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Abstract

Athletic training can result in increased left ventricular (LV) wall thickness, termed physiologic hypertrophy (PhH). By contrast, pathologic
hypertrophy (PaH) can be due to hypertension, aortic stenosis, or genetic mutation causing hypertrophic cardiomyopathy (HCM). Because
morphologic (LV dimension, wall thickness, mass, etc.) and functional index similarities (LV ejection fraction, cardiac output, peak filling rate,
etc.) limit diagnostic specificity, ability to differentiate between PhH and PaH is important. Conventional echocardiographic diastolic function
(DF) indexes have limited ability to differentiate between PhH and PaH and cannot provide information on chamber property (stiffness and
relaxation). We hypothesized that kinematic model-based DF assessment can differentiate between PhH and PaH and, by providing chamber
properties, has even greater value compared with conventional metrics. For validation, we assessed DF in the following three age-matched
groups: pathologic (HCM) hypertrophy (PaH, n = 14), PhH (Olympic rowers, PhH, n = 21), and controls (» = 21). Magnetic resonance
imaging confirmed presence of both types of hypertrophy and determined LV mass and chamber size. Model-based indexes, chamber stiffness
(k), relaxation/viscoelasticity (c), and load (x,) and conventional indexes, Epcax (peak of E-wave), ratio of Epeax 10 Apeak (E/A), E-wave ac-
celeration time (AT), and E-wave deceleration time (DT) were computed. We analyzed 1588 E waves distributed as follows: 328 (PaH), 672
(athletes), and 588 (controls). Among conventional indexes, E,cac and E-wave DT were similar between PaH and PhH, whereas E/A and E-wave
AT were lower in PaH. Model-based analysis showed that PaH had significantly higher relaxation/viscoelasticity (c) and chamber stiffness (k)
than PhH. The physiologic equation of motion for filling-based derivation of the model provides a mechanistic understanding of the differences
between PhH and PaH.

Copyright © 2014, The Society of Chinese Scholars on Exercise Physiology and Fitness. Published by Elsevier (Singapore) Pte Ltd. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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chamber dilation."” Tt can cause sudden death in asymptom-
atic patients or progressive heart failure.” HCM is an example
of pathologic hypertrophy (PaH). By contrast, physiologic
hypertrophy (PhH) is induced by exercise, pregnancy, or
normal growth.”” Although athletic training can change the
heart morphologically (LV mass, dimension, shape, etc.) and
functionally [LV ejection fraction (LVEF), stroke volume,
peak filling rate, heart rate, etc.], it can be difficult to differ-
entiate PaH from PhH. The ability to differentiate is important,
because undetected HCM is the most frequent cause of sudden
death of athletes during exercise, and misdiagnosis of HCM
can lead to unnecessary disqualification of athletes.® Electro-
cardiography is unable to differentiate PaH from PhH.’

PaH and PhH manifest differences in cardiac function,
which can be evaluated by echocardiography. Previous studies
have used two-dimensional echocardiography,” ultrasound
speckle tracking,” tissue Doppler imaging,’ '* transmitral
flow,"* and M-mode echocardiography'* to show differences
in diastolic function (DF). Transmitral flow analysis has
demonstrated limited value in differentiating between PaH and
PhH.®'* Common DF indexes, including the ratio of peak
early transmitral flow to peak late atrial filling (E/A), Epcax
(peak E-wave velocity in centimeter/second), E-wave accel-
eration time (AT in milliseconds), and E-wave deceleration
time (DT in milliseconds),'” have provided inconsistent results
regarding DF at rest. Moreover, E-wave parameters are load
dependent and have not been derived from basic physiologic
principles that govern filling.'” *' Indexes (such as E/A) are
generated by the complex interplay of simultaneous physio-
logic determinants and chamber properties. Specifically, E-
wave DT has been shown to explicitly depend on both
chamber stiffness and chamber relaxation/viscoelasticity.*

To overcome the limitations of conventional indexes, we
quantified DF using a previously validated mechanistic model
of filling that incorporates the mechanical suction-pump
attribute of the LV. Accordingly, we analyzed E-waves using
the parametrized diastolic filling (PDF) formalism (Appendix
A).”* We have previously characterized PhH of the athlete
heart and compared it with the heart of age-matched controls
in terms of PDF-derived indexes and chamber properties.”* We
found significant differences in stiffness and load between
Olympic athletes and controls. Here, we use our previous work
as a foundation to test the hypothesis that PDF formalism-
derived chamber properties can differentiate PaH from PhH.
By performing serial echocardiographic assessments of DF,
model-based analysis of transmitral flow may elucidate and
characterize the mechanistic changes in HCM compared with
athletes and controls.

Methods
Patient selection

We analyzed data from 14 HCM patients, 21 athletes, and
21 healthy controls. All three groups were matched for age,
sex, and body surface area (BSA; Table 1). The 14 patients
(average age: 31 years; 11 men) with clinically established
diagnosis of HCM from the cardiomyopathy clinic at Sem-
melweis University Heart Center (Budapest Hungary) were
recruited and screened for magnetic resonance imaging (MRI)
compatibility. Three of the 14 patients were not on any
medication. The classes of medications for the remaining 11
patients were as follows: 10 on beta-blockers, three on
calcium-channel blockers, three on angiotensin-converting

Table 1

Clinical descriptors.

Parameter Controls (n = 21) PhH (n = 21) PaH (n = 14) PhH vs. controls PaH vs. controls PhH vs. PaH

Clinical attributes
Age, y 30+5 27+ 9 31+ 14 0.588 0.865 0.350
Height, cm 180 = 7 182 +9 173 + 6 0.965 0.019 0.011
Weight, kg 80 + 12 77 £ 12 84 + 15 0.830 0.644 0.339
BSA, m? 20+02 20+0.2 20+02 0.898 0.973 0.984
HR, beats/min 67 +9 57 + 11 63 +7 0.003 0.361 0.200
Systolic BP, mmHg 141 + 13 143 + 14 133 + 21 0.577 0.665 0.145
Diastolic BP, mmHg 85+ 10 75 £ 13 78 +9 0.034 0.244 0.717

LV dimension and mass-derived indexes
LVEDV, mL 192 + 25 228 + 52 182 + 34 0.010 0.941 0.006
LVEDV index, mL/m? * 95 + 14 115 £ 19 91 £ 15 <0.001 0.955 <0.001
LVESYV, mL 79 + 18 93 +29 62 + 16 0.024 0.343 <0.001
LVESV index, mL/m? * 40 + 8 47 + 12 31+7 0.015 0.154 <0.001
LVSV, mL 115 + 15 134 + 27 120 + 29 0.039 0.754 0.245
LVSV index, mL/m? * 58+5 68 + 11 60 + 13 0.010 0.778 0.089
LV mass, g 132 + 20 171 + 42 228 + 65 0.028 <0.001 0.002
LV mass index, mL/m> * 66 + 8 86 + 17 115 + 31 0.013 <0.001 <0.001
LVWT, mm 10+ 1 13+2 26 +5 0.107 <0.001 <0.001
LVEEFE, % 59 +6 60 +5 66 + 7 0.869 0.049 0.011
Cardiac output, L/min 7.7 + 1.5 75+ 1.5 7.6 +1.6 0.874 0.976 0.967

BP = blood pressure; BSA = body surface area; HR = heart rate; LVEDV = left ventricular end-diastolic volume; LVEF = left ventricular ejection fraction;
LVESV = left ventricular end-systolic volume; LVSV = left ventricular stroke volume; LVWT = left ventricular average wall thickness; PaH = pathologic

hypertrophy; PhH = physiologic hypertrophy.

? These parameters are normalized to BSA. Data are presented as mean + standard deviation.
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enzyme inhibitors, one on anticoagulants, one on antiar-
rhythmic drugs, and one on mineralocorticoids. All the ath-
letes were involved in endurance sport (mainly canoeing). The
controls were healthy individuals who were either university
students or employees, none of whom participated in
competitive sports. All of the participants provided written
informed consent for participation in the study in accordance
with the Medical Research Council Scientific and Ethical
Committee criteria (Semmelweis University).

Echocardiography

A complete echocardiographic examination was performed
on all patients in accordance with the American Society of
Echocardiography criteria with a standard clinical imaging
system (Philips iE33; Philips Healthcare, Andover, MA,
USA).25 The wall filter was set at 125 Hz. Two-dimensional
images in apical two- and four-chamber views were obtained.
Pulsed Doppler was used in the apical four-chamber view for
transmitral Doppler with the 4-mm sample volume located at
the leaflet tips and with patients in the left lateral decubitus
position. A standardized method of passive leg elevation in the
recumbent position was used with 0°, 45°, and 90° foam wedges
to generate physiologic load variation during E-wave recording.

Echocardiographic data analysis

The total number of E-waves analyzed conventionally (E-
waves approximated as triangles) and through the PDF
formalism was 1558: 328 from HCM, 672 from athletes, and
588 from controls. Only beats with clear contours were
selected, digitized, and cropped using a custom MATLAB
(MathWorks, Natick, MA, USA) program. The E,.x, E-wave
AT, E-wave DT, peak A-wave velocity, E/A, and heart rates
were computed. The PDF parameters were computed from E-
waves as previously described (Appendix A).”® In brief, the
digitized E-wave image was used to determine the maximum
velocity envelope, from which an automated PDF fit is obtained
using the Levenberg—Marquardt algorithm. The output in-
cludes a measure of goodness of fit and an explicit measurement
of error. Fitting generates three (mathematically unique) PDF
parameters (c, k, and x,,) for each E wave (Fig. 1). In addition,

peak atrioventricular (AV) pressure gradient kx,, maximum
resistive force opposing filling cE,c.x, and stored elastic strain
energy before valve opening 1/2kx? were also computed.

Cardiac MRI

The MRI examination (Achieva 1.5T Dual Nova HP
R2.6.3p7, cardiac coil; Philips Healthcare, Andover, MA,
USA) used “breath hold” at end-expiration for each image
acquisition to eliminate respiratory motion artifact. After
obtaining scout images, steady-state free-precession breath-
hold cine images were acquired in four-, three-, and two-
chamber long-axis planes and in sequential 8-mm short-axis
slices (flip angle 60°, 0-mm gap) from the AV ring to the
apex. The height and weight of each participant provided the
BSA through the Mosteller formula.”’

MRI data analysis

The LV end-diastolic volume, LV end-systolic volume, LV
stroke volume, LV mass, and their BSA-normalized values
were computed. The LV average (maximal) wall thickness and
LVEF were determined using standard methods. The LV vol-
ume, LVEF, and mass were quantified using planimetry of
end-diastolic and end-systolic short-axis balanced steady-state
free-precession cine images with QMass 7.1 analysis software
(Magnetic Resonance Analytical Software System; Medis
Medical Imaging Systems, Leiden, The Netherlands). Cardiac
output was calculated by multiplying heart rate by stroke
volume. These parameters are listed in Table 1.

Statistical analyses

Conventional and PDF parameters for all E-waves in each
individual were averaged. Mean patient values were used to
calculate group averages (Table 2) and to determine statistical
significance. The MRI data were also averaged for each group
and are reported in Table 1. One-way analysis of variance with
a Tukey post hoc test was performed in SPSS Statistics 22
(IBM, Armonk, NY, USA) to determine whether the parameter
value difference between groups was significant, using
p < 0.05 as the criterion.
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Fig. 1. Sequence of operational steps for computing PDF parameters from clinical echocardiographic E-wave contours (blue dots denote MVE used as input to the
model). The PDF model output consists of the mathematically unique parameters (x,, ¢, and k) that specify each E wave. The PDF model-predicted fit is shown as
the green contour. MVE = maximum velocity envelope; MSE = mean square error (see text for details); PDF = parametrized diastolic filling.

Downloaded for Anonymous User (n/a) at HUNGARY - University Semmelweis Med from ClinicalKey.com by Elsevier on July 15, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.



S. Zhu et al. / Journal of Exercise Science & Fitness 12 (2014) 88—95 91

Table 2

Transmitral flow measurement.

Parameter Controls (n = 21) PhH (n = 21) PaH (n = 14) PhH vs. controls PaH vs. controls PhH vs. PaH

Conventional Doppler indexes
Epeak, cm/s 78 £ 14 84 £ 16 91 £23 0.527 0.095 0.487
E-wave AT, ms 80 + 6 112 + 16 75+6 <0.001 0.446 <0.001
E-wave DT, ms 162 + 23 220 + 32 203 + 66 <0.001 0.019 0.421
Egu ms 279 + 32 332 +42 297 + 37 <0.001 0.358 0.023
VTL m 0.108 + 0.016 0.139 + 0.028 0.131 + 0.043 0.028 0.076 0.808
E/A 1.7+ 04 1.9 +£05 1.5+04 0.193 0.548 0.030

PDF parameters and indexes computed from them
c, gls 154 +2.6 15.0 = 3.1 193 +29 0.905 <0.001 <0.001
k, g/s? 235 + 31 188 + 44 248 + 45 <0.001 0.619 <0.001
X,, M 93+14 11.8 £ 2.5 120 + 4.2 0.011 0.017 0.987
A—4mk, g¥s? —687 + 115 —492 + 153 —603 + 194 <0.001 0.253 0.099
1/2kx2, mJ 1.1 +04 1.4 +0.7 19+ 1.6 0.519 0.028 0.227
kx,, N 219 + 4.8 219 £ 6.3 289 + 83 0.998 0.007 0.007
cEpeas N 11.9 + 3.0 12.6 + 4.3 17.6 + 6.1 0.859 <0.001 0.005
M 1.09 £ 0.12 1.08 + 0.16 1.18 £ 0.11 0.993 0.134 0.109

1 /kai = kinetic energy; AT = acceleration time; ¢ = relaxation/viscoelasticity; cEjcax = peak resistive force; DT = deceleration time; E/A = ratio of E-wave
peak to A-wave peak; By, = duration of E wave; E..x = peak velocity of E wave; k = chamber stiffness; kx, = peak atrioventricular pressure gradient; M = load-
independent index of diastolic filling; PaH = pathologic hypertrophy; PDF = parametrized diastolic filling; PhH = physiologic hypertrophy; VTI = velocity time

integral, the area under the E-wave; x, = load.

Results
Characteristics of the HCM, athlete, and control groups

Table 1 provides the clinical descriptors of the study cohort
(n = 56). The sex of the participants is as follows: 11 men/
three women in the HCM group, 18 men/three women ath-
letes, and 19 men/two women in the control group. All athletes
participated in endurance training (canoeing), with 16 of the
21 being elite athletes and the remaining five being master
athletes. Among the elite athletes, 11 were members of the
Hungarian national team, two were Olympic athletes, and
three were world champions. The control group consisted of
healthy university students or university employees, none of
whom participated in competitive sports.

Comparison between the athlete and control groups has
been previously reported by our group.”* The PaH group did
not differ from athletes and controls in age, weight, BSA, heart
rate, cardiac output, and systolic/diastolic blood pressure
(Table 1).

The LV chamber dimensions and mass were determined
from MRI data. The LV cavity size of the HCM group was
significantly lower than athletes but comparable to controls,
except for the BSA-normalized LV volume index at end sys-
tole (Table 1). The stroke volume of the HCM group was
slightly lower than athletes but similar to controls (Table 1);
however, LVEF (66 + 7%) of the HCM group was signifi-
cantly higher than athletes (60 + 5%; p = 0.011) and controls
(59 + 6%; p = 0.049). The HCM group had substantially
higher LV mass (228 + 65 g) than athletes (171 + 42 g;
p = 0.002) and controls (132 + 20 g; p < 0.001). As required
by the criterion for diagnosing HCM (ie., LV wall
thickness > 15 mm), the LV wall thickness of patients in the
HCM group (26 + 5 mm) was markedly higher than in athletes
(13 £ 2 mm; p < 0.001) and in controls (10 + 1 mm;

p < 0.001). These attributes (dimension, mass, and wall
thickness) confirm the presence of PaH in the HCM group.

DF assessment from transmitral flow: conventional and
PDF parameters

The conventional Doppler echocardiographic and PDF
parameters are shown in Table 2. The Epcqc in PaH is com-
parable to the other groups. The E/A (1.5 + 0.4) in PaH is
significantly lower than athletes (1.9 + 0.5; p = 0.030) but
similar to controls (1.7 + 0.4; p = 0.548). The Eg,, in PaH
(297 + 37 ms) is significantly lower than in athletes
(332 + 42 ms; p = 0.023) and comparable with controls
(279 + 32 ms). The PaH group's E-wave DT (203 + 66 ms) is
comparable with the athlete group but markedly longer than
controls (162 + 23 ms; p = 0.019). The conventional echo-
cardiographic measurements are in accordance with previous
studies.”**

The PDF parameter-based comparison revealed distinctive
features of each type of hypertrophy. Fig. 2 shows three
representative E waves, one from each group, along with their
PDF parameters. Compared with controls, both PaH patients
and athletes had substantially elevated but indistinguishable
preloads (x,: 12.0 + 4.2 cm in PaH; 11.8 + 2.5 cm in athletes;
and 9.3 + 1.4 cm in controls). Relaxation/viscoelasticity was
increased only in PaH patients but not in athletes (c:
193 + 2.9 g/s in PaH; 15.0 + 3.1 g/s in athletes; and
154 + 2.6 g/s in controls). Compared with controls, LV
chamber stiffness was elevated in PaH patients but was
significantly lower in athletes (k: 248 + 45 g/s* in PaH;
188 + 44 g/s* in athletes; and 235 + 31 g/s* in controls). E-
wave area (the velocity time integral or VTT) was comparable
between athletes (0.139 + 0.03 m) and PaH patients
(0.131 + 0.04 m) and higher than the control group

(0.108 + 0.02 m). The peak recoil force (kx,) and peak
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Fig. 2. Three E-waves with values of their PDF parameters. (A) Pathologic hypertrophy (HCM); (B) physiologic hypertrophy (rowing athlete); (C) Control.

HCM = hypertrophic cardiomyopathy; PDF = parametrized diastolic filling.

resistive force (cE,c.) were significantly higher in the PaH
group than in the other two groups (Table 2). We also calcu-
lated M, the load-independent index of DF.*’ We found M to
be similar across the three groups (1.18 + 0.11 in HCM;
0.108 + 0.16 in athletes; and 1.09 + 0.12 in controls).

Discussion

The morphologic similarity between PaH and PhH makes
differentiation difficult. The common clinical diagnostic cri-
terion for PaH is LV wall thickness of 15 mm or more in the
absence of other factors that may cause LV hypertrophy.’
Meanwhile, exercise typically remodels the LV such that its
wall thickness would mildly increase, up to 12 mm.® This
leaves a “gray zone” where the wall thickness falls between 13
and 15 mm, which could be due to either exercise or mild
PaH.° From a functional perspective, athlete hearts at rest have
similar echocardiographic parameters as control patients.”*
When compared with PaH patients, athletes have normal E/
A, whereas PaH patients have abnormal filling and tissue
Doppler patterns.”’ However, conventional echocardiographic
parameters are empirical and provide no mechanistic infor-
mation. To overcome this, we used the PDF formalism to
assess DF by analyzing E-waves in athletes, PaH patients, and
controls. We sought to elucidate and characterize differences
in diastolic chamber (kinematic) properties among these
groups. We found that chamber properties were significantly
different between groups. Many previous studies have
analyzed transmitral flow to assess DF using mainly E/A,
which was found to be significantly smaller in PaH patients
than in PhH (athletes).'® Moreover, it has been repeatedly
shown that LV relaxation in PaH patients is significantly
delayed.””"**

Distinguishing power of PDF formalism
The PDF formalism incorporates the suction-pump attribute

of the LV. Filling is modeled by Newton's Second Law in
analogy to the motion of a previously displaced, damped,

harmonic oscillator that recoils from rest. Therefore, the ve-
locity is characterized by the following three parameters:
chamber stiffness k, chamber viscoelasticity/relaxation ¢, and
volumetric preload x,,. These parameters uniquely characterize
each E wave in terms of the chamber's physiologic attributes.
Although conventional parameters such as E-wave DT have
been shown to correlate with and be attributed solely to
stiffness,”” more detailed analysis has revealed that E-wave
DT is jointly determined by stiffness and relaxation/visco-
elasticity (k and c) rather than stiffness alone (k).”> Therefore,
PDF analysis allows characterization of DF with greater
specificity. The PDF formalism has been applied in multiple
clinical settings (diabetes, hypertension, heart failure, caloric
restriction) where conventional methods demonstrated limited
utility or were unable to differentiate between groups.™ *’

Trends in conventional echocardiographic indexes

Doppler E- and A-waves were analyzed conventionally, by
approximating waveforms as triangles. We computed Epc,, E-
wave AT and E-wave DT, and E/A in 1588 cycles from the
three groups. We found that both athletes and PaH patients had
longer E-wave DT compared with controls. E-wave duration
was longest in athletes and it was significantly higher than in
PaH patients. E,.,x was not significantly different between the
three groups. However, E/A was highest in athletes and was
statistically significantly higher than in PaH patients. The E-
VTI was similar in athletes and PaH patients but it was higher
than controls.

Combined with the LV dimension information in Table 1,
these results indicate that at rest, the athlete heart aspirates a
larger volume per beat than the PaH heart, although the dif-
ference is not statistically significant. Moreover, because the
resting heart rates of athletes are lower than PaH patients
(statistically not significant), the cardiac output of pathologic
and physiologic hypertrophic hearts remains indistinguishable.
Therefore, these conventional echocardiographic flow and
dimension-based indexes are unable to differentiate between
PaH and PhH.
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Trends in PDF-based indexes

Considering the PDF parameters, we found that ¢ was
higher (worse relaxation) in PaH patients than in athletes. The
value of ¢ was also higher in PaH patients than in controls.
Athlete hearts had the lowest stiffness (k) among the three
groups. The stiffness in controls and PaH hearts was compa-
rable. The volumetric preload (x,) was comparable in athletes
and PaH patients and it was significantly higher than in con-
trols. Therefore, the PDF parameters ¢ and k can differentiate
between PaH and PhH.

The initial maximum recoil force (kx,; peak instantaneous
AV pressure gradient analog™®) was much higher in PaH than
PhH due to the higher stiffness (k) in these chambers. There-
fore, PaH patients have to generate a greater AV pressure
gradient (proportional to recoil force™) to fill with a volume
similar to that of the athlete heart. The peak resistive force
(cEpeax) Was also higher in PaH patients compared with controls
and athletes, indicating a higher resistance (impaired relaxa-
tion) to filling in these hearts. The load-independent index of
DF, M, is a dimensionless parameter defined by the ratio of peak
recoil force to peak resistive force. M was significantly higher
(worse) in PaH patients. This indicates that, for a given increase
in the peak resistive force, the peak recoil force would increase
by a greater amount in PaH patients, indicating a lower filling
efficiency compared with PhH or controls.

Physiologic and clinical interpretation of results

By analyzing E-waves through the PDF formalism, we
found that diastolic dysfunction in PaH patients is charac-
terized by higher chamber stiffness (higher k) and by delayed
relaxation (higher c). Increased stiffness means that when
filling by the same incremental volume, the pressure increase
(dP/dV) in PaH patients is greater than in PhH. In response to
exercise, which requires increased filling volume, the cham-
ber with PhH can increase its filling volume with a lower
increase in pressure compared with PaH as a result of better
relaxation. A higher value for the relaxation/viscoelasticity
parameter ¢ indicates delayed or incomplete relaxation (re-
sidual diastolic tone) and higher diastolic pressures. In
concordance with results reported from other PaH studies
using invasive methods,32’39‘40 increased ¢ and k values
accurately reflect the physiology. According to Gwathmey
et al, the cause of delayed relaxation in PaH is cytosolic Ca®™
overload.”' Delayed sequestration of Ca®" into the sarco-
plasmic reticulum implies incomplete crossbridge detach-
ment and increased residual diastolic tone.’' The higher
chamber stiffness in PaH is the combined effect of increased
LV mass, decreased LV chamber volume, and elevated
myocardial stiffness.””

Although the average volumetric preload (x,)—a determi-
nant of E,.,—is comparable between the two groups at rest,
meaning that both types of chambers aspirate about the same
amount of blood with each E wave, PaH chambers generate a
much higher peak AV pressure gradient (kx,) than athletes to
achieve it. This provides a mechanistic explanation, not

obtainable from conventional E-wave-derived metrics, of how
this form of diastolic dysfunction results in inefficient filling in
PaH. It reinforces the view that diastolic dysfunction can be
viewed as a state of impedance mismatch.*” In addition, the
higher maximum resistive force opposing filling (cEpeax) in
PaH conveys a similar message.

Limitations

In identifying chamber property differences in PhH versus
PaH, we did not further quantify differences among PhH in-
dividuals due to strength training versus endurance training
versus combination training. In addition, the modest sample
size for each group limited our ability to derive definitive
parameter value ranges. While sex-based differences have
been reported, our sample size did not permit us to make any
sex-based conclusions. All of these limitations are mitigated to
an acceptable degree by the large sample of E-waves analyzed
(n = 1588). In addition, because age is a known DF deter-
minant, basing the analysis on three age-matched groups re-
inforces our conclusions. Although some studies found fat-free
mass to be a better scaling factor than BSA in comparing
cardiac dimensions,“ “4* due to lack of data on fat-free mass,
BSA was used instead.

Conclusion

The morphologic similarities between PhH and PaH can
make echocardiographic differentiation a challenge. Even if
some conventional indexes can differentiate between groups,
their physiologic interpretation remains unclear. To overcome
these limitations, we analyzed DF using conventional and PDF
formalism-derived indexes. Our approach differentiated be-
tween the PaH and PhH and control groups characterized by
MRI and echocardiography, when conventional indexes failed
to do so. Importantly, our method elucidated the group-
differentiating role of stiffness and relaxation as chamber
properties. Because stiffness increases Epe.c and impaired
relaxation decreases Epca, our model-based approach explic-
itly delineates the extent to which stiffness and relaxation are
altered and provides a mechanistic explanation as to why
conventional indexes, E,c.x and E-wave DT, are unable to
differentiate between groups.
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Appendix A. The parametrized diastolic filling formalism

The parametrized diastolic filling (PDF) formalism charac-
terizes suction-initiated transmitral flow in analogy to the mo-
tion (kinematics) of a previously displaced, damped, harmonic
oscillator that recoils from rest. This method applies Newton's
Second Law and predicts E-wave (transmitral flow velocity)
contours parametrized in terms of chamber stiffness, relaxation/
viscoelasticity, and load. Accordingly, per unit mass, the recoil
process is governed by Newton's Second Law of motion.

d’x/dr* + cdx/dt + kx =0 (1)

where ¢ and k represent damping (viscoelasticity/relaxation)
and ventricular stiffness (spring constant), respectively. The
oscillator spring has been displaced by x, (measured in cen-
timeters; the analog of stored elastic strain in the chamber at
end systole) and recoils from rest (initial velocity = 0, cor-
responding to no flow before valve opening). These parameters
(x,, ¢, and k) are determined directly from the clinical E-wave
contour. Their physiologic interpretation has been extensively
validated using gold-standard (simultaneous micromanometric
hemodynamics and echocardiography) methods that causally
relate these parameters to chamber properties that determine
DF. >34 Ttg applications in physiology include: generation
of the third*’ and fourth heart sounds,48 constant-volume
attribute of the four-chambered heart,”’ physiologic and clin-
ical significance of mitral annular oscillations or longitudinal
ringing of the ventricle in diastole,”””" decomposition of E-
wave deceleration time into its stiffness and relaxation com-
ponents,” and determination of the in-vivo equilibrium vol-
ume of the LV as the volume at diastasis.”

References

1. Lauschke J, Maisch B. Athlete's heart or hypertrophic cardiomyopathy?
Clin Res Cardiol. 2009;98:80—88.

2. Maron BJ, McKenna WIJ, Danielson GK, et al. American College of
Cardiology/European Society of Cardiology clinical expert consensus
document on hypertrophic cardiomyopathy. A report of the American
College of Cardiology Foundation Task Force on Clinical Expert
Consensus Documents and the European Society of Cardiology Com-
mittee for Practice Guidelines. J Am Coll Cardiol. 2003;42:1687—1713.

3. Maron BJ, Maron MS. Hypertrophic cardiomyopathy.
2013;381:242-255.

4. Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological
hypertrophy of pregnancy. Circulation. 1996;94:667—672.

5. Dickhuth HH, Rocker K, Hipp A, et al. Echocardiographic findings in
endurance athletes with hypertrophic non-obstructive cardiomyopathy
(HNCM) compared to non-athletes with HNCM and to physiological
hypertrophy (athlete's heart). Int J Sports Med. 1994;15:273—277.

6. Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes.
Insights into methods for distinguishing athlete's heart from structural
heart disease, with particular emphasis on hypertrophic cardiomyopathy.
Circulation. 1995;91:1596—1601.

7. Pelliccia A, Maron BJ. Athlete's heart electrocardiogram mimicking hy-
pertrophic cardiomyopathy. Curr Cardiol Rep. 2001;3:147—151.

8. Richand V, Lafitte S, Reant P, et al. An ultrasound speckle tracking (two-
dimensional strain) analysis of myocardial deformation in professional
soccer players compared with healthy subjects and hypertrophic cardio-
myopathy. Am J Cardiol. 2007;100:128—132.

Lancet.

9. Matsumura Y, Elliott PM, Virdee MS, et al. Left ventricular diastolic
function assessed using Doppler tissue imaging in patients with hyper-
trophic cardiomyopathy: relation to symptoms and exercise capacity.
Heart. 2002;87:247—251.

10. Severino S, Caso P, Galderisi M, et al. Use of pulsed Doppler tissue
imaging to assess regional left ventricular diastolic dysfunction in hy-
pertrophic cardiomyopathy. Am J Cardiol. 1998;82:1394—1398.

11. Florescu M, Vinereanu D. How to differentiate athlete's heart from path-
ological cardiac hypertrophy? Medica J Clin Med. 2006;1:19—26.

12. Galanti G, Toncelli L, Del Furia F, et al. Tissue Doppler imaging can be
useful to distinguish pathological from physiological left ventricular hy-
pertrophy: a study in master athletes and mild hypertensive subjects.
Cardiovasc Ultrasound. 2009;7:48.

13. Lewis JF, Spirito P, Pelliccia A, et al. Usefulness of Doppler echocar-
diographic assessment of diastolic filling in distinguishing “athlete's heart”
from hypertrophic cardiomyopathy. Br Heart J. 1992;68:296—300.

14. Briguori C, Betocchi S, Losi MA, et al. Noninvasive evaluation of left
ventricular diastolic function in hypertrophic cardiomyopathy. Am J
Cardiol. 1998;81:180—187.

15. Palazzuoli A, Puccetti L, Bruni F, et al. Diastolic filling in hypertrophied
hearts of elite runners: an echo-Doppler study. Eur Rev Med Pharmacol
Sci. 2001;5:65—69.

16. Fagard R. Athlete's heart. Heart. 2003;89:1455—1461.

17. Pavlik G, Olex6 Z, Sidé Z, et al. Doppler echocardiographic examinations
in the assessment of the athletic heart. Acta Physiol Hung. 1999;86:7—22.

18. King GJ, Murphy RT, Almuntaser I, et al. Alterations in myocardial
stiffness in elite athletes assessed by a new Doppler index. Heart.
2008;94:1323—1325.

19. Paelinck BP, van Eck JW, De Hert SG, et al. Effects of postural changes
on cardiac function in healthy subjects. Eur J Echocardiogr.
2003;4:196—201.

20. Pepi M, Guazzi M, Maltagliati A, et al. Diastolic ventricular interaction in
normal and dilated heart during head-up tilting. Clin Cardiol.
2000;23:665—672.

21. Voller H, Uhrig A, Spielberg C, et al. Acute alterations of pre- and
afterload: are Doppler-derived diastolic filling patterns able to differen-
tiate the loading condition? Int J Card Imaging. 1993;9:231—240.

22. Shmuylovich L, Kovacs SJ. E-wave deceleration time may not provide an
accurate determination of LV chamber stiffness if LV relaxation/
viscoelasticity is unknown. Am J Physiol Heart Circ Physiol.
2007;292:H2712—H2720.

23. Kovacs Jr SJ, Barzilai B, Pérez JE. Evaluation of diastolic function with
Doppler echocardiography: the PDF formalism. Am J Physiol.
1987;252:H178—H187.

24. Apor A, Merkely B, Morrell T, et al. Diastolic function in Olympic ath-
letes versus controls: stiffness-based and relaxation-based echocardio-
graphic comparisons. J Exerc Sci Fit. 2013;11:29—34.

25. Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the
evaluation of left ventricular diastolic function by echocardiography. J Am
Soc Echocardiogr. 2009;22:107—133.

26. Kovacs SJ, Setser R, Hall AF. Left ventricular chamber stiffness from
model-based image processing of transmitral Doppler E-waves. Coron
Artery Dis. 1997;8:179—187.

27. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med.
1987;317:1098.

28. Nihoyannopoulos P, Karatasakis G, Frenneaux M, et al. Diastolic function
in hypertrophic cardiomyopathy: relation to exercise capacity. J Am Coll
Cardiol. 1992;19:536—540.

29. Shmuylovich L, Kovécs SJ. Load-independent index of diastolic filling:
model-based derivation with in vivo validation in control and diastolic
dysfunction subjects. J Appl Physiol. 2006;(101):92—101.

30. Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete's
heart: a clinical problem of increasing magnitude and significance. Heart.
2005;91:1380—1382.

31. Gwathmey JK, Warren SE, Briggs GM, et al. Diastolic dysfunction in
hypertrophic cardiomyopathy. Effect on active force generation during
systole. J Clin Invest. 1991;87:1023—1031.

Downloaded for Anonymous User (n/a) at HUNGARY - University Semmelweis Med from ClinicalKey.com by Elsevier on July 15, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.


http://refhub.elsevier.com/S1728-869X(14)00028-8/sref1
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref1
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref1
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref2
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref3
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref3
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref3
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref4
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref4
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref4
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref5
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref6
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref6
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref6
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref6
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref6
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref7
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref7
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref7
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref8
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref8
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref8
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref8
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref8
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref9
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref9
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref9
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref9
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref9
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref10
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref10
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref10
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref10
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref11
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref11
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref11
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref12
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref12
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref12
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref12
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref13
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref13
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref13
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref13
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref14
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref14
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref14
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref14
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref15
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref15
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref15
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref15
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref16
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref16
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref17
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref17
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref17
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref17
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref17
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref18
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref18
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref18
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref18
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref19
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref19
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref19
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref19
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref20
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref20
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref20
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref20
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref21
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref21
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref21
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref21
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref21
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref22
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref23
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref24
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref24
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref24
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref24
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref25
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref25
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref25
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref25
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref26
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref26
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref26
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref26
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref26
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref27
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref27
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref28
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref28
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref28
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref28
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref29
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref29
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref29
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref29
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref29
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref30
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref30
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref30
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref30
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref31
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref31
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref31
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

S. Zhu et al. / Journal of Exercise Science & Fitness 12 (2014) 88—95 95

Wigle ED. Hypertrophic cardiomyopathy: a 1987 viewpoint. Circulation.
1987;75:311-322.

Little WC, Ohno M, Kitzman DW, et al. Determination of left ventricular
chamber stiffness from the time for deceleration of early left ventricular
filling. Circulation. 1995;92:1933—1939.

Riordan MM, Chung CS, Kovécs SJ. Diabetes and diastolic function:
stiffness and relaxation from transmitral flow. Ultrasound Med Biol.
2005;31:1589—1596.

Kovacs SJ, Rosado J, Manson McGuire AL, et al. Can transmitral Doppler
E-waves differentiate hypertensive hearts from normal? Hypertension.
1997;30:788—795.

Riordan MM, Weiss EP, Meyer TE, et al. The effects of caloric restriction-
and exercise-induced weight loss on left ventricular diastolic function. Am
J Physiol Heart Circ Physiol. 2008;294:H1174—H1182.

Rich MW, Stitziel NO, Kovacs SJ. Prognostic value of diastolic filling
parameters derived using a novel image processing technique in patients >
or = 70 years of age with congestive heart failure. Am J Cardiol.
1999;84:82—86.

Bauman L, Chung CS, Karamanoglu M, et al. The peak atrioventric-
ular pressure gradient to transmitral flow relation: kinematic model
prediction with in vivo validation. J Am Soc Echocardiogr.
2004;17:839—844.

Sanderson JE, Gibson DG, Brown DJ, et al. Left ventricular filling in
hypertrophic cardiomyopathy. An angiographic study. Br Heart J.
1977:;39:661—670.

Betocchi S, Hess OM, Losi MA, et al. Regional left ventricular mechanics
in hypertrophic cardiomyopathy. Circulation. 1993;88:2206—2214.
Boardman NT, Aronsen JM, Louch WE, et al. Impaired left ventricular
mechanical and energetic function in mice after cardiomyocyte-specific
excision of SERCA2. Am J Physiol Heart Circ Physiol.
2014;306:H1018—H1024.

Ghosh E, Kovécs SJ. Early left ventricular diastolic function quantitation
using directional impedances. Ann Biomed Eng. 2013;41:1269—1278.

43.

44,

45.

46.

47.

48.

49.

50.

51,

52.

53.

George KP, Batterham AM, Jones B. The impact of scalar variable and
process on athlete-control comparisons of cardiac dimensions. Med Sci
Sports Exerc. 1998;30:824—830.

Batterham AM, George KP, Mullineaux DR. Allometric scaling of left
ventricular mass by body dimensions in males and females. Med Sci
Sports Exerc. 1997;29:181—186.

Kovécs SJ, Meisner JS, Yellin EL. Modeling of diastole. Cardiol Clin.
2000;18:459—487.

Lisauskas JB, Singh J, Bowman AW, et al. Chamber properties from
transmitral flow: prediction of average and passive left ventricular dia-
stolic stiffness. J Appl Physiol (1985). 2001;91:154—162.

Manson AL, Nudelman SP, Hagley MT, et al. Relationship of the third
heart sound to transmitral flow velocity deceleration. Circulation.
1995;92:388—394.

McGuire AM, Hagley MT, Hall AF, et al. Relationship of the fourth heart
sound to atrial systolic transmitral flow deceleration. Am J Physiol.
1997;272:H1527—H1536.

Bowman AW, Kovacs SJ. Assessment and consequences of the constant-
volume attribute of the four-chambered heart. Am J Physiol Heart Circ
Physiol. 2003;285:H2027—H2033.

Riordan MM, Kovacs SJ. Quantitation of mitral annular oscillations and
longitudinal “ringing” of the left ventricle: a new window into longitu-
dinal diastolic function. J Appl Physiol (1985). 2006;100:112—119.
Riordan MM, Kovics SJ. Absence of diastolic mitral annular oscillations
is a marker for relaxation-related diastolic dysfunction. Am J Physiol
Heart Circ Physiol. 2007;292:H2952—H?2958.

Mossahebi S, Kovacs SJ. Kinematic modeling based decomposition of
transmitral flow (Doppler E-wave) deceleration time into stiffness and
relaxation components. Cardiovasc Eng Technol. 2014;5(1):25—34.
Shmuylovich L, Chung CS, Kovécs SJ. Last word on point: counterpoint:
left ventricular volume during diastasis is the physiological in vivo equi-
librium volume and is related to diastolic suction. J Appl Physiol (1985).
2010;109(2):615.

Downloaded for Anonymous User (n/a) at HUNGARY - University Semmelweis Med from ClinicalKey.com by Elsevier on July 15, 2018.
For personal use only. No other uses without permission. Copyright ©2018. Elsevier Inc. All rights reserved.


http://refhub.elsevier.com/S1728-869X(14)00028-8/sref32
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref32
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref32
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref33
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref33
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref33
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref33
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref34
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref34
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref34
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref34
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref34
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref35
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref35
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref35
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref35
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref35
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref36
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref36
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref36
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref36
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref37
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref38
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref38
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref38
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref38
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref38
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref39
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref39
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref39
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref39
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref40
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref40
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref40
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref41
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref41
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref41
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref41
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref41
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref42
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref42
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref42
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref42
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref43
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref43
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref43
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref43
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref44
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref44
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref44
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref44
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref45
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref45
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref45
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref45
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref46
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref46
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref46
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref46
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref47
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref47
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref47
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref47
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref48
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref48
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref48
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref48
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref49
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref49
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref49
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref49
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref49
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref50
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref50
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref50
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref50
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref50
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref51
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref51
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref51
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref51
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref51
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref52
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref52
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref52
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref52
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref52
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref53
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref53
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref53
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref53
http://refhub.elsevier.com/S1728-869X(14)00028-8/sref53

	Diastolic function alteration mechanisms in physiologic hypertrophy versus pathologic hypertrophy are elucidated by model-b ...
	Introduction
	Methods
	Patient selection
	Echocardiography
	Echocardiographic data analysis
	Cardiac MRI
	MRI data analysis
	Statistical analyses

	Results
	Characteristics of the HCM, athlete, and control groups
	DF assessment from transmitral flow: conventional and PDF parameters

	Discussion
	Distinguishing power of PDF formalism
	Trends in conventional echocardiographic indexes
	Trends in PDF-based indexes
	Physiologic and clinical interpretation of results
	Limitations
	Conclusion

	Conflicts of interest
	Acknowledgments
	Appendix A. The parametrized diastolic filling formalism
	References


