
Temporal Walk Based Centrality Metric for Graph Streams
Ferenc Béres

1,2
Róbert Pálovics

3
András A. Benczúr

1

1
Institute for Computer Science and Control of the Hungarian Academy of Sciences

2
Eötvös Loránd University Budapest

3
Stanford University

{beres, benczur}@sztaki.hu, palovics@stanford.edu

ABSTRACT
Centrality measures account for the importance of the nodes of

a network. In the seminal study of Boldi and Vigna (2014), the

comparative evaluation of centrality measures was termed a dif-

ficult, arduous task. In networks with fast dynamics, such as the

Twitter mention or retweet graphs, predicting emerging central-

ity is even more challenging. Our main result is a new, temporal

walk based dynamic centrality measure that models temporal in-

formation propagation by considering the order of edge creation.

This measure outperforms graph snapshot based static and other

recently proposed dynamic centrality measures in assigning the

highest time-aware centrality to the actually relevant nodes of the

network. One of our main contributions is creating a quantitative

experiment to assess temporal centrality metrics. Our data and

codes are publicly available
1
.

1 INTRODUCTION
We present temporal Katz centrality, an online updateable graph
centrality metric for measuring user importance over time. We

consider temporal networks where the edges of the network arrive

continuously in time. In other words the graph is represented as a

sequence of time-stamped edges [20]. Our metric is based on the

concept of time-respecting walks containing a sequence of adjacent

edges ordered in time. As seen in Figure 1, temporal Katz centrality

aggregates each temporal walk ending at node u before time t .
Our new method is a graph algorithm for online machine learn-

ing [5]. Our goal is to reduce the delay caused by collecting data

only for the range of hours to process as a graph snapshot. We pro-

vide online updateability, which poses computational restrictions

and challenges to most centrality measures and graph algorithms.

Although many studies tried to identify the best estimates for

the importance of a social media user, to the best of our knowledge,

there is only one previous study [20] that proposes data stream
updateable centrality measures. However, their algorithm, which

we analyze in Section 3.2, cannot incorporate the actual edge arrival

times in its calculations. We believe our method is superior in

using the exact time of interaction between two social media users,

resulting in better performance in our prediction task.

Another key issue that we address is the difficulty of the timely

evaluation of fast changes in social media. Even a static ground

truth labeling for a static centrality measure requires tedious human

effort. In [6], for example, the Text Retrieval Conference (TREC)

topics are used. In a dynamic graph, depending on time granularity,

the same human data curation may be required in each time step.

For example, in the study most similar to ours [20], only small

temporal social network snapshots are collected, and evaluation is

mostly based on convergence to static centrality measures.

1
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Figure 1: Temporal walks ending at node u before time t .

In our best effort to provide quantitative evaluation for dynamic

centrality, we consider daily granularity and compile ground
truth based on an external source. We collect tweets about Roland-

Garros 2017, the French Open Tennis Tournament (RG17), and

US Open 2017, the United States Open Tennis Tournament (UO17).

We compute both static and dynamic centrality metrics over the

time-aware mention graph that we extract from the tweets. We

define the mention graph by adding a time-stamped edge (u,v, t )
whenever user u mentions v in a tweet at time t . For ground truth,

we consider the Twitter accounts of players participating in daily

rounds as relevant. We then hour by hour investigate how men-

tions of players for the coming day take over the importance of

past participants.

In this paper, we design and evaluate an online updateable, dy-

namic graph centrality measure. Our main contribution is threefold:

(1) We propose a new, online updateable path count based centrality

measure as a temporal variant of the successful Katz index [12].

Our measure incorporates arbitrary time decay functions that can

be adapted to the task in question. (2) We compile a data set with

ground truth labels for the quantitative evaluation of dynamic cen-

trality. Our evaluation is based on our Twitter collection about

tennis tournaments. For centrality ground truth at a given time,

we set the players participating in rounds on given days. (3) We

experiment over Twitter tennis tournament data sets and observe

that our method outperforms the temporal PageRank of [20].

2 RELATED RESULTS
To quantify the popularity of a node, several graph centrality mea-

sures have been proposed [6]. The definitions of centrality vary

greatly and incorporate both global and local factors of a node’s loca-

tion within the network. The high variability of centrality scores re-

flects the nature of popularity observed in real-world networks [17].

Several models have been suggested to explain the emergence of
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high variability, habitually involving some variation of the prefer-

ential attachment mechanism, also extended to the dynamic set-

ting [10].

For temporal networks, a few generalizations of static centrality

measures to dynamic settings have been suggested recently [2, 9,

13, 22, 23]. In these works, tracking centrality of a single node

and determining its variability play a major role [23], as it has

been observed in the literature that centrality of nodes can change

drastically from one time period to another [7].

The above results [2, 9, 13, 22, 23], however, cannot be used for

computing and updating centrality online. The following results

devise methods that are variants of our snapshot baselines: In [23],

the spectrum of a set of discrete graph snapshots is analyzed in

time; however, the spectrum cannot be dynamically updated with

fine time granularity, as required by our application. Similarly,

in [9], sequences of snapshots are considered. Finally, in [2, 13,

22], degree, closeness, and betweenness are considered in dynamic

graphs, but these measures, with the exception of the degree, cannot

be efficiently updated online. Note that online degree, also with

time decay, is compared as a baseline method in our experiments.

In this paper we address a practically important variant of dy-

namic centrality: our goal is to compute online updateable measures

that can be computed from a data stream of time-stamped edges. To

the best of our knowledge, the only previous such algorithms are

temporal PageRank [20] and temporal degree [13]—other measures

are inefficient to update online. We show that our algorithm has bet-

ter performance for assessing centrality in a dynamic graph, which

we explain in Section 3 by showing that we can incorporate tempo-

ral information while keeping dynamic update computational costs

very low. In fact, temporal PageRank is based on PageRank [19],

while our method is based on the Katz index [12], both of which are

shown to have similar theoretical and practical properties by [6].

To our knowledge, temporal PageRank [20] is the only published

work about temporal generalizations of PageRank. Other results

focus on coarse, static snapshots [15], or use temporal information

to calculate edges of a static graph [11, 16]. Finally, another line

of research considers updating PageRank in dynamic or online

scenarios [3, 4, 14, 18, 21]; however, in these results PageRank is

considered a stationary distribution over the current, static graph.

In our experiments, we will show that our temporal Katz centrality

outperforms snapshot-based static measures for assessing node

importance in a temporally changing environment.

3 CENTRALITY MEASURES
Three axioms of centrality are defined in [6]. There is a single mea-

sure, harmonic centrality, that satisfies all three of them. Since the

computation of harmonic centrality for a given node u involves all

the distances from the node u in question, the measure is computa-

tionally challenging even in a static graph.

The starting point of our temporal Katz centrality measure is

PageRank [19], which along with the Katz index satisfies the last

two axioms defined in [6]. The importance of PageRank in our

work has multiple reasons. On the one hand, it is widely used and

has favorable properties by the axioms of [6]. On the other hand,

temporal PageRank [20] is a modification of PageRank, which to

the best of our knowledge is the only temporal ranking metric

proposed in the literature prior to our work.

PageRank, Katz index, and temporal PageRank are all based on

counting paths in the underlying networks. Next, we review the

general properties of the path counting centrality metrics and tem-

poral PageRank [20]. Then in Section 4, we describe our temporal

Katz centrality measure.

3.1 Path counting centrality metrics
As perhaps the first centrality metric based on path counting, Katz

introduced his index [12] as the summation of all paths coming

into a node, but with an exponentially decaying weight based on

the length of the path:

⃗
Katz = 1 ·

∞∑
k=0

βkAk , (1)

where
⃗

Katz is the Katz index vector, A is the directed adjacency

matrix, and β < 1 is a constant. Hence the Katz index of a node

is the weighted sum of the number of paths of different lengths k

terminating in u, where the weight is βk :

⃗
Katz(u) :=

∑
v

∞∑
k=0

βk |{paths of length k from v to u}|, (2)

The Katz index is finite only if β < 1/|λ1 |, where λ1 is the eigenvalue
ofAwith largest absolute value [12]. Since 1/|λ1 | is often very small,

around 0.05 in our graphs, the relative weight of a length two path

stays very small compared to a single edge. In order to be able to

use larger values of β , we introduce the truncated Katz index as

⃗
Katz

[K ]

= 1 ·
K∑
k=0

βkAk . (3)

By the basic definition, PageRank is normally considered to be the

static distribution of a random walk with damping [19]. In order

to compare PageRank and the Katz index, and to motivate online

update rules, we use the result of [8], who show—and use as an

efficient algorithm—that PageRank is equal to the path counting

formula

⃗
PageRank = 1 ·

c

N
·

∞∑
k=0

(1 − c )kMk , (4)

where c is the damping constant andM is the random walk transi-

tion matrix. In other words, M is the outdegree normalized adja-

cency matrix:M = (K−1A)T where K is a diagonal matrix with the

outdegrees in the diagonal.

3.2 Temporal PageRank
In [20], temporal PageRank, a dynamic variant of PageRank, is

defined as follows. In a dynamic graph, edges are time-stamped

and can appear multiple times. The main idea is to aggregate time
respecting temporal walks

z = (u0,u1, t1), (u1,u2, t2), · · · , (uj−1,uj , tj ); ti−1 ≤ ti . (5)

ending in a certain node to compute its temporal centrality. In such

a walk, they model an information flow from the start node u0 to
the destination uj by passing along edges that arrive subsequently

in time.
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Figure 2: Edge weights along a temporal walk at time t .

For each edge (ui−1,ui , ti ) in walk z, they assign the transition

weight as βk , where β < 1 is a decay constant and k is the number

of edges (ui−1,y, t
′) that appear after the previous edge but not

later than the present edge in the walk, that is, ti−1 < t ′ < ti . They
incorporate this weight assignment in formula (4), for full details,

see [20].

Intuitively, their notion of edge transition weight decays expo-

nentially with the number of possible continuations of the temporal

walk at node ui−1. The more edges appear before (ui−1,ui , ti ), in
their model it is exponentially less likely that the information is sent

along the given edge—and not another edge that appears earlier.

The main problem with the above path counting algorithm is

that it overvalues nodes with low activity. Consider a node that

communicates to ten contacts in a few minutes. The tenth contact

will only receive a propagated score proportional to β−10. By con-

trast, if another node sends only one message per day, the neighbor

receives the full score even though the information may already be

highly outdated.

One key motivation of the above definition for temporal Page-

Rank is that it possesses a computationally low cost update al-

gorithm. While it is tempting to modify the weight formula to

incorporate the actual time elapsed, the stream-based computation

of such a modified temporal PageRank becomes unclear.

4 TEMPORAL KATZ CENTRALITY
We define our temporal Katz centrality measure over the stream

of edges arriving in time from a dynamic network. Our goal is to

specify ametric that is based on theweighted sum of time respecting

walks, updateable by the edge stream, and that can incorporate the

actual elapsed time in the weights of the walks.

To motivate our new method, we reconsider the temporal Page-

Rank [20] edge transition weight rule that involves time decay in

an indirect way through a combination with the activity of the

nodes. Hence here the notion of time is difficult to directly capture

as the more time elapses before the next edge appears, the more

other edges have the chance to appear in between.

We define temporal Katz centrality by introducing a natural,

purely time-dependent edge transition weight φ (τ ), which is an

arbitrary function of the time elapsed since the previous edge in

a path. Temporal Katz centrality is the weighted sum of all time

respecting walks that end in node u,

ru (t ) :=
∑
v

∑
temporal paths z

from v to u

Φ(z, t ) (6)

where Φ(z, t ) is the weight of walk z at time t . Truncated temporal

Katz centrality is defined similar to equation (3) by restricting to

walks of length at most K . For a temporal walk as in equation (5)

where edges appeared at (t1, t2, ..., tj ), we define weight Φ(z, t ) as

Φ(z, t ) :=

j∏
i=1

φ (ti+1 − ti ). (7)

where φ is a time-aware weighting function, and for i = j we let
tj+1 := t . Hence Φ(z, t ) is the product of individual edge transition
weights φ (ti+1 − ti ) as seen in Figure 2. The last term of the prod-

uct φ (t − tj ) captures the delay between present time t and the

appearance of the last edge in the path. In other words, temporal

Katz centrality is the variant of the Katz index (1) in which time

respecting paths are weighted by Φ(z, t ). By using different edge

weight functions, we cover two important special cases.

• If φ (τ ) := β is constant, we obtain a variant of the Katz equa-

tion (2) with summation for temporal paths instead of all paths

irrespective of time.

• In another special case, φ (τ ) := β · exp(−cτ ). Since φ is an

exponential function, φ (a) · φ (b) = φ (a + b). Hence the path
weight in (7) becomes

Φ(z, t ) = β exp(−c[t − tj ])...β exp(−c[t2 − t1])

= β |z | exp(−c[t − t1]), (8)

that is, it involves a Katz-style decay proportional to the length

of the path, combined with an exponential decay depending

on the time elapsed since the first interaction t1 over the path
occurred. This weight is capable of capturing the temporal decay

of information spreading and propagation.

Online update. We base our analysis below on the fact that

temporal Katz centrality, which is the sum of all temporal paths tou
can be derived by using the number of temporal paths ending at the

in-edges of u. If edge vu appears at time tvu , the future centrality
of node u at time t increases as (1) a new time respecting walk

appears that starts from v and has weight φ (t − tvu ), (2) for each
time respecting walk that ended in v at tvu , a new walk with the

new edge vu appears. As the total weight of paths that ended in v
is rv (tvu ), by adding up the weight of the two types of new walks

we get

ru (t ) =
∑

vu ∈E (t )

(1 + rv (tvu )) φ (t − tvu ), (9)

where E (t ) is the multi-set of edges appearing no later than t .
Based on the above recursive formula, if edgevu appears at time

tvu , it increases the future centrality of nodeu by (1 + rv (tvu )) φ (t−
tvu ). The increase of the centrality of u can be computed by main-

taining the values tvu and wvu := 1 + rv (tvu ). When edge vu
appears, first we calculate the current value of rv as

rv :=
∑

zv ∈E (t )

wzv · φ (t − tzv ). (10)

Then we add a new edge vu to the multi-set of edges E (t ) with
wvu := rv + 1 to propagate the centrality score along edge vu, and
set tvu := t .

The time complexity of the above algorithm is linear in the degree

of u. It is possible to further improve the online update complexity

to constant time per update if φ satisfies φ (a + b) = φ (a) · φ (b).
Convergence properties. Let us assume that we sample a

sequence of T edges from a graph with edge set of size E. We can

3



05
-2

4
05

-2
5

05
-2

6
05

-2
7

05
-2

8
05

-2
9

05
-3

0
05

-3
1

06
-0

1
06

-0
2

06
-0

3
06

-0
4

06
-0

5
06

-0
6

06
-0

7
06

-0
8

06
-0

9
06

-1
0

06
-1

1

10000

20000

30000

40000

Number of edges (mentions)
Number of nodes (accounts)

Figure 3: Number of nodes and edges. Left: UO17; Right:
RG17. Low activity during the qualifiers and peak near semi-
finals and finals.

compute the expected value of temporal Katz centrality over the

sampled edge stream.We assume that sampling is done in a uniform

way over time, hence in what follows, time t corresponds to the

number of sampled edges in the process. The proof of the theorem

below is left for an extended version of the paper.

Theorem 4.1. Let us sample a sequence of T edges from an edge
set of size E. Let us compute (truncated or normal) temporal Katz
centrality with exponential weighting, φ (τ ) := β exp(−cτ ). Then as
T 7→ ∞, the limit of the expected value of temporal Katz centrality is

⃗TemporalKatz = 1 ·
K∑
k=0

Ak
(
β

E

)k (
1

ec − 1

)k
. (11)

5 TWITTER TENNIS DATA SETS
We compiled two separate tweet collections, RG17 for Roland-

Garros 2017, the French Open Tennis Tournament, and UO17 for

US Open 2017, the United States Open Tennis Championship. The

events took place between May 22 and June 11 as well as August 21

and September 10, respectively. We assessed the temporal relevance

of centrality measures by using the list of players of different days

as ground truth. We gathered data with the Twitter Search API, by

using the following two separate sets of keywords:

{@rolandgarros, #RolandGarros2017, #rolandgarros2017, #RG17,
#RolandGarros, #rolandgarros, #FrenchOpen, #frenchopen, #rg17}
{#usopen, #Usopen, #UsOpen, #USOPEN, #usopen17, #UsOpen17,
#Usopen2017, @usopen, #WTA, #wta, #ATP, #atp, @WTA,
@ATPWorldTour, #Tennis, #tennis, #tenis, #Tenis}
The RG17 data covers the events of the championship starting

May 24 with 444, 328 tweets, 815, 086 retweets, and 336, 234 time-

stamped mentions. The UO17 data consists of 636, 810 tweets,

1, 048, 786 retweets, and 482, 061 mentions. The daily distribution of

mentions is shown for both tennis events in Figure 3. Note that we

imposed no language restrictions on the text of the tweets during

the data collection process.

We measure the performance of centrality measures by means

of comparison with the official schedule of the tournaments. The

daily timetables are accessible in HTML file format and contain the

following information for each tennis game:

• Full names of the participating players (two for singles and four

for doubles games)

• Approximate time of the game during the day (e.g.: after 11:00,

not before 15:00, etc.)

0 25 50 75 100 125 150 175 200
Number of tennis players

2017-05-24
2017-05-25
2017-05-26
2017-05-28
2017-05-29
2017-05-30
2017-05-31
2017-06-01
2017-06-02
2017-06-03
2017-06-04
2017-06-05
2017-06-06
2017-06-07
2017-06-08
2017-06-09
2017-06-10
2017-06-11

Total number of players
Number of players with
 assigned Twitter account

Figure 4: The number of players active on a given day and
the number of of themwith identifiedTwitter accounts. Left:
UO17; Right: RG17.

• Category and round identifier of the game (e.g.Women’s Singles—

Round 1, Men’s Singles—Final)

• Court name, where the game took place (e.g. Grandstand, Arthur

Ashe Stadium, etc.)

• Information about whether the game was canceled, resumed

from a previous day, or the final result if completed.

Based on the approximate time of the games, we consider a player

active for a given day if he or she participated in a completed game,
a canceled game, or a resumed game on the same day. All of these

events are expected to cause a social media burst.

One of the most time-consuming parts of our measurement

was to assign Twitter accounts to tennis players. The total num-

ber of professional participants is 798 for US Open and 698 for

Roland-Garros. Unfortunately, many of the players have no Twitter

accounts.

We assigned players to accounts by the Twitter Search API’s

people endpoint; however, the APIwas sometimes unable to identify

the accounts of the active players.

In case the people API endpoint failed to return the account

of a player, we considered the account name (e.g. @rogerfederer,

@RafaelNadal) and name (e.g. “RafaNadal” for the account @Rafael-

Nadal). Using edit distance, for each player we automatically se-

lected accounts where the account name or the displayed name is
very similar to the full name. Note that the same player often has

multiple Twitter accounts, especially the popular players, who usu-

ally have official sites and distinct accounts for fans with different

nationalities. As a last step, we excluded fake assignments such as

@AndyMurray and @DominicThiem by manual verification.

To match accounts and player names, we first listed the accounts

that have minimum edit distance from a given player’s name. We

removed whitespaces and transformed all characters to lower case.

Since name matching can lead to false player-account pairs, we

manually searched the lists of different edit distance values to find

valid player account matches. We first considered screen names,

and in case there was no match, we continued with account names.

Using the above semi-automatic procedure, we managed to find

Twitter accounts for 58.4% of the US Open and 64.2% of the Roland-

Garros players, as seen in Figure 4.

6 UNSUPERVISED EVALUATION
In addition to the data with ground truth of the previous section,

we used the data sets of [20] for unsupervised analysis (see Table 1).
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Edges Nodes Days
Students 10,000 1,654 121

Facebook 10,000 4,752 104

Enron 6,251 1,944 892

Tumblr 7,645 1,757 89

UO17 482,061 106,920 21

RG17 336,234 78,095 19

Table 1: Summary of the data sets used.

These small temporal networks (Students, Facebook, Enron, Tumblr)

have no more than 10,000 edges
2
, as seen in Table 1.

6.1 Stability vs. changeability
We assess the amount of variability of temporal Katz centrality in

time, depending on the parameters β and the time decay exponent

to exhibit the speed of focus shift in daily interactions. We use the

weight function φ (τ ) = β · 2−cτ ; c can be considered as the half-life

of the information sent over an edge. We update temporal Katz

centrality after each edge arrival, and compute the top 100 nodes

with highest centrality scores for each snapshot. We generate the

lists at the beginning of each day for the small data sets of [20], and

each hour for our Twitter collections RG17 and UO17. Spearman

correlation is calculated between lists of adjacent snapshots, for

different values of c and β , as shown in Figure 5.

Our measurements show that the similarity between adjacent

lists depends on two different factors. We can turn temporal Katz

centrality more static by using longer half-life in the decay. If the

half-life is short, we even get negative correlations as the number

of nodes present in both lists decreases. Another option is to use

larger β . By increasing β , the contribution of long walks will be

more relevant, which cannot be dominated by recently added edges

as easily as for a small β . The two approaches can also be used

in combination. We observed the highest similarity using β = 1.0

with large half-life value.

6.2 Adaptation to concept drift
Rozenshtein et al. [20] showed that temporal PageRank can adapt to

the changes in the edge sampling distribution over semi-temporal

networks. We conducted similar measurement for temporal Katz

centrality on the same data sets.

In our experiment for concept drift adaptation, we randomly

selected 500 nodes as a base graph and formed three overlapping

subsamples of 400 nodes each. Similar to the approach in [20], we

formed a temporal edge stream of three segments corresponding

to the three subsamples, in each segment selecting 10,000 random

edges from the corresponding subsample. We compute temporal

PageRank and temporal Katz centrality by assuming that a new

edge in the stream appears in each time unit. In other words, we

measure the elapsed time τ by the number of edges in the stream.

We computed weighted Kendall tau [24] rank distance between

temporal Katz centrality and static Katz index restricted to the nodes

of the actual subsample. By usingweighted Kendall tau, we putmore

emphasis on nodes with high centrality compared to (unweighted)

2
GitHub repository of the temporal PageRank research:

https://github.com/polinapolina/temporal-pagerank
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Figure 5: Average Spearman correlation between temporal
Katz centrality scores of adjacent snapshots. Daily snap-
shots are used for Facebook, Students and Tumblr, and
hourly for RG17 and UO17. The correlation is presented for
β values 0.1, 0.5, 1.0 and several time decay intensity.

Kendall tau. For the same reason, we use the asymmetric version as

in [24, Section 5.1] by using the weight of 1/rank for the static Katz

index and zero for the online methods. By this choice, Kendall tau

measures the distance from the Katz index acting as ground truth.

In Figure 6, we evaluated our model for various values of the

exponential decay against the Katz index with β = 0.01. The results

show that in case of weak decay c = 1

|E | , temporal Katz centrality

converges to static Katz index. On the contrary, strong decay shifts

the focus of temporal centrality towards the recently sampled edges,

thus correlation decrease for c = 10

|E | and c =
100

|E | . Temporal Katz

5
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Figure 6: Weighted Kendall tau rank distance of static Katz
index and online methods by sampling to simulate concept
drift over Students, Enron, and Facebook data. Static Katz in-
dex has β = 0.01. The Weighted Kendall tau curves for tem-
poral Katz centrality with c = 1

|E | is green, with c = 10

|E | is
red, with c = 100

|E | is purple, and for temporal PageRank is
blue dashed. Noise in temporal Katz centrality is due to the
effect of the most recently selected edges.

centrality quickly detects concept drift when we switch between

subsamples.

7 SUPERVISED EVALUATION
In this section, we quantitatively analyze the relevance of temporal

centrality measures over the UO17 and RG17 Twitter collections.

We compare the relevance of temporal Katz centrality to temporal

PageRank and other online and static baseline methods.

To evaluate online metrics, we perform continuous update as

the new edges arrive, by considering our data as a time-ordered

edge stream. For the static metrics, we consider different graph

snapshots. For each centrality measure, we compute the list of the

nodes with the highest centrality in each hour. We use NDCG [1]

for evaluation, with relevance 1 if the owner of the account is a

professional player who participated in a game on the given day

and 0 otherwise.

7.1 Baseline metrics
We compare temporal Katz centrality to online (or time-aware)

and static (or batch) metrics. Online metrics are updated after the

arrival of each edge. By contrast, static metrics are only updated

once in each hour. At hour t a static metric is computed on the

graph constructed from edges arriving in time window [t −T , t]

from the edge stream. For each baseline, we experimentally select

the best value of T .
We consider four static centrality measures as baseline:

• PageRank [19]: We set α = 0.85, and 50 iterations.

• indegree: We calculate the indegree of each node in time window

[t−T , t] by counting each edge once, that is, without multiplicity.

• negative β-measure [6]: The normalized version of indegree,∑
z∈Nin (u )

1

outdegree(z)
(12)

where Nin (u) denotes the in-neighbors of u.
• harmonic centrality [6]: For node u∑

z,u

1

d (z,u)
. (13)

Furthermore, we compare temporal Katz centrality with two

online metrics, temporal PageRank [20] and decayed indegree.

• temporal PageRank: We set α = 0.85 and β ∈ {0.001, 0.01, 0.05,
0.1, 0.5, 0.9} for transition weight.

• decayed indegree: The decayed indegree of node u at time t is∑
zu ∈E (t )

φ (t − tzu ) (14)

where φ is the time decay function that we set φ (t − tzu ) :=
exp(−c (t − tzu )) similarly to temporal Katz centrality.

7.2 Results
As the final and main analysis of the relevance of centrality mea-

sures, we compute hourly lists of top centrality nodes and calculate

the NDCG@50 against the ground truth. The hour of the day has a

key effect on performance. In the early hours, activity is low, and

hence information is scarce to identify the players of the coming

day. By contrast, in the late hours after the games are over, we

expect that all models easily detect the players of the day based

on the tweets of the results. Due to these observations we present

two different ways to aggregate hourly NDCG@50 values: (1) For

each hour of the day between 0:00 and 24:00, we show averages

over the days of the tournament (Figure 8). (2) As a single global

value (Figure 7, Table 2), we average NDCG@50 for all days with all

hours between 10:00 and 20:00 as daily tennis games start around

10:00. The effect of the hour of the day can be seen in Figure 8,

where we plot the average daily performance over UO17.

First, we analyze our baseline models. Each static metric is com-

puted at hour t over the graph defined by edges arriving in time

frame [t −T , t]. Hence the key parameter of these methods is the

length of the time window T . Similarly, online decayed indegree

depends on the half-life parameter τ := ln 2/c . Figure 7, top, shows
the overall performance of the static baselines as the function of

time frame T , and the quality of decayed indegree as the function

of half-life τ . For both data sets, PageRank and harmonic centrality

outperform degree-related methods. Furthermore, these path-based

methods prefer larger time frames, while degree-based models per-

form best at smaller values of T .
Next we analyze temporal Katz centrality with exponential decay.

The key parameters of our method are the parameters of the expo-

nential decay β and τ := ln 2/c , and truncation k . We parameterize

exponential decay with half-life τ := ln 2/c instead of c .
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Figure 7: NDCG@50 performance of metrics with different
hyperparameter settings. Top: UO17, Bottom: RG17.
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Figure 8: Overall best daily NDCG@50 performance of tem-
poral Katz centrality and the baselines. Top: UO17, Bottom:
RG17.

First, we examine the effect of k and half-life τ by setting β = 1.

Figure 7, middle, shows the performance of temporal Katz cen-

trality at various parameter settings for UO17 the RG17. We plot

NDCG@50 against parameter τ . Different curves correspond to

different k parameters. The effect of k is significant: Models with

k > 1 strongly outperform models with k = 1, a very simple ver-

sion of temporal Katz centrality similar to online degree. The best

performance can be achieved on both data sets by setting k = 2

and τ ≈ 3h.
In Figure 7, bottom, we analyze the importance of parameter

β . For models with larger k (e.g. k = 8), the importance of β is to

decrease the effect of paths that are too long, with optimal value

around β ≈ 0.1 − 0.2. For methods with lower k (e.g. k = 2), β is

nearly meaningless, and the use of small β in combination with

strong exponential decay results in performance deterioration.

As final conclusion, in Figure 8 we compare the hourly perfor-

mance of eachmethod at their best parameter settings. For temporal

Katz centrality we set β = 1,τ = 3h,k = 2. In the case of both data

sets, temporal Katz centrality can keep up with the performance of

harmonic centrality, the strongest baseline model. The quality of

temporal PageRank is significantly lower than the quality of other

methods. We summarize the best average NDCG@50 scores for

temporal Katz centrality and the baselines in Table 2. temporal Katz

centrality generally performs better than other baselines. Note that

only staic harmonic centrality delivers performance comparable to

temporal Katz centrality.

We illustrate various centrality measures by showing the 20 ac-

counts with highest score for the Roland-Garros semifinals. On

June 9, more than 70 players participated in several categories

(Men’s singles, Girl’s and Boy’s singles, etc.). In Table 3, we show

top accounts by various methods. We show the accounts of tennis
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NDCG@50 UO17 RG17

indegree 0.321 0.342

decayed indegree 0.321 0.346

negative beta 0.319 0.333

PageRank 0.325 0.349

temporal PageRank 0.187 0.195

harmonic centrality 0.353 0.359

temporal Katz centrality 0.370 0.368

Table 2: Best average NDCG@50 performances.

1 Simona Halep @Simona_Halep 0

2 Stanislas Wawrinka @stanwawrinka 1

3 Andy Murray @andy_murray 1

4 Rafa Nadal @RafaelNadal 1

5 Roland-Garros @rolandgarros 0

6 Ana Ivanovic @AnaIvanovic 0

7 Timea Bacsinszky @TimeaOfficial 0

8 Karolina Pliskova @KaPliskova 0

9 Rohan Bopanna @rohanbopanna 0

10 Dominic Thiem @ThiemDomi 1

11 Gaby Dabrowski @GabyDabrowski 0

12 Gustavo Kuerten @gugakuerten 0

13 Nicola Kuhn @NicolaKuhn1 1

14 yonex.com @yonex_com 0

15 Whitney osuigwe @whitney_osuigwe 1

16 Caroline Garcia @CaroGarcia 0

17 NikeCourt @Nikecourt 0

18 Novak Djokovic @DjokerNole 0

19 WTA @WTA 0

20 ATP World Tour @ATPWorldTour 0

1 Roland-Garros @rolandgarros 0

2 Stanislas Wawrinka @stanwawrinka 1

3 Andy Murray @andy_murray 1

4 Simona Halep @Simona_Halep 0

5 Rafa Nadal @RafaelNadal 1

6 Dominic Thiem @ThiemDomi 1

7 Timea Bacsinszky @TimeaOfficial 0

8 Rohan Bopanna @rohanbopanna 0

9 Ana Ivanovic @AnaIvanovic 0

10 WTA @WTA 0

11 Gaby Dabrowski @GabyDabrowski 0

12 Tennis Channel @TennisChannel 0

13 Rafa Nadal Academy @rnadalacademy 0

14 Karolina Pliskova @KaPliskova 0

15 yonex.com @yonex_com 0

16 Gusti Fernandez @gustifernandez4 0

17 rolandgarrosFR @rolandgarros_FR 0

18 Eurosport.es @Eurosport_ES 0

19 ATP World Tour @ATPWorldTour 0

20 Caroline Garcia @CaroGarcia 0

1 Roland-Garros @rolandgarros 0

2 Rafa Nadal @RafaelNadal 1

3 Andy Murray @andy_murray 1

4 Stanislas Wawrinka @stanwawrinka 1

5 Simona Halep @Simona_Halep 0

6 Dominic Thiem @ThiemDomi 1

7 Rohan Bopanna @rohanbopanna 0

8 Timea Bacsinszky @TimeaOfficial 0

9 Ana Ivanovic @AnaIvanovic 0

10 Tennis Channel @TennisChannel 0

11 yonex.com @yonex_com 0

12 WTA @WTA 0

13 Caroline Garcia @CaroGarcia 0

14 Rafa Nadal Academy @rnadalacademy 0

15 Gaby Dabrowski @GabyDabrowski 0

16 ATP World Tour @ATPWorldTour 0

17 Whitney osuigwe @whitney_osuigwe 1

18 Nicola Kuhn @NicolaKuhn1 1

19 NikeCourt @Nikecourt 0

20 Anabel Medina @anabelmedina 0

1 Roland-Garros @rolandgarros 0

2 Andy Murray @andy_murray 1

3 Stanislas Wawrinka @stanwawrinka 1

4 Rafa Nadal @RafaelNadal 1

5 Dominic Thiem @ThiemDomi 1

6 Timea Bacsinszky @TimeaOfficial 0

7 Simona Halep @Simona_Halep 0

8 Rohan Bopanna @rohanbopanna 0

9 Ana Ivanovic @AnaIvanovic 0

10 Tennis Channel @TennisChannel 0

11 Gaby Dabrowski @GabyDabrowski 0

12 Gusti Fernandez @gustifernandez4 0

13 Rafa Nadal Academy @rnadalacademy 0

14 WTA @WTA 0

15 yonex.com @yonex_com 0

16 Eurosport.es @Eurosport_ES 0

17 Caroline Garcia @CaroGarcia 0

18 Eurosport UK @Eurosport_UK 0

19 Stéphanie Loire @Stephloire 0

20 Emilie Lopez @emilielopez 0

Table 3: Top list for RG17 semi final day (June 9) at 12:00.
Top left: temporal Katz centrality β = 1.0; Top right: β = 0.2.
Bottom left: harmonic centrality; Bottom right: decayed in-
degree. Relevant daily players are highlighted orange. Ac-
counts of players who did not play on this day are high-
lighted yellow.

players playing participating in the June 9 semifinals in orange

and of those who did not play in yellow, for example, women semi-

finalists of the previous day, Simona Halep, Timea Bacsinszky, Car-

oline Garcia and Gabriela Dabrowski. All methods listed 4–6 daily

players among the most central 20 accounts. All methods assigned

high centrality to Men semi-finalists Nadal, Murray, Wawrinka and

Thiem. Furthermore, temporal Katz centrality with β = 1.0 and har-

monic centrality could recover two additional young daily players,

Osuigwe and Kuhn. Retired tennis legends Ivanovic and Kuerten

are not relevant in our experiment as they did not participate.

Notice that decayed indegree and temporal Katz centrality with

β = 0.2 rank sports media accounts (Tennis Channel, WTA, ATP

World Tour, Eurosport) higher compared to harmonic centrality

and temporal Katz centrality with β = 1.0. We did not attempt

to curate the relevance to media sources, as the number of such

Twitter accounts is abundant. Finally, sponsors ‘yonex.com’ and

‘NikeCourt’, as well as the official Twitter account of the event

‘@rolandgarros’ also rank high. Most of these accounts are active

every day, with little observable change in time, which justifies

why we do not consider them relevant for the temporal evaluation.

8 CONCLUSION
In this paper, we designed an online updateable, dynamic graph

centrality measure based on the Katz index. We presented multiple

unsupervised experiments to show that our method can adapt to

changes in the distribution of the edge stream. We compiled a

supervised evaluation for the mention graphs of Twitter tennis

tournament collections along with temporal importance ground

truth information. To the best of our knowledge, these are the first

Twitter collections enhanced with dynamic node importance labels.

Our data and codes are publicly available.
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