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ABSTRACT

Fork-based development has been widely used both in open source
communities and in industry, because it gives developers flexibility
to modify their own fork without affecting others. Unfortunately,
this mechanism has downsides: When the number of forks becomes
large, it is difficult for developers to get or maintain an overview of
activities in the forks. Current tools provide little help.We introduce
Infox, an approach to automatically identify non-merged features
in forks and to generate an overview of active forks in a project. The
approach clusters cohesive code fragments using code and network-
analysis techniques and uses information-retrieval techniques to
label clusters with keywords. The clustering is effective, with 90 %
accuracy on a set of known features. In addition, a human-subject
evaluation shows that Infox can provide actionable insight for
developers of forks.
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1 INTRODUCTION

Forking is a lightweight and easy mechanism that allows develop-
ers, both in open source and in industry, to start development from
an existing codebase, while having the freedom and independence
to make any necessary modifications [8, 23, 29, 75]. Forking was
always available by simply copying code files, and version con-
trol systems have long supported branches, but recent advances
in distributed version control systems (e.g., ‘git clone’) and social
coding platforms (e.g., GitHub fork) have made fork-based develop-
ment relatively easy and popular by providing support for tracking
changes across multiple repositories with a common vocabulary
and mechanism for integrating changes back [19].

While easy to use and popular in practice, fork-based develop-
ment has well known downsides. When developers each create
their own fork and develop independently, their contributions are
usually not easily visible to others, unless they make an active
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(a) GitHub network graph

#Active forks (within a year): 89
#Forks have un-submitted code changes: 33

(b) Infox overview
Figure 1: GitHub’s network graph shows commits across

known forks, but is difficult to use to gain an overview of ac-

tivities in projects with many forks. Infox’s overview sum-

marizes features in active forks.

attempt in merging their changes back into the original project.
When the number of forks grows, it becomes very difficult to keep
track of decentralized development activity in many forks (as we
will illustrate in Sec. 2). The key problem is that it is difficult to
maintain an overview of what happens in individual forks and thus
of the project’s scope and direction. For fork-based development
in industrial contexts, both Berger et al. and Duc et al. found that
it is hard for individual teams to know who is doing what, which
features exist elsewhere, and what code changes are made in other
forks [6, 24]. Several open-source developers that we interviewed
for this paper indicated that they are interested in what happens
in other forks, but cannot effectively explore them with current
technology, such as GitHub’s network graph shown in Fig. 1a: “I
care, but, it is very hard to track all of the forks.” This developer is
using SourceTree, which visualizes commit history of a repository
through GUI, to explore code changes in other forks one by one,
and he said “it is just difficult” [P5]; “I do not have much visibility of
the forks. They are too many, and it is overwhelming to keep track of
them” [P9]. The difficulty to maintain an overview of forks leads to
several additional problems, such as redundant development, lost
contributions and suboptimal forking point, as we will discuss in
Section 2.
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The goal of our work is to identify and label cohesive code
changes, features, among changes in forks to provide a compact
overview of features and their implementations. This is a step to
establish an overview of development activities in various forks of
a project.

In contrast to GitHub’s network view (Fig. 1a), we deempha-
size commits, which frequently have unreliable descriptions and
frequently are unreliable indicators of cohesive functionality, as
it is common that commits tangle code of multiple features and
even more common that a single feature is scattered across multi-
ple commits [5, 38, 39, 43, 48, 54]. Instead, we cluster changed code
based on relationships and dependencies within those code frag-
ments and label each feature with representative keywords extracted
from commit messages, code, and comments. Technically, we take
inspiration from ClusterChanges [5] to untangle code changes
during code review based on a graph of code dependencies and
repurpose the idea for our problem; furthermore we incorporate
community-detection techniques [34] to refine an initial cluster-
ing and information-retrieval techniques [67] for deriving concise
labels (See Fig. 1b).

We implemented our analysis in the Infox tool1 that produces
web pages describing the features in individual forks and across
multiple forks of a C/C++ project as illustrated in Fig. 1. In a mixed-
methods evaluation, we demonstrate (1) that Infox is effective at
identifying features among changes in 10 open-source projects
with a median accuracy of 90 percent, (2) that Infox’s technical
innovations improve clustering accuracy over an existing state-
of-the-art technique designed to cluster individual commits [5],
and (3) that the produced overview provides useful insights for
contributors and maintainers of projects with many forks.

To summarize, we contribute (a) Infox, an approach and cor-
responding tool, which automatically identifies and summarizes
features in forks of a project, using source code analysis, community
detection, and information-retrieval techniques, and (b) evidence
that Infox improves accuracy over existing techniques and provides
meaningful insights to maintainers of forks.

While Infox currently aims at supporting exploration and nav-
igation by summarizing features, it lays a foundation for future
interactive tool support that can refine and persist features (e.g., for
a product-line platform [4, 9, 65]) and support developers in merg-
ing selective changes across forks (e.g., generating pull requests).

2 MONITORING FORKS IN PRACTICE

GitHub’s main facility to navigate forks is the network view (Fig. 1),
which visualizes the history of commits over time across all branches
and forks of a project. This cross-fork visualization provides trans-
parency to developers whowant to track ongoing changes by others,
want to know who is active and what they are trying to do with the
code [19]. For example, one of the developers we have interviewed
said: “I check the more updated forks. I think this view is helpful,
because I am not gonna look at all 60 forks. 60 is a lot, probably this
project has thousands, that will be ridiculous. I will never do that” [P4].

1Infox is short for IdeNtifying Features in fOrKS.
Source code is publicly available at https://github.com/shuiblue/INFOX.
A lightweight web service is available at: forks-insight.com.

Although the network view is a good starting point to understand
how the project evolves, it is tedious and time consuming to use if
a project has many forks. In order to see older history, users click
and drag within the graph, and if users want to see the commit
information, they hover the mouse over each commit dot and read
the commit message. Also, they “have to scroll back a lot to find
the fork point and then go to the end again for seeing what changed
since then in the parent and in the fork” [2]. If developers want to
investigate the code changes of certain forks, they have to manually
open and check each fork. As one developer stated “I don’t look at
the graphs on GitHub. . . it is very hard to find the data, you have
to scroll for 5 minutes to find stuff” [P5]. The view does not even
load when there are over 1000 forks, no matter they are active or
inactive.

Subsequently, it is difficult for developers tomaintain an overview
of forks, which can lead to several additional problems:
• Redundant development: Unaware of activities in other forks, de-
velopers may reimplement functionality already developed else-
where. Stănciulescu et al. report that, in an open source project,
14 percent of all pull requests were rejected because of concur-
rent development [71]. Redundant development further leads to
merge conflicts, which would demotivate or prevent developers
from continuously contributing to the repository [35, 69], and
significantly increases the maintenance effort for maintainers
[23, 71]. A developer we interviewed for this paper described the
problem as follows: “I think there are a lot of people who have done
work twice, and coded in completely different coding style” [P3].
• Lost contributions: Developers may explore interesting ideas, fix
bugs, or add useful features in forks, but unless they contribute
those changes back to the original project, those contributions are
easily lost to the larger community. Even though contemporary
social-coding platforms list all known forks (see Fig. 1), project
maintainers are unlikely to identify interesting contributions
among the thousands of forks many open source projects attract.
Furthermore, even when a feature of interest is identified in a
fork, because of independent development in each fork, it can
be difficult to port features from one fork to another [23]. A
frequently mentioned complaint is that forks rarely change the
Readme file to describe what the fork changes.
• Suboptimal forking point: Without an overview of forks and their
different contributions, developers might not fork from the code-
base that is closest to their intended goals. Dubinsky et al. report
that in industrial fork-based development projects developers of-
ten struggle to identify which of multiple existing forks to select
as a starting point [23].
There are many different reasons to fork a project: adding a fea-

ture, fixing a bug, preparing a pull request, continuing an abandoned
project, customizing or configuring the project to create a variant,
or making a private copy [23, 52, 64, 71]. In fact, many forks of a
project tend to be inactive. For example, one of the subject systems
in our study, Smoothieware, has 623 forks in total, of which 89 forks
performed unique non-merged code changes, of which 33 were
active within the last 12 months. To an observer, the function of a
fork and its activity level is difficult to identify; somebody looking
for interesting activities (e.g., forks developing features, fixing bugs
or experimenting with code [71]) will often has to navigate all forks.

https://github.com/shuiblue/INFOX
forks-insight.com
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GitHub has not addressed the increasing issue with navigating
many forks despitemany feature requests [1, 2]. External developers
have explored only very basic improvements, most notably a web
browser extension that shows themost starred fork, for the common
use case of identifying an active fork to an abandoned project [3]. In
our user study, we learned there are mainly two ways practitioner
currently use to find interesting forks: Developers either look at
forks they know about and go through the fork’s commits and
commit messages (e.g., “I do compare one branch to another” [P5]), or
use Google and GitHub to search for particular keywords. Searching
is mentioned by several participants as the preferred choice, e.g., “I
usually will use Google but set to only look inside GitHub” [P6].

In this work, we suggest a more systematic approach to create an
overview of forks that identifies the changes in each forks, clusters
them into features, and provides concise descriptions through a set
of characteristic keywords.

3 INFOX

INFOX identifies and labels features within a larger change of a fork.
It takes the diff between the latest commit of the upstream (source
snapshot) and the latest commit of the fork (target snapshot) from
GitHub, which returns the non-merged changes from fork.2 Then
it proceeds in three steps (as shown in Fig. 2):
• Identify a dependency graph among all added or changed lines
of code by parsing and analyzing the code for multiple kinds of
dependencies (Sec. 3.1).
• Cluster the lines of the change based on the dependency graph
using a community-detection technique, mapping each line of
code to a feature, such that lines with many connections in the
dependency graph are mapped to the same feature (Sec. 3.2).
• Label each cluster by extracting representative keywords with
an information-retrieval technique (Sec. 3.3).

The first step is inspired by ClusterChanges, an approach to
untangle code in commits for code review [5]. ClusterChanges
clusters changed code fragments based on a dependency graph of
lines of code. We adopt this idea for a different purpose (identify-
ing and naming features in multiple forks rather than untangling
changes in a single commit) and we extend the approach with addi-
tional kinds of dependency edges, additional steps in the clustering
process, and labeling of clusters, as we will explain.

3.1 Generating a dependency graph

We generate a dependency graph for all lines of code of the target
snapshot by parsing the target snapshot and analyzing the resulting
abstract syntax tree.We add edges between lines for several kinds of
relationships of code fragments within those lines that may indicate
that the two fragments are that are more likely to be related. We
collect the following kinds of dependencies, which we also illustrate
on a simple excerpt of an email system in Fig. 3:
• Definition-usage edges: We add edges between the definition and
use of functions and variables in the program, and the definition
and use of structs or classes and their members. We conjecture
that def-use relationships between two code fragments often

2While developed for changes in a single fork, our approach can be technically used
to cluster the changes between any two code snapshots, including two commits in a
single repository or two copies of code maintained without a version control system.

C/C++

source code AST

dependency graph 
for changed code

dependency graph 
for all code

splitting 
clusters

joining 
clusters

Step 1

Step 2 Shortest distance
between clusters

cluster 1:   sd_card, z_axis, …
cluster 2:   extruder, config, …

Step 3

commit message 
of each line

Repo
git diff

Keyword list of each cluster

git blame

labeled, changed code
base code

Figure 2: Generating and clustering dependency graphs to

identify features, and labeling features.

point to two code fragments that fulfill a joint purpose and are
thus more likely to be part of the same cohesive change in a
larger change.
• Control-flow edges: We generate a control-flow graph for the
source code and add edges between two lines if there is a control
dependency relation between the statements of each line. In line
with Emerson’s cohesion metrics [27], we think that the flow of
control information contributes to the cohesion of code changes.
• Adjacency and hierarchy edges: We add edges between consec-
utive lines and lines that represent hierarchical structures in
the source code (struct/class members point to the outer struct
definition). Adjacency edges and hierarchy edges represent the
structure of the source code and indicate that code fragments
that are located close to each other are more likely to belong
to the same cohesive fragment than code fragments scattered
across different places.
The result is a labeled, weighted, undirected graph, in which

nodes represent lines of code and edges represent the identified de-
pendencies listed above. We assign a low weight of 1 for adjacency
edges, and a weight of 5 for all other edges. Intuitively, semantic de-
pendencies in the program should be stronger indicators of features
than structural relations. We use an undirected dependency graph,
as our experiments showed no benefit in maintaining directionality.

Using a diff command between the source and the target snap-
shot, we identify and mark all nodes that have been added or
changed in the target snapshot (highlighted in Fig. 2).

Compared toClusterChanges [5], we add edges between nodes
with hierarchical and control-flow relations, and add weights.
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struct email
{  

char *subject;  
char *body;  
int isEncrypted;

};
void printMail ( struct email *msg);

1
2
3
4
5
6
7

void printMail ( struct email *msg)
{  

printf ( “SUBJECT:”, msg -> subject );  
if (0 == (msg -> isEncrypted ) )    

printf ( “BODY:”, msg -> body );  
else    

printf ( “Encrypted msg.” ); 
}

1
2
3
4
5
6
7
8

DU (printMail)

H

DU (body)

CF

File 1: Email.h

File 2: Email.c

DU (msg)

H

DU
(isEncrypted)

DU(subject)

CF

A

A

A

A

A
A

A
A

A

Figure 3: Edge examples of an email system.

3.2 Identifying features by clustering the graph

Given the labeled, weighted, undirected dependency graph of the
target snapshot, we identify clusters of nodes that have many edges
within the cluster but few edges across clusters (known as com-
munity detection in the network analysis community [32, 74]). We
interpret each cluster and the corresponding lines of code as a fea-
ture. We start with an initial simple clustering step, but provide
additional means to further split and join clusters that can be used
in an interactive tool or applied automatically using heuristics.

Initial clusters. In line with ClusterChanges [5], we establish
initial clusters by removing all unlabeled nodes (see Fig. 2) from
the dependency graph (i.e., all nodes that have not been added or
changed between source and target) and by detecting connected
components in the resulting graph. Each connected component is
considered as a feature.

This simple splitting works well for many changes, for exam-
ple, grouping together adjacent code fragments and new function
definitions with their corresponding calls. Unfortunately, for other
changes, including large and tangled changes—that we see more fre-
quently in forks than in individual commits—this initial clustering
is susceptible to problems where two unrelated features are merged,
just because their implementations share a single adjacency edge in
one place in the source code. Similarly, some code fragments may
belong together but have no link within the changed code, such
as multiple scattered code fragments calling the same previously
existing logging function. For that reason, we go beyond the work
of ClusterChanges [5] and provide additional (optional) support
for splitting and joining clusters further.

Splitting clusters. Community detection identifies modules in a
graph according to the structural position of nodes [32]. In commu-
nity detection, the key optimization criterion is to maintain more
connections within the module than across modules. We use com-
munity detection to split large clusters into smaller ones that are
only loosely connected.

We adopt a state-of-the-art community-detection algorithm by
Girvan and Newman [34]. Its idea is to count the number of short-
est paths between node pairs. This count, weighted by the edge
weight, is called the edge-betweenness score. The edges with higher

betweenness tend to be the bridge between communities. The clus-
tering algorithm iteratively removes the edges with the highest
edge-betweenness score from the original graph.

In the example of Fig. 2 (Step 1), the highlighted edge is the one
with the highest betweenness score, bridging two otherwise highly
interconnected clusters. Our algorithm removes this edge, splitting
the large cluster into two smaller ones (Step 2).

Note that community detection has no natural stop criteria. The
algorithm can continue until the last edge is removed, creating sin-
gleton clusters. In practice, several heuristic stop criteria exist, such
as maximizing a modularity metric [34] or stopping when a given
maximum number of cut edges do not yet result in a new cluster.
Since, despite experiments, we could not identify a single robust
stop criterion for our problem, we primarily envision splitting in
an interactive setting, in which developers can request to split a
large feature into two using the community-detection algorithm, if
they judge this to be beneficial.

Joining clusters. Scattered implementations of a single concep-
tual feature may result in graph components without any connect-
ing edge. In our experience, this sometimes generates sets of small
clusters that appear to be highly related (e.g., call the same function,
use the same variable), but have no dependency edge within the
changed code. To identify these as a single feature nonetheless, we
analyze how those clusters are related in the context of the entire
implementation, not just the added or changed lines of code.

To this end, we compute the distance between two clusters in
the entire dependency graph that includes the unlabled nodes rep-
resenting unchanged lines of code that are the same in the source
and target snapshot. Given two clusters, we compute the distance
of two clusters as the shortest distance between any pair of nodes,
in which each node belongs to one of each clusters. In our example,
in Fig. 2, the two initial clusters are separated by only a single
unmarked node, indicating that they might be joined.

Again, there is flexibility in selecting thresholds about when to
join two clusters. In addition to interactive mechanisms, we apply
joins by default for pairs of clusters that are separated by a single
unlabled node when at least one of the clusters is smaller than
50 nodes (lines of code). We arrived at this default threshold after
observing, across a large number of forks, that small clusters are
more frequently affected by this, whereas large clusters are more
likely to already share an edge.

3.3 Labeling features

After identifying features with clusters in the dependency graph of
the changed code (possibly with additional splitting and joining),
we can already show the clusters to developers. However, to allow
them to gain an overview of a fork’s changes quicklywithout having
to read a large amount of source code, we label each feature with
representative keywords.

In contrast to GitHub’s network graph (see Fig. 1), which only
shows individual commit messages, we compute representative
keywords from multiple sources. We use commit messages in the
process, but do not rely on them, because (1) commit messages
are often too verbose to consume quickly, because (2) as discussed,
commits do not always align with features, and because (3) we do
not consider the text of commit messages as reliable descriptors.
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1 if (dual_x_carriage == DXC_DUPLICATION){
2 setTarget(duplicate_extruder_temp);
3 duplicate_extruder_temp_offset = code_value();
4 duplicate_extruder_x_offset = max(i, t);
5 SERIAL_ECHO(extruder_offset[0]);
6 extruder_duplication_enabled = false;
7 }

Figure 4: Source code excerpt from Marlin.

Instead, we use information-retrieval techniques to identify key-
words that are distinctive for a given feature, meaning that those
keywords represent the feature better than other features or the
base implementation. Specifically, we proceed in three steps:
• First, we collect a corpus of text for each feature and an addi-
tional corpus for the unmodified source code. For each feature,
the corpus contains (verbatim) all lines of code associated with
this feature, including variable names and function names. We
also include source-code comments that may provide additional
explanations. Comments are added to corresponding clusters
based on their line number. Finally, we identify the commits that
introduced the changed lines of a feature (using ‘git blame’) and
add all corresponding commit messages to the corpus.
• Second, we tokenize each corpus (e.g., splitting variable names
at underscores [10]) and perform the standard normalization
techniques of stemming (e.g., unifying variations of words such
as duplicate, duplicated, and duplication) and removing stop
words (specifically reserved keywords such as int, sizeof, switch,
and struct).
• Third, we identify keywords that are important in one corpus
as compared to all other corpora using the well-known Term
Frequency Inverse Document Frequency (TF-IDF) scoring tech-
nique [67]. The importance of a keyword (its TF-IDF score) in-
creases proportionally to the number of times a word appears in
the feature’s corpus but is offset by the frequency of the word
in the other feature’s corpora [46]. We calculate the TF-IDF
score of each word and of each 2-gram (unique sequence of two
words [72]) in the feature’s corpus. We report the five highest
scoring words and five highest scoring 2-grams as labels for the
feature.

For example, consider the code snippet from the Marlin 3D printer
firmware3 in Fig. 4, which we represent by the relevant keywords
duplicate_extruder, extruder_temp, offset, dual_x, x_carriage, which
are common in this code fragment but not elsewhere in the firmware
implementation.

We arrived at our solution of tokenizing composed variable
names (with underscore) and using 2-grams after some experimen-
tation. On the one hand, composed variable names (e.g., dupli-
cate_extruder_x_offset in Fig. 4) are often too specific and dominate
the TF-IDF score, such that all keywords are long and often similar
variable names. On the other hand, we do not want to discard them
entirely as they often include descriptive parts that represent the
feature. Finally, tokenizing all composed words sometimes leads
to overly generic words, for example, unable to distinguish the
different kinds of extruders in 3D printers. Tokenization combined
with 2-grams provides a compromise that can pick up common
combinations of words without relying too much on specific long
combinations and generic short words.

3https://github.com/MarlinFirmware/Marlin

join

Figure 5: Features in fork DomAmato/ofxVideoRecorder; tree
view displaying hierarchical relation between split features;

colors related code to features.

4 IMPLEMENTATION & USER INTERFACE

We implemented Infox for C and C++ code in a tool of the same
name. Infox takes a link to a GitHub project and collects all active
forks. For each fork, it downloads the latest revision of each as
target snapshot. Unless instructed otherwise, it takes the latest
revision of upstream repository as that fork’s source snapshot. As
output, Infox produces an HTML file that contains summaries of
features and keywords for all analyzed forks, ranked by the time
of their last commits, as shown in Fig. 1b. In addition, for each
fork, it produces an HTML file that maps the features to source
code (using colors, similar to FeatureCommander [30]) as shown in
Fig. 5. Navigation buttons allow to jump between scattered code
fragments of a feature.

To build a dependency graph, Infox parses C/C++ code with
srcML [14] and performs a lightweight name-resolution analysis
to detect def-use edges. Since reliably identifying all such edges
in a complex language as C++ is difficult, our implementation is
unsound, but provides a fast and sufficient approximation for our
experiments. For example, Infox does not disambiguate function
pointers or other advanced language constructs.

Splitting and joining is currently implemented such that devel-
opers can interact with the web page and select which additional
features to split and which to join. Splits are currently precomputed
for features larger than 50 lines, as are joins for small features (by
generating multiple static HTML pages through which the user nav-
igates). This can easily be replaced by on-demand computations on
a web server. Split clusters are illustrated with a hierarchy allowing
users to track and undo splits.

5 EVALUATION

We evaluate Infoxwith regard to effectiveness and usability. Specif-
ically, we address four research questions:

https://github.com/MarlinFirmware/Marlin
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RQ1: To what extent do identified clusters correspond to

features?We measure the effectiveness of Infox’s clustering ap-
proach by comparing how well the clusters match previously la-
beled features in the code. To that end, we will establish a ground
truth of features in multiple code bases. We further compare the
result of Infox with ClusterChanges [5].

RQ2: What design decisions in Infox are significant to

cluster cohesive code changes?We aim to understand the factors
that influence the effectiveness of Infox. Specifically, we investigate
how sensitive Infox is to different kinds of edges in the dependency
graph and to the splitting and joining steps.

RQ3: To what extent do developers agree with Infox’s

clustering result? Complementing RQ1, we explore whether fork
maintainers in open-source projects agree with how Infox divides
and labels their own contributions.

RQ4: Can Infox help developers to gain a better overview

of repository forks?We investigate whether Infox helps develop-
ers to gain new and useful information about a project’s many forks,
such as recognizing useful contributions or redundant development
in other forks.

We answer the first two research questions in a controlled setting,
in whichwe quantitativelymeasure the accuracy of different cluster-
ing strategies on a number of subject systems for which we establish
some ground truth as benchmark. Subsequently, we qualitatively
answer the remaining two research questions in a human-subject
study, in which we discuss Infox’s results with 11 developers of
forks of popular open source systems. The studies are complemen-
tary, allowing us to both (a) systematically explore a large number
of diverse scenarios while controlling several confounds and de-
liberately exploring the effects of changing independent variables
(internal validity), as well as (b) validate in a practical setting how
developers can benefit from the approach in their day-to-day de-
velopment (external validity).

5.1 Quantitative Study (RQ1 & RQ2)

In a first study, we answer RQ1 and RQ2 in a controlled setting by
quantitatively comparing clustering results of Infox and Cluster-
Changes against a ground truth of known features in a number of
open-source projects.

Establishing ground truth. A key challenge in evaluating ap-
proaches that identify features and cohesive code fragments (includ-
ing a vast amount of literature on the concept-location problem) is
to establish ground truth—a reliable data set defining which code
fragments belong to which features. Once such ground truth is
established, it is easy to define an accuracy measure and to compare
different approaches and their variants. There are many different
ways to establish ground truth, each with their own advantages and
disadvantages, including (1) asking researchers or practitioners to
manually assign features to code fragments [25, 63] (possibly biased
and subjective, possibly low inter-rater reliability, expensive), (2) us-
ing indirect indicators such as code committed in a single commit
or by a single author [22, 77] (questionable reliability), (3) using re-
sults of other tools as reference [40, 41, 61] (questionable reliability),
or (4) using existing traceability mappings created for compliance
reasons [12, 13, 16–18, 22] (uncommon practice outside industrial

#ifdef A 
#ifdef B

…
#endif
…

#endif
#ifdef C
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#endif
#ifdef A

...
#endif
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A: 2-19
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(b)

(c)

Figure 6: Extracting preprocessor-based ground truth and

simulating forks.

safety-critical systems). In this paper, we use a new, different ap-
proach and use existing mappings of code fragments to features
through #ifdef directives in C/C++ code.

The preprocessor is commonly used in C/C++ code to implement
optional features and support portability such that users can cus-
tomize their builds by instructing the preprocessors which features
to include [28, 49, 51]. We argue that #ifdef -guarded code fragments
are often good approximations of features (extensions, alternatives)
that developers might add in a fork of a software system. In fact,
in some systems like the Marlin 3D-printer firmware, developers
often add #ifdef guards around code blocks that they integrate back
into the upstream repository as pull requests [71].

Given a C/C++ project, we identify all preprocessor macros that
correspond to features of the system, excluding macros that are
used for low-level portability issues. For each macro, we identify
all code fragments that are guarded by this macro. We consider
this macro-to-code mapping as the ground truth for features in
the experiments, as illustrated in Fig. 6. Extracting ground truth
from preprocessor annotations has the advantage that those an-
notations have been added by practitioners independently of our
experiments and that they can be extracted automatically at scale.
As developers typically want to compile the code with and without
those features, the mapping is typically well maintained as part of
normal development activities and the features correspond to units
of implementations that developers and users care about. Note that
preprocessor annotations do not map all of the project’s code to
features, but this is not necessary, because we only want to cluster
the code changed in forks. We describe next how we simulate such
changes to forks.

Simulating forks. For a given project, we simulate multiple forks,
of which each adds multiple features. To that end, we select a subset
of features in the project and create the source snapshot by removing
all code corresponding to those features (based on the ground-truth
mapping), whereas we remove only the #ifdef directives but not
the corresponding implementations from the target snapshot. That
is, source and target snapshot differ exactly in the implementation
of the selected features. We then evaluate whether Infox can
cluster the changed code into the features originally defined by
the project’s developers. By selecting different sets of features, we
can generate different simulated forks for the same project.

Since Infox divides all code added in a fork into non-overlapping
clusters, we avoided nested macros in one feature combination
when generating simulated forks. Technically, we select macros
incrementally and randomly, and discard any macro for which code
overlaps with previously selected macros until we found the desired
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Table 1: Subject projects

Software System Domain LOC #F F-LOC

Cherokee web server 51,878 328 7,679
clamav anti-virus program 75,345 285 10,809
ghostscript postscript interpreter 442,021 816 21,864
Marlin 3D printer firmware 190,799 280 26,395
MPSolve mathematical moftware 10,181 17 1524
openvpn security application 38,285 276 23,288
subversion revision control system 509,337 409 28,443
tcl program interpreter 135,183 2,481 26,618
xorg-server X server 527,871 1,360 95,227
xterm terminal emulator 49,621 453 19,208

LOC: lines of code; #F: number of features macros;
F-LOC: size of features in LOC

number of non-overlapping macros. For example, in Fig. 6, macro
B is nested in macro A, thus we may generate simulated forks with
A and C, and B and C, but not forks with A and B.

In order to evaluate the effectiveness and robustness of INFOX,
we ran INFOX on multiple projects and on multiple simulated forks
per project. We explored all combinations of the following three
experimental parameters and generated 10 simulated forks for each
combination, resulting in 156 simulated forks per project.
• Number of macros: We selected between 3 and 15 macros per
simulated fork, simulating smaller and larger changes.
• Proximity: We either selected all macros (a) from the same file or
(b) from different files, simulating more and less heavily tangled
features.
• Feature size:We sorted all features by size (lines of code) and split
them equally into smaller and larger features. We then sampled
either (a) twice as many large features than small features or
(b) twice as many small features than large features, thus further
varying simulated forks.

Subject systems. We use open-source software systems imple-
mented in C/C++ with #ifdef annotations. We selected projects
differing in domain, size, and number of features from existing
research corpora [49, 71]. Table 1 lists the 10 selected systems.

Accuracy (dependent variable). To evaluate how well a clustering
result matches the ground truth, we use a standard accuracy metric
from community detection [74]: Considering all possible pairs of
nodes (2n(n−1) pairs for n nodes), accuracy is the ratio of correctly
clustered pairs (denoted as CCPs) among all the pairs of nodes
(accuracy = CCPs

2n (n−1) ). A pair is correctly clustered if two nodes
that belong to one community in the ground truth are assigned to
the same community in the result, and if two nodes from different
communities are assigned to different communities. Let Boolean
function G (i, j ) denote whether, in the ground truth, node i and
node j are in the same community, and C (i, j ) denote whether, in
the clustering result, node i and node j are in the same cluster. A
pair is correctly clustered iffG (i, j ) = C (i, j ). Note that this measure
does not require a direct correspondence of clusters, but measures
to what degree pairs of lines of changed code in a simulated fork
are correctly assigned to the same or differing features.

Independent variables. For RQ1 and RQ2, we compare the accu-
racy of Infox when changing which subsets of edges to consider
and whether to perform splitting and joining. As automated stop
criteria for splitting, we stop after 5 additional clusters; for joining,

Figure 7: Accuracy of Infox and ClusterChanges (CC) for

10 projects, 156 simulated forks units each.

Figure 8: Accuracy across all 1560 simulated forks for differ-

ent variations.

we use our default stop criterion described in Section 3.2. Further-
more, we consider howClusterChangeswould perform if used for
this problem unmodified (conceptually equivalent to Infoxwithout
further splitting and joining and limited to consecutive lines and
def-use dependencies in the clustering process). We used the Paired
Wilcoxon rank-sum test to establish statistic significance.

Threats to validity. External validity is bound by the use of
simulated forks, that provide ground truth for realistic settings
but are not real forks. The elimination of nested macros may make
simulated forks to be cleaner than real forks. Nonetheless, we select
systems from different domains with different number of macros
which are heavily based on industry-strength technologies. Besides,
we did not rely on the ifdef evaluation alone, but triangulated our
results with the user study (see Sec. 5.2). INFOX is conceptually
entirely independent of the programming language. With respect
to implementation, generalizations to other languages than C/C++
should be done with care.

Regarding internal validity, our reimplementation of Cluster-
Changes may not be faithful, but was unavoidable as the original
tool is not publicly available. To keep the design space manageable
we do not explore different weights and stop criteria, but have only
done initial sensitivity analyses to establish that the results are ro-
bust with regards to other weights or minor changes in stop criteria.

Results. We show the accuracy results in Fig. 7 aggregated over
1560 simulated forks of all 10 subjects. Regarding RQ1, we con-

clude that Infox assigned features with 90% accuracy and

improves accuracy overClusterChanges by 54-92%. The re-
sults are stable across all 10 projects and statistically significant
(p < .05). In 102 simulated forks (6.5%), Infox achieves a much
higher accuracy than ClusterChanges (e.g,. accuracy increased
0.5), of which 61 cases are due to splitting and 41 cases are due to
joining.

In Fig. 8, we show accuracy results of all 1560 simulated forks split
by different variations, specifically different kinds of dependency
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edges and with and without splitting and joining. Regarding RQ2,
we observe that splitting & joining steps improves accuracy

by 4-14% (stat. sign.,p < .05). Removing any kind of edges from the
clustering approach significantly affects accuracy as well (p < .05);
all kinds of edges are important for the clustering quality,
but the definition-usage edges are the most influential ones.

5.2 Human-subject study (RQ3 & RQ4)

To evaluate the usability of INFOX, we contacted open-source devel-
opers who maintain forks to validate identified features and explore
whether the generated summaries provide meaningful insights.

Study design. We invited developers of active forks (see selection
below) for a remote interview. We conducted each interview in a
semi-structured fashion divided into four phases:
• Opening and introduction: We started each interview by briefly
explaining our research topic and the general purpose of our
study. We asked whether the participants would share their
screen with us and whether they consent to screen and audio
recording.
• Validating clustering result (RQ3): In order to help participants
remember what the code changes are, and also help us to gain
domain knowledge for a better conversation, we first asked
participants to briefly describe the project and code changes.
Subsequently, we sent them the clustering result of Infox
for their own fork as a folder of HTML files (as illustrated
in Fig. 5). Within those results, participants could split and
join clusters interactively. We started with an initial clustering
result (without any splitting) and explained how to read and
navigate the results.
In a subsequent discussion, we pursued two questions:Whether
the keywords are representative of their feature implementa-
tion and whether the clustering of the source code is meaning-
ful to them. Most of the participants were communicative, and
right after spending some time learning how to interact with
Infox, they started to navigate among code changes, explaining
the meaning of the code, and whether clusters made sense or
not. In line with methods for think-aloud protocols [42], we en-
couraged participants that were interacting with INFOX with-
out saying anything for a long time to speak out loud, asking
probing questions, such as “Could you tell us what are you look-
ing at?” or “Would you explain what this code cluster means?”
• Exploring the project overview (RQ4): Before exploring Infox’s
summary of other forks, we transitioned the discussion with
the question “Do you check what other forks are doing in this
project?” and followed up with questions on how and for
what purpose they do this. Afterward, we sent them the
project overview (cf. Fig. 1b) and encouraged them to look
through the list of forks. By clicking on the name of a fork,
they could also explore that fork’s code with Infox’s results,
just as they previously did for their own fork. Participants
were usually actively exploring other forks at this point
without our prompting and shared discoveries with us. When
participants explored the code of a fork, we asked whether the
keyword summary provided them a reasonable approximation
of what they found in the implementation. In addition, we
opportunistically asked questions about the relevance of

keywords and the accuracy of clustering results in other forks
based on their understanding (similar to questions about their
own fork previously) when it fit the flow of the exploration.
• Open discussion and closing: We concluded each session with
general and open-ended questions about further use cases and
suggestions for improvement.

We compensated each participants with a $10 Amazon gift card.
The interviews lasted between 30 and 90 minutes.

Participant selection. We searched for projects with active forks
using two strategies. First, we used the GitHub search to find
projects written in C/C++, selecting projects with more than 30
forks. Second, we queried GHTorrent [36] for the 100 C/C++
projects with the most first-level forks.

Among these projects, we selected forks that: (a) had at least one
commit within the last year (increasing the chance that interviewees
can remember their changes), (b) have added at least 10 lines of code
(smaller changes are less likely to be a feature implementation),
(c) have a large portion of commits submitted by the fork owner
(excluding forks that aggregate changes of others), and (d) have
a public email address or website of the fork owner. To enable
questions about the overview page, we excluded projects for which
we could not find at least three forks that fit these criteria.

In the end, we analyzed 58 projects on Github and found 12
projects fit our filtering criteria. We identified 81 fork owners. We
sent out an email to candidate developers briefly describing our
study. We interviewed 11 developers from 7 different projects (re-
sponse rate 13.6%). We quickly reached saturation in that additional
interviews provided only marginal additional insights. In Table 2 we
list the characteristics of the projects from which we interviewed
developers. All developers are experienced open-source developers.

Analysis. We analyzed the interviews primarily qualitatively,
analyzing what participants learned and how they interacted with
the tool. Two of the authors transcribed and coded the interviews,
following standard methods of qualitative empirical research [66].

Threats to validity. Regarding external validity, our study may
suffer from a selection bias, as common for these kinds of studies.
Many of our participants work on 3D printers, which may have
different characteristics. However, overall we reached developers
from several different domains and did not observe any systematic
differences. Finally, we focus on open source whereas results may
differ in industrial settings in which forks are centrally managed.

Regarding internal validity, communication issues may have
affected some answers; we mitigated this threat by refining our
interview guide when questions raised confusion and involved two
researchers in each interview. Despite open-ended questions and
careful design (see above), we cannot entirely exclude confirmation
bias, in which participants might avoid raising critical points; we
mitigate this by focusing on insights gained, not just claims.

Results. Regarding RQ3 (clustering quality), participants mostly
confirmed that the clustering results were appropriate, but often
fine-tuned them with further splitting and joining. This further sup-
ports the need for interactive tools. Overall, participants supported
our decision to cluster changes in a fork. For example, participant
P4 said: “It is necessary to split code changes into pieces, even though
they cannot be executed in isolation.” Of the 11 participants, 10 said
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Table 2: Participants of our user study and their projects

Project #Forks #Active Forks LOC Change size (LOC) Domain Participant

MarlinFirmware/Marlin 4149 1901 19,799 2-3753 3D printer P1 P3
Smoothieware/Smoothieware 566 237 61,425 19-11, 263 3D printer P5 P6 P7
grpc/grpc 2226 470 95,838 3-480,901 general-purpose RPC framework P2
timscaffidi/ofxVideoRecorder 60 24 611 7-23,228 multi-threaded video recording extension P4
arduino/Arduino 5592 669 112,692 23-7,643 electronic prototyping platform P4
bitcoin/bitcoin 9696 1242 99,746 6-647 experimental digital currency P8 P9 P10
ariya/phantomjs 4,921 749 10,031 45-2,358 Scriptable Headless WebKit P11

that INFOX correctly identified the clusters most of the time, al-
though there are small clusters (containing one or two lines) should
have been merged into bigger clusters. The remaining participant
pointed out a cluster containing unrelated code that was automati-
cally generated by libraries and should be removed.

As we discussed earlier, INFOX provides flexibility to developers
by allowing them to split or join clusters interactively. During the
interviews, participants compared the splitting and joining results
carefully, and after several steps, they usually identified clusters
that they agreed with. For example a typical interaction flowed as
follows, here from participant P5: “I think this blue and yellow cluster
should belong together.. [clicks the join button] ..oh, so your software
correctly identifies all of this being one thing not two different things.”

The participants identified some cases in which the clustering
result could be improved, usually caused by technical limitations
of the dependency analysis in our prototype (see Section 7). For
example, when P4 found a 1-line cluster that should belong to
another bigger cluster, the participant said: “I know it is related,
acceleration and volumetric (are related), but looking at just the syntax
it is not, it is not using the same words. Adding check-box to manually
merge selected clusters (could solve this problem)”.

In summary, participants generally agreed that INFOX

could identify correct clusters at certain splitting or joining

steps (RQ3). Participants suggested that INFOX could provide more
flexibility for manually refining the clustering result. Even though
limited to few participants, our interviews corroborate the high-
accuracy results from our quantitative study in a realistic setting.

With regard to RQ4 (overview), we looked particularly for signs
that developers learned new insights while exploring the overview.
Of the 11 participants, we showed 10 participants (P2-P11) the
overview of forks in their project and 8 gained different kinds of
new information from the overview page:
• Finding redundant development. Two participants found other
forks that are working on the same feature implementation as
they did before. When they found these instances of redundant
development, they explored the fork’s source code. For example,
P3 said :“It does look like somebody did a very simple one-function
[...] system. I think they should use our code, there is great reason
to use it.” After skimming the overview page, P4 said: “I can see
multiple forks are working on the similar problem. This one looks
like it is adding [...] that I already added.”
• Find interesting and potentially reusable feature. When skimming
all the forks, 6 participants identified specific features of interest;
For example, P5 expressed “this is all laser stuff, this is useful.”
When participants mentioned something is interesting, we asked
them why. The answers all identify features that are important
to the project or that they could reuse in their own forks, such

as P5’s statement “If it is only exists in this fork, then I want to
somehow get this fork into my fork.”
Beyond these specific actionable insights, many participants

more generally indicated that this overview would be useful: By
looking at the overview page, our participants found many forks
that they did not know before, and by reading the summary table of
each fork, they usually got the idea of what has happened in each
fork. For example, participant P3 said: “It is going to make it a lot
easier to find the things you are looking for as a programmer.” and P6
explained “I see all the differences for all the forks. Basically it is the
same thing I am doing through GitHub, (but) only it is summarized
in the same place, I don’t have to jump and open 50 tabs to do it.”
Participant P7 expressed interest to use the tool for another project
he maintained, for which he always wanted to know what is going
on in forks, but was limited by current tools.

Regarding labels for code they did not know, we could observe
that they clearly gave some initial idea to participants and could
typically describe what they would expect from the implementation.
For example, participant P5 described “the [keywords] give me some
clues of temperature; I know which part of Smoothie is modified.”
Overall, all participants thought the interpretation of keywords is
similar to their understanding of the source code.

In summary, even though we interviewed only a small num-
ber of participants, we found frequent and concrete evidence

of new insights gained from the overview page, including re-

dundant development and reusable contributions (RQ4). This
is encouraging for the usefulness of the approach and its capability
to provide actionable insights.

6 RELATEDWORK

Transparency in social coding. Transparency in modern social cod-
ing platforms has been shown to be essential for decision making
in fast paced and distributed software development [19, 20]. Visible
clues, such as developer activities or project popularity, influence
decision making and reputation in an ecosystem. With this work,
we make often-lost contributions in forks and branches transpar-
ent to developers with the aim of reducing inefficiencies in the
development process.

Forking Practices. Before the rise of social coding, forking tra-
ditionally referred to splitting off a new independent development
branch, to compete with or supersede the original project. The
right for such hard forks (codified in open source licenses) was
seen as essential for guaranteeing freedom and useful for fostering
disruptive innovations [31, 55, 56], but hard forks themselves were
often seen as antisocial and as risk to projects [31, 45, 55, 60]. In the
context of modern forking, a lower bar of forking may encourage
developers to maintain multiple variants of a product in parallel,
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often not intended as hard forks. Gousios et al. explored GitHub’s
pull-request model, in which forking is an essential component.
Their work confirms that forking provides increased opportunities
for community engagement, but also highlights that only few con-
tributions are integrated and pull requests are frequently rejected
due to redundant development and missing coordination [35].

Understanding branches and forks. Conceptually closest to our
work is Bird and Zimmerman’s analysis of branches at Microsoft,
revealing that too many branches can be an issue andwhat-if analy-
sis to explore the costs of merging can support decision making [7].
In addition, several studies have studied forking practices in open
source and industrial product line development [23, 52, 64, 71].
Those studies have revealed the discussed problems, but did not
provide any solutions.

Untangling code changes. Technically, our work relates to work
on untangling code changes. Originally, untangling code changes
was driven by biases in mining repositories and predicting de-
fects [21, 37]. Barnett et al. [5] proposed ClusterChanges to de-
compose tangled code changes in order to identify independent
parts of changes, especially large commits, to facilitate understand-
ing during the code reviewing process. A key assumption is that
commits are not always cohesive and reliable. These approaches
often analyze dependencies within a change and our implemen-
tation was inspired by and improves upon ClusterChanges, as
discussed and evaluated.

Other strategies have been explored to untangle changes, includ-
ing semantic history slicing that compares test executions [47, 48],
and EpiceaUntangler [21] and Thresher [73] which interact with
developers when committing a change, to encourage more cohesive
commits. All these approaches are less applicable in our setting, as
they would require test cases for all added functionality or upfront
clean commits by all developers. In fact, Herzig and Zeller [38]
argue that tangled changes are natural and should not be forbidden;
we support this view and build tooling that extracts features after
the fact, but at much larger granularity of differences in forks.

Concern location. Concern location (or concept or feature
location) is the challenge of identifying the parts of the source
code that correspond to a specific functionality, typically for
maintenance tasks [59]. Based on a keyword or entry-point,
developers or tools attempt to identify all code relevant for that
feature. Concern location typically uses either a static, a dynamic,
or an information-retrieval strategy [22, 76]: Static analyses
examine structural information such as control or data flow depen-
dencies [11, 62], whereas dynamic analyses examine the system’s
execution [15, 26]. In contrast, information-retrieval-based analyses
perform some sort of search based on keywords [13, 22, 33, 50, 57]
with more or less sophisticated natural language processing [41, 68].
Combinations of these strategies are common [22]. Our analysis
has similarities with static concern-location approaches, but the
setting is different: Instead of identifying code related to a specific
given code fragment in a single code base, we aim at dividing the
difference between two snapshots into cohesive code fragments
without starting points. Whereas location usually identifies one
concern at a time, we identify multiple features in a fork. At the
same time, if execution traces or external keywords were available,
those could likely be integrated into a clustering process like Infox.

Code summarization. Finally, there are many approaches to
summarize source code [44, 53, 58, 70] using information retrieval
to derive topics from the vocabulary usage at the source code level.
So far, we use only a standard lightweight information-retrieval
technique to identify keywords for clusters, but combinations with
more advanced summarization strategies might improve results
significantly.

7 DISCUSSION AND CONCLUSION

Evidence from both academia and industry shows that current fork-
based development is popular but has many practical problems that
can be traced to a lack of transparency. Because developers do not
have an overview of forks of a project, problems like redundant
development, lost contributions and suboptimal forking point arise.
To improve the transparency, we designed an approach to identify
features from forks and generate an overview of the project in order
to inform developers of what has happened in each active fork.

Infox is a first step in making transparent what happens in forks
of a project, and it can be a building block in a larger endeavor to
support fork-based development, such that it keeps its main benefits,
such as ease of use and distributed and independent development,
while addressing many of its shortcomings through tool support.

This new transparency, might address problems including lost
contributions and redundant development. All participants in our
human subject study had immediate ideas of who might benefit
from such a tool, including “the person who maintains the main
branch” [P4] and “it is super useful for everybody, especially for major
main Smoothieware developers”[P6]. In addition our evaluation has
shown that clustering results are accurate (90 % on average) and
labels are meaningful summaries.

At the same time, Infox is just an initial prototype with technical
limitations and many opportunities for extensions:
• The initial clustering strategy as well as the community-detection
algorithm [34] are designed to divide a change into disjoint clus-
ters. Boundaries between features are not always easy to define
and features may overlap or may be split into subfeatures. Explor-
ing other network analysis techniques to identify overlapped fea-
tures or sub-features is an interesting avenue for further research.
• Although our clustering approach achieved high accuracy
results, it would be worth to explore additional information that
might provide insights about relationships of code fragments
(even if unreliable generally), such as data-flow dependencies,
syntactic or structural similarity between code fragments, code
fragments that have been changed together in the same commit
or by the same author. To identify which of these provide useful
insights and which just create more noise.
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