.2. Stay 

A stay is defined as the amount of time a person spent in a particular room at a certain 

time. It represents the elapsed time between any pair of consecutive sensor activations 

(observations). 

4.2.1.3. Transition 

A Transition is assumed to be instantaneous and is detected based on an observation 

whenever the sensor associated to oi is different from the sensor associated to oi-1. 
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4.2.1.4. Transition Probability 

The estimated probability of moving between any pair of rooms at home. It is 

calculated with respect to the stay time and movement frequencies between rooms in each 

day within each time interval. 

4.2.1.5. Stay Probability 

The estimated probability of staying in a particular room in the house in a particular 

moment, the same as self-transition probability. It is calculated with respect to the stay time 

in the room in each day within each time interval. 

4.3. The Model 

To model the daily mobility behaviour, we define the concept of Stay to indicate the 

amount of time a person spent in a particular room and time. As mentioned, a Stay is obtained 

from any pair of consecutive observations (oi-1, oi). It is defined as the time elapsed between 

oi-1 and oi at the room associated to oi-1. The Stay concept is fundamental for the learning 

module to estimate the dimensions of the underlying behavioural model. 

The underlying behavioural model of the system, as shown in Figure 4-1, is 

represented by a data structure that separates the mobility behaviour of the monitored person 

in each day of the week to capture the weekly behaviour. Furthermore, each day is subdivided 

into equal intervals (e.g. 1-hour interval) to capture the daily behaviour. This flexible structure 

differentiates our work from others where the same behaviour is assumed for all the weekdays. 

In each interval the mobility profile of the monitored person is represented by a state transition 

model, as shown in Figure 4-2. The states represent the rooms or places in the home while the 

connections between states represent the possible transitions or movements. This 

representation is used to model the spatial transition dependencies between the rooms with 

respect to the layout of the user’s home. As illustrated in Figure 4-2, there are no transitions 

between rooms that are not directly linked (e.g. one cannot go directly from the bedroom to 

the kitchen without going through the living room). By observing the daily movements from 

sensor observations and then applying the right learning method we can build a reliable model 

for the daily mobility behaviour of the monitored person and use that model to detect 

abnormalities. The model can be formulated as Modeld(t, ∆t) to denote the model of the 

weekday d within the time interval from t to t+∆t, d ={Sunday,…, Saturday}. For example, if 
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∆t=1 hour then there will be 24 time intervals and models in each day: ModelSunday(0-1], 

ModelSunday(1-2],…,ModelSaturday(23-24]. 

 

Figure 4-2: Room-to-room state transition model 

A model for a given time interval is defined by a set of dimensions, each dimension 

has its own unique meaning and contribution in describing the person’s behaviour. The 

following subsections describe these dimensions. It is worth mentioning that our model 

considers the person to be staying at the location reported by an observation until a new 

observation indicates the presence at a different location. This is consistent with the use of 

PIR sensors in a real house. Usually, these sensors turn off for a few seconds after they are 

triggered to save battery power. 

4.3.1. Transition Matrix 

This is the fundamental dimension of the behavioural model. It is a direct and 

personalised representation of the daily stay and room-to-room transition behaviour of the 

monitored person. It shows how likely the monitored person is to be found in each room 

during the different hours of each day of the week, considering the differences in every 

person’s habits. Each possible transition in the state model (Figure 4-2) has an associated 

probability Pi,j representing the estimated probability of that transition. All transition 

probabilities between rooms for a given time interval, including self-transitions, are 

represented in a 2D matrix. The role of the learning module here is to compute the entries of 

the transition matrix by processing the entire observations in the learning window, computing 
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the stay durations between any pair of consecutive observations, calculating the total stay time 

at each room within each time interval, and finally computing the transition probabilities. 

These steps are implemented as follows. In the examples below, and without loss of 

generality, we consider ∆t =1 hour. 

Step 1: Compute a stay duration 

A pair of consecutive observations (o1=<ts1, sensor_id>, o2=<ts2, sensor_id>) 

represents a stay(s) in the model. The duration of this stay is calculated as the time elapsed 

between these two observations (ts2 - ts1). It may happen that a single stay overlaps with 

multiple intervals. In this case, we distribute the period among them according to their 

contributions in the total stay period. For example, a stay duration of 1 hour and 30 minutes 

that starts at ts1= 04:00 and ends at ts2=05:30 is distributed among two intervals. In this case, 

1 hour will be assigned to the interval (4-5], and the remaining 30 minutes to the interval (5-

6]. 

Step 2: Compute total stay time 

The total stay time TSi (t, ∆t) at a room within a given time interval is given by: 

 

𝑇𝑆𝑖(𝑡, ∆𝑡) = ∑ 𝑠𝑘
𝑖 (𝑡, ∆𝑡)

𝑛𝑠𝑖

𝑘=1

 (1) 

where sk
i (t, ∆t) denotes the kth stay at room i, and nsi denotes the number of stays at room i, 

within the time interval from t to t +∆t. 

Step 3: Compute self-transition, or stay, probability 

The self-transition probability Pi,i(t, ∆t) at a room within a given time interval 

represents the probability of finding the person at that room (i) within the given time interval 

(from t to t +∆t), and is given by: 

 
𝑃𝑖,𝑖(𝑡, ∆𝑡) =

𝑇𝑆𝑖(𝑡, ∆𝑡)

∑ 𝑇𝑆𝑗(𝑡, ∆𝑡)𝑟
𝑗=1

= 
𝑇𝑆𝑖(𝑡, ∆𝑡)

∆𝑡
 (2) 

where r denotes the number of rooms in the house, including a virtual room for outside of the 

house. 

Step 4: Compute transition probability 

The transition probability Pi,j(t, ∆t) within a given time interval (from t to t +∆t) 

represents the probability of observing a person’s movement from room i to room j within 

that interval. Given that: 
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∑ 𝑃𝑖,𝑗(𝑡, ∆𝑡) = 1
𝑟

𝑗=1
 

  𝑃𝑖,𝑗(𝑡, ∆𝑡) is given by: 

 
𝑃𝑖,𝑗(𝑡, ∆𝑡) = [1 − 𝑃𝑖,𝑖(𝑡, ∆𝑡)] ×

𝑀𝑖,𝑗(𝑡, ∆𝑡)

∑ 𝑀𝑖,𝑘(𝑡, ∆𝑡)𝑟
𝑘=1 𝑘≠𝑖  

                       (3) 

where j ≠ i and Mi,j(t, ∆t) denotes the number of transitions from room i to room j within the 

time interval from t to t +∆t. 

The following is an example of a complete transition matrix for the six-rooms home 

in Figure 4-1. The entries of the matrix indicate the estimated room-to-room transition 

probabilities in the model for a given time interval. 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.1 0.3 0.4 0.2 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0.3 0.7 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0.2 0 0.3 0.2 0 0.3
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0.3 0.5 0.2 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0.9 0.1 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0.8 0 0 0.2 ]
 
 
 
 
 
 

 

The estimated values of the matrix indicate how probable the person tends to stay or 

navigate between the rooms of the house. The matrix is not symmetric so that Mi,j ≠ Mj,i  and 

0 probability indicates no transition was detected. 

4.3.2. Global Activity (AG) 

This is an accumulative dimension to count the total number of observations received 

within an interval, no matter the rooms in which the sensors were triggered, normalised to the 

length of the time interval. It models the level of activity within the house, as more activities 

(movements) translate into more sensors being triggered. The following equation (equ.4) is 

used to compute this dimension. 

 
𝐴𝐺(𝑡, ∆𝑡) =  

1

∆𝑡
×  #(𝑂(𝑡, ∆𝑡)) (4) 

where #(O(t, ∆t)) denotes the cardinality of the received observations within the time interval 

from t to t +∆t. 
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4.3.3. Inter-room Activity (AE) 

The Inter-room Activity dimension represents the total number of times the sensors 

were triggered to indicate transitions within an interval, excluding self-transitions. It 

represents how often a person moves between rooms within a given time interval. This is 

different from the Global Activity because it captures the transitions among different rooms, 

while the Global Activity dimension captures the activities that might be between different 

rooms or within a single room. The following equation (equ.5) is used to compute this 

dimension. 

 
𝐴𝐸(𝑡, ∆𝑡) =

1

∆𝑡
×  # (𝑀(𝑡, ∆𝑡)) − ∑ #(𝑀𝑖,𝑖(𝑡, ∆𝑡))           

𝑟

𝑖=1 

 (5) 

where #(M(t, ∆t)) denotes the cardinality of all the transitions within the time interval from t 

to t +∆t and #(Mi,i(t, ∆t)) denotes the cardinality of the self-transitions in room i. 

4.3.4. Intra-room Activity (AA) 

The Intra-room Activity dimension represents the total number of self-transitions in a 

room within an interval, computed as the total number of received observations in a room 

within an interval. This dimension shows how active the person was in each room. The Intra-

room Activity is given by: 

 
𝐴𝐴𝑖(𝑡, ∆𝑡) =  

1

∆𝑡
×  # (𝑂𝑖(𝑡, ∆𝑡)) (6) 

where #(Oi(t, ∆t)) denotes the cardinality of the received observations at room i within the 

time interval from t to t +∆t. 

4.3.5. Intra-room Continuous Stay (CS) 

This dimension is used to estimate the longest continuous stay at each room in each 

day of the week. A continuous stay is defined by a sequence of consecutive stays, or a single 

long stay, that occurs in the same room with no interrupting stay in different rooms. The 

dimension is given by: 

 
𝐶𝑆𝑖 = ∑ 𝑑(𝑠𝑘 

𝑖 )

𝑢

𝑘=1

 (7) 
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where d(sk
i) denotes the duration of the kth stay at room i and u denotes the number of the 

consecutive stays in room i. In the model, each day has a list of continuous stays for each 

room. 

4.4. The Learning Algorithm 

As mentioned before, the learning module updates the behavioural model on a weekly 

basis, processes all observations in the learning window and updates the model’s dimensions 

of each time interval. The following is the description of the learning algorithm. 

Algorithm 1: Model Learning algorithm 

1: Input:   O          {o1, o2, o3, …} incoming observations  

2: Params: w           learning window size 

3:                 t            real-time, t0 = start time 

4:                 n           0 

5: While (true) { 

6: wait-until (t >= t0 +w+ n * one_week) 

7: Ow               O (t0 + n * one_week, t0 +w + n * one_week) 

8: o_previous           Ow [1] 

9: For i=2 to w do 

10:   o_current          Ow [i] 

11:   S[i-1]             compute_stay (o_previous, o_current) 

12:   M[i-1]            compute_transition (o_previous, o_current) 

13:  o_previous         o_current 

14: End for 

15: update_model(Ow,S,M) 

16: n          n+1 

17: } 

The learning module continuously accepts incoming observations and waits for a 

period of one week (line 6:) before updating the model. Then iterates over the entire 

observations in the learning window to compute the stays (line 11:) and the transitions (line 

12:) before estimating the transition probabilities and updating the model (line 15:). Updating 

the model means computing the values of the different dimensions of the model for each time 

interval for each day of the week, as described in the previous section. 
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4.5. Detection Module 

The detection module is a separate process that runs continuously in real time, and 

asynchronously from the learning module to produce outputs at regular intervals (e.g. every 

one minute). This module consists of two main components: the estimator and the automaton. 

The estimator computes the location likelihood for the detected location of the monitored 

person and provides classified binary abnormality state. The structure of the detection module 

is illustrated in Figure 4-3. 

 

4.5.1. The Estimator 

In every running cycle of the detection module, the estimator takes the most recent 

received observation in the queue buffer ok and compares the current stay at the room reported 

in that observation to what is expected based on the behavioural model created from past 

observations. This comparison is based on estimating how probable it is to observe the person 

in that room during this interval and day of the week. For example, consider that, on a Monday 

at 4:25 am, the latest observation ok reported the person as being in the bedroom. Given the 

behavioural model for the current time interval, the probability of finding the person in that 

room is 0.97 (equ.2) and, therefore, the observed behaviour was expected with high 

probability. We call this probability the Location Likelihood ln. 

A simplistic way for detecting abnormal behaviour is obtained by just comparing the 

estimated Location Likelihood ln with a fixed threshold. All estimates higher than the 

threshold indicate no significant change in the mobility routine, while any drop below the 

threshold indicates a presence at an abnormal location given the current time and weekday. 

However, through experimentation, we found that this simple approach is affected by spurious 

observations and leads to poor performance. Moreover, the fixed threshold approach is also 

Automaton Probability Calculator Smoothing Classifier 

Estimator 

ok: latest observation 

Location Likelihood Smoothed Location Likelihood Abnormality state 

ln gn hn Zn 

Model 

Figure 4-3: Detection Module - Internal structure 
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affected by the fact that, in some cases, the most probable location has a probability much 

lower than 1. Therefore, a more elaborated method is required to improve the reliability of 

the detection. To deal with this, we added a normalisation step in the probability calculator. 

The estimated Location Likelihood ln is normalised by the probability of the most probable 

location of the current time interval before being passed through a low-pass filter to smooth 

out the results and generate smoothed Location Likelihood gn and then finally applying the 

threshold classifier. 

Figure 4-4 illustrates an example of the generated estimator’s results. It shows the 

process of applying the smoothing step on the normalised estimated Location Likelihood ln 

to smooth out the generated signal and reduce the rate of false alarms (whenever the location 

likelihood drops below the threshold). The example in the figure shows the estimated results 

of a normal day so that the estimated Location Likelihood ln should always be high (near to 

1.0) and any low value is considered a false estimate. As shown in the figure, the smoothing 

step may reduce the rate of false estimates, however, it does not eliminate them all. The 

smoothed Location Likelihood gn afterwards is passed through the threshold classifier to 

generate the classified abnormality state results hn, as shown in the figure. 

 

Figure 4-4: Sample of the estimator's results 

Figure 4-5 illustrates the temporal relationship between the incoming observations and 

the generated abnormality states hn by the estimator. As illustrated in the figure, the estimator 

keeps generating abnormality states, on a regular basis, while the observations are arriving, 
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randomly, based on the person’s movement. This way we transform the outputs of the 

estimator into periodic time series to simplify the detection of the abnormal changes. 

 

4.5.2. The Automaton 

The estimator generates binary classifications (0=normal or 1=abnormal) based on the 

evaluation of the detected location of the monitored person. However, binary outputs are not 

very informative feedback to show the real state of the subject and might be misleading and 

not realistic in some cases. Therefore, it is more convenient to define the final output of the 

detection module in terms of states, giving more descriptive and detailed explanation of the 

decisions made. For this, we defined an automaton with three states {Normal, Potential 

Abnormal, and Abnormal} to interpret the detection results. Figure 4-6 illustrates the states 

of the automaton. The state of the automaton is updated at a regular pace defined by the output 

(hn) of the estimator, including one timer that is reset, incremented or decremented. 

 

 

The normal state represents the case in which the detection module doesn’t detect any 

significant deviation or shift in the daily routine of the monitored person. The automaton is 

kept in this state as long as the output of the estimator reports a normal behaviour (hn=0), or 

while abnormal outputs (hn=1) do not hold for more than the normal timeout N1. This way, 

short glitches of abnormal outputs followed by normal outputs are filtered out, and thus 

reducing the rate of false alarms. The “Potential Abnormal” state represents the cases in which 

the estimator reports a sequence of abnormal behaviours longer than N1 (meaning that it might 

Real time 

Incoming Observations 

00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 00:11 00:12 

Abnormality States(hn) 

Figure 4-5: Temporal relationship (incoming observations and estimated abnormality state) 
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Figure 4-6: Detection Module - Automaton 
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not be a glitch anymore), and therefore more attention must be given to the situation. The 

automaton changes to the “Abnormal” state if the estimator keeps reporting an abnormal state 

for a long time (t >= N2). The difference between the states “Normal” and “Potential 

Abnormal” is that the timer is not reset after the first normal output of the detection module 

(hn=0). The transition to “Abnormal” state can be done only in case the detection timer 

exceeds the abnormal timeout (N2), indicating the confirmation of the detected abnormal 

state. Upon each decision, the detection timer gets updated according to the rules of each state. 

The transition constraints between states are shown in the state diagram, explaining the rules 

and conditions that govern each transition. Applying such state machine simplifies the final 

decision of the detection module, gives more flexibility and also reduces the false positive 

detection rate. 

We performed an optimisation experiment to tune the different parameters of the 

detection module in order to select the optimal values with respect to the performance metrics 

in Chapter 5. The results of this optimisation experiment are presented in chapter 6. 

4.5.3. Anomaly Classification 

To give more semantic to the final output of the detection module, we added a rule-

based anomaly classification step into the detection module. It is an attempt to give names or 

classes to the possible abnormal behaviours that may occur to the elderly at home. This step 

helps to correlate the detected abnormal behaviour with some symptoms of the possible 

diseases and health declines. We know that it is not trivial to identify all of the abnormal 

behaviours (anomalies) that may happen to the elderly at home environment. Hence, we 

limited our system to a specific set of abnormal behaviours (Chapter 5), each anomalous 

behaviour is related to some well-known health declines. We defined the rules to incorporate 

the output of the automaton with other dimensions of the behavioural model in order to 

enhance the detection results and provide a classification for the detected anomalies. The 

following flow chart shows the details of this process. The included other dimensions of the 

model are shown in the flow chart diagram in Figure 4-7. 
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In the above flow diagram, the following symbols and names are used: 

 Zn: represents the automaton’s output (Normal, Potential Abnormal, 

Abnormal). 

 Sn: represents the classification of the detected longest continuous stay 

(Normal or High). The detected longest stay is “Normal” if its value is less 

than the expected longest stay value from the model; otherwise, it is “High”. 

 Detected room: represents the room where the person was detected. 

 Expected room: represents the room where the person is expected to be 

according to the model. 

 WAG: represents the weighted Global Activity. It is computed based on the 

current and previous time intervals from the model (see equ.8). 

 Wn: represents the classification of the weighted Global Activity (WAG). The 

individual classification of the WAG and the sampled global activity (SAG) at 

the current time. The table below (Table 4-2) shows the matching matrix used 

to come up with the final classification for Wn. The sign  means Normal and 

 means Abnormal. The values in the matrix are based on how closed WAG 

and SAG are to the max Global activity from the model. 
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Figure 4-7: Rule-based Anomaly Classification 
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 𝑊𝐴𝐺 =
𝑚𝑖𝑛𝑢𝑡𝑒𝑠

∆𝑡
 × 𝐴𝐺𝑚𝑜𝑑𝑒𝑙(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) +

∆𝑡 − 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

∆𝑡
× 𝐴𝐺𝑚𝑜𝑑𝑒𝑙(𝑝𝑟𝑒𝑣𝑖𝑜𝑢 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) (8) 

where minutes denotes the elapsed time in the current time interval (in minutes) and ∆t 

denotes the length of the time interval (e.g. 60 minutes). 

Table 4-2: Weighted Global Activity Classification 

SAG\WAG Very High High Medium Low Very Low 

Very High      

High      

Medium      

Low      

Very Low      

The use of the abnormal behaviour classification step in the detection module provides 

a way to transform the final output of the detection module into meaningful states that the 

caregivers and healthcare providers can easily understand and react upon. 

In the following chapters, we present how the BMS system is been evaluated, by 

presenting first the validation approach that we designed to evaluate the system and then the 

conducted experiments and the obtained results.
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 Validation Approach 

One of the most challenging steps in developing a human behaviour monitoring 

system is its validation. Designing real-life experiments to validate a behaviour monitoring 

system is difficult and needs more efforts. In this chapter, we present an attempt to provide a 

more realistic validation approach for the developed system depending on generated synthetic 

data and real-life datasets collected from other research projects. 

The chapter includes the description of the datasets, analysis of the user profiles of 

each dataset as well as the description of the used assumptions and possible abnormal 

behaviours (anomalies). Moreover, we present the description of the identified performance 

metrics used to evaluate the system. 

5.1. Datasets 

Two different types of datasets have been used for validation, named Synthetic and 

the Aruba datasets. 

5.1.1. Synthetic 

A synthetic data generator was developed to simulate the daily transition and stay 

behaviours of a monitored person in a home environment. The layout of the home is shown 

in Figure 4-1, with a virtual “outside” room to model the periods when the person goes outside 

of the home. We simulated three different periods of the day with different behaviours: 

sleeping at the bedroom, begin out of the home, and staying in the living room. The data 

generator runs repeatedly for a predefined period (e.g. 4 months) and generates observations 



Chapter 5 - Validation Approach 

56 

every 1 to 10 minutes, uniformly distributed in time. For the day segments in which the person 

is sleeping or outside home, the data generator is designed to generate fewer observations 

with longer time between each pair of observations (1 to 8 hours) in order to simulate those 

behaviours in a more realistic way. Examples of the generated synthetic sensor observations 

are shown in Table 5-1 and the detailed description of the data generator is provided in 

Appendix A. 

Table 5-1: Synthetic - Examples of sensor observations 

Timestamp Room 

06/04/2016-00:00:00 Bedroom 

06/04/2016-00:06:05 Bedroom 

06/04/2016-00:08:18 Outside 

06/04/2016-10:10:20 Outside 

06/04/2016-01:15:30 Living room 

The normal daily behaviours of the monitored person in the data generator are defined 

as a user profile, represented in a matrix format. The following are the descriptions of the user 

profiles that we considered in our experiments with the synthetic data. 

5.1.1.1. User Profile A - “morning” person 

This profile describes the daily transition and stays behaviour for a “morning” person 

who follows a normal daily routine similar to the large majority of the people. This person 

usually gets up at 8:00 in the morning, goes outside home at around 9:00 am and comes back 

home in the middle of the day around 16:00 afternoon. As a daily habit, he spends most of 

the evening in the living room watching TV before going to bed at midnight. Therefore, the 

day of this person is divided into three main segments: the first segment for the night and 

early morning in hours (0, 8], in which the person spends most of the time in the bedroom; 

the second segment in the middle of the day in hours (8-16], which is mostly spent outside; 

the last segment in the evening and night time, in hours (16-24], which is mostly spent at the 

living room. This information was used to approximate stay probabilities for observing the 

person in each room within the three defined segments of the day. The approximated 

probabilities are shown in the following matrix. As shown, we assigned highest probabilities 

to the rooms that the person usually navigates to, according to his/her profile. 
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[

𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍/𝒓𝒐𝒐𝒎 𝑩𝒆𝒅𝒓𝒐𝒐𝒎 𝑩𝒂𝒕𝒉𝒓𝒐𝒐𝒎 𝑳𝒊𝒗𝒊𝒏𝒈𝒓𝒐𝒐𝒎 𝑲𝒊𝒕𝒄𝒉𝒆𝒏 𝑺𝒕𝒐𝒓𝒆 𝑶𝒖𝒕𝒔𝒊𝒅𝒆
𝟎 − 𝟖 0.96 0.01 0.03 0 0 0
𝟖 − 𝟏𝟔 0.1 0 0 0 0 0.9
𝟏𝟔 − 𝟐𝟒 0.02 0 0.95 0 0 0.03

] 

5.1.1.2. User Profile B - “nightly” person 

Unlike the previous, this user profile describes the daily behaviour for a “nightly” person who 

usually spends the entire night outside the house and sleeps during the day. The idea here is 

to have an extremely different user behaviour than the previous profile to show the model’s 

ability to learn different behaviour profiles and detect anomalies based on the user’s learned 

behaviour. The person of this profile usually sleeps during the day in hours between 8:00 to 

16:00 in the afternoon and then spends most of his time after waking up in the living room 

watching TV or doing some domestic work before going outside at midnight and coming back 

home around 8:00 in the morning. The approximated stay probabilities during the day for this 

profile are shown in the following matrix. We assigned highest probabilities to the rooms that 

the person usually navigates to, according to his/her profile. Table 5-2 presents a summary of 

the synthetic dataset. 

[

𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍/𝒓𝒐𝒐𝒎 𝑩𝒆𝒅𝒓𝒐𝒐𝒎 𝑩𝒂𝒕𝒉𝒓𝒐𝒐𝒎 𝑳𝒊𝒗𝒊𝒏𝒈𝒓𝒐𝒐𝒎 𝑲𝒊𝒕𝒄𝒉𝒆𝒏 𝑺𝒕𝒐𝒓𝒆 𝑶𝒖𝒕𝒔𝒊𝒅𝒆
𝟎 − 𝟖 0.1 0 0 0 0 0.9
𝟖 − 𝟏𝟔 0.96 0.01 0.03 0 0 0
𝟏𝟔 − 𝟐𝟒 0.02 0 0.95 0 0 0.03

] 

Table 5-2: The Synthetic dataset - Summary 

# resident 1 

# rooms 6 

Length (months) 3 

#PIR sensors 6 

# Observations 261031 

5.1.2. The Aruba 

The Aruba dataset is collected from the CASAS Smart Home Project at Washington 

State University (WSU), the source can be found here (http://casas.wsu.edu/datasets/). The 

dataset contains sensor data that was collected in a home of a volunteer adult woman. The 

home was equipped with three kinds of sensors: PIR motion sensors (M), door closure sensors 

                                                 

 

1 This is the number of observations for a particular run of the data generator, for a period of 3 months. 

http://casas.wsu.edu/datasets/
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(D), and temperature sensors (T). Figure 5-1 shows the home’s layout. For our experiments, 

we consider only PIR motion sensors. The locations of the sensors are represented by black 

circles in the figure. Table 5-3 lists samples of the sensor observations. 

Table 5-3: The Aruba - Examples of Sensor Observations 

Date Time SensorID Status 

2010-11-04 00:03:50.209589 M003 ON 

2010-11-04 00:03:57.399391 M003 OFF 

2010-11-04  02:32:33.351906  M003 ON 

2010-11-04 02:32:38.895958 M003 OFF 

2010-11-04 04:14:33.203704 M002 ON 

2010-11-04 04:14:37.15509 M002 OFF 

 

Figure 5-1: The Aruba Home Layout (adapted from [68] ) 

5.1.2.1. Pre-processing 

As shown in Table 5-3, the Aruba dataset consists of sensor observations collected 

from PIR sensors that are distributed in a home of an adult woman to monitor her daily 

activities. The dataset was annotated to include the performed activities during the period of 

the experiment. The data includes the activities and their occurring frequencies. Moreover, 

from the description of the dataset, it has been mentioned that the monitored woman received 

regular visits from her children and grandchildren during the experiment period. However, 

there is no ground truth data to specify or annotate those visit days. 
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Firstly, we grouped the observations of the PIR motion sensors by room. Instead of 

using the original sensor IDs, as shown in Table 5-3. We map the IDs onto labels 

corresponding to the rooms in which the sensors reside with respect to the layout of the home. 

As shown in Figure 5-1, multiple sensors cover the serving area in each room. Figure 5-2 

illustrates the distribution of the daily generated sensors' observations. The illustrated results 

in the figure show the daily number of observations (blue) and their daily differences (red) as 

well as the daily density distribution plot (histogram). 

 

Figure 5-2: Line and density plots of  distribution of daily observations in the Aruba 

Another view of the Aruba dataset is shown in Figure 5-3. The results illustrate the 

distribution of the daily activities performed by the monitored woman. We counted the 

number of the performed activities in each day based on the annotated ground truth data of 

the activities. The illustrated results show the daily number of activities (blue) and their daily 

differences (red) as well as the daily density distribution plot (histogram). 
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Figure 5-3: Line and density plots of  distribution of daily activities in the Aruba  

To exclude the visits days from the Aruba dataset, we considered the obtained results 

of the daily observations and activities to come up with a simple criterion. We assume that 

the visit days most probably have a high number of daily sensors observations and also a high 

number of activities compared to the majority of the days. Based on this assumption we 

managed to exclude about 48 days from the dataset which, most probably, represent the days 

with a high number of observations and activities that were probably generated by multiple 

persons. 

Table 5-4: The Aruba dataset - Summary 

# resident 1 

# rooms 10 

Length (months) 7 (220 days) 

#PIR sensors 31 

# Observations 798061 

# removed visit days 48 
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5.1.2.2. Similarity of daily routine 

Figure 5-4 illustrates the estimated similarity of the performed activities by the 

monitored woman during the experiment period. The similarity was computed on the 

sequence of the performed activities in each day against other days in order to capture the 

daily activity routine of the monitored woman. 

First, we constructed a sequence of the daily activities for each day from the Aruba 

dataset using the ground truth data of the annotated activities. The daily sequence represents 

the daily behaviour of the monitored woman. We hypothesise that a person with similar daily 

routine has a relatively similar sequence of daily activities, and therefore, we computed a 

similarity measure in range (0,1) between the sequence of activities for each day against other 

days using the edit distance algorithm for string matching. For each day we constructed a 

string sequence separated by a (“,”) to represent the daily activity sequence (“sleeping, 

bathing, cooking….”). 

The obtained similarity results are shown in Figure 5-4. As shown in the figure, there 

is low similarity observed between the days. The yellow diagonal illustrates the computed 

self-similarity of the days with high similarity while the blue lines represent the days of 

different activity routines with a high number of observed activities and observations. 

 

Figure 5-4: Aruba - Similarity of the daily activities 
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Moreover, we also computed the average start and end times for each activity, as 

shown in Table 5-5. This was done to give an idea of how the normal day of the monitored 

woman looked like during the days of the experiment. As shown from the results in the table, 

it is quite difficult to conclude a stable daily routine for the monitored woman in the Aruba 

dataset based on this information. 

Table 5-5: The Aruba - average start and end time of the activities 

Activity Start Time(mean) End Time (mean) 

Bed_to_Toilet 04:41:55 04:44:39 

Eating 13:06:53 13:17:07 

Enter_Home 14:18:14 14:18:12 

Housekeeping 13:07:01 13:27:44 

Leave_Home 12:33:37 12:33:43 

Meal_Preparation 13:02:57 13:12:21 

Relax 15:46:52 15:40:27 

Respirate 11:35:30 11:44:04 

Sleeping 09:19:29 06:17:32 

Wash_Dishes 15:26:11 15:36:03 

Work 13:24:06 13:41:11 

5.2. Abnormal Behaviours (anomalies) 

An elderly person may have different kinds of anomalous behaviour while performing 

the daily routine and it is not trivial to anticipate all of them in advance. Thus, we limited 

ourselves to a finite set of abnormal behaviours to be detected by the system. The generic type 

of anomalies that we are targeting in our system is the “Unusual stay” anomaly which can be 

translated into an unusual stay at the unusual location and/or time of the day that do not 

conform to the normal routine of the monitored persons. Following the intuition that an 

elderly person usually follows a specific daily pattern when performing daily activities and 

that routine may change only when the person is having or experiencing some kind of health 

problems. Our system aims at detecting those kind of changes and to correlate them with the 

most possible health declines a person might have when living alone at home. In Table 5-6 
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we list the set of abnormal behaviour for our system together with their descriptions and 

associated health declines. 

Table 5-6:Possible Abnormal Behaviours 

Anomaly Description Applied Semantic in model 

Oversleeping An extended prolonged stay at bedroom 

has been detected, (e.g. the entire 

morning as well as part of the afternoon) 

due to mobility problems, stroke or 

death 

Longer stay at bedroom; longer than 

usual. This implies: 

 None or low Global Activity 

 None Inter-room Activity 

 Longer stay at bedroom 

 

LessSleeping The inhabitant has been detected awake 

during sleeping time, having sleepless 

time due to anxiety or may be 

developing Alzheimer’s diseases. 

Detected motion at one of the rooms, 

not a bedroom, during the usual 

sleeping time. This implies: 

 Relatively higher Global 

activity; higher than usual 

 May include some inter-room 

Activity 

 

NotBackHome The inhabitant has not been at home for 

a long time, longer than the usual 

duration of being outside. The person 

may be having trouble coming back 

home or get lost or wondering outdoors. 

Person stayed outside longer than 

usual. This implies: 

 No Global Activity 

 No Inter-room Activity 

 Longer stay outside 

Dead Unusual stay has been detected for a 

relatively extended prolonged time due 

to death 

Longer stay at one of the rooms, not 

bedroom nor outside, longer than 

usual. This implies: 

 No Global activities 

 No inter-room activities 

 Unusual stay at unusual room  

 

Warning An inactivity period has been detected 

that is not long enough to indicate 

“Dead” state. This could be an indicator 

for unsafe situations or mobility 

problems such as unsteadiness while 

walking, difficulty getting in and out of 

a chair/bed. 

Intermediate state if the conditions of 

the “Dead” state are not fully 

satisfied. This implies: 

 Unusual stay at unusual room, 

not bedroom nor outside 

 A few weighted Global 

activities 
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5.3. Assumptions 

We put some assumptions to be considered during the behavioural modelling and 

experiments: 

 We assume that a monitored person is an elderly person who lives alone at home and 

has relatively regular daily mobility routine. 

 No visits from relatives or caregivers are expected during the experiment period. 

 The transition time between rooms is zero; no transition time is required to complete 

the movement from one room to another. 

 Only a single anomaly is expected to happen during an experiment. 

 The final output of the detection module can easily be transmitted to caregivers via 

the Internet or a web service and how to send the notifications is considered a simple 

technological problem and is not considered in this work. 

5.4. Performance Metrics 

To assess the performance of the developed system, we define a set of evaluation 

metrics to be used as performance metrics. They are graphically illustrated in Figure 5-5 and 

described as follows: 

 The Anomaly Detection Delay (ADD): it is a measure of the delay time since the 

anomaly actually started until before the detection module starts correctly detecting it; 

it is the delay before real alerts. 

 The Anomaly Confirmation Time (ACT): it represents the amount of time the system 

keeps reporting an anomaly after it has been detected (a too short ACT might be 

understood by caregivers or relatives as a false alarm). 

 An average number of False Positive alerts (FP):  it indicates the rates of wrong 

detections. The detection module raises alerts for none anomalous cases. 

In addition to the above explicit evaluation metrics, the performance of the system is also 

assessed by considering the following metrics: 

 The sensitivity of learning window size: it shows the effect of the learning window 

size on the detection results. The learning window indicates the sufficient context 
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history to build mature models that minimises false alerts while generating timely true 

alarms. 

 Anomaly Classification: A confusion matrix that shows the correctly classified 

anomalies, considering the set of identified anomalies. 

 

Figure 5-5: Performance metrics  (FP: false positive, FN: false negative detection) 

Ideally, for a detection system to be reliable, it should generate true alarms with the 

shortest anomaly detection delay (ADD) and longest anomaly confirmation time (ACT), 

enough to convey the alarm notifications while minimising the number of false alerts and 

provide correct anomaly classification.
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 Results and Discussions 

This chapter presents the obtained results of the conducted experiments. The results 

are presented with regard to the performance metrics and the individual modules of the 

system. Thorough discussions on the obtained results are also provided in this chapter. More 

detailed results can be found in Appendix C. 

6.1. Experiments Settings 

In the experiments, we employed one-month learning window to process the sensors' 

observations and to build the underlying behaviour model. The entire set of observations in 

the learning window is used to compute the dimensions of the model. The testing was done 

on observations beyond the first month of data (i.e. post-learning period). Artificial anomalies 

(abnormal behaviours) were injected into the datasets (Chapter 5) to simulate the behaviour 

deviations. Each anomaly was injected, individually, into the datasets to evaluate the 

performance of the system in each abnormal behaviour, separately. Table 6-1 presents the 

experiments settings and the optimised parameters of the learning and the detection modules. 

Table 6-1: Experiments settings 

Parameter Value 

Learning window size 4 weeks (1 month) 

Model update weekly 

Learning window shift 1 week 

Detection sampling period 1 minute 

Estimator smoothing window size 10 minutes 
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Classifier threshold [0,1] 

sNormal timeout (N1) 5 minutes 

Abnormal timeout (N2) 10 minutes 

Table 6-2 presents the injected abnormal behaviours in the different datasets used in 

the experiments. The table provides a description of the abnormal behaviour and how it was 

implemented in each dataset. 

Table 6-2: Injected Abnormal behaviours in the datasets 

Anomaly\Dataset Profile A Profile B Aruba 

OverSleeping Prolong sleeping at 

“bedroom” extended to all 

afternoon, hours (8-19] 

Prolong sleeping at 

“bedroom” extended 

to all afternoon, 

hours (16-23] 

Prolong sleeping at 

“Bedroom1” extended 

to all afternoon up to 

hour 19 

LessSleeping Being “outside” during 

sleeping time in hour (0-8] 

Being in “kitchen” 

during sleeping time 

in hours (8-16] 

Being “Outside” in 

sleeping time in hours 

(0-6) 

NotBackHome Stay longer “outside” in 

hours (16-23) 

Stay longer “outside” 

in hours (8-23) 

Going “Outside” and 

not coming back in 

hours (7-23) 

Dead Long stay at “store” in 

hours (8-23) 

Long stay at “store” 

in hours (8-23) 

Long stay at “office” in 

hours (7-23) 

6.2. The Learning Module 

The quality of the learning module or, particularly, the learned behavioural model is 

determined by how well it describes the behaviour of the monitored person and the 

interpretation it provides to better distinguish between normal and abnormal behaviour. The 

intuition of the learning module is based on the idea of giving high probability estimates for 

normal behaviours (usual routines) and low estimates for abnormal behaviours (unusual 

routines). Hence, we expect the learning module to build a model for the normal routine that 

gives high stay probability estimates in the rooms in which the person usually spends most of 

his time, during the hours of the day, and low estimates anywhere else. 
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6.2.1. Learning normal routine 

Figure 6-1 illustrates an example of the obtained results of the learning module for a 

normal day for the two user profiles (Profile A and Profile B) of the synthetic dataset. The 

results are presented in a stacked plot to show the comparison of the learned stay probability 

estimates in all rooms during the hours of the day. 

As shown in the figure and based on the given user’s profile, the three simulated 

behaviours of the person in the two user profiles are correctly estimated and high stay 

probability estimates are given to the rooms where the person usually performs his daily 

normal routine. The learning module was successfully able to learn the normal daily 

behaviour of the monitored person during each hour of the day, each data point in the figures 

represents, for the given time of the day, the learned stay probability from the model (equ.2). 

As shown, the day is clearly segmented into three segments and high stay probability 

estimates are assigned to the rooms where the user was active during the hours of the day. 

 

(a) 

 

(b) 

Figure 6-1: Learned stay probability for user (a) Profile A (b) Profile B 

Additionally, the correctness of the learning module can also be illustrated by showing 

the estimated stay transition matrix dimension of the model for the different hours of the day. 
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The following are the learned stay transition matrices for the three segments of the day, as 

simulated in the two user profiles of the synthetic datasets. The matrices show the average of 

the estimated stay probabilities at each room (diagonal of the matrix) during the three 

segments of the day. First, we present the matrices of the user profile A and then the matrices 

of the user profile B, respectively, to confirm the illustrated results in the previous figures. As 

shown, the estimated probabilities in the matrices clearly follow the simulated behaviours of 

the two persons as described in their profiles. The first user (profile A) spends most of the 

early hours of the day in the bedroom, probably sleeping during that time while going outside 

in the middle of the day and spending the evening in the living room. The second user (profile 

B) goes outside in the midnight and early hours of the day and stays in a bedroom in the 

middle of the day and the evening in the living room. These estimated behaviours conform 

correctly to their simulated behaviours. The values in the matrices illustrate the average of the 

estimated probabilities of each segment. 

Profile A: 

(0-8] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.99 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0 0 0.01 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0 ]
 
 
 
 
 
 

 

(8-16] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.002 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0 0 0 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0.998 ]
 
 
 
 
 
 

 

(16-24] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.02 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0 0 0.97 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0.01 ]
 
 
 
 
 
 

 

Profile B: 

(0-8] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.051 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0 0 0.002 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0.947 ]
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(8-16] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.95 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 0 0 0.05 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0 ]
 
 
 
 
 
 

 

 

(16-24] 

[
 
 
 
 
 
 

𝐵𝑒𝑑𝑟𝑜𝑜𝑚 𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑚 𝐾𝑖𝑡𝑐ℎ𝑒𝑛 𝑆𝑡𝑜𝑟𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
𝐵𝑒𝑑𝑟𝑜𝑜𝑚 0.01 0 0 0 0 0
𝐵𝑎𝑡ℎ𝑟𝑜𝑜𝑚 0 0 0 0 0 0

𝐿𝑖𝑣𝑖𝑛𝑔𝑟𝑜𝑜𝑜𝑚 0 0 0.98 0 0 0
𝐾𝑖𝑡𝑐ℎ𝑒𝑛 0 0 0 0 0 0
𝑆𝑡𝑜𝑟𝑒 0 0 0 0 0 0

𝑂𝑢𝑡𝑠𝑖𝑑𝑒 0 0 0 0 0 0.01 ]
 
 
 
 
 
 

 

6.2.2. Model Adaptation 

The behaviour model of the monitored person is updated on a weekly basis to 

incorporate the latest observed behaviour of the person into the model. This allows the model 

to adapt to any behavioural changes that are not necessarily abnormal behaviours. To 

demonstrate this ability, we performed an experiment in which we merged the two user 

profiles (profile A and profile B) into a single user profile that simulates a person having a 

steady behaviour during an initial period (represented as profile A) and then changes his 

behaviour and follows different daily profile that extremely varies from the previous one 

(represented as profile B). To look at the changes during the experiment, we selected the first 

segment of the day (i.e. hours (0-8]) and focused on the person’s behaviour in the bedroom 

only. Firstly, the person followed the daily routine of user profile A, which means spending 

most of the time sleeping in the bedroom during this segment of the day, and then the person 

changed his behaviour and followed the daily routine of the user profile B, which means no 

sleeping during this segment of the day, and therefore not being detected in the bedroom 

during this time segment (i.e. hours (0-8]). Figure 6-2 shows the obtained results of this 

experiment. 
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Figure 6-2: Learning Adaptation- merging different behaviour profiles 

As shown in Figure 6-2, the learning module was able to estimate the behaviour of the 

monitored person during the first period of the experiment (profile A), giving high stay 

probability estimates for staying in the bedroom in this segment of the day.  Then the 

behaviour of the person has changed gradually to new user behaviour (profile B). This 

happened in clear distinguished four steps that represent the length of the learning window 

(4-weeks window). As the learning window gets shifted weekly, the model is updated and 

adapted gradually to the new daily routine of the monitored person. This ability shows how 

the learning module can adapt its internal behaviour model automatically and perform online 

and continuous learning of the user’s behaviour. 

6.3. The Detection Module 

The estimator and the automaton in the detection module have multiple parameters 

that need to be tuned properly in order to get the desired results. In the following, we present 

the experimental results that we performed to optimise these parameters. The parameters are: 

 The window length of the low-pass filter used for smoothing the Location Likelihood 

ln  in the estimator and generating smoothed Location Likelihood gn (Figure 4-3). 

 The normal timeout (N1) used to control the transition between the states “Normal” 

and “Potential abnormal” in the automaton (Figure 4-6). 

 The abnormal timeout (N2) used to indicate the transition to “Abnormal” state in the 

automaton (Figure 4-6). 

 The threshold value used for abnormality detection. 
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6.3.1. Parameters Optimization 

Figure 6-3 shows the results of the parameters optimisation experiment with respect 

to the performance metrics (Chapter 5, Section 5.4). The experiment was performed to select 

the optimal values for the parameters. As shown in the figure, the ADD results vary based on 

the setting of the parameters, while the results of the average weekly false alerts show a slight 

difference and the ACT results have no variations as the settings of the parameters change. 

 

Figure 6-3: Detection Module - Parameters Optimisation - automaton 

Based on the results of this experiment we chose the best values. We set the window 

length of the low-pass filter in the estimator to 10 minutes, the normal timeout in the 

automaton N1 to 5 minutes, and the abnormal timeout in the automaton N2 to 10 minutes. 

These values have been used to obtain the final results of the detection module throughout the 

experiments. 

6.4. Anomaly Detection Delay (ADD) 

This section presents the obtained results of the Anomaly Detection Delay (ADD) on 

the datasets used in the experiments. The aim of this performance metric, as described in 
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Chapter 5, is to evaluate the responsiveness of the detection module in terms of the minimum 

time required to detect an anomaly (abnormal behaviour). Figure 6-4 illustrates the ADD 

results on the datasets, showing the results of the estimator and the automaton, respectively. 

The figure shows the ADD results of detecting the “LessSleeping” abnormal behaviour in all 

the datasets. As the threshold increases, the ADD result slightly decreases in the three datasets. 

 

Figure 6-4: ADD results - Estimator and Automaton 

Figure 6-5 illustrates the ADD results after applying the rule-based classifier into the detection 

module. A similar trend is also shown in the figure, however, there is no significant effect of 

the threshold value on the obtained results. 
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Figure 6-5: ADD results - Rule-based 

The ADD results after applying the rule-based classifier are better because this 

classifier incorporates the other dimensions of the model besides the consideration of the 

“potential abnormal” state from the automaton, as shown in the flow chart diagram of the 

rule-based classifier (Figure 4-7). This allows the detection module to detect the abnormal 

behaviour much faster, considering the other dimensions to confirm the detection. The 

description of this classifier is presented in Chapter 4, section 4.5.3. 

Table 6-3 presents a summary of the ADD results compared to some approaches from 

the state of the art. Our approach outperforms the other approaches and detects the abnormal 

behaviour much faster, producing the least detection delay. 

Table 6-3: Summary of ADD (minutes) results compared to state of the art (threshold 0.25) 

 hn Zn Outn [64] [65] 

Profile A 4 14 8 - - 

Profile B 6 16 10 - - 

Aruba 8 18 12 23 200 

6.5. Anomaly Confirmation Time (ACT) 

The following are the obtained results of the Anomaly Confirmation Time (ACT) on 

the datasets used in the experiments. The aim of this performance metric, as described in 

Chapter 5, is to evaluate the ability of the developed system in terms of the time taken to 
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confirm the detection of the abnormal behaviours. Figure 6-6 illustrates the ACT results on 

the datasets, showing the results of the estimator and the automaton, respectively. The figure 

shows the ADD results of detecting the “LessSleeping” abnormal behaviour in all the datasets. 

 

Figure 6-6: ACT results- Estimator and Automaton (no significant variations - Profile A & B) 

Figure 6-7 illustrates the ACT results after applying the rule-based classifier. As 

shown in the ACT figures, the results did not change significantly as the threshold value 

changes. The results on the two user profiles of the synthetic data show similar results (more 

than 7 hours of confirmation time) while the results on the Aruba dataset show shorter 

confirmation time (5 hours on average). However, the obtained ACT results ,in general, show 

enough time to confirm the detection of the abnormal behaviour, the “LessSleeping” in this 

case. 
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Figure 6-7: ACT results - Rule-based (no significant variations - Profile A & B) 

6.6. Average number of False alerts (FP) 

Figure 6-8 illustrates the obtained results of the average weekly false positive detection 

of the system on the datasets used in the experiments. The results on the synthetic data show 

similar behaviour for the two user profiles: as the threshold value changes, a low number of 

false alerts were generated (automaton results); on the other hand, the results on the Aruba 

dataset show high rates of false alerts. We believe that this high rate of false alerts is due the 

fact that the Aruba dataset includes days where the monitored person received multiple visits 

from her relatives during the experiment period. This may affect the accuracy of the learned 

behavioural model of the monitored person and lead to an increase in the number of false 

detections generated by the system. 
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Figure 6-8: Avg. Weekly FP results - Estimator and Automaton 

Figure 6-9 illustrates the results of the average weekly false alert detection of the 

system after applying the rule-based classifier. It shows a steady rate of false alerts as the 

threshold value changes. The results show a lower rate of false alert on the synthetic data and 

a significant reduction in the false alert results on the Aruba dataset. The rule-based classifier 

incorporates some of the other dimensions of the behaviour model to provide the final 

detection results. This enriches the ability of the detection module to differentiate the 

abnormal behaviour from the normal routine. The details of the rule-based classifier are 

provided in Chapter 4. 

 

Figure 6-9: Avg. Weekly FP results - Rule-based 



Chapter 6 - Results and Discussions 

 79 

Table 6-4 presents a summary of the results of the average number of weekly false 

alerts compared to some approaches from the state-of-the-art which have similar objectives. 

The other approaches mainly focus on detecting falls and long inactivity periods. In the table, 

we present the results of the estimator (hn), automaton (Zn), and the rule-based classifier (Outn), 

respectively. 

Table 6-4: Summary of Avg. Weekly FP results compared to state of the art (threshold 0.25) 

 hn Zn  Outn [64] [65] 

Profile A 9.8 2.6 1.8 - - 

Profile B 9.5 1.5 0.7 - - 

Aruba 57 31 11.16 20.7 1.23 

From the obtained results of the average number of false alerts, the results after 

applying the rule-based classifier are better than the estimator and the automaton results. We 

achieved a lower number of weekly false alerts on the synthetic data on the two profiles. 

However, on the Aruba dataset, we still suffer from higher rates compared to other 

approaches. The presented results in the table are selected using 0.25 threshold value on the 

datasets of the “LessSleeping” anomaly. This is relatively due to the multiple visits of the 

relatives that the monitored resident received during the data collection phase of the Aruba 

dataset. These visits caused the learned model to be a bit fuzzy, not reflecting exactly the daily 

routine of the monitored resident. We intend, as future work, to include a more reliable 

method to eliminate these visits as a pre-processing step before learning the daily behaviour 

of the monitored person. 

6.7. Sensitivity of the learning window size 

Figure 6-10 shows the obtained results of the Anomaly Detection Delay (ADD) and 

Anomaly Confirmation Time (ACT) as well as the average number of false alerts (FP) as a 

function of the learning window size. We performed this experiment on the synthetic dataset 

of the user Profile A with windows of size 2, 3, and 4 weeks. The size of learning window 

specifies the required initial and sufficient period to build valid behaviour model for the 

monitored person. 
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Figure 6-10: Sensitivity of learning window size 

As illustrated in Figure 6-10, no significant change occurs in the obtained results as 

the size of the learning window increases, as illustrated in the ADD and ACT results. 

However, the results of the weekly number of false alert show slight reduction as the learning 

window size increases. In the figure, we present the effect of the learning window size on the 

results of the estimator (hn), automaton (Zn) and the rule-based classifier (Outn). The presented 

results are selected using 0.25 threshold on the datasets of the “LessSleeping” anomaly. 

6.8. Classification of Abnormal behaviour 

The anomaly classification results are presented in Table 6-5. The values in the table 

illustrate the classification percentage results on the pre-defined abnormal behaviours (Table 

6-2) to show how correctly the detection module was able to identify these abnormal 
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behaviours using the rule-based classifier. The results were obtained using 0.25 threshold in 

the detection module. 

Table 6-5: Classification of Abnormal behaviour results 

Dataset OverSleeping LessSleeping NotBackHome Dead 

Profile A 96.26% 97.86% 93.80% 70.69% 

Profile B 69.72% 65.37% 74.72% 23.24 

The Aruba 81.97% 91.94% 34.71.80% 83.12% 

As shown in Table 6-5, the applied rule-based classifier in the detection module was 

able to correctly classify the abnormal behaviours with high classification accuracy in most 

of the cases on the two datasets (synthetic and the Aruba), expect for the “ Dead” behaviour 

on the user profile B of the synthetic data and the “NotBackHome” behaviour on the Aruba 

dataset. These abnormal behaviours were a bit tricky and difficult to differentiate. The user 

Profile B of the synthetic data was designed particularly for a “Nightly” person who usually 

sleeps during the day and goes outside in the midnights. The classification results of the 

“Dead” behaviour for this profile was mostly misclassified as “LessSleeping”. The presence 

of the monitored person at any rooms, other than bedroom, during the day would be 

misclassified and considered as “LessSleeping” behaviour. On the Aruba dataset, the 

“NotBackHome” behaviour was mostly misclassified as “normal” behaviour. It was difficult 

for the rule-based classifier to differentiate the time when the monitored person goes outside. 

These results introduce the need for additional features to be included in the detection module 

to correctly classify the abnormal behaviours. The classification experiments on the synthetic 

datasets were repeated three times for each abnormal behaviour and here we present the 

average of obtained results. 

6.9. Discussion 

The defined performance metrics in Chapter 5 describe the evaluation approach of the 

results from an implementation perspective. We used these metrics to evaluate the viability 

of the developed system on the synthetic datasets as well as on the real-life dataset (The 

Aruba). Our approach achieves the minimum Anomaly Detection Delay (ADD) and detects 

the anomaly much faster than other approaches which produce longer detection delay (Table 

6-3). Our approach also achieves, on average, good Anomaly Confirmation Time (ACT) that 

is considered high enough to confirm the detection of any abnormal situations, with more than 
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5-hours confirmation time. Our approach also achieves a lower number of weekly false alerts 

on the synthetic data (Profile A & Profile B), however, on the Aruba dataset we still suffer 

from higher rates compared to other approaches. The resident individual of the Aruba dataset 

received some visits during her stay in the apartment which may make her daily routine a bit 

fuzzy with multiple irregular motions that were most probably caused by the visitors. 

Although we performed pre-processing step on the Aruba dataset to remove those visit days 

(Chapter 5, Section 5.1.2.1), the obtained results on the Aruba dataset still are not as good as 

the results on the synthetic datasets. In fact, the pre-processing step was done in an 

unsupervised way with no prior knowledge or ground truth to confirm this step. More 

advanced pre-processing method to detect the visit days is required to enhance the dataset 

before learning the behaviour of the monitored person.
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 Conclusion 

In this chapter, a brief summary of the main findings of this thesis is given, and its 

novel contributions are outlined as well as some limitations and topics for future work. 

7.1. Summary 

We have presented a system to automatically learn and build an individual model of 

the daily mobility behaviour of an older adult living alone at home environment. The system 

uses location observations collected from low-cost, non-intrusive PIR motion sensors to track 

the mobility of the monitored person and to detect unusual mobility habits. No prior 

assumptions have to be made about the typical daily behaviour of the monitored person before 

applying the system. The system can adapt its internal behaviour model to slight and slow 

shifts in behaviour such as seasonal changes and also to different people having different daily 

behaviours, such as someone usually sleeping all morning or staying outside the home during 

the nights. The system provides abnormal alarm notifications in quasi-real time, in contrast 

to most of the existing behavioural models and also reduces the rate of wrong detection and 

false alert notifications. 

7.2. Limitations 

The following are some of the identified limitations of this research work: 
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 The current version of the system does not properly support the detection of unusual 

mobility habits that happen due to falls or unconscious long stay during sleeping time. 

This kind of unusual behaviour would not be detected before 7-8 hours (the average 

sleeping time of a person). 

 The detection of “Dead” state at bedroom might be considered oversleeping and 

therefore, will be detected only after usual sleeping time as well. 

 The rate of false alarms in the system is a concern, and dealing with them requires 

manual intervention and support from the caregivers/relatives. 

 The developed system is designed to be used mainly for monitoring the behaviour of 

a single user living alone at home, it does not take into account the presence of external 

people at home when leaning the behavioural model of the monitored person. 

7.3. Future work 

The current version of the detection module in the system uses fixed threshold 

classifier to detect the presence of abnormal behaviour. Whenever the estimated location 

likelihood drops to values lower than the threshold, an indicator of an abnormal behaviour is 

initiated. It would be much better to implement an adaptive method to select the threshold 

value based on the learned behaviour of the monitored person in each time of the weekdays. 

Moreover, the current version of the learning module assumes instantaneous transitions 

between rooms. This assumption can be further enhanced by considering the non-

instantaneous room-to-room transitions when learning the underlying behaviour model. 

Moreover, the learning module can also be enhanced by developing a method to ignore the 

detected anomalous observations while learning the behaviour model. This step helps avoid 

poisoning the learned model with anomalous observations that are not part of the daily 

mobility habits of the monitored person. In addition, the detection of visit days as a pre-

processing step in the learning module would be of much help to ignore those days during the 

model learning. A recent work on this topic can be found in [88]. Finally, the consideration 

of false location detection by the PIR sensors (false detection due to, for instance, heated air 

or other obstacles). A method to exclude the wrong location detection will increase the 

correctness of the learned model. 
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Appendices 

Appendix A. Synthetic Data Generator 

We developed a synthetic data generator to simulate the daily room-to-room 

transitions and stays habits of an elderly person living alone at home environment. The 

generated data represent the events when the monitored person moves between rooms or 

causes movement while staying in a room. Each row in the data represents a time stamped 

observation to register the movement event of the person (sensor’s activation). The software 

is a Java-based standalone application which has the ability to be configured for any kind of 

home layout that consists of multiple rooms and places. 

I. Features 

The main features of the data generator can be summarised as follows: 

 It has an ability to be configured for any home layout and generate synthetic 

data for any period of time (variable size of datasets). 

 It allows the data to be generated according to user profiles, giving the ability 

to evaluate different users with totally different behaviour. 

 It allows the segmentation of the day into time intervals and then gives the 

possibility to describe the user’s behaviour within each interval in a 

probabilistic way. 

 The generated observations are produced in a random fashion; uniformly 

distributed in time. 
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 The observations are time stamped and the generation’s frequency is based on 

the time interval of the day; each interval can have a different range of 

frequency (e.g. 1-10 minutes or 1-5 hours). 

 It gives an ability to inject artificial anomalies that represent behavioural 

changes or deviations. 

II. How it works 

Firstly, the daily stay habits of the person that we would like to monitor should be 

described in a user’s profile matrix. The matrix contains estimated stay probabilities that 

represent how probable the monitored person tends to stay in each room of the house within 

each time interval. An example of a user’s profile matrix is shown below. As illustrated in 

this particular matrix, the day is divided into three intervals; each is an 8-hour segment. The 

length and number of the intervals are configurable and can be set to different values. The 

example here is based on the home layout that is shown in Figure 4-1. 

[

𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍/𝒓𝒐𝒐𝒎 𝑩𝒆𝒅𝒓𝒐𝒐𝒎 𝑩𝒂𝒕𝒉𝒓𝒐𝒐𝒎 𝑳𝒊𝒗𝒊𝒏𝒈𝒓𝒐𝒐𝒎 𝑲𝒊𝒕𝒄𝒉𝒆𝒏 𝑺𝒕𝒐𝒓𝒆 𝑶𝒖𝒕𝒔𝒊𝒅𝒆
𝟎 − 𝟖 0.96 0.01 0.03 0 0 0
𝟖 − 𝟏𝟔 0.1 0 0 0 0 0.9
𝟏𝟔 − 𝟐𝟒 0.02 0 0.95 0 0 0.03

] 

The values in the matrix are based on the user’s behaviour that we want to simulate. 

In this example, we are simulating a user’s profile for an elderly person, and particularly we 

are simulating three different behaviours of the person: sleeping in the bedroom, being out of 

the home, and staying in the living room. This person usually sleeps during the first segment 

of the day (i.e. 0-8 interval) and accordingly, high stay probability is given to the stay at the 

bedroom. The person goes outside of the house during the second segment of the day (i.e. 8-

16 interval) and according, outside having the highest stay probability within that segment. In 

the last segment of the day (i.e. 16-24 interval), the person usually spends most of the time in 

the living room, and therefore the highest stay probability is assigned to the stay in the living 

room. 

Secondly, the data generator runs repeatedly for a predefined period (e.g. 4 months) 

and generates observations randomly every 1 to 10 minutes; uniformly distributed in time. 

However, for the day’s segments in which the person is sleeping or being outside of the house 

the data generator is designed to generate fewer observations with longer time between each 
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pair of observations (e.g. 1 to 8 hours), in order to simulate those behaviours in a more realistic 

way. 

Starting from the current time instance, in every running cycle, the data generator 

produces a random stay probability, uniformly distributed. This probability is compared 

against the stay probabilities of the day’s segment that corresponds to the current time instance 

of the cycle. The comparison is done as follows: 

 The data generator distributes the stay probabilities of the selected day’s segment 

into ranges according to their probability values, as illustrated in Figure_Apx 1. 

 The produced stay probability gets compared against the distributed ranges and the 

room that corresponds to the range in which the produced stay probability fits in is 

selected to be the room of the generated observation. 

 Finally, the timer of the cycle is updated to take new time instance for the next 

running cycle. 

 

Figure_Apx 1: User's Profile - First day's segment (0-8) 

III. Injecting Artificial Anomalies 

The data generator also is designed to inject artificial anomalies that simulate the 

deviations in human behaviours. This works by stopping the normal flow of the generator at 

a pre-defined date and time and then set the room of the generated observation to unusual 

room/place different from the normal behaviour. For the experiments, we designed the 

generator to inject a set of anomalies (see section 5.2). Here we define them from a data 

generator point of view. Each of these anomalies may have negative implications on the health 

status of monitored person and might be an early indication for some health-declines. 

 OverSleeping: being found in the bedroom for an extended period of time longer 

than the usual sleeping time of the monitored person. 

 LessSleeping: being found not at bedroom during the sleeping time for relatively 

long time. 

 NotbackHome: being outside the home for extended period of time and not back 

on time, according to the person’s profile. 
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 Dead: being detected in a single room/place in the home for a long time; longer 

than usual.



Appendix B 

99 

 

Appendix B. System Implementation 

Figure 4-1 illustrates the overall architecture of the developed system which consists 

of multiple modules; each module is a separate Java thread that runs continuously to perform 

a single task. 

 Observation Buffer: This module is responsible for receiving the observations from 

the sensor devices. It arranges the observations in the queue buffer according to 

their arrival timestamps. 

 Learning Module: This module uses a time-based sliding window to process the 

observations from the queue buffer and then learns and builds the underlying 

behavioural model weekly. 

 Detection Module: This module runs asynchronously from the learning module and 

in regular time instances (e.g. every one-minute) to generate detection results. 

I. Class diagram 

The following is the class diagram of the developed System. We show only the main 

classes of the system. The links in the diagram illustrate the interaction between the classes. 

 

Figure_Apx 2: Developed System's Class Diagram 

II. Main Classes 

 Observation Feeder: It is used to simulate the sending of the observations from the 

sensor devices. The observations are read from a file previously generated by the 

Synthetic Data Generator. However, in a real system, this module is replaced by the 

set of PIR sensors installed in the house. 

ObservationBuffer 

Learner 

Estimator 

Observation 

Stay 

ObservationFeeder 

AnomalyClassifier 

Model 
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 Observation Buffer: The main storage for the sensors' observations in the system. 

It keeps storing observations and provides means to access them from other 

modules. 

 Observation: It holds the definition of the observation in the system. An observation 

is a combination of a timestamp and associated room where the location of the 

person was detected. 

 Stay: It holds the definition of the stay concept in the system; a stay is a time elapsed 

between any pair of consecutive observations. 

 Model: it holds the structure of the underlying behavioural model. The structure of 

the model is divided into seven parts (one for each day of the week). Each part is 

further divided into equal intervals (e.g. one-hour intervals). 

 Learner: This is the main class in the learning module. It builds and updates the 

model on a weekly basis. It also computes the stay between any pair of observations 

and handles cross interval stays. 

 Estimator: This is the main class in the detection module. It runs periodically (e.g. 

every one-minute) and generates location likelihood estimate for the latest detected 

location of the monitored person. Then it uses time-based sliding window (low-

pass filter) to smooth out the generated location likelihood. The smoothed location 

likelihood afterwards is passed through an automaton to figure out the state of the 

detection. 

 Anomaly Classifier: classifies the detected anomaly state and produces the final 

detection results.
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Appendix C. Extended Results 

In this appendix, we present extended details of the obtained results from the 

experiments. These results complement the presented results in Chapter 6, with more 

elaboration on the obtained results of all of the targeted abnormal behaviour. The results are 

presented with respect to the performance metrics and the defined abnormal behaviours. We 

first show the results of the synthetic datasets of the two user profiles (profile A and profile 

B) and then we proceed to the results of the Aruba dataset.  Finally, we present all the datasets 

together for comparison. We present the results of the automaton as well as the results after 

applying the rule-based classifier. 

I. ADD 

Figure_Apx 3 illustrates the obtained ADD results on the synthetic data of the user 

profile A. The results show the ADD with respect to each of the defined abnormal behaviours. 

The results after applying the rule-based classifier show no significant variations as the 

threshold changes while the automaton results show slight decrease as the threshold changes. 

The results of the “LessSleeping” abnormal behaviour showed the lowest ADD results among 

the other abnormal behaviours. 

 

Figure_Apx 3: ADD results - Synthetic dataset - Profile A 
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Figure_Apx 4 illustrates the obtained ADD results on the synthetic data of the user 

profile B. The results show similar trend as for the user profile A on the synthetic data. 

 

Figure_Apx 4: ADD results - Synthetic dataset - Profile B 

Figure_Apx 5 illustrates the obtained ADD results on the Aruba dataset. The results 

were higher than the results on the synthetic datasets on both the automaton and the rule-

based classifier. However, similar to synthetic data, no significant variations were detected, 

as the threshold changes, on the results after applying the rule-based classifier. 
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Figure_Apx 5: ADD results - The Aruba dataset 

Figure_Apx 6 shows a comparison of the obtained ADD results on the synthetic data 

(profile A and profile B) against the Aruba dataset. The presented results in the figure shows 

the automaton results of each of the define abnormal behaviours before applying the rule-

based classifier. As shown, the ADD results were lower on the synthetic data than the Aruba 

dataset, with slight variations as the threshold value changes. 
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Figure_Apx 6: ADD results - Synthetic and Aruba - Automaton 

Figure_Apx 7 shows the ADD results after applying the rule-based classifier. The 

graphs in the figure present a comparison between the ADD on the synthetic data against the 

Aruba dataset. The results show no significant variations as the threshold value changes and 

the results of the “LessSleeping” abnormal behaviour showed the lowest obtained ADD 

among the other abnormal behaviours. 
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Figure_Apx 7: ADD results - Synthetic and Aruba - Rule-based 

II. ACT 

Figure_Apx 8 shows the obtained ACT results of the performed experiments on all 

the defined abnormal behaviours on the synthetic data of the user profile A. As shown in the 

graphs, there were no significant differences between the ACT results of the automaton and 

the results after applying the rule-based classifier, except the results of the “Dead” abnormal 

behaviour. The ACT results of the automaton were higher than the rule-based classifier. 

However, the obtained results show enough time  to confirm the detection of the abnormal 

behaviour. 
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Figure_Apx 8: ACT results - Synthetic dataset - Profile A 

Figure_Apx 9 illustrates the obtained ACT results on the synthetic data of the user 

profile B. The results show similar trend as the ACT results of the user profile A. No 

significant variations between the results of the automaton and the results after applying the 

rule-based classifier. 
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Figure_Apx 9: ACT results - Synthetic dataset - Profile B 

Figure_Apx 10 shows the obtained ACT results on the Aruba dataset. The results show 

similar trends as the synthetic data, with no significant variations between the results of the 

automaton and after applying the rule-based classifier. However, the results of the 

“NotBackHome” abnormal behaviour show some fluctuation, mainly due to the fuzziness of 

the Aruba dataset, as described before. Nevertheless, the obtained ACT results also show 

enough time to confirmed the detection of the abnormal behaviours. 
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Figure_Apx 10: ACT results - Aruba dataset 

Figure_Apx 11 shows the obtained ACT results of the automaton on the synthetic data 

compared to the Aruba dataset. The results on the synthetic data show higher confirmation 

time than the results on the Aruba dataset. 
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Figure_Apx 11: ACT results - Synthetic and Aruba - Automaton 

Figure_Apx 12 shows the obtained ACT results after applying the rule-based 

classifier. It shows a comparison between the results on the synthetics dataset and the Aruba 

dataset. The results show no significant variations as the threshold changes. However, the 

obtained ACT results were enough to confirm the detection of the abnormal behaviours. 
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Figure_Apx 12: ACT results - Synthetic and Aruba - Rule-based 

III. FP 

Figure_Apx 13 illustrates the obtained results of the average number of false alerts on 

the synthetic data of the user profile A. The automaton results show some variations while 

the results after applying the rule-based classifier show steady trend as the threshold value 

changes. 
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Figure_Apx 13: Avg. Weekly FP - Synthetic dataset - Profile A 

Figure_Apx 14 illustrate the obtained results of the average number of false alert on 

the synthetic data of the user profile B. Similar to the results of the user profile A. The 

automaton results vary while the results after applying the rule-based classifier show no 

significant variations as the threshold value changes. 
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Figure_Apx 14: Avg. Weekly FP - Synthetic dataset - Profile B 

Figure_Apx 15 shows the obtained results of the average number of false alert on the 

Aruba dataset. The results are higher than the results on the synthetics datasets. The automaton 

results change as the threshold changes while the results after applying the rule-based 

classifier show no variations. 
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Figure_Apx 15: Avg. Weekly FP results - Aruba dataset 

Figure_Apx 16 illustrates a comparison of the obtained results of the average number 

of false alerts on the synthetic data compared to the Aruba dataset. The presented results in 

the figure show the automaton results before applying the rule-based classifier. The results 

show low and steady number of false alerts on the synthetic data and higher and fluctuated 

number of false alerts on the Aruba dataset. 
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Figure_Apx 16: Avg. Weekly FP results - Synthetic and Aruba - Automaton 

Figure_Apx 17 illustrates the obtained results of the average number of false alert 

generated by the system after applying the rule-based classifier. The results compare between 

the synthetic data and the Aruba dataset. The results on the synthetic data show lower number 

of false alert than the results on the Aruba dataset. However, in both datasets, there were no 

significant variations on the obtained results as the threshold values changes. 

 

 



Appendix C 

 115 

 

Figure_Apx 17: Avg. Weekly FP results - Synthetic and Aruba - Rule-based 

 


