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A B S T R A C T

Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their
relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of
persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic
connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These
networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be
especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous
brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a
new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More spe-
cifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quanti-
tative way using a set of 15 metrics conceived to quantify the degree of ‘engagement’ of ICNs for any given fMRI-
derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable
quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI
dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a
dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded
EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.
nitrc.org for researchers to use in their fMRI investigations.
1. Introduction

The analysis and interpretation of functional MRI data activation
patterns is usually performed in the framework of brain anatomy. In
particular, activation clusters are usually described in terms of their
extent and centre of gravity coordinates as defined in standard template
spaces, e.g. MNI (Montreal Neurological Institute) or Talairach (Evans
et al., 1993; Fox and Lancaster, 2002; Talairach and Tournoux, 1988). A
variety of macro- and micro-structural atlasing approaches have been
proposed to relate activation clusters to anatomical landmarks, e.g.
automated anatomical labelling or parcellations based on gyral and sulcal
structure (Damoiseaux et al., 2006; Tzourio-Mazoyer et al., 2002), or on
cytoarchitectonic structure, e.g. the Talairach Demon or the SPM
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Anatomy toolbox (Eickhoff et al., 2005; Lancaster et al., 2000).
Another widely used approach to the description of fMRI activation

patterns is based on functional localizers. For example, a target area is
identified through a separate localisation measurement after which ac-
tivations of interest are described with respect to the localizer's func-
tional activations (Saxe et al., 2006). There is some criticism regarding
the improper use of functional localizers, especially when used to
constrain the analyses per se or due to the risk of circularity (Friston et al.,
2006; Kriegeskorte et al., 2009). Furthermore, in the context of patho-
logical activity and in particular in view of the spatio-temporal hetero-
geneity of epileptic activity-related BOLD patterns this approach may be
sub-optimal since it may not provide a comprehensive mapping of all
relevant activation foci.
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Abbreviations

AAL automated anatomical labelling
ANOVA analysis of variance
BOLD blood oxygenation-level dependent
DMN default mode network
EEG electroencephalography
EFA exploratory factor analysis
EPI echo-planar imaging
fMRI functional magnetic resonance imaging
FWHM full width at half maximum
GLM generalized linear model
Ii ICNi Spatial Involvement
IMi Normalised Mean ICNi Activation Density
IT Total ICN Spatial Involvement
IMT Normalised Global Mean ICN Activation Density
IC independent component
ICA independent component analysis
ICC intra-class correlation coefficient
ICCB between-session ICC
ICCW within-session ICC
ICN intrinsic connectivity network
IRi ICNi Relative Spatial Involvement

IRM
i Relative Normalised Mean ICNi Activation

Ji Jaccard index with ICNi

MA Global Mean ICN Activation
MAi Mean ICNi Activation
MAN Normalised Global Mean ICN Activation
MAN,i Normalised Mean ICNi Activation
MELODICMultivariate Exploratory Linear Optimized Decomposition

into Independent Components, ICA analysis tool
MNI Montreal Neurological Institute
MRI magnetic resonance imaging
NIfTI Neuroimaging Informatics Technology Initiative
NYU New York University
NYU-TRT NYU resting-state fMRI test-retest data
OLi Spatial Overlap with ICNi

PCA principal component analysis
ri Pearson's spatial correlation with ICNi

RAN,i Normalised Relative ICNi Activation
rs-fMRI resting-state fMRI
RSN resting state network
SPM statistical parametric map/Statistical Parametric Mapping
SQi Sørensen-Dice coefficient with ICNi

TC-GICA temporally concatenated group ICA
TRT test-retest

L.R. Koz�ak et al. NeuroImage 163 (2017) 319–341
Recent developments showing the correspondence of maps obtained
with resting-state and task-based fMRI (Laird et al., 2011; Ray et al.,
2013; Smith et al., 2009) may provide a solid background for developing
a whole-brain functional networks-based atlasing tool for the interpre-
tation of BOLD patterns derived either from task-based or task-free
measurements. Specifically, the pattern of low frequency correlations
in the resting brain have been shown to form well identifiable intrinsic
connectivity networks (ICNs) or resting state networks (RSN) (Beckmann
et al., 2005; Biswal et al., 1995; Laird et al., 2011). ICNs are spatially
segregated areas representing underlying functional connectivity (Fox
and Raichle, 2007), i.e. intrinsic connectivity, which is important for
development, maintenance, and function of the brain (Doria et al., 2010;
Pizoli et al., 2011; Raichle, 2010; Raichle and Mintun, 2006; Supekar
et al., 2010; Zielinski et al., 2010). As functional units they show syn-
chronized BOLD fluctuations both at rest and while performing specific
tasks (Damoiseaux et al., 2006; Laird et al., 2011; Smith et al., 2009).
These networks have been observed consistently across imaging sessions
(Biswal et al., 2010; Shehzad et al., 2009; Zuo et al., 2010b) and between
subjects (Damoiseaux et al., 2006; Shehzad et al., 2009) and can essen-
tially be seen as forming two large anti-correlated systems corresponding
to task disengagement and task engagement, respectively; the former is
the so-called default mode network (DMN) and the latter is composed of
several task-based networks: somatosensory, visual, or attention ICN, etc.
(Chai et al., 2012; Golland et al., 2008; Power et al., 2011; Zhang et al.,
2011). Data-driven meta-analyses of task-activation data have shown a
strong correspondence between the configurations of RSNs and
task-based fMRI co-activations both for low and high independent
component analysis (ICA) model orders (Laird et al., 2011; Ray et al.,
2013; Smith et al., 2009).

In the field of epilepsy, there is an increasing interest of a functional
network-based interpretation of the pathological activity. In the partic-
ular case of fMRI localisation of epileptic events and discharges (such as
observed on simultaneously-recorded EEG) a functionally-derived
framework may be more appropriate than an anatomical approach,
specifically for the discussion of EEG discharge-related activation and
deactivation patterns (Chaudhary et al., 2012), given the relationship
between activation patterns and the seizure's clinical signs (semiology)
(Chaudhary et al., 2012; Thornton et al., 2010; Tyvaert et al., 2008).
Several studies employing independent component analysis to derive
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spatio-temporal components related to epileptic discharges evidenced
networked activation/deactivation patterns partly overlapping and
coexisting with ICN-related components (LeVan et al., 2010; Moeller
et al., 2011; Rodionov et al., 2007; Thornton et al., 2010). There is also
evidence for altered connectivity outside the core epileptic networks,
affecting the ICNs possibly as an effect of epilepsy (Centeno and Carmi-
chael, 2014). A study of BOLD changes associated with different
electro-clinical phases of epileptic seizures has shown a link between
involvement of the DMN and loss of consciousness (Chaudhary et al.,
2012). A recently proposed framework emphasizes the importance of the
proportion of change produced by epileptic transients relative to
steady-state network connectivity in normal controls (Centeno and Car-
michael, 2014). This underlines the necessity to interpret epileptic
discharge-related activation with respect to the whole connectome.

Here we propose an atlasing tool, called ICN_Atlas, for the interpre-
tation of BOLD maps based on the objective quantification of the degree
of engagement of a set of intrinsic connectivity networks (used here as a
set of atlas base maps). Specifically, we aimed to develop a means to
describe activations in the framework of ICN by matching data to atlas
templates in a similar fashion as anatomy-based atlases do and to
calculate various measures of activation extent and level in relation to the
chosen atlas maps. We first present the engagement quantification
formalism, followed by a validation study and finally an illustration of
the new tool's application in the study of epileptic networks.

1.1. Principles and implementation of ICN_Atlas

1.1.1. The ICN_Atlas framework
ICN_Atlas is a collection of Matlab (Mathworks Inc., Natick, MA, USA)

scripts that serves as an extension to the SPM toolbox (http://www.fil.
ion.ucl.ac.uk/spm/) and, as such, works across multiple platforms
(Windows PC, Unix, Mac). It is an extensible non-commercial package
that is freely available at http://icnatlas.com and at http://www.nitrc.
org. The aim was to provide a toolbox with atlasing capabilities analo-
gous to previously published anatomical information-based tools such as
the 3D Talairach atlas (Lancaster et al., 2000), or the Automated
Anatomical Labelling (Tzourio-Mazoyer et al., 2002). The novelty of the
framework lies in the following: (1) it uses functionally-derived atlas base
maps based on ICNs; (2) it outputs a series of estimated activation-based

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://icnatlas.com
http://www.nitrc.org/
http://www.nitrc.org/
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metric values to describe the functional activations (input) based on
intrinsic functional connectivity (embodied in the atlas base maps).

In brief, ICN_Atlas' input consists of a volumetric statistical parametric
map (SPM) representing an fMRI activation pattern (input map) and its
output consists of a series of numeric values representing different
measures of the map's degree of involvement for each atlas base map, for
an overview see Fig. 1.

As the ICN_Atlas toolbox is integrated to the SPM toolbox environ-
ment its inputs can be either (1) the currently available SPM in the
with ln ¼
�
argmaxj

�
〈ICNj;n〉

�
; where j runs from 1 to K; if n belongs to any of the K ICNi

NaN; if n belongs to none of the K ICNi
workspace, (2) exported SPMfTg and SPMfFg maps, or (3) any kind of
data in Analyze of NIfTI format. The current version of the ICN_Atlas
toolbox expects input data to be presented in the Montreal Neurological
Institute (MNI) atlas space (Evans et al., 1993).

The atlasing algorithm performs labelling of the input map's active
voxels (activation map) according to membership based on voxel-wise
correspondence analysis of the activation map and the atlas base maps
(see below), and calculates a series of overlap, activation extent, and
activation density metrics (described below and in Appendix A) based on
the labelling.

1.1.2. Atlas base maps: ICN and anatomical atlases
In ICN_Atlas’ current implementation, three sets of ICN base atlases

are available based on labelled Gaussianised statistical maps representing
ICNs resulting from group-wise resting-state fMRI data (Smith et al.,
2009) and BrainMap Project meta-analysis data (Laird et al., 2011; Smith
et al., 2009), see below. In addition, an integer label map representing
the whole brain Automated Anatomical Labelling (AAL) atlas is also
included as an anatomical reference (Tzourio-Mazoyer et al., 2002). N.B.,
the atlasing framework is extensible and other atlases (either functionally
or anatomically-derived, and/or atlases from other species) can easily be
integrated.

The three sets of ICN base atlases are as follows:
SMITH10: the 10 adult ICNs based on ICA decomposition (d ¼ 20) of

resting-state fMRI data (http://fsl.fmrib.ox.ac.uk/analysis/
brainmapþrsns/), where d is the dimensionality, representing the
constraint on the number of independent spatio-temporal components
(Smith et al., 2009);

BRAINMAP20: the 18 BrainMap co-activation networks and 2 noise/
artefact components based on ICA decomposition (d ¼ 20) of the
BrainMap Project large-scale neuroimaging experiment meta-analysis
data available at http://brainmap.org/icns/maps.zip (Laird et al.,
2005, 2011).

BRAINMAP70: the 65 BrainMap co-activation networks and 5 noise/
artefact components based on ICA decomposition (d ¼ 70) of the
BrainMap Project large-scale neuroimaging experiment meta-analysis
data available at http://brainmap.org/icns/Archive.zip, (Laird et al.,
2005; Ray et al., 2013).

For each of these, we have a set of K atlas base maps that represent
ICNs (with the exception of 2 and 5 artefactual components for BRAIN-
MAP20 and BRAINMAP70, respectively): ICi each being a statistical map
corresponding to an ICA component (IC) which in turn corresponds to
one of the K functionally stereotypical ICNi or artefactual component.
Given this, an ICN-based atlas can be thought of as the union of ICN-
specific statistical base maps, ICNi:

Atlas : ∪K
i

�
ICNi;n

�
; with ICNi;n ¼

�
〈ICi;n〉 if ICi;n > T
NaN if 〈ICi;n〉 � T

; (1)

where ICi;n represents the Z-score of ICi at voxel n, and T is a user-defined
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threshold that defaults to Z ¼ 3 for both the SMITH10, BRAINMAP20
and BRAINMAP70 atlases. However, the prototype ICNi require further
treatment for use in ICN_Atlas as base maps by assigning each voxel n a
unique label ln corresponding to the index of the prototype ICNi;n with the
highest Z-score. In other words each base atlas A is an array (represented
by f g) of voxel labels l as follows:

A ¼ flng; (2)
where xn represents the Z-score of x at voxel n; therefore, ln has a value
between 1 and K, or NaN. This scheme ensures that any given voxel
belongs to at most one ICN or artefactual component.

Binary versions of the ICN base maps, ICNB
i can also be obtained

as follows:

ICNB
i;n ¼

�
1 if 〈ICi;n〉> T
0 if 〈 ICi;n〉 � T

(3)

Each of the resulting atlas base maps are then saved as a matrix of
labels and Z-scores, plus information on the defining space (NIfTI affine
coordinate definitions) and other descriptive data (including the atlas
name and reference of origin.)

The anatomical atlas included with the ICN_Atlas tool, CONN132, is
based on the CONN:functional connectivity toolbox's (https://www.nitrc.
org/projects/conn) combined representation of the cortical and subcor-
tical ROIs from the Harvard-Oxford Atlas (Desikan et al., 2006; Frazier
et al., 2005; Goldstein et al., 2007; Makris et al., 2006) and the cerebellar
ROIs from the AAL atlas (Tzourio-Mazoyer et al., 2002), transformed
from 1 � 1x1mm to 2 � 2x2mm resolution using the SPM toolbox to
match the functional atlases' base maps spatial characteristics.

1.1.3. The input map labelling scheme
Voxel-wise labelling of the input maps is based on the label of the

corresponding base map voxel:

Ln ¼ An∩SPMn (4)

where SPM represents the input map, which can be thresholded (SPMt) or
unthresholded.

1.1.4. ICN engagement metrics
In addition to the labelling scheme, in an attempt to capture the

essence of ICN involvement embodied in the input map quantitatively as
completely as possible, we considered a range of ICN ‘engagement’
metrics. The metrics were inspired firstly by basic descriptive spatial
overlap statistics, and secondly by considering the statistical nature of the
input maps; for example, the metric Ii (ICNi Spatial Involvement; see
Equation (5) below) represents the ratio of activated ICNi voxels to ICNi

volume and is purely spatial; another, MAi (Mean ICNi Activation), is the
ratio of the mean of voxel-wise statistical values over the number of
activated voxels in ICNi. The metrics fall into the following categories:
spatial extent (overlap), activation strength, activation density and cor-
relation. Furthermore, the proposed metrics are either ICN-specific
(vector quantities: one value for each ICN) or global (scalar quantities:
calculated over all ICNs). A total of 11 ICN-specific metrics and 4 global
metrics are implemented in ICN_Atlas and their definitions can be found
in Appendix A. In the following, we focus on 4metrics in order to simplify

http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
http://fsl.fmrib.ox.ac.uk/analysis/brainmap+rsns/
http://brainmap.org/icns/maps.zip
http://brainmap.org/icns/Archive.zip
https://www.nitrc.org/projects/conn
https://www.nitrc.org/projects/conn


Fig. 1. Schematic of atlasing steps. The input of the toolbox can either be an SPM in the workspace, a thresholded activation map or an activation mask, the input is then up-sampled
and/or iso-voxel transformed if needed to match the selected atlas' resolution, then the output metrics are calculated.
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the presentation. This choice is informed by the results of a Factor
Analysis (See section 2.2 ‘Demonstration’) aimed at identifying a parsi-
monious set of metrics that capture and summarise ICN engagement for a
given dataset.

We used the following variables and symbols in the engagement
metrics definitions:

� n : voxel index (n¼ 1, 2,…,M, whereM is the number of voxels in the
maps);

� jXj: is the number of non-zero valued voxels in X;
� Xn: is the statistical value of voxel n in X;
� : represent the voxel-wise product;
� i: represents the ICN index.

The following two metrics are designed to capture the degree of
engagement of an ICN in a given input (activation) map in purely
spatial terms:

ICNi Spatial Involvement (Ii): ratio of the number of activated ICNi
voxels (jSPMt

T
ICNij) to ICNi volume:

Ii ¼ jSPMt
T
ICNij

jICNij (5)

In other words, Ii is the proportion of ICNi that is activated in the
input map.

Total ICN Spatial Involvement (IT): is a global metric expressing the
ratio of the number of activated ICN voxels over the ICN volume over
all ICNs:

IT ¼
P

ijSPMt
T
ICNij

P
iP

ijICNij (6)

The following two ICNi engagement metrics take each voxel's statis-
tical score (‘activation strength’) into consideration; these are designed to
better distinguish between two input maps with similar degrees of spatial
involvement of ICNi (Ii) but different activation strengths, each taking
into account the input map's values in the ICNs in different ways:

Normalised Mean ICNi Activation (MAN,i): mean of the normalised
voxel-wise statistical values relative to the number of activated voxels
in ICNi:
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MA ¼
P

n
〈SPMt〉n�ICNB

i;n� min 〈SPMt 〉

max 〈SPMt〉�min 〈SPMt〉T (7)
N;i jSPMt ICNij

where 〈SPMt〉n represents the statistical value of input map voxel n; min
〈SPMt> and max〈SPMt> are the minimum and maximum, respectively,
input map statistical values within or outside the ICNs. The numerator
therefore represents the input map's total statistical score within ICNi

(relative to the map's minimum statistical score), normalised to the range
of statistical scores over the map. By dividing this by the number of
activated ICNi voxels (jSPMt

T
ICNij) we obtain a measure of engage-

ment ‘intensity’.
Relative Normalised ICNi Activation (RAN,i) is the ratio of the

normalised mean activation in a given ICN over the total normalised ICN
activation and has the same numerator as MAN,i:

RAN;i ¼
P

n
〈SPMt〉n�ICNB

i;n� min 〈SPMt〉

max 〈SPMt〉�min 〈SPMt〉P
j

P
n

〈SPMt 〉n�ICNB
j;n� min 〈SPMt 〉

max 〈SPMt〉�min 〈SPMt〉

(8)

The denominator being the sum of the numerator over all ICN,
therefore representing the input map's total statistical ICN score, RAN,i is
therefore a metric similar toMAN,i but that is relative to the engagement
intensity of all ICNs.

The metrics are applicable either to input maps previously subjected
to statistical significance thresholding (SPMt, as in the above definitions)
or to ‘raw’ (un-thresholded) statistical maps. The former may be more
appropriate for involvement metrics where the spatial extent of activa-
tion is the determining factor, while the latter can possibly be advanta-
geous for activation metrics depending on the research question, e.g. to
compare activation profiles over whole ICNs for different task or
behavioural conditions.

1.1.5. ICN_Atlas output
The toolbox's primary outputs consist of a table containing the values

for all 11 ICN specific and 4 global metrics, and a range of visualization
options in the form of bar charts and polar plots, some of which will be
illustrated below.

2. Material and methods

This section consists of two parts: 1. Validation, on repeat resting-
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state fMRI scanning data from 25 healthy volunteers. 2. Demonstrations,
of a methodology for the identification of a parsimonious set of ICN_Atlas
engagement metrics in a particular fMRI dataset, and two illustrative
applications of ICN_Atlas on task fMRI data and fMRI maps of
epileptic seizures.
2.1. Validation

We validated the ICN_Atlas atlasing methodology using the New York
University (NYU) resting-state test-retest fMRI dataset (https://www.
nitrc.org/projects/nyu_trt), which consists of three rs-fMRI scans ac-
quired in twenty-six participants (mean age 20.5 ± 4.8 years, 11 males)
who had no history of psychiatric or neurological illness (in accordance
with protocols approved by the institutional review boards of NYU and
the NYU School of Medicine). The second and third scans were collected
between 5 and 16 months (mean: 11) following the baseline scan, in a
single scanning session 45 min apart (for details see Zuo et al., 2010b).

In summary, the validation process consists of: First, we performed
group and individual-level ICA analyses of the NYU test-retest (NYU-
TRT) data. The results of this analysis are sets of group-level and indi-
vidual ICs that were subjected to atlasing using SMITH10, BRAINMAP20
and BRAINMAP70 as atlas base maps, to evaluate the proposed meth-
odology's robustness in terms of its ability to identify functionally ste-
reotypical ICNs. Second, we assessed ICN_Atlas atlasing repeatability by
quantifying ICN engagement at the individual level across the repeat
scans in the NYU dataset.

2.1.1. Group- and individual-level IC analyses
Data pre-processing was performed using the spm8 toolbox (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/) with the following steps:
(1) realignment and unwarp, (2) normalization to MNI space using the
spm8 EPI template as target image, (3) Gaussian spatial smoothing with
6 mm FWHM.

The pre-processed NYU dataset was then analysed by means of in-
dependent component analysis (ICA) using MELODIC (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/MELODIC) with the temporal concatenation group
ICA (TC-GICA) approach (Beckmann et al., 2005) followed by dual
regression, resulting in1500 (25 subjects * 3 sessions * 20 component)
individual-level ICs (Beckmann et al., 2009). Data from the three scan-
ning sessions were included in the same group ICA, and the number of
resulting group-level independent components (IC) was limited to 20
(Smith et al., 2009; Zuo et al., 2010b).

2.1.1.1. Group-level ICN engagement quantification. The resulting group-
level IC statistical maps were then thresholded at Z > 3, and submitted
to ICN_Atlas atlasing using the SMITH10, BRAIMAP20 and BRAINMAP70
atlases (all thresholded at Z > 3). Correspondence to the ICNs was
quantified using the metrics Ii, MAN,i and RAN,i, where the index i is the
name of the relevant atlas base map, for example IICN9 represents ICNi
Spatial Involvement calculated based on ICN9 of the SMITH10 atlas and
RAN,BM20-8 represents Normalised Relative ICNi Activation calculated
based on BRAINMAP20 atlas co-activation network BM20-8, while
MAN,BM70-2 represents Normalised Mean ICNi Activation calculated
based on BRAINMAP70 atlas co-activation network BM70-2.

To obtain an overview of the agreement between base atlases we
determined whether the highest three engagement values (for each
metric) pertain to the same atlas base maps for any given IC (See Fig. 3
and Supplementary Fig. 1 for details). This number was chosen based on
the fact that the top 3 values correspond to between 61-99% and 48–95%
of the total Ii for SMITH10 and BRAINMAP20 respectively, and between
21 and 80% of the total Ii for BRAINMAP70 (see the last rows of Sup-
plementary Tables 2–10 for details).

2.1.1.2. Test-retest repeatability
2.1.1.2.1. IC voxel-wise repeatability at the group level. Within- and
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between-session repeatability of the ICs were quantified as the mode of
the intra-class correlation coefficient (<ICCW> and <ICCB>, respec-
tively); ICC was calculated using a formula that does not penalize for
systematic differences between scanning sessions (Shrout and Fleiss,
1979; Zuo et al., 2010b), for details of the formulae, see Appendix B. The
mode of ICC was calculated over voxel-wise values greater than zero
using an 80-bin histogram spanning the [0–1] interval (Zuo
et al., 2010b).

2.1.1.2.2. ICN engagement repeatability at the individual subject lev-
el. Each dual-regressed individual IC was thresholded at Z > 3, and
submitted to ICN_Atlas atlasing using SMITH10, BRAINMAP20 and
BRAINMAP70 (all thresholded at Z > 3). Within- and between-session
ICC were calculated for each metric on three different levels: (1) on the
level of individual atlasing steps i.e. for every IC and individual atlas base
map combination; (2) at the level of atlas base maps, i.e. collapsed across
ICs; and (3) on a global level, i.e. collapsed across ICs and atlas base
maps. This allowed us to capture and characterize the inflated variability
caused by the different overlap of activations and atlas base maps at the
level of individual atlasing steps, while on the other hand we could es-
timate the stability of metrics at the level of the atlas base maps and
globally, by averaging this variability out. The normalization bounds
(max SPMt �min SPMt) for the normalised activation metrics MAN,i and
RAN,i were matched across input IC maps within any given session for
each subject individually to ensure that the relative activation differences
between ICs resulting from the same sessions are taken into account.
2.2. Demonstrations

In this section we describe two demonstrations of the application of
ICN_Atlas: Firstly, we illustrate the problem of selecting a parsimonious
subset of the proposed ICN engagement metrics for a given dataset;
secondly, we show the results of two applications of ICN_Atlas: using a
task-based dataset and in the field of epilepsy by quantifying ICN
engagement evolution during epileptic seizures.

2.2.1. ICN_Atlas engagement metrics factor analysis
ICN_Atlas' output for each input map consists of the value of each

metric for each ICN; for example, for the full set of 11 ICN-specific
metrics and using the SMITH10 atlas, this represents an output of 110
values per input map, in addition to the 4 global metrics. While a full set
of metrics captures a greater amount of the variance than a subset, and
therefore may be more useful for a complete analysis, we propose that a
reduced subset may be more efficient for many applications and for the
illustrative purposes of this report. We therefore sought to identify a
subset of three ICN-specific metrics that satisfies the following criteria: 1)
captures a sufficient amount of engagement across a given group or type
of data; 2) has limited redundancy; 3) represents a summary of the level
of engagement. To this effect, we performed a two-stage metrics set
reduction procedure using the NYU rs-fMRI data; in each stage we per-
formed a principal component analysis (PCA) and an exploratory factor
analysis (EFA). In each variable reduction was performed through a
Varimax rotation that identifies latent factors that represent linear com-
binations of existing variables that maximize the shared portion of the
variance in the dataset. This was done first on the full set of 11 ICN-
specific metrics, ICNi Spatial Involvement (Ii), ICNi Relative Spatial
Involvement (IRi), Spatial Overlap with ICNi (OLi), Sørensen-Dice coef-
ficient with ICNi (SQi), Jaccard index with ICNi (Ji), Mean ICNi Activa-
tion (MAi), Normalised Mean ICNi Activation (MAN,i), Relative
Normalised Mean ICNi Activation (IRM

i ), Normalised Relative ICNi

Activation (RAN,i), Normalised Mean ICNi Activation Density (IMi ), and
Pearson's spatial correlation with ICNi (ri) (see Appendix A for details on
the calculated metrics) and repeated in a second stage on the metrics
identified at the first stage based on high unicity and highest loadings on
the two factors with the highest explained variance with the aim of
identifying three metrics.

https://www.nitrc.org/projects/nyu_trt
https://www.nitrc.org/projects/nyu_trt
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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2.2.2. Parametric variation of ICN engagement in a task-based fMRI
experiment

To demonstrate ICN_Atlas' utility on task-based fMRI data, we selected
an open access fMRI dataset from the NeuroVault database (http://
neurovault.org/collections/659/) corresponding to the experiment
described in Vagharchakian et al. (2012), which aimed to investigate
how the language processing networks cope with fast visual and auditory
sentence presentation rates. Briefly, neural activations for visual and
auditory sentence presentation rates representing 20, 40, 60, 80 and 100
percent sentence durations with respect to a baseline of 5.9 syllables/s
presentation rate were collected using fMRI and then analysed using GLM
ANOVA with specific linear and non-linear contrasts and exclusive/in-
clusive contrast masking (for details see Vagharchakian et al., 2012).
Three distinct response profiles were identified corresponding to (A):
linear increase with stimulus duration, denoted as ‘Sensory profile’
characteristic for bilateral sensory cortices; (B): response collapse for the
shortest presentation times, described by the authors as the ‘Post-bot-
tleneck profile’, characteristic of activations in the bilateral superior and
middle temporal gyri, left inferior frontal and precentral gyri, bilateral
occipitotemporal cortex and visual word form area; and (C): maximum
activation for intermediate rates, denoted as ‘Buffer profile’, character-
istic of activity in the insulae, supplementary motor area bilaterally,
anterior cingulate cortex, and left premotor cortex. The authors
concluded that these response profiles are consistent with a processing
bottleneck that is independent of the sensory limitation.

The data available from NeuroVault, consisted of simple group level
compression rate vs. baseline contrast maps for each modality and pre-
sentation rate, each represented as Z-maps in MNI space according to the
available metadata. Here we aimed to show the utility of ICN_Atlas for
parametric data by (1) comparing whether atlasing results obtained with
anatomical ROI-based atlasing using the CONN132 anatomical atlas for
the available maps are consistent with the voxel-wise results published
previously (for details see Vagharchakian et al., 2012), and by (2) eval-
uating whether the proposed ICN-level engagement metrics for the
BRAINMAP20 atlas can enhance the interpretation of the study's results.

For the anatomical ROI comparison, we selected the following
CONN132 atlas ROIs based on their correspondence with the activation
clusters detailed in (Vagharchakian et al., 2012): the right and left insular
cortices (ROIs CONN132-3 and CONN132-4), inferior frontal gyrus, pars
triangularis left (CONN132-10), inferior frontal gyrus, pars opercularis
left (CONN132-12), precentral gyrus, left (CONN132-14), superior tem-
poral gyrus, anterior division right and left (CONN132-17 and
CONN132-18), superior temporal gyrus, posterior division left
(CONN132-20), lateral occipital cortex, inferior division, right and left
(CONN132-45 and CONN132-46), frontal medial cortex (CONN132-49),
supplementary motor area (SMA), left (CONN132-51), Heschl's gyrus
right and left (CONN132-84 and CONN132-85). Atlasing was performed
on unthresholded input maps, reflecting the lack of information in the
NeuroVault metadata to support appropriate significance thresholding.
Nevertheless, for visualization purposes an input map threshold of Z ¼ 3
was also applied, see Fig. 10, below.

2.2.3. ICN engagement evolution during epileptic seizures
To illustrate ICN_Atlas’ potential utility in relating BOLD changes to

functional networks, we quantified ICN engagement during epileptic
seizures in a patient with severe epilepsy (case #4 from Chaudhary
et al., 2012).

2.2.3.1. Case report. The patient underwent simultaneous scalp EEG and
video recording and functional MRI scanning, during which 7 sponta-
neous seizures were captured (See Chaudhary et al. (2012) for details of
the data acquisition and analysis). The seizures originating in the left
temporal lobe were classified as typical, meaning that they are associated
with clinical manifestations that are well characterised on clinical video
EEG recordings. Ictal semiology was characterised by behavioural arrest,
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orofacial movements (oral automatisms), manual automatisms and loss
of awareness. The seizure developed from stage II of sleep with indication
that typical semiology did not fully develop given the constraints of the
scanner environment. The patient appeared unaware/unconscious dur-
ing the whole seizure. The ictal onset phase was characterised with a left
temporal theta rhythm on EEG and no signs or symptoms. During the ictal
established phase the abnormal activity on EEG became widespread. The
patient exhibited orofacial movements (chewing and jaw clenching) and
some jerks involving his head and hands. We considered that the patient
did not only show such elementary motor signs, but probably aborted
manual automatisms. During the late ictal phase left temporal slowing
was evident on EEG and there was no semiology.

2.2.3.2. fMRI analysis and ICN engagement quantification. As described in
Chaudhary et al. (2012) the seizures captured during video-EEG-fMRI
were partitioned into three ‘ictal phases’ based on close review of the
EEG and video: ‘Early ictal’ (the start of the seizure), ‘Ictal established’
(characterised by rhythmic activity) and ‘Late ictal’.

The ictal phase-based analysis of the fMRI data is designed to reveal
BOLD patterns associated with the specific electro-clinical manifestations
characteristic of each phase The BOLD changes associated with each
phase were mapped in the form of SPM [F]-maps at a significance
threshold of p < 0.001 uncorrected for multiple comparisons with a
cluster size threshold of 5 voxels, and co-registered with the patient's
anatomical MRI scan and normalised to MNI space (Evans et al., 1993).
ICN_Atlaswas applied using the SMITH10 atlas to the fMRI map obtained
for each ictal phase and ICN engagement was quantified for each ictal
phase using the metrics Ii, RAN,i and MAN,i which were identified in the
factor analysis described above (see sub-section 3.2.1 ‘ICN_Atlas
involvement metrics factor analysis’ in Results).

3. Results

3.1. 1.Validation

3.1.1. Group-level independent components
The components obtained with temporal concatenation group ICA

(Fig. 2) were consistent with previously published ICNs (Beckmann et al.,
2005; Damoiseaux et al., 2006; Laird et al., 2011; Smith et al., 2009; Zuo
et al., 2010b) and in particular showed strong similarities with those
identified by Zuo et al. (2010b), although their ranking in terms of per-
centage of variance explained differed.

Thirteen ICs were identified that represent parts or combinations of
functionally stereotypical ICNs (Beckmann et al., 2005; Damoiseaux
et al., 2006; Laird et al., 2011; Smith et al., 2009) and therefore labelled
functional components; these were IC1, IC3, IC5, IC6-IC9, IC11, IC14, IC15
and IC18-IC20. Based on their spatio-temporal characteristics, 7 com-
ponents (IC2, IC4, IC10, IC12, IC13, IC16 and IC17) were labelled as noise
components (e.g. typically scanner or physiological noise, head move-
ment), which accounted for 34.98% of the variability present in the data.
Concerning the functional ICs, IC1, IC6 and IC18 were found to relate to
vision, IC6 also covering the superior parietal cortex and the premotor
cortex, IC7 corresponded to the primary motor areas along with the as-
sociation auditory cortices, and IC8 was related to the primary auditory
cortices and the medial frontal, cingulate and paracingulate cortices, and
the insula, and parts of the executive-control network. We observed that
some ICNs were distributed across ICs, e.g. IC3 and IC5 represented the
default mode network (DMN), IC9 the fronto-parietal networks corre-
sponding to cognition and language bilaterally, IC11 the executive con-
trol and cingulate/paracingulate networks (complementing IC8). In
addition, similarly to Zou et al.: cerebellar (IC18), temporal lobe, tem-
poral pole, posterior insula and hippocampus (IC14 and IC19), brainstem
(in IC19), and ventromedial prefrontal (IC20) components (Zuo et al.,
2010b) were also identified.

http://neurovault.org/collections/659/
http://neurovault.org/collections/659/
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3.1.2. Group-level ICN engagement quantification
For all ICs and for each metric at least two of the top three engage-

ment values pertained to the same atlas base maps for SMITH10 and
BRAINMAP20 while at least one of the top three engagement values
pertained to the same atlas base maps for BRAINMAP70 atlasing (Fig. 3
and Supplementary Fig. 1). Comparison of the matching atlas base maps
in the top 3 values across engagement metrics and over all IC showed the
following: the average numbers of matching atlas base maps were 2.05,
2.10, and 1.80 for the Ii vs.MAN,i; 2.75, 2.60, and 2.10 for the Ii vs. RAN,I;
and 2.10, 2.40, and 1.80 for the MAN,i vs. RAN,i comparisons for
SMITH10, BRAINMAP20 and BRAINMAP70, respectively. Taken
together, the number of matches is significantly lower for the Ii vs. RAN,I
comparison for BRAINMAP70 compared against the other atlases, and
also significantly lower for the MAN,i vs. RAN,i comparison for BRAIN-
MAP70 vs. BRAIMAP20. Moreover for SMITH10 the (Ii vs. MAN,i and Ii
vs. RAN,i) and the (Ii vs. MAN,i and MAN,i vs. RAN,i) comparisons were
significantly different (p < 0.0001), and for BRAINMAP20 the Ii vs.MAN,i
and Ii vs. RAN,i comparison was significantly different (p < 0.05).

For the sake of brevity, in the following we summarise the findings by
presenting only the highest ICNi Spatial Involvement (Ii) metric value
across all ICN for any given input map (group-level IC in this instance);
the descriptions of the results for metricsMAN,i and RAN,i can be found in
the Supplementary Materials.

Ii values for SMITH10, BRAINMAP20 and BRAINMAP70 are plotted
Fig. 2. Group-level components of the NYU-TRT data. The 20 group-level independent comp
and axial planes going through the peak coordinates (shown in parentheses in MNI standard coo
to the percentage of explained variance, and thresholded based on MELODIC's spatial mixture
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in Figs. 4 and 5 and Supplementary Fig. 2 respectively (for numerical
details see Supplementary Tables 2–4), showing the differing ICN rep-
resentations in the three atlases (for details see and Table 1, Supple-
mentary Table 1 and Supplementary Figs. 3, 4, and 5). The difference in
the total extent of the ICN atlases was reflected in the global spatial
engagement metric IT (Table 2) with generally lower involvement for
BRAINMAP20 and BRAINMAP70 than for SMITH10, since BRAINMAP
atlases cover greater part of the brain (and therefore have greater total
ICN coverage, which is the denominator of IT); moreover, as BRAIN-
MAP70 can be considered as a subnetwork representation of BRAIN-
MAP20 it is not surprising that their IT results were highly similar. For
SMITH10 the temporal lobe and hippocampal components IC14 and IC19
showed low involvement (the highest involvement for IC14 was
IICN7 ¼ 0.09; for IC19 it was IICN5 ¼ 0.09), compared to BRAINMAP20
(IBM20-1 ¼ 0.30 for IC14 and IBM20-1 ¼ 0.18 for IC19) and BRAINMAP70
(IBM70-41 ¼ 0.44 for IC14 and IBM70-39 ¼ 0.48 for IC19).

Overall, the ICN engagement results of the group ICA matched well
their functional role; for SMITH10, for visual components IC1, IC6, and
IC18 the highest involvement values were IICN1 ¼ 0.97, IICN3 ¼ 0.45 and
IICN2 ¼ 0.61, respectively; for IC3 and IC5 (DMN), IICN4 ¼ 0.75 and
IICN4¼ 0.47, respectively; for the sensory-motor and auditory component
IC7, IICN6:¼ 0.84; for the auditory and executive control component IC8,
IICN7 ¼ 0.87; for the bilateral fronto-parietal component IC9,
IICN10 ¼ 0.82; for cerebellar component IC15, IICN5 ¼ 0.64; for executive
onents (ICs) obtained with temporal concatenation group ICA are shown in coronal, sagittal
rdinates) according to radiological convention. The z-statistic maps are ordered according
model at Z > 3.



Fig. 3. Correspondence of the Ii, MAN,i and RAN,i metrics for the SMITH10 (top row) and the BRAINMAP20 (bottom row) atlases. Colour coding is according to engagement values
for each IC (columns in each panel) and each atlas base map (rows in each panel), the three highest values for each IC (each column) are marked with white dots in each panel. White
vertical bars separate functional ICs from noise ICs, black squares on MAN,i panels show atlas base maps for given ICs where no voxel was active (i.e. Ii ¼ 0), therefore MAN,i is not
calculated. The highest three Ii values for any given IC represent 61–99%, 48–95% and 21–80% of the total Ii for the given IC for SMITH10, BRAINMAP20 and BRAINMAP70, respectively
(see the last rows of Supplementary Tables 2–10 for details, and Supplementary Fig. 1 for BRAINMAP70).
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control component IC11, IICN8 ¼ 0.56; and for prefrontal component
IC20, IICN8 ¼ 0.24 (see Fig. 4 and Supplementary Table 2 for details).

The engagement results for BRAINMAP20 showed a similar pattern,
for the visual components IC1, IC6 and IC18 the highest involvement
values were IBM20-12 ¼ 0.83, IBM20-7 ¼ 0.75 and IBM20-11 ¼ 0.55
respectively; for IC3 and IC5 (DMN), IBM20-13¼ 0.54 and IBM20-13¼ 0.58,
respectively; for the sensory-motor and auditory component IC7, IBM20-

9 ¼ 0.93 (note, that high involvement were found also for IBM20-6 ¼ 0.88
and IBM20-8 ¼ 0.82); for the auditory and executive control component
IC8, IBM20-4 ¼ 0.88; for the bilateral fronto-parietal component IC9,
IBM20-18 ¼ 0.85; for cerebellar component IC15, IBM20-14 ¼ 0.62; for
executive control component IC11, IBM20-20 ¼ 0.49 (with minimally
different IBM20-15 ¼ 0.48); and for prefrontal component IC20, IBM20-

2 ¼ 0.60 (see Fig. 5 and Supplementary Table 3 for details).
The engagement results for BRAINMAP70 showed a pattern consis-

tent with subnetwork fractionation, when considered against those for
BRAINMAP20, in having similarly high involvement values in some of
atlas base maps for most ICs (e.g. for visual component IC1 the highest
involvement values were IBM70-2 ¼ 0.98 and IBM70-1 ¼ 0.97; for visual
component IC6 the highest involvement values were IBM70-7 ¼ 0.85 and
IBM70-9 ¼ 0.80) while for visual component IC18 there was a single
highest involvement value of IBM70-3 ¼ 0.61. For the default mode
network, components IC3 and IC5 the highest involvement values were
IBM70-61 ¼ 0.82 and IBM70-38 ¼ 0.89, respectively; for the sensory-motor
and auditory component IC7, IBM70-35 ¼ 0.98; for the auditory and ex-
ecutive control component IC8, IBM70-52 ¼ 0.98; for the bilateral fronto-
parietal component IC9, IBM70-12 ¼ 0.96, (with high involvement for
IBM70-49 ¼ 0.89 and IBM70-51 ¼ 0.86); for cerebellar component IC15,
IBM70-60 ¼ 0.83; for executive control component IC11, IBM70-17 ¼ 0.74;
and for prefrontal component IC20, IBM70-20 ¼ 0.79 (see Supplementary
Fig. 2 and Supplementary Table 4 for details).

The spatial involvement values for the ‘noise’ ICs IC2, IC4, IC10, IC16
and IC17 were all <0.3 for SMITH10, with noise component IC12 and
IC13 having the highest values: IICN2 ¼ 0.39 and IICN5 ¼ 0.38, respec-
tively. Similarly, for BRAINMAP20 the involvement values for noise ICs
IC2, IC10, IC16 and IC17 were <0.30, with IC4, IC12, and IC13 showing
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IBM20-3 ¼ 0.31, IBM20-11 ¼ 0.39, and IBM20-5 ¼ 0.32, respectively.
Consistent with the sub-network representation in BRAIMAP70, the
‘noise’ ICs had wider range of maximum Ii, ranging from IBM70-56 ¼ 0.17
for IC17 to IBM70-58 ¼ 0.78 for IC16 (for details see Supplementary Fig. 2
and Supplementary Table 4).

3.1.3. Test-retest repeatability

3.1.3.1. IC voxel-wise group level repeatability. Across all ICs the modes of
the within- and between-session intra-class correlation coefficients
<ICCW> and <ICCB> were in the range of 0.18–0.65. Of the functional
ICs, IC9 (bilateral fronto-parietal network), IC3 and IC5 (parts of the
DMN), and IC1 (vision) exhibited the highest repeatability, with
(<ICCW>, <ICCB>) ¼ (0.63, 0.65), (0.64, 0.61), (0.61, 0.60), and (0.61,
0.59) respectively. Most other functional ICs (IC6, IC7, IC8, IC11, and
IC14) had <ICCW> and <ICCB> values in the ranges ([0.44–0.58],
[0.43–0.53]) while IC19 (temporal lobe) and IC20 (cerebellar) had lower
repeatability ([0.21–0.44], [0.20–0.41]), similar to most of the noise ICs
(IC4, IC10, IC12, IC13, IC16 and IC17). Note the high repeatability for
noise component IC2 (venous sinuses) with <ICCW> ¼ <ICCB> ¼ 0.65.

3.1.3.2. ICN engagement repeatability at the individual subject level. The
distribution of engagement metric values for individual dual-regressed
single-session ICA maps across base maps were similar to those ob-
tained by atlasing of the group ICA maps; for a visual comparison
see Fig. 6.

At the level of atlasing for every IC and individual base map combi-
nation, within- and between-session ICN engagement repeatability var-
ied considerably; nevertheless median values indicated fair-to-moderate
agreement (see Table 3, Fig. 7, and Supplementary Fig. 8 for details). As
expected, within-session ICC tended to be higher than the between-
session (Fig. 8). In summary, median test-retest repeatability (<ICCW>;
<ICCB>) for the SMITH10 atlas were (0.37; 0.28) for Ii, and (0.63; 0.16)
and (0.30; 0.23) for MAN,i and RAN,i respectively. The results were very
similar for the BRAINMAP20 atlas, with test-retest Ii repeatability of



Fig. 4. ICNi Spatial Involvement (Ii) of the NYU-TRT group-ICA components for the SMITH10 atlas. The ICNi involvement metrics are calculated based on the group-level TC-GICA
results, ordered according to the percentage of explained variance. This ordering is similar to the one shown in Fig. 2. Noise ICs are marked with an asterisk.
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(0.36; 0.28), and (0.66; 0.18) and (0.28; 0.25) for MAN,i and RAN,i
respectively; for the BRAINMAP70 atlas, with test-retest Ii repeatability
of (0.30; 0.25), and (0.39; 0.16) and (0.24; 0.22) for MAN,i and RAN,i
respectively (see Supplementary Tables 11–28 for details). We note a
small number of negative ICC values, which were found to reflect mini-
mal or null overlap between the ICs and the atlas base maps, as shown in
Supplementary Fig. 9.

At the base map level, i.e. collapsed across ICs (hence eliminating
most of the IC-related variability), test-retest ICN engagement repeat-
ability ranged betweenmoderate and very strong, with median (<ICCW>;
<ICCB>)¼ (0.90; 0.90) for Ii, while forMAN,i and RAN,i these were (0.80;
0.60) and (0.90; 0.92), respectively for the SMITH10 atlas. The results
were very similar for the BRAINMAP20 atlas, with test-retest atlas base
map repeatability for Ii of (0.89; 0.87), and (0.78; 0.60) and (0.90; 0.91)
for MAN,i and RAN,i respectively; and for the BRAINMAP70 atlas, with
test-retest atlas base map Ii repeatability of (0.84; 0.83), and (0.46; 0.46)
and (0.83; 0.84) forMAN,i and RAN,i respectively (see Table 3, Fig. 7, and
Supplementary Materials for details).
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Finally, ICN engagement metric reliability calculated over all sub-
jects, atlas base maps, and ICs, showed strong to very strong agreement,
with (<ICCW>; <ICCB>) values of: (0.92; 0.91) for Ii, (0.79; 0.61) for
MAN,i and (0.91; 0.92) for RAN,i for SMITH10; for BRAINMAP20, the
corresponding values were (0.89; 0.88), (0.78; 0.62) and (0.91; 0.93);
and for BRAINMAP70, the corresponding values were (0.85; 0.84), (0.48;
0.49) and (0.87; 0.89) (see Table 3, Fig. 7, and Supplementary Materials
for details).
3.2. Demonstrations

3.2.1. ICN_Atlas involvement metrics factor analysis
The five metrics identified at the first stage of the factor analysis using

the NYU rs-fMRI data were: two spatial involvement metrics: Ii and IRi,
and three activation strength-weighted metrics: MAi, MAN,i, and RAN,i.
The second-stage factor analysis, performed to limit the number of
metrics to three, revealed that Ii and RAN,i, contributed most to the two
latent factors, which explained 68% of the variance, and thatMAN,i had a



Fig. 5. ICNi Spatial Involvement (Ii) of the NYU-TRT group-ICA components for the BRAINMAP20 atlas. The ICNi involvement metrics are calculated based on the group-level TC-
GICA results, ordered according to the percentage of explained variance. This ordering is similar to the one shown in Fig. 2. Noise ICs are marked with an asterisk.
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high degree of uniqueness.

3.2.2. Parametric variation of ICN engagement in a task-based fMRI
experiment

Engagement as estimated by MAN,i was found to match the ‘Sensory
profile’ (linear increase with stimulus duration) for the visual stimulus
modality in the left and right inferior lateral occipital cortex ROIs
(CONN132-45 and CONN132-46) and for the auditory stimulus modality
in the left and right Heschl's gyri (CONN132-84 and CONN132-85). In
addition, theMAN,i values for the auditory presentations followed the so-
called ‘post-bottleneck profile’ (sudden collapse of activation for the
shortest stimulus duration) in the left superior temporal gyrus
(CONN132-18 and CONN132-20); for visual stimulation the similar ef-
fect was observed for the left posterior superior temporal gyrus
(CONN132-20), the left inferior frontal gyrus (CONN132-10 and
CONN132-12), left precentral gyrus (CONN132-14), left SMA
(CONN132-51), while a pattern of ICN engagement resembling the
‘buffer profile’ (highest activation for intermediate durations) was
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observed in the insular cortices (CONN132-3 and CONN132-4) for visual
stimulation (Fig. 9).

ICN engagement as estimated by MAN,i and Ii showed differential
involvement of ICNs depending on stimulus modality and stimulus
duration (compression ratio). Stimulus modality was clearly visible in the
differential engagement of visual and auditory/language ICNs.
Regarding stimulus duration, the individual MAN,i and Ii values were
found to be stable or increase slightly for easily understood auditory
stimuli (60–100% compression ratio), with peak values for the difficult
but intelligible (40% compression ratio) and a collapse for the unintel-
ligible (20% compression ratio) stimuli, regardless of stimulus modality
(Fig. 10). This behavior resembled the phase profile suggested for inte-
grative regions (Vagharchakian et al., 2012). These parametric changes
depending on stimulus duration represented a network-wide behavior,
i.e. they were not exclusively driven by a single or a small group of ICNs.

3.2.3. ICN involvement evolution during epileptic seizures
As illustrated in Fig. 11, ICN engagement as assessed using the



Table 1
Functional-anatomical and/or Intrinsic Connectivity Network correspondence of atlas base
maps in the BRAINMAP20 and the SMITH10 atlases (for the BRAINMAP70 atlas, see
Supplementary Table 1).

ICN
#

Atlas base map (ICN) descriptions

BRAINMAP20 Atlas SMITH10 Atlas

1 Limbic and medial-temporal areas Visual – medial
2 Subgenual ACC and OFC Visual – occipital pole
3 Bilateral BG and thalamus Visual – lateral
4 Bilateral anterior insula/frontal opercula and the

anterior aspect of the body of the cingulate gyrus
DMN

5 Midbrain Cerebellum
6 Superior and middle frontal gyri Sensorimotor
7 Middle frontal gyri and superior parietal lobules Auditory
8 Ventral precentral gyri, central sulci, postcentral

gyri, superior and inferior cerebellum
Executive control

9 Superior parietal lobule Frontoparietal
(perception-somesthesis-
pain)

10 Middle and inferior temporal gyri Frontoparietal
(cognition-language)

11 Lateral posterior occipital cortex
12 Medial posterior occipital cortex
13 Medial prefrontal and posterior cingulate/

precuneus areas, DMN
14 Cerebellum
15 Right-lateralized fronto-parietal regions
16 Transverse temporal gyri
17 Dorsal precentral gyri, central sulci, postcentral

gyri, superior and inferior cerebellum
18 Left-lateralized fronto-parietal regions
19 Artefactual component
20 Artefactual component

Table 2
Global ICN Spatial Involvement (IT) for each NYU-TRT group ICA IC.

Global ICN Spatial Involvement: IT

SMITH10 BRAINMAP20 BRAINMAP70

Functional ICs IC01 0.15 0.08 0.08
IC03 0.15 0.10 0.10
IC05 0.15 0.15 0.15
IC06 0.13 0.10 0.09
IC07 0.21 0.17 0.17
IC08 0.23 0.16 0.15
IC09 0.19 0.15 0.14
IC11 0.19 0.12 0.12
IC14 0.02 0.04 0.03
IC15 0.06 0.05 0.04
IC18 0.07 0.04 0.03
IC19 0.01 0.03 0.03
IC20 0.05 0.07 0.07

Noise ICs IC02 0.04 0.06 0.06
IC04 0.03 0.04 0.04
IC10 0.03 0.05 0.05
IC12 0.03 0.05 0.06
IC13 0.03 0.03 0.03
IC16 0.03 0.05 0.08
IC17 0.00 0.01 0.01
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SMITH10 atlas fluctuated across ictal phases. Total spatial involvement
(IT) was generally low, with a value of 0.017 in the ictal onset phase,
doubling to 0.035 in the ictal established phase and decreasing to 0.020
in the late ictal phase.

With respect to individual ICNs, we note a high degree of involvement
in ICN4 (DMN), ICN5 (cerebellum), ICN8 (executive control) and in ICN9
and ICN10 (fronto-parietal) during the Early Ictal phase. Significant
involvement intensity changes were seen in ICN6 (sensorimotor
network) and ICN8 (executive control) during the Ictal Established
phase. The Late Ictal phase was characterised by significantly reduced
spatial engagement globally. DMN involvement intensity is maintained
throughout the seizures.
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We now focus on three ICN, namely the DMN (ICN4), sensorimotor
network (ICN6) and executive network (ICN8), in a top down/semio-
logical interpretation perspective on ICN engagement.

The DMN shows a pattern of increasing engagement relative to other
ICNs across phases. It ranks 5th in terms of ICN spatial involvement at the
Early Ictal phase and shows a pattern of increase and subsequent
decrease in the Ictal Established and Late Ictal phases, respectively. Its
activation level (MAN,ICN4) is roughly constant throughout the phases,
but goes from being negligible in intensity relative to globally-observed
activation (RAN,ICN4) in the Early Ictal phase to approximately 4th in
importance in the subsequent phases.

The sensorimotor network (ICN6), is the second most spatially
involved network (after the cerebellum (ICN5)) at the early ictal phase
and its activation level grows consistently across phases as does its in-
tensity relative to the whole-brain activation level, becoming the most
prominent in the late ictal phase.

For the executive network (ICN8) the level of spatial involvement is
relatively low in the Early Ictal phase while its activation level (MAN,-

ICN8) is roughly constant throughout the phases similarly to the DMN;
however in contrast to the DMN, the executive network becomes very
prominent relative to globally-observed activation in the ictal established
phase (RAN,ICN8).

4. Discussion

The main objective of the proposed ICN_Atlas methodology is to
provide a quantitative and objective framework to characterize fMRI
activation (and deactivation) maps in terms of ‘functional engagement’ in
contrast to methods based on anatomically defined coverage and in
particular those based purely on visual description of fMRI map
anatomical coverage. To this effect it seems appropriate to base the
quantification on atlases derived from maps obtained ‘functionally’,
namely sets of intrinsic connectivity (or resting state) networks (ICNs)
derived based on fMRI data.

We have addressed the issue of validity in terms of repeatability and
reproducibility, by applying a commonly used methodology to extract
independent components (putative ICNs) from a publically available
longitudinally-acquired resting-state fMRI dataset (NYU-TRT dataset).
The resulting ICNs were then subjected to the proposed atlasing scheme
using three ICN base maps (SMITH10, BRAINMAP20 and BRAIN-
MAP70), thereby providing an assessment of ICN_Atlas’ robustness in
terms of its ability to identify functionally stereotypical ICNs across
scanning sessions. The results of this analysis showed that repeatability
as measured by the intra-class correlation coefficient is dependent both
on the atlased activation maps and the atlas base map used for atlasing.
Repeatability for the atlas base maps showed moderate to very strong
agreement depending on the metric considered. The overall repeatability
calculated by collapsing data across subjects, IC maps, and atlas base
maps, showed strong to very strong within- and between-session agree-
ment. The outcome of the repeatability analysis is on par with previous
repeatability estimates obtained on the same data with other approaches
(Shehzad et al., 2009; Zuo et al., 2010a, 2010b).

To demonstrate the potential utility of ICN_Atlas we applied it to two
datasets: firstly, an independently obtained, open access task-based fMRI
dataset (Vagharchakian et al., 2012), selected to show how our tool can
capture variations due to parametric modulations; secondly, we also
wanted to demonstrate ICN_Atlas’ potential utility in clinical research by
illustrating its application to fMRI data in one of own areas of expertise,
namely fMRI of human epileptic activity.

Conceiving ICN_Atlas as a descriptive tool implies data reduction:
from a whole-brain functional map to a set of numbers of a size that that
facilitate comprehension and communication. We therefore considered
the issue of the atlas' output, in particular the quasi-infinite number of
conceivable engagement metrics (to be calculated for every ICN). Start-
ing with a wide-ranging set of ICN engagement metrics devised based on
general considerations of fMRI maps' spatial and activation intensity, we



Fig. 6. Representative examples of atlasing on dual-regressed individual data, compared to group results. Top panel: IC1 (visual IC) for subject #1 atlased using the SMITH10 atlas;
Bottom panel: IC9 (bilateral fronto-parietal IC) for subject #25 atlased using the BRAINMAP20 atlas. Engagement metrics: Ii, MAN,i and RAN,i. The left three columns show the result for
each of the 3 scanning sessions; the fourth column shows engagement metric mean ± SD over all subjects and across the 3 sessions; the fifth column shows the Group ICA results.
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Table 3
Test-retest reliability results measured by ICC.Median and range of within- and between-session ICC scores for Ii, MAN,i, and RAN,i for the SMITH10 and BRAINMAP20 atlases. IC� base
map: separate ICC calculations for each IC and atlas base map combination, c.f. Fig. 7 panels A–C and E-F; Base map: ICC calculated for each base map separately, i.e. collapsed across ICs;
Global: ICC calculated for data collapsed across ICs and base maps.

ICC, median and [range]

Within-session Between-session

IC � base map Base map Global IC � base map Base map Global

SMITH10 Ii 0.37 [�0.22–0.91] 0.90 [0.82–0.97] 0.92 0.28 [�0.22–0.73] 0.90 [0.81–0.97] 0.91
MAN,i 0.63 [�0.29–0.91] 0.80 [0.65–0.84] 0.79 0.16 [�0.31–0.68] 0.60 [0.48–0.69] 0.61
RAN,i 0.30 [�0.48–0.82] 0.90 [0.85–0.96] 0.91 0.23 [�0.28–0.65] 0.92 [0.86–0.96] 0.92

BRAINMAP20 Ii 0.36 [�0.18–0.87] 0.89 [0.71–0.95] 0.89 0.28 [�0.25–0.79] 0.87 [0.67–0.96] 0.88
MAN,i 0.66 [�0.08–0.9] 0.78 [0.55–0.88] 0.78 0.18 [�0.41–0.64] 0.60 [0.32–0.78] 0.62
RAN,i 0.28 [�0.39–0.83] 0.90 [0.79–0.97] 0.91 0.25 [�0.38–0.77] 0.91 [0.79–0.98] 0.93

BRAINMAP70 Ii 0.30 [�0.3–0.89] 0.84 [0.6–0.96] 0.85 0.25 [�0.3–0.84] 0.83 [0.51–0.97] 0.84
MAN,i 0.39 [�0.39–0.97] 0.46 [0.21–0.74] 0.48 0.16 [�0.45–0.81] 0.46 [0.23–0.67] 0.49
RAN,i 0.24 [�0.45–0.95] 0.83 [0.5–0.96] 0.87 0.22 [�0.38–0.87] 0.84 [0.51–0.97] 0.89
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performed a factor analysis as a rational basis to select a reduced set of
metrics; we chose three as a desirable number of metrics to estimate and
report on, keeping in mind that this number is multiplied by the number
of ICNs in the base atlas, which ranges from 10 to 70 in the three used in
this work, as the tool's total output (plus four global metrics). We believe
that a limited set of metrics, i.e. 30 for the SMITH10 atlas, per fMRI map
is manageable at this very early stage of the tool's application. Future
similar analyses on other datasets may reveal a pattern which helps us
identify an optimal set of metrics; such a consensus would be beneficial
as it would help standardising the methodology.
4.1. Choice of atlases

The atlases we chose for this validation study and initial demon-
strations represent two very different approaches for describing intrinsic
connectivity networks: The SMITH10 atlas is based on resting-state fMRI
data, while the BRAINMAP20 and BRAINMAP70 are based on ICA
decomposition of task-based fMRI data (Laird et al., 2011; Ray et al.,
2013; Smith et al., 2009). It has previously been shown that the SMITH10
and BRAINMAP20 atlases yield highly similar results for ten well-
matched ICNs (Smith et al., 2009), but more recently Laird et al.
showed that there are 8 additional ICNs that can be reliably derived from
task-based data (Laird et al., 2011). The greater number of functional
components in BRAINMAP20 results in greater brain coverage, a fact
reflected accurately in the global engagement metric (IT) values we ob-
tained (Table 2). Maps obtained with increased ICA dimensionality tend
to show the expected subnetwork fractionation with respect to the net-
works seen at lower dimensionality (Ray et al., 2013; Smith et al., 2009),
without significantly affecting global ICN engagement. The cognitive
domain based colouring of ICN_Atlas output further supports the simi-
larities between the base maps (see Figs. 4 and 5, and Supplemen-
tary Figs. 2–4).

It has previously been shown that ICNs obtained with low model
order ICA (d¼ 10 or 20) represent large-scale functional networks, while
higher model orders lead to subnetwork fractionation (Abou-Elseoud
et al., 2010; Ray et al., 2013; Smith et al., 2009). While the SMITH10 and
BRAINMAP20 atlases represent well-documented large-scale functional
network obtained for model order d¼ 20, what model order would be the
best suited for ICN subnetwork-based description of functional activa-
tions remains an open question. It has been shown that ICA model order
70 can lead to robustly detectable components (Kiviniemi et al., 2009);
furthermore, model orders (d) of 60–80 have been shown to: (1) suffi-
ciently separate signal sources; (2) be repeatable; (3) not over-fit the
data; and (4) show significant changes in volume and mean Z-score for
the evaluation of ICNs (Abou-Elseoud et al., 2010). This was further
corroborated by hierarchical clustering analysis on BrainMap metadata
matrices, i.e. matrices that were designed to quantify the relationship
between ICs and behavioural domains or paradigms, where the quality of
hierarchical clustering was found to be highest for ICA model orders
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d ¼ 20 and d ¼ 70, leading to a more clear-cut correspondence between
functional properties and ICNs (Ray et al., 2013). Based on these obser-
vations, the BRAINMAP70 atlas (based on ICA of model order 70) seems
to provide an appropriate description of ICNs on a subnetwork level.

Our comparisons of the two lower-dimensionality atlas base maps,
SMITH10 and BRAINMAP20, have shown contrasting quantitative
functional map descriptions (see Supplementary Fig. 3), for example in
relation to the temporal lobes, where there is a specific limbic and
medial-temporal map (BM20-1) in the BRAINMAP20 atlas which has a
minimal overlap with the auditory (ICN7) base map of the SMITH10
atlas. Furthermore, we note that the SMITH10 ICNs do not cover the
hippocampi, which may limit this specific base atlas's applicability to
data from patients with temporal lobe epilepsy (TLE) for example. It is
noteworthy that the anatomical coverage of the BRAINMAP70 atlas is
similar to that of BRAINMAP20, as reflected by global engagement
metric IT.

Given the choice of base atlases presented here, all derived from data
collected in predominantly healthy adults, one could argue that the
utility of ICN_Atlas is limited to experimental data obtained on neuro-
logically ‘typical’ adults. Indeed, the optimal atlas depends on the pop-
ulation investigated (Mandal et al., 2012), and no pre-calculated atlas can
be considered perfect for all purposes. Still, the Talairach and Tournoux
atlas (Talairach and Tournoux, 1988) is based on a single 60 years old
female, and the AAL atlas (Tzourio-Mazoyer et al., 2002)is based on the
Colin-27 brain template (Holmes et al., 1998), yet the former is still
widely used for neurosurgical planning in non-neurotypical patient, and
the latter is widely used in fMRI ROI analyses for both neurotypical and
–atypical subjects, and even a high proportion of the CONN132 atlas
ROIs are based on it. Moreover, there is no widely accepted standard
spatial template space for children, and therefore pediatric rs-fMRI an-
alyses can be performed either in the MNI template space (Thomason
et al., 2011), or age and study specific templates can be created (Muetzel
et al., 2016). Therefore the choice of atlas can be seen as one between
generalizability and universality, vs specificity.

Nevertheless, the ICN_Atlas framework is designed to accommodate
multiple atlases, including any derived from pathological data. For
example one could envisage the use of a study-specific ICN_Atlas base
map creating an ICN template with group ICA from the joint patient-
control data (or from data of a specific age-group), and then co-
registering is to any spatial template image (either general or study-
specific), and then converting it to ICN_Atlas base map format.
4.2. Validation on longitudinal test-retest data

We chose the NYU-TRT data for our validation study because it is
substantial in size, longitudinal, open-access and free-to-use, and well
characterised (voxel-wise (Zuo et al., 2010b)). The results of our TC-GICA
analysis are similar to Zuo et al. (2010b), with the main difference being
the component ordering based on the ranking of the percentage of



Fig. 7. Test-retest engagement reliability: within- and between-session intra-class correlation coefficient (ICC) scores. Parts A-D, I–L: within-session; parts E-H, M–P: between-
session ICC scores using the SMITH10 and BRAINMAP20 atlases, respectively. ICC scores are shown for every IC and atlas base map combination for the Ii (A, E, I, M), MAN,i (B, F, J,
N), and RAN,i (C, G, K, O) metrics. Data collapsed either across ICs or across ICs and atlas base maps are shown in panels D, H, L, P in the top and bottom (‘all’) subplots, respectively. The
schematic representation of the data collapsing strategy (explained in detail in Methods) is shown in panels O and P: red source and target boxes and red arrows; the panel labels cor-
responding to the collapsed metrics are marked in the respective subplots (e.g. A, B, C in panel D). Noise ICs are marked by asterisks on all panels. ICCW: within-session ICC, ICCB: between-
session ICC. Metric # represents the output metrics as follows: (1) Ii, (2) IRi, (3) MAi, (4) MAN,i, (5) IRi

M, (6) RAN,i, (7) IiM, (8) OLi, (9) SQ, (10) Ji, and (11) ri. See Supplementary Fig. 8 for
BRAINMAP70, and Supplementary Tables 11–34 for numerical values.
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variance explained. This may be due to the different motion correction
algorithms applied (Churchill et al., 2012a; Hoffmann et al., 2015; Power
et al., 2015): SPM's algorithm in our case vs. FSL's in Zuo's. We note that
although motion correction is a well-known problem in fMRI data anal-
ysis, especially for resting-state fMRI, to date no methodological
consensus has emerged (Churchill et al., 2012b; Hoffmann et al., 2015;
Kalcher et al., 2012; Power et al., 2015).

We also observed slightly different functional partitioning of the
obtained ICs compared to those described by Zuo et al. (2010b), in which
IC3 and IC5 represent the default mode network (DMN) and IC9, the
fronto-parietal networks corresponding to cognition and language
bilaterally. These differences may also be related to the different pre-
processing pipelines used. Nevertheless, the similarity of our voxel-
wise ICC results with those described by Zuo et al. (2010b), especially
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given the fact that ICs corresponding to intrinsic connectivity networks
have higher ICC values than those corresponding to noise (with the
exception of IC2) is reassuring. Concerning noise component IC2, its high
degree of repeatability is not surprising given that it corresponds to the
venous sinuses, an anatomically defined and therefore spatio-temporally
stable entity.

Reassured by the above results we went on to assess atlasing
repeatability for each metric at three levels: (1) individual atlasing steps
for every IC - individual atlas base map combination; (2) atlas base maps;
and (3) global, i.e. across ICs and atlas base maps. The results showed
that repeatability is dependent both on the atlased activation map and
the atlas base map used for atlasing (Fig. 7 and Supplementary Fig. 8).
This finding is not unexpected, since activation maps have highly vari-
able spatial distribution, hence there may be very limited or no overlap



Fig. 8. Test-retest engagement reliability: Comparison of within- and between-session ICC scores for the SMITH10, BRAINMAP20, and BRAINMAP70 atlases. Each data points represents
an IC atlased with one of the atlas base maps. The majority of within-session ICC scores are higher than the between-session ICC scores. Only positive ICCs are shown.
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with some atlas base maps depending on the specific activation pattern
which can lead to elevated variability, especially in the border regions of
activation clusters thereby influencing the atlasing output due to a small
number of voxels with values close to statistical significance (Supple-
mentary Fig. 9).

Since our calculation of ICC at the atlas base map level, i.e. collapsing
across ICs, reduces the impact of this IC-derived variability, it can be
considered more a reliable assessment of the utility of the atlasing tool
itself than the level of individual atlasing steps. At this level, the ICC
values showed moderate to very strong agreement, on a par with the
voxel-wise atlasing results, and similarly with the strong to very strong
agreement observed at the global level. Regarding metric reliability we
note the markedly lower value for MAN,i, reflecting the maps’ greater
inter-session variability in terms of overall activation level, an effect
which is compensated for in the corresponding relative metric, RAN,i.
This observation suggests that the latter should be favoured in
applications.
4.3. Demonstration on task-based data

To demonstrate ICN_Atlas’ utility on task-based fMRI data we selected
an independent, task-based, open-access data set containing parametric
(level of task difficulty) modulated data (Vagharchakian et al., 2012).
Using this data were able to demonstrate parametric modulation effects
in the atlasing output, reflecting task difficulty both for auditory and
visual sentence presentation, which are compatible with previously
published results and the previously proposed model of a temporal
bottleneck in the language comprehension network that is independent
of sensory limitation (Vagharchakian et al., 2012). As there was no in-
formation in the NeuroVault metadata to support proper significance
thresholding, we opted for performing atlasing both on unthresholded
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input maps, and using an arbitrary (Z > 3) threshold, to emphasize the
flexibility of ICN_Atlas as a research tool. Indeed, both approaches pro-
duced similar results for this data set.

Direct ROI-by-ROI comparison of the results was not possible due (1)
to the limited available data, and (2) the different nature of ROIs: in
Vagharchakian et al. (2012) they were derived using GLM ANOVA while
those used in CONN132 were derived from anatomical landmarks.
Indeed the CONN ROIs were much larger than the originally reported
clusters, resulting in some of them (e.g. the left inferior occipital gyrus,
the left precentral gyrus, and the left SMA) including clusters with
different response profiles; this means that ICN_Atlas provides a different,
more integrative, level of description; this is even more pronounced at
the level of ICNs. This is clearly visible in the engagement profiles we
obtained: while on the anatomical ROI level with the CONN132 atlas
both the sensory, post bottleneck, and buffer response profiles were
identifiable, on the ICN level with the BRAINMAP20 atlas the response
profile resembled the phase profile suggested for integrative regions
(Vagharchakian et al., 2012) both for the Ii and the MAN,i metrics. The
latter represented network-wide behavior not exclusively driven by a
single or a small group of ICNs, proven by the fact that overall engage-
ments (average MAN,i and Ii values over ICNs) followed the same
response characteristic.

Moreover, despite the dominant integrative response profile, the
stimulus modality could still be identified from the ICN_Atlas output, and
there were visible differences in the engagement dynamics of the
BRAINMAP20 ICNs, but their detailed analysis is outside the scope of
this paper.

Note that, the response profiles were identified visually, as it was not
possible to characterize ICN_Atlas output on a ROI-by-ROI basis using
correlation-based statistics due to the small number of data points
available (five for each stimulus modality).



Fig. 9. ICNi Spatial Involvement (Ii) of the auditory and visual parametric modulation fMRI data set calculated using the anatomy-based CONN132 atlas. The three response profiles
detailed in Vagharchakian et al. (2012) can be identified in ROIs matching those published previously. The response profiles are represented with solid black lines, the visual stimulus
modality is represented with solid blue lines, and the auditory stimulus modality is represented with dashed red lines. 20%, 40%, 60%, 80% and 100% compression factors represent 1333,
645, 429, 323, and 257 words per minute, i.e. 46 ms, 93 ms, 140 ms, 186 ms and 233 ms mean word durations, respectively.
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4.4. Demonstration on epileptic seizures EEG-fMRI data

We obtained results with ICN_Atlas using the dataset of a patient who
had repeated seizures during resting-state fMRI scanning, confirmed on
simultaneously recorded EEG and video (Chaudhary et al., 2012). The
results significant and varying engagement of a range of ICN in different
epileptic phases. Specifically, there is a degree of correspondence be-
tween the patterns of ICN engagement in this seizure and ictal semiology.
Our observation of activation of the DMN during the ictal established
phase is consistent with observation of disturbance in normal level of
consciousness. In turn, DMN activation is not normally associated with
activation of the sensorimotor network (ICN6) and associated manifest
motor activity nor with activation of the executive and
fronto-parietal networks.

An implicit observation that results from this particular application of
ICN_Atlas is in relation to the eminence of the Default mode network
(DMN) in research. Whilst there has been a level of interest focused on
the DMN in epilepsy imaging studies (Gotman et al., 2005; Laufs et al.,
2006), this may in part be accounted more by its historical pre-eminence
in the field of functional imaging than some intrinsic a priori clinical
relevance even though fluctuations in awareness and or consciousness
are an important consideration in epilepsy (Archer et al., 2003; Berman
et al., 2010; Chaudhary et al., 2012; Laufs et al., 2006). We suggest that
use of ICN_Atlas will help to widen the investigation of the role of other
intrinsic connectivity networks in Epileptology. Note however, that the
importance of the mesial temporal lobe structures in epilepsy highlights a
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limitation of the SMITH10 atlas in this field of application.
ICN_Atlas not only addresses the issue of interpretation bias (e.g. focus

on more or less visually prominent or perceived as interesting) but also
introduces objectivity in providing a standardised approach to the
characterization of epileptic networks in the clinical context. We refer to
the fact that neuroimaging networks are often labelled and referenced
generally in a purely visual and qualitative manner, relying on the in-
vestigators knowledge of functional localizers (Friston et al., 2006; Saxe
et al., 2006), or that of basic functional neuroanatomy as it is evident
from the taxonomy of brain activation databases (Laird et al., 2005,
2011; Yarkoni et al., 2011).

Our approach raises the question: To what extent do these patterns of
intrinsic connectivity networks activation manifest in seizure semiology?
This is a question which should be addressed on an individual and group
level. Whilst the illustrative case study provides notional correlation with
manifest semiology as it can be understood in terms of network
engagement, it raises interesting questions as to the impact of seizures on
normal connectivity and cognition, including executive function in
relation to normal levels of consciousness. We will further address these
issues in future studies.

Furthermore, ICN_Atlas allows for more sophisticated analyses than
currently performed via quantitative assessment of ICN engagement and
thus may add to the debate in relation to the neurobiological nature of
seizure networks (Bartolomei et al., 2001; Spencer, 2002; Thornton et al.,
2011). For example on a descriptive level, ICN engagement in terms of
voxel numbers as well as sum of statistical values, may reflect a



Fig. 10. Normalised Mean ICNi Activation (MAN,i) and ICNi Spatial Involvement (Ii) of the auditory and visual parametric modulation fMRI data set calculated using the anatomy-based
CONN132 atlas. A, C, E, G: mean engagement values over atlas base maps, B, D, F, H: polar representation of engagement metrics. A–D: Normalised Mean ICNi Activation (MAN,i) values
obtained without thresholding the input activation maps, E–H: ICNi Spatial Involvement (Ii) values obtained with Z > 3 thresholding the input activation maps. 20%, 40%, 60%, 80% and
100% compression factors represent 1333, 645, 429, 323, and 257 words per minute, i.e. 46 ms, 93 ms, 140 ms, 186 ms and 233 ms mean word durations, respectively.
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predominance of specific ICNs. Such findings can notionally address
questions, raised in the literature with respect to the interpretation of
BOLD changes found in deeper structures, i.e. whether they reflect
normal network activation consequent to ictal activation or indeed
widespread underlying abnormalities (Chaudhary et al., 2012). A better
understanding of the intrinsic connectivity network composition of
clusters in the ictal BOLD maps is likely to improve the interpretation of
epileptic activity and therefore improve localisation, particularly in
comparison to other relevant investigation and descriptions of ICNs
(Mantini et al., 2007; van den Heuvel et al., 2009).
4.5. Limitations of the proposed approach

The current version of ICN_Atlas employs base atlases based on group
data, which can be considered as first-degree approximations of each
network's representations as independent components, hence they do not
reflect inter-individual variability in the networks. Indeed, atlases ob-
tained from meta-ICA decomposition of group-level ICA data (Smith
et al., 2009) are fundamentally different from maps obtained with ICA
decomposition of individual data (Zuo et al., 2010b). This criticism ap-
plies to all methods that base their interpretation on these atlases. A
theoretical solution to this issue would be a probabilistic base atlas based
on individual ICN and/or activation data that may be better suited to
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represent single-subject activation patterns. We envisage the creation of a
probabilistic version of ICN_Atlas in which the metrics take into account
base atlas voxel weightings.

The three ICN base atlases currently provided with ICN_Atlas offer a
relatively coherent framework for the description of activations with
respect to ICNs. One could envisage that the use of other, custom, base
atlases could lead to inconsistencies of description that may hinder
comparison across studies. These inconsistencies may nevertheless be
reduced by ‘cross-atlasing’ the atlas base maps, e.g. as we presented the
comparison of SMITH10 vs BRAINMAP20, and BRAINMAP20 vs
BRAINMAP70 in Supplementary Figs. 3 and 4.

We have demonstrated ICN_Atlas’ utility and flexibility for the
description of group-level task-based parametric fMRI data both on
unthresholded input maps, and using an arbitrary (Z > 3) threshold; with
both approaches having produced similar results for this data set. It is at
the discretion of the user to set threshold values, nevertheless there is a
default threshold for the atlas base maps set to Z ¼ 3, while the simplest
recommended approach for the input maps is to use conventional model-
based (e.g. Gaussian random field) statistical thresholding.

We have demonstrated ICN_Atlas' utility for the description of single-
subject epileptic activities derived from EEG-fMRI data. Based on these
results we can safely conclude that it can easily and effectively be used as
a comparative tool in clinical studies. Nevertheless, it is important to



Fig. 11. ICN involvement evolution during epileptic seizures as quantified by three metrics across the ictal phases using the SMITH10 atlas. The BOLD changes associated with epileptic
activations in the early ictal (top row), ictal established (middle row), and late ictal (bottom row) phases are shown in statistical parametric maps (leftmost column, SPM fFg maps at
p < 0.001 significance threshold, uncorrected for multiple comparisons with a cluster size threshold of 5 voxels). Polar plots of Ii (second column), MAN,i (third column), and RAN,i

(rightmost column) are based on atlasing of the respective SPMs.
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recognise the limitations imposed by standardised and normative tools
such as ICN_Atlas in single subject analyses. Whilst speed and stand-
ardisation is advantageous even in the clinical context, investigators have
to be mindful of the fact that ICN-based assessment of individual acti-
vationmaps (be they EEG-fMRI-derived ictal- or task-related BOLDmaps)
based on each individual patients’ own intrinsic connectivity networks
may be advantageous at least in principle.

Finally, ICN_Atlas at its current state can be considered a data sum-
marizer. In the current work we have not considered how the outputs can
be analysed in order to discover new neuroscientific facts, beyond the
factor analysis to identify a reduced set of metrics. We think that the
simplest presentation is necessary at this stage, and that this relative
functional simplicity and transparency may help the tool being adopted.

4.6. Possible extensions and applications

The scope and spirit of this paper being confined to the presentation,
validation and limited demonstration of the utility of our tool, we did not
wish to introduce too great a bias in the way it could be applied (although
for example the choice of a small number of metrics presented can be
justified as being the result of a factor analysis, and to simplify presen-
tation for publication) or how the results should be interpreted. While
this can be considered a shortcoming, we believe that the open
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framework we propose takes into account a degree of uncertainty on the
exact nature and extent of the intrinsic connectivity networks. By offering
the users the option of choosing a (any) ‘base atlas’ (in the ICN_Atlas
terminology) of their own preference, we offer the scientific community
the possibility of discovering, or agreeing on, the most suitable or optimal
atlas for a given specific purpose, or perhaps a large range of applications.
This is equally true for the flexible thresholding options implemented for
the analyses, which allow for data input derived from different sources
besides the SPM toolbox even without statistical information encoded in
the file headers. ICN_Atlas is a just a tool and, with every other tool, it is
the users' responsibility to adhere to proper analysis standards.

The extensible nature of ICN_Atlas provides opportunity to include
atlas base maps derived from different sources, e.g. probabilistic anatomy
(Eickhoff et al., 2005), pediatric ICNs (Muetzel et al., 2016; Thomason
et al., 2011), multi-modal anatomical parcellations (Glasser et al., 2016),
or even study-specific functional localizers. These extensions could help
fine tune the toolbox for the investigators specific needs. On the same
token, as the toolbox expects its input to be in the same anatomical space
as the data, species specific atlas base maps can also be used for the
processing of animal-derived data.

Overcoming the current limitation of being a data summarizer would
require the implementation of in-depth analysis approaches. These could
include statistical inference for group comparisons, function decoding
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based on e.g. the BrainMap database using their taxonomical meta-data
labelling scheme (Laird et al., 2011) for reverse inference (Yarkoni
et al., 2011), etc. We have already demonstrated the utility of factor
analysis for identifying the most relevant metrics from the wide range of
possible output parameters, but including factor analysis for group-level
processing may shed light for differential importance of metrics
depending on the research question, or the clinical group investigated.

We developed ICN_Atlas with EEG-fMRI in our focus of attention, but
the toolset is not limited nor to this acquisition method, neither for the
discussion of epileptic activities. Indeed, the approaches to analysis dis-
cussed above may provide quantitative assessments of activation data in
relation to a range of neuroscientific and clinical questions. Regarding
the study of epilepsy-related activations: it is evident that there are sig-
nificant differences between ictal phases, and as reflected by the metric
values. In a departure from the quest for localisation by virtue of cluster
classification in terms of statistical significance, ICN_Atlas provides a
description of intrinsic connectivity network engagement that lends itself
to a depiction of activations in terms of functional significance (Centeno
and Carmichael, 2014) and could be a potential contributor to the cur-
rent pre-surgical cluster interpretation in EEG-fMRI studies as well as
providing information on semiology in such studies.

5. Conclusions

ICN_Atlas provides a fast, flexible and objective quantitative
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comparative approach for characterizing fMRI activation patterns based
on functionally-derived atlases of the investigator's choice. It can be
applied to activation studies of any nature, providing objective, repro-
ducible and meaningful descriptions of fMRI maps. Based on the pre-
sented case demonstration it may open new avenue of research into the
cognitive aspects of a range of neurological conditions.
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Appendix A. Definition of the ICN recruitment metrics

We used the following variables and symbols in the metrics definitions:

� n : voxel index (n ¼ 1, 2, …, M, where M is the number of voxels in the maps);
� SPM is an input map and SPMt its thresholded version;
� ICNi represents the ith thresholded prototype ICNmap in atlas A, and ICNB

i represents the binarized version of the ith thresholded prototype ICNmap
in atlas A

� jXj: is the number of non-zero valued voxels in map X;
� 〈X〉n: is the value of the given voxel n in map X;
� : represent the voxel-wise product
� a horizontal bar over any given variable or metric represents its arithmetic mean over all voxels, e.g. in 〈SPM〉.

Note that in the description of the metrics we use the term activation, although the metrics are also defined for deactivations, and the ICN_Atlas
toolbox can be applied to deactivation data and used to estimate the metrics for positive and negative input map voxel values.

A.1 ICN spatial involvement metrics

These metrics represent the proportion of ICN activated on global and local (ICN-wise) levels in the input map, and/or the spatial similarity between
the input map thresholded activation pattern and the ICN.

ICNi Spatial Involvement (Ii): ratio of the number of activated ICNi voxels to ICNi volume:
T

Ii ¼ jSPMt ICNij

jICNij (A.1)

Total ICN Spatial Involvement (IT): ratio of the total number of activated ICN voxels over the total ICN volume:
P T

IT ¼ ijSPMt ICNijP

ijICNij (A.2)

ICNi Relative Spatial Involvement (IRi): ratio of the number of activated ICNi voxels over the total number of activated ICN voxels:
T

IRi ¼ jSPMt ICNijP

ijSPMt
T
ICNij (A.3)

Spatial Overlap with ICNi (OLi): spatial overlap between the thresholded activation map and ICNi (Kim and Lee, 2012):

https://doi.org/10.1016/j.neuroimage.2017.09.014
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OLi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSPMt

T
ICNij2

s

jSPMtj⋅jICNij (A.4)

Sørensen-Dice coefficient with ICNi (SQi): spatial similarity between the thresholded activation map and ICNi:
T

SQi ¼ 2 jSPMt ICNij

jSPMtj þ jICNij (A.5)

Jaccard index with ICNi (Ji): spatial similarity index between the thresholded activation map and ICNi:
T

Ji ¼ jSPMt ICNij

jSPMt
S
ICNij (A.6)

A.2 ICN activation strength metrics

These metrics represent the significance/strength of ICN activation. Intensity-normalised metrics are defined to estimate the importance of ICN
involvement relative to the whole-brain range of activation levels.

Mean ICNi Activation (MAi): ratio of the sum of ICNi statistical values to the number of activated ICNi voxels:
P
B

MAi ¼ n〈SPMt〉n � ICNi;n

jSPMt
T
ICNij (A.7)

Global Mean ICN Activation (MA): mean of voxel-wise statistical values and the number of activated voxels in all ICN:
PP
B

MA ¼ i n〈SPMt〉n � ICNi;nP
ijSPMt

T
ICNij ; (A.8)

Normalised Global Mean ICN Activation (MAN): ratio of the mean of normalised voxel-wise statistical values over the number of activated voxels
in all ICN:
PP 〈SPM 〉 �ICNB � min 〈SPM 〉
MAN ¼ i n
t n i;n t

max 〈SPMt〉�min 〈SPMt 〉P
ijSPMt

T
ICNij (A.9)

heremin SPMt is the minimum of the thresholdedmap, i.e. the threshold value itself, andmax SPMt is the peak statistical value, so
〈SPMt 〉n�ICNB

i;n� min 〈SPMt 〉

max 〈SPMt 〉�min 〈SPMt 〉
normalises the statistical values between the threshold and the global maximum to the [0,1] interval.

NormalisedMean ICNi Activation (MAN,i): ratio of the mean of normalised voxel-wise statistical values and the number of activated voxels in ICNi:
P 〈SPMt〉 �ICNB � min 〈SPMt〉
MAN;i ¼ n
n i;n

max 〈SPMt〉�min〈 SPMt 〉

jSPMt
T
ICNij (A.10)

Relative Normalised Mean ICNi Activation (IRM
i ): ratio of the sum of normalised statistical values for ICNi over the number of activated voxels in

all ICN; equivalent to the mean of voxel-wise statistical values over activated voxels in all ICN:
P 〈SPM 〉 �ICNB � min 〈SPM 〉
IRM
i ¼ n

t n i;n t

max 〈SPMt〉�min 〈SPMt〉P
ijSPMt

T
ICNij ¼ MAN;i⋅IRi (A.11)

Normalised Relative ICNi Activation (RAN,i): ratio of the summed normalised activation in the given ICN and the total normalised activation in
all ICN:
P 〈SPM 〉 �ICNB � min 〈SPM 〉
RAN;i ¼ n
t n i;n t

max 〈SPMt〉�min〈 SPMt 〉P
i

P
n

〈SPMt〉n�ICNB
i;n� min〈 SPMt〉

max 〈SPMt〉�min 〈SPMt 〉

(A.12)

A.3 ICN activation density metrics

Similarly to the normalised activation strength metrics these metrics represent the significance/strength of ICN activation, relative to the ICN
volume rather than the activated ICN volume.

Normalised Global Mean ICN Activation Density (IMT ): ratio of the sum of normalised statistical values over all ICN to total ICN:
 !

IMT ¼

P
i

P
n
〈SPMt〉�ICNB

i;n� min 〈SPMt〉

max 〈SPMt 〉�min〈 SPMt〉P
ijICNij ¼ MAN ⋅It (A.13)

Normalised Mean ICNi Activation Density (IMi ): ratio of the sum of normalised statistical values for ICNi to ICNi volume:
338
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IM ¼
P

n
〈SPMt 〉n�ICNB

i;n� min 〈SPMt 〉

max 〈SPMt 〉�min 〈SPMt〉 ¼ MA ⋅I
i jICNij N;i i (A.14)

A.4 Other

Pearson's spatial correlation with ICNi (ri): measures the similarity between the full activation map and ICNi along the voxel dimension; this
metric can be used on unthresholded maps and unthresholded atlases, as well.
P � 	 � 	

ri ¼

n 〈SPMt〉n � 〈SPMt〉 〈ICNi〉n � 〈ICNi〉
P
n

�
〈SPMt〉n � 〈SPMt〉

	2P
nð〈ICNi〉n � 〈ICNi〉 Þ 2

�1=2 (A.15)

Appendix B. Estimating repeatability using intra-class correlation

Quantifying a measurement's repeatability, which can be defined “as precision under conditions where independent test/measurement results are
obtained with the same method on identical test/measurement items in the same test or measuring facility by the same operator using the same
equipment within short intervals of time” (ISO/IEC 3534-2:2006 3.3.5), is essentially an exercise in the more general problem of measuring agreement
between measurements (Bland and Altman, 1986; Muller and Buttner, 1994). Considering the well-known potential sources of systematic session-
specific (and biologically uninteresting) bias in fMRI, we chose to follow Zuo et al. (2010b) to estimate repeatability. Following Shrout and Fleiss
(1979), they propose a formulation of the intra-class correlation coefficient that does not penalize for systematic differences between scanning sessions,
within the framework of the analysis of variance (Zuo et al., 2010b).

In summary, in the context of repeat image acquisitions, denoting Yij as the j-th measurement (voxel value) on the i-th subject (for i ¼ 1, …, n and
j ¼ 1, …, d), modelled as follows:
Yij ¼ μþ pi þ tj þ eij 1 � i � n; 1 � j � d

where μ is a fixed parameter (some global effect), pi is the participant effect (variance σ2p), tj a scanning session effect (variance σ2t) and eij the mea-
surement error (variance σ2e). The intra-class correlation (ICC), initially proposed by Fisher (1954) to assess the similarity between corresponding (i.e.,
repeated) measurements across a group of such measurements (e.g. across specimens in a sample), considering all effects contained in the model, is
expressed as:
2

ICCt ¼
σp

σ2p þ σ2t þ σ2e
(B.1)

Ignoring systematic sources of error, Zuo et al. (2010b) define a modified ICC, used in this work:
2

ICC ¼ σp
σ2p þ σ2

e

; (B.2)

the mean square estimate of which can be written as:
_2
ICC ¼ σ p

σ
_2

p þ σ
_2

e

¼ MSp � MSe
MSp þ ðd � 1ÞMSe

; (B.3)

where:

MSp ¼ SSp/(n�1) (B.4)
MSe ¼ SSe/((n�1)(d-1)) (B.5)with:
Xn

SSp ¼ d

i¼1

�
Yi � Y

�2 (B.6)

n d
SSe ¼
X
i¼1

X
j¼1

�
Yij �

�
Yi þ Yj � Y ::

��2 (B.7)

where:
� 
 d
Yi ¼ 1
d

X
j¼1

Yij; (B.8)
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Yj ¼ 1 Xn
Yij; (B.9)
� 


n i¼1

� 
 d n
Y :: ¼ 1
dn

X
j¼1

X
i¼1

Yij (B.10)
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