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Abstract: The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one 
of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of 
this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technol-
ogy to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue 
to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA 
complexation, high transfection efficiency and enhanced pharmacokinetic properties. 
This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the 
nucleic acids’ delivery process, and current strategies to improve therapeutic efficacy. Additionally, 
lipid-based nanocarriers are described, and lessons learned from the relation between biophysical 
properties and biological performance of the dioctadecyldimethylammonium:monoolein (DO-
DAX:MO) system are explored.  
Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic 
acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nev-
ertheless, several issues related to delivery must be overcome before RNAi therapies reach their full 
potential, namely target-cell specificity and endosomal escape. Understanding the relationship be-
tween biophysical properties and biological performance is an essential step in the gene therapy field. 

Keywords: Cationic liposomes, monoolein, siRNA delivery, DODAB, DODAC, PEGylation. 

1. INTRODUCTION 

The discovery of RNA interference (RNAi) mechanisms 
has opened a world of new opportunities in the field of gene 
therapy, providing alternatives to the treatment of diseases 
for which there are no drugs available. Although mecha-
nisms associated with RNAi are well established, this tech-
nology still faces important challenges before it can be an 
effective therapeutic alternative. The delivery of nucleic acid 
sequences constitutes one of the most important bottlenecks 
to RNAi therapeutic approaches, not only concerning stabil-
ity and protection of the genetic material in physiological 
conditions, but also regarding the ability to target specific 
cells and release the therapeutic payload onto their cyto-
plasm. Several strategies have been explored to overcome 
each of these barriers, including PEGylation to provide  
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stability in physiological conditions, incorporation of target 
molecules to potentiate active targeting, or inclusion of stim-
uli-responsive molecules to improve nucleic acids endoso-
mal escape. This review describes RNAi as a therapeutic 
approach, as well as the challenges faced by it, namely the 
nucleic acids delivery process, together with current strate-
gies to overcome some of these challenges. Liposomes are 
exploited as delivery systems due to their great potential as 
nanocarriers [1]. The influence of the physicochemical char-
acteristics onto the biological performance of the nanosystem 
is elucidated by the example of a liposomal system com-
posed by the cationic lipids dioctadecyldimethylammonium 
bromide or chloride (DODAB/DODAC) and the neutral lipid 
monoolein (MO). 

2. POTENTIAL OF RNA AS A GENE THERAPY 
TOOL 

RNAi is a natural post-transcriptional gene silencing 
mechanism, by which double-stranded RNAs (dsRNAs) 
modulate the expression of target RNAs, in a sequence-
specific dependent manner. The first time an RNAi-type of 
phenomenon was reported in 1990 when Napoli and Jorgen-
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sen [2] obtained white petunias when trying to generate vio-
let ones. The authors attributed this effect to the “co-
suppressing” gene introduced into the cells. In 1992, a simi-
lar phenomenon was described for Neurospora crassa, when 
the introduction of homologous RNA sequences was re-
ported to cause “quelling” of the targeted endogenous gene 
[3]. The description of the same type of mechanism in ani-
mals was made by Guo and Kemphues [4], that found that 
both sense and anti-sense strands resulted in the degradation 
of par-1 mRNA in the nematode Caenorhabditis elegans (C. 
elegans). It was only in 1998 that Fire and Mello provided a 
common explanation for the silencing of endogenous genes 
by “co-suppression, quelling and sense mRNA” [5]. When 
the authors showed, in C. elegans, that gene silencing was 
triggered by a dsRNA sequence, the term “RNA interfer-
ence” was born. In 2001, the introduction of an artificial 
siRNA of 21 nucleotides (nt) was found to specifically block 
the expression of endogenous and heterologous genes in 
various mammalian cell lines [6], and in 2002 the therapeutic 
potential of siRNA was reinforced by McCaffrey et al., who 
demonstrated effective targeting of a sequence from hepatitis 
C virus by RNAi in vivo [7]. The importance of Fire and 
Mello’s work for the comprehension of RNAi cellular 
mechanisms was recognized in 2006 with the Nobel Prize in 
Physiology or Medicine. 

The RNAi mechanism is used in the context of gene 
therapy with the purpose to modulate the expression of genes 
involved in the development of diseases. An important ad-
vantage of this loss-of-function strategy is that, irrespective 
to its localization, virtually every single protein can be tar-
geted. Furthermore, antisense RNAs do not lead to genome 
modifications, since they are not integrated in DNA, decreas-
ing the safety concerns associated with therapeutic applica-
tions [8]. Frequent targets of this strategy are mutant tran-
scripts [9], viral infections [10] and molecular effectors on 
cancer [11-13] (Table 1). 

The potential of RNAi therapeutic approaches is demon-
strated by the several clinical trials with siRNAs (Table 2). 

2.1. RNA Interference Mechanisms 

(Fig. 1) shows a representation of the small interfering 
RNA (siRNA) and micro RNA (miRNA) RNAi pathways. 
MicroRNAs are derived from the genome and function as 
regulators of endogenous genes [37, 38]. The transcription of 
most miRNAs is typically performed by RNA polymerase II 
(RNA Pol II) into long primary transcripts (pri-miRNAs) of 
at least 1000 nt, with double-stranded hairpins and single 
stranded 5’- and 3’-terminal overhangs [37]. The miRNA 
lies within the pri-miRNA double-stranded stem. A nuclear 
microprocessor complex crops this pri-miRNA into 65-70 nt 
precursor miRNAs (pre-miRNA) that, after association with 
the transport facilitators Exportin-5 and RanGTP, are trans-
ported into the cytoplasm. The microprocessor complex, 
composed by Drosha and a protein cofactor with two double-
stranded RNA binding domains (dsRBDs), is responsible for 
the cleavage of the loop of the hairpin, and excision of the 
pri-miRNA into pre-miRNA [39]. 

Once in the cytoplasm, pre-miRNA is further processed 
into a mature miRNA duplex of 21-25 nt in length by the 

Dicer enzyme [40]. At this point, the siRNA and miRNA 
pathways converge, since siRNA is also processed from long 
dsRNAs by Dicer in the cytoplasm of the cells. Typically, 
21-25 nt dsRNAs are generated by Dicer, with 2-base 3’-
overhangs, hydroxyl groups at the 3’-ends, and phosphate 
groups at the 5’-ends. This size is long enough to offer a 
sequence complexity sufficient for selective binding to a 
specific gene in the genome [40]. The sources of siRNA are 
long, linear, perfectly base-paired dsRNAs, endogenously 
produced or introduced directly into the cytoplasm. Addi-
tionally, siRNAs can also be directly introduced into the cy-
toplasm of the cells or expressed from gene expression cas-
settes embedded in DNA plasmids or viral vector genomes 
[41]. 

Once in the cytoplasm, the resulting double-stranded 
siRNA or miRNA is incorporated by the minimal 
RNA-induced silencing complex-loading complex (RISC-
loading complex) (Fig. 1) [37, 39, 41, 42], where the two 
strands of dsRNA unwind, the guide strand is loaded into 
AGO protein while the passenger strand is discarded, and a 
functional RISC is generated [37, 39, 41, 42]. RISC contains 
only the RNA antisense guide strand complementary to the 
target mRNA. The strand selection is dictated by the ther-
modynamic stability of the duplex ends: in the miRNA and 
siRNA pathways, the strand preferentially loaded into AGO 
protein has the less stable 5′-end [39]. The miRNA strand 
that associates with AGO proteins is called miRNA strand, 
while the other is discarded (miRNA*). 

Finally, nucleotides 2–6 of the guide strand, named seed 
sequence, initialize binding to the target mRNA. When per-
fect complementarity exists, the target mRNA molecule is 
cleaved in a very precise way: the phosphodiester linkage 
between the target nucleotides that are base-paired to siRNA 
residues 10 and 11 (counting from the 5’-end) is cleaved to 
generate products with 5’-monophosphate and 3’-hydroxyl 
termini [43]. The target dissociates after cleavage, and RISC 
is free to cleave additional mRNAs. While siRNA has per-
fect complementarity to the target mRNA, miRNA only 
binds imperfectly to mRNA, causing translational repression 
without endonucleolytic cleavage. This partial mismatched 
binding allows each miRNA to interact with many target 
mRNAs [37, 41]. 

3. CHALLENGES IN RNA INTERFERENCE THERA-
PIES – THE PROCESS OF SIRNA DELIVERY 

Despite the extensive knowledge about the RNAi mecha-
nism, there are still several challenges that must be overcome 
for the safe and efficient application of this loss-of-function 
technology as a therapeutic strategy. RNAi is an essential 
mechanism of cell regulation, and minor alterations in RNAi 
machinery can have major consequences in cellular proc-
esses. The off-target effects associated with dsRNA intro-
duction into cells can be divided into three classes: saturation 
of the endogenous RNAi machinery [44]; miRNA-like off-
target effects [45]; and induction of inflammatory responses 
due to activation of Toll-like receptors (TLRs) [46]. Other 
obstacles to RNAi as an effective therapeutic option include 
resistance to treatment [47], efficiency of the silencing effect 
compromised by the recognition of endosomal compartment 
[8, 48]. 
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Table 1. Examples of targets used in RNAi-based approaches to cancer treatment. 

Pathway Molecular Target Cancer Model References 

Cyclin B Prostate [14] 
Cell cycle 

PLK1 Breast [15, 16] 

MAD2 Colon [17] 

EPHA2 Ovarian [18] 

AKT1 Prostate 

AKT2 Prostate 

AKT3 Prostate 

[19] 
Proliferation 

FAK Ovarian [20] 

BCL-2 Prostate [21] 

BCL-XL Prostate [22] 

MCL-1 Breast [23] 
Cell death and survival 

Survivin Prostate [24] 

VEGF Prostate [25, 26] 

PAR-1 Melanoma [27] 

CD31 Prostate [28] 

KLF-5 Lung carcinoma [29] 

Angiogenesis 

PLX1DC Ovarian [20] 

Cell senescence TERT Lewis lung tumor [30] 

E6/E7 Renal [31] 

EWS-FLI1 Ewing sarcoma [32] 

c-RAF Breast [33] 

c-MYC Melanoma [34] 

Oncogenes 

BCR-ABL Chronic myeloid leukemia [35] 

Resistance P-gp Breast [36] 

AKT1, 2, 3: protein kinase B 1, 2, 3; BCL-2: B-cell lymphoma 2; BCL-XL: B-cell lymphoma extra-large; BCR-ABL: breakpoint cluster region - abelson; CD31: cluster of differen-
tiation 31; E6/E7: human papillomavirus oncoproteins E6 and E7; EPHA2: receptor of ephrins 2; EWS-FLI1: ewing’s sarcoma–friend leukaemia virus integration 1; FAK: focal 
adhesion kinase; KLF-5: kruppel-like factor 5; MAD2: mitotic-arrest deficient 2; MCL-1: myeloid cell leukemia1; PAR-1: protease-activated receptor 1; P-gp: permeability glycopro-
tein; PLK1: Polo-like kinase 1; PLX1DC: plexin domain containing 1; TERT: telomerase reverse transcriptase; VEGF: vascular endothelium growth factor. 

The physicochemical properties of siRNA duplexes, 
namely large weight and size, high hydrophilicity and nega-
tive charge, restrict the binding to cellular membranes and do 
not allow naked siRNAs to enter cells by passive diffusion 
mechanisms [49]. Thus, endocytosis is the major route of 
siRNA internalization, with endosomal entrapment and 
lysosomal degradation important barriers for its therapeutic 
use. Even when siRNA escapes from endosomes, the viscos-
ity of the cytoplasm and the presence of organelles are still 
obstacles for its loading into the RISC complex. Inherent 
physicochemical properties of nucleic acids also imply that 
naked siRNA is quickly degraded by serum endonucleases 
[50], easily filtered from the glomerulus and rapidly excreted 
by the kidneys, resulting in a half-life of few minutes in 
plasma [45, 51]. Extravasation from blood vessels to target 

tissues constitutes another challenge because in most tissues 
capillary vessel walls are impermeable to large nucleic acids. 
Some exceptions are tumors or inflamed tissues, where blood 
vessels are leaky. Furthermore, the dense network of poly-
saccharides and fibrous proteins of the extracellular matrix 
limits migration and access to target cells. 

4. DEVELOPMENTS IN NANOCARRIERS FOR 
siRNA DELIVERY 

The targeted delivery of genetic material at controlled 
rates is a very attractive method, and has been strongly pur-
sued, given the importance to improve safety and efficacy. 
The ideal delivery method should promote high transfection 
efficiency, low cell toxicity, minimal effects on physiology 
and be reproducible [52].  
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Table 2. Clinical trials of siRNA-based therapeutics. Details of each trial can be found on www.clinicaltrials.gov. 

Target Disease siRNA Route Phase Sponsor Start-end 

VEGF Macular degeneration Bevasiranib (Cand5) IVT I * OPKO Health, Inc 2004-07 

VEGF Diabetic macular edema Bevasiranib (Cand5) IVT II * OPKO Health, Inc 2006-07 

VEGF Macular degeneration Bevasiranib (Cand5) IVT II * OPKO Health, Inc 2006-07 

VEGF AMD Bevasiranib (Cand5) IVT III ** OPKO Health, Inc 2007-09 

VEGF AMD Bevasiranib (Cand5) IVT 
III 
wd. 

OPKO Health, Inc Nov 2009- 

VEGFR1 AMD 
AGB211745 (siRNA-

027) 
IVT I/II * 

Allergan siRNA Therap. 
Inc. 

2004-07 

VEGFR1 Choroidal neovascularization 
AGB211745 (siRNA-

027) 
IVT II ** 

Allergan siRNA Therap. 
Inc. 

2007-09 

RTP801 AMD PF-04523655 (PF-655) IVT I * Quark Pharma 2007-09 

RTP801 
Diabetic retinopathy, Diabetes 

complications 
PF-04523655 (PF-655) IVT II ** Quark Pharma 2008-10 

RTP801 
Choroidal neovascularization, 

Diabetic retinopathy 
PF-04523655 (PF-655) IVT II * Quark Pharma 2009-11 

RTP801 Diabetic macular edema PF-04523655 (PF-655) IVT II * Quark Pharma 2012-13 

RSV-N gene 
Respiratory syncytial virus infec-

tions 
ALN-RSV-01 NN II * Alnylam Pharma 

2007 Jul-
Nov 

RSV-N gene 
Respiratory syncytial virus infec-

tions 
ALN-RSV-01 NN II * Alnylam Pharma 2008-09 

RSV-N gene 
Respiratory syncytial virus infec-

tions 
ALN-RSV-01 NN IIb * Alnylam Pharma 2010-12 

P53 
Injury of kidney, Acute renal fail-

ure 
I5NP (QP1-1002) IV I * Quark Pharma 2007-10 

P53 
Injury of kidney, Acute renal fail-

ure 
I5NP (QP1-1002) IV I ** Quark Pharma 

2008 - 
2010 

P53 
Delayed graft function, Other 

complications of kidney transplant 
I5NP (QP1-1002) IV I/II * Quark Pharma 2008-14 

K6A N171K Pachyonychia congenita TD101 I.I. I * 
Pachyonychia Congenital 

Project 
2008 Jan-

Aug 

RRM2 Solid tumors CALAA-01 IV I ** Calando Pharma 2008-12 

KSP and VEGF 
Advanced solid tumors with liver 

involvement 
ALN-VSP02 IV I * Alnylam Pharma 2009-11 

KSP and VEGF 
Advanced solid tumors with liver 

involvement 
ALN-VSP02 IV I * Alnylam Pharma 2010-12 

Apo B Hypercholesterolemia 
PRO-040201 (TKM-

ApoB) 
IV I ** 

Arbutus Biopharma 
(ABUS) 

2009-10 

PKN3 Advanced solid tumors Atu027 IV I * Silence Therapeutics 2009-12 

PKN3 Pancreatic ductal carcinoma Atu027 IV I/II * GmbH 2013-16 

Β2-AR 
Ocular hypertension, Open-angle 

glaucoma 
SYL040012 
(Bamosiran) 

Opht. I * Sylentis, S.A. 2009-10 

(Table 2) contd…. 
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Target Disease siRNA Route Phase Sponsor Start-end 

Β2-AR 
Ocular hypertension, Open-angle 

glaucoma 
SYL040012 
(Bamosiran) 

Opht. I/II * Sylentis, S.A. 2010-12 

Β2-AR 
Ocular hypertension, Open-angle 

glaucoma 
SYL040012 
(Bamosiran) 

Opht. II * Sylentis, S.A. 2012-13 

Β2-AR 
Ocular hypertension, Open-angle 

glaucoma 
SYL040012 
(Bamosiran) 

Opht. II * Sylentis, S.A. 2014-16 

Caspase-2 
Optic atrophy, Non-arteritic ante-

rior ischemic optic neuropathy 
QPI-1007 IVT I * Quark Pharma 2010-13 

Caspase-2 
Acute primary angle-closure, 

Glaucoma 
QPI-1007 IVT II * Quark Pharma 2013-15 

TTR TTR-mediated amyloidosis ALN-TTR01 IV I * Alnylam Pharma 2010-12 

TTR TTR-mediated amyloidosis ALN-TIR02 (Patisiran) IV I * Alnylam Pharma 2012-12 

TTR TTR-mediated amyloidosis ALN-TIR02 (Patisiran) IV II * Alnylam Pharma 2012-14 

TTR TTR-mediated amyloidosis ALN-TIR02 (Patisiran) IV II * Alnylam Pharma 2013-17 

TTR TTR-mediated amyloidosis ALN-TIR02 (Patisiran) IV II * Alnylam Pharma 2014-15 

  TTR-mediated Amyloidosis 
ALN-TTR02 
 (Patisiran) 

IV III* Alnylam Pharma 2013 – 17 

TTR TTR-cardiac amyloidosis 
ALN-TTRSC (Re-

vusiran) 
SC I ## Alnylam Pharma 2013-15 

TTR TTR-cardiac amyloidosis 
ALN-TTRSC (Re-

vusiran) 
SC II * Alnylam Pharma 2013-15 

TTR TTR-cardiac amyloidosis 
ALN-TTRSC (Re-

vusiran) 
SC II * Alnylam Pharma 2014-17 

TTR TTR-cardiac amyloidosis 
ALN-TTRSC (Re-

vusiran) 
SC III * Alnylam Pharma 2014-17 

KRAS G12D Pancreatic ductal adenocarcinoma siG12D LODER 
EUS bi-

opsy 
I * Silenseed Ltd. 2011-13 

KRAS G12D Pancreatic ductal adenocarcinoma siG12D LODER needle II ### Silenseed Ltd. 2017 

TRPV1 Ocular pain SYL1001 Opht. I * Sylentis, S.A. 2011-12 

TRPV1 Dry eye syndrome SYL1001 Opht. I/II * Sylentis, S.A. 2012-15 

Polo-kinase-1 
Solid tumors with liver involve-

ment 
TKM-080301 (TKM-

PLK1) 
IV I * National Cancer Inst. 2011-12 

Polo-kinase-1 
Neuroendocrine tumors, Adreno-

cortical carcinoma 
TKM-080301 (TKM-

PLK1) 
IV I/II * 

Arbutus Biopharma 
(ABUS) 

2010-15 

Polo-kinase-1 Hepatocellular carcinoma 
TKM-080301 (TKM-

PLK1) 
IV I/II * 

Arbutus Biopharma 
(ABUS) 

2014-16 

PCSK9 Elevated LDL-cholesterol ALN-PCS02 IV I * Alnylam Pharma 2011-12 

PCSK9 Elevated LDL-cholesterol ALN-PCSSC SC I * Alnylam Pharma 2014-15 

ZEBOV L polym. 
VP24, VP35 

Ebola virus infection TKM-100201 (TKM-
Ebola) 

IV I ** Arbutus Biopharma 
(ABUS) 

2012 Jan- 
Jul 

HSP47 Healthy ND-l02-s0201 IV I * Nitto Denko Corp. 2013-14 

HSP47 Moderate to extensive hepatic 
fibrosis 

ND-l02-s0201 IV I * Nitto Denko Corp. 2014-16 

(Table 2) contd…. 
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Target Disease siRNA Route Phase Sponsor Start-end 

HSP47 Ebola virus infection TKM-100802 IV I ** 
Arbutus Biopharma 

(ABUS) 
2014- 15 

AT Hemophilia A, Hemophilia B ALN-AT3SC SC I * Alnylam Pharma 2014-17 

AT Hemophilia A, Hemophilia B ALN-AT3SC SC I/II # Alnylam Pharma 2015 

E3 ubiquitin 
ligase Cbl-b 

Melanoma, Pancreatic cancer, 
Renal cell cancer 

APN401 IV I * Wake Forest Univ. 2014-16 

  
Pancreatic Cancer, Colorectal 

Cancer, Solid tumors 
APN401. IV I ## Wake Forest Univ. 2017 

DCR-MYC Hepatocellular carcinoma MYC IV I/II ## Dicerna Pharma 2014-16 

DCR-MYC 
Solid tumors, Multiple myeloma, 

Non-Hodgkin lymphoma 
MYC IV I ## Dicerna Pharma 2014-15 

siRNA-EphA2-
DOPC 

Advanced cancers EphA2 IV I ## 
MD Anderson Cancer 

Center 
2015 

TNFR:Fc Rheumatoid Arthritis tgAAC94 IA I* 
Targeted Genetics Corpo-

ration 
2004-2005 

hIFN-b Rheumatoid Arthritis ART-I02 IA I## Arthrogen 2018 

GDNF Parkinson’s Disease /AAV2-GDNF IC I# 
National Institute of Neu-
rological Disorders and 

Stroke (NINDS) 
2012 

NTN Parkinson’s Disease CERE-120: AAV2-NTN IC I* Ceregene 2005-2007 

NRTN Idiopathic Parkinson’s Disease CERE-120 IC I/II# Sangamo Therapeutics 2009 

NRTN Parkinson’s Disease CERE-120  IC II* Ceregene 2006-2008 

AADC Parkinson’s Disease VY-AADC01 IC I# Voyager Therapeutics 2013 

AADC Parkinson’s Disease 
Cohort1 
Cohort2 

IC 
I/II## Jichi Medical University 2015 

CLN2 
Batten Disease 

Late Infantile Neuronal Ceroid 
Lipofuscinosis 

AAV2CUhCLN2 
IC 

I# 
Weill Medical College of 

Cornell University 
2004 

CLN2 
Batten Disease 

Late Infantile Neuronal Ceroid 
Lipofuscinosis 

AAVrh.10CUCLN2 
IC 

I/II# 
Weill Medical College of 

Cornell University 
2010 

CLN2 
Batten Disease 

Late Infantile Neuronal Ceroid 
Lipofuscinosis 

AAVrh.10CUhCLN2 
IC 

I# 
Weill Medical College of 

Cornell University 
2010 

NGF Alzheimer’s Disease CERE-110 IC I* Ceregene 2004-2010 

CFTR Cystic Fibrosis 
Adeno-associated virus-

CFTR vector 
NN I* 

National Institute of Dia-
betes and Digestive and 

Kidney Diseases 
1999-2002 

RPE65 
Leber Congenital Amaurosis 

(LCA) 
AAV2-hRPE65v2 Opht I# Spark Therapeutics 2007 

RPE65 
Leber Congenital Amaurosis 

(LCA) 
AAV2-hRPE65v2 Opht I/II # Spark Therapeutics 2010 

RPE65 
Leber Congenital Amaurosis 

(LCA) 
AAV2-hRPE65v2 Opht III# Spark Therapeutics 2012 

(Table 2) contd…. 
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Target Disease siRNA Route Phase Sponsor Start-end 

GAA Pompe Disease rAAV1-CMV-GAA IM I/II* University of Florida 2010-2015 

GAA 
Late-Onset Pompe Disease 

(LOPD) 
rAAV9-DES-hGAA IM  I## University of Florida 2017  

SMN Spinal Muscular Atrophy Type 1 AVXS-101 IV I* AveXis, Inc. 2014 

SMN Spinal Muscular Atrophy Type 1 AVXS-101 IV III## AveXis, Inc. 2017 

SMN Spinal Muscular Atrophy AVXS-101 IT I## AveXis, Inc. 2017 

SMN Spinal Muscular Atrophy AVXS-101 IV III### AveXis, Inc. 2018 may 

FIX Hemophilia B AAV8-hFIX19 IV I** Spark Therapeutics 
2012 - 
2016 

FIX Hemophilia B 
AAV5-hFIXco-Padua 

(AMT-061) 
IV II### UniQure Biopharma B.V. 2018 

SGSH 
Mucopolysaccharidosis Type 3 A 

Sanfilippo Syndrome 
scAAV9.U1a.hSGSH IV I/II## Abeona Therapeutics, Inc 2016 

NAGLU 
Mucopolysaccharidosis (MPS) 

IIIB 
rAAV9.CMV.hNAGLU IV I/II## Kevin Flanigan 2017 

NAGLU Sanfilippo Syndrome B rAAV2/5-hNAGLU I.I I/II## UniQure Biopharma B.V. 2013 

IDS Mucopolysaccharidosis II SB-913 IV I## Sangamo Therapeutics 2017 

IDUA Mucopolysaccharidosis I SB-318 IV I## Sangamo Therapeutics 2017 

ARSA Metachromatic Leukodystrophy AAVrh.10cuARSA I.I I/II# 
Institut National de la 

Santé Et de la Recherche 
Médicale, France 

2013 

GAN Giant Axonal Neuropathy scAAV9/JeT-GAN IT I## 
National Institute of Neu-
rological Disorders and 

Stroke (NINDS) 
2015 

CLN6 Batten Disease scAVV9.CB.CLN6 IT I/II## 
Nationwide Children's 

Hospital 
2016 

AMD - age-related macular degeneration; AT – antithrombin; β2-AR - β2 adrenergic receptor; EUS - endoscopic ultrasound; K6A N171K - keratin 6AN171K mutant; KRASG12D - 
K-rasG12D mutant; KSP - kinesin spindle protein; LODER - local drug eluter; RRM2 - M2 subunit of ribonucleotide reductase; PCSK9 - proprotein convertase subtilisin/kexin type 
9; PKN3 - protein kinase N3; RSVN gene - respiratory syncytial virus nucleocapsid gene; TTR – transthyretin; VEGF - vascular endothelial growth factor; VEGFR1 - vascular endo-
thelial growth factor receptor 1; VP24: viral protein 24; VP35 - viral protein 35; ZEBOV L polym. - ZEBOV L polymerase. * - completed; ** - terminated; *** - suspended; # - 
active; ## - recruiting; ### - not yet recruiting; IVT – intravitreal; IV – intravenous injection; IT – intrathecal administration, IM- intramuscular; IA- intra-articular injection; IC – 
Intracranial; Opht. – ophtalmic administration;I.I.-intralesional injection; NN – nasal nebulization; wd – withdrawn. 

Significant advances have been made in the development 
of efficient nanocarriers, such as siRNA conjugates, inor-
ganic materials polymers and cationic lipids for siRNA de-
livery (Table 3). 

These systems can be categorized into viral carriers (vi-
ruses and bacteria) and non-viral carriers (polymers and cati-
onic lipids) produced by physical methods, chemical or bio-
logical methods [52, 53]. (Table 4) shows some advantages 
and disadvantages of viral and non-viral gene therapy vec-
tors. 

DNA-based expression cassettes that express short hair-
pin RNA (shRNA) are usually delivered to target cells ex 
vivo by viruses and bacteria, and these modified cells are 
then reinfused back into the patient [54]. Viral systems pro-
vide very efficient delivery and transfection to the intended 
target, however, they have several drawbacks, such as the 
potential to generate a severe immune response, as has been 

demonstrated in a number of non-human models and human 
trials. They are also limited in the size of a plasmid that they 
can encapsulate and by possible storage time [55, 56]. 

Another kind of siRNA carriers, widely used in therapeu-
tics and biomedical engineering, are inorganic nanoparticles 
[68, 69]. Their attractive physicochemical properties such as: 
good stability and physical strength, high purity, reproduci-
ble and tunable size and morphology, and ease for surface 
modification, make them good candidates for siRNAs deliv-
ery [70]. In fact, recent investigations revealed that several 
nanomaterials are intrinsically therapeutic, since they, not 
only can passively interact with cells but can also actively 
mediate molecular processes to regulate cell functions [71]. 
For instance, gold nanoparticles were shown to be anti-
angiogenic and with antitumor properties that interfere with 
cellular processes [69]. Characteristic inorganic nanoparti-
cles are metals, metal oxides and carbon material and 
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Fig. (1). Schematic representation of RNA interference mechanisms. 

magnetic nanoparticles – SPIONS (Super-Paramagnetic Iron 
Oxide Nanoparticles). Gold nanoparticles have unique 
chemical and physical properties like low cytotoxicity, ease 
of synthesis, tunable size and morphology, ready functionali-
zation and strong optical absorption that make them a useful 
scaffold for efficient recognition and delivery of bio-
molecules [72]. The synthesis of iron oxide nanoparticles has 
been intensively developed not only for its fundamental sci-
entific interest but also for its many technological applica-
tions, such as targeted drug delivery, magnetic resonance 
imaging (MRI), magnetic hyperthermia and thermoablation, 
bioseparation, and biosensing. However, control over the 
shape and size distribution of magnetic iron oxide nanoparti-
cles remains a challenge, and the different formation mecha-
nisms of iron oxides under different conditions still need to 
be investigated [73]. Carbon nanotubes (CNTs) exhibit in-
comparable physical, mechanical and chemical properties, 
such as: strength, thermal conductivity, mechanical, and 
electrical properties. Also, could be used as additives to vari-
ous structural materials [74]. Although these systems have 
great advantages for biomedical use, there are several con-
cerns regarding their therapeutic use due to documented tox-
icity [75, 76]. 

Polymeric nanoparticles are solid, biodegradable, colloi-
dal systems that can be classified into two major categories, 
natural polymers [cyclodextrin, chitosan, and atelocollagen] 
and synthetic polymers [polyethyleneimine (PEI), poly(dl-
lactide-co-glycolide) (PLGA), and dendrimers]. These sys-

tems have been demonstrated to provide effective and effi-
cient siRNA delivery in vitro and in vivo. However, some 
studies have reported inconsistent results due to discrepan-
cies between experiments, therefore PLGA could not be ap-
plied efficiently in siRNA delivery due to the lower electro-
static interaction between PLGA and siRNA leading to less 
efficient endosomal escape and release of siRNA and PEI 
complexes have been associated with significant toxicity 
issues limiting their broad use in clinical trials [77]. 

Future studies must focus on the in vivo safety profiles of 
the different delivery systems, including undesirable immune 
stimulation and cytotoxicity. 

Lipid-based nanocarriers will be addressed in detail as 
they are to be focused in this review. 

4.1. Lipid-based Nanocarriers for siRNA Delivery 

Liposomes were first described by Bangham in the mid-
60s [78], and during the 70s the idea that they could entrap 
drugs and be used as drug delivery systems was further es-
tablished by Gregoriadis [79]. Liposomes are composed by 
amphiphilic molecules that, when in aqueous solution and 
above the critical vesicle concentration (CVC), spontane-
ously self-assemble into one or multiple lipid bilayers, capa-
ble of entrapping hydrophilic substances in the inner aqueous 
compartments, and lipophilic compounds within the lipid 
layers. 
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Table 3. Example of nanocarriers used for siRNA delivery. 

Type of System Example 

Cholesterol [57]  

α-Tocopherol [58]  

Cell-penetrating peptides (CPPs) [59]  

Poly(ethylene glycol) (PEG) [60]  

siRNA conjugates 

Aptamers [61]  

Gold [62]  

Iron Oxide [63]  Inorganic materials 

Carbon nanotubes (CNTs) [64]  

Poly(ethyleneimine) (PEI) [60]  

Poly-D,L-lactide-co-glycolide (PLGA) [65]  

Chitosan [66]  

Polymer-based 
nanocarriers 

Dendrimers [67]  

Liposomes [13]  
Lipid-based 
nanocarriers Small nucleic acids lipid particles (SNALPs) 

[13]  

 
As non-viral vectors, liposomes have unique advantages, 

including high encapsulation efficiency, low toxicity and 
drug/genetic material protection against degradation factors. 
These vectors also reduce tissue irritation, uniformly deposit 
active drugs in situ and are biodegradable and nonimmuno-
genic [80]. Additionally, the liposomal membrane is com-

posed of natural and/or synthetic lipids which are relatively 
biocompatible [81]. These systems have been used in the 
delivery of nucleic acids since the pioneering study of Fel-
gner and colleagues, in 1987, describing the ability of the 
cationic lipid DOTMA (N-[1-(2,3-dioleyloxy)propyl]-
N,N,N-trimethlyl ammonium chloride) to deliver DNA to the 
COS-7 cell line [82]. Cationic liposomes are used frequently 
for non-viral gene delivery due to their positive charge, as 
they interact electrostatically with the negative charges of 
nucleic acid phosphate groups, resulting in a nano-complex 
where the genetic material is entrapped – a process that leads 
to the formation of lipoplexes [83]. Also, it facilitates inter-
actions with the negatively charged components of cell 
membranes, together with a good tolerability, high transfec-
tion activity and good pharmacokinetic properties. Cationic 
lipids used for gene therapy are composed of three basic do-
mains: a positively charged headgroup, a hydrophobic chain, 
and a linker which joins the polar and non-polar regions. The 
nature of the cationic headgroup influences the ability to 
condense and protect nucleic acids, the cytotoxicity associ-
ated with the liposomes, and the overall transfection effi-
ciency [84]. The influence of the hydrophobic chain on tox-
icity has not yet been adequately addressed but it is known 
that the hydrophobic lipid anchor helps to maintain the self-
aggregating lipid organization, and its length and saturation 
influences the biological activity of the cationic lipids [84]. 
The nature of the linker group (for example ethers, esters, 
carbamates or amides) influences the conformational flexi-
bility, degree of stability and biodegradability of the am-
phiphile. Although more efficient in the transfection process, 
usually ethers cause higher toxicity, since they form chemi-
cally more stable but non-biodegradable linkers when com-
pared to esters. Esters links are biodegradable and less toxic 
but not so stable, which can thus affect the transfection out-
come [85, 86]. 

Table 4. Advantages and disadvantages of viral and non-viral gene therapy vectors. 

 Viral Vectors Non-viral Vectors 

Low immunogenicity and antigenicity 

No risk of chromosomal insertion High transduction efficiency 

Ease of production 

Possibility of functionalization for targeted delivery and endosomal 
escape Capacity to infect many types of cells 

Low toxicity 

Optimized endosomal escape Drug/genetic material protection against degradation factors 

Advantages 

Efficient delivery Reduce tissue irritation 

Strong immune response Low transfection efficiency 

Possibility of chromosomal insertion and proto-oncogene acti-
vation 

High doses are toxic 

Difficult production Lack of intrinsic tropism 

Possibility of contamination with live virus 

Disadvantages 

Limited plasmid size 
Lack of intrinsic mechanism for endosomal escape 
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Not only monomeric cationic lipids but also dimeric am-
phiphiles with two hydrophobic tails and two polar head-
groups linked by a covalently bonded spacer, known as 
Gemini amphiphiles, are explored for siRNA therapy appli-
cations, apart from anionic lipids (Table 5). 

Neutral (helper) lipids like DOPE, cholesterol or 
monoolein are usually included in the formulations to help 
nucleic acids escape endosomes [87, 88], aid nucleic acids 
complexation by allowing a closer contact and packing of 
their helices [89], decrease toxicity associated with the cati-
onic lipids [90, 91], or confer more favorable properties in 
terms of bilayers fluidity [92]. DOPE is one of the most 
widely used helper lipids, as it is believed to improve trans-
fection efficiency due to its tendency to undergo a transition 
from a lamellar to a non-lamellar structure (hexagonal con-
figuration), under acidic pH, facilitating fusion with lipid 
bilayers and allowing lipoplex endosomal escape [87]. The 
presence of DOPE in the formulation can also decrease the 
charge ratio of lipid to DNA required to achieve maximum 
transfection in vitro, thus reducing the toxicity associated 
with an excess of lipid. Nevertheless, when in low serum 
levels or its absence, the aggregate instability imposed by 
helper lipid DOPE is advantageous in contact with serum 
proteins, as the dissociation of lipoplexes followed by aggre-

gation often leads to precipitation and results in the loss of 
efficient transfection [93]. 

While many studies have demonstrated that lipoplex struc-
ture and function can be compromised in the presence of se-
rum, little attention has been paid to the adsorption of specific 
proteins and how this might be affected by formulation pa-
rameters. After systemic administration, nanomaterials are 
exposed to various physiological fluids, mostly blood. The 
adsorption of proteins on NPs can modify the diverse physico-
chemical properties of NPs such as size, surface charge, sur-
face composition, and functionality, hence giving NPs a new 
biological identity - protein corona (nanoparticle-protein com-
plex) which is complex and unique to each nanomaterial and 
NP [94, 95]. The advantages of including cholesterol in the 
formulations have been associated with a higher protection of 
nucleic acids from nuclease degradation [96], with effects on 
liposome bilayer fluidity [92], and with reduced binding of 
serum proteins to liposomes [97]. Also, Batker et al. character-
ized changes that occur in the protein corona when DOTAP-
based lipoplexes are formulated with different amounts of 
cholesterol and have demonstrated that increased cholesterol 
contents mitigate the amount of protein that binds to lipo-
plexes, and the number of proteins that adsorb was also re-
duced in formulations containing ≥ 67 mol% cholesterol [95]. 

Table 5. Example of liposomal systems used for siRNA delivery. 

Type of Liposomes Lipid Composition Purpose of Investigation Ref 

DOTAP:DOPE 
Luciferase silencing on MCF-7 cells stably expressing the 

luciferase protein 
[110] 

DOTAP:Chol 
Luciferase silencing on MCF-7 cells stably expressing the 

luciferase protein 
[110] 

Cationic  

DODAB/C:MO eGFP silencing on H1299 cells stably expressing the eGFP [100] 

DHDEAC:Chol:DSPE-PEG 
Tumor suppression and gene silencing in SK-OV-3 

xenograft mouse model 
[111] 

  

DOPE Silencing gene expression in activated human macrophages [112] 

1,5-bis(1-imidazolilo-3-alkoxymethyl) pentane 
dichloride dicationic gemini surfactants 

Complexation of different DNA and RNA sequences; cyto-
toxic evaluation 

[113] 

Gemini 
bis-quat conventional and serine-derived Gem-

ini surfactants 

Delivery efficiency of anti-survivin siRNA; Effect of the 
combination of chemotherapeutics with survivin gene si-

lencing 
[114] 

Anionic  DOPG:DOPE + Ca2+ ions 
eGFP silencing on MDA-MB-231 cells stably expressing 

the eGFP 
[115] 

PEGylated  DODAB:MO:PEG-ceramide BCR-ABL silencing on K562 cells [116] 

Targeted  
Chol:DSPC:DODAP:PEG-ceramide:Trf-

coupled PEG-DSPE 
BCR-ABL silencing on K562 cells [13] 

Immunoliposomes 
DOTAP:Chol:DSPE-PEG-mal:anti-EGFR 

antibody 
Luciferase silencing on SMMC-7721, LM3 and Hep3B cells 

stably expressing the luciferase protein 
[117] 

Chol – cholesterol; DODAB - 1,2-dioleoyl-3-dimethylammonium-bromide; DODAC - 1,2-dioleoyl-3-dimethylammonium-chloride; DODAP - 1,2-dioleoyl-3-dimethylammonium-
propane; DOPE - 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOPG - 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); DOTAP - 1,2-dioleoyl-3-trimethylammonium-
propane; DSPC - 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine; DSPE–PEG - 1,2-dioctadecanoyl-sn-glycero-3-phosphoethanolamine (polyethylene glycol); DSPE-PEG-Mal - 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol); eGFP - enhanced green fluorescence protein; EGFR - epidermal growth factor receptor; MO – 
monoolein; PEG - poly(ethylene glycol); Trf- transferrin receptor. 
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Monoolein has also been suggested as a helper lipid [98, 
99] not only due to its ability to fluidize and stabilize 
liposomal structures, but also due to its ability to form non-
lamellar inverted cubic phases, known to be intermediates of 
fusion processes [98, 100, 101], discussed in more detail in 
section 6. 

4.2. Mechanism of siRNA-lipoplexes Formation 

Since both siRNA and DNA are double-stranded nucleic 
acids with anionic phosphodiester backbones, they interact 
electrostatically with cationic lipids and spontaneously form 
supramolecular assemblies - the so-called lipoplexes. The 
type of lipid, lipid composition (cationic lipid:neutral lipid 
molar fraction), and ratio between the positive charges of 
cationic lipids and the negative charges of nucleic acids 
(charge ratio, C.R.) determine lipoplex morphology. Lipo-
plexes composed of ODNs and siRNA show morphologies 
similar to that of DNA lipoplexes [102], with nucleic acids 
observed between lipid layers, forming multilayered struc-
tures. Nevertheless, the different size and structure of pDNA 
and ODNs/siRNA makes the lipoplex formation process 
slightly different for the two types of molecules. Weisman et 
al. [103] proposed a model where negatively charged single-
stranded ODN molecules act as bridges between cationic 
membranes, stabilizing the condensed lamellar phases. The 
ODN-mediated adsorption of lamellae, one by one, is fol-
lowed by the restructuration of the lipids, explaining the 
presence of lamellar defects. Although very similar to the 
mechanism of liposome reorganization proposed for DNA-
lipoplexes [104], this model does not suggest the existence 
of lipid mixing. Other studies have nevertheless reported 
fusion among vesicles during ODN-lipoplex formation 
[105]. 

Additional differences between ODN and DNA-
lipoplexes include a smaller aqueous thickness associated 
with ODN than with DNA or less organization of ODNs 
between the lipid layers when compared to DNA [103]. An-
other aspect to consider is that pDNA has several kilo base 
pairs (bp), while siRNA usually has 21 to 23 bp, affecting 
the electrostatic interactions with cationic liposomes. 
Moreover, the hydroxyl group in the 2’- position of the ri-
bose makes RNA much less stable that the deoxyribose of 
DNA. 

The different sizes of siRNA and pDNA also influence 
the number of positive charges needed to achieve the same 
complexation efficiency. When using the same polycation, 
the fact that pDNA has a higher molecular weight and higher 
negative charge than siRNA can result in the formation of 
more stable complexes for pDNA than siRNA. Therefore, 
unpacking of pDNA could be more difficult than the release 
of siRNAs from the complex [106]. 

5. STRATEGIES TO OVERCOME THE BARRIERS 
FOR EFFICIENT siRNA DELIVERY IN A THERA-
PEUTIC STRATEGY 

siRNAs can only exert their silencing effect once they are 
incorporated into the RISC complex in the cytosol of the 
cells. Nevertheless, before siRNAs reach their site of action, 
numerous barriers must be overcome that depend not only on 
the targeted organs but also on the siRNA administration 

route used. Although local delivery of siRNA poses less 
challenges when compared to systemic administration, in 
many cases systemic delivery is the only way to reach cer-
tain disease sites. 

The general steps that siRNA has to overcome, from the 
site of administration to the site of action, include: distribu-
tion through the organs blood circulation; transport from the 
blood vessels within the organ to the interstitium; transport 
across the interstitial space to the target cells; and internali-
zation by the target cells. Endocytosis is the major route of 
siRNA internalization and siRNA endosomal entrapment and 
lysosomal degradation are additional barriers for its thera-
peutic use. Moreover, even when siRNA escapes from en-
dosomes, the viscosity of the cytoplasm and the presence of 
organelles are still obstacles to its loading into the RISC 
complex. 

(Fig. 2) represents some of the main barriers faced by 
nanocarriers after systemic administration: (I) aggregation 
and interaction with blood components; (II) internalization of 
the nanocarriers by the targeted cells; (III) nucleic acids es-
cape from endosomes. 

5.1. PEGylation to Improve Nanocarrier Stability in 
Physiological Conditions 

Initial strategies to improve liposome circulation time 
were based on mimicking erythrocyte membranes, by per-
forming modifications with gangliosides like monosialogan-
glioside (GM1) [107]. Later, hydrophilic polymers like 
poly(ethylene glycol) (PEG) were introduced with the same 
purpose [108, 109].  

Nowadays nanocarriers are usually coated with hydro-
philic materials in order to form a protective hydrophilic 
layer around them. The polymers’ flexible chains occupy the 
space near the liposomal surface, preventing other macro-
molecules from being in the same space, decreasing the 
binding of opsonins and thus uptake by macrophages. 

As a result, these long-circulating liposomes can take ad-
vantage of the enhanced permeability and retention effect 
(EPR), accumulate in the interstitial space of solid tumors 
[118], which is a useful approach when the target tissue is a 
tumor.  

Although different long hydrophilic polymer chains and 
non-ionic surfactants were developed and used as shielding 
groups, such as polysaccharides, polyacrylamide, poly(vinyl 
alcohol), poly (N-vinyl-2-pyrrolidone), PEG and PEG-
containing copolymers, PEG is still the most widely used 
material to achieve steric stabilization [119]. PEG is a linear 
polyether diol with several properties that make it attractive 
for biomedical applications [120], such as good biocompati-
bility, very low toxicity, immunogenicity and antigenicity, 
good excretion kinetics and solubility in both aqueous and 
organic media. Moreover, PEG is highly hydrated in water, 
forming a large excluded volume where the hydrophilic 
chains are in rapid motion [121]. 

A common method to graft PEG onto the surface of 
liposomes (a process called PEGylation) is to use cross-
linked lipids to anchor the polymer to the liposomal mem-
brane [120]. PEG linked to distearoylphosphatidylethanola-
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mine (DSPE) (DSPE-PEG), is a well-known example [108]. 
Physical adsorption of PEG, or covalently attachment of 
reactive groups onto the surface of liposomes, can also be 
used [120]. Depending on graft density, PEG can assume 
different conformations at the surface of liposomes (mush-
room or brush). Although some opsonization is always inevi-
table, it can be minimized by the presence of a near perfect 
PEG shell surrounding the liposomes. However, excessive 
percentages can lead to the formation of micelles composed 
of PEG-lipids that may act as liposome destabilizing agents 
[122]. Dar et al. investigated different strategies for prepar-
ing liposomes with three different PEG amounts (2.5 mol %, 
5 mol % and 8 mol %) to identify the best possible formula-
tion that leads to efficient in vivo gene silencing. Intravenous 
administration of SEV-5 (Vesicles containing 5 mol % of 
DSPE-PEG-2000) at 5 mol % PEG in ovarian cancer 
xenograft mouse model confirmed the stability and nontoxic 
nature of the formulation and the delivery of therapeutic 
siRNA mediated by these system led to significant tumor 
tropism and efficient gene silencing [111]. Therefore, good 
stealth liposomes include a high – but not excessive– density 
of PEG-lipids at their surface.  

PEGylation of liposomes not only extends circulation 
times in blood but it also improves stability by avoiding ag-
gregation. Braeckmans et al. [123] used fluorescent Single 
Particle Tracking (fSPT) to analyze if PEGylation actually 
suppressed aggregation of liposomes in blood. The authors 
found that the presence of 10 % DSPE-PEG significantly 
reduced liposomes aggregation when compared to the non-
PEGylated liposomes. Dakwar and coworkers studied the 

colloidal stability of liposomes in mouse intraperitonial fluid, 
plasma from a healthy patient and ascites fluid from a patient 
diagnosed with peritoneal carcinomatosis [124]. The authors 
found that the inclusion of PEG improved liposome stability 
in the different fluids.  

However, PEG’s presence can be a disadvantage for 
some phases of the delivery process: PEGylated nanocarriers 
might not adequately encapsulate and protect nucleic acids 
from nuclease activity, and PEG can inhibit nanocarriers 
cellular internalization or difficult siRNA endosomal release 
[125, 126]. These evidence clearly suggest a “PEGylation 
dilemma”, since there is a need for a stable PEG coating 
when nanocarriers are in blood circulation, to avoid recogni-
tion by the immune system and prevent aggregation, but si-
multaneously PEG chains can become an obstacle for cellu-
lar internalization and endosomal escape. The presence of 
PEG chains on the liposome surface can avoid the release of 
genetic material from endosomes by more than one mecha-
nism: (i) stabilization of the lipoplexes lamellar organization, 
impairing the structural reorganization required for endoso-
mal membrane destabilization [126]; (ii) inhibition of the 
contact between lipids from liposomes and from endosomal 
membranes, that is essential for membrane destabilization 
and nucleic acids release [127]. Therefore, there is the need 
for so-called smart materials, able to respond at the appropri-
ate time and place and provide PEG chains associa-
tion/dissociation accordingly.  

Different environment-responsive PEG-derivatives have 
been developed to overcome the “PEGylation dilemma”: pH-

 
Fig. (2). Common strategies to overcome the barriers to systemic, non-viral delivery of siRNA. I. PEGylation of nanocarriers to avoid aggre-
gation and unspecific interactions with blood components, e.g. cells and proteins. II. Attachment of targeting ligands to improve nanocarri-
ers’ cellular uptake by receptor-mediated endocytosis. III. Use of “intelligent” materials to allow dissociation of PEG chains from the surface 
of nanocarriers to promote endosomal escape. The components in the figure are not represented at scale. 
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sensitive linkers between PEG and the lipid anchors, that are 
stable at neutral pH but hydrolyzed in acidic environment 
[119]; removal of PEG triggered by the action of enzymes 
[128]; use of conjugates of lipids and hydrophilic polymers 
as exchangeable moieties, which can dissociate from the 
liposomes with different kinetics. PEG-ceramides (PEG-Cer) 
form one such example of semi-stable coatings, able to offer 
good protection and provide stability in blood while main-
taining good cellular uptake and transfection activity [129]. 
Other PEG-lipid conjugates include PEG-phosphatidylethano- 
lamine (PEG-PE), PEG-diacylglycerol, PEG-dialkyloxypropy- 
lamine or PEG-(N-methyl-4-alkylpyridinium chlorides) 
(PEG–SAINT) conjugates [119]. The structure, length and 
saturation of the PEG-lipid conjugates define the anchorage 
strength of PEG to the lipid bilayer and the kinetics of diffu-
sion [119]. Usually, shorter acyl chain groups (for instance 
1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) 
(C14) > (1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine) 
DPPE (C16) > DSPE (C18)) and unsaturated anchors diffuse 
faster than longer, and saturated, acyl chain groups. This 
usually results in improved transfection efficiencies in vitro, 
but reduced circulation times in vivo. Thus, a compromise 
between prolonged circulation times, protection of nanocar-
riers, interaction with target cells and delivery of the payload 
must be reached to design efficient nanosystems. 

An additional important factor to consider when design-
ing a nanocarrier system is the preparation method. The sim-
plest way to form PEGylated siRNA lipoplexes is by directly 
mixing the nucleic acids with the PEGylated liposomes. 
However, for high PEG densities, siRNA becomes bound to 
the outer surface of the liposomes, making them susceptible 
to premature release into the blood stream [125]. An alterna-
tive method is to form the siRNA-lipoplexes with non-
PEGylated cationic liposomes and then proceed to the PEG 
grafting of the formed lipoplexes – the post-PEGylation al-
ternative [116]. This allows a better protection of the siRNA 
inside the lipid bilayers while taking advantage of the PEG 
shielding effect necessary for systemic administration. Other 
methods consist in hydrating a lipid film which already in-
cludes PEG, with a siRNA aqueous solution, or using the 
ethanolic dilution method for the preparation of siRNA-
lipoplexes [130]. 

5.2. Targeted Delivery to Improve the Effectiveness 

It is thought that the predominant route for nanocarrier 
internalization is endocytosis, triggered by non-specific elec-
trostatic interactions between the positive nanocarriers and 
negative proteoglycans at the surface of the cells [131]. Nev-
ertheless, nanocarriers can also be tailored for receptor-
mediated endocytosis (Table 6). In fact, by using targeted 
delivery, the intracellular drug concentration can be in-
creased, more effective tumor targeting can be achieved, 
non-specific toxicity can be reduced and the overall thera-
peutic effect can be enhanced [132]. 

Several studies indicate that nanocarriers enter cells via 
clathrin-dependent endocytosis (or clathrin-mediated endo-
cytosis (CME)), caveolae-mediated endocytosis and/or 
macropinocytosis and that these pathways of entry are not 
mutually exclusive. More importantly, not all internalization 
pathways result in an effective release of the nanocarriers’ 

payload into the cytoplasm. When receptor-mediated endo-
cytosis is not used, internalization of nanocarriers depends 
on their size, surface charge and shape, as well as on the cell 
type [133-135]. 

5.3. Stimuli-sensitive Molecules to Improve Endosomal 
Escape 

Escape of nucleic acids from endosomes implies that 
nanocarriers are able to induce a perturbation on the lamellar 
structure of endosome membranes. The mechanism by which 
cationic liposomes escape from endosomes can be either by 
induction of a fusion event between lipoplex and endosome 
membranes or by a local and transient membrane perturba-
tion that leads to the formation of pore-like structures. These 
mechanisms can be explained by the displacement of anionic 
lipids from the cytoplasm-facing monolayer into the interior 
of the endosome, by a flip-flop mechanism. During the proc-
ess, anionic lipids of the endosomal membrane laterally dif-
fuse into the lipoplexes, resulting in the formation of an “ion 
pair” between anionic phospholipid headgroups and cationic 
lipids, charge neutralization, and reduction in the headgroup 
area that will favor the inverted conformation according to 
geometrical restrictions [136]. At the same time, the cationic 
charge neutralization results in the dissociation of the nucleic 
acid from the lipoplex and escape into the cytosol [137]. For 
instance, replacement of DOPE by 1,2-Dioleoyl-sn-glycero-
3-phosphocholine (DOPC), a structural analog of DOPE 
with no activity to form inverted hexagonal phases under 
acidic pH, resulted in no helper activity and no transfection 
efficiency [138]. The fact that DOPC is more strongly hy-
drated than DOPE can decrease the proximity of interaction 
nanocarrier-intracellular membranes and affect escape from 
endosomes [131]. Lipoplexes can adopt a large variety of 
non-lamellar phases, like micellar and cubic phases, all able 
to perturb the bilayer structure of endosomes [131]. 

Apart from the inclusion of helper lipids in the liposomal 
formulations, other approaches have been investigated to 
potentiate the release of nucleic acid from lipoplexes into the 
cytosol of the target cells. For example, pH-responsive 
liposomes containing synthetic glutamic acid-based zwitteri-
onic lipids showed improved fusogenic potential at acidic pH 
[139]. Cationic liposomes can also be modified in order to 
perform a proton sponge effect similar to polyethylenimine 
(PEI). Kumar et al. [140] reported the synthesis and transfec-
tion efficiency of novel histidylated cationic amphiphiles 
containing a single endosome-disrupting histidine head 
group, which facilitated the release of DNA into the cyto-
plasm of the cells. Other alternative can be the use of cell-
penetration peptides (CPPs), cationic and/or amphipathic 10-
30 amino acid sequences able to cross the plasma membrane 
or enter cells via endocytosis and induce endosomolytic ac-
tivity. CPPs can form complexes with nucleic acids, through 
electrostatic interaction, or can be incorporated into more 
complex delivery systems like liposomes of polymer nano-
carriers. The development of these peptides was inspired by 
the endosomal disruptive properties of fusogenic sequences 
of viral fusion proteins. It is well-known that endosomal es-
cape of the influenza virus is driven by the presence of he-
magglutinin subunit HA2, a fusogenic peptide with a short 
chain of N-terminal amphiphilic anionic peptides [141].  
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The N-terminus peptide undergoes a conformational 
change induced by pH alterations, which trigger fusion of the 
viral membrane with endosomal membranes, leading to viral 
genome leakage to cytosol. GALA (glutamic acid-alanine-
leucine-alanine) is an example of a synthetic amphipathic 
pH-sensitive endosome-disruptive peptide. A drop in pH 
promotes a conformational change from a random coil to an 
amphipathic α-helix, leading to disruption of lipid mem-
branes and release of their content. The incorporation of 
GALA with transferrin-containing lipoplexes significantly 
increased luciferase gene expression in COS-7 cells [146]. 

5.4. Chemical Modifications of Nucleic Acids 

The direct use of naked siRNA is limited to local deliv-
ery and to specific sites such as the eye, nose and lungs and 
systemic application of siRNA therapeutics requires the use 
of safe and efficient delivery systems, including direct 
chemical modification of siRNA and/or optimization of de-
livery systems (ex: liposomal formulations, nanoparticle 
conjugation and antibodies that target cellular moieties) 
[147]. 

Both DNA and RNA oligonucleotides can be modified 
chemically to alter several features which are important for 
successful delivery to cells (examples in Table 7). RNA is 
much more susceptible to nuclease activity, therefore, its 
modifications are particularly relevant. Chemical modifica-
tions of the RNA backbone have been developed in order to 
increase resistance to nucleases, biodistribution, thermal sta-
bility improvement, specificity for target mRNA and blood 
lifetime extension without altering the nucleic acid sequence 
or interfering with silencing efficiency. 

Transfection efficiency of mRNA has been greatly im-
proved and the half-life of mRNA has been intensely in-
creased, ranging from a few minutes to several hours by 
chemical modifications. The advantage of using drugs with 
short half-lives is that they can be rapidly removed from the 
patient should adverse reactions develop. However, the ther-
apy must usually be administered either at relatively high 

concentration and/or frequency to maintain an effective dose. 
In this regard, it is important to guarantee that repeated ad-
ministrations are safe and feasible [148]. Specific sequence 
motifs can be recognized by Toll-like receptors (TLRs) and 
induce cellular immune responses, which constitutes another 
challenge [149]. Base modifications can reduce immune ac-
tivation, and the addition of modified nucleotides into 
siRNA suppresses unwanted immunostimulation [150]. Nev-
ertheless, recent studies reported that, in certain circum-
stances, immune stimulation could be beneficial and may 
represent an alternative treatment strategy against cancers 
and viral infections [151]. 

Common modifications to the ribose ring include fluorine 
(2’-F), methoxy (2’-OMe), locked nucleic acids (LNA) and 
unlocked nucleic acids (UNA). Phosphorothioate, borano-
phosphate modifications, uncharged nucleic acid mimics or 
linkage of hydrophobic ligands (e.g., cholesterol) are other 
examples [49, 152-154]. In fact, some of the ongoing clinical 
trials use naked siRNA, although chemically modified siR-
NAs, which are delivered locally, reduce the risk of RNA 
degradation and systemic immune activation associated with 
systemic delivery. Alnylam Pharmaceuticals has several 
siRNA drugs undergoing clinical trials. Their most advanced 
drug, also one of the most advanced siRNA therapeutics, 
Patisiran, is a Lipid Nanoparticle (LNP) containing siRNA 
against mutant transthyretin for the treatment of transthyretin 
amyloidosis [155].  

Phase I and II studies of siRNA therapeutics in the past 2 
years have demonstrated potent (as high as 98%) and dura-
ble, for weeks, gene knockdown in the liver, with some signs 
of clinical improvement and without unacceptable toxicity 
[153] and, recently, announced positive Phase III data on 
their therapy for hereditary ATTR amyloidosis. (ClinicalTri-
als.gov. NCT01960348: APOLLO - The study of an investi-
gational drug, patisiran (ALN-TTR02), for the treatment of 
transthyretin (TTR) - mediated amyloidosis https://clinical 
trials.gov/ct2/show/NCT01960348 Accessed 12 October 
2017). Other companies have also invested in the application 

Table 6. Examples of targeting molecules explored to achieve specific nucleic acids/drug delivery. 

  Target/targeting Molecule Endocytosis Pathway Overexpression Example Ref. 

Transferrin receptor (TfR); 
transferrin (Tf) 

CME 
TfR overexpressed in malig-

nant cells 
Tf-liposomes to silence 

BCR-ABL in leukemic cells 
[13] 

Proteins 
Integrin αvβ3 ; arginine-glycine-

aspartic acid (RGD) peptide 
Caveolae 

αvβ3 overexpressed in angio-
genic endothelium 

RGD-liposomes loaded 
with doxorubicin 

[142] 

Antibodies 
Tyrosine kinase MET; scFv 

antibody binding MET 
CME 

MET involved in growth, 
invasion and metastasis in 

cancer 

scFv-PEG-liposomes loaded 
with doxorubicin 

[143] 

Small molecules Folate receptor (FR); folate (fol) 
Caveolae and clathrin-
independent endocyto-

sis; CME 

FR-α: malignant tissues of 
epithelial origin. FR-β: pa-
tients with CML and AML 

fol-nanocarriers to silence 
Her-2 in human KB cells. 

[144] 

Aptamers 
Nucleolin; AS1411 (specifically 

binds to nucleolin) 
dynamin-independent; 
more than one pathway 

Nucleolin overexpressed on 
the surface of cancer cells 

AS1411-PEG-liposomes to 
silence BRAF in melanoma 

[145] 

CME - clathrin-mediated endocytosis; scFv - human single chain variable fragment. 



DODAX: MO Nanocarriers for siRNA Delivery Current Drug Targets, 2018, Vol. 19, No. 13    15 

of lipoplex-based siRNA drugs due to their advantages in the 
genetic therapy field [156]. 

6. LESSONS LEARNED FROM THE DODAB/C:MO 
LIPOSOMAL SYSTEM 

Over the past years, siRNA nanocarriers of increased 
complexity have been developed, incorporating a variety of 
molecules to improve stability, provide fusogenicity and 
allow active targeting by the system. However, the basic 
understanding of the characteristics driven by the physico-
chemical properties of the nanosystem is sometimes over-
looked, delaying the progression into the clinical setting. In 
this section, we demonstrate how important the full charac-
terization of a liposomal system can be for the understanding 
of its biological performance and to provide information for 
a successful, rational design of a siRNA nanocarrier. 

Our research group has been working with a formulation 
composed by the cationic lipids dioctadecyldimethylammo-
nium bromide/chloride (DODAB/C) and the neutral lipid 
monoolein (MO) in the past years for nucleic acids/drug de-
livery [98-100, 116, 157-164]. DODAB and DODAC are 
composed by a hydrophobic group formed by two 18 carbon 
long acyl chains (C18:0), linked to a stable quaternary am-
monium headgroup. The positively charged monovalent 
counter-ions bromide (Br-) or chloride (Cl-) form DODAB 
and DODAC lipids, respectively (Fig. 3). 

DODAB/C vesicles can be prepared by sonication or ex-
trusion [165], ethanol injection [159], or by simply dissolv-
ing the lipid powder in water, above the lipids’ transition 
temperature (Tm) [166]. DODAB and DODAC CVC are 
very low, allowing the formation of bilayer structures at con-

centrations as low as 10 µM [167]. Their phase behavior has 
been extensively studied, and the lipids found to form bilayer 
structures when dispersed in aqueous media and above Tm, 
although with different the thermotropic behavior for DO-
DAC and DODAB [168]. The hydrated Cl- is larger than the 
hydrated Br [169], implying that Cl- ion cannot be as proxi-
mal to the cationic headgroup as Br-, being less competent in 
the neutralization of its positive charges. Thus, DODAC has 
a less ordered polar region due to stronger repulsive interac-
tions between the lipid headgroups. Although DODAB 
forms bilayers more densely packed at the headgroup region 
than DODAC [167, 169], it exhibits lower Tm values and 
forms bigger vesicles than DODAC. 

1-Monoolein (1-(cis-9-octadecenoyl)-rac-glycerol, MO) 
is a neutral lipid composed by an unsaturated hydrocarbon 
chain attached to a glycerol backbone by an ester bond (Fig. 
3). MO is biodegradable since it can be degraded by esterase 
activity in different tissues172. Its biocompatibility and non-
toxicity made MO extensively used in different areas, rang-
ing from pharmaceuticals, food, cosmetics, and agriculture, 
to protein crystallization [171, 172]. The monoolein/water 
phase diagram (Fig. 3) shows that MO can form several dif-
ferent phases according to temperature and water content, 
including lamellar (Lα), inverted hexagonal (HII), and bicon-
tinuous cubic phases (type G (gyroid, QII

G) and cubic phase 
D (diamond, QII

D) [173]. An unusual feature of the wa-
ter/monoolein system is the excess-water phase separation 
region. MO has the particularity of forming two inverted 
bicontinuous cubic phases in excess water, consisting of two 
intertwined but not interpenetrating water channels separated 
by a lipid bilayer surface [171, 173]. MO cubic phases can 
contain up to 40 % (w/w) of water.  

Table 7. Examples of chemically modified antisense oligonucleotides. 

Modification Features 

DNA, RNA (R=H, OH) 
Easily degraded by nucleases  

Poor pharmacokinetics 
Unstable 

Phosphorothioate (PS) DNA 

One of the non-bridging phosphate oxygens is replaced by a sulfur atom 
Increases resistance to nuclease degradation Allows RNase H activity 

Improves pharmacokinetics 
Supported in all antisense mechanisms 

Phosphorodiamidate morpholino oligonucleotides 
(PMOs) 

Ribose (RNA) or deoxyribose (DNA) is replaced by a morpholine ring and the phos-
phorothioate or phosphodiester (RNA) groups are replaced by phosphorodiamidate groups 

Neutral molecule 
Increases resistance to nuclease degradation 

Does not support RNase H activity 
Used for translation arrest or splicing alterations 

2’-O-Methoxyethyl (2’-MOE) and 2’-O-methyl (2’-OMe) 
Modifications to the 2’-position 

Increases resistance to nuclease degradation 
Supports RNase H activity 

Locked Nucleic Acids (LNA) 

Bicyclic system with the 4’-carbon tethered to the 2’- hydroxyl group 
Improves hybridization properties 

Improves nuclease resistance 
Supports RNase H activity 
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The presence of lipid and aqueous domains in MO cubic 

phases allows the solubilization of both hydrophilic, lipo-
philic and amphiphilic compounds, which makes this mole-
cule very interesting for drug delivery purposes. Not only 
can it accommodate high payloads, but it also allows the 
combination of molecules with different hydrophilicity like 
nucleic acids and drugs in one single nanocarrier. Moreover, 
MO can help to overcome one of the most important bottle-
necks in nucleic acids delivery – endosomal escape - due to 
its fusogenicity. 

The combination of two lipids that form such different 
lyotropic phases provides a rich panel of structural organiza-
tions that can be tailored according to specific applications. 
A detailed physicochemical characterization of the DO-
DAB:MO system revealed that two different aggregation 
structures could be obtained, depending on the cati-
onic:neutral lipid molar fraction [159] (Fig. 4). 

When DODAB is in excess (χDODAB ≥ 0.5), bilayer-
based structures are predominantly observed, with size and 
fluidity dependent on the exact molar fraction and tempera-
ture. When χDODAB < 0.5, densely packed cubic-oriented 
particles are mainly observed. The same dual behavior was 
seen for pDNA lipoplexes [98, 99]: for χDODAB ≥ 0.5, mul-
tilamellar structures of lipid bilayers alternating with DNA 
monolayers were formed; for χDODAB < 0.5, there is the 
formation of high-curvature zones, where lipid bilayers cross 
each other with DNA monolayers stacked between them. 
These are presumed to be MO-rich domains alternating with 
DODAB-rich domains (with multilamellar organization), 
supporting the existence of inverted structures in the liposo-
mal system. 

The formulation DODAB:MO was first proposed as a 
non-viral gene delivery system in 2010 by Real Oliveira et 
al. [174], and more recently DODAB:MO and DODAC:MO 
liposomes were also validated for siRNA delivery [100, 116, 
164] MO-based formulations form small sized siRNA-
lipoplexes with positive surface charge, were highly internal-

ized by the cells and able to silence expression of the model 
protein eGFP [100]. Nevertheless, the different DO-
DAX:MO membrane properties strongly influenced 
liposomes’ bio-interface, defining stability and interaction 
with cellular models (Fig. 4). 

DODAB:MO and DODAC:MO liposomes present dif-
ferent lipid organization driven by the presence of different 
counter-ions on the cationic lipids: bromide and chloride 
define the mode MO is integrated into DODAB and DODAC 
systems [100]. For formulations prepared at cationic:neutral 
lipid molar fraction (2:1), a homogeneous integration of MO 
into DODAC bilayers is observed, inducing higher disorder 
to this system comparing to what is observed for the DO-
DAB system. The higher membrane packing determined for 
DODAB:MO (2:1) formulation is explained by the forma-
tion of DODAB-rich and MO-rich domains, which results in 
a lower disturbing effect of MO when compared to when it is 
homogeneously integrated throughout the membrane [100]. 
The effects of MO on the transition temperature and enthalpy 
of DODAB/C:MO liposomes also pointed to a more homo-
geneous incorporation into DODAC- than into DODAB-
bilayers [100]. MO’s more uniform distribution in DO-
DAC:MO bilayers resulted in a slightly greater ability to fuse 
with model endosomal membranes when compared to DO-
DAB:MO bilayers [100]. Nevertheless, this aspect also com-
promised stability and DODAC:MO (2:1) liposomes re-
leased almost all of their siRNA content after 1 h incubation 
in physiological conditions. This strongly reduced DO-
DAC:MO lipoplexes efficiency, leading to lower cellular 
internalization and ability to silence the eGFP protein when 
compared to DODAB:MO liposomes (Fig. 4). 

For formulations prepared at cationic:neutral lipid molar 
fraction of (1:2), the counter-ions’ effects on membrane or-
ganization are not so discernible, and DODAB:MO (1:2) and 
DODAC:MO (1:2) systems seem more alike, resulting in 
similar biological responses (Fig. 4). The incorporation of a 
higher amount of MO into the bilayers disrupts DODAB-rich

 
Fig. (3). Representation of the chemical structure of dioctadecyldimethylammonium lipids (A) and phase diagram of DODAB (adapted from 
[170]) (B), chemical structure of monoolein (MO) (C) and phase diagram of MO (D) 157.171. When X = Br dioctadecyldimethylammonium 
bromide (DODAB) is formed, while for X = Cl, dioctadecyldimethylammonium chloride (DODAC) is formed. 



DODAX: MO Nanocarriers for siRNA Delivery Current Drug Targets, 2018, Vol. 19, No. 13    17 

 
Fig. (4). Representation of the DODAX:MO liposomes and lipoplexes structures, lipoplexes cellular internalization, cytotoxicity and silenc-
ing efficiency, according to the cationic:neutral lipid molar fraction. In DODAX:MO (2:1) the lamellar phase is predominant and MO is 
within the DODAB lamellar phase. In DODAX:MO (1:2), MO is organized in inverted non-lamellar structures limited by DODAX lamellar 
phases. Adapted from [100, 158, 159, 162]. 

 
 

 
Fig. (5). Representative results obtained during the optimization of the DODAX:MO lipoplexes PEGylation for systemic siRNA administra-
tion. Results show the lipoplexes ability to retain siRNA after incubation in human serum (A and B), their ability to avoid aggregation (C and 
D), their capacity to downregulate BCR-ABL fusion gene (E), and finally cellular internalization after incorporation of folate as a targeting 
molecule (F). Adapted from 116.164. 

domains. In fact, after a certain percentage, MO is probably 
excluded from the bilayer membranes, forming MO-rich 

inverted non-lamellar structures in the core of the liposomes 
(Fig. 4).  
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DODAB:MO (2:1) was further optimized for systemic 
siRNA delivery (Fig. 5). Different pegylation strategies were 
tested (pre-pegylation with DSPE-PEG and post-pegylation 
with PEG-ceramide), and the best system was validated in a 
leukemia cell line (K562 cell line) that expresses the patho-
genic BCR-ABL fusion protein [116]. 

Both the PEGylation method and type of PEG moiety 
(DSPE-PEG or PEG-ceramide) influenced lipoplexes per-
formance in physiological conditions [116]. Pre-PEGylation 
of DODAB:MO (2:1) siRNA-lipoplexes resulted in lower 
cellular internalization and silencing efficiency. The pres-
ence of DSPE-PEG decreased cellular internalization, proba-
bly affecting endosomal escape, which compromised siRNA-
lipoplexes silencing efficiency outcome. The looser post-
PEGylation with PEG-ceramide was beneficial in these as-
pects (siRNA protection, siRNA-lipoplexes internalization 
and silencing efficiency), but it still provided enough stabil-
ity to avoid massive aggregation in human serum and de-
crease binding of serum proteins. PEG-ceramide nanocarri-
ers better-retained siRNA in human serum (Fig. 5A and 5B), 
avoiding massive aggregation (Fig. 5C and 5D), and effec-
tively silencing the BCR-ABL gene (Fig. 5E), to an extent 
sufficient to affect K562 cell survival [116]. 

In a different work, a targeting approach was also fol-
lowed to improve delivery efficiency (Fig. 5F). Functional-
ized DODAC:MO:PEG-folate were prepared and found to be 
better internalized by FR-α positive breast cancer cells when 
compared with FR-α negative cells and to systems lacking 
PEG-folate [164].  

These works show the potential of MO-based liposomes 
for siRNA delivery and reinforce the importance of a careful 
optimization and selection of lipid components before in vivo 
application. Nevertheless, a good clinical response is ex-
pected for DODAB:MO (2:1) siRNA-lipoplexes, since DO-
DAB:MO liposomes were already demonstrated to be well 
tolerated by mice [160] in terms of toxicity and recognition 
by the immune system. 

CONCLUSION 

The fact that liposomes have been used in the clinic for 
more than 20 years, especially for chemotherapy, together 
with the simplicity by which they form complexes with 
negatively charged nucleic acid molecules, makes lipid-
based nanosystems as one of the most attractive siRNA de-
livery vehicles for gene therapy. Nevertheless, there are still 
important obstacles to overcome before RNAi constitutes an 
effective therapeutic approach, particularly related to the 
nucleic acids delivery process. Several strategies can be used 
to improve delivery efficiency, namely concerning nanocar-
rier stability in biological fluids, their ability to actively tar-
get specific cells, as well as to take advantage of different 
physiological stimuli to carry siRNA into the cytoplasm of 
the cells. This review covers some of these strategies, ex-
plaining the mechanisms behind each approach and giving 
examples of liposomal-based systems optimized to overcome 
specific barriers to the delivery process. An efficient delivery 
of siRNA to target cells will allow the use of lower doses 
and decrease off-target effects associated with RNAi thera-
peutic approaches. Understanding the relationship between 
physicochemical properties and biological effects is the first 

step in the development of a successful nanocarrier, as ex-
emplified by the lessons learned from the liposomal system 
DODAB/C:MO. 
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