
Variability abstractions for lifted analysesI

Aleksandar S. Dimovskia,b,∗, Claus Brabrandb, Andrzej Wasowskib

aMother Teresa University, 12 Udarna Brigada 2a, 1000 Skopje, Macedonia
bIT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

Abstract

Family-based (lifted) static analysis for “highly configurable programs” (program
families) is capable of analyzing all variants at once without generating any of
them explicitly. It takes as input only the common code base, which encodes all
variants of a program family, and produces precise analysis results corresponding
to all variants. However, the computational cost of the lifted analysis still depends
inherently on the number of variants, which is in the worst case exponential
in the number of statically configurable options (features). For a large number
of features, the lifted analysis may be too costly or even infeasible. In this
work, we introduce variability abstractions defined as Galois connections, which
simplify variability away from program families based on #ifdef-s. Then, we use
abstract interpretation as a formal method for the calculational-based derivation
of abstracted lifted analyses, which are sound by construction.

Our approach for abstracting lifted analysis is orthogonal to the particular
program analysis chosen as a client. While a single program analysis operates on
program states and depends on language-specific constructs, the lifted analysis
assumes that a single program analysis already exists and lifts its results to all
variants of the analyzed program family. Variability abstractions aim to reduce
this variability-specific component of the lifted analysis, which handles variability
and #ifdef-s. Furthermore, given the “orthogonality” of variability abstractions
to the rest of the analysis (its language-specific component), we can implement
abstractions as a preprocessor. In particular, given an abstraction we define a
syntactic transformation, which translates any program family into an abstracted
version of it, such that the analysis of the abstracted program family coincides
with the corresponding abstracted analysis of the original program family. We
have implemented the proposed approach, and we evaluate its practicality on
three Java benchmarks. The evaluation shows that abstractions yield significant
performance gains, especially for families with higher variability.

Keywords: Program Families, Static Analysis, Abstract Interpretation

IPartially supported by The Danish Council for Independent Research under a Sapere Aude
project, VARIETE.
∗Corresponding author

Preprint submitted to Journal of Science of Computer Programming April 28, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/161377355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Highly configurable (variable) software appears in many application areas
and for many reasons. One common scenario is the development of software
product lines (SPLs) [1], where features are used to control presence and absence
of software functionality in a product family. Different family members, called
variants or valid products, are derived by switching features on and off, while
reuse of the common code is maximized (code reuse is the main motivation for
software product line architectures). Software product lines are commonly seen
in development of commercial embedded software (e.g., cars, phones, avionics).
In this case, variation points are used to either support different application
scenarios for embedded components, to provide software portability across
different hardware platforms and configurations, or to produce variations of
products for different market segments or different customers. However, highly
configurable software is not limited to embedded software. Many off-the-shelf
reusable components and software products allow or even require extensive
customization. Most system level software is highly configurable (for instance
the Linux kernel [2]), frameworks and development platforms also allow adding
and removing many features (for instance, plugins provide features in Eclipse
[3]), as well as many web-solutions are highly customizable (for instance Drupal
or Wordpress [4]). While there are many implementation strategies, many
popular industrial product lines are implemented using annotative approaches
such as conditional compilation; in particular, via the C-preprocessor #ifdef
construct [5].

Recently, formal analysis and verification of program families have been a
topic of considerable research (see [6] for a survey). The challenge is to develop
analysis and verification techniques that work at the level of program families,
rather than the level of individual programs. Given that the number of variants
can potentially grow exponentially with the number of features, the need for
efficient analysis and verification techniques is essential. To address this, a
number of so-called lifted techniques have emerged, essentially lifting existing
analysis and verification techniques to work on program families, rather than on
individual programs. This includes lifted type checking [7, 8], lifted data-flow
analysis [9, 10, 11], lifted model checking [12, 13, 14, 15], lifted verification [16,
17, 18]. They are also known as family-based (variability-aware) techniques.
Lifted techniques are capable of analyzing the entire code base (all variants at
once), without having to explicitly generate and analyze all individual variants,
one at a time. Also, lifted techniques are able to pinpoint errors directly in the
program family, as opposed to reporting errors in individual variants derived
from the family.

There are two ways to speed up analyses: improving representation and
increasing abstraction. The former has received considerable attention in the
field of lifted analysis [9, 10]. In this paper, we investigate the latter [19, 20, 21].
We consider a range of abstractions at the variability level that may tame the
combinatorial explosion of the number of configurations (variants) and reduce
it to something more tractable by manipulating the configuration space of a

2

SPL
derive analysis //

re
co
nfi

gu
re

ab
st
ra
ct

��

lifted analysis

ab
st
ra
ct

��

run analysis // precise
lifted analysis
information

ks TRADEOFF:
precision -vs- speed

OO

��
abstracted

SPL derive analysis
// abstracted

lifted analysis run faster analysis
// less precise

lifted analysis
information

Figure 1: Diagram illustrating the role and intended usage of the reconfigurator transforma-
tion. Instead of abstracting an already existing (or derived) lifted analysis, our transformation
allows abstraction to be applied directly to the SPL. The two paths from SPL to “abstracted
lifted analysis” are guaranteed to produce the same analysis.

program. Such variability abstractions enable deliberate trading of precision
for speed in lifted analyses, even turn infeasible analyses into feasible ones,
while retaining an intimate relationship back to the original analysis (via the
abstraction).

We organize our variability abstractions in a calculus that provides convenient
and compositional declarative specification of abstractions. We propose two basic
abstraction operators (join and project), two compositional abstraction operators
(sequential composition and parallel composition), and two more derived abstrac-
tions (join-project and feature ignore). The variability abstractions may take
arbitrary relationships among features into account. An abstraction based on the
join may join together all variants of a family conservatively over-approximating
the analysis information retained commonly for all of them. Another abstraction
based on the project could project all variability onto certain set of configura-
tions (e.g., configurations maintained by a certain developer or configurations
with something in common). Sequential composition will run two abstractions,
in sequence; whereas product will run both abstractions, in parallel. Several
interesting abstractions can be derived from the above basic ones: join-project
which applies join after projecting on a subset of configurations; and feature
ignore which ignores a set of features that are deemed irrelevant.

Each abstraction expresses a compromise between precision and speed in the
induced abstracted analysis. We show how to apply each of these abstractions to
lifted static analyses, to derive their corresponding efficient and sound (correct)
abstracted lifted analysis based on the calculational approach of abstract inter-
pretation [22]. Thus, we obtain a set of abstracted lifted analysis parameterized
by the choice of abstraction we use. Note that the approach is general and
applicable to any static analysis phrased as an abstract interpretation.

We observe that for variability abstractions, analysis abstraction and analysis
derivation commute. Figure 1 illustrates how analysis abstraction is classically
undertaken and how we propose to optimize it. The top left corner shows
a product line that we want to analyze. A lifted analyzer will take an SPL

3

(program family) as input and derive a “lifted analysis” (rightward arrow),
which works on the level of SPLs. Examples of such derived (client) analyses
are: constant propagation, reaching definitions, uninitialized variables, interval
analysis [23]. We can then run that lifted analysis (next rightward dashed arrow)
and obtain our “precise lifted analysis information” (i.e. precise analysis results
for all variants in the SPL). Note that for some analyzers, the phases derive
analysis and subsequent run analysis may be so intertwined that they are not
independently distinguishable. Since running the analysis might be too slow
or infeasible, we may decide to use abstraction to obtain a faster, although
less precise analysis. Classically, an abstraction is applied to the derived lifted
analysis before it is run (middle arrow down) which, after an often long and
complex process, produces an “abstracted lifted analysis”. When that analysis is
subsequently run, it will produce less precise analysis information, but it will do
so faster than the original analysis (i.e. there is a precision vs. speed tradeoff).

Interestingly, for lifted analyses and variability abstractions, the analysis
abstraction (down) and derivation (right) commute and we may swap their order
of application, as indicated by the short double leftward arrow in the center.
The implications are quite significant. It means that variability abstractions
can be applied before, and independently of, the subsequent analysis. This also
means that the same variability abstractions might be applicable to all sorts of
client static analyses that are specifiable via abstract interpretation.

We exploit this observation to define a stand-alone source-to-source transfor-
mation, called reconfigurator, for programs with #ifdefs. It takes an input
SPL program and a variability abstraction that aims to reduce the configuration
space, and it produces an abstracted SPL program for which the subsequent lifted
analysis agrees with “abstracted lifted analysis” of the original unabstracted
SPL. Like a preprocessor the reconfigurator is essentially unaware of the
programming language syntax, thus it can be used for any client static analysis
[23]. Many existing analysis methods that are unable to abstract variability
benefit from this work instantly. Almost no extension or adaptation is required
as the abstraction is applied to source code before analysis.

We evaluate our approach by comparing analyses of a range of increasingly
abstracted SPLs against their origins without abstraction, quantifying to what
extent precision can be traded for speed in lifted analyses.

In summary, the work makes the following contributions:

C1: A calculus for modular specification of variability abstractions;

C2: Variability abstraction as a method for trading precision for speed in
lifted static analysis based on abstract interpretation;

C3: The observation that certain analysis derivations and analysis abstrac-
tions commute, meaning that variability abstractions can be applied directly
on an SPL before (and independently of) subsequent lifted analysis;

C4: Generalization of the above methods to any static analysis from the
abstract interpretation framework;

4

C5: A stand-alone transformation based on the above ideas;

C6: An evaluation of the tradeoff between precision and speed in abstracted
lifted analyses.

We direct this work to program analysis and software engineering researchers.
The method of variability abstractions (C1–C4) is directed at designers of
lifted analyses for product lines. They may use our insights to design improved
abstracted analyses that appropriately trade precision for speed. Note that the
ideas apply beyond the context of static analyses (e.g., to model checking, type
systems, verification, and testing). The reconfigurator (C5) and the evaluation
lessons (C6) are relevant for software engineers working on preprocessor-based
product lines and who would like to speed up existing analyzers.

This work represents an extended and revised version of [24]. Compared to
the earlier work, we make the following extensions here: (1) We provide formal
proofs for all main results; (2) We expand and elaborate the examples, and
motivate the practicality of applying variability abstractions to lifted analysis;
(3) We show how the source-to-source transformations can be also defined for
derived abstractions (e.g. feature ignore); (4) We implement one more client
analysis, that is interval analysis, and we provide more evaluation results; (5)
We explain how the proposed method can be generalized and applied to any
(monotone) static analysis based on abstract interpretation.

We proceed by giving a few example scenarios of applying variability ab-
stractions to lifted analysis in Section 2. The basics of lifted analysis based on
abstract interpretation is introduced in Section 3. Section 4 defines a calculus
for specification of variability abstractions. Section 5 explains how to apply an
abstraction to a lifted analysis. It uses constant propagation as an example.
The reconfigurator is described in Section 6 along with its correctness for our
example analysis. In Section 7, we show how our results can be generalized to
any monotone static analysis phrased in the abstract interpretation framework.
Section 8 presents the evaluation on three Java SPLs. Finally, we discuss the
relation to other works and conclude.

2. Motivation: Application Scenarios for Variability Abstractions

One challenge in the development of configurable systems is analyzing all
configurations. This challenge is amplified by increasing interoperability of
systems, components and services in the Internet of Things [25]. It is usually
infeasible to run an analyzer on all possible configurations due to exponentially
many configurations. Researchers have addressed this problem by designing
aggregate so-called lifted analyses, that simultaneously analyze all the variants
at once [9, 10, 11]. The process of generalizing various single program analyses
to operate on multiple variants is called lifting. Even so, lifted analyses still face
scalability issues, despite using smart representations for multiple configurations.
In order to further scale the lifted analysis we follow the classic route of addressing
inherently hard problems: solving similar but simpler problems. In the analysis

5

space it amounts to loosing precision in favor of gaining performance, by means
of abstraction.

In order to realize this vision, we need to identify new abstractions that work
for lifted analyses. In particular, we are interested in abstractions simplifying not
the representations of the program state for individual runs, but in abstractions
reducing the configuration space of a program. The two basic strategies are to
confound (join) configurations and to divide-and-conquer the configuration space.
With confounding configurations distinct variants are merged, so that the analysis
has less variability to consider, at the cost of introducing additional control flow.
With divide-and-conquer we analyze a subset of configurations at a time. In
this paper we realize these two basic strategies by defining joining (confounding)
abstractions, denoted αjoin, and projecting (divide-and-conquer) abstractions
on configurations satisfying the constraint ϕ, denoted αproj

ϕ . Then we use
composition operators ◦ and ⊗ to build other, more sophisticated strategies out
of these two basic blocks. We will now illustrate several such strategies by means
of example scenarios.

Scenario I: Immediate Feedback during Development
Consider a programmer working on a highly configurable program using

incremental analyses during development. The analyses may report warnings
and errors such as “variable x is used before it is initialized” or “there is a
reference outside the bounds of array a”, which are results of program analyses
such as uninitialized variables and interval analysis. The analyses are run
regularly and the programmer maintains the cleanness of the code so that no
warnings are raised in the committed code. In this scenario where most of the
code was analyzed before and the changes are relatively small, it is most likely
that an incremental analyzer will conclude quickly that no such alarm messages
are present in the code. We build such an analyzer by merging all configurations
into a single program with over-approximated control flow. This way the required
analyses results may be obtained faster. In our calculus such an abstraction can
be specified as:

αjoin

If no warning or error message is reported by this fast abstracted analysis, then
all variants are correct and the programmer can continue with the development.
Otherwise, a more precise analysis can be subsequently run that will determine
which of the reported warnings and errors are genuine. This way both quick
feedback and precise results can be delivered to the developer.

Scenario II: Full Precision on Safety-Critical Variants, Speed on Regular Code
Now consider a different scenario of an industrial product line, where only a

subset of the products is safety critical. The certification of functional safety
for the safety-critical products poses a legal requirement that the software
is thoroughly analyzed. This analysis is very slow and it takes many hours
in daily continuous integration test. At the same time there is no need to
analyze non-certified products so thoroughly. In this segment precision is not so

6

important, while the changes occur much more often. Analysis speed is thus of
high importance. Without abstraction all products could only be analyzed once
every two days. The configuration manager considers use of abstractions to cut
the analysis time on the non-safety critical variants, so that the analysis could
be run daily.

Let the safety-critical variants be identified as those whose configuration
satisfies a constraint ϕ. We would like to analyze all these configurations at
full precision, as required by our development process. We are also interested
in analyzing all the other configurations, but this could be done fast, at low
precision. We compose two abstractions: one (projection on ϕ) that selects only
the critical configurations and another one (projection on ¬ϕ) which selects the
remaining configurations and confounds (joins) their control flow to increase
speed. We do not want to apply both abstractions to the same executions twice.
The two groups of products share a lot of code, so it is beneficial to perform the
entire analysis for both groups simultaneously in a single run benefiting from
partial results on either side due to sharing. Such a simultaneous recomposition
of two analysis in a single compound analysis is realized in our calculus using a
parallel composition “⊗” of abstractions specified as:

αproj
ϕ ⊗ (αjoin ◦αproj

¬ϕ)

A lifted analysis using the above abstraction will analyze the entire product
family in one run, gathering information equivalent to running the two parts
separately, including a projection on one part of the configuration space, and a
sequential composition ◦ of a join and projection on the other one. Effectively the
speed will benefit both from controlled information loss (join), from dividing the
problem space and from efficient representations used in simultaneous analysis
execution.

Scenario III: Deliberate Over-Approximation on 3rd-Party Code
An embedded systems vendor is integrating a configurable third-party com-

ponent into a product line. The third-party component needs to participate in a
whole program analysis. However we already know that the external component
is of high quality, so in order to speed up the analysis using the abstraction
of the component, rather than its precise semantics will be beneficial for the
performance. We will first project the analysis on the condition ϕ which defines
the configurations that utilize the component, and then confound together con-
figurations that only differ on the features of the external component, effectively
ignoring its internal configuration. As a result we will use an over-approximation
of the external component in our analysis. Instead of analysing its complex
variability, we will see it as one subsystem that encompasses control flow of all
its variants. Let E be the set of internal features of the integrated component.
In our calculus such an abstraction could be specified as follows:

αfignore
E ◦αproj

ϕ

7

The abstraction function (read from right to left): first selects the configurations
that are relevant for analyzing the integration of the system and the component,
and then ignores (by αfignore

E) the internal features (E) of the component.
In subsequent sections we develop the abstraction calculus that allows speci-

fying abstraction scenarios like those above.

3. Background: Family-Based Program Analyses

We start by summarizing the exisitng background for our work. We define
features, configurations, feature expressions, and feature models. Hereafter, we
describe a simple imperative language IMP for implementing program families.
Finally, we give an overview of the basic ideas and concepts of abstract inter-
pretation, and we briefly sketch a lifted constant propagation analysis for IMP,
formally derived in [11]. We focus on constant propagation for presentation
purposes; but our method is generically applicable to any lifted (monotone)
static analysis phrased as an abstract interpretation.

3.1. A Language for Program Families
Features, Feature Expressions, and Feature Model. Let F = {A1, . . . , An} be a
finite set of Boolean variables representing the features available in a program
family. Each of the features may be enabled or disabled in a particular program
variant, thus controlling presence and absence of software functionality. A feature
expression, FeatExp formula, is a propositional logic formula over F, defined
inductively by:

ϕ ::= true | A ∈ F | ¬ϕ | ϕ1 ∧ ϕ2

A truth assignment or a valuation is a mapping that assigns a truth value to
each feature. Given a valuation v, every feature expression evaluates to a truth
value. We say that ϕ is valid, denoted as |= ϕ, if ϕ evaluates to true for all
valuations v. We say that ϕ is satisfiable, denoted as sat(ϕ), if there exists a
valuation v such that ϕ evaluates to true under v. Otherwise, we say that ϕ
is unsatisfiable, denoted as unsat(ϕ). We say that the formula θ is a semantic
consequence of ϕ, denoted as ϕ |= θ, if for all satisfiable valuations v of ϕ it
follows that θ evaluates to true under v. Otherwise, we have ϕ 6|= θ.

The set of valid configurations (variants) of a program family is encoded
in a separate feature model [26], i.e. a tree-like structure that describes which
combinations of features and relationships among them are valid. For our
purposes a feature model can be equated to a propositional formula [27], say
ψ ∈ FeatExp, as the semantic aspects of feature models beyond the configuration
semantics, are not relevant here. We write Kψ to denote the set of all valid
configurations described by the feature model ψ; i.e. the set of all satisfiable
valuations of ψ. One satisfiable valuation v of ψ represents a valid configuration,
and it can be also encoded as a conjunction of literals: kv = v(A1) ·A1 ∧ · · · ∧
v(An) ·An, where true ·A = A and false ·A = ¬A, such that kv |= ψ. The truth
value of a feature in v indicates whether the given feature is enabled (included)

8

or disabled (excluded) in the configuration. Let kv1 , . . . , kvn (1 ≤ n ≤ 2|F|)
represent all satisfiable valuations of ψ expressed as formulas, then the set of
valid configurations is Kψ = {kv1 , . . . , kvn}.

Example 3.1. Let the set of features F be {A,B}. Some feature expressions
defined over F are: A ∨B, A ∧ ¬B, ¬A, B, etc. The feature model ψ = A ∨B
yields the following set of valid configurations: KA∨B = {A∧B,A∧¬B,¬A∧B}.

The Programming Language. IMP is an extension of the imperative language
IMP [28] often used in semantic studies. IMP adds a compile-time conditional
statement for encoding multiple variants of a program. The new statement
“#if (θ) s” contains a feature expression θ ∈ FeatExp as a presence condition
and a statement s that will be run, i.e. included in a variant, iff the condition θ
is satisfied by the corresponding configuration k ∈ Kψ. The abstract syntax of
the language is given by the following grammar:

s ::= skip | x := e | s ; s | if e then s else s | while e do s | #if (θ) s
e ::= n | x | e⊕ e

where n ranges over integers, x ranges over variable names Var, and ⊕ over
binary arithmetic operators. The set of all generated statements s is denoted by
Stm, whereas the set of all expressions e is denoted by Exp. Notice that IMP is
only used for presentational purposes as a well established minimal language.
The introduced methodology is not limited to IMP or its features. In fact in
Section 8, we evaluate our approach on program families written in Java.
Remark. Conditional constructs “#if” are defined at the level of statements
purely for pedagogical reasons. This allows us to keep the presentation focussed
and improves readability of definitions and proofs. However, it is known that
conditional constructs defined on arbitrary language elements could be translated
into constructs that respect the appropriate syntactic structure of the language
by code duplication [29].

The semantics of IMP has two stages. First, a preprocessor takes as input
an IMP program and a configuration k ∈ Kψ, and outputs a variant, i.e. an
IMP program without #if-s, corresponding to k. Second, the obtained variant
is executed (compiled) using the standard IMP semantics [28]. The first stage of
computation (also called projection) is a simple preprocessor from IMP to IMP
specified by the projection function Pk mapping an IMP program family into an
IMP single program corresponding to the configuration k ∈ Kψ. The function
Pk copies all basic statements of IMP that are also in IMP, and recursively
pre-processes all sub-statements of compound statements. For “#if (θ) s”, the
statement s is included in the generated variant iff k |= θ, and removed otherwise.
Thus, we have:

Pk(#if (θ) s) =
{
Pk(s) if k |= θ

skip if k 6|= θ

3.2. Abstract Interpretation
We now present the basic ideas and concepts of abstract interpretation.

9

Complete lattices. A partial order [23] is a mathematical structure, 〈L,≤L〉,
where L is a set equipped with a binary order relation, ≤L, which is reflexive,
antisymmetric, and transitive. Let X ⊆ L. We say that u ∈ L is an upper bound
for X, written X ≤L u, if we have ∀x ∈ X : x ≤L u. Similarly, ` ∈ L is a lower
bound for X, written ` ≤L X, if ∀x ∈ X : ` ≤L x. A least upper bound, written
tX, is defined by: ∀x ∈ X : x ≤L tX ∧ ∀u ∈ L : X ≤L u =⇒ tX ≤L u.
(Similarly, greatest lower bound, u, may be defined.) Usually, binary infix
notation, x t y, is used whenever the operator is applied to only two elements,
i.e. x t y = t{x, y}. A complete lattice is a partial order for which tX and uX
exist for all subsets X ⊆ S. As a consequence, a complete lattice will always
have a unique largest element, >, and a unique smallest element, ⊥, defined
as: > = tL and ⊥ = uL. A function, f : L → L, is monotone when
∀x, y ∈ L : x ≤L y =⇒ f(x) ≤L f(y). An element, x ∈ L, is called a fixed
point of f : L → L, if x = f(x). Tarski’s fixed point theorem says that the
fixed points of a monotone function, f : L→ L, on a complete lattice, 〈L,≤L〉,
themselves form a complete lattice. This guarantees the existence of a fixed
point, and of a unique least fixed point, lfp(f) ∈ L. A fixed point of a monotone
function over an infinite height complete lattice is thus well-defined but it is
not necessarily computable. However, when the height of a complete lattice is
finite the fixed point may then be computed via Kleene’s fixed point theorem:
lfp(f) = ti f i(⊥).

Galois connections. We consider the standard Galois connection based abstract
interpretation [30]. A Galois connection is a pair of total functions, α : L→M
and γ : M → L (respectively known as the abstraction and concretization
functions), connecting two complete lattices, 〈L,≤L〉 and 〈M,≤M 〉, such that:

∀l ∈ L,m ∈M : α(l) ≤M m ⇐⇒ l ≤L γ(m) (1)

which is often typeset as: 〈L,≤L〉 −−−→←−−−α
γ
〈M,≤M 〉. For a concrete domain L,

we define abstraction and concretization functions to and from a more abstract
domain M , where information has been abstracted away. We will use Galois
connections to approximate a computationally expensive (or uncomputable)
analysis formulated over L with a computationally cheaper analysis formulated
over M .

Galois connections have a number of important properties [31]:

• α and γ are monotone;

• α ◦ γ is reductive, i.e. (α ◦ γ)(m) v m, for all m ∈M ;

• α is a complete join morphism (CJM), i.e. α(
⋃
l∈L l) =

⊔
l∈L α(l), where

∪ and t represent least upper bounds in L and M , respectively.

• The composition of Galois connections is a Galois connection. If 〈L,≤L〉 −−−→←−−−α
γ

〈M,≤M 〉 and 〈M,≤M 〉 −−−→←−−−
α′

γ′

〈N,≤N 〉 then 〈L,≤L〉 −−−−−→←−−−−−
α′◦α

γ◦γ′

〈N,≤N 〉.

10

3.3. Lifted Analysis
In the context of IMP lifting means taking a static analysis that works

on IMP programs, and transforming it into an analysis that works on IMP
programs, without preprocessing them (i.e. on all the variants simultaneously).
We summarize the process briefly below. For more detail, we refer to [11].

Suppose that we have a (monotone) analysis from the abstract interpretation
framework for single programs, and we want to lift the analysis to all variants.
The analysis operates on a domain 〈A,v,t,u,⊥,>〉, which is a complete lattice.
More specifically, A is a set equipped with a partial order relation v, a least
upper bound (join) t, a greatest lower bound (meet) u, a least element (bottom)
⊥, and a greatest element (top) >. Using variational abstract interpretation
[11], we can derive the corresponding lifted analysis for IMP. The lifted analysis
domain is 〈AKψ , v̇, ṫ, u̇, ⊥̇, >̇〉 where Kψ is the set of valid configurations. In
the following, we will use constant propagation analysis to demonstrate this
method for deriving computationally cheap abstracted lifted analysis. Still, the
method is by no means limited to constant propagation, but it is applicable to
any analysis from the abstract interpretation framework [23].

Constant Propagation Analysis. This analysis establishes whether a variable
has a constant value whenever the execution reaches a given program point.
We first define the constant propagation lattice 〈Const,vC〉, where the set
Const = Z ∪ {⊥C ,>C} is partially ordered as follows: ⊥C vC v vC >C for all
v ∈ Const, and all elements from Z are incomparable, i.e. v1 vC v2 iff v1 = v2
for all v1, v2 ∈ Z. In Const, >C indicates a value which may be a non-constant,
and ⊥C indicates unanalyzed information. All other elements indicate constant
values. The partial ordering vC induces a least upper bound, tC , and a greatest
lower bound operator, uC , on the lattice elements. For example, 0 tC 1 = >C ,
>C uC 1 = 1, etc.

The constant propagation analysis is given in terms of abstract constant
propagation stores, denoted by a, essentially mappings of variables to elements
of Const. The idea is for each program variable x, a(x) will give information
whether or not x is a constant and in the case it is what is the value of x. We
write A = Var→ Const to denote the domain of all constant propagation stores.
Since Const is a complete lattice then so is 〈A,vA,tA,uA,⊥A,>A〉 obtained by
point-wise lifting [23, 28]. Thus, for any a, a′ ∈ A we have: a vA a

′ iff ∀x ∈ Var,
a(x) vC a′(x); (a tA a′)(x) = a(x) tC a′(x); (a uA a′)(x) = a(x) uC a′(x);
⊥A(x) = ⊥C ; and >A(x) = >C for any x ∈ Var. We omit subscripts C and A in
lattice operators whenever they are clear from the context.

Lifted Constant Propagation Analysis. For the lifted constant propagation anal-
ysis, we work with the lifted property domain 〈AKψ , v̇, ṫ, u̇, ⊥̇, >̇〉, where AKψ is
shorthand for the |Kψ|-fold product

∏
k∈Kψ A, i.e. there is one separate copy of

A for each valid configuration of Kψ. The ordering v̇ is lifted configuration-wise;
i.e. for a, a′ ∈ AKΨ we have a v̇ a′ ≡def πk(a) vA πk(a′) for all k ∈ Kψ.
Here πk selects the kth component of a tuple. Similarly, we lift configuration-
wise all other elements of the complete lattice A, obtaining ṫ, u̇, ⊥̇, >̇. In

11

A[[skip]] = λa. a

A[[x := e]] = λa.
∏
k∈Kψ

(πk(a))[x 7→ πk(A′[[e]]a)]

A[[s0 ; s1]] = A[[s1]] ◦ A[[s0]]

A[[if e then s0 else s1]] = λa.A[[s0]]a ṫA[[s1]]a

A[[while e do s]] = lfpλΦ. λa. a ṫ Φ(A[[s]] a)

A[[#if (θ) s]] = λa.
∏
k∈Kψ

{
πk(A[[s]]a) if k |= θ
πk(a) if k 6|= θ

A′[[n]] = λa.
∏
k∈Kψ

n

A′[[x]] = λa.
∏
k∈Kψ

πk(a)(x)

A′[[e0 ⊕ e1]] = λa.
∏
k∈Kψ

πk(A′[[e0]]a) ⊕̂ πk(A′[[e1]]a)

Figure 2: Definitions of A[[s]] : (A→ A)Kψ and A′[[e]] : (A→ Const)Kψ . The analysis of while
is the least fixed point (lfp) of the functional λΦ. λa. a ṫ Φ(A[[s]] a).

particular, a ṫ a′ =
∏
k∈Kψ πk(a) tA πk(a′); a u̇ a′ =

∏
k∈Kψ πk(a) uA πk(a′);

⊥̇ =
∏
k∈Kψ ⊥A = (⊥A, . . . ,⊥A); and >̇ =

∏
k∈Kψ >A = (>A, . . . ,>A).

The lifted analysis A[[s]] is a function from AKψ to AKψ . However in practice,
using a tuple of |Kψ| independent simple functions of type A→ A is sufficient,
because lifting corresponds to running |Kψ| independent analyses in parallel.
Thus, the lifted analysis is given by the function A[[s]] : (A → A)Kψ , which
represents a tuple of |Kψ| functions of type A → A. The k-th component of
A[[s]] defines the analysis corresponding to the valid configuration described
by the formula k. In other words, an analysis A[[s]] transforms a lifted store,
a ∈ AKψ , into another lifted store of the same type. For simplicity, we overload
the λ-abstraction notation, so creating a tuple of functions looks like a function
on tuples: we write λa.

∏
k∈K fk(πk(a)) to mean

∏
k∈K λak.fk(ak). Similarly, if

f : (A→ A)K and a ∈ AK, then we write f(a) to mean
∏
k∈K πk(f)(πk(a)).

The semantic equations for lifted analysis A[[s]] : (A→ A)Kψ and A′[[e]] : (A→
Const)Kψ that analyse all valid configurations simultaneously are given in Fig 2.
They are systematically derived in [11] by following the steps of calculational
approach to abstract interpretation [22]: define collecting semantics, specify a
series of Galois connections and compose them with the collecting semantics
to obtain the resulting analysis, which is thus sound (correct) by construction.
Monotonicity of A[[s]] and A′[[e]] was shown in [11] as well.

The (transfer) function A[[s]] captures the effect of analysing the statement s
in a lifted store a by computing an output store a′. For the skip statement, the
analysis function is an identity on lifted stores. For the assignment statement,
x := e, the value of variable x is updated in every component of the input store
a by the value of the expression e evaluated in the corresponding component of
a. The analysis of conditional statement if results in the least upper bound
(join) of the effects from the two corresponding branches. It abstracts away the

12

analysis information at the guard (condition) point. For the while statement,
we compute the least fixed point (lfp) of a functional, λΦ. λa. a ṫ Φ(A[[s]] a), in
order to capture the effect of running all possible iterations of the while loop.
This fixed point exists and is computable by Kleene’s fixed point theorem, since
the functional is a monotone function over complete lattice with finite height
(that is the Const lattice) [11, 32] 1. For the #if (θ) s statement, we check for
each valid configuration k 2 whether the feature constraint θ is satisfied and,
if so, it updates the corresponding component of the input store by the effect
of evaluating the statement s. Otherwise, the corresponding component of the
store is not updated. The function A′[[e]] describes the result of evaluating the
expression e in a lifted store. Note that, for each binary operator ⊕, we define
the corresponding constant propagation operator ⊕̂, which operates on values
from Const, as follows:

v0 ⊕̂ v1 =


⊥ if v0 = ⊥ ∨ v1 = ⊥
n if v0 = n0 ∧ v1 = n1, where n = n0 ⊕ n1

> otherwise
(2)

We lift the above operation configuration-wise, and in this way obtain a new op-
eration ˙̂⊕ on tuples of Const values. We have v1

˙̂⊕v2 =
∏
k∈Kψ (πk(v1) ⊕̂ πk(v2)),

for v1, v2 ∈ ConstKψ . For example, (2, 5) ˙̂+(5, 2) = (7, 7).

Example 3.2. Consider the IMP program S1:

x := 0;
#if (A) x := x + 1;
#if (B) x := 1

with the set KA∨B = {A ∧B,A ∧ ¬B,¬A ∧B}. By using the rules of Figure 2,
we can calculate A[[S1]] for a lifted store in which x is uninitialized, i.e. it has
the value >. We assume a convention here that the first component of the store
corresponds to configuration A ∧ B, the second to A ∧ ¬B, and the third to

¬A ∧B. We write a0
A[[s]]7−→ a1 when A[[s]]a0 = a1. We have:

(A∧B︷ ︸︸ ︷
[x 7→>],

A∧¬B︷ ︸︸ ︷
[x 7→>],

¬A∧B︷ ︸︸ ︷
[x 7→>]

) A[[x:=0]]7−→
(
[x 7→0],[x 7→0],[x 7→0]

) A[[#if (A) x:=x+1]]7−→(
[x 7→1],[x 7→1],[x 7→0]

) A[[#if (B) x:=1]]7−→
(
[x 7→1],[x 7→1],[x 7→1]

)
Note that when we analyse #if with the presence condition A (resp., B), the
input store is updated only for components A∧B, A∧¬B (resp., A∧B, ¬A∧B)

1If the lattice is with infinite height and infinite ascending chains (e.g. the Interval lattice
[30]), then the computation of the fixed point can be achieved by using so-called widening
operators [30, 23]

2Since any k ∈ Kψ is a valuation, we have that k 6|= θ and k |= ¬θ are equivalent for any
θ ∈ FeatExp.

13

which satisfy that presence condition by the effect of analysing the statement
associated with the given #if. After analysing S1, the variable x has the constant
value 1 for all valid configurations.

Let S2 be a program obtained from S1, such that #if (B) x := 1 is replaced
with #if (B) x := x− 1. Then, we have: A[[S2]]

(
[x 7→ >],[x 7→ >],[x 7→ >]

)
=(

[x 7→0],[x 7→1],[x 7→−1]
)
, i.e.

(
[x 7→>],[x 7→>],[x 7→>]

)A[[x:=0;#if (A) x:=x+1]]7−→
(
[x 7→1],[x 7→1],[x 7→0]

)
A[[#if (B) x:=x−1]]7−→

(
[x 7→0],[x 7→1],[x 7→−1]

)
We will use programs S1 and S2 as running examples throughout the paper.�

4. Variability Abstractions

When the set of configurations Kψ is large, calculations on the property
domain AKψ become expensive, even when using symbolic representations or
sharing to avoid direct storage of |Kψ|-sized tuples as done in [9]. We want to
replace AKψ with a smaller domain obtained by abstraction and perform an
approximate, but feasible, lifted analysis on it.

4.1. Basic Abstractions
We describe a compositional way of constructing abstractions over the domain

AK, where K represents an arbitrary set of valid configurations, using two basic
operators, join and projection, along with a sequential and parallel composition of
abstractions. The set of abstractions Gva is generated by the following grammar:

α ::= αjoin | αproj
ϕ | α ◦ α | α ⊗ α

where ϕ ∈ FeatExp. Below we define the abstractions and motivate them with
examples. For the sake of readability, we use the constant propagation lattice A,
however the results hold for any complete lattice.

Join. Consider an analysis that is run interactively and finds simple errors and
warnings. The analysis must be fast and it should consider all legal configurations
K. It is not problematic if some spurious errors are introduced, as previously
mentioned, a more thorough analysis is run regularly. Here, the precision with
respect to configurations can be reduced by confounding the control-flow of all
the products, obtaining an analysis that runs as if it was analyzing a single
product, but involving code that participate in all products.

The join abstraction gathers the information about all configurations k ∈ K
into one value of A. We formulate the abstraction αjoin :AK→A{

∨
k∈K

k} and
the concretization function γjoin :A{

∨
k∈K

k}→AK as:

αjoin(a) =
(⊔

k∈K πk(a)
)

and γjoin(a) =
∏
k∈K

a (3)

14

for a ∈ AK and a ∈ A. We overload abstraction names (α) to apply not only to
domain elements but also to the sets of configurations, and, later, to the sets
of features and program code. The new abstract set of valid configurations is
αjoin(K) = {

∨
k∈K k}. Thus, we obtain only one abstract valid configuration

denoted by the compound formula
∨
k∈K k. Observe that this means that

the obtained abstract domain is effectively A1, which is isomorphic to A. The
proposed abstraction–concretization pair is a Galois connection, which means that
it can be used to construct analyses using calculational abstract interpretation.

Theorem 4.1. 〈AK, v̇〉 −−−−−→←−−−−−
αjoin

γjoin

〈Aαjoin(K), v̇〉 is a Galois connection 3.

Proof. Let a ∈ AK and a ∈ Aαjoin(K).

αjoin(a) v̇ (a) ⇐⇒
⊔
k∈K πk(a) v a (by def. of αjoin)

⇐⇒ ∀k ∈ K. πk(a) v a (by def. of t)
⇐⇒ a v̇γjoin(a) (by def. of γjoin)

�

Example 4.1. Let us return to the scenario of using join for improving the
analysis performance. Assume that the feature model is given by ψ = A ∨ B
with valid configurations KA∨B = {A ∧ B,A ∧ ¬B,¬A ∧ B}. By applying the
join abstraction on lifted stores generated during analysis of the program S1
in Example 3.2, we obtain: αjoin(

(
[x 7→ >],[x 7→ >],[x 7→ >]

)
) =

(
[x 7→ >]

)
,

αjoin(
(
[x 7→ 0],[x 7→ 0],[x 7→ 0]

)
) =

(
[x 7→ 0]

)
, αjoin(

(
[x 7→ 1],[x 7→ 1],[x 7→ 1]

)
) =(

[x 7→ 1]
)
, and αjoin(

(
[x 7→ 1],[x 7→ 1],[x 7→ 0]

)
) =

(
[x 7→ >]

)
. In all cases the

state representation has been significantly decreased to only one component (i.e.
1-sized tuple). In the first three cases, the abstraction promptly notices that x is
a constant regardless of the configuration. In the last case, the abstraction looses
precision by saying that x is not a constant in general, even if it was a constant
in each of the configurations considered in isolation.

If we infer the corresponding abstracted analysis for αjoin (see Section 5 for
details), we will obtain the final store

(
[x 7→>]

)
after analyzing the program S1 in

the input store
(
[x 7→>]

)
, although we can see that x has the same constant value

1 for all configurations in the final store of the concrete (unabstracted) lifted
analysis shown in Example 3.2. This indicates that more precise abstractions
need to be introduced. We will remedy this shortly. �

Projection. In industrial practice the number of products actually deployed is
often only a small subset of K. In such case, analyzing all valid configurations
seems unnecessary, and performance of analyses can be improved by abstracting

3〈L,≤L〉 −−−→←−−−α
γ
〈M,≤M 〉 is a Galois connection between complete lattices L and M iff α

and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L,m ∈M .

15

many products away. This is achieved by a configuration projection, which
removes configurations that do not satisfy a given constraint. Projection can
be helpful in other similar scenarios; for instance, to parallelize the analysis—
by partitioning the product space using project and analyzing each partition
separately.

Let ϕ be a feature expression. We define a projection abstraction mapping
AK into the domain A{k∈K|k|=ϕ}, which preserves only the values corresponding
to configurations from K that satisfy ϕ. The information about configurations
violating ϕ is disregarded. The abstraction and concretization functions between
AK and A{k∈K|k|=ϕ} are defined as follows:

αproj
ϕ (a) =

∏
k∈K,k|=ϕ πk(a) and γproj

ϕ (a′) =
∏
k∈K

{
πk(a′) if k |= ϕ

> if k 6|= ϕ
(4)

for a ∈ AK and a′ ∈ A{k∈K|k|=ϕ}. The new set of configurations is αproj
ϕ (K) =

{k ∈ K | k |= ϕ}. Naturally, we have a Galois connection here.

Theorem 4.2. 〈AK, v̇〉 −−−−−→←−−−−−
αproj
ϕ

γproj
ϕ

〈Aαproj
ϕ (K), v̇〉 is a Galois connection.

Proof. Let a ∈ AK and a′ ∈ A{k∈K|k|=ϕ}.

αproj
ϕ (a) v̇ a′ ⇐⇒ ∀k ∈ K, k |= ϕ. πk(a) v πk(a′) (by def. of αproj

ϕ)
⇐⇒ ∀k ∈ K, k |= ϕ. πk(a) v πk(a′) ∧ ∀k ∈ K, k 6|= ϕ. πk(a) v >

(by def. of >)
⇐⇒ a v̇γproj

ϕ (a′) (by def. of γprojϕ)

�

Notice that αproj
true is the identity function, since k |= true for all k ∈ K. On the

other hand αproj
false is the coarsest collapsing abstraction that maps any tuple into

an empty one, since k 6|= false, for all k.

Example 4.2. Let us revisit our scenario, where a set of deployed configurations
is much smaller than the set of configurations defined by the feature model ψ. Let
us consider the lifted stores aS1 =

(
[x 7→1],[x 7→1],[x 7→0]

)
and aS2 =

(
[x 7→0],[x 7→

1],[x 7→−1]
)
obtained during analysis of programs S1 and S2 in Example 3.2. The

set of deployed products is defined by formula ϕ = A. By definition of projection
Eqn. (4), we have: αproj

A (aS1) =
(
πA∧B(aS1), πA∧¬B(aS1)

)
=
(
[x 7→1], [x 7→1]

)
,

αproj
A (aS2) =

(
[x 7→ 0], [x 7→ 1]

)
; and αproj

¬A (aS1) = (π¬A∧B(aS1)) = ([x 7→ 0]),
αproj
¬A (aS2) = ([x 7→−1]). The state representation is effectively decreased to two

components for αproj
A , and to one component for αproj

¬A . �

An attentive reader might discount the idea of the projection abstraction
as being overly heavy. In the end, it appears to be equivalent to running the
original analysis, just with a strengthened feature model (ψ ∧ ϕ). However,

16

as we shall see in the subsequent developments, projection is indeed useful.
Thanks to the composition operators it can enter intricate scenarios that cannot
be expressed using a simple strengthening of a global feature model. We use
two composition operators, sequential and parallel composition, to build more
complex abstractions out of the two fundamental abstractions, join and projection.
This also allows us to keep the number of operators in the framework low, since
many other sugared operators can be derived from the basic ones from Gva.

Sequential Composition. Let 〈AK, v̇〉 −−−→←−−−
α1

γ1 〈Aα1(K), v̇〉 and 〈Aα1(K), v̇〉 −−−→←−−−
α2

γ2

〈Aα2(α1(K)), v̇〉 be two Galois connections. Then, we define their composition as
〈AK, v̇〉 −−−−−−→←−−−−−−

α2◦α1

γ1◦γ2 〈A(α2◦α1)(K), v̇〉, where

(α2 ◦ α1)(a) = α2(α1(a)) and (γ1 ◦ γ2)(a′) = γ1(γ2(a′)) (5)

for a ∈ AK and a′ ∈ A(α2◦α1)(K). The abstract set of configurations is (α2 ◦
α1)(K) = α2(α1(K)).

Example 4.3. Now consider the process of deriving an analysis, which only
considers products actually deployed described by a formula ϕ (see previous exam-
ple), but which should trade precision for speed, by confounding their execution.
Such an analysis is derived using the composed abstraction: αjoin ◦αproj

ϕ .
Let ϕ = A. Configurations A∧B and A∧¬B satisfy ϕ, whereas ¬ϕ is satisfied

only by ¬A ∧ B. We have: αjoin ◦ αproj
A (aS1) = (πA∧B(aS1) t πA∧¬B(aS1)) =

([x 7→1]), and αjoin ◦αproj
¬A (aS1) = (π¬A∧B(aS1)) = ([x 7→0]).

If we now derive the abstracted analysis for αjoin ◦ αproj
A and analyze the

program S1, we will obtain the final store ([x 7→1]). This means that we precisely
obtained the information that x is the constant 1 at the end of the program S1
for all configurations that satisfy A. Still, we have disregarded the information
for the configuration ¬A ∧B. So, a more precise analysis is needed. �

Parallel Composition. Consider a family where two groups of variants share the
same code base: one group is safety-critical, the other comprises non-critical
products. The former should be analyzed with highest precision possible to
obtain the most precise analysis results, the latter can be analyzed faster. We
can set up such analyses by using a projection abstraction to analyze the safety-
critical group precisely, and the join abstraction to analyze the non-critical
group. However running the analyses twice, ignores the fact that the code is
shared between the groups. We can combine two separate analyses by creating
a compound abstraction: a product of the two. The product abstraction will
correspond exactly to executing the projection on the safety-critical products,
and join on the non-critical ones. But since the product creates a single Galois
connection of the two, it can be used to derive an analysis which will deliver this
in a single run, which is more efficient due to reuse of the states explored.

Galois connections 〈AK, v̇〉 −−−→←−−−
α1

γ1 〈Aα1(K), v̇〉 and 〈AK, v̇〉 −−−→←−−−
α2

γ2 〈Aα2(K), v̇〉
over the same domain AK can be composed into one that combines the abstraction
results "side-by-side". The result is a new compound abstraction, α1 ⊗ α2, of

17

the domain AK obtained by applying the two simpler abstractions in parallel.
The parallel composition of abstractions is defined using a direct tensor product.
For the resulting Galois connection, we have (α1 ⊗ α2)(K) = α1(K) ∪ α2(K).
Given a1 ∈ Aα1(K) and a2 ∈ Aα2(K), we first define a helper operator a1 × a2 ∈
α1(K) ∪ α2(K) that combines two lifted stores with overlapping configurations
(components) as follows:

a1 × a2 =
∏

k∈α1(K)∪α2(K)


πk(a1) if k ∈ α1(K) \ α2(K)
πk(a1) t πk(a2) if k ∈ α1(K) ∩ α2(K)
πk(a2) if k ∈ α2(K) \ α1(K)

The direct tensor product is given as 〈AK, v̇〉 −−−−−−→←−−−−−−
α1⊗α2

γ1⊗γ2 〈A(α1⊗α2)(K), v̇〉, where

(α1⊗α2)(a) = α1(a)×α2(a) and (γ1⊗γ2)(a′) = γ1(πα1(K)(a′))uγ2(πα2(K)(a′))
(6)

where a ∈ AK, a′ ∈ A(α1⊗α2)(K), πα1(K)(a′) =
∏
k∈α1(K)πk(a′) and πα2(K)(a′) =∏

k∈α2(K)πk(a′).

Theorem 4.3. 〈AK, v̇〉 −−−−−−→←−−−−−−
α1⊗α2

γ1⊗γ2 〈A(α1⊗α2)(K), v̇〉 is a Galois connection.

Proof. We show: (α1 ⊗ α2)(a) v̇ a′ ⇐⇒ a v̇ (γ1 ⊗ γ2)(a′) for all a ∈ AK,
a′ ∈ A(α1⊗α2)(K) [33, App. A]. �

Example 4.4. Assume that for products without the feature A we need precise
analysis results, and for products containing this feature we do not need so precise
results. We are interested in analyzing products without A thoroughly, while
the analysis of the products with A can be speeded up. To this end we build the
following abstraction: (αjoin ◦αproj

A)⊗αproj
¬A . For aS1 =

(
[x 7→1],[x 7→1],[x 7→0]

)
,

we have (αjoin ◦αproj
A)⊗αproj

¬A (aS1) = (πA∧B(aS1)tπA∧¬B(aS1), π¬A∧B(aS1)) =
([x 7→1], [x 7→0]).

The abstracted analysis (αjoin ◦αproj
A)⊗αproj

¬A when executed for the program
S1 will report

(
[x 7→ 1], [x 7→ 1]

)
as the final lifted store (see Example 5.1 for

details). Hence, it provides the precise analysis information for x at the end of
S1. This example shows that by using an appropriate combination of abstraction
operators, we can control the precision as much as necessary. The above four
operators are also sufficient to partition the configuration space arbitrarily, and
to recombine the analysis results of partitions in one run. �

4.2. Derived Abstractions
We shall now discuss more abstractions that can be derived from the above

basic ones.

18

Join-Project. Recall the construction of Example 4.3, where we combined pro-
jection with a join in order to confound a subset of legal configurations. This
pattern has occurred so often in our experiments that we introduced a syntactic
sugar for it. For a formula ϕ over features, the abstraction αjoin-proj

ϕ gathers
the information about all valid configurations k ∈ K that satisfy ϕ, i.e. k |= ϕ,
into one value of A, whereas the information about all other valid configurations
k ∈ K that do not satisfy ϕ is disregarded. We define

αjoin-proj
ϕ = αjoin ◦αproj

ϕ and γjoin-proj
ϕ = γproj

ϕ ◦ γjoin (7)

where 〈AK, v̇〉 −−−−−→←−−−−−
αproj
ϕ

γproj
ϕ

〈Aαproj
ϕ (K), v̇〉, 〈Aαproj

ϕ (K), v̇〉 −−−−−→←−−−−−
αjoin

γjoin

〈A(αjoin◦αproj
ϕ)(K)), v̇〉

are Galois connections. Now the compositions in Example 4.3 can be written
simply as αjoin-proj

A and αjoin-proj
¬A .

Ignoring features. We now consider a feature ignore abstraction, which simplifies
lifted domains by confounding executions differing only on uninteresting features.
We first present a simple case of ignoring a single feature A ∈ F that is not
directly relevant for the current analysis. The ignore feature A abstraction,
denoted αfignore

A , merges any configurations that only differ with regard to A,
and are identical with regard to remaining features, F\{A}. Given a formula
(feature expression) ϕ, we write ϕ\A for a formula obtained by eliminating the
feature A from ϕ in the following way. First, we convert ϕ into NNF (negation
normal form), which contains only ¬, ∧, ∨ connectives and ¬ appears only in
literals. Then, we write ϕ\A for the formula ϕ where literals A and ¬A are
replaced with true. Note that valuation formulas k ∈ K are already in NNF.

For each formula k′ ≡ k\A where k ∈ K, there will be a corresponding abstract
configuration in αfignore

A (K) determined by the formula
∨
k∈K,k\A≡k′ k. Thus,

the new set of configurations is given by αfignore
A (K) = {

∨
k∈K,k\A≡k′ k | k′ ∈

{k\A | k ∈ K}}. The abstraction αfignore
A : AK → Aαfignore

A
(K) and concretization

functions γfignore
A : Aαfignore

A
(K) → AK are:

αfignore
A (a) =

∏
k′∈αfignore

A
(K)
⊔
k∈K,k|=k′ πk(a),γfignore

A (a′) =
∏
k∈K πk′(a′) if k |= k′

(8)
It turns out that ignoring features can be derived from the above abstractions.

Theorem 4.4. Let αfignore
A (K) = {k′1, . . . , k′n}. Then:

αfignore
A = αjoin-proj

k′
1

⊗ · · · ⊗αjoin-proj
k′
n

and γfignore
A = γjoin-proj

k′
1

⊗ · · · ⊗γjoin-proj
k′
n

.

Proof. By induction on the length of the set αfignore
A (K) [33, App. A]. �

Example 4.5. We consider the lifted store aS2 =
(
[x 7→0],[x 7→1],[x 7→−1]

)
with

KA∨B = {A∧B,A∧¬B,¬A∧B}. Then, we have αfignore
A (KA∨B) = {(A∧B)∨

19

(¬A∧B), A∧¬B} and αfignore
A (aS2) = (πA∧B(aS2)tπ¬A∧B(aS2), πA∧¬B(aS2)) =

([x 7→>], [x 7→1]). On the other hand, we have αfignore
B (KA∨B) = {(A∧B)∨ (A∧

¬B),¬A ∧ B} and αfignore
B (aS2) = (πA∧B(aS2) t πA∧¬B(aS2), π¬A∧B(aS2)) =

([x 7→>], [x 7→−1]). �

Now, if we need to ignore a larger number of features (say features outside
a certain component of interest), we can do it using a feature ignore operator
which simply ignores a set of features {A1, . . . , Ak} ⊆ F. The definitions of
αfignore
{A1,...,Ak} and γfignore

{A1,...,Ak} can be obtained by generalizing the definitions of
αfignore
A and γfignore

A , where a set of features {A1, . . . , Ak} is taken into account
instead of only one feature A.

It follows from the theorems of Section 4.1 that all the derived pairs of
abstraction-concretization functions are Galois connections.

5. Abstracting Lifted Analyses

We will now demonstrate how to derive algorithmically abstracted lifted
analyses (i.e. equations for transfer functions) using the operators of Section 4.
We use the case of constant propagation as an example. Recall that lifted
constant propagation analysis has been specified by: 1) the domain AKψ ; 2) the
statement transfer function A[[s]] : (A→ A)Kψ ; and 3) the expression evaluation
(transfer) function A′[[e]] : (A→ Const)Kψ. Let 〈AKψ , v̇〉 −−−→←−−−α

γ
〈Aα(Kψ), v̇〉 be a

Galois connection constructed using the operators presented in Section 4. For
the sake of brevity, we will also write (α, γ) ∈ Gva or only α ∈ Gva to denote a
Galois connection (abstraction) obtained in such a way.

Any function f defined on the concrete domain of a Galois connection can
be abstracted to work on the abstract domain by applying concretization to its
argument and an abstraction to its value, i.e. by the function F = α ◦ f ◦ γ,
where ◦ denotes the usual composition of functions. In fact, any monotone
over-approximation of the composition α ◦ f ◦ γ is sufficient for a sound analysis.
Even fixed points can be transferred from a concrete to an abstract domain of a
Galois connection. If both domains are complete lattices and f is a monotone
function on the concrete domain, then using fixed point transfer theorem (FPT
for short) [32]: α(lfpf) v lfpF v lfpF#. Here F = α ◦ f ◦ γ and F# is some
monotone, conservative over-approximation of F , i.e. F v F#. The calculational
approach to abstract interpretation [22] used in this work, advocates simple
algebraic manipulation to obtain a direct expression for the function F (if it
exists) or for an over-approximation F#.

In our case, for any lifted store a ∈ AKψ , we calculate an abstracted lifted
store by α(a) = d ∈ Aα(Kψ). Now, we use a Galois connection to derive an
over-approximation of α ◦A[[s]]◦γ obtaining a new abstracted statement transfer
function Dα[[s]] : (A→ A)α(Kψ). Similarly, one can derive an abstracted analysis
for expressions D′α[[e]], approximating α ◦ A′[[e]] ◦ γ. These approximations are
derived using structural induction on statements (respectively on expressions),

20

in a process that resembles a simple algebraic calculation, deceivingly akin to
equation reasoning.

Consider the derivation steps for the static conditional statement “#if (θ) s”
in detail. Our inductive hypothesis (IH) is that for statements s′ that are
structurally smaller than “#if (θ) s” the (yet-to-be-calculated) Dα[[s′]] soundly
approximates α ◦ A[[s′]] ◦ γ, formally: α ◦ A[[s′]] ◦ γ v̇ Dα[[s′]]. The derivation
begins with composing the concretization and abstraction functions with the
concrete transfer function and then proceeds by expanding definitions:

(α ◦ A[[#if (θ) s]] ◦ γ)(d) = α(A[[#if (θ) s]](γ(d))) = (by def. of ◦)

= α

(∏
k∈Kψ

{
πk(A[[s]]γ(d)) if k |= θ

πk(γ(d)) if k 6|= θ

)
(def. of A in Fig. 2)

v̇
∏

k′∈α(Kψ)


πk′(α(A[[s]]γ(d))) if k′ |= θ

πk′(α(γ(d))) t πk′(α(A[[s]]γ(d))) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′(α(γ(d))) if k′ |= ¬θ
(by Lemma 5.1 below)

v̇
∏

k′∈α(Kψ)


πk′(Dα[[s]]d) if k′ |= θ

πk′(d) t πk′(Dα[[s]]d) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′(d) if k′ |= ¬θ
(by IH and α ◦ γ reductive)

= Dα[[#if (θ) s]] d

The ‘reductive’ property of all Galois connections [31, 22] that we use is (α ◦
γ)(d) v d for all d. In the last step we apply the inductive hypothesis, to obtain
a closed representation independent of A. This representation, just before the
final equality, is the newly obtained (calculated) definition of the abstracted
analysis Dα. Interestingly, the derivation is independent of the structure of
the abstraction α, so this form works for any abstraction specified using our
operators.

A configuration k′ in the “abstract world” α(Kψ) can be any (compound)
formula from FeatExp, not only a valuation formula as in the “concrete world”
Kψ. Hence, a relation between an abstract configuration k′ ∈ α(Kψ) and a
presence condition θ ∈ FeatExp can be: k′ entails θ; k′ entails ¬θ; or (k′ ∧ θ)
and (k′ ∧ ¬θ) are both satisfiable. This is expressed by the following helper
lemma, which is used in the derivation of “#if (θ) s”.

Lemma 5.1. For all abstractions α ∈ Gva, θ ∈ FeatExp, a1, a2 ∈ AK:

α
(∏
k∈K

{
πk(a1)if k |= θ

πk(a2)if k 6|= θ

)
v̇

∏
k′∈α(K)


πk′(α(a1)) if k′ |= θ

πk′(α(a1)) t πk′(α(a2)) if sat(k′∧θ)∧sat(k′∧¬θ)

πk′(α(a2)) if k′ |= ¬θ
(9)

21

Proof. By induction on the structure of α [33, App. C]. We show αjoin case.

αjoin(∏
k∈K

{
πk(a1) if k |= θ

πk(a2) if k 6|= θ

)
=
(⊔

k∈K

{
πk(a1) if k |= θ

πk(a2) if k 6|= θ

)
(by def. of αjoin)

=
(


⊔
k∈K πk(a1) if

∨
k∈K k |= θ⊔

{k∈K|k|=θ} πk(a1) t
⊔
{k∈K|k|=¬θ} πk(a2)
if sat (∨

k∈K
k∧θ) ∧ sat(∨

k∈K
k∧¬θ)⊔

k∈K πk(a2) if
∨
k∈K k |= ¬θ

)
(by def. of πk and t)

v̇
(

⊔
k∈K πk(a1) if

∨
k∈K k |= θ⊔

k∈K πk(a1) t
⊔
k∈K πk(a2) if sat (∨

k∈K
k∧θ) ∧ sat(∨

k∈K
k∧¬θ)⊔

k∈K πk(a2) if
∨
k∈K k |= ¬θ

)
(by def. of πk and t)

Finally, by definition of αjoin we obtain:

=
(

αjoin(a1) if
∨
k∈K k |= θ

αjoin(a1) tαjoin(a2) if sat (∨
k∈K
k∧θ) ∧ sat(∨

k∈K
k∧¬θ)

αjoin(a2) if
∨
k∈K k |= ¬θ

)

�

Notice that we lose precision in the above derivation of “#if (θ) s” since we use
v̇-relation instead of equality in Eq. (9), Lemma 5.1. We provide an example
confirming that the above relation is not equality. Let K = {A ∧ B,A ∧ ¬B},
a1 = ([x 7→ 2], [x 7→ 4]), a2 = ([x 7→ 6], [x 7→ 2]) and θ = B. For the left-
hand side (LHS) of Eq. (9), a =

(
πA∧B(a1), πA∧¬B(a2)

)
since A ∧B |= B and

A∧¬B 6|= B, so we have a = ([x 7→ 2], [x 7→ 2]). Then αjoin(a) = ([x 7→ 2]) is the
result of the LHS of Eq. (9). On the other hand, for the right-hand side (RHS) of
Eq. (9), we have k′ = (A∧B)∨ (A∧¬B) ∈ αjoin(K), and so k′ ∧B and k′ ∧¬B
are both satisfiable. In this way, the second case of the RHS of Eq. (9) is taken
for k′, so we have that αjoin(a1)tαjoin(a2) = ([x 7→ >])t ([x 7→ >]) = ([x 7→ >])
is the result of the RHS of Eq. (9).

22

We now present derivational steps for the most illustrative case for expressions:

(α ◦ A′[[e0 ⊕ e1]] ◦ γ)(d)

= α
(∏
k∈Kψ

πk(A′[[e0]]γ(d)) ⊕̂πk(A′[[e1]]γ(d))
)

(by def. of ◦, and A′ in Fig. 2)

= α
(∏
k∈Kψ

πk(A′[[e0]]γ(d) ˙̂⊕A′[[e1]]γ(d))
)

(by def. of πk and ˙̂⊕)

=
∏

k′∈α(Kψ)

πk′(α
(
A′[[e0]]γ(d) ˙̂⊕A′[[e1]]γ(d)

)
) (by def. of α)

v̇
∏

k′∈α(Kψ)

πk′(α(A′[[e0]]γ(d)) ˙̂⊕α(A′[[e1]]γ(d))) (by Lemma 5.2 below)

v̇
∏

k′∈α(Kψ)

πk′(D′α[[e0]]d ˙̂⊕D′α[[e1]]d) (by IH, twice)

v̇
∏

k′∈α(Kψ)

πk′(D′α[[e0]]d) ⊕̂πk′(D′α[[e1]]d) = D′α[[e0 ⊕ e1]]d (by πk′ and ˙̂⊕)

In the derivation, we use the following helper lemma.

Lemma 5.2. For all abstractions α ∈ Gva, v1, v2 ∈ ConstK:

α(v1
˙̂⊕ v2) v̇ α(v1) ˙̂⊕ α(v2) (10)

Proof. By induction on the structure of α. We only consider the most involved
case for αjoin. The other cases can be found in [33, App. C].

αjoin(v1
˙̂⊕ v2) =

⊔
k∈K πk(v1

˙̂⊕ v2) (by def. of αjoin)

=
⊔
k∈K

(
πk(v1) ⊕̂ πk(v2)

)
(by def. of πk and ˙̂⊕)

v̇
(⊔

k∈K πk(v1)
)
⊕̂
(⊔

k∈K πk(v2)
)

(by def. of
⊔

and ⊕̂)
= αjoin(v1) ⊕̂ αjoin(v2) (by def. of αjoin)

�

Again, we lose precision in the above derivation of e0 ⊕ e1 due to the v̇-relation
in Eq. (10), Lemma 5.2. We provide an example confirming the need for
approximating from above. Let v1 = (5, 2), v2 = (2, 5), and ⊕ = +. Then
αjoin((5, 2) ˙̂+(2, 5)) = αjoin((7, 7)) = 7 is the result of the LHS of Eq. (10). On
the other hand, αjoin((5, 2)) = >, αjoin((2, 5)) = >, and >+̂> = > is the result
of the RHS of Eq. (10).

The derivations for other cases are similar and can be found in [33, App. B].
The process results in the definitions of Dα[[s]] and D′α[[e]] presented in Figure 3.
Observe that the definitions of Dα and D′α are identical to the definitions of
A and A′ except for the case of the preprocessor statement “#if (θ) s”. This
is expected since variability abstractions only affect the configuration-specific

23

Dα[[skip]] = λd. d

Dα[[x := e]] = λd.
∏
k′∈α(Kψ)(πk′ (d))[x 7→ πk′ (D′α[[e]]d)]

Dα[[s0 ; s1]] = Dα[[s1]] ◦ Dα[[s0]]
Dα[[if e then s0 else s1]] = λd.Dα[[s0]]d ṫ Dα[[s1]]d
Dα[[while e do s]] = lfpλΦ. λd. d ṫ Φ(Dα[[s]] d)

Dα[[#if (θ) s]] = λd.
∏
k′∈α(Kψ)


πk′ (Dα[[s]]d) if k′ |= θ

πk′ (d) t πk′ (Dα[[s]]d) if sat(k′∧θ) ∧ sat(k′∧¬θ)

πk′ (d) if k′ |= ¬θ
D′α[[n]] = λd.

∏
k′∈α(Kψ) n

D′α[[x]] = λd.
∏
k′∈α(Kψ) πk′ (d)(x)

D′α[[e0 ⊕ e1]] = λd.
∏
k′∈α(Kψ) πk′ (D′α[[e0]]d) ⊕̂ πk′ (D′α[[e1]]d)

Figure 3: Definitions of Dα[[s]] : (A→ A)α(Kψ) and D′α[[e]] : (A→ Const)α(Kψ).

aspect of the lifted analysis. This observation is the basis for defining abstractions
as source-to-source transformations in Section 6.

Soundness of the abstracted analysis follows by construction; more precisely
the complete calculation constitutes an inductive proof of the theorem:

Theorem 5.1 (Soundness of Abstracted Analysis). We have that:

(i) ∀e ∈ Exp, (α, γ) ∈ Gva, d ∈ Aα(Kψ) : α ◦ A′[[e]] ◦ γ(d) v̇ D′α[[e]] d
(ii) ∀s ∈ Stm, (α, γ) ∈ Gva, d ∈ Aα(Kψ) : α ◦ A [[s]] ◦ γ(d) v̇ D α[[s]] d

Theorem 5.2 (Monotonicity of Abstracted Analysis). For all s ∈ Stm
and e ∈ Exp, Dα[[s]] and D′α[[e]] are monotone functions.

Proof. By structural induction on s and e [33, App. D]. �

Example 5.1. Consider the program S1 from Example 3.2, with KA∨B = {A ∧
B,A ∧ ¬B,¬A ∧ B}. We calculate Dαjoin-proj

A
[[S1]] for αjoin-proj

A = αjoin ◦ αproj
A .

Note that αjoin-proj
A (Kψ) has only one valid configuration k′ = (A∧B)∨(A∧¬B).

Following the rules of Figure 3, we obtain the following confounded abstract
execution of all configurations containing the feature A:

(k′︷ ︸︸ ︷
[x 7→>]

)Dα
join-proj
A

[[x:=0]]
7−→

(
[x 7→0]

)Dα
join-proj
A

[[#if (A) x:=x+1]]
7−→

(
[x 7→ 1]

)
D

α
join-proj
A

[[#if (B) x:=1]]
7−→

(
[x 7→1]

)
Note that k′ |= A, so we have Dαjoin-proj

A
[[#if(A) x := x + 1]] = Dαjoin-proj

A
[[x :=

x + 1]]. In the last step, we use Dαjoin-proj
A

[[#if (B) x := 1]]([x 7→ 1]) = ([x 7→
1]) ṫ Dαjoin-proj

A
[[x := 1]]([x 7→ 1]) since k′∧B and k′∧¬B are both satisfiable. The

final result shows that the value of x is the constant 1 for every configuration that

24

satisfies A. Similarly, we can calculate that Dαjoin [[S1]]([x 7→ >]) = ([x 7→ >]),
and Dαjoin-proj

A
⊗αproj

¬A
[[S1]]([x 7→ >], [x 7→ >]) = ([x 7→ 1], [x 7→ 1]).

On the other hand, for the program S2 we obtain Dαjoin [[S2]]([x 7→>]) =
([x 7→>]) and Dαjoin-proj

A
[[S2]]([x 7→>]) = ([x 7→>]), so the value of x is lost

(approximated) by Dαjoin and Dαjoin-proj
A

. �

6. Syntactic Transformations

The analysesA andDα can be implemented either directly by using definitions
of Figs. 2 and 3, or by extracting the corresponding data-flow equations. An
entirely different way to implement Dα is to execute the abstraction on the source
program family, before running the analysis, and then running the previously
existing analysis A on this transformed program family. We take this route as it
allows to completely reuse the effort invested in designing and implementing A.

Any IMP program s with sets of features F and valid configurations K is
translated into a corresponding abstract program α(s) with a set of features
α(F) and a set of valid configurations α(K). We will call this transformation
reconfigurator. The transformation is defined recursively over the structure of
α. The function α copies all basic statements of IMP, and recursively calls itself
for all sub-statements of compound statements other than #if. For example,
α(skip) = skip and α(s0 ; s1) = α(s0) ; α(s1). We discuss the rewrites for
#if statements below.

In the rewrite, we associate a fresh feature name Z /∈ F, with every join
abstraction αjoin (consequently written αjoin

‘Z ’). The new feature Z is an abstract
name (renaming) of the compound formula

∨
k∈K k. It denotes the single valid

configuration obtained from αjoin. The new feature name is used to simplify
conditions in the transformed code. The αjoin

‘Z ’ rewrite is defined as follows:

αjoin
‘Z ’ (F) = {Z}, αjoin

‘Z ’ (K) = {Z}

αjoin
‘Z ’ (#if (θ) s) =


#if (Z) αjoin

‘Z ’ (s) if
∨
k∈K k |= θ

#if (Z) lub(αjoin
‘Z ’ (s), skip) if sat(

∨
k∈K

k∧θ)∧sat(
∨
k∈K

k∧¬θ)

#if (¬Z) αjoin
‘Z ’ (s) if

∨
k∈K k |= ¬θ

where the newly introduced statement lub(s0, s1) represents the least up-
per bound (join) of the results obtained by analysing s0 and s1, i.e. a non-
deterministic choice between executing s0 or s1. This is the only language-
dependent aspect of reconfigurator. It can have different implementations
depending on the programming language and the applied analysis. In our case,
we exploit the definition of A[[if e then s0 else s1]] (cf. Figure 2), and use
lub(s0, s1) = if (∗) then s0 else s1 where ∗ denotes any integer. The result of
applying transformation αjoin

‘Z ’ to a program family s is a program family αjoin
‘Z ’ (s)

which contains only one valid product where the feature Z is enabled. Hence,
αjoin
‘Z ’ (s) is a single program and it can be analyzed with existing single-program

analyses. In this way, αjoin
‘Z ’ enables performing family-based analyses using

25

single-program analyzers, albeit with loss of precision. To see that αjoin
‘Z ’ (s) is a

single program, observe that in αjoin
‘Z ’ (#if (θ) s) we have that #if (¬Z) αjoin

‘Z ’ (s) is
equivalent to skip, and #if (Z) αjoin

‘Z ’ (s) (resp., #if (Z) lub(αjoin
‘Z ’ (s), skip)) is

equivalent to αjoin
‘Z ’ (s) (resp., lub(αjoin

‘Z ’ (s), skip)), since the feature Z is enabled
in the only valid product. However it is useful to keep the above statements in
αjoin
‘Z ’ (#if (θ) s), which makes it easy to merge abstract programs when we use

compound abstractions.
The rewrite for projection only changes the set of legal configurations:

αproj
ϕ (F) = F, αproj

ϕ (K) = {k∈K | k |=ϕ}, αproj
ϕ (#if(θ) s) = #if(θ) αproj

ϕ (s)

Note that the general scheme for the basic rewrites of #if statements can be
summarized as

α(#if (θ) s) = #if (α(θ)) α(s, θ)
where α is a function transforming the presence condition θ and the statement s.
It is easy to extract α(θ) and α(s, θ) from the above rewrites for αjoin

‘Z ’ and αproj
ϕ .

For example, we have αproj
ϕ (θ) = θ and αproj

ϕ (s, θ) = αproj
ϕ (s). We will use them

in defining transformations for composite abstraction operators.
Now, for the case of parallel composition α1 ⊗ α2, recall from Section 4 that

the set (α1⊗α2)(K) is the union of α1(K) and α2(K). However now in the rewrite
semantics, we are sometimes modifying the set of features. If α1(F) 6= α2(F)
then some of valid configurations in α1(K) ∪ α2(K) will not assign truth values
to all features in α1(F) ∪ α2(F). To take a meaningful union of configurations,
we need to first unify their alphabets. To achieve this, each valid configuration
can be extended by information that the missing features are excluded from it
(negated). Now the rewrite rules for parallel composition are as follows:

(α1⊗α2)(F)=α1(F) ∪ α2(F)
(α1⊗α2)(K)={k1

∧
A∈α2(F)\α1(F)

¬A |k1∈α1(K)} ∪ {k2
∧
A∈α1(F)\α2(F)

¬A |k2∈α2(K)}

(α1 ⊗ α2)(#if (θ) s) =
{

#if
(
α1(θ) ∨ α2(θ)

)
α1(s, θ) if α1(s, θ)=α2(s, θ)

α1(#if (θ) s);α2(#if (θ) s) otherwise

Observe that the second case of the parallel composition α1⊗α2 transformation
can only appear if the second case of αjoin

‘Z ’ transformation has been used some-
where in recursive rewriting of s (perhaps deep). This is because only in this case
α(s, θ) is not equal to α(s), i.e. we have αjoin

‘Z ’ (s, θ) = lub(αjoin
‘Z ’ (s), skip), and so

α1(s, θ) 6= α2(s, θ). All the other rewrites leave s intact, i.e. α1(s, θ) = α2(s, θ)
and so the first case of α1⊗α2 transformation is taken. However, in case when
α1(s, θ) 6= α2(s, θ), the branches have disjoint feature alphabets, as every join
is using a fresh feature name as parameter. This ensures that only one of the
sequenced copies of s, α1(s, θ) and α2(s, θ), will actually be executed (and the
other will amount to skip) in any given configuration of the product.

For sequential composition α2 ◦ α1, we use the following rewrites:

(α2 ◦ α1)(F) = α2(α1(F)), (α2 ◦ α1)(K) = α2(α1(K))
(α2 ◦ α1)(#if (θ) s) = #if

(
α2(α1(θ))

)
α2(α1(s, θ), α1(θ))

26

Example 6.1. Consider the program S′1:

#if(A) x := x + 1; #if (B) x := 1

with F = {A,B}, ψ = A ∨B, and KA∨B = {A ∧B,A ∧ ¬B,¬A ∧B}. Then

αjoin
‘Z ’ ◦αproj

A (S′1) = #if (Z) x := x + 1; #if (Z) lub(x := 1, skip) (∗)

The set of valid configurations after projection is changed to {A∧B,A∧¬B}, and
after join again to just {Z}, where Z represents the formula (A∧B)∨ (A∧¬B).
The obtained program has only one configuration, the one that satisfies Z. The
projection does not change the statements of the program. However, the join
rewrite simplifies the first #if (it is statically determined; cf. the first case of
αjoin
‘Z ’ transformation), and joins the second statement with skip as it is unknown

whether it will be executed or not, in the lack of information about the assignment
to B in the abstracted program (cf. the second case of αjoin

‘Z ’ transformation).
Note that since Z is the only one valid configuration, the obtained program is
equivalent to: x := x + 1; lub(x := 1, skip). Similarly, we can calculate:

αjoin
‘Z ’ ◦αproj

B (S′1) = #if (Z) lub(x := x + 1, skip); #if (Z) x := 1

which is equivalent to lub(x := x + 1, skip); x := 1.
Now consider ((αjoin

‘Z ’◦α
proj
A)⊗αproj

B)(S′1). The new set of features is {Z,A,B}.
The subset {A,B} is retained from the right projection component, and {Z} comes
from the left join-project component. After extending the configurations of both
components with negations of absent feature names we get the following set of
valid configurations: K′ = {Z ∧ ¬A ∧ ¬B,¬Z ∧ A ∧ B,¬Z ∧ ¬A ∧ B}. The
result of the left join-project operand is the program (*), and the right rewrite
(projection) never changes the statements, so its result is identical to S′1. Thus
we are composing programs (*) and S′1 using the parallel composition rewrites.
Then, ((αjoin

‘Z ’ ◦αproj
A)⊗αproj

B)(S′1) is as follows:

#if (Z ∨A) x := x + 1; #if (Z) lub(x := 1, skip); #if (B) x := 1

The first #if has been unified using the first case of the transformation for ⊗,
and the second #if is transformed into two copies of the statement with different
guards, using the second case of the rewrite definition for ⊗. For any legal
configuration in K′ at most one of them does not reduce to skip. �

The transformation for αfignore
A can be inferred from transformations for the

basic abstractions (see Theorem 4.4). However, that transformation is very
complex since it requires applying αjoin rewrites for all valid configurations and
then parallel compositions on the obtained results, which can be exponentially
many rewrites in the worst case. We can give more direct and compact definition
of the rewrite rules for αfignore

A . Similarly as in αjoin, we rename the sets of
feature names and valid configurations. Any compound formula

∨
k∈K,k\A≡k′ k

denoting a valid configuration in Dα is now renamed to k′. Thus, k′ represents
an abstract name of the compound formula

∨
k∈K,k\A≡k′ k. Now, we have:

αfignore
A (F) = F\{A}, αfignore

A (K) = {k′ ≡ k\A | k ∈ K}

27

s : IMP
(SPL)

((

A

derive analysis //

ab
st
ra
ct

re
co
nfi

gu
re

��

A[[s]] : (A→ A)Kψ
(lifted analysis)

α

ab
st
ra
ct

		
α(s) : IMP

(abstracted SPL)
A

derive analysis
// Dα[[s]] : (A→ A)α(Kψ)

(abstracted lifted analysis)

γ

II

Figure 4: Illustration of derive vs abstract: Dα[[s]] = A[[α(s)]].

To simplify the notation for the rewrite rules, we note that for each presence
condition θ ∈ FeatExp the set of valid configurations αfignore

A (K) can be parti-
tioned into three sets: Kθ

true containing all k′ that entail θ; Kθ
false containing

all k′ that entail ¬θ; and Kθ
? containing all the other k′ from αfignore

A (K). More
formally, we have:

Kθ
true = {k′ ∈ αfignore

A (K) |
∨

k∈K,k\A≡k′

k |= θ}

Kθ
? = {k′ ∈ αfignore

A (K) | sat(
∨

k∈K,k\A≡k′

k ∧ θ) ∧ sat(
∨

k∈K,k\A≡k′

k ∧ ¬θ)}

Kθ
false = {k′ ∈ αfignore

A (K) |
∨

k∈K,k\A≡k′

k |= ¬θ}

Now, the rewrite for “#if (θ) s” is:

αfignore
A (#if (θ) s) =


#if (θ) αfignore

A (s) if θ≡θ\A
#if (θ\A) { #if (

∨
k′∈Kθ

true
k′) αfignore

A (s);
#if (

∨
k′∈Kθ

?
k′) lub(αfignore

A (s), skip) } otherwise

Note that A\A ≡ ¬A\A ≡ true. Again, it is easy to extract α(θ) and α(s, θ)
from the above rewrites for αfignore

A . Thus, we can use αfignore
A to build compound

abstractions by using composition operators.

Example 6.2. Consider the program S′1 from Example 6.1:

#if(A) x := x + 1; #if (B) x := 1

with F = {A,B} and KA∨B = {A ∧ B,A ∧ ¬B,¬A ∧ B}. Now, we have
αfignore
A (F) = {B} and αfignore

A (Kψ) = {B,¬B}. The program αfignore
A (S′1) is:

#if (true) {#if (B) lub(x := x + 1, skip); #if (¬B) x := x + 1};
#if (B) x := 1

The first #if from S′1 is rewritten using the second case of the transformation
rewrite for αfignore

A , since θ = A and θ\A ≡ true. We have B ∈ KA
? since

28

((A ∧ B) ∨ (¬A ∧ B)) ∧ A and ((A ∧ B) ∨ (¬A ∧ B)) ∧ ¬A are both satisfiable.
Also ¬B ∈ KA

true since A ∧ ¬B |= A. The second #if from S′1 is transformed
using the first case of the transformation rewrite for αfignore

A , since B\A ≡ B. �

Now the analysis A[[α(s)]] and Dα[[s]] coincide up to renaming of valid config-
urations. So the source-to-source translator, reconfigurator, together with an
existing implementation of A gives us the abstracted analysis Dα. The equality
is illustrated by Figure 4. That means that we can effectively compute Dα on a
program s by running the lifted analysis A on the transformed abstract program
α(s). The correctness of rewrite rules for calculating α(s) is proved by the
following theorem.

Theorem 6.1.
∀s ∈ Stm,α : AKψ → Aα(Kψ) ∈ Gva, d ∈ Aα(Kψ) : Dα[[s]] d = A[[α(s)]] d.

Proof. By induction on the structure of α ∈ Gva and s ∈ Stm. Apart from
the #if-statement, for all other statements the proof is an immediate result of
definitions of Dα, A, and α(s).

We show the most illustrative case αjoin
′Z′ for #if (θ) s.

Dαjoin [[#if (θ) s]]d (set of feat. is F, set of configs. is Kψ)

=


Dαjoin [[s]]d if ∨

k∈Kψ
k |= θ

d ṫ Dαjoin [[s]]d if sat(∨
k∈Kψ

k∧θ) ∧ sat(∨
k∈Kψ

k∧¬θ)

d if ∨
k∈Kψ

k |= ¬θ
(by def. of Dα)

=


A[[αjoin

′Z′ (s)]]d if ∨
k∈Kψ

k |= θ

d ṫA[[αjoin
′Z′ (s)]]d if sat(∨

k∈Kψ
k∧θ) ∧ sat(∨

k∈Kψ
k∧¬θ)

d if ∨
k∈Kψ

k |= ¬θ

(by IH)

=


A[[#if (Z) αjoin

′Z′ (s)]]d if ∨
k∈Kψ

k |= θ

A[[#if (Z) lub(αjoin
′Z′ (s), skip)]]d if sat(∨

k∈Kψ
k∧θ) ∧ sat(∨

k∈Kψ
k∧¬θ)

A[[#if (¬Z) αjoin
′Z′ (s)]]d if ∨

k∈Kψ
k |= ¬θ

(by def. of A; renaming: set of feat. is {Z}, set of configs. is {Z})
= A[[αjoin

′Z′ (#if (θ) s)]]d (by def. of A and αjoin
′Z′ (#if (θ) s))

The other cases are similar [33, App. F]. �

Example 6.3. Consider the program S1 from Example 3.2 with KA∨B = {A ∧
B,A∧¬B,¬A∧B}. We have calculated in Example 5.1 that Dαjoin◦αproj

A
[[S1]]([x 7→

>]) = ([x 7→1]). We now calculate A[[αjoin
‘Z ’ ◦αproj

A (S1)]]([x 7→>]):(
[x 7→>]

)A[[x:=0]]7−→
(
[x 7→0]

)A[[#if (Z) x:=x+1]]7−→
(
[x 7→ 1]

)A[[#if (Z) lub(x:=1,skip)]]7−→
(
[x 7→1]

)
29

Hence, we obtain that Dαjoin◦αproj
A

[[S1]]([x 7→>]) and A[[αjoin
‘Z ’ ◦αproj

A (S1)]]([x 7→>])
are equal. �

7. A Note On Generalizations

So far, we have introduced variability abstractions and we have presented
how they can be used for deriving sound abstracted lifted analysis for constant
propagation (Theorems 5.1 and 6.1). Here, we show how the proposed method-
ology can be generalized and applied to any other (monotone) analysis phrased
in the abstract interpretation framework [32, 23].

A single-program analysis is specified by the following data. A complete lattice
〈P,vP〉 for describing the properties of the analysis. A domain A = Var → P
of abstract stores which associates properties from P with the variables of the
program. The analysis domain 〈A,v,t,u,⊥,>〉 inherits the lattice structure
from the property domain P in a point-wise manner. There are also transfer
functions for expressions A′[[e]] : A→ P and for statements A[[s]] : A→ A.

By using variational abstract interpretation [11], we can lift any single-
program analysis to the corresponding family-based analysis, which is spec-
ified as follows. Given a set of valid configurations Kψ, the lifted domain is
〈AKψ , v̇, ṫ, u̇, ⊥̇, >̇〉, which inherits the lattice structure of 〈A,v〉 in a component-
wise manner. There are also transfer functions for expressions A′[[e]] : (A→ P)Kψ
and for statements A[[s]] : (A→ A)Kψ . Functions A′[[e]] and A[[s]] for most of the
cases are defined as in Fig. 2. There are two exceptions. First, we need a way of
turning values into properties, which is specified by a function: absZ : Z → P.
Thus, the rule for constants n becomes: A′[[n]] = λa.

∏
k∈Kψ absZ(n). Second,

for each (binary) operator ⊕, we assume that there is a corresponding abstract
operator ⊕̂ : P× P→ P, which describes how the operator is defined on values
from P. Note that for the constant propagation analysis the function absZ is the
identity, i.e, absZ(n) = n for n ∈ Z, whereas operators ⊕̂ are defined in Eq. (2).

Example 7.1. The detection sign analysis is based on the property domain:
〈Sign,vS〉, where Sign = {⊥,>} ∪ {-, +, 0, -\0, 0\+, -\+}, and partial or-
dering vS is defined as [23]: 0 vS -\0, 0 vS 0\+, etc. The three basic properties
of values are: + which indicates a positive value; 0 which denotes the value zero;
and - which indicates a negative value. The other properties are obtained by
combining the basic ones during the analysis. For example, 0\+ means that a
value is always zero or positive. The property of the constant n is determined by:

absZ(n) =


+ if n > 0
0 if n = 0
- if n < 0

For each operator ⊕, we have the corresponding operator ⊕̂ defined on properties
from Sign [23]. For example, we have (+)+̂(-) = >, (+)+̂(0) = +, etc. �

30

Now, we want to derive generalized definitions for D′α[[e]] : (A → P)α(Kψ)

and Dα[[s]] : (A→ A)α(Kψ), that will hold for any analysis not only for constant
propagation as in Fig. 3. For this aim, we need to repeat derivations for all
language constructs described in Section 5 for constant propagation. However,
all derivations, except those for constants n and binary operations e0 ⊕ e1, are
the same as before since their lifted analysis functions A′[[e]] and A[[s]] are as in
Fig. 2. So, for those constructs we obtain the same definitions as in Fig. 3.

We now consider derivation steps of D′α for constants n and binary operations
e0 ⊕ e1 for any analysis. First, by induction on the structure of α, we can show
that: α(

∏
k∈K absZ(n)) =

∏
k′∈α(K) absZ(n) for any α ∈ Abs. Then we obtain

D′α[[n]]d =
∏
k′∈α(Kψ) absZ(n) by the following derivation:

(α ◦ A′[[n]] ◦ γ)(d) = α(A′[[n]](γ(d))) (by def. of ◦)

= α(
∏
k∈Kψ

absZ(n)) =
∏

k′∈α(Kψ)

absZ(n) = D′α[[n]]d

(by def. of A′[[n]] and above observation)

Derivation for D′α[[e0 ⊕ e1]] proceeds as for constant propagation in Section 5,
but now we need to show that the result corresponding to Lemma 5.2 holds
for any vectors v1, v2 ∈ PKψ and any α ∈ Abs, i.e. α(v1

˙̂⊕ v2) v̇ α(v1) ˙̂⊕ α(v2).
This can be proved by induction on the structure of α similarly as in Lemma 5.2,
by using the properties of t and ⊕̂ defined on values from P.

Again, the soundness of the general abstracted analysis (i.e. the result cor-
responding to Theorem 5.1) follows by construction. Following the same proof
methodology, we can prove that the result corresponding to Theorem 6.1 holds
for any lifted analysis phrased in the abstract interpretation framework.

8. Evaluation

We now evaluate our technique for speeding up lifted analyses using variability
abstractions on several case studies. The evaluation aims to show that we can
use abstracted lifted analyses to successfully analyze realistic program families.
To do so, we ask the following research questions:

RQ1: How efficient are the abstracted lifted analyses compared to the other
approaches for analyzing program families, such as lifted analyses and
lifted analyses with sharing?

RQ2: Can the abstracted lifted analyses turn some previously infeasible lifted
analyses of program families into feasible ones?

RQ3: How precise are the abstracted lifted analyses? In particular, can we
practically use the obtained results from abstracted lifted analyses?

31

8.1. Experimental Setup
For our experiments, we use an existing implementation of lifted data-flow

analyses for Java SPLs [9]. The implementation is based on SOOT’s intra-
procedural data-flow analysis framework [34] for analyzing Java programs. It
uses the Eclipse plug-in CIDE (Colored IDE) [35] to annotate statements us-
ing background colors rather than #ifdef directives. Every feature is thus
associated with a unique color. The experiments are executed on a 64-bit
IntelrCoreTM i5 CPU with 8 GB memory. All times are reported as average
over ten runs with the highest and lowest number removed. The implementation,
benchmarks, and all results obtained from our experiments are available from:
https://aleksdimovski.github.io/var-abs.html.

Client analyses. For our experiment, we have chosen three client analyses:
reaching definitions, uninitialized variables, and interval analysis, for which we
derived the corresponding definitions of abstracted lifted analysis. The reaching
definitions analysis computes for every program point those assignments that
may have defined the current values of variables. The analysis domain is the
powerset of all assignments occurring in the method. The uninitialized variables
analysis computes for every program point the set of variables that is possibly
uninitialized, thus the analysis domain is the powerset of variables occurring in
the method. The interval analysis computes for every variable a lower and an
upper bound for its possible values at each program point. The basic properties
are of the form [l, h], where l ∈ Z32 ∪ {−∞}, h ∈ Z32 ∪ {+∞}, l ≤ h, and Z32
is the finite set of 32-bit integers. The coarsest property is > = [−∞,+∞],
whereas ⊥ is the empty interval. Since the interval analysis is defined over finite
32-bit integers, the property domain has finite height. However, we still use a
widening operator to accelerate the convergence of the least fixed points (lfp),
since a widening can lead to an over-approximation of the lfp in a few steps
while classical Kleene iterations may converge to the lfp after a long time. We
have implemented the so-called delayed widening by counting the times a node
was visited, and then once a given threshold of visiting a state has been reached
we apply a widening operator. The widening operator w works relatively to a
fixed finite subset B of integers which includes 0, −∞, +∞ and all constants
that occur in the method to be analyzed [30, 23]. We use the following definition:
w([l, h]) = [max{i ∈ B | i ≤ l},min{i ∈ B | i ≥ h}].

Types of lifted analyses. We will consider an unoptimized lifted intra-procedural
analysis, known as A2 (from [9]), that uses |Kψ|-sized tuples of analysis infor-
mation, one analysis value per configuration. Also, we consider A3 (from [9])
which is the same lifted analysis as A2, but with improved representation via
sharing analysis-equivalent configurations using a high-performance bit vector
library [36]. So A3 is an optimized version of A2 where shared representation
is used for representing sets of configurations (i.e. components of tuples) with
equivalent analysis information. For example, the result of applying a lifted
(constant propagation) analysis with sharing, A3, to a simple program family

32

with configurations Ktrue = {A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B} is:

(
[[true]] 7→ [x 7→0]

) A[[#if (A) x++]]7−→
(
[[A]] 7→ [x 7→1], [[¬A]] 7→ [x 7→0]

) A[[#if (B) x++]]7−→(
[[A ∧B]] 7→ [x 7→2], [[(A ∧ ¬B) ∨ (¬A ∧B)]] 7→ [x 7→1], [[¬A ∧ ¬B]] 7→ [x 7→0]

)
Initially, all configurations, [[true]] = {A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B}, may
be shared as they all have equivalent analysis information, that is [x 7→ 0],
associated with them. Then as the flow of control passes #if statements the
configuration space is slowly split up into more and more equivalence classes,
i.e. sets of analysis-equivalent configurations (e.g. [[A]] = {A ∧ B,A ∧ ¬B},
[[¬A]] = {¬A ∧B,¬A ∧ ¬B}). Note that A2 corresponds to A in Figure 2 and
we will refer to it as A, while we will use S for the analysis with sharing.

The performance of abstracted analyses depends on the size of tuples they
work on. Therefore as variability abstractions, we have chosen Dαjoin which
joins together (confounds) information from all configurations down to just one
abstracted analysis value, and Dαproj

N/2⊗αjoin
N/2

(where N = |Kψ|) which is a parallel
composition of a projection of 1/2 (randomly selected) configurations and a join
of the remaining 1/2 configurations. We abbreviate them as D1 and DN/2 in
the following. In our experiments, we will also use an optimized version of DN/2
with sharing, which will be referred to as SN/2. We have chosen those variability
abstractions because they represent the coarsest abstraction D1 that works on
1-sized tuples, and the medium abstraction DN/2 that works on N/2-sized tuples.
Any other abstraction will have a speed up anywhere between A (no abstraction,
which works on N -sized tuples), DN/2 (medium abstraction) and D1 (maximum
abstraction). It thus quantifies the potential of abstractions.

Solution of an analysis. Each analysis uses a control flow graph (CFG), in which
nodes correspond to program points and edges represent possible flow of control,
and a lattice with finite height, which represents the analysis domain. The
analysis then runs a fixed-point algorithm to compute the unique least solution
which to every node in the CFG assigns an element from the analysis domain.

Benchmarks. We use three SPL benchmarks [35]: Graph PL (GPL) is a small
desktop application with intensive feature usage; Prevayler is a slightly larger
product line with low feature usage; and BerkelyDB is a larger database library
with moderate feature usage. Table 1 summarises relevant characteristics for
each benchmark: the average number of valid configurations in all methods in
the SPL, the total number of features in the entire SPL, the total number of
lines of code (LOC). Also, for each SPL, the figure details information about the
method with the highest variability (most configurations): its number of valid
configurations, features, and lines of code.
8.2. Performance

Figure 5 shows the time it takes to run the methods with maximum vari-
ability: Prevayler::publisher(), BerkeleyDB::main(), GPL::display(), as

33

Table 1: Characteristics of our three SPL benchmarks (average #configurations N in all
methods in SPL, total #features, and LOC) along with, for each SPL, its method with
maximum variability (#configurations N , local #features, and LOC).

Benchmark avg. |Kψ | |F| LOC max var. method |Kψ | |F| LOC
GPL 3.9 18 1,350 Vertex.display() 106 9 31
BerkelyDB 1.6 42 84,000 DBRunAction.main() 40 7 165
Prevayler 1.3 5 8,000 P’F’.publisher() 8 3 10

a relative comparison between A (baseline) and S (baseline with sharing) vs DN/2
(medium abstraction), SN/2 (medium abstraction with sharing) and D1 (maxi-
mum abstraction). Note that for interval analysis we evaluate Prevayler::read()
with N = 2 configurations, since the method publisher() does not have integer
variables. For each benchmark method, we give the speed up factor relative to
the baseline (normalized with factor 1) and the number of configurations, N.

Our experiment confirms previous results that sharing is indeed effective and
especially so for larger values of N [9]. On our methods, it translates to speed ups
(i.e. A vs S) anywhere between 3% faster for N=8 and slightly more than three
times faster for N=106. We also observe that abstraction is not surprisingly
significantly faster than unabstracted analyses (i.e. DN/2 and D1 vs A and S);
i.e. abstraction yields significant performance gains, especially for benchmarks
with higher variability. For GPL with N=106, we see a dramatic 72, 47 and
28 times speed up depending on the analysis (i.e. D1 vs A). Also, we note
that increased abstraction is up to 26 times faster than improved representation
(i.e. D1 vs S). In general, it is obviously possible to combine the benefits from
representation and abstraction to yield even more efficient analyses. For example,
we observe that medium abstraction with sharing SN/2 is always faster than
the corresponding version without sharing DN/2. On the other hand, since D1
collapses information onto only one abstracted value, sharing will, of course, not
help for this abstraction (addresses RQ1).

8.3. Taming Combinatorial Blow-up of Configurations
For very large values of N = |Kψ|, the lifted analysis (even with sharing) may

become impractically slow or even infeasible since the properties and transfer
functions are N -sized tuples. In that case, we can use variability abstractions to
reduce the configuration space, and thus obtain an approximate, but feasible
(faster) lifted analysis.

As an experiment, we have tested the limits of family-based analysis A. We
took a large method, processFile() from BerkeleyDB, and we have gradually
added unconstrained variability into it. This was done by adding optional features
and by sequentially composing #if statements guarded by all existing features.
Already for N=213=8,192 configurations, the analysis A took 138 seconds. For
N=214=16,384, it ran more than ten minutes until it eventually produced an out-
of-memory error. In contrast, variability abstraction D1 analyses the same high
variability method in less than 8 ms (albeit less precisely). Hence, abstraction

34

0

10

20

30

40

50

A S
1.8x

DN/2
1.7x

SN/2
3x

D147x

ms

0

5

10

15

20

A S
2.2x

DN/2
1.9x

SN/2
3.1x

D128x

0

40

80

120

A S
3x

DN/2
1.8x

SN/2
5.3x

D172x
GPL::display()

N=106

0

50

100

150

A S
1.2x

DN/2
2.0x

SN/2
2.2x

D124x

ms

0

5

10

15

20

A S
1.2x

DN/2
1.9x

SN/2
2.1x

D112x

0

150

300

450

600

A S
2.1x

DN/2
2.2x

SN/2
5.9x

D177x
BerkeleyDB::main()

N=40

0

50

100

150

200

A S
1.0x

DN/2
1.5x

SN/2
1.5x

D12.7x

µs

0

50

100

150

200

250

A S
1.2x

DN/2
1.6x

SN/2
1.8x

D12.8x

0

50

100

150

200

250

A S
1.3x

D12x
Prevayler::publ’ N=8

(Prevayler::read() N=2)

Figure 5: Analysis time for reaching definitions (above), uninitialized variables (middle) and
interval analysis (below): A (baseline) and S (baseline with sharing) vs. DN/2 (medium
abstraction), SN/2 (medium abstraction with sharing) and D1 (maximum abstraction).

can not only speed up analyses, but also turn previously infeasible analyses
feasible (addresses RQ2).

In fact, since the maximum (join) abstraction D1 works on 1-size tuples, we
observe that its analysis time is quite close to the single program analysis that
runs on only one valid product from a family. This is illustrated in Figure 6,
where for methods with the highest number of configurations we show the running
times of the maximum abstraction D1 and the average duration of all single
program analyses that take one valid product from an SPL at a time (addresses
RQ1 and RQ2).

8.4. Precision-Speed Tradeoff
Figure 7 illustrates the tradeoff between precision and speed as a function of

increasingly coarser abstractions. Information loss is quantified by the percentage
of nodes in the CFG for which the solution of a given abstracted analysis is the
same as the baseline analysis A. More specifically, we measure the percentage
of nodes for which an abstracted analysis (e.g. D1) accurately calculates their
analysis results, such that the same analysis results are obtained with the full
lifted analysis A. Note that once a solution for a node is found by an abstracted
analysis, we use the corresponding concretization function to calculate a solution
for each configuration at that node. As a baseline normalized with speed and
precision loss factor 1, we take the analysis A with no abstraction, and hence no

35

0
2
5

D11.17ms
Aaverage
1.05ms

ms

GPL::display()
N=106

0

5

10

D15.05ms
Aaverage
4.95ms

ms

BerkeleyDB::main()
N=40

0

50

100

D165µs
Aaverage
51µs

µs

Prevayler::publisher()
N=8

Figure 6: Performance comparison for reaching definitions analysis: maximum abstraction D1
vs. the average time for single program analysis Aaverage for methods with the highest number
of configurations.

precision loss, which works with N-sized tuples, one per configuration. At the
other extreme, we plot the speed up and precision loss factor for the maximum
abstraction D1 that works on 1-sized tuples. In between, we manufacture
interpolations of the two by abstractions that respectively work with 3

4N-, 1
2N-,

and 1
4N-sized tuples. For instance, we express the first of these, D 3

4N
, as the

parallel composition of a projection of 3/4 (randomly selected) configurations
and a join of the remaining 1/4 configurations.

Note that we use entire SPLs (aggregate of analyzing all methods), rather
than individual methods, because it gives a “smoother profile” (snapshot) of
the tradeoff. Obviously, for lower values of N (e.g., Prevayler), we get less
extreme speed ups and precision loss, but the overall picture looks the same
as for the maximum variability methods (although more continuous; i.e. less
threshold-like).

We see that, as expected, both speed up and precision loss increase with N
and abstraction. Interestingly, we see vertical curves where further abstraction
will increase the speed almost without compromising precision. For example,
the vertical line from DN/2 to DN/4 means that we have only speed ups with
no precision loss. Note that this phenomenon also occurs when considering
individual methods. We take this as an indication that there exists an optimal
abstraction which may be more useful and finer abstractions may not pay off
(addresses RQ3).

For example, for interval analysis we obtain the following results. For GPL, we
analyze 19 methods that contain 33 integer variables occurring in 22,500 CFG
nodes (we consider all possible configurations). The baseline A runs in 231.6 ms
reporting the exact intervals for 15,203 nodes, and there is a precision loss for
7,297 nodes for which the top value > is obtained. On the other hand, DN/2 runs
in 131.1 ms (1.7x speed up) giving accurate results for 9,868 nodes (35% loss);
whereas the coarsest abstraction D1 runs in 26.6 ms (8.7x speed up) reporting
the exact intervals for 4,306 nodes (71.6% loss). For BerkeleyDB, we analyze
1,268 methods that contain 174 integer variables occurring in 1,020,352 CFG
nodes in total. We obtain the following results: A runs in 9,718 ms reporting
the accurate intervals for 687,799 nodes; DN/2 runs in 2,856 ms (3.4x speed up)
with correct results for 668,914 nodes (2.7% loss); and D1 runs in 1,789 ms (5.4x
speed up) reporting the exact intervals for 599,968 nodes (12.7% loss) (addresses
RQ3).

36

speed up

1 2 3 4 5 6

2

3

4

5

6

A
DN/2

DN/4

D1

speed up

1 1.5 2 2.5 3 3.5

2

3

4

5

6

A
DN/2
DN/4

D1

GPL [N=3.9]

speed up

1 1.4 1.8 2.2

1.4

1.8

2.2

A
D 3

4N

DN/2

DN/4

D1

speed up

1 1.2 1.4 1.6

2

3

4

5

6

A

DN/2
DN/4

D1

BerkeleyDB [N=1.6]

speed up

loss
1 1.1 1.2 1.3

1.1

1.2

1.3

A

D 3
4N

DN/2

DN/4

D1

speed up

loss
1 1.1 1.2 1.3

1.1

1.2

1.3

A

D 3
4N

DN/2
DN/4

D1

Prevalyer [N=1.3]

Figure 7: Tradeoff for reaching definitions (above) and interval analysis (below): precision loss
(x-axis) -vs- speed up (y-axis) for various analyses with increasing abstraction.

8.5. Application Scenarios
We now present several interesting application scenarios of using variability

abstractions to efficiently analyse either an entire family or just a single method
by using reaching definitions and interval analysis.

Entire SPL. GPL is a family of classical graph applications with variability
on its representation and algorithms. For instance, the features Directed
and Undirected control whether or not graphs are directed; Weighted and
Unweighted control whether or not the graphs are weighted; and, the features
BFS and DFS control the search algorithm used (breadth-first search or depth-
first search). It is common industrial practice, to ship products with a subset
of configurations, and thereby functionality. Here, we may use projection to
disable features BFS and Undirected, along with any features that only work
on undirected graphs: (Connected, MSTKruskal, and MSTPrim for implementing
connected components and minimum spanning trees algorithms) which can be
obtained from GPL’s feature model, detailing such feature dependencies. With
this projection (abstraction), the configuration space of GPL is reduced from
528 to 370 valid configurations. This, in turn, cuts analysis time of reaching
definitions in half (from 90ms to 49ms). For 123 out of 135 methods, the
abstracted analysis computes the exact same analysis information. For larger
product lines and projections, lots of time may be saved in this way (addresses
RQ1 and RQ3).

Reaching definitions. Figure 8a shows a fragment taken from BerkeleyDB’s
main() method with N=40 valid configurations. A local variable, doAction,

37

void main(..) {
1 .. int doAction = 0; ..
2 #ifdef Cleaner
3 if (..) doAction = CLEAN;
4 #endif
5 #ifdef INCompresser
6 if (..) doAction = COMPRESS;
7 #endif
8 if (..) doAction = CHECKPOINT;
9 #ifdef Statistics
10 if (..) doAction = DBSTATS;
11 #endif
12 ..switch (doAction) {..}..
}

(a) Code extracted from
BerkeleyDB::main() [N=40].

void main(..) {
1 .. int numEdges = 10, j=0;
2 int[] startVertices = new int[numEdges];
3 #ifdef Prog
4 for (int i=0; i<numEdges; i++) {
5 startVertices[i]=i;
6 #ifdef Transpose
7 j- -;
8 #endif
9 }
10 #endif
11 ..startVertices[j]=0;..
}

(b) Code extracted from GPL::main()
[N=4].

Figure 8: Application scenarios for reaching definitions and interval analysis.

is defined and initialized to zero, after which it is conditionally assigned three
times in statements guarded by #ifdefs. (Actually, there are two more similar
#ifdefs involving features Evictor and DeleteOp, but we have omitted those
for brevity in the code fragment.) We can use a join abstraction of the reaching
definitions analysis to compute what are the possible values (definitions) that
reach the condition of the switch statement in line 12. An abstracted analysis
would be able to determine that these are the assignments in lines 1, 3, 6, 8, and
10, by analyzing only one crudely over-approximated configuration instead of all
(N=40) configurations. In general, by inspecting the structure of the code and
the features used, we can tailor abstactions that can analyze individual methods
much faster than analyzing all configurations (addresses RQ3).

Interval analysis. Figure 8b shows a (slightly modified) fragment ex-
tracted from GPL’s main() method with N=4 configurations. First, local vari-
ables, numEdges and j, and an array, startVertices, are defined and initialized.
Then, the array startVertices is conditionally updated in a for loop, and in
each iteration the local j is also conditionally decreased. We want to establish
the range of possible values of j in line 11 in order to check if there is an
array out-of-bounds access. If the features Prog and Transpose are both on,
then the widening operator will make j mapped to [−∞, 0] at line 11. That
is found, for example, by visiting 2 times the node at line 7 and calculating
w([−2, 0]) = [−∞, 0]. Thus, we have an array out-of-bound error at line 11,
since the range of indexes for startVertices is [0, 9]. However, if we use the
abstraction αjoin ◦αproj

¬Transpose, we obtain that j is mapped to [0, 0] at line 11, so
there is no array out-of-bound error for configurations that satisfy ¬Transpose
(addresses RQ3).

8.6. Discussion
We are now ready to answer the research questions RQ1, RQ2, and RQ3 for

our approach. The abstracted lifted analyses outperform the other competitive
(unabstracted) approaches for analyzing program families. We observe significant

38

performance gains (up to maximal 72 times speed up), especially for coarser
abstractions and programs with higher variability (RQ1). The abstracted
lifted analyses can turn some previously infeasible lifted analyses of program
families into feasible ones. We have synthetically generated a program with huge
configuration space (214 = 16, 384), such that the lifted analysis is infeasible for
it but the maximum abstraction analysis runs in only 8 ms (RQ2). We can
find suitable abstracted lifted analyses for which the precision-speed tradeoff is
acceptable, i.e. the speed up of lifted analyses is significant while the precision
loss is small. The optimal abstraction is very useful in practice enabling us to
efficiently and precisely analyze various program families (RQ3).

Threats to validity.. We perform intra-procedural data-flow analysis of relatively
small methods. We have not evaluated our approach for larger real files using
inter-procedural data-flow analysis. However, the focus of variability abstractions
is to combat the configuration space blow-up of program families, not their size.
So we expect to obtain similar or even better results for larger programs.

9. Related Work

We divide our discussion of related work into three categories: comparison
with standard static analysis, lifted static analysis and other lifted techniques.

Comparison with standard static analysis. The standard off-the-shelf static
analyzers based on abstract interpretation [37, 38] can be also used to analyze
program families. In this case, we can use the brute-force strategy to perform
|Kψ| analyses in order to analyze all variants one by one. On the other hand,
the lifted static analyzer A performs one analysis on |Kψ|-sized tuples. Still, the
lifted analyzer brings several advantages compared to the standard analyzers.
First, off-the-shelf analyzers that use brute-force strategy have to preprocess a
given program family, then build the CFG and execute the fixed point algorithm
once for each variant. In contrast, the lifted analysis builds one CFG and
executes the fixed point algorithm once per program family. Second, many
transfer functions act identically for all (or some) valid configurations. Thus
they can be executed efficiently by running them once (or several times), instead
of |Kψ| times. Third, lifted analysis can be improved by using sharing for
representing sets of configurations with the same analysis information. Finally,
as demonstrated in this work we can use variability abstractions as another way
along with sharing to speed up lifted analysis, albeit with some information loss.
However, very often abstracted lifted analyses provide us with sufficiently precise
results. For example, consider the live variables analysis [23]. It determines
which variables may be live at a program point, that is there is a path from the
program point to a use of the variable that does not redefine it. Consider the
program family:

x := 5; y := 1; #ifdef (A) x := 1 #else x := y + 1 #endif

39

The coarsest join abstraction will report that the variable x is not live at the
exit from the first assignment x := 5 for all variants. Therefore, the assignment
x := 5 is redundant and can be eliminated. So in this case, we can successfully
analyze the above code using the coarsest and fastest abstraction.

Lifted static analysis. Brabrand et al. [9] show how to lift any data-flow analysis
from the monotone framework. The obtained lifted data-flow analysis are much
faster than ones based on |Kψ| runs of the naive generate and analyze strategy.
Another efficient implementation of lifted analysis formulated within the IFDS
framework [39] for inter-procedural distributive environments was proposed in
SPLLIFT [10]. It uses binary decision diagrams to represent shared feature
constraints. The authors have found that the running time of analysing all
variants in a family is close to the analysis of a single-program. In such case,
further benefit of applying abstraction, as presented in this paper, is unlikely
to bring any significant improvement. However, notice that the method of
SPLLIFT is limited only to distributive data-flow analysis encoded within the
IFDS framework. Many analyses, including constant propagation and interval,
are not distributive and cannot be expressed in IFDS.

The formal developments in this paper are based on variational abstract
interpretation, a formal methodology for systematic derivation of lifted analyses
for #ifdef-based product lines, proposed in [11]. The method is based on the
calculational approach to abstract interpretation of Cousot [22], applied and
contextualized to product lines. In that work [11], calculations are used to derive
a directly operational lifted analysis which is correct by construction. In the
present paper, we assume that lifted analyses exist (possibly obtained using
the methodology of [11]), and focus on abstracting variability. We devise an
expressive calculus Gva for specifying abstraction operators. Also, all variabil-
ity abstractions specifiable in our calculus are now automatically executable
as source-to-source transformations. Implementing abstractions as program
transformations looks similar to the framework defined in [40] for designing
source-to-source program transformations by abstract interpretation of program
semantics. The proposed calculus Gva brings new variability-aware abstractions
to the calculus suggested by Cousot and Cousot in [41]. The basic operators
defined here are tailored to deal with tuples. For example, the join abstraction
appears in [41] as well, but it is used for abstracting set of sets. On the other
hand, the join abstraction defined here is used for abstracting tuples and it is
applied for deriving abstracted lifted analyses. The approach presented here is
further extended in [42], where a technique for automatic generation of suitable
variability abstractions is presented. It uses a pre-analysis to estimate the impact
of variability-specific parts of the program family on the ultimate analysis’s
precision. The obtained results from running the pre-analysis are then used for
constructing a suitable abstracted lifted analysis.

A good collection of analyses that have been lifted manually is presented in
the survey [6]. Besides the family-based (lifted) strategy, the survey [6] identifies
a sampling strategy as a suitable way of analyzing product lines (see also [43]).
In the sampling strategy, only a random subset of products is analyzed. We

40

remark that once the sample is selected, our projection operator αproj
ϕ can be

used to realize the sampling strategy in a simultaneous way by exploiting an
existing family-based analysis. In fact, the abstraction specification framework
of Section 4 allows specifying any analysis in the spectrum between a fully family-
based analyses, and a single variant (single product-based) analysis described in
[6]. We can specify abstractions that select (sample) any subsets of configurations
and then analyze this subset with selected choice of precision, either all variants
precisely, like in sampling, or confounding some executions for efficiency. In this
sense, we show how to design analyses placed anywhere in the design spectrum
painted in [6]. Consider the feature-based analysis strategy as an example. In this
strategy an analysis explores the program code feature-by-feature (as opposed
to configuration-by-configuration). Analyses following this strategy can now be
systematically obtained using our abstractions, by projecting away (ignoring)
all but one feature and running a single program analysis on the result. This is
quite remarkable. It has been well recognized that designing such analyses is
very difficult, yet now there exists a systematic way of doing that, so it is no
longer an impenetrable art.

Other lifted techniques. Various lifted techniques have been proposed which lift
existing single-program verification techniques to work on the level of program
families. TypeChef [44] and SuperC [45] are variability-aware parsers, which
can parse languages with preprocessor annotations thus producing ASTs with
variability nodes. The difference between these two approaches is that feature
expressions are represented as formulae in TypeChef, and as BDD’s in SuperC.
Several approaches have been proposed for type checking program families di-
rectly. In particular, lifted type checking for Featherweight Java was presented in
[7], whereas variational lambda calculus was studied in [8]. Recently, researchers
have introduced lifted model checking [12, 13] for verifying variability intensive
systems. The method works at the family level and thus does not explicitly
check all products one by one. In particular, transition systems enriched with
features are used for compact modelling of variability-intensive systems, where
system parts that vary are annotated using features. The SNIP, a specifically
designed family-based model checker, is implemented for efficient verification of
temporal properties of such systems. The input language to this tool is fPromela,
which is a feature-aware extension of the well-known SPIN’s language Promela.
In [19, 20], we describe how variability abstractions can be successfully applied
in the context of lifted model checking as opposed to lifted static analysis. This
allows to efficiently verify some interesting properties of variability intensive
systems by only a few calls to an off-the-shelf (single-system) model checker, such
as SPIN. An automatic abstraction refinement procedure for family-based model
checking is then proposed in [46], which works until a genuine counterexample is
found or the property satisfaction is shown for all variants in the family. The
application of variability abstractions for verifying real-time variational systems
is described in [21]. In [14, 15], specifically designed family-based model checking
algorithms are used for verifying symbolic game semantics models [47, 48] ex-
tracted from open second-order programs with #ifdef-s that contain undefined

41

components.

10. Conclusion

We have defined variability-aware abstractions given as Galois connections,
and used them to derive efficient and correct-by-construction abstract analyses
of program families. We have designed a calculus for the abstractions, and shown
how abstractions specified in this language can be applied not only on analyses,
but also on programs, obtaining a convenient implementation strategy of the
abstractions in form of a source-to-source reconfigurator transformation.

We have proved the main results (Theorem 5.1 and Theorem 6.1) for constant
propagation analysis and extracted a general proof methodology that holds for
any other monotone and computable analysis that can be lifted. We have derived
the abstracted definition of #if with the lowest precision. Improvements of the
precision are possible once the analysis is known.

We evaluated the method on three Java-based product lines. We found that
the abstractions improve performance of analyses independently of improvements
in the data representations used in the implementations of these analyses. This
indicates that the proposed abstraction strategies will be instrumental in tackling
error finding analysis in large configurable software systems, like the Linux kernel.
Indeed we have developed these techniques with the intention of scaling error
finding tools to such challenging cases in future. Besides this, we would like to
experiment with applying these abstraction techniques to alternative quality
assurance methods including model checking, and testing.

References

[1] P. Clements, L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley, 2001.

[2] T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki, A study of
variability models and languages in the systems software domain, IEEE
Trans. Software Eng. 39 (12) (2013) 1611–1640. doi:10.1109/TSE.2013.34.
URL http://dx.doi.org/10.1109/TSE.2013.34

[3] T. Berger, R. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wasowski,
S. She, Variability mechanisms in software ecosystems, Information &
Software Technology 56 (11) (2014) 1520–1535. doi:10.1016/j.infsof.
2014.05.005.
URL http://dx.doi.org/10.1016/j.infsof.2014.05.005

[4] H. V. Nguyen, C. Kästner, T. N. Nguyen, Exploring variability-aware
execution for testing plugin-based web applications, in: 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31
- June 07, 2014, 2014, pp. 907–918. doi:10.1145/2568225.2568300.
URL http://doi.acm.org/10.1145/2568225.2568300

42

http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1109/TSE.2013.34
http://dx.doi.org/10.1016/j.infsof.2014.05.005
http://dx.doi.org/10.1016/j.infsof.2014.05.005
http://dx.doi.org/10.1016/j.infsof.2014.05.005
http://dx.doi.org/10.1016/j.infsof.2014.05.005
http://doi.acm.org/10.1145/2568225.2568300
http://doi.acm.org/10.1145/2568225.2568300
http://dx.doi.org/10.1145/2568225.2568300
http://doi.acm.org/10.1145/2568225.2568300

[5] C. Kästner, S. Apel, M. Kuhlemann, Granularity in software product lines,
in: 30th International Conference on Software Engineering (ICSE 2008),
ACM, 2008, pp. 311–320. doi:10.1145/1368088.1368131.
URL http://doi.acm.org/10.1145/1368088.1368131

[6] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A classification and
survey of analysis strategies for software product lines, ACM Comput. Surv.
47 (1) (2014) 6:1–6:45.

[7] C. Kästner, S. Apel, T. Thüm, G. Saake, Type checking annotation-based
product lines, ACM Trans. Softw. Eng. Methodol. 21 (3) (2012) 14:1–14:39.
doi:10.1145/2211616.2211617.
URL http://doi.acm.org/10.1145/2211616.2211617

[8] S. Chen, M. Erwig, E. Walkingshaw, An error-tolerant type system for
variational lambda calculus, in: ACM SIGPLAN International Conference
on Functional Programming, ICFP’12, 2012, pp. 29–40. doi:10.1145/
2364527.2364535.
URL http://doi.acm.org/10.1145/2364527.2364535

[9] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, P. Borba, Intraprocedural
dataflow analysis for software product lines, Trans. Aspect-Oriented Software
Development 10 (2013) 73–108. doi:10.1007/978-3-642-36964-3_3.
URL https://doi.org/10.1007/978-3-642-36964-3_3

[10] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, M. Mezini,
Spllift: statically analyzing software product lines in minutes instead of
years, in: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, ACM, 2013, pp. 355–364. doi:10.1145/
2491956.2491976.
URL http://doi.acm.org/10.1145/2491956.2491976

[11] J. Midtgaard, A. S. Dimovski, C. Brabrand, A. Wasowski, Systematic deriva-
tion of correct variability-aware program analyses, Sci. Comput. Program.
105 (2015) 145–170. doi:10.1016/j.scico.2014.10.002.
URL http://dx.doi:10.1016/j.scico.2015.04.005

[12] A. Classen, M. Cordy, P. Heymans, A. Legay, P. Schobbens, Model checking
software product lines with SNIP, STTT 14 (5) (2012) 589–612. doi:
10.1007/s10009-012-0234-1.
URL http://dx.doi.org/10.1007/s10009-012-0234-1

[13] A. Classen, P. Heymans, P. Schobbens, A. Legay, Symbolic model checking of
software product lines, in: Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011, ACM, 2011, pp. 321–330. doi:10.
1145/1985793.1985838.
URL http://doi.acm.org/10.1145/1985793.1985838

43

http://doi.acm.org/10.1145/1368088.1368131
http://dx.doi.org/10.1145/1368088.1368131
http://doi.acm.org/10.1145/1368088.1368131
http://doi.acm.org/10.1145/2211616.2211617
http://doi.acm.org/10.1145/2211616.2211617
http://dx.doi.org/10.1145/2211616.2211617
http://doi.acm.org/10.1145/2211616.2211617
http://doi.acm.org/10.1145/2364527.2364535
http://doi.acm.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2364527.2364535
http://dx.doi.org/10.1145/2364527.2364535
http://doi.acm.org/10.1145/2364527.2364535
https://doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1007/978-3-642-36964-3_3
http://dx.doi.org/10.1007/978-3-642-36964-3_3
https://doi.org/10.1007/978-3-642-36964-3_3
http://doi.acm.org/10.1145/2491956.2491976
http://doi.acm.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976
http://doi.acm.org/10.1145/2491956.2491976
http://dx.doi:10.1016/j.scico.2015.04.005
http://dx.doi:10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1016/j.scico.2014.10.002
http://dx.doi:10.1016/j.scico.2015.04.005
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1007/s10009-012-0234-1
http://doi.acm.org/10.1145/1985793.1985838
http://doi.acm.org/10.1145/1985793.1985838
http://dx.doi.org/10.1145/1985793.1985838
http://dx.doi.org/10.1145/1985793.1985838
http://doi.acm.org/10.1145/1985793.1985838

[14] A. S. Dimovski, Symbolic game semantics for model checking program
families, in: Model Checking Software - 23rd International Symposium,
SPIN 2016, Proceedings, Vol. 9641 of LNCS, Springer, 2016, pp. 19–37.
doi:10.1007/978-3-319-32582-8_2.
URL https://doi.org/10.1007/978-3-319-32582-8_2

[15] A. S. Dimovski, Verifying annotated program families using sym-
bolic game semantics, Theor. Comput. Sci. 706 (2018) 35–53.
doi:10.1016/j.tcs.2017.09.029.
URL http://www.sciencedirect.com/science/article/pii/
S0304397517306977

[16] A. F. Iosif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, A. Wasowski,
Effective analysis of c programs by rewriting variability, Programming
Journal 1 (1) (2017) 1. doi:10.22152/programming-journal.org/2017/
1/1.
URL https://doi.org/10.22152/programming-journal.org/2017/1/1

[17] A. von Rhein, T. Thüm, I. Schaefer, J. Liebig, S. Apel, Variability encoding:
From compile-time to load-time variability, J. Log. Algebr. Meth. Program.
85 (1) (2016) 125–145. doi:10.1016/j.jlamp.2015.06.007.
URL http://dx.doi.org/10.1016/j.jlamp.2015.06.007

[18] A. F. Iosif-Lazar, A. S. Al-Sibahi, A. S. Dimovski, J. E. Savolainen,
K. Sierszecki, A. Wasowski, Experiences from designing and validating
a software modernization transformation (E), in: 30th IEEE/ACM Int.
Conf. on Automated Software Engineering, ASE 2015, 2015, pp. 597–607.
doi:10.1109/ASE.2015.84.
URL http://dx.doi.org/10.1109/ASE.2015.84

[19] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, A. Wasowski, Family-
based model checking without a family-based model checker, in: Model
Checking Software - 22nd International Symposium, SPIN 2015, Proceed-
ings, Vol. 9232 of LNCS, Springer, 2015, pp. 282–299. doi:10.1007/
978-3-319-23404-5_18.
URL http://dx.doi.org/10.1007/978-3-319-23404-5_18

[20] A. Dimovski, A. S. Al-Sibahi, C. Brabrand, A. Wasowski, Efficient family-
based model checking via variability abstractions, STTT 19 (5) (2017)
585–603. doi:10.1007/s10009-016-0425-2.
URL https://doi.org/10.1007/s10009-016-0425-2

[21] A. S. Dimovski, A. Wasowski, From transition systems to variability models
and from lifted model checking back to UPPAAL, in: Models, Algorithms,
Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen on the
Occasion of His 60th Birthday, Vol. 10460 of LNCS, Springer, 2017, pp.
249–268. doi:10.1007/978-3-319-63121-9_13.
URL https://doi.org/10.1007/978-3-319-63121-9_13

44

https://doi.org/10.1007/978-3-319-32582-8_2
https://doi.org/10.1007/978-3-319-32582-8_2
http://dx.doi.org/10.1007/978-3-319-32582-8_2
https://doi.org/10.1007/978-3-319-32582-8_2
http://www.sciencedirect.com/science/article/pii/S0304397517306977
http://www.sciencedirect.com/science/article/pii/S0304397517306977
http://dx.doi.org/10.1016/j.tcs.2017.09.029
http://www.sciencedirect.com/science/article/pii/S0304397517306977
http://www.sciencedirect.com/science/article/pii/S0304397517306977
https://doi.org/10.22152/programming-journal.org/2017/1/1
http://dx.doi.org/10.22152/programming-journal.org/2017/1/1
http://dx.doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://dx.doi.org/10.1016/j.jlamp.2015.06.007
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1109/ASE.2015.84
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
http://dx.doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13

[22] P. Cousot, The calculational design of a generic abstract interpreter, in:
M. Broy, R. Steinbrüggen (Eds.), Calculational System Design, NATO ASI
Series F. IOS Press, Amsterdam, 1999, pp. 1–88.

[23] F. Nielson, H. R. Nielson, C. Hankin, Principles of Program Analysis,
Springer-Verlag, Secaucus, USA, 1999.

[24] A. S. Dimovski, C. Brabrand, A. Wasowski, Variability abstractions: Trading
precision for speed in family-based analyses, in: 29th European Conference
on Object-Oriented Programming, ECOOP 2015, Vol. 37 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 247–270. doi:
10.4230/LIPIcs.ECOOP.2015.247.
URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247

[25] J. Choi, Programming in the large for the internet of things (invited talk),
in: 29th European Conference on Object-Oriented Programming, ECOOP
2015, 2015, pp. 2–2. doi:10.4230/LIPIcs.ECOOP.2015.2.
URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.2

[26] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
Oriented Domain Analysis (FODA) feasibility study, Tech. rep., Carnegie-
Mellon University Software Engineering Institute (November 1990).

[27] D. S. Batory, Feature models, grammars, and propositional formulas, in:
Software Product Lines, 9th International Conference, SPLC 2005, Proceed-
ings, Vol. 3714 of LNCS, Springer, 2005, pp. 7–20. doi:10.1007/11554844_
3.
URL https://doi.org/10.1007/11554844_3

[28] G. Winskel, The Formal Semantics of Programming Languages, Foundation
of Computing Series, The MIT Press, 1993.

[29] A. Garrido, R. E. Johnson, Refactoring C with conditional compilation, in:
18th IEEE International Conference on Automated Software Engineering
(ASE 2003), 6-10 October 2003, Montreal, Canada, 2003, pp. 323–326.
doi:10.1109/ASE.2003.1240330.
URL http://doi.ieeecomputersociety.org/10.1109/ASE.2003.
1240330

[30] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints,
in: Conference Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, 1977, pp. 238–252. doi:10.1145/512950.512973.
URL http://doi.acm.org/10.1145/512950.512973

[31] P. Cousot, R. Cousot, Abstract interpretation and application to logic
programs, J. Log. Program. 13 (2–3) (1992) 103–179.

45

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.247
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.2
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.2
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.2
https://doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844_3
http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240330
http://dx.doi.org/10.1109/ASE.2003.1240330
http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240330
http://doi.ieeecomputersociety.org/10.1109/ASE.2003.1240330
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973

[32] P. Cousot, R. Cousot, Systematic design of program analysis frameworks,
in: 6th Annual ACM Symposium on Principles of Programming Languages,
POPL ’79, 1979, pp. 269–282. doi:10.1145/567752.567778.
URL http://doi.acm.org/10.1145/567752.567778

[33] A. S. Dimovski, C. Brabrand, A. Wasowski, Variability abstractions: Trading
precision for speed in family-based analyses (extended version), CoRR
abs/1503.04608 (2015) 1–50.
URL http://arxiv.org/abs/1503.04608

[34] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, V. Sundaresan,
Soot - a java bytecode optimization framework, in: Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative Research,
1999, p. 13.

[35] C. Kästner, Virtual separation of concerns: Toward preprocessors 2.0, Ph.D.
thesis, University of Magdeburg, Germany (May 2010).

[36] The colt project: Open source libraries for high performance scientific and
technical computing in java, cERN: European Organization for Nuclear
Research.
URL http://acs.lbl.gov/software/colt/

[37] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
X. Rival, Combination of abstractions in the astrée static analyzer, in:
Advances in Computer Science - ASIAN 2006. Secure Software and Related
Issues, 11th Asian Computing Science Conference, Vol. 4435 of LNCS,
Springer, 2006, pp. 272–300. doi:10.1007/978-3-540-77505-8_23.
URL https://doi.org/10.1007/978-3-540-77505-8_23

[38] J. Henry, D. Monniaux, M. Moy, PAGAI: A path sensitive static analyser,
Electr. Notes Theor. Comput. Sci. 289 (2012) 15–25. doi:10.1016/j.entcs.
2012.11.003.
URL https://doi.org/10.1016/j.entcs.2012.11.003

[39] T. W. Reps, S. Horwitz, S. Sagiv, Precise interprocedural dataflow analysis
via graph reachability, in: Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, California, USA, January 23-25, 1995, ACM Press, 1995, pp.
49–61. doi:10.1145/199448.199462.
URL http://doi.acm.org/10.1145/199448.199462

[40] P. Cousot, R. Cousot, Systematic design of program transformation frame-
works by abstract interpretation, in: 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’02, 2002, pp. 178–190.
doi:10.1145/503272.503290.
URL http://doi.acm.org/10.1145/503272.503290

46

http://doi.acm.org/10.1145/567752.567778
http://dx.doi.org/10.1145/567752.567778
http://doi.acm.org/10.1145/567752.567778
http://arxiv.org/abs/1503.04608
http://arxiv.org/abs/1503.04608
http://arxiv.org/abs/1503.04608
http://acs.lbl.gov/software/colt/
http://acs.lbl.gov/software/colt/
http://acs.lbl.gov/software/colt/
https://doi.org/10.1007/978-3-540-77505-8_23
http://dx.doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1007/978-3-540-77505-8_23
https://doi.org/10.1016/j.entcs.2012.11.003
http://dx.doi.org/10.1016/j.entcs.2012.11.003
http://dx.doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1016/j.entcs.2012.11.003
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://dx.doi.org/10.1145/199448.199462
http://doi.acm.org/10.1145/199448.199462
http://doi.acm.org/10.1145/503272.503290
http://doi.acm.org/10.1145/503272.503290
http://dx.doi.org/10.1145/503272.503290
http://doi.acm.org/10.1145/503272.503290

[41] P. Cousot, R. Cousot, A galois connection calculus for abstract interpre-
tation, in: The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, 2014, pp. 3–4. doi:10.1145/2535838.2537850.
URL http://doi.acm.org/10.1145/2535838.2537850

[42] A. S. Dimovski, C. Brabrand, A. Wasowski, Finding suitable variability
abstractions for family-based analysis, in: FM 2016: Formal Methods -
21st International Symposium, Proceedings, Vol. 9995 of LNCS, 2016, pp.
217–234. doi:10.1007/978-3-319-48989-6_14.
URL http://dx.doi.org/10.1007/978-3-319-48989-6_14

[43] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, D. Beyer, Strategies
for product-line verification: case studies and experiments, in: 35th Inter-
national Conference on Software Engineering, ICSE ’13, IEEE Computer
Society, 2013, pp. 482–491. doi:10.1109/ICSE.2013.6606594.
URL https://doi.org/10.1109/ICSE.2013.6606594

[44] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, T. Berger,
Variability-aware parsing in the presence of lexical macros and conditional
compilation, in: Proceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, ACM, 2011, pp. 805–824. doi:10.1145/2048066.2048128.
URL http://doi.acm.org/10.1145/2048066.2048128

[45] P. Gazzillo, R. Grimm, Superc: parsing all of C by taming the preprocessor,
in: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, 2012, 2012, pp. 323–334. doi:10.1145/2254064.
2254103.
URL http://doi.acm.org/10.1145/2254064.2254103

[46] A. S. Dimovski, A. Wasowski, Variability-specific abstraction refinement
for family-based model checking, in: Fundamental Approaches to Software
Engineering - 20th International Conference, FASE 2017, Proceedings, Vol.
10202 of LNCS, 2017, pp. 406–423. doi:10.1007/978-3-662-54494-5_24.
URL http://dx.doi.org/10.1007/978-3-662-54494-5_24

[47] A. Dimovski, Program verification using symbolic game semantics, Theor.
Comput. Sci. 560 (2014) 364–379. doi:10.1016/j.tcs.2014.01.016.
URL http://dx.doi.org/10.1016/j.tcs.2014.01.016

[48] A. S. Dimovski, Probabilistic analysis based on symbolic game semantics
and model counting, in: Proceedings Eighth International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2017, Vol.
256 of EPTCS, 2017, pp. 1–15. doi:10.4204/EPTCS.256.1.
URL https://doi.org/10.4204/EPTCS.256.1

47

http://doi.acm.org/10.1145/2535838.2537850
http://doi.acm.org/10.1145/2535838.2537850
http://dx.doi.org/10.1145/2535838.2537850
http://doi.acm.org/10.1145/2535838.2537850
http://dx.doi.org/10.1007/978-3-319-48989-6_14
http://dx.doi.org/10.1007/978-3-319-48989-6_14
http://dx.doi.org/10.1007/978-3-319-48989-6_14
http://dx.doi.org/10.1007/978-3-319-48989-6_14
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1109/ICSE.2013.6606594
http://dx.doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1109/ICSE.2013.6606594
http://doi.acm.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2048066.2048128
http://dx.doi.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2254064.2254103
http://dx.doi.org/10.1145/2254064.2254103
http://dx.doi.org/10.1145/2254064.2254103
http://doi.acm.org/10.1145/2254064.2254103
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1007/978-3-662-54494-5_24
http://dx.doi.org/10.1016/j.tcs.2014.01.016
http://dx.doi.org/10.1016/j.tcs.2014.01.016
http://dx.doi.org/10.1016/j.tcs.2014.01.016
https://doi.org/10.4204/EPTCS.256.1
https://doi.org/10.4204/EPTCS.256.1
http://dx.doi.org/10.4204/EPTCS.256.1
https://doi.org/10.4204/EPTCS.256.1

	Introduction
	Motivation: Application Scenarios for Variability Abstractions
	Background: Family-Based Program Analyses
	A Language for Program Families
	Abstract Interpretation
	Lifted Analysis

	Variability Abstractions
	Basic Abstractions
	Derived Abstractions

	Abstracting Lifted Analyses
	Syntactic Transformations
	A Note On Generalizations
	Evaluation
	Experimental Setup
	Performance
	Taming Combinatorial Blow-up of Configurations
	Precision-Speed Tradeoff
	Application Scenarios
	Discussion

	Related Work
	Conclusion

