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Abstract

Background: Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and
early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray
computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was
performed to model early stages of disease and establish differential diagnosis.

Methods: To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke
combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the
frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to
group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated
fractal dimension, then abstracted by the fractal dimension – cut-off range mathematical function. Nonparametric
Kruskal-Wallis (KW) and Mann–Whitney post hoc (MWph) tests were used.

Results: Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian
curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable
within the three exposure groups.

Conclusions: A new radiomics evaluation method was established based on analysis of the fractal dimension of
chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our
method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD),
asthma, tuberculosis or lung carcinomas.
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Background
“Radiomics” is an approach currently recognized in bio-
medical image analysis as a tool to define a potentially
diverse array of meta-data obtained from images using
quantitative radiology image analytics. Some well-
selected features of these meta-data can be informative
of the health status of the imaged organ system and

impact therapy decisions. Such therapy decisions are
best taken early in the course of disease. Early therapy
decisions have tremendous impact on quality of life in
pulmonary diseases.
Fractals are often used to characterize non-Euclidean

structures in biology [1]. Utilizing the scaling factor of
statistically self-similar and non-overlapping subsets,
fractal dimension can be computed [2] providing rele-
vant information describing a structure’s complexity and
homogeneity [3]. Fractal dimension represents, with cer-
tain limitations, the “less or more branching nature” of
structures [4, 5] including the respiratory organ [6].
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We sought to implement a fractal-based radiomics ap-
proach to X-ray computed tomography attenuation data
without respiratory gating thereby averting the risk of los-
ing relevant information. Analysis of fractal dimensions in
specially binned non-gated X-ray computed tomography
image patterns has been the method of our choice.
The currently accepted method of analysing pulmon-

ary fractal dimensions of X-ray computed tomography
attenuation data usually consists of segmenting parts of
the lung such as the alveolar respiratory units, or pul-
monary arteries and veins [7–10]. Al-Kadi and Watson
[2] distinguished tumours and blood vessels based on
their X-ray attenuation differences (using contrast ma-
terial) to perform fractal dimension analysis on the
image segments. The usually applied methods therefore
provide the reader with a fractal dimension value for
each of the tissue component segments of lung images.
A usual outcome measure e.g. is the fractal dimension of
lung arterial vasculature.
Our approach to radiomics has been greatly different

from simply calculating fractal dimensions of segmented
pulmonary tissue components (“dissected” vessels, bron-
chi etc.). The examination of fractal dimensions of ideally
selected attenuation ranges in relative Hounsfield units
(HU) may provide the foundation towards discovering
additional hidden tissue features in integrative patterns of
lung images instead. These fractal dimension calculations
may perhaps detect small scale tissue alterations such as
those caused by harmful environmental conditions. Our
objective was to unveil possible correlations between air
pollutant categories and specific features or patterns of
damaged lungs. These features of small magnitude might
not be evident in either custom visual X-ray computed
tomography image analysis or in the calculation of seg-
mented pulmonary tissue fractal dimensions.
We aimed at distinguishing between different air pollu-

tant effects on the lungs via a radiomic approach with a
clinically translatable mathematical algorithm. We pre-
ferred using non-gated X-ray computed tomography data.
Non-gated data acquisition still contains effects of e.g. hin-
dered chest or lung motion. In our analysis we intended
to examine data features reflecting disease-related changes
also in lung organ movements rather than anatomical re-
lationships. Thus in our analysis method presented here
simple non-gated X-ray computed tomography mouse
chest scans have been acquired and evaluated by the cal-
culation of fractal dimension of binary images. We binned
voxel sets from each mouse chest X-ray computed tomog-
raphy volume into numerous attenuation ranges in our
study [1, 11], instead of pulmonary tissue-based image
segmentation. Additionally we also averted the use of any
contrast agent.
Generally speaking, (both in the “classic” and in our

novel method), the result of fractal dimension

calculation is a number corresponding to how often ex-
amined structures (dissected arteries and veins in “clas-
sical” methods and voxel 3D patterns with specific
attenuation values in our approach) branch and/or fill
the space within the chest. However, in our novel ap-
proach, the fractal dimension calculation method exam-
ines and depicts integrative binary images of lung voxels
which are selected according to their attenuation values.
We then aimed at the application of our algorithm to
discriminate among groups of mice treated with differ-
ent air pollutants in an early phase of their respective
disease models.

Methods
Ethics Statement
The animal experiment was reviewed and approved by
the local authorities (Committee on the Ethics of Animal
Experiments of Semmelweis University, permit number:
PMK ÉBÁI-XIV-I-001/29-7/2012) according to Hungar-
ian animal protection laws in accordance with EU
guidelines.

Experimental animals
Three groups of BALBc/ByJ female mice (6–8 weeks old,
18–22 g) were used in the context of our current re-
search. Their exposure was performed in a plexiglass in-
halator chamber (30 cm × 30 cm × 50 cm). One group
(n = 5) was treated with inhalation of sulphur dioxide
(SO2) gas 2 % v/v (SDO group). A second group (n = 5)
was treated with air diluted, fresh mainstream cigarette
smoke from ‘3R4F’ Reference Cigarettes (Kentucky To-
bacco Research & Development Center, USA) mixed
with ozone-air gas mixture (50 mg/h, 3.7 l/min dilution
with air; SAO group). Cigarettes with a shortened filter
only (approx. 2 mm) were smoked according to our
protocol (1 puff/9 s of 3 s duration and 40 mL volume).
The SAO group first received one 20 min long exposure,
followed by two 20 min long exposures, and lastly, three
20 min long exposures on the additional remaining days.
A control group (n = 6) was also used, treated with the
inhalation of filtered and humidified (30–40 %), air
under identical conditions (CON group). Treatment dur-
ation was 14 days, and then imaging was carried out
within all groups. An untreated BALB/CyJ female mouse
(Janvier, France) was imaged too, in serving the purpose
of representation of the attenuation profile of the chest
(Fig. 1).

In vivo imaging
X-ray computed tomography information was collected
using a NanoX-CT (Mediso Ltd, Hungary) cone-beam in
vivo micro-CT imaging system (8 W power of X-ray
source, 55 kV source voltage, 3.6x zoom) without using
contrast material. It is important to emphasize the
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physics of cone-beam X-ray computed tomography ac-
quisitions which represents specific technical consider-
ations beyond the scope of our current paper and may
distort the direct comparison of attenuation values of
the same organs measured with other detection tech-
niques, such as those applied in clinical slice-based

X-ray computed tomography systems. Therefore, attenu-
ation values are presented in relative Hounsfield units.
Reconstruction algorithm (Mediso Ltd.) utilizing the

Feldkamp-filtered back projection was run on a 64 bit
graphics processing unit (GPU). The reconstructed voxel
sizes were 54 × 54 × 54 μm in one 370 × 370 × 370 voxel

Fig. 1 The reconstruction of the lungs of an untreated mouse shown with the sole intent of representing the attenuation profile of the chest.
Sagittal (left b), coronal (center b), transaxial (right b) planes and minimum intensity projection (a). Certain attenuation ranges were abstracted
from these slices in sagittal, coronal and transaxial planes. c −700 – -400 relative HU (lung parenchyma), (d): −100 – +200 relative HU (pleura,
endothoracic fascia, epipleural fat and interlobar fissures), (e): +200 – +500 relative HU (respiratory- and heart muscles, diaphragm), (f): +500 –
+800 relative HU (blood inside the vessels, aorta and heart, lymphatic fluid and interlobar fissures), and (g): +1400 – +3800 relative HU (bones)
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matrix, as region of interest (ROI) following our image
acquisition. During data acquisition animals were con-
stantly anaesthetized using a mixture of 2.5 % isoflurane
and medical air, and their body temperature was main-
tained at 38 C. One image acquisition took 4.5 min.
Non-respiration-gated data sets were acquired and fur-
ther analysed.
Fan-beam technology, used earlier and extensively

within clinical practice, has today largely been replaced
by multislice detector technology. As a result, the differ-
ence between pre-clinical and clinical instruments is
quickly disappearing and clinical systems are gradually
becoming similar to cone-beam computer tomography
instruments.
Sensitivity in small animal imaging may be worse

when compared to the human counterpart. Voxel size is
one tenth or twentieth of the human voxel size, and so
the signal-to-noise ratio could be worse (as this ratio is
inversely proportional to the third power of voxel vol-
ume), however, the measurement time is much longer.
In summary, signal-to-noise ratio is better in human
measurements, meaning our method will have an in-
creased sensitivity when applied to human cases.

Evaluation of X-ray attenuation histograms
In the first step, our algorithm segmented the acquired
3D X-ray computed tomography volume reconstructions
to contain only the whole lung volumes and to automat-
ically distinguish between the lung tissue, chest bones
and other tissues. The attenuation values of lung voxels
were represented in a frequency distribution function,
commonly referred to as a histogram [12] (data not
shown). In the next step of evaluation, Gaussian curves
were fitted by a minimum square algorithm (Gnuplot
4.4), featuring height, width and position. We calculated
the means and standard deviations of positions and
widths of the Gaussian curves of all examined groups
(Fig. 2). The height is not presented on Fig. 2 as this par-
ameter is dependent on width and area under histogram
by definition.

Characterization by fractal dimension analysis of voxels of
various attenuation ranges
Final data analysis was performed in five steps (Fig. 3).
The entire attenuation range of the reconstructed chest
area of animals was divided into 100 distinct cut-off
ranges. Once the attenuation value of a given voxel was
within a certain cut-off range, the voxel was represented
by “1”, or otherwise, “0”. This generated a binary image.
Each such derived binary pattern was then associated
with a calculated fractal dimension via box-counting al-
gorithm [13]. The lung morphology was quantified by
plotting the fractal dimension of all cut-off ranges in
each given X-ray computed tomography 3D attenuation

map. This plot is defined as the fractal dimension - cut-off
range function.
Here we present the exact details of the mentioned

five steps of data analysis with the purpose of demon-
strating how the cut-off range associated fractal dimen-
sion data were achieved (Fig. 3).

Step 1.The whole attenuation range in the experiments
was between −3,000 and +10,000 relative HU.
The 100 distinct ranges of attenuation values
were chosen by the Freedman-Diaconis rule [14].
A chosen range is defined mathematically as the

Fig. 2 Width and position parameters (mean, SD) of attenuation
histograms. CON, SAO, SDO groups
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standard cut-off range. Certain attenuation values
ranging between the chosen higher and lower
value were ranked into one cut-off range. The 100
cut-off ranges involved the whole scale of the
voxel attenuations of all scans and one cut-off
range contained 130 relative HU.

Step 2.The X-ray computed tomography images were
partitioned into cubic voxels (size: 54 μm in a
370 × 370 × 370 voxel matrix). When the
attenuation value of a given voxel was inside a
certain cut-off range, then that voxel was
associated with “1”, or otherwise with “0” in the
representation of the cut-off range.

Step 3.This association step was repeated which
resulted in a pattern of voxels with “1” and “0”
for every cut-off range. These patterns as binary
images were used in the next steps. The 100
binary images were derived from 100 previously
defined cut-off ranges.

Step 4.The box counting algorithm [13] was used to
calculate the fractal dimension number
associated with each binary image. See
additional details below in the sub-steps labelled
a through d.

Sub-step a) In this box-counting algorithm, the
length of cubic boxes varied from 1 to 100 voxels.
A given box was shifted from one position to
another without overlapping in a certain binary
image. The number of boxes containing at least
one voxel with value “1” was summarized.
Thereby, a number was calculated defined as the
number of boxes of a given side length (NB).

Sub-step b)The previous sub-step a) was repeated
including the difference that the boxes are
overlapped. Thus, NB results were produced
derived from the shifted overlapped positions. A
certain box size in a certain binary image produced
two different NB results (from overlapping and
non-overlapping boxes). From these two NBs, an
average (E(NB)) was calculated and that value was
used in further evaluation.

Sub-step c)For each box size, both the a and b
sub-steps were repeated. E(NB) was represented
as the function of the box size in a certain binary
image.

Sub-step d)To determine fractal dimension, the
function from sub-step c) was fitted by a power
function. The exponent of the power law is the

Fig. 3 Representation of the five steps of data analysis. a: The entire attenuation range of the reconstructed chest area of animals was divided
into 100 distinct cut-off ranges (Step 1). b: Binary images are generated (Step 2 and 3) and each such derived binary pattern was next associated
with a calculated fractal dimension via box-counting algorithms (Step 4). c: The fractal dimension – cut-off range function plot (Step 5)
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fractal dimension. To each binary image, a fractal
dimension number was ordered and calculated
utilizing this method.

Step 5. In this step, the cut-off ranges were associated
with the calculated fractal dimension. At both
the very high and very low cut-off range values,
the fractal dimension number is zero, while
near the middle values of cut-off ranges the
associated fractal dimension number becomes
nearly maximal.

The resulting fractal dimension - cut-off range func-
tion was fitted by two Gaussian curves (Gaussian curve
“A” and “B”) using the so-called “least box square” algo-
rithm. The outputs of our algorithm, the height, width
and position parameters of these fitted “A” and “B”
Gaussian curves, were calculated for all animals (Table 1).
Lists these numerical features of the Gaussian curves for
every group based on Additional file 1 (supporting data).
The lungs of all three groups, SDO, SAO and CON, were
characterized by these parameters (Fig. 4).
Lastly, to further attempt significant discrimination of

the groups, ratios of all three mean parameters derived
from both “A” and “B” Gaussian curves were calculated.
The C insets represent the ratios of “A” parameters di-
vided by “B” parameters (where a certain “C” parameter
is calculated by dividing the “A” parameter of a given
group by the “B” parameter of the same group) (Fig. 5).
These steps were repeated to evaluate the images of

each animal.

Statistical analysis
Statistical analysis was performed using the nonparamet-
ric Kruskal-Wallis (KW) test for fitted parameters of

groups (STATISTICA 7.0, Statsoft Inc., USA). Differ-
ences between all groups were evaluated by the Mann–
Whitney post hoc (MWph) test (Figs. 2 and 5).
A chi-square test was used to test the reliability (p <

0.05) of fit of the histogram and the fractal dimension,
or the cut-off range function (either fitted with one sin-
gle or two independent Gaussian curves).

Results
The mean values of width and position of the voxel
density histograms demonstrate no significant differ-
ences between the three groups (Fig. 2).
The fractal dimension - cut-off range functions were

evaluated by fitting them with Gaussian curves “A” and
“B” (Fig. 4). These functions can be characterized by
height, maximum position and width of the peak. The
means of height, width and position of the “A” curve of
the CON group do not differ significantly when com-
pared to the SDO or the SAO group. The means of
height, width and position are unchanged between the
SDO and SAO groups, too (Fig. 5a).
The mean of height of “B” curve of the SDO group in-

creased significantly when compared to the CON group
(KW p = 0.002, MWph p = 0.036) and to the SAO group
(KW p = 0.002, MWph p = 0.024), but not significantly
when the CON group was compared to the SAO group
(Fig. 5b top). The mean of widths of “B” curves of the
SDO group increased significantly (KW p = 0.016,
MWph p = 0.036) compared to the CON group, and also
significantly when compared to the SAO group (KW p
= 0.016, MWph p = 0.024), but not significantly when
the CON group was compared to the SAO group (KW
p = 0.016, MWph p = 0.429) (Fig. 5b middle). The means
of maximum positions are not significantly altered be-
tween the SDO, SAO and CON groups (Fig. 5b bottom).
The difference between the ratios of height is signifi-

cant if the SDO group is compared to the CON group
(KW p = 0.005, MWph p = 0.0357), if the SDO group is
compared to the SAO group (KW p = 0.005, MWph p =
0.024) and if the SAO group is compared to the CON
group (KW p = 0.005, MWph p = 0.042) (Fig. 5c top).
The ratios of width of the SDO and CON groups (KW

p = 0.021, MWph p = 0.036) and the SDO and SAO
groups (KW p = 0.021, MWph p = 0.024) demonstrate a
slight but significant difference (Fig. 5c middle), however,
the difference between the SAO and CON groups is not
significant.

Discussion
Differences between parameters based on the relative
HU–frequency histograms of the animals in the three
groups, i.e. the differences between mean maximum posi-
tions and widths (Fig. 2) could be neither the basis of de-
tection of an altered lung structure nor the categorization

Table 1 Contains averages and standard deviations of all fitted
parameters for all groups of animals

Average SDO SAO CON

Height A 2,161 2,231 2,291

Height B 1,725 1,376 1,276

Position A 181 628 735

Position B 3951 3473 3776

Width A 1133 1036 1086

Width B 2496 1630 1562

STD

Height A 0,049 0,104 0,042

Height B 0,080 0,063 0,090

Position A 386 540 217

Position B 110 647 277

Width A 61 165 169

Width B 161 169 135
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of air pollution exposure. Either the absence of gating or
the reduced period of mouse model symptom production
was likely the reason. Indeed, Sasaki et al. (2015) too could
not distinguish the effect of cigarette smoke on lung tissue
attenuation in comparison to the control using X-ray
computed tomography with gating [15]. However, inter-
estingly enough, a number of differences could be shown
using our novel radiomics analysis method.
In our opinion, there are distinctly altered tissue features

with respectively changed attenuation patterns in the differ-
ent mouse models of air pollution related disease. However,
the readout of these changes necessitates subtle differenti-
ation and radiomics analysis methods in early phases of
lung harm when symptoms are yet considerably subtle.
Severe lung diseases alter the inhalatory and exhala-

tory movements and these changes can be detected even
in mild cases or after relatively short exposure to air pol-
lutants (e.g., the slower exhalation in COPD is evident)
[16, 17]. This may be paradoxically advantageous in our
approach and likely will help in discerning exposure
sources. The hindered motion in the smoke/air and
sulphur dioxide groups presumably decreases or even
negates spatial and temporal overlapping of different tis-
sues in the same voxel caused by respiratory movement
and finally contributes to the mentioned increase of
width parameter in the exposed groups. This change in
motion dynamics (probably due to inflammation, mucus
build-up and entrapped air bubbles) may be an import-
ant part of the diagnosis and it is ignored when using re-
spiratory gating. Notably, this finding suggests the fractal
dimension- cut-off range function derived radiomic data
might unveil some pathologic changes in lung diseases
[3, 18]. Possibly the onset of disease as a result of expos-
ure to air pollution could also be observed with our data
analysis method.
The Gaussian curves of Fig. 5 display a different pat-

tern of respiratory pulmonary motion in the exposed an-
imals, possibly due to an increase in lung stiffness
caused by pollutants.

The height of Gauss curve B is significantly increased
in the SDO group compared to the other two groups
(Fig. 5b top). We infer this change is attributable to the
hindered motion of inflamed tissue.
Sulphurous gases are irritants and induce inflamma-

tion, bronchoconstriction and bronchitis resulting in an
increase of mucus [3, 19]. Overproduction of mucus can
form plugs which entrap air or temporally and partly ob-
struct the upper airways [20]. Airway clearance of mucus
depends on the interactions between physical properties
of the mucous gel, serous fluid content, and ciliary func-
tion, in addition to airflow [19]. Wagner et al. (2006) dis-
covered in a Sprague–Dawley rat model that 80 ppm
concentration of SO2 (besides overproduction of mucus)
caused epithelial cells to lose their ciliae [21]. Nano-
sized solid particles originating from fumes tend to accu-
mulate in deeper airways and alveoli [22], as inflamma-
tory agents increase water permeability and dilate cell
volume thus thickening airway walls and resulting in the
narrowing of the airways (in addition to minor mucus
production which cannot be excluded). In our interpret-
ation, this narrowing of the airways causes the different
motion dynamics of this group.
The width parameter of the SDO group is significantly

increased compared to the other two groups (Fig. 5b
center). We believe this change is attributable to the hin-
dered motion of inflamed tissue.
The number of voxels representing thickening airway

walls is increased, caused by SO2 exposure often pene-
trating into deeper airways and inducing inflammation
in the alveoli, leading to the appearance of fluid, derived
from necrotic cells [19, 23]. Mucus plugs trap air inside
the alveoli and lead to the formation of micro-sized bub-
bles [24, 25] inside the lung parenchyma. Indeed mucus
production is an early response to increased amounts of
air pollution [19]. In our interpretation, the increased
number of voxels representing thickening airway walls
causes the different shape of the fractal dimension - cut-
off range function of this group.
Only a slight difference was observed between the

means of height of Gaussian curve “B” of SAO and
CON groups (Fig. 5b top). In addition to mean values of
maximum positions (Fig. 5b bottom), the width param-
eter of the SAO group was compared to the control
group (Fig. 5 middle), however it did not significantly
change.
Theoretically speaking, emphysema-diseased areas

within the lungs could occur caused by destroyed walls
of airways and alveoli [11, 12, 18], however, it appears
only in long term experiments [26].
In using the corresponding ratios of parameters of

Gaussian curves “A” and “B” (Fig. 5c) and the heights
and widths of “B” Gaussian curves (Fig. 5b), all three
groups could be distinguished. We believe the difference

Fig. 4 The fractal dimension – cut-off range function fitted by
Gaussian curves “a” and “b”
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between the ratios of parameters refers to the different
proportion of various kinds of tissue damage caused by
different air pollution agents.
The proportion of tissue alterations has a specific pat-

tern in lung diseases of different origin. Altered tissue
(e.g., increased mucus production in one model or in-
creased presence of tissue microbubbles in another) was
explored.
The mechanism of these changes affecting the respira-

tory movement remains unclear and warrants further
research.
Data acquired in our study (Fig. 5b, c) proved a worthy

basis for differentiating specific air pollution caused lung
changes in the early stage by direct fractal dimension -

cut-off range function pattern analysis. It could be hy-
pothesized that molecular features and presence of
mucus in smaller airways [19] and inflammation profile
of lung tissues [27] contribute to our fractal dimension
analysis-based results. In reference to published litera-
ture [19, 28], we postulate that the fractal dimension -
cut-off range function calculated with our method may
be used as an imaging biomarker. It could be effectively
converted to both preclinical applications and clinical
use in humans, ideally providing patients the benefit of
early warning towards avoiding environmental risks.
Additional benefits are expected in the proper treatment
at the onset of symptoms of disease, and lastly, to pre-
vent aggravation of disease and exacerbation of COPD

Fig. 5 Calculated height, width and position parameters of the fractal dimension - cut-off range functions. a: Height, width and position parame-
ters of Gaussian curve „A” (CON, SDO, SAO groups). b: Height, width and position parameters of Gaussian curve „B” (CON, SDO, SAO groups). c:
The ratios of the relevant parameters of Gaussian curves „A” and „B” (CON, SDO, SAO groups). * p < 0.05, Kruskal-Wallis (KW) test with Mann–Whitney
post hoc (MWph) test
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and/or asthma bronchiale symptoms. Here, we highlight
the importance of length of smoke exposure and genetic
susceptibility [28] to emphysema [26], which may later
develop and will be reflected in the reported imaging
biomarker parameters [3, 18].
The radiomic analysis of the fractal dimension - cut-

off range function may be useful in early diagnosis of
both exposure to air pollution and lung diseases (such as
COPD or asthma), containing information about both
the molecular features and patterns of mucus in smaller
airways [19] and the inflammation profiles of lung tis-
sues [27]. We propose an increase in the number of
structurally quantitative imaging biomarker research
studies, towards early detection and follow-up of therapy
of other pulmonary diseases, for example, cystic fibrosis,
lung carcinomas [3] or tuberculosis [29].
In translational research, our most important goal is

to develop methods in animal models which later
may be used in clinical practice. In the case of our
paper, the translatability of the method is dependent
upon three aspects of it. The first is the usability of
the algorithm in clinical practice, the second is the
relation between anatomy sizes and reconstruction
voxels, and the third is the applicability of the algo-
rithm in clinical protocols.
The algorithm does not use specific data, as it only re-

quires a 3D reconstruction, that is attenuation distribu-
tion. These data are also available in the clinical setting,
so our algorithm proposed here can also be applied for
clinical lung computed tomography volumes.
The human body is about 15–20 times longer than the

body of the mouse and there is nearly the same differ-
ence between spatial resolution (voxel size in preclinical
CT is 50 μm and in clinical CT is 500–750 μm). Gener-
ally speaking, anatomy size and voxel size change pro-
portionally. Because of the partial-volume effect, though,
true resolution does not reach voxel size calculated from
reconstruction. It is important to note that the size of al-
veoli is invariable between species and is around 200
μm. Consequently, neither the pre-clinical nor the clin-
ical instrument can visualize individual alveoli with suit-
able resolution, but in the case of the pre-clinical
instrument, we see one alveolus in the adjacent voxels,
whereas in case of the clinical instrument, we see more
than one alveoli in one voxel.
Practically speaking, the proposed algorithm can be

applied in the clinics and it is not necessary to change
protocols, since the usual examinations and unchanged
data acquisition chain should be followed by this new
“off-line” analysis.
In summary, the use of the algorithm will be self-

evident in clinical practice. Naturally, its diagnostic ef-
fectiveness needs to be assessed meticulously throughout
different diseases.

Conclusions
We discovered a novel diagnostic and disease
characterization method providing results within a re-
markably short disease model production time com-
pared to the former 8–24 weeks needed to produce
detectable lung tissue changes as described in published
literature [30]. Additionally, as our method does not
apply gating, it may contribute to the simplified and
more cost-effective (through higher throughput) data
analysis utilizing simple X-ray computed tomography
scans in mouse experimental models. The implementa-
tion of our data analysis is straightforward and applic-
able in clinical image data sets and does not require
additional hardware. As the early diagnostic potential of
COPD-related lung and airway changes was shown here
in data containing approximately clinical levels of noise,
we remain convinced the translation and validation of
our algorithm and data analysis in human clinical trials
is warranted [3].
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