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ABSTRACT  

 

Conducting polymer electrodes based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) are 
used to record extracellular signals from autonomous cardiac contractile cells and glioma cell cultures. The performance 
of these conducting polymer electrodes is compared with Au electrodes. A small-signal impedance analysis shows that 
in the presence of an electrolyte, both Au and polymer electrodes establish high capacitive double-layers. However, the 
polymer/electrolyte interfacial resistance is 3 orders of magnitude lower than the resistance of the metal/electrolyte 
interface. The polymer low interfacial resistance minimizes the intrinsic thermal noise and increases the system 
sensitivity. However, when measurements are carried out in current mode a low interfacial resistance partially acts as a 
short circuit of the interfacial capacitance, this affects the signal shape. 
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1. INTRODUCTION  
 

Microelectrode arrays (MEAs) are considered to be a basic platform for the development of cell-based sensors. 
These are substrate-integrated extracellular electrode matrices kept in contact with cells in culture1,2. MEA-based 
neuronal-electronic interfaces have been shown to facilitate the study of neuronal network processes, effects of 
pharmacological drugs and mechanisms underlying pathological conditions. Recently, there is a significant effort in 
improving the MEA technology. These efforts have been directed at two major challenges (i) decreasing the device 
dimensions and (ii) improving the electrical coupling between the cell and the sensing device. Smaller devices are better 
for parallel activity mapping, hence the application of nanofabrication technologies in this field. Devices incorporating 
nanostructures have been used to record electrical activity from neurons and cardiomyocytes3–7. Often in these devices 
the cells spontaneously engulf protruding structures. This intimate contact between the cell and electrode improves 
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signal-to-noise ratio as compared to planar electrode systems. Another goal being pursued is the lowering of electrode 
impedance. The most successful strategy is the use of conducting polymer surfaces5,8–11. It has been shown that polymers 
offer a low impedance that facilitates signal transduction from the cell to the recording electrode12–16. 

 This contribution compares the performance of conventional Au electrodes with ink-jet printed polymer electrode 
to record extracellular signals from cells in vitro. The objective is to gain insight into the impedance parameters that 
control the electrical coupling between the cells and planar extracellular electrodes. The performance of the electrodes is 
demonstrated using signals recorded from glioma cells cultures and from clusters of autonomous cardiac contractile 
cells. The paper is structured as follows: First, the basic measurement system is presented in section 2. Section 3 
introduces the equivalent circuit model that describes the displacement current method and how the voltage signal is 
related with the signal in current. Next, the impedance of metallic and polymer based electrodes is presented and 
discussed. Finally, the conclusions highlight the role of the individual impedance parameters in shaping the signal in 
current. 
 

2. ELECTRODES CHARACTERISTICS AND EXPERIMENTAL SETUP 
 

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate PEDOT:PSS electrodes were ink-jet printed on glass 
substrates. Printing was performed in air using a Fujifilm Dimatix Material Printer (DMP) 2831, with a DMC-11610 
cartridge. Samples were annealed on a hot plate at 60˚C for 8h. After annealing, ethyleneglycol (EG) was deposited on 
the structure by immersion and then the devices were dried in a vacuum oven at 60˚C for 12h.  Fig. 1 (a) shows a section 
of two parallel PEDOT:PSS electrodes printed on glass substrates. As test cells, we used cardiomyocytes differentiated 
from mouse embryonic stem cells (ESC) described elsewhere17,18 and Rat glioma C6 cells (American Type Culture 
Collection, ATCC). A photograph of a confluent C6 cell population on top of gold electrodes is show in Fig. 1(b). An 
EB with multiple foci of contractile activity is shown in Fig. 1(c). This EB has approximately 1000 cells. The sensing 
electrodes with cells were maintained at 37 ºC in an incubator (HERACell®150) with a humidified atmosphere with 5% 
of CO2.  

All electrical measurements were performed with a Stanford low-noise current amplifier (SRS 570), or alternatively 
in voltage mode using the voltage amplifier (SRS 560), connected to a dynamic signal analyzer (Agilent 35670A). The 
low noise pre-amplifiers operated with internal batteries. Small-signal-impedance measurements were carried out by a 
Fluke PM 6306 impedance meter. All electrical measurements were carried out inside of a thick iron based Faraday cage 
to shield low frequency interferences and the entire system is mechanically decoupled from external vibrations. Fig. 1(d) 
shows a schematic diagram of the measuring set-up. 
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